2019届高考数学一轮复习 第八章 平面解析几何 第六节 双曲线课时作业

合集下载

新人教版通用2019高考数学一轮复习第8章平面解析几何第6节双曲线教师用书文新人教A版

新人教版通用2019高考数学一轮复习第8章平面解析几何第6节双曲线教师用书文新人教A版

第六节双曲线————————————————————————————————[考纲传真] 1.了解双曲线的实际背景,了解双曲线在刻画现实世界和解决实际问题中的作用.2.了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).3.理解数形结合的思想.4.了解双曲线的简单应用.1.双曲线的定义(1)平面内与两个定点F1,F2(|F1F2|=2c>0)的距离之差的绝对值为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a<|F1F2|时,M点的轨迹是双曲线;②当2a=|F1F2|时,M点的轨迹是两条射线;③当2a>|F1F2|时,M点不存在.2.双曲线的标准方程和几何性质实轴和虚轴等长的双曲线叫做等轴双曲线,其渐近线方程为y=±x,离心率为e= 2.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )(2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( ) [答案] (1)× (2)× (3)√ (4)√2.(教材改编)已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2 B.62C.52D .1D [依题意,e =c a =a 2+3a=2,∴a 2+3=2a ,则a 2=1,a =1.]3.(2017·福州质检)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3B [由题意知a =3,b =4,∴c =5.由双曲线的定义||PF 1|-|PF 2||=|3-|PF 2||=2a =6,∴|PF 2|=9.]4.(2016·全国卷Ⅰ)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)A [∵原方程表示双曲线,且两焦点间的距离为4.∴⎩⎪⎨⎪⎧m 2+n +3m 2-n =4,m 2+n m 2-n ,则⎩⎪⎨⎪⎧m 2=1,-m 2<n <3m 2,因此-1<n <3.]5.(2016·北京高考改编)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则双曲线的方程为__________.x 2-y 24=1 [由于2x +y =0是x 2a 2-y 2b2=1的一条渐近线,∴b a=2,即b =2a ,①又∵双曲线的一个焦点为(5,0),则c =5, 由a 2+b 2=c 2,得a 2+b 2=5,② 联立①②得a 2=1,b 2=4. ∴所求双曲线的方程为x 2-y 24=1.](2017·哈尔滨质检)已知双曲线x 2-24=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43|PF 2|,则△F 1PF 2的面积为( )A .48B .24C .12D .6B [由双曲线的定义可得 |PF 1|-|PF 2|=13|PF 2|=2a =2,解得|PF 2|=6,故|PF 1|=8,又|F 1F 2|=10,由勾股定理可知三角形PF 1F 2为直角三角形,因此S △PF 1F 2=12|PF 1|×|PF 2|=24.][规律方法] 1.应用双曲线的定义需注意的问题:在双曲线的定义中,要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点间的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.同时需注意定义的转化应用.2.在焦点三角形中,注意定义、余弦定理的活用,常将||PF 1|-|PF 2||=2a 平方,建立|PF 1|·|PF 2|间的联系.[变式训练1] 已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( )A.14B.13C.24D.23A [由e =c a=2得c =2a ,如图,由双曲线的定义得|F 1A |-|F 2A |=2a . 又|F 1A |=2|F 2A |,故|F 1A |=4a , |F 2A |=2a , ∴cos ∠AF 2F 1=a2+a 2-a22×4a ×2a=14.](1)(2017·广州模拟)已知双曲线C :a 2-b 2=1的离心率e =4,且其右焦点为F 2(5,0),则双曲线C 的方程为( ) 【导学号:31222317】A.x 24-y 23=1B.x 29-y 216=1 C.x 216-y 29=1 D.x 23-y 24=1 (2)(2016·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A.x 24-y 2=1 B .x 2-y 24=1C.3x 220-3y25=1 D.3x 25-3y220=1 (1)C (2)A [(1)由焦点F 2(5,0)知c =5.又e =c a =54,得a =4,b 2=c 2-a 2=9.∴双曲线C 的标准方程为x 216-y 29=1.(2)由焦距为25得c = 5.因为双曲线的一条渐近线与直线2x +y =0垂直,所以b a =12.又c 2=a 2+b 2,解得a =2,b =1,所以双曲线的方程为x 24-y 2=1.][规律方法] 1.确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件.“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.若双曲线的焦点不能确定时,可设其方程为Ax 2+By 2=1(AB <0).2.对于共焦点、共渐近线的双曲线方程,可灵活设出恰当的形式求解.若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).[变式训练2] (1)(2015·全国卷Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________________.(2)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为__________.(1)x 24-y 2=1 (2)x 216-y 29=1 [(1)∵双曲线的渐近线方程为y =±12x ,∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3), ∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.(2)由题意知椭圆C 1的焦点坐标为F 1(-5,0),F 2(5,0),设曲线C 2上的一点P ,则||PF 1|-|PF 2||=8.由双曲线的定义知:a =4,b =3.故曲线C 2的标准方程为x 242-y 232=1,即x 216-y 29=1.](1)(2016·全国卷Ⅱ)已知F 1,F 2是双曲线E :a 2-b2=1的左、右焦点,点M在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A.2B.32C. 3D .2(2)(2017·石家庄调研)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线为__________. 【导学号:31222318】(1)A (2)x ±y =0 [(1)如图,因为MF 1⊥x 轴,所以|MF 1|=b 2a.在Rt △MF 1F 2中,由sin ∠MF 2F 1=13得tan ∠MF 2F 1=24. 所以|MF 1|2c =24,即b 22ac =24,即c 2-a 22ac =24,整理得c 2-22ac -a 2=0, 两边同除以a 2得e 2-22e -1=0. 解得e =2(负值舍去).(2)由题设易知A 1(-a,0),A 2(a,0),B ⎝ ⎛⎭⎪⎫c ,b 2a ,C ⎝⎛⎭⎪⎫c ,-b 2a . 因为A 1B ⊥A 2C ,所以b 2ac +a ·-b 2ac -a=-1,整理得a =b .因此该双曲线的渐近线为y =±b ax ,即x ±y =0.][规律方法] 1.(1)求双曲线的渐近线,要注意双曲线焦点位置的影响;(2)求离心率的关键是确定含a ,b ,c 的齐次方程,但一定注意e >1这一条件.2.双曲线中c 2=a 2+b 2,可得双曲线渐近线的斜率与离心率的关系b a=e 2-1⎝⎛⎭⎪⎫e =c a.抓住双曲线中“六点”、“四线”、“两三角形”,研究a ,b ,c ,e 间相互关系及转化,简化解题过程.[变式训练3] (2015·全国卷Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A. 5 B .2 C. 3D. 2D [不妨取点M 在第一象限,如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则|BM |=|AB |=2a ,∠MBx =180°-120°=60°,∴M 点的坐标为()2a , 3a .∵M 点在双曲线上,∴4a 2a 2-3a2b2=1,a =b ,∴c =2a ,e =c a= 2.故选D.][思想与方法]1.求双曲线标准方程的主要方法:(1)定义法:由条件判定动点的轨迹是双曲线,求出a 2,b 2,得双曲线方程. (2)待定系数法:即“先定位,后定量”,如果不能确定焦点的位置,应注意分类讨论或恰当设置简化讨论.①若已知双曲线过两点,焦点位置不能确定,可设方程为Ax 2+By 2=1(AB <0). ②当已知双曲线的渐近线方程bx ±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0).③与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0).2.已知双曲线的标准方程求双曲线的渐近线方程,只需将双曲线的标准方程中“1”改为“0”即可.[易错与防范]1.区分双曲线中a ,b ,c 的关系与椭圆中a ,b ,c 的关系,在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.2.双曲线的离心率大于1,椭圆的离心率e ∈(0,1).求它们的离心率,不要忽视这一前提条件,否则会产生增解或扩大取值范围.3.直线与双曲线有一个公共点时,不一定相切,也可能直线与渐近线平行.课时分层训练(五十) 双曲线A 组 基础达标 (建议用时:30分钟)一、选择题1.下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A .x 2-y 24=1 B.x 24-y 2=1 C.y 24-x 2=1 D .y 2-x 24=1C [由于焦点在y 轴上,且渐近线方程为y =±2x . ∴a b=2,则a =2b .C 中a =2,b =1满足.]2.(2015·湖南高考)若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73B.54C.43D.53D [由双曲线的渐近线过点(3,-4)知b a =43,∴b 2a 2=169.又b 2=c 2-a 2,∴c 2-a 2a 2=169,即e 2-1=169,∴e 2=259,∴e =53.]3.已知点F 1(-3,0)和F 2(3,0),动点P 到F 1,F 2的距离之差为4,则点P 的轨迹方程为( )A.x 24-y 25=1(y >0)B.x 24-y 25=1(x >0)C.y 24-x 25=1(y >0)D.y 24-x 25=1(x >0) B [由题设知点P 的轨迹方程是焦点在x 轴上的双曲线的右支,设其方程为x 2a 2-y 2b2=1(x >0,a >0,b >0),由题设知c =3,a =2,b 2=9-4=5.所以点P 的轨迹方程为x 24-y 25=1(x >0).]4.已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A. 3 B .3 C.3mD .3mA [由双曲线方程知a 2=3m ,b 2=3, ∴c =a 2+b 2=3m +3.不妨设点F 为右焦点,则F (3m +3,0). 又双曲线的一条渐近线为x -my =0, ∴d =|3·m +1|1+m= 3.]5.(2017·成都调研)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( )A.433B .2 3C .6D .4 3D [由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c =2代入得y =±23,即A ,B 两点的坐标分别为(2,23),(2,-23),所以|AB |=4 3.]二、填空题6.(2016·江苏高考)在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.210 [由双曲线的标准方程,知a 2=7,b 2=3,所以c 2=a 2+b 2=10,所以c =10,从而焦距2c =210.]7.已知双曲线x 2a2-y 2=1(a >0)的一条渐近线为3x +y =0,则a =__________. 【导学号:31222319】33 [双曲线x 2a 2-y 2=1的渐近线为y =±x a,已知一条渐近线为3x +y =0,即y =-3x ,因为a >0,所以1a =3,所以a =33.]8.(2016·山东高考)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.2 [如图,由题意知|AB |=2b2a,|BC |=2c .又2|AB |=3|BC |,∴2×2b 2a=3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2,并整理得2e 2-3e -2=0,解得e =2(负值舍去).] 三、解答题9.已知椭圆D :x 250+y 225=1与圆M :x 2+(y -5)2=9,双曲线G 与椭圆D 有相同焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程.【导学号:31222320】[解] 椭圆D 的两个焦点为F 1(-5,0),F 2(5,0),因而双曲线中心在原点,焦点在x 轴上,且c =5.3分设双曲线G 的方程为x 2a 2-y 2b2=1(a >0,b >0),∴渐近线方程为bx ±ay =0且a 2+b 2=25,8分 又圆心M (0,5)到两条渐近线的距离为r =3. ∴|5a |b 2+a 2=3,得a =3,b =4,10分∴双曲线G 的方程为x 29-y 216=1.12分10.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10),点M (3,m )在双曲线上.(1)求双曲线的方程;(2)求证:MF 1→·MF 2→=0;(3)求△F 1MF 2的面积. 【导学号:31222321】[解] (1)∵e =2,则双曲线的实轴、虚轴相等.∴设双曲线方程为x 2-y 2=λ.2分∵过点(4,-10),∴16-10=λ,即λ=6.∴双曲线方程为x 2-y 2=6.4分(2)证明:∵MF 1→=(-3-23,-m ), MF 2→=(23-3,-m ).∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2.6分∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1→·MF 2→=0.8分(3)△F 1MF 2的底|F 1F 2|=4 3.由(2)知m =± 3.10分∴△F 1MF 2的高h =|m |=3,∴S △F 1MF 2=12×43×3=6.12分 B 组 能力提升(建议用时:15分钟) 1.(2017·河南中原名校联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点与对称轴垂直的直线与渐近线交于A ,B 两点,若△OAB 的面积为13bc 3,则双曲线的离心率为( ) A.52B.53C.132 D.133 D [由题意可求得|AB |=2bc a ,所以S △OAB =12×2bc a ×c =13bc 3,整理得c a =133.因此e =133.]2.(2017·天津河西区质检)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为__________. x 2-y 23=1 [由双曲线的渐近线y =±b a x ,即bx ±ay =0与圆(x -2)2+y 2=3相切, ∴|2b |a 2+b 2=3,则b 2=3a 2.① 又双曲线的一个焦点为F (2,0),∴a 2+b 2=4,②联立①②,解得a 2=1,b 2=3.故所求双曲线的方程为x 2-y 23=1.] 3.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O为原点),求k 的取值范围. 【导学号:31222322】[解] (1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1.4分故C 2的方程为x 23-y 2=1.5分 (2)将y =kx +2代入x 23-y 2=1, 得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得 ⎩⎨⎧ 1-3k 2≠0,Δ=-62k 2+-3k 2=-k 2,∴k 2≠13且k 2<1.① 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k2.8分 ∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1. 又OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0, 解得13<k 2<3. ②10分 由①②得13<k 2<1, 故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1.12分。

数学(理)一轮复习 第八章 平面解析几何 第讲 双曲线

数学(理)一轮复习 第八章 平面解析几何 第讲 双曲线

第6讲 双曲线1.双曲线的定义 条件 结论1 结论2 平面内的动点M与平面内的两个定点F 1,F 2M 点的 轨迹为 双曲线 F 1、F 2为双曲线的焦点 ||MF 1|-|MF 2||=2a|F 1F 2|为双曲线的焦距 2a <|F 1F 2|2.双曲线的标准方程和几何性质 标准方程 错误!-错误!=1 (a >0,b >0) 错误!-错误!=1 (a >0,b >0)图形性质 范围x ≥a 或x ≤-a ,y ∈R y ≤-a 或y ≥a ,x ∈R 对称性 对称轴:坐标轴,对称中心:原点顶点 A 1(-a ,0),A 2(a ,0) A 1(0,-a ),A 2(0,a )渐近线y=±ba xy=±错误!x离心率e=错误!,e∈(1,+∞)实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关系c2=a2+b2(c>a>0,c>b>0)1.辨明三个易误点(1)双曲线的定义中易忽视2a<|F1F2|这一条件.若2a=|F1F2|,则轨迹是以F1,F2为端点的两条射线,若2a>|F1F2|,则轨迹不存在.(2)区分双曲线中a,b,c的关系与椭圆中a,b,c的关系,在椭圆中a2=b2+c2,而在双曲线中c2=a2+b2。

(3)双曲线的离心率e∈(1,+∞),而椭圆的离心率e∈(0,1).2.求双曲线标准方程的两种方法(1)定义法根据题目的条件,判断是否满足双曲线的定义,若满足,求出相应的a,b,c,即可求得方程.(2)待定系数法①与双曲线错误!-错误!=1共渐近线的可设为错误!-错误!=λ(λ≠0);②若渐近线方程为y =±b ax ,则可设为错误!-错误!=λ(λ≠0); ③若过两个已知点,则可设为错误!+错误!=1(mn <0).3.双曲线几何性质的三个关注点(1)“六点”:两焦点、两顶点、两虚轴端点;(2)“四线”:两对称轴(实、虚轴)、两渐近线;(3)“两形”:中心、顶点、虚轴端点构成的三角形;双曲线上的一点(不包括顶点)与两焦点构成的三角形.1。

高考数学一轮复习第8章解析几何第6讲双曲线

高考数学一轮复习第8章解析几何第6讲双曲线
题组一 走出误区
1.判断下列结论是否正确(请在括号中打“√”或“×”
(1平面内到点F1(0,4,F2(0,-4距离之差的绝对值等于8的点的轨迹是双曲线.( × )
(2方程 - =1(mn>0表示焦点在x轴上的双曲线.( × )
(3双曲线方程 - =λ(m>0,n>0,λ≠0的渐近线方程是 - =0,即 ± =0.( √ )
(4等轴双曲线的渐近线互相垂直,离心率等于 .( √ )
(5若双曲线 - =1(a>0,b>0与 - =1(a>0,b>0的离心率分别是e1,e2,则 + =1(此条件中两条双曲线称为共轭双曲线.( √ )
题组二 走进教材
2.(必修2P61T1若双曲线 - =1(a>0,b>0的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( A )
∴||PF2|-|PF1||=||PF2|-|PM||=|MF2|=2<|F1F2|,
∴由双曲线的定义可得,点P的轨迹是以F1,F2为焦点的双曲线.
(2设双曲线的右焦点为F1,则由双曲线的定义,可知|PF|=4+|PF1|,所以当|PF1|+|PA|最小时满足|PF|+|PA|最小.由双曲线的图形可知,当点A,P,F1共线时,满足|PF1|+|PA|最小,|AF1|即|PF1|+|PA|的最小值.又|AF1|=5,故所求的最小值为9.
(4过双曲线焦点F1的弦AB与双曲线交在同支上,则AB与另一个焦点F2构成的△ABF2的周长为4a+2|AB|.
(5双曲线的离心率公式可表示为e= .
(6双曲线的形状与e的关系:|k|= = = ,e越大,即渐近线斜率的绝对值就越大,双曲线开口就越开阔.
(7 - =1(a>0,b>0与 - =1(a>0,b>0互为共轭双曲线,其离心率倒数的平方和为1.

人教A版高中数学 高三一轮 第八章 平面解析几何 8-6 双曲线 练习学生版 精品

人教A版高中数学 高三一轮 第八章 平面解析几何 8-6 双曲线 练习学生版 精品

高三一轮 第八章 平面解析几何8.6 双曲线(检测学生版)时间:50分钟 总分:70分班级: 姓名:一、 选择题(共6小题,每题5分,共30分)1.(2015·福建)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( ) A.11 B.9 C.5 D.3 2.(2015·安徽)下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( )A.x 2-y 24=1B.x 24-y 2=1 C.y 24-x 2=1 D.y 2-x 24=13.(2015·广东)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C的方程为( ) A.x 24-y 23=1 B.x 216-y 29=1 C.x 29-y 216=1 D.x 23-y 24=1 4.(2015·四川)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( ) A.433B.2 3C.6D.4 35.(2014·大纲全国,9)已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( ) A.14 B.13 C.24D.236.(2014·重庆)设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D.3二、填空题(共4小题,每题5分,共20分)7.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是________.8.(2015·全国卷Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.9.(2016·山东,13)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.10.(2015·全国卷Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________. 三、解答题(共2小题,每题10分,共20分)11.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O为原点),求k 的取值范围.12.(2013·大纲全国,21)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6. (1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB |,|BF 2|成等比数列.。

2019年高考数学一轮总复习第八章解析几何8.6双曲线课时跟踪检测理

2019年高考数学一轮总复习第八章解析几何8.6双曲线课时跟踪检测理

8.6 双曲线[课 时 跟 踪 检 测][基 础 达 标]1.(2017届合肥质检)若双曲线C 1:x 22-y 28=1与C 2:x 2a 2-y 2b2=1(a >0,b >0)的渐近线相同,且双曲线C 2的焦距为45,则b =( )A .2B .4C .6D .8解析:由题意得ba=2⇒b =2a ,C 2的焦距2c =45⇒c =a 2+b 2=25⇒b =4,故选B. 答案:B2.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±2xC .y =±12xD .y =±22x 解析:由条件e =c a =3,得c 2a 2=a 2+b 2a 2=1+b 2a 2=3,所以ba=2,所以双曲线的渐近线方程为y =±2x .故选B.答案:B3.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦点为F 1,F 2,且C 上点P 满足PF 1→·PF 2→=0,|PF 1→|=3,|PF 2→|=4,则双曲线C 的离心率为( )A.102B . 5 C.52D .5解析:依题意得,2a =|PF 2|-|PF 1|=1,|F 1F 2|=|PF 2|2+|PF 1|2=5,因此该双曲线的离心率e =|F 1F 2||PF 2|-|PF 1|=5.答案:D4.(2017届长春质检)过双曲线x 2-y 215=1的右支上一点P ,分别向圆C 1:(x +4)2+y2=4和圆C 2:(x -4)2+y 2=1作切线,切点分别为M ,N ,则|PM |2-|PN |2的最小值为( )A .10B .13C .16D .19解析:由题可知,|PM |2-|PN |2=(|PC 1|2-4)-(|PC 2|2-1)=|PC 1|2-|PC 2|2-3=(|PC 1|-|PC 2|)(|PC 1|+|PC 2|)-3=2(|PC 1|+|PC 2|)-3≥2|C 1C 2|-3=13.答案:B5.(2018届河南六市第一次联考)已知点F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,若|AB |∶|BF 2|∶|AF 2|=3∶4∶5,则双曲线的离心率为( )A .2B .4 C.13D .15解析:由题意,设|AB |=3k ,|BF 2|=4k ,|AF 2|=5k ,则BF 1⊥BF 2.∵|AF 1|=|AF 2|-2a =5k -2a ,|BF 1|-|BF 2|=5k -2a +3k -4k =4k -2a =2a ,∴a =k ,∴|BF 1|=6a ,|BF 2|=4a .又|BF 1|2+|BF 2|2=|F 1F 2|2,即13a 2=c 2,∴e =ca=13.答案:C6.(2018届合肥市第二次质量检测)双曲线M :x 2-y 2b2=1的左、右焦点分别为F 1、F 2,记|F 1F 2|=2c ,以坐标原点O 为圆心,c 为半径的圆与曲线M 在第一象限的交点为P ,若|PF 1|=c +2,则点P 的横坐标为( )A.3+12 B .3+22C.3+32D .332解析:由点P 在双曲线的第一象限可得|PF 1|-|PF 2|=2,则|PF 2|=|PF 1|-2=c ,又|OP |=c ,∠F 1PF 2=90°,由勾股定理可得(c +2)2+c 2=(2c )2,解得c =1+ 3.易知△POF 2为等边三角形,则x P =c2=3+12,选项A 正确. 答案:A7.(2018届湖南十校联考)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与直线x =a 2c分别交于A ,B 两点,F 为该双曲线的右焦点.若60°<∠AFB <90°,则该双曲线的离心率的取值范围是________.解析:双曲线x 2a 2-y 2b 2=1的两条渐近线方程为y =±b a x ,x =a 2c 时,y =±abc ,不妨设A ⎝ ⎛⎭⎪⎫a 2c ,ab c ,B ⎝ ⎛⎭⎪⎫a 2c,-ab c ,因为60°<∠AFB <90°,所以33<k FB <1,所以33<abc c -a 2c<1,所以33<a b <1,所以13<a 2c 2-a2<1,所以1<e 2-1<3,所以2<e <2. 答案:(2,2)8.若点P 是以A (-3,0),B (3,0)为焦点,实轴长为25的双曲线与圆x 2+y 2=9的一个交点,则|PA |+|PB |=________.解析:不妨设点P 在双曲线的右支上,则|PA |>|PB |. 因为点P 是双曲线与圆的交点,所以由双曲线的定义知,|PA |-|PB |=25,① 又|PA |2+|PB |2=36,②联立①②化简得2|PA |·|PB |=16,所以(|PA |+|PB |)2=|PA |2+|PB |2+2|PA |·|PB |=52, 所以|PA |+|PB |=213. 答案:2139.(2017年全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.解析:∵|AM |=|AN |=b ,∠MAN =60°, ∴△MAN 是等边三角形, ∴在△MAN 中,MN 上的高h =32b . ∵点A (a,0)到渐近线bx -ay =0的距离d =ab a 2+b 2=abc, ∴ab c =32b , ∴e =c a=23=233. 答案:23310.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线的离心率e 的最大值为________.解析:由双曲线定义知|PF 1|-|PF 2|=2a , 又|PF 1|=4|PF 2|,所以|PF 1|=83a ,|PF 2|=23a ,在△PF 1F 2中,由余弦定理得cos ∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2,要求e 的最大值,即求cos ∠F 1PF 2的最小值,当F 1、P 、F 2三点共线时,即∠F 1PF 2=π时,cos ∠F 1PF 2有最小值为-1,∴cos ∠F 1PF 2=178-98e 2≥-1,解得1<e ≤53,即e 的最大值为53.答案:5311.设A ,B 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点,|AB |=43,焦点到渐近线的距离为 3.(1)求双曲线的方程; (2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM →+ON →=tOD →,求t 的值及点D 的坐标.解:(1)由题意知a =23,∵一条渐近线为y =b ax ,即bx -ay =0. ∴由焦点到渐近线的距离为3,得|bc |b 2+a 2= 3.又∵c 2=a 2+b 2, ∴b 2=3,∴双曲线的方程为x 212-y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程y =33x -2代入双曲线方程x 212-y 23=1得x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12. ∴⎩⎪⎨⎪⎧x 0y 0=433,x 212-y 203=1,解得⎩⎨⎧x 0=43,y 0=3.∴t =4,点D 的坐标为(43,3).12.已知中心在原点,焦点在坐标轴上的双曲线C 经过A (-7,5),B (-1,-1)两点. (1)求双曲线C 的方程;(2)设直线l :y =x +m 交双曲线C 于M ,N 两点,且线段MN 被圆E :x 2+y 2-12x +n =0(n ∈R )三等分,求实数m ,n 的值.解:(1)设双曲线C 的方程是λx 2+μy 2=1(λμ<0),依题意有⎩⎪⎨⎪⎧49λ+25μ=1,λ+μ=1,解得⎩⎪⎨⎪⎧λ=-1,μ=2,所以双曲线C 的方程是2y 2-x 2=1. (2)将l :y =x +m 代入2y 2-x 2=1, 得x 2+4mx +(2m 2-1)=0,① Δ=(4m )2-4(2m 2-1)=8m 2+4>0.设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0), 则x 1+x 2=-4m , 所以x 0=x 1+x 22=-2m ,y 0=x 0+m =-m ,所以P (-2m ,-m ).又圆心E (6,0),依题意k PE =-1, 故m6+2m=-1,即m =-2. 将m =-2代入①得x 2-8x +7=0, 解得x 1=1,x 2=7,所以|MN |=1+12|x 1-x 2|=6 2. 故直线l 截圆E 所得弦长为13|MN |=2 2.又E (6,0)到直线l 的距离d =22, 所以圆E 的半径R =22+22=10,所以圆E 的方程是x 2+y 2-12x +26=0. 所以m =-2,n =26.[能 力 提 升]1.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点F 2作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求|AB |.解:(1)∵双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点,∴⎩⎪⎨⎪⎧c a =3,a =3,解得c =3,b =6,∴双曲线的方程为x 23-y 26=1.(2)双曲线x 23-y 26=1的右焦点为F 2(3,0),∴经过双曲线右焦点F 2且倾斜角为30°的直线的方程为y =33(x -3). 联立⎩⎪⎨⎪⎧x 23-y 26=1,y =33x -,得5x 2+6x -27=0.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-65,x 1x 2=-275.所以|AB |=1+13×⎝ ⎛⎭⎪⎫-652-4×⎝ ⎛⎭⎪⎫-275=1635. 2.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点,O 为坐标原点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2,求k 的取值范围.解:(1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=4-1=3,c 2=4, 再由a 2+b 2=c 2,得b 2=1, 故双曲线C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,∴k 2<1且k 2≠13.①设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2 =3k 2+73k 2-1. 又∵OA →·OB →>2, 即x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2, 即-3k 2+93k 2-1>0, 解得13<k 2<3.②由①②得13<k 2<1,故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1.。

2019届高考数学一轮复习第八章解析几何第6讲双曲线课件文新人教版

2019届高考数学一轮复习第八章解析几何第6讲双曲线课件文新人教版

【针对补偿】
1.(2018·广西第一次质量检测)若以 F1(- 3,0),F2( 3,0)为 焦点的双曲线过点(2,1),则该双曲线的标准方程为________.
[解析] 依题意,设题中的双曲线方程是ax22-by22=1(a>0,b>0),
则有a42-b12=1, a2+b2=3,
解得 a2=2,b2=1.因此该双曲线的标准方程是x22
(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( ) (5)若双曲线ax22-by22=1(a>0,b>0)与bx22-ay22=1(a>0,b>0)的离心 率分别是 e1,e2,则e112+e122=1(此结论中两条双曲线称为共轭双曲 线).( ) [答案] (1)× (2)× (3)√ (4)√ (5)√
主,占 5 分左右.
[知识梳理] 1.双曲线的定义 平面内与两个定点 F1,F2,(|F1F2|=2c>0)的距离差的绝对值等 于常数(小于|F1F2|且大于零),则点的轨迹叫双曲线.这两个 定点 叫双曲线的焦点,两焦点间的距离叫焦距.集合 P={M||MF1|-|MF2|| =2a},|F1F2|=2c,其中 a,c 为常数且 a>0,c>0: (1)若 a<c 时,则集合 P 为双曲线; (2)若 a=c 时,则集合 P 为 两条射线 ; (3)若 a>c 时,则集合 P 为空集.
则点 P 的轨迹方程为( )
A.x42-y52=1(y>0)
B.x42-y52=1(x>0)
C.y42-x52=1(y>0)
D.y42-x52=1(x>0)
[解析] 由题设知点 P 的轨迹方程是焦点在 x 轴上的双曲线的右 支,设其方程为ax22-by22=1(x>0,a>0,b>0),由题设知 c=3,a=2, b2=9-4=5,所以点 P 的轨迹方程为x42-y52=1(x>0).

高考数学一轮复习 第八章 平面解析几何 第六节 双曲线学案 理(含解析)新人教A版-新人教A版高三全

高考数学一轮复习 第八章 平面解析几何 第六节 双曲线学案 理(含解析)新人教A版-新人教A版高三全

第六节 双 曲 线2019考纲考题考情1.双曲线的概念平面内到两定点F 1,F 2的距离之差的绝对值等于常数(大于零且小于|F 1F 2|)的点的轨迹叫做双曲线。

这两个定点叫双曲线的焦点,两焦点间的距离叫焦距。

集合P ={M |||MF 1|-|MF 2||=2a ,|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0}。

(1)当a <c 时,M 点的轨迹是双曲线。

(2)当a =c 时,M 点的轨迹是两条射线。

(3)当a >c 时,M 点不存在。

2.双曲线的标准方程和几何性质1.双曲线定义的四点辨析(1)当0<2a <|F 1F 2|时,动点的轨迹才是双曲线。

(2)当2a =0时,动点的轨迹是线段F 1F 2的中垂线。

(3)当2a =|F 1F 2|时,动点的轨迹是以F 1,F 2为端点的两条射线。

(4)当2a >|F 1F 2|时,动点的轨迹不存在。

2.方程x 2m -y 2n=1(mn >0)表示的曲线(1)当m >0,n >0时,表示焦点在x 轴上的双曲线。

(2)当m <0,n <0时,表示焦点在y 轴上的双曲线。

3.方程的常见设法(1)与双曲线x 2a 2-y 2b 2=1共渐近线的方程可设为x 2a 2-y 2b 2=λ(λ≠0)。

(2)若渐近线的方程为y =±b a x ,则可设双曲线方程为x 2a 2-y 2b2=λ(λ≠0)。

一、走进教材1.(选修2-1P 61A 组T 1改编)已知双曲线x 2-y 216=1上一点P 到它的一个焦点的距离等于4,那么点P 到另一个焦点的距离等于________。

解析 设双曲线的焦点为F 1,F 2,|PF 1|=4,则||PF 1|-|PF 2||=2,故|PF 2|=6或2,又双曲线上的点到它的焦点的距离的最小值为c -a =17-1>2,故|PF 2|=6。

高考数学一轮总复习 第八章 平面解析几何 第六节 双曲线练习 理-人教版高三全册数学试题

高考数学一轮总复习 第八章 平面解析几何 第六节 双曲线练习 理-人教版高三全册数学试题

第六节双曲线1.双曲线的定义平面内动点P与两个定点F1,F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a(2a<2c),则点P的轨迹叫做双曲线.注意:(1)当2a=|F1F2|时,P点的轨迹是两条射线;(2)当2a>|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质3.等轴双曲线实轴和虚轴等长的双曲线叫做等轴双曲线,其渐近线方程为y=±x,离心率为e=2.1.(质疑夯基)判断下列结论的正误.(正确的打“√”错误的打“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )(2)方程x 2m -y2n=1(mn>0)表示焦点在x 轴上的双曲线.( )(3)双曲线方程x 2m 2-y 2n 2=λ(m>0,n>0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( ) 答案:(1)× (2)× (3)√ (4)√2.(2015·某某卷)若双曲线E :x 29-y216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3解析:由题意知a =3,b =4,∴c =5.由双曲线的定义有||PF 1|-|PF 2||=|3-|PF 2||=2a =6,∴|PF 2|=9.答案:B3.已知双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12x D .y =±x解析:由e =52,得c a =52, ∴c =52a ,b =c 2-a 2=12a. 又x 2a 2-y 2b 2=1(a>0,b>0)的渐近线方程为y =±b ax ,∴所求渐近线方程为y =±12x.答案:C4.(2015·某某卷)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1 B.x 29-y216=1 C.x 216-y 29=1 D.x 23-y24=1 解析:∵e=c a =54,F 2(5,0),∴c =5,∴a =4,b 2=c 2-a 2=9,∴双曲线C 的标准方程为x 216-y29=1.答案:C5.(2015·某某卷)双曲线x 22-y 2=1的焦距是________,渐近线方程是________.解析:由双曲线标准方程,知双曲线焦点在x 轴上,且a 2=2,b 2=1, ∴c 2=a 2+b 2=3,即c =3,∴焦距2c =23, 渐近线方程为y =±b a x ,即y =±22x.答案:2 3 y =±22x两条规律1.双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系).2.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,双曲线x 2a 2-y 2b 2=1(a>0,b>0)的渐近线方程是y =±bax ,双曲线y 2a 2-x 2b 2=1(a>0,b>0)的渐近线方程是y =±a bx. 两种方法求双曲线标准方程的方法1.定义法:由条件判定动点的轨迹是双曲线,求出a 2,b 2,写出方程.2.待定系数法:即“先定位,后定量”,如果不能确定焦点的位置,应注意分类讨论或恰当设置简化讨论.(1)与双曲线x 2a 2-y 2b 2=1共渐近线的可设为x 2a 2-y2b 2=λ(λ≠0).(2)若渐近线方程为y =±b a x ,则可设为x 2a 2-y2b 2=λ(λ≠0).(3)若过两个已知点,则设为x 2m +y2n =1(mn<0).两点注意1.区分双曲线中a ,b ,c 的关系与椭圆中a ,b ,c 的关系,在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.2.双曲线的离心率大于1,椭圆的离心率e∈(0,1).一、选择题1.“m<8”是“方程x 2m -10-y2m -8=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:方程x 2m -10-y2m -8=1表示双曲线,则(m -8)·(m-10)>0,解得m<8或m>10.故“m<8”是“方程x 2m -10-y2m -8=1表示双曲线”的充分不必要条件.答案:A2.(2015·某某卷)下列双曲线中,渐近线方程为y =±2x 的是( ) A .x 2-y 24=1 B.x 24-y 2=1C .x 2-y 22=1 D.x 22-y 2=1解析:A 中的渐近线方程为y =±2x;B 中的渐近线方程为y =±12x ;C 中的渐近线方程为y =±2x ;D 中的渐近线方程为y =±22x. 答案:A3.(2015·某某卷)若双曲线x 2a 2-y2b 2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73 B.54C.43D.53解析:由双曲线的渐近线过点(3,-4)知b a =43,∴b 2a 2=169. 又b 2=c 2-a 2,∴c 2-a 2a 2=169,即e 2-1=169,∴e 2=259,∴e =53.答案:D4.已知双曲线y 2a 2-x2b 2=1(a>0,b>0)的两个焦点分别为F 1、F 2,以线段F 1F 2为直径的圆与双曲线渐近线的一个交点是(4,3).则此双曲线的方程为( )A.y 29-x 216=1 B.y 24-x23=1 C.y 216-x 29=1 D.y 23-x24=1 解析:由题意,c =32+42=5, ∴a 2+b 2=c 2=25.①又双曲线的渐近线为y =±a b x ,∴a b =34.②则由①②解得a =3,b =4,∴双曲线方程为y 29-x216=1.答案:A5.双曲线C :x 2a 2-y2b 2=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )A .2B .22C .4D .4 2 解析:∵e=2,∴ca=2.设焦点F 2(c ,0)到渐近线y =ba x 的距离为3,渐近线方程为bx -ay =0,∴|bc -a×0|b 2+a 2= 3. ∵c 2=a 2+b 2,∴b = 3.由c a =2,得c c 2-b 2=2, ∴c2c 2-3=4,解得c =2.∴焦距2c =4. 答案:C6.(2015·课标全国Ⅰ卷)已知M(x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C的两个焦点.若MF 1→·MF 2→<0,则y 0的取值X 围是( )A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223 D.⎝ ⎛⎭⎪⎫-233,233解析:由题意知a =2,b =1,c =3, ∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M(x 0,y 0)在双曲线上, ∴x 202-y 20=1,即x 20=2+2y 20,∴2+2y 20-3+y 20<0,∴-33<y 0<33. 答案:A二、填空题7.(2015·卷)已知双曲线x 2a 2-y 2=1(a>0)的一条渐近线为3x +y =0,则a =________.解析:直接求解双曲线的渐近线并比较系数.双曲线x 2a 2-y 2=1的渐近线为y =±x a ,已知一条渐近线为3x +y =0,即y =-3x ,因为a>0,所以1a =3,所以a =33.答案:338.设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.解析:双曲线y 24-x 2=1的渐近线方程为y =±2x.设与双曲线y 24-x 2=1有共同渐近线的方程为y 24-x 2=λ,又(2,2)在双曲线上,故224-22=λ,解得λ=-3.故所求双曲线方程为y 24-x 2=-3即x 23-y 212=1,所求双曲线的渐近线方程为y =±2x. 答案:x 23-y212=1 y =±2x9.F 1,F 2分别是双曲线x 2a 2-y2b 2=1(a>0,b>0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于A 、B 两点.若△ABF 2是等边三角形,则该双曲线的离心率为________.解析:如图,由双曲线定义得,|BF 1|-|BF 2|=|AF 2|-|AF 1|=2a.因为△ABF 2是正三角形,所以|BF 2|=|AF 2|=|AB|,因此|AF 1|=2a ,|AF 2|=4a ,且∠F 1AF 2=120°,在△F 1AF 2中,4c 2=4a 2+16a 2+2×2a×4a×12=28a 2,所以e =7.答案:7 三、解答题10.已知椭圆D :x 250+y 225=1与圆M :x 2+(y -5)2=9,双曲线G 与椭圆D 有相同焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程.解:椭圆D 的两个焦点为F 1(-5,0),F 2(5,0), 因而双曲线中心在原点,焦点在x 轴上,且c =5. 设双曲线G 的方程为x 2a 2-y2b 2=1(a>0,b>0),∴渐近线方程为bx±ay=0且a 2+b 2=25, 又圆心M(0,5)到两条渐近线的距离为r =3. ∴|5a|b 2+a2=3,得a =3,b =4,∴双曲线G 的方程为x 29-y216=1.11.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M(3,m )在双曲线上. (1)求双曲线的方程; (2)求证:MF 1→·MF 2→=0; (3)求△F 1MF 2的面积.(1)解:∵e=2,则双曲线的实轴、虚轴相等.∴设双曲线方程为x 2-y 2=λ.∵过点(4,-10),∴16-10=λ,即λ=6. ∴双曲线方程为x 2-y 2=6.(2)证明:∵MF 1→=(-3-23,-m), MF 2→=(23-3,-m).∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2, ∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0, ∴MF 1→·MF 2→=0.(3)解:△F 1MF 2的底|F 1F 2|=4 3. 由(2)知m =± 3.∴△F 1MF 2的高h =|m|=3, ∴S △F 1MF 2=12×43×3=6.。

双曲线(高三一轮复习)

双曲线(高三一轮复习)

双曲线C的左支上,所以|PF2|-|PF1|=2a,则|PF2|=|PF1|+2a=7+6=13.
数学 N 必备知识 自主学习 关键能力 互动探究
— 13 —
5.(易错题)若双曲线的渐近线方程为y=±3x,它的焦距为2 10,则该双曲线的
标准方程为 x2-y92=1或y92-x2=1
.
解析 双曲线的焦距为2 10,所以c= 10. 当双曲线的焦点在x轴时, 因为双曲线的渐近线方程为y=±3x, 所以ba=3⇒b=3a,
tan 2
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
(5)与双曲线
ห้องสมุดไป่ตู้
x2 a2

y2 b2
=1(a>0,b>0)有共同渐近线的方程可表示为
x2 a2

y2 b2

t(t≠0).
数学 N 必备知识 自主学习 关键能力 互动探究
— 9—
基|础|自|测
1.思考辨析(正确的打“√”,错误的打“×”) (1)到两定点的距离差的绝对值等于常数的点的轨迹是双曲线.( × ) (2)方程xm2-yn2=1(mn>0)表示焦点在x轴上的双曲线.( × ) (3)双曲线mx22-ny22=1(m>0,n>0)的渐近线方程是mx ±ny=0.( √ ) (4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )
y2 9
-x2=1.因此该
双曲线的标准方程为x2-y92=1或y92-x2=1.
数学 N 必备知识 自主学习 关键能力 互动探究
关键能力 互动探究
— 15 —
命题点1 双曲线的定义及应用
例1 (1)与圆x2+y2=1及圆x2+y2-8x+12=0都外切的圆P的圆心在( D )

高考理科数学总复习第八章 第六节 双曲线 (2)

高考理科数学总复习第八章  第六节 双曲线 (2)

1.双曲线的定义中易忽视 2a<|F1F2|这一条件.若 2a=|F1F2|, 则轨迹是以 F1,F2 为端点的两条射线,若 2a>|F1F2|,则轨迹 不存在. 2.注意区分双曲线中的 a,b,c 大小关系与椭圆中的 a,b,c 关系,在椭圆中 a2=b2+c2,而在双曲线中 c2=a2+b2. 3.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在 x 轴上,渐近线斜率为±ba,当焦点在 y 轴上,渐近线斜率为±ab.
2.双曲线的标准方程和几何性质
标准方程
xa22-by22=1(a>0,b>0)
ay22-xb22=1(a>0,b>0)
图形
标准方程
xa22-by22=1(a>0,b>0) ay22-xb22=1(a>0,b>0)
范围 x≤-a 或 x≥a,y∈R y≤-a 或 y≥a,x∈R
对称轴: 坐标轴 性 对称性 对称中心: 原点
第八章 平面解析几何 第六节 双曲线
C目录 ONTENTS
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
高考·导航
1.了解双曲线的定义、几何图形和标准方程. 2.知道双曲线的简单几何性质.
主干知识 自主排查
1.双曲线的定义 满足以下三个条件的点的轨迹是双曲线: (1)在平面内; (2)与两定点 F1,F2 的距离的差的绝对值 等于非零常数; (3)非零常数 小于 |F1F2|.
mn
m1 ,n1异号,所以 mn<0.综上,“mn<0”是“方程 mx2+ny2=1 表示双曲线”的充要条件.
答案:C
3.(2017·高考全国卷Ⅲ)已知双曲线C:
x2 a2

19版高考数学一轮复习第8章平面解析几何8.6双曲线学案文

19版高考数学一轮复习第8章平面解析几何8.6双曲线学案文

19版高考数学一轮复习第8章平面解析几何8.6双曲线学案文D(3)当a>c 时,P点不存在.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形续表3.必记结论(1)焦点到渐近线的距离为b.(2)等轴双曲线:实轴长和虚轴长相等的双曲线叫等轴双曲线,其方程可写作:x2-y2=λ(λ≠0).(3)等轴双曲线⇔离心率e=2⇔两条渐近线y=±x相互垂直.[诊断自测]1.概念思辨(1)平面内到点F1(0,4),F2(0,-4)距离之差等于6的点的轨迹是双曲线.( )(2)双曲线方程x2m2-y2n2=λ(m>0,n>0,λ≠0)的渐近线方程是x2m2-y2n2=0,即xm±yn=0.( )(3)等轴双曲线的渐近线互相垂直,离心率等于 2.( )(4)若双曲线x2a2-y2b2=1(a>0,b>0)与y2b2-x2a2=1(a>0,b>0)的离心率分别是e1,e2,则1e21+1e22=1(此结论中两条双曲线为共轭双曲线).( ) 答案(1)×(2)√(3)√(4)√2.教材衍化(1)(选修A1-1P53T3)已知椭圆x28+y25=1和双曲线x2m-y2=1有公共的焦点,那么双曲线的渐近线方程是( )A.x=±36y B.y=±36xC.x=±22y D.y=±22x答案 D解析由椭圆x28+y25=1和双曲线x2m-y2=1有公共的焦点,得m+1=8-5.所以m=2,所以双曲线方程为x22-y2=1,所以双曲线的渐近线方程为y=±22x.故选D.(2)(选修A1-1P51例3)已知中心在原点,焦点在y轴的双曲线的渐近线方程为y=±12x,则此双曲线的离心率为________.答案 5解析因为焦点在y轴的双曲线的渐近线方程为y=±12x,所以ab=12,即b=2a.由c2=a2+b2,得c2=a2+4a2=5a2,即c2a2=5,所以e=ca=5.3.小题热身(1)(2014·全国卷Ⅰ)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )A. 3 B.3C.3m D.3m答案 A解析由题意知,双曲线的标准方程为x23m-y23=1,其中a2=3m,b2=3,故c=a2+b2=3m+3,不妨设F为双曲线的右焦点,故F(3m+3,0).其中一条渐近线的方程为y=1 mx,即x-my=0,由点到直线的距离公式可得d=|3·m+1|1+(-m)2=3,故选A.(2)(2016·山东高考)已知双曲线E:x2a2-y2b2=1(a>0,b>0).若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是________.答案 2解析由已知得|AB|=|CD|=2b2a,|BC|=|AD|=|F1F2|=2c.因为2|AB|=3|BC|,所以4b2a=6c,又b2=c2-a2,所以2e2-3e-2=0,解得e=2或e=-12(舍去).题型1 双曲线的定义及应用典例1(2017·湖北武汉调研)若双曲线x2 4-y212=1的左焦点为F,点P是双曲线右支上的动点,A(1,4),则|PF|+|PA|的最小值是( )A.8 B.9C.10 D.12利用双曲线定义得到|PF|+|PA|=2a+|PB|+|PA|,再利用|PA|+|PB|≥|AB|求出最小值.答案 B解析由题意知,双曲线x24-y212=1的左焦点F的坐标为(-4,0),设双曲线的右焦点为B,则B(4,0),由双曲线的定义知|PF|+|PA|=4+|PB|+|PA|≥4+|AB|=4+(4-1)2+(0-4)2=4+5=9,当且仅当A,P,B三点共线且P在A,B之间时取等号.∴|PF|+|PA|的最小值为9.故选B.典例2(2018·河北邯郸模拟)设动圆C 与两圆C1:(x+5)2+y2=4,C2:(x-5)2+y2=4中的一个内切,另一个外切,则动圆圆心C 的轨迹方程为________.根据圆与圆相切关系求动圆圆心到两个定圆圆心的距离之差,然后用定义法求解.答案x24-y 2=1解析 设圆C 的圆心C 的坐标为(x ,y ),半径为r ,由题设知r >2,于是有⎩⎨⎧|CC 1|=r +2,|CC 2|=r -2或⎩⎨⎧|CC 1|=r -2,|CC 2|=r +2,∴||CC 1|-|CC 2||=4<25=|C 1C 2|,即圆心C 的轨迹L 是以C 1,C 2为焦点,4为实轴长的双曲线,∴L 的方程为x2⎝ ⎛⎭⎪⎫422-y2(5)2-⎝ ⎛⎭⎪⎫422=1,即x24-y 2=1. 方法技巧1.“焦点三角形”中常用到的知识点及技巧(1)常用知识点:在“焦点三角形”中,正弦定理、余弦定理、双曲线的定义经常使用.(2)技巧:经常结合||PF1|-|PF2||=2a,运用平方的方法,建立它与|PF1|·|PF2|的联系.2.应用双曲线定义需注意的问题(1)在双曲线的定义中一是不能漏掉“绝对值”,否则轨迹是双曲线的一支;二是“常数”小于|F1F2|,否则轨迹是线段或不存在.(2)求双曲线方程时,注意用标准形式.冲关针对训练1.(2017·衡水模拟)已知△ABP的顶点A,B分别为双曲线C:x216-y29=1的左、右焦点,顶点P在双曲线上,则|sin A-sin B|sin P的值等于( )A.45B.74C.54D.7答案 A解析 由x216-y29=1得a =4,b =3,c =5.结合双曲线定义及正弦定理得|sin A -sin B |sin P =||PA |-|PB |||AB |=2a 2c =45,故选A.2.已知双曲线x 216-y 29=1上有一点P ,F 1,F 2是双曲线的焦点,且∠F 1PF 2=π3,则△PF 1F 2的面积为________.答案 9 3解析 由题意,得|F 1F 2|=216+9=10. 因为⎩⎪⎨⎪⎧||PF 1|-|PF 2||=8,|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos π3=100,所以|PF 1|·|PF 2|=36.所以S △PF 1F 2=12|PF 1|·|PF 2|sin π3=9 3.题型2 双曲线的标准方程及应用典例 (2018·兰州检测)已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y24=1 B.x 24-4y23=1 C.x24-y24=1 D.x24-y212=1 本题采用方程法.答案 D解析 不妨设A (x 0,y 0)在第一象限,由题意得⎩⎪⎨⎪⎧x 20+y 20=22,①2x 0·2y 0=2b ,②y 0=b 2x 0,③由①③得x 20=164+b2,④ 所以y 20=b 24×164+b 2=4b 24+b2,⑤ 由②④⑤可得b 2=12.所以双曲线的方程为x24-y212=1.故选D.[条件探究1] 若将典例中条件变为“以|F 1F 2|为直径的圆与双曲线渐近线的一个交点为(3,4)”,求双曲线的方程.解 因为以|F 1F 2|为直径的圆与双曲线渐近线的一个交点为(3,4),所以c =5,b a =43.又c2=a 2+b 2,所以a =3,b =4,所以此双曲线的方程为x29-y216=1.[条件探究2] 若将典例中变为“双曲线过点(2,1),且双曲线与椭圆x24+y2=1共焦点”,求双曲线的方程.解椭圆x24+y2=1的焦点坐标是(±3,0).设双曲线方程为x2a2-y2b2=1(a>0,b>0),所以4 a2-1b2=1,a2+b2=3,解得a2=2,b2=1,所以所求双曲线方程是x22-y2=1.方法技巧双曲线标准方程的求解方法1.定义法.2.待定系数法.提醒:利用求待定系数法求双曲线标准方程的关键是:设出双曲线方程的标准形式,根据已知条件,列出关于参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1,有相同渐近线时可设所求双曲线方程为x2a2-y2b2=λ(λ≠0).冲关针对训练1.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A.x24-y 2=1 B .x 2-y24=1C.3x 220-3y25=1 D.3x 25-3y220=1 答案 A解析 由题意得c =5,b a =12,则a =2,b=1,所以双曲线的方程为x24-y 2=1.故选A.2.(2018·福建漳州模拟)已知双曲线C :x2a 2-y2b2=1(a >0,b >0)的左、右焦点为F 1,F 2,P 为双曲线C 右支上异于顶点的一点,△PF 1F 2的内切圆与x 轴切于点(1,0),且P 与点F 1关于直线y =-bxa对称,则双曲线的方程为________________.答案 x 2-y 24=1解析 设点A (1,0),因为△PF 1F 2的内切圆与x 轴切于点(1,0),则|PF 1|-|PF 2|=|AF 1|-|AF 2|,所以2a =(c +1)-(c -1),则a =1.因为点P 与点F 1关于直线y =-bxa对称,所以∠F 1PF 2=π2,且|PF 1||PF 2|=b a =b ,结合|PF 1|-|PF 2|=2,|PF 1|2+|PF 2|2=4c 2=4+4b 2,可得b =2.所以双曲线的方程为x 2-y 24=1.题型3 双曲线的几何性质角度 1 与双曲线有关的范围问题(多维探究)典例(2015·全国卷Ⅰ)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝⎛⎭⎪⎫-33,33B.⎝⎛⎭⎪⎫-36,36C.⎝ ⎛⎭⎪⎫-223,223D.⎝⎛⎭⎪⎫-233,233 根据已知MF1→·MF 2→<0,列出y 0的不等式求解.答案 A解析 不妨令F 1为双曲线的左焦点,则F 2为右焦点,由题意可知a 2=2,b 2=1,∴c 2=3,∴F 1(-3,0),F 2(3,0),则MF1→·MF 2→=(-3-x 0)·(3-x 0)+(-y 0)·(-y 0)=x 20+y 20-3.又知x 202-y 20=1,∴x 20=2+2y 20,∴MF 1→·MF 2→=3y 2-1<0.∴-33<y 0<33,故选A.[条件探究] 将本例中条件“MF 1→·MF 2→<0”改为“MF1→·MF 2→=0”,求△MF 1F 2的面积. 解 由MF1→·MF 2→=0得MF 1⊥MF 2,知△MF 1F 2为直角三角形.设M 为双曲线右支上一点,则|MF 1|-|MF 2|=22,|MF 1|2+|MF 2|2=(|MF 1|-|MF 2|)2+2|MF 1|·|MF 2|=12,得|MF 1|·|MF 2|=2,所以S △MF 1F 2=12·|MF 1|·|MF 2|=1.角度2 与双曲线渐近线有关的问题 典例(2017·山东高考)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.涉及曲线交点时,考虑用设而不求的方法.答案 y =±22x解析 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x 2a 2-y 2b2=1,x 2=2py ,得a 2y 2-2pb 2y +a 2b 2=0,∴y1+y2=2pb2 a2.又∵|AF|+|BF|=4|OF|,∴y1+p2+y2+p2=4×p2,即y1+y2=p,∴2pb2a2=p,即b2a2=12,∴ba=22,∴双曲线的渐近线方程为y=±22x.角度3 与双曲线离心率有关的问题典例(2016·全国卷Ⅱ)已知F1,F2是双曲线E:x2a2-y2b2=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=13,则E的离心率为( )A. 2B.3 2C. 3 D.2将等式sin ∠MF 2F 1=13转化为关于a ,b ,c 的等式.答案 A解析 由MF 1⊥x 轴,可得M ⎝⎛⎭⎪⎫-c ,b 2a ,∴|MF 1|=b 2a .由sin ∠MF 2F 1=13,可得cos ∠MF 2F 1=1-⎝ ⎛⎭⎪⎫132=223,又tan ∠MF 2F 1=|MF 1||F 1F 2|=b 22ac ,∴b 22ac =13223,∴b 2=22ac ,∵c 2=a 2+b 2⇒b 2=c 2-a 2,∴c 2-a 2-22ac =0⇒e 2-22e -1=0,∴e = 2.故选A.方法技巧与双曲线离心率、渐近线有关问题的解题策略1.双曲线的离心率e =ca是一个比值,故只需根据条件得到关于a,b,c的一个关系式,利用b2=c2-a2消去b,然后变形成关于e的关系式,并且需注意e>1.2.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.3.求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程xa±yb=0.冲关针对训练1.(2015·全国卷Ⅱ)已知A,B为双曲线E 的左、右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A. 5 B.2C. 3D. 2 答案 D解析设双曲线E的标准方程为x2a2-y2b2=1(a>0,b>0),则A(-a,0),B(a,0),不妨设点M在第一象限内,则易得M(2a,3a),又M点在双曲线E上,于是(2a)2a2-(3a)2b2=1,可得b2=a2,∴e=1+b2a2= 2.故选D.2.(2018·成都统考)已知a>b>0,椭圆C1的方程为x2a2+y2b2=1,双曲线C2的方程为x2a2-y2b2=1,C1与C2的离心率之积为32,则C2的渐近线方程为( )A.x±2y=0 B.2x±y=0C.x±2y=0 D.2x±y=0答案 A解析设椭圆C1和双曲线C2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b2a.因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝ ⎛⎭⎪⎫b a 4=14,所以b a =22. 故双曲线的渐近线方程为y =±b a x =±22x ,即x ±2y =0.故选A.题型4 直线与双曲线的综合问题 典例1以P (1,8)为中点作双曲线为y 2-4x 2=4的一条弦AB ,求直线AB 的方程.本题采用“点差法”.解 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 21-4x 21=4,y 22-4x 22=4,∴(y 1+y 2)(y 1-y 2)=4(x 1+x 2)(x 1-x 2), ∵弦AB 的中点是P (1,8),∴x 1+x 2=2,y 1+y 2=16.∴16(y1-y2)=8(x1-x2),∴直线AB的斜率为y1-y 2x1-x2=12,∴直线AB的方程为y-8=12(x-1),即直线AB的方程为x-2y+15=0.典例2已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C的方程;(2)若直线l:y=kx+2与双曲线C恒有两个不同的交点A和B,且OA→·OB→>2(其中O为原点),求k的取值范围.(2)直线与双曲线联立,用设而不求的方法,列出不等式,然后求解.解(1)设双曲线方程为x2a2-y2b2=1(a>0,b>0).由已知得a=3,c=2,于是a2+b2=22,b2=1,故双曲线C的方程为x23-y2=1.(2)将y =kx +2代入x23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=(62k )2+36(1-3k 2)=36(1-k 2)>0,即k 2≠13且k 2<1.设A (x A ,y A ),B (x B ,y B ), 则x A +x B =62k 1-3k 2,x A x B =-91-3k 2. 由OA →·OB →>2,得x A x B +y A y B >2.x A x B +y A y B =x A x B +(kx A +2)(kx B +2)=(k 2+1)x A x B +2k (x A +x B )+2 =(k 2+1)-91-3k 2+2k ·62k 1-3k2+2 =3k 2+73k 2-1. 于是3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3,又∵k 2<1,∴13<k 2<1, 故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1.方法技巧直线y =kx +m 与双曲线x 2a 2-y2b2=1(a >0,b >0)的位置关系的分析:1.代数法⎩⎪⎨⎪⎧y =kx +m ,x 2a 2-y2b2=1,消去y ,得(b2-a 2k 2)x 2-2kma 2x -a 2(m 2+b 2)=0.(1)二次项系数为0时,直线L ⎝⎛⎭⎪⎫k =±b a 与双曲线的渐近线平行或重合.重合:无交点;平行:有一个交点. (2)二次项系数不为0时,上式为一元二次方程,Δ>0⇔直线与双曲线相交(两个交点);Δ=0⇔直线与双曲线相切; Δ<0⇔直线与双曲线相离.2.几何法:运用数形结合思想考查直线与渐近线的位置关系,转化为其斜率的大小关系.冲关针对训练若双曲线E :x2a2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若|AB |=63,点C 是双曲线上一点,且OC →=m (OA →+OB →),求k ,m 的值.解 (1)由⎩⎪⎨⎪⎧c a=2,a 2=c 2-1,得⎩⎨⎧a 2=1,c 2=2,故双曲线E 的方程为x 2-y 2=1.设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =kx -1,x 2-y 2=1,得(1-k 2)x 2+2kx -2=0.(*)∵直线与双曲线右支交于A ,B 两点,故⎩⎨⎧k >1,Δ=(2k )2-4(1-k 2)×(-2)>0,即⎩⎨⎧k >1,-2<k <2,所以1<k < 2.故k 的取值范围是{k |1<k <2}. (2)由(*)得x 1+x 2=2k k 2-1,x 1x 2=2k 2-1,∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =2(1+k 2)(2-k 2)(k 2-1)2=63, 整理得28k 4-55k 2+25=0,∴k 2=57或k 2=54,又1<k <2,∴k =52,所以x 1+x 2=45,y 1+y 2=k (x 1+x 2)-2=8.设C (x 3,y 3),由OC →=m (OA →+OB →), 得(x 3,y 3)=m (x 1+x 2,y 1+y 2) =(45m,8m ).∵点C 是双曲线上一点,∴80m2-64m2=1,得m=±14 .故k=52,m=±14.1.(2016·全国卷Ⅰ)已知方程x2m2+n-y23m2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )A.(-1,3) B.(-1,3)C.(0,3) D.(0,3)答案 A解析由题意可知:c2=(m2+n)+(3m2-n)=4m2,其中c为半焦距,∴2c=2×2|m|=4,∴|m|=1,∵方程x2m2+n-y23m2-n=1表示双曲线,∴(m2+n)·(3m2-n)>0,∴-m2<n<3m2,∴-1<n<3.故选A.2.(2017·全国卷Ⅲ)已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x28-y210=1 B.x24-y25=1 C.x 25-y 24=1 D.x 24-y 23=1 答案 B解析 解法一:由双曲线的渐近线方程可设双曲线方程为x24-y25=k (k >0),即x 24k -y25k=1,∵双曲线与椭圆x 212+y 23=1有公共焦点,∴4k +5k =12-3,解得k =1,故双曲线C 的方程为x24-y25=1.故选B.解法二:∵椭圆x 212+y 23=1的焦点为(±3,0),双曲线与椭圆x212+y23=1有公共焦点,∴a 2+b 2=(±3)2=9①,∵双曲线的一条渐近线为y =52x ,∴b a =52②,联立①②可解得a 2=4,b 2=5.∴双曲线C 的方程为x24-y25=1.故选B.3.(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.答案 233解析 如图,由题意知点A (a,0),双曲线的一条渐近线l的方程为y=bax,即bx-ay=0,∴点A到l的距离d=aba2+b2.又∠MAN=60°,MA=NA=b,∴△MAN为等边三角形,∴d=32MA=32b,即aba2+b2=32b,∴a2=3b2,∴e=ca=a2+b2a2=233.4.(2018·兰州诊断)若双曲线x2a2-y2b2=1(a>0,b>0)一条渐近线的倾斜角为π3,离心率为e,则a2+eb的最小值为________.答案26 3解析由题意,可得k=ba=tanπ3= 3.∴b=3a,则a2=b23,∴e=1+b2a2=2.∴a2+eb=b23+2b=b3+2b≥2b3×2b=263.当且仅当b2=6,a2=2时取“=”.[重点保分两级优选练]A级一、选择题1.(2018·唐山统考)“k<9”是“方程x2 25-k +y2k-9=1表示双曲线”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析∵方程x225-k+y2k-9=1表示双曲线,∴(25-k)(k-9)<0,∴k<9或k>25,∴“k<9”是“方程x225-k+y2k-9=1表示双曲线”的充分不必要条件,故选A.2.(2017·湖北黄冈二模)已知双曲线x 2-y23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( )A .3B .2C .-3D .2答案 B解析 由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2,∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=4,|PF 2|=2,又|F 1F 2|=4,由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14,∵F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|cos ∠PF 2F 1=2×4×14=2.故选B.3.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,则此双曲线的方程是( )A.x23-y24=1 B.x24-y23=1 C.x 25-y 22=1 D.x 22-y 25=1 答案 D解析 设双曲线方程x 2a 2-y2b2=1,M (x 1,y 1),N (x 2,y 2),∴⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,①x 22a 2-y 22b2=1.②①-②,得y 1-y 2x 1-x 2=b 2a 2·x 1+x 2y 1+y 2.∴1=b 2a 2·-23-53,∴5a 2=2b 2.又a 2+b 2=7,∴a 2=2,b 2=5,故选D. 4.过双曲线x 2-y22=1的右焦点F 作直线l交双曲线于A ,B 两点,若|AB |=4,则这样的直线l 有( )A .1条B .2条C .3条D .4条答案 C解析 解法一:设A (x 1,y 1),B (x 2,y 2),当直线l 的斜率不存在时,其方程为x =3,由⎩⎪⎨⎪⎧x =3,x 2-y22=1,得y =±2,∴|AB |=|y 1-y 2|=4满足题意.当直线l 的斜率存在时,其方程为y =k (x -3),由⎩⎪⎨⎪⎧y =k (x -3),x 2-y22=1,得(2-k 2)x 2+23k 2x -3k 2-2=0.当2-k 2≠0时,x 1+x 2=23k2k 2-2,x 1x 2=3k 2+2k 2-2, |AB |=1+k 2(x 1+x 2)2-4x 1x 2=1+k 2⎝ ⎛⎭⎪⎫23k 2k 2-22-12k 2+8k 2-2=1+k216(k 2+1)(k 2-2)2=4(1+k 2)|k 2-2|=4, 解得k =±22,故这样的直线有3条.故选C.解法二:当直线l 无斜率时同解法一,且此时与双曲线一支交于两点的情况只有一种,其他直线得到的|AB |>4.由于双曲线的实轴长为2小于4,因此与双曲线两支分别相交得到的两点都在x 轴上方或x 轴下方两种情况.综上所述,共有三条直线满足条件,故选C.5.(2016·浙江高考)已知椭圆C 1:x 2m2+y2=1(m >1)与双曲线C 2:x2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 答案 A解析 在椭圆中,a 1=m ,c 1=m 2-1,e 1=m 2-1m.在双曲线中,a 2=n ,c 2=n 2+1,e 2=n 2+1n.因为c 1=c 2,所以n 2=m 2-2.由n >0,m >1可得m >n ,且m 2-2>0.从而e 21·e 22=(m 2-1)(n 2+1)m 2·n2=(m 2-1)2m 2·(m 2-2),则e 21e 22-1=(m 2-1)2m 2(m 2-2)-1=1m 2(m 2-2)>0,即e 1e 2>1.故选A. 6.(2017·福建龙岩二模)已知离心率为52的双曲线C :x 2a 2-y2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若S△OMF2=16,则双曲线的实轴长是( )A.32 B.16C.84 D.4答案 B解析由题意知F2(c,0),不妨令点M在渐近线y=bax上,由题意可知|F2M|=bca2+b2=b,所以|OM|=c2-b2=a.由S△OMF2=16,可得12 ab=16,即ab=32,又a2+b2=c2,ca=52,所以a=8,b=4,c=45,所以双曲线C的实轴长为16.故选B.7.(2018·湖南十校联考)设双曲线x2a2-y2b2=1的两条渐近线与直线x=a2c分别交于A,B两点,F为该双曲线的右焦点.若60°<∠AFB<90°,则该双曲线的离心率的取值范围是( ) A.(1,2) B.(2,2)C .(1,2)D .(2,+∞)答案 B解析 双曲线x 2a 2-y2b2=1的两条渐近线方程为y =±b a x ,x =a 2c 时,y =±abc ,不妨设A ⎝ ⎛⎭⎪⎫a 2c,ab c ,B ⎝ ⎛⎭⎪⎫a 2c,-ab c ,∵60°<∠AFB <90°,∴33<k FB <1,∴33<abc c -a 2c<1,∴33<a b <1,∴13<a 2c 2-a 2<1,∴1<e 2-1<3,∴2<e <2.故选B.8.(2017·福建漳州八校联考)已知椭圆C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y2b 22=1(a 2>0,b 2>0)有相同的焦点F 1,F 2,点P 是两曲线的一个公共点,e 1,e 2分别是两曲线的离心率,若PF 1⊥PF 2,则4e 21+e 22的最小值为( )A.52B.4C.92D.9答案 C解析由题意设焦距为2c,令P在双曲线的右支上,由双曲线的定义知|PF1|-|PF2|=2a2,①由椭圆定义知|PF1|+|PF2|=2a1,②又∵PF1⊥PF2,∴|PF1|2+|PF2|2=4c2,③①2+②2,得|PF1|2+|PF2|2=2a21+2a22,④将④代入③,得a21+a22=2c2,∴4e21+e22=4c2a21+c2a22=4(a21+a22)2a21+a21+a222a22=52+2a22a21+a212a22≥52+22a22a21·a212a22=92,当且仅当2a22a21=a212a22,即a21=2a22时,取等号.故选C.9.(2017·青州市模拟)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,记椭圆与双曲线的离心率分别为e 1,e 2,则e 1·e 2的取值范围是( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎝ ⎛⎭⎪⎫15,+∞ C.⎝ ⎛⎭⎪⎫19,+∞ D .(0,+∞)答案 A解析 设椭圆和双曲线的半焦距为c ,|PF 1|=m ,|PF 2|=n (m >n ),由于△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,即有m =10,n =2c ,由椭圆的定义可得m +n =2a 1, 由双曲线的定义可得m -n =2a 2, 即有a 1=5+c ,a 2=5-c (c <5), 再由三角形的两边之和大于第三边,可得2c +2c >10,可得c >52,即有52<c <5.由离心率公式可得e1·e2=ca1·ca2=c225-c2=125 c2-1,由于1<25c2<4,则有125c2-1>13.则e1·e2的取值范围为⎝⎛⎭⎪⎫13,+∞.故选A. 10.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为( )A.x28+y22=1 B.x212+y26=1C.x216+y24=1 D.x220+y25=1答案 D解析∵椭圆的离心率为32,∴c a =a 2-b 2a =32,∴a =2b .∴椭圆的方程为x 2+4y 2=4b 2.∵双曲线x 2-y 2=1的渐近线方程为x ±y =0,∴渐近线x ±y =0与椭圆x 2+4y 2=4b 2在第一象限的交点为⎝ ⎛⎭⎪⎫255b ,255b ,∴由圆锥曲线的对称性得四边形在第一象限部分的面积为255b ×255b =4,∴b 2=5,∴a 2=4b 2=20. ∴椭圆C 的方程为x220+y25=1.故选D. 二、填空题11.若点P 在曲线C 1:x216-y29=1上,点Q在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是________.答案 10解析依题意得,点F1(-5,0),F2(5,0)分别为双曲线C1的左、右焦点,因此有|PQ|-|PR|≤|(|PF2|+1)-(|PF1|-1)|≤||PF2|-|PF1||+2=2×4+2=10,故|PQ|-|PR|的最大值是10.12.过双曲线x2a2-y2b2=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆x2+y2=a24的切线,切点为E,延长FE交曲线右支于点P,若OE→=12(OF→+OP→),则双曲线的离心率为________.答案10 2解析圆x2+y2=a24的半径为a2,由OE→=12(OF→+OP→)知,E是FP的中点,设F′(c,0),由于O是FF′的中点,所以OE⊥PF,|OE|=12|PF′|⇒|PF′|=2|OE|=a.由双曲线定义,|FP|=3a,因为FP是圆的切线,切点为E ,所以FP ⊥OE ,从而∠FPF ′=90°.由勾股定理,得|FP |2+|F ′P |2=|FF ′|2⇒9a 2+a 2=4c 2⇒e =102.13.(2018·安徽江南十校联考)已知l 是双曲线C :x22-y24=1的一条渐近线,P 是l 上的一点,F 1,F 2是C 的两个焦点,若PF1→·PF 2→=0,则P 到x 轴的距离为________.答案 2解析 由题意取F 1(-6,0),F 2(6,0),不妨设l 的方程为y =2x ,则可设P (x 0,2x 0),由PF1→·PF 2→=(-6-x 0,-2x 0)·(6-x 0,-2x 0)=3x 2-6=0,得x 0=±2,故P 到x 轴的距离为2|x 0|=2.14.(2018·贵州六校联考)我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F 1,F 2是一对相关曲线的焦点,P 是它们在第一象限的交点,当∠F 1PF 2=60°时,这一对相关曲线中双曲线的离心率是________.答案 3解析 设椭圆的半长轴为a 1,椭圆的离心率为e 1,则e 1=c a 1,a 1=c e 1.设双曲线的实半轴为a ,双曲线的离心率为e ,e =c a ,a =c e.|PF 1|=x ,|PF 2|=y (x >y >0),则由余弦定理得4c 2=x 2+y 2-2xy cos60°=x 2+y 2-xy ,当点P 看作是椭圆上的点时, 有4c 2=(x +y )2-3xy =4a 21-3xy ,① 当点P 看作是双曲线上的点时, 有4c 2=(x -y )2+xy =4a 2+xy ,② ①②联立消去xy ,得4c 2=a 21+3a 2,即4c 2=⎝ ⎛⎭⎪⎫c e 12+3⎝ ⎛⎭⎪⎫c e 2,所以⎝ ⎛⎭⎪⎫1e 12+3⎝ ⎛⎭⎪⎫1e 2=4,又因为1e 1=e ,所以e 2+3e2=4,整理得e 4-4e 2+3=0,解得e 2=3,所以e =3,即双曲线的离心率为 3.B 级三、解答题15.已知点M (-2,0),N (2,0),动点P 满足条件|PM |-|PN |=22,记动点P 的轨迹为W .(1)求W 的方程;(2)若A 和B 是W 上的不同两点,O 是坐标原点,求OA →·OB →的最小值.解 (1)由|PM |-|PN |=22知动点P 的轨迹是以M ,N 为焦点的双曲线的右支,实半轴长a = 2.又焦距2c =4,所以虚半轴长b =c 2-a 2=2.。

第八章 第六节 双曲线

第八章  第六节 双曲线

[主干知识•自主梳理] [考点分类•深度剖析] [创新考点•素养形成] [课时作业•巩固练习]
首页 上页 下页 尾页
[考点分类•深度剖析]
考法 1 已知离心率研究渐近线问题
(2018·高考全国卷Ⅲ)已知双曲线 C:xa22-by22=1(a>0,b>0)的离心率为 2,
则点(4,0)到 C 的渐近线的距离为( )
1.若双曲线xa22-yb22=1(a>0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲 线的离心率为( )
A. 5 C. 2
B.5 D.2
答案:A
[主干知识•自主梳理] [考点分类•深度剖析] [创新考点•素养形成] [课时作业•巩固练习]
首页 上页 下页 尾页
[主干知识•自主梳理]
2.已知 a>b>0,椭圆 C1 的方程为ax22+yb22=1,双曲线 C2 的方程为ax22-yb22=1,C1 与
A.2sin 40°
B.2cos 40°
1 C.sin 50°
1 D.cos 50°
[主干知识•自主梳理] [考点分类•深度剖析] [创新考点•素养形成] [课时作业•巩固练习]
首页 上页 下页 尾页
[考点分类•深度剖析]
[解析] 由题意可得-ba=tan 130°, 所以 e= 1+ba22= 1+tan2130°= 1+scions22113300°° =|cos 1130°|=cos150°. 故选 D. [答案] D
[主干知识•自主梳理] [考点分类•深度剖析] [创新考点•素养形成] [课时作业•巩固练习]
首页 上页 下页 尾页
[考点分类•深度剖析]
考点二 双曲线的几何性质———(核心考点——多维探究) 双曲线的渐近线与离心率问题是每年各地高考命题的热点.常见的命题角度有:1已 知离心率求渐近线方程;2已知渐近线求离心率;3由离心率或渐近线求双曲线方 程.

2019届高考数学一轮复习 第八章 解析几何 第六节 双曲线课件 理.pptx

2019届高考数学一轮复习 第八章 解析几何 第六节 双曲线课件 理.pptx

点的轨迹是双曲线.
()
(2)方程xm2-yn2=1(mn>0)表示焦点在x轴上的双曲线. (
)
(3)双曲线方程
x2 m2

y2 n2
=λ(m>0,n>0,λ≠0)的渐近线方程是
mx22-ny22=0,即mx ±ny=0.
()
(4)等轴双曲线的渐近线互相垂直,离心率等于 2. ( )
(5)若双曲线xa22-by22=1(a>0,b>0)与bx22-ay22=1(a>0,b>0)的
一条渐近线与直线2x+y=0垂直,则双曲线的方程为 ( )
A.x42-y2=1
B.x2-y42=1
C.32x02-35y2=1
D.35x2-32y02=1
解析:由焦距为2 5 ,得c= 5.因为双曲线的一条渐近线与直
线2x+y=0垂直,所以
b a

1 2
.又c2=a2+b2,解得a=2,b=1,
所以双曲线的方程为x42-y2=1. 答案:A
第六 节
双曲线
1
课前·双基落实
知识回扣,小题热身,基稳才能楼高
课堂·考点突破
练透基点,研通难点,备考不留死角
课后·三维演练
分层训练,梯度设计,及时查漏补缺
2
课 前 双基落实
知识回扣,小题热身,基稳才能楼高
3
过基 础知 识
4
1.双曲线的定义 平面内与两个定点 F1,F2 的距离的差的绝对值等于非零常 数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲 线的 焦点 ,两焦点间的距离叫做双曲线的 焦距 . 集合 P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中 a,c 为 常数且 a>0,c>0.

高考数学一轮复习第八章平面解析几何第6节双曲线课时作业含解析新人教版

高考数学一轮复习第八章平面解析几何第6节双曲线课时作业含解析新人教版

第八章 平面解析几何授课提示:对应学生用书第325页〖A 组 基础保分练〗1.若双曲线C :x 2-y 2b 2=1(b >0)的离心率为2,则b =( ) A .1 B . 2 C. 3 D .2〖答 案〗C2.设双曲线C :x 2a 2-y 2b 2=1(a >b >0)的两条渐近线的夹角为α,且cos α=13,则C 的离心率为( ) A.52 B .62C.72D .2〖答 案〗B3.在平面直角坐标系中,已知双曲线C 与双曲线x 2-y 23=1有公共的渐近线,且双曲线C 经过点P (-2,3),则双曲线C 的焦距为( ) A. 3 B .2 3 C .3 3 D .4 3 〖答 案〗D4.已知双曲线x 24-y 2b 2=1(b >0)的右焦点为(3,0),则该双曲线的焦点到其渐近线的距离等于( ) A. 5 B .3 C .5 D .4 2 〖答 案〗A5.已知直线l 与双曲线C :x 2-y 2=2的两条渐近线分别交于A ,B 两点,若AB 的中点在该双曲线上,O 为坐标原点,则△AOB 的面积为( ) A.12 B .1 C .2D .4 〖解 析〗由题意得,双曲线的两条渐近线方程为y =±x ,设A (x 1,x 1),B (x 2,-x 2),所以AB中点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1-x 22,所以⎝ ⎛⎭⎪⎫x 1+x 222-⎝ ⎛⎭⎪⎫x 1-x 222=2,即x 1x 2=2,所以S △AOB=12|OA |·|OB |=12|2x 1|·|2x 2|=|x 1x 2|=2. 〖答 案〗C6.已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( ) A.32 B .3 C .2 3D .4〖解 析〗因为双曲线x 23-y 2=1的渐近线方程为y =±33x ,所以∠MON =60°.不妨设过点F 的直线与直线y =33x 交于点M ,由△OMN 为直角三角形,不妨设∠OMN =90°,则∠MFO =60°.又直线MN 过点F (2,0),所以直线MN 的方程为y =-3(x -2).由⎩⎪⎨⎪⎧y =-3(x -2),y =33x ,得⎩⎨⎧x =32,y =32,所以M ⎝⎛⎭⎫32,32,所以|OM |=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3, 所以|MN |=3|OM |=3. 〖答 案〗B7.(2020·高考北京卷)已知双曲线C :x 26-y 23=1,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是________.〖解 析〗双曲线C :x 26-y 23=1,c 2=6+3=9,∴c =3,则C 的右焦点的坐标为(3,0),C 的渐近线方程为y =±36x ,即y =±12x ,即x ±2y =0,则C 的焦点到其渐近线的距离d =33= 3.〖答 案〗(3,0)38.(2020·高考全国卷Ⅰ)已知F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________. 〖解 析〗如图,A (a,0).由BF ⊥x 轴且AB 的斜率为3,知点B 在第一象限,且B ⎝⎛⎭⎫c ,b2a , 则k AB =b 2a-0c -a =3,即b 2=3ac -3a 2.又∵c 2=a 2+b 2,即b 2=c 2-a 2,∴c 2-3ac +2a 2=0, ∴e 2-3e +2=0.解得e =2或e =1(舍去).故e =2. 〖答 案〗29.(2021·八省联考模拟卷)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点为A ,右焦点为F ,动点B 在C 上.当BF ⊥AF 时,|AF |=|BF |. (1)求C 的离心率;(2)若B 在第一象限,证明:∠BF A =2∠BAF .〖解 析〗(1)设双曲线的半焦距为c ,则F (c,0),B ⎝⎛⎭⎫c ,±b2a , 因为|AF |=|BF |,故b 2a =a +c ,故c 2-ac -2a 2=0,即e 2-e -2=0, 故e =2.(2)证明:设B (x 0,y 0),其中x 0>a ,y 0>0. 因为e =2,故c =2a ,b =3a ,故渐近线方程为y =±3x ,所以∠BAF ∈⎝⎛⎭⎫0,π3, ∠BF A ∈⎝⎛⎭⎫0,2π3, 又tan ∠BF A =-y 0x 0-c =-y 0x 0-2a ,tan ∠BAF =y 0x 0+a,所以tan 2∠BAF =2y 0x 0+a 1-⎝ ⎛⎭⎪⎫y 0x 0+a 2=2y 0(x 0+a )(x 0+a )2-y 20=2y 0(x 0+a )(x 0+a )2-b 2⎝⎛⎭⎫x 20a 2-1 =2y 0(x 0+a )(x 0+a )2-3a 2⎝⎛⎭⎫x 20a 2-1=2y 0(x 0+a )(x 0+a )2-3(x 20-a 2) =2y 0(x 0+a )-3(x 0-a )=-y 0x 0-2a=tan ∠BF A ,因为∠BF A ∈⎝⎛⎭⎫0,2π3, 故∠BF A =2∠BAF .〖B 组 能力提升练〗1.(多选题)(2021·山东滨州期末)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-5,0),F 2(5,0),则能使双曲线C 的方程为x 216-y 29=1的条件是( )A .双曲线的离心率为54B .双曲线过点⎝⎛⎭⎫5,94 C .双曲线的渐近线方程为3x ±4y =0 D .双曲线的实轴长为4〖解 析〗由题意可得焦点在x 轴上,且c =5.A 选项,若双曲线的离心率为54,则a =4,所以b 2=c 2-a 2=9,此时双曲线的方程为x 216-y 29=1,故A 正确;B 选项,若双曲线过点⎝⎛⎭⎫5,94,则⎩⎪⎨⎪⎧25a 2-8116b 2=1,a 2+b 2=25,得⎩⎪⎨⎪⎧a 2=16,b 2=9,此时双曲线的方程为x 216-y 29=1,故B 正确;C 选项,若双曲线的渐近线方程为3x ±4y =0,可设双曲线的方程为x 216-y 29=m (m >0),所以c 2=16m +9m =25,解得m =1,所以此时双曲线的方程为x 216-y 29=1,故C 正确;D 选项,若双曲线的实轴长为4,则a =2,所以b 2=c 2-a 2=21,此时双曲线的方程为x 24-y 221=1,故D 错误.〖答 案〗ABC2.(2021·湖北稳派教育联考)设点F 1,F 2分别是双曲线C :x 2a 2-y 22=1(a >0)的左、右焦点,过点F 1且与x 轴垂直的直线l 与双曲线C 交于A ,B 两点.若△ABF 2的面积为26,则双曲线C 的渐近线方程为( ) A .y =±3x B .y =±33xC .y =±2xD .y =±22x〖答 案〗D3.已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 是C 上的一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( ) A.2x ±y =0 B .x ±2y =0 C .x ±2y =0 D .2x ±y =0 〖答 案〗A4.(多选题)已知双曲线E 与双曲线x 29-y 2=1有相同的渐近线,且双曲线E 过点M (-3,6),则下列结论正确的是( )A .双曲线E 的焦点坐标为(±52,0)B .双曲线E 的标准方程为y 25-x 245=1C .双曲线E 的离心率为10D .圆x 2+(y -52)2=45与双曲线E 的渐近线相切〖解 析〗由题意可设双曲线E 的方程为x 29-y 2=λ,∵双曲线E 过点M ()-3,6,∴(-3)29-(6)2=λ,解得λ=-5,∴双曲线E 的标准方程为y 25-x 245=1,∴双曲线E 的焦点坐标为(0,±52),离心率e =525=10,∴A 不正确,B ,C 正确;∵圆x 2+(y -52)2=45的圆心(0,52)到E的渐近线x ±3y =0的距离d =|±3×52|1+9=35,且该圆的半径R =35,∴圆x 2+(y -52)2=45与E 的渐近线相切,D 正确. 〖答 案〗BCD5.已知点F 2为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx 交C 于A ,B 两点,若∠AF 2B =2π3,S △AF 2B =23,则C 的虚轴长为________.〖答 案〗2 26.已知焦点在x 轴上的双曲线x 28-m +y 24-m =1,它的焦点到渐近线的距离的取值范围是________.〖解 析〗对于焦点在x 轴上的双曲线x 2a 2-y 2b 2=1(a >0,b >0),它的焦点(c,0)到渐近线bx -ay=0的距离为|bc |b 2+a 2=b .本题中,双曲线x 28-m +y 24-m =1即x 28-m -y 2m -4=1,其焦点在x 轴上,则⎩⎪⎨⎪⎧8-m >0,m -4>0,解得4<m <8,则焦点到渐近线的距离d =m -4∈(0,2).〖答 案〗(0,2)〖C 组 创新应用练〗1.(2021·广东四校联考)P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线.P 在l 上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为( ) A .1 B .2+155C .4+155D .22+1〖解 析〗设双曲线的右焦点为F 2,连接PF 2(图略),因为|PF 1|-|PF 2|=22,所以|PF 1|=22+|PF 2|,|PF 1|+|PQ |=22+|PF 2|+|PQ |,当且仅当Q ,P ,F 2三点共线,且P 在Q ,F 2之间时,|PF 2|+|PQ |最小,且最小值为点F 2到直线l 的距离.由题意可得直线l 的方程为y =±22x ,焦点F 2(3,0),点F 2到直线l 的距离d =1,故|PQ |+|PF 1|的最小值为22+1. 〖答 案〗D2.已知双曲线C :x 23-y 2=1的左焦点为F ,过F 的直线l 交双曲线C 的左、右两支分别于点Q ,P .若|FQ |=t |QP |,则实数t 的取值范围是( )A.⎝⎛⎦⎥⎤0,23-36 B.⎝⎛⎦⎥⎤23-36,1C.⎝ ⎛⎦⎥⎤-∞,23-36D.⎝⎛⎦⎥⎤23+36,2 〖解 析〗由条件知F (-2,0).设P (x 0,y 0),Q (x 1,y 1),则FQ →=(x 1+2,y 1),QP →=(x 0-x 1,y 0-y 1),则(x 1+2,y 1)=t (x 0-x 1,y 0-y 1),所以x 1=tx 0-21+t ,y 1=ty 01+t.因为点P (x 0,y 0),Q (x 1,y 1)都在双曲线C 上,所以⎩⎪⎨⎪⎧x 20-3y 20=3,(tx 0-2)2-3(ty 0)2=3(1+t )2,消去y 0,得x 0=1-6t 4t .易知x 0≥3,所以1-6t 4t ≥3,易知t >0,所以0<t ≤23-36,即实数t 的取值范围是⎝ ⎛⎦⎥⎤0,23-36. 〖答 案〗A3.一种画双曲线的工具如图所示,长杆OB 通过O 处的铰链与固定好的短杆OA 连接,取一条定长的细绳,一端固定在点A ,另一端固定在点B ,套上铅笔(如图所示).作图时,使铅笔紧贴长杆OB ,拉紧绳子,移动笔尖M (长杆OB 绕O 转动),画出的曲线即为双曲线的一部分.若|OA |=10,|OB |=12,细绳长为8,则所得双曲线的离心率为( )A.65 B .54C.32D .52〖解 析〗设|MB |=t ,则由题意,可得|MO |=12-t ,|MA |=8-t ,有|MO |-|MA |=4<|AO |=10,由双曲线的定义可得动点M 的轨迹为双曲线的一支,且双曲线的焦距2c =10,实轴长2a =4,即c =5,a =2,所以e =c a =52.〖答 案〗D。

近年届高考数学一轮复习第八章平面解析几何第6讲双曲线演练直击高考文(2021年整理)

近年届高考数学一轮复习第八章平面解析几何第6讲双曲线演练直击高考文(2021年整理)

(江苏专版)2019届高考数学一轮复习第八章平面解析几何第6讲双曲线分层演练直击高考文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2019届高考数学一轮复习第八章平面解析几何第6讲双曲线分层演练直击高考文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2019届高考数学一轮复习第八章平面解析几何第6讲双曲线分层演练直击高考文的全部内容。

第6讲双曲线1.双曲线错误!-错误!=1的焦距为________.[解析] 由双曲线定义易知c2=5.[答案] 2错误!2.(2018·江苏省重点中学领航高考冲刺卷(二))已知方程错误!+错误!=1表示双曲线,则实数m的取值范围是________.[解析] 因为方程错误!+错误!=1表示双曲线,所以当焦点在x轴上时,错误!,解得-1〈m〈0;当焦点在y轴上时,错误!,解得m<-1.所以实数m的取值范围是m〈-1或-1〈m<0.[答案](-∞,-1)∪(-1,0)3.双曲线错误!-y2=1的顶点到其渐近线的距离为________.[解析]双曲线错误!-y2=1的渐近线方程为y=±错误!,即x±2y=0,所以双曲线的顶点(±2,0)到其渐近线距离为错误!=错误!。

[答案]错误!4.(2018·江苏省重点中学领航高考冲刺卷(五))在平面直角坐标系xOy中,双曲线错误!-y2b2=1(a>0,b>0)的一条渐近线方程为y=错误!x,则双曲线的离心率为________.[解析] 由题意得,错误!=错误!,又a2+b2=c2,所以错误!=错误!,所以错误!=错误!,所以e=错误!。

全国版2019版高考数学一轮复习第8章平面解析几何第6讲双曲线学案201805092279

全国版2019版高考数学一轮复习第8章平面解析几何第6讲双曲线学案201805092279

第6讲双曲线板块一知识梳理·自主学习[必备知识]考点1 双曲线的概念平面内与两个定点F1,F2(|F1F2|=2c>0)的距离的差的绝对值为常数(小于|F1F2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0:(1)当a<c时,P点的轨迹是双曲线;(2)当a=c时,P点的轨迹是两条射线;(3)当a>c时,P点不存在.考点2 双曲线的标准方程和几何性质[必会结论] 双曲线中的几个常用结论(1)焦点到渐近线的距离为b.(2)实轴长和虚轴长相等的双曲线叫做等轴双曲线.(3)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系).(4)过双曲线的一个焦点且与实轴垂直的弦的长为2b2a.(5)过双曲线焦点F 1的弦AB 与双曲线交在同支上,则AB 与另一个焦点F 2构成的△ABF 2的周长为4a +2|AB |.(6)双曲线的离心率公式可表示为e =1+b 2a2. [考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内到两点F 1(-1,0),F 2(1,0)的距离之差等于1的点的轨迹是双曲线.( )(2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( )(3)与双曲线x 2m -y 2n =1(mn >0)共渐近线的双曲线方程可设为x 2m -y 2n=λ(λ≠0).( )(4)等轴双曲线的离心率等于2,且渐近线互相垂直.( )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线为共轭双曲线).( ) 答案 (1)× (2)× (3)√ (4)√ (5)√2.[课本改编]双曲线y 2-x 2=2的渐近线方程是( ) A .y =±x B .y =±2x C .y =±3x D .y =±2x答案 A解析 由题意知y 22-x 22=1,y =±x .3.[2018·广东模拟]已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( )A.x 24-y 25=1 B.x 24-y 25=1 C.x 22-y 25=1 D.x 22-y 25=1 答案 B解析 由题意设C 的方程为x 2a 2-y 2b2=1(a >0,b >0).由右焦点为F (3,0),可知c =3,又因为离心率等于32,所以c a =32,所以a =2.由c 2=a2+b 2,知b 2=5,故双曲线C 的方程为x 24-y 25=1.故选B.4.[2018·福州质检]设F 1、F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,且|PF 1|=5,则|PF 2|=( )A .5B .3C .7D .3或7 答案 D解析 ∵||PF 1|-|PF 2||=2,∴|PF 2|=7或3.5.[2017·北京高考]若双曲线x 2-y 2m=1的离心率为3,则实数m =________.答案 2解析 由双曲线的标准方程知a =1,b 2=m ,c =1+m , 故双曲线的离心率e =c a=1+m =3, ∴1+m =3,解得m =2.6.[2017·全国卷Ⅲ]双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.答案 5解析 ∵双曲线的标准方程为x 2a 2-y 29=1(a >0),∴双曲线的渐近线方程为y =±3ax .又双曲线的一条渐近线方程为y =35x ,∴a =5.板块二 典例探究·考向突破 考向双曲线的定义及标准方程例1 (1)[2017·天津高考]已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,离心率为2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A.x 24-y 24=1 B.x 28-y 28=1 C.x 24-y 28=1 D.x 28-y 24=1 答案 B解析 由题意可得c a=2,即c =2a . 又左焦点F (-c,0),P (0,4),则直线PF 的方程为y -04-0=x +c0+c,化简即得y =4c x +4.结合已知条件和图象易知直线PF 与y =bax 平行,则4c =ba,即4a =bc .故⎩⎨⎧c =2a ,4a =bc ,a 2+b 2=c 2,解得⎩⎪⎨⎪⎧a 2=8,b 2=8,故双曲线方程为x 28-y 28=1.故选B.(2)[2017·全国卷Ⅲ]已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1 答案 B 解析 由y =52x 可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.触类旁通(1)若涉及双曲线上的点,在解题时要首先想到双曲线上的任意点均满足双曲线的定义. (2)利用求待定系数法求双曲线标准方程的关键是:设出双曲线方程的标准形式,根据已知条件,列出关于参数a ,b ,c 的方程并求出a ,b ,c 的值.与双曲线x 2a 2-y 2b 2=1,有相同渐近线时可设所求双曲线方程为x 2a 2-y 2b2=λ(λ≠0).【变式训练1】 (1)已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 答案 A解析 由已知可得双曲线的焦距2c =10,a 2+b 2=25,排除C ,D ,又由渐近线方程为y=b a x =12x ,得12=b a,解得a 2=20,b 2=5. (2)求与双曲线x 29-y 216=1有共同渐近线,并且经过点(-3,23)的双曲线的方程.解 设所求双曲线方程为x 29-y 216=λ,将点(-3,23)代入双曲线方程,得99-1216=λ,解得λ=14,∴所求双曲线方程为4x 29-y24=1.考向双曲线的几何性质命题角度1 双曲线的离心率问题例2 (1)[2017·全国卷Ⅱ]若a >1,则双曲线x 2a2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)答案 C解析 由题意得双曲线的离心率e =a 2+1a .∴e 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e < 2.故选C.(2)[2016·山东高考]已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0).若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.答案 2解析 由已知得|AB |=|CD |=2b2a,|BC |=|AD |=|F 1F 2|=2c .因为2|AB |=3|BC |,所以4b2a=6c ,又b 2=c 2-a 2,所以2e 2-3e -2=0, 解得e =2,或e =-12(舍去).命题角度2 双曲线的渐近线问题例3 (1)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x答案 C解析 ∵e =52,∴c a =52,即c 2a 2=54.∵c 2=a 2+b 2,∴b 2a 2=14,∴b a =12.∵双曲线的渐近线方程为y =±b ax , ∴渐近线方程为y =±12x .故选C.(2)[2018·深圳调研]在平面直角坐标系xOy 中,双曲线的中心在原点,焦点在y 轴上,一条渐近线方程为x -2y =0,则它的离心率为( )A. 5B.52C. 3 D .2 答案 A解析 依题意设双曲线的方程是y 2a 2-x 2b 2=1(其中a >0,b >0),则其渐近线方程是y =±ab x ,由题知a b =12,即b =2a ,因此其离心率e =a 2+b 2a =5aa= 5.触类旁通与双曲线的几何性质有关的问题(1)双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±b a满足关系式e 2=1+k 2.(2)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用b 2=c 2-a 2和e =ca转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.【变式训练2】 (1)若双曲线C :x 2a 2-y 2b2=1的焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线的一个交点为M ,且sin ∠MF 1F 2=15,则双曲线的离心率为( )A. 2B. 3 C .2 D. 5 答案 D解析 由题意知,∠F 1MF 2=π2,不妨设点M 在第一象限,则⎩⎪⎨⎪⎧|MF 1|-|MF 2|=2a ,|MF 2||MF 1|=12,解得⎩⎪⎨⎪⎧|MF 1|=4a ,|MF 2|=2a ,又|MF 1|2+|MF 2|2=|F 1F 2|2,即16a 2+4a 2=4c 2,所以e =ca= 5.故选D.(2)已知双曲线y 2a 2-x 29=1的两条渐近线与以椭圆x 225+y 29=1的左焦点为圆心、165为半径的圆相切,则渐近线方程为________.答案 4x ±3y =0解析 双曲线的渐近线方程为ax ±3y =0,椭圆的左焦点为F (-4,0),因为渐近线ax +3y =0与以F 为圆心、165为半径的圆相切,所以|-4a +0|a 2+9=165,解得a =±4,故渐近线方程为4x ±3y =0.考向双曲线中焦点三角形例4 (1)已知F 1,F 2是双曲线x 24-y 2=1的两个焦点,P 是双曲线上一点,且∠F 1PF 2=90°,则△F 1PF 2的面积是( )A .1 B.52C .2 D. 5 答案 A解析 解法一:设|PF 1|=d 1,|PF 2|=d 2,由双曲线的定义可知|d 1-d 2|=4.又∠F 1PF 2=90°, 于是有d 21+d 22=|F 1F 2|2=20,因此,S △F 1PF 2=12d 1d 2=14(d 21+d 22-|d 1-d 2|2)=1.解法二:由x 24-y 2=1,知|F 1F 2|=2 5. 设P 点的纵坐标为y P ,由于∠F 1PF 2=90°,则P 在以|F 1F 2|为直径的圆上,即在x 2+y 2=5上.由⎩⎪⎨⎪⎧x 2+y 2=5,x 2-4y 2=4,消去x 得|y P |=55. 故△F 1PF 2的面积S =12|F 1F 2|·|y P |=1.(2)已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,P 点在C 上,∠F 1PF 2=60°,则P 到x 轴的距离为( )A.32 B.62C. 3D. 6 答案 B解析 设|PF 1|=m ,|PF 2|=n ,不妨设m >n ,P (x ,y ),|PF 1|-|PF 2|=m -n =2. 在△F 1PF 2中,由余弦定理得 (22)2=m 2+n 2-2mn cos60°, ∴8=(m -n )2+mn .∴mn =4. 由△F 1PF 2的面积相等,得12 ×22×|y |=12mn sin60°,即2|y |=12×4×32. ∴|y |=62. 即P 到x 轴的距离为62. 触类旁通【变式训练3】 (1)[2018·哈尔滨质检]已知双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43|PF 2|,则△F 1PF 2的面积为( ) A .48 B .24 C .12 D .6 答案 B解析 由双曲线的定义可得 |PF 1|-|PF 2|=13|PF 2|=2a =2,解得|PF 2|=6,故|PF 1|=8,又|F 1F 2|=10, 由勾股定理可知三角形PF 1F 2为直角三角形, 因此S △PF 1F 2=12|PF 1|×|PF 2|=24.(2)[2016·全国卷Ⅰ]已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3) 答案 A解析 解法一:由题意可知:c 2=(m 2+n )+(3m 2-n )=4m 2,其中c 为半焦距, ∴2c =2×2|m |=4,∴|m |=1.∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0, ∴-m 2<n <3m 2,∴-1<n <3.故选A.解法二:∵原方程表示双曲线,且焦距为4,∴⎩⎪⎨⎪⎧m 2+n >0,3m 2-n >0,m 2+n +3m 2-n =4,①或⎩⎪⎨⎪⎧m 2+n <0,3m 2-n <0,-(3m 2-n )-(m 2+n )=4,②由①得m 2=1,n ∈(-1,3).②无解.故选A.考向直线与双曲线的综合问题例5 直线l :y =3(x -2)和双曲线C :x 2a 2-y 2b2=1(a >0,b >0)交于A ,B 两点,且|AB |=3,又l 关于直线l 1:y =b ax 对称的直线l 2与x 轴平行.(1)求双曲线C 的离心率e ; (2)求双曲线C 的方程.解 (1)设双曲线C :x 2a 2-y 2b 2=1过第一、三象限的渐近线l 1:x a -yb=0的倾斜角为α.因为l 和l 2关于l 1对称,记它们的交点为P ,l 与x 轴的交点为M . 而l 2与x 轴平行,记l 2与y 轴的交点为Q . 依题意有∠QPO =∠POM =∠OPM =α.又l :y =3(x -2)的倾斜角为60°,则2α=60°, 所以tan30°=b a =33. 于是e 2=c 2a 2=1+b 2a 2=1+13=43,所以e =233.(2)由于b a =33,于是设双曲线方程为x 23k 2-y 2k2=1(k ≠0),即x 2-3y 2=3k 2.将y =3(x -2)代入x 2-3y 2=3k 2中, 得x 2-3×3(x -2)2=3k 2. 化简得到8x 2-36x +36+3k 2=0. 设A (x 1,y 1),B (x 2,y 2), 则|AB |=1+3|x 1-x 2| =2(x 1+x 2)2-4x 1x 2 =2×362-4×8×(36+3k 2)8=9-6k 2= 3. 解得k 2=1.故所求双曲线C 的方程为x 23-y 2=1.触类旁通求解双曲线综合问题的主要方法双曲线的综合问题主要为直线与双曲线的位置关系.解决这类问题的常用方法是:(1)设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x (或y )的一元二次方程,利用根与系数的关系及整体代入的思想解题.(2)利用点差法.【变式训练4】 设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同点A ,B .(1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,取PA →=512PB →,求a 的值.解 (1)将y =-x +1代入双曲线x 2a2-y 2=1(a >0)中,得(1-a 2)x 2+2a 2x -2a 2=0.所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,解得0<a <2且a ≠1.又双曲线的离心率e =1+a2a=1a 2+1,所以e >62且e ≠2,即e ∈⎝ ⎛⎭⎪⎫62,2∪(2,+∞). (2)设A (x 1,y 1),B (x 2,y 2),P (0,1),因为PA →=512PB →,所以(x 1,y 1-1)=512(x 2,y 2-1),由此得x 1=512x 2.由于x 1,x 2是方程(1-a 2)x 2+2a 2x -2a 2=0的两根,且1-a 2≠0,所以x 1+x 2=1712x 2=-2a 21-a2, x 1x 2=512x 22=-2a 21-a2,消去x 2得-2a 21-a 2=28960,由a >0,解得a =1713.核心规律1.当已知双曲线的焦点不明确而又无法确定时,其标准方程可设为x 2m +y 2n=1(mn <0),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2=1(AB <0),这种形式在解题时更简便.2.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共渐近线的双曲线的方程可设为x 2a 2-y 2b 2=λ(λ≠0).3.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线方程.满分策略1.双曲线的标准方程的两种形式的区分要结合x 2,y 2前系数的正负. 2.关于双曲线中离心率范围问题,不要忘记双曲线离心率固有范围e >1.3.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b2=1(a >0,b >0)的渐近线方程是y =±a bx .4.若利用弦长公式计算,在设直线斜率时要注意说明斜率不存在的情况.5.当直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.板块三 启智培优·破译高考题型技法系列 15——函数方程数学思想方法的应用(1)[2015·全国卷Ⅰ]已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.解题视点 利用双曲线定义寻求△APF 周长最小时P 点位置.解析 设F 1为双曲线的左焦点,由双曲线方程x 2-y 28=1可知,a =1,c =3,故F (3,0),F 1(-3,0).当点P 在双曲线左支上运动时,由双曲线定义知|PF |-|PF 1|=2,所以|PF |=|PF 1|+2,从而△APF 的周长为|AP |+|PF |+|AF |=|AP |+|PF 1|+2+|AF |.因为|AF |=32+(66)2=15为定值,所以当|AP |+|PF 1|最小时,△APF 的周长最小,由图象可知,此时点P 在线段AF 1与双曲线的交点处(如图所示).由题意可知直线AF 1的方程为y =26x +66,由⎩⎪⎨⎪⎧y =26x +66,x 2-y 28=1,得y 2+66y -96=0,解得y =26或y =-86(舍去),所以S △APF =S △AF 1F -S △PF 1F =12×6×66-12×6×26=12 6. 答案 12 6(2)已知双曲线x 2a 2-y 2(a +1)2=1,其中a >1,求e 的取值范围.解题视点 带参量的双曲线问题,需寻找e 与参量的依存关系,即函数关系,e 的范围由e =f (a )来确定.解 e 2=c 2a 2=a 2+(a +1)2a 2=1+⎝ ⎛⎭⎪⎫1+1a 2,∵a >1,∴1+0<1+1a<1+1,∴1<⎝⎛⎭⎪⎫1+1a 2<4,即2<e 2<5,∴2<e < 5.答题启示 解决解析几何问题,先通过已知条件和几何性质确定圆锥曲线的方程,再通过方程研究直线与圆锥曲线的位置关系,解析几何中的计算比较复杂,解决此类问题的关键要熟记圆锥曲线的定义、标准方程、几何性质及直线与圆锥曲线位置关系的常见思路.注意应用数学思想方法.跟踪训练[2015·山东高考]过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.答案 2+ 3解析 不妨设过右焦点与渐近线平行的直线为y =b a(x -c ),与C 交于P (x 0,y 0). ∵x 0=2a ,∴y 0=b a(2a -c ).又P (x 0,y 0)在双曲线C 上,∴(2a )2a 2-b 2a2(2a -c )2b 2=1,∴整理得a 2-4ac +c 2=0,设双曲线C 的离心率为e , 则1-4e +e 2=0.∴e 1=2-3(舍去),e 2=2+3, 即双曲线C 的离心率为2+ 3.板块四 模拟演练·提能增分[A 级 基础达标]1.[2018·安徽模拟]下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A .x 2-y 24=1B.x 24-y 2=1 C .y 2-x 24=1D.y 24-x 2=1 答案 D解析 由题意,选项A ,B 的焦点在x 轴,故排除A ,B ;D 项的渐近线方程为y 24-x 2=0,即y =±2x .2.[2018·湖北模拟]若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73 B.54 C.43 D.53答案 D解析 由已知可得双曲线的渐近线方程为y =±b a x ,点(3,-4)在渐近线上,∴b a =43,又a 2+b 2=c 2,∴c 2=a 2+169a 2=259a 2,∴e =c a =53.故选D.3.[2017·全国卷Ⅰ]已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.32 答案 D解析 因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D.4.[2018·广东模拟]已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1B.x 29-y 216=1 C.x 216-y 29=1 D.x 23-y 24=1 答案 C解析 因为双曲线C 的右焦点为F 2(5,0),所以c =5.因为离心率e =c a =54,所以a =4.又a 2+b 2=c 2,所以b 2=9. 故双曲线C 的方程为x 216-y 29=1.5.P 为双曲线x 2a 2-y 2b2=1(a >0,b >0)右支上的一点,且|PF 1|=2|PF 2|,则双曲线的离心率的取值范围是( )A .(1,3)B .(1,3]C .(3,+∞)D .[3,+∞)答案 B解析 如图,由题意可知⎩⎪⎨⎪⎧4a +2a >2c ,a <c ,∴1<e <3.当P 在x 轴上时,4a +2a =2c , ∴e =3. 综合e ∈(1,3].6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过点F 2作与x 轴垂直的直线与双曲线一个交点为P ,且∠PF 1F 2=π6,则双曲线的渐近线方程为________.答案 y =±2x解析 根据已知可得,|PF 1|=2b 2a 且|PF 2|=b 2a ,故2b 2a -b 2a =2a ,所以b 2a 2=2,ba=2,双曲线的渐近线方程为y =±2x .7.[2018·海口调研]已知点F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P为双曲线左支上的任意一点,且|PF 2|=2|PF 1|,若△PF 1F 2为等腰三角形,则双曲线的离心率为________.答案 2解析 ∵|PF 2|-|PF 1|=2a ,|PF 2|=2|PF 1|,∴|PF 2|=4a ,|PF 1|=2a ,∵△PF 1F 2为等腰三角形,∴|PF 2|=|F 1F 2|,即4a =2c ,∴c a=2.8.[2016·北京高考]双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.答案 2解析 由OA ,OC 所在直线为渐近线,且OA ⊥OC ,知两条渐近线的夹角为90°,从而双曲线为等轴双曲线,则其方程为x 2-y 2=a 2.OB 是正方形的对角线,且点B 是双曲线的焦点,则c =22,根据c 2=2a 2可得a =2.9.设A ,B 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程; (2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM →+ON →=tOD →,求t 的值及点D 的坐标.解 (1)由题意知a =23,又∵一条渐近线为y =b ax ,即bx -ay =0. ∴由焦点到渐近线的距离为3,得|bc |b 2+a 2= 3.∴b 2=3,∴双曲线的方程为x 212-y 23=1. (2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程y =33x -2代入双曲线方程x 212-y 23=1得x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12. ∴⎩⎪⎨⎪⎧x 0y 0=433,x 212-y 203=1,∴⎩⎨⎧x 0=43,y 0=3,∴t =4,点D 的坐标为(43,3).10.[2018·广西模拟]已知双曲线方程2x 2-y 2=2. (1)求以A (2,1)为中点的双曲线的弦所在的直线方程;(2)求过点B (1,1)能否作直线l ,使l 与所给双曲线交于Q 1,Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.解 (1)由2·22-12=7>2可知点A 在双曲线内部(含焦点的区域内),设以A (2,1)为中点的弦两端点分别为P 1(x 1,y 1),P 2(x 2,y 2),则有x 1+x 2=4,y 1+y 2=2.由对称性知x 1≠x 2.∵P 1、P 2在双曲线上,∴⎩⎪⎨⎪⎧2x 21-y 21=2,2x 22-y 22=2,两式相减得2(x 1+x 2)(x 1-x 2)-(y 1+y 2)(y 1-y 2)=0. ∵x 1+x 2=4,y 1+y 2=2.∴y 1-y 2x 1-x 2=4. 所求中点弦所在直线方程为y -1=4(x -2),即4x -y -7=0.(2)由2·12-12=1<2知B (1,1)在双曲线的外部(双曲线两支之间).可假定直线l 存在,采用(1)的方法求出l 的方程为y -1=2(x -1),即2x -y -1=0.联立方程组⎩⎪⎨⎪⎧2x 2-y 2=2,2x -y -1=0,消y ,得2x 2-4x +3=0.∵Δ=(-4)2-4×2×3=-8<0,无实根,因此直线l 与双曲线无交点,这一矛盾说明了满足条件的直线l 不存在.[B 级 知能提升]1.[2017·天津高考]已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 2=1 D .x 2-y 23=1答案 D解析 根据题意画出草图如图所示⎝⎛⎭⎪⎫不妨设点A 在渐近线y =bax 上.由△AOF 是边长为2的等边三角形得到∠AOF =60°,c =|OF |=2. 又点A 在双曲线的渐近线y =b ax 上,∴b a=tan60°= 3. 又a 2+b 2=4, ∴a =1,b =3,∴双曲线的方程为x 2-y 23=1.故选D.2.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为M (-12,-15),则E 的方程为( )A.x 3-y 26=1 B.x 24-y 25=1C.x 26-y 23=1 D.x 25-y 24=1 答案 B解析 由已知易得l 的斜率为k =k FM =1.设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式相减并结合x 1+x 2=-24,y 1+y 2=-30,得y 1-y 2x 1-x 2=4b 25a 2,从而4b 25a2=1,即4b 2=5a 2.又a 2+b 2=9,解得a 2=4,b 2=5,故选B. 3.[2018·武汉模拟]过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点F 的直线与双曲线相交于A ,B 两点,当AB ⊥x 轴,称|AB |为双曲线的通径.若过焦点F 的所有焦点弦AB 中,其长度的最小值为2b2a,则此双曲线的离心率的范围为( )A .(1,2)B .(1,2]C .(2,+∞)D .[2,+∞)答案 B解析 当经过焦点F 的直线与双曲线的交点在同一支上, 可得双曲线的通径最小,令x =c ,可得y =±bc 2a 2-1=±b 2a ,即有最小值为2b 2a; 当直线与双曲线的交点在两支上,可得直线的斜率为0时, 即为实轴,最小为2a . 由题意可得2a ≥2b2a,即为a 2≥b 2=c 2-a 2, 即有c ≤2a ,则离心率e =c a∈(1,2].4.[2018·承德模拟]已知点M (-2,0),N (2,0),动点P 满足条件|PM |-|PN |=22,记动点P 的轨迹为W .(1)求W 的方程;(2)若A 和B 是W 上的不同两点,O 是坐标原点,求OA →·OB →的最小值.解 (1)由|PM |-|PN |=22知动点P 的轨迹是以M ,N 为焦点的双曲线的右支,实半轴长a = 2.又焦距2c =4,所以虚半轴长b =c 2-a 2= 2. 所以W 的方程为x 22-y 22=1(x ≥2).(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 当AB ⊥x 轴时,x 1=x 2,y 1=-y 2,从而OA →·OB →=x 1x 2+y 1y 2=x 21-y 21=2.当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m (k ≠±1),与W 的方程联立,消去y 得(1-k 2)x 2-2kmx -m 2-2=0,则x 1+x 2=2km 1-k 2,x 1x 2=m 2+2k 2-1, 所以OA →·OB →=x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m ) =(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(1+k 2)(m 2+2)k 2-1+2k 2m 21-k 2+m 2=2k 2+2k 2-1=2+4k 2-1. 又因为x 1x 2>0,所以k 2-1>0.所以OA →·OB →>2.综上所述,当AB ⊥x 轴时,OA →·OB →取得最小值2. 5.已知双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)经过点P (2,1),且其中一焦点F 到一条渐近线的距离为1.(1)求双曲线Γ的方程;(2)过点P 作两条相互垂直的直线PA ,PB 分别交双曲线Γ于A ,B 两点,求点P 到直线AB 距离的最大值.解 (1)∵双曲线x 2a 2-y 2b 2=1过点(2,1),∴4a 2-1b2=1.不妨设F 为右焦点,则F (c,0)到渐近线bx -ay =0的距离d =|bc |a 2+b2=b ,∴b =1,a 2=2,∴所求双曲线的方程为x 22-y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +m .将y =kx +m 代入x 2-2y 2=2中,整理得(2k 2-1)x 2+4kmx +2m 2+2=0. ∴x 1+x 2=-4km2k 2-1,①x 1x 2=2m 2+22k 2-1.②百度文库 - 让每个人平等地提升自我21 ∵PA →·PB →=0,∴(x 1-2,y 1-1)·(x 2-2,y 2-1)=0,∴(x 1-2)(x 2-2)+(kx 1+m -1)(kx 2+m -1)=0,∴(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+m 2-2m +5=0.③将①②代入③,得m 2+8km +12k 2+2m -3=0,∴(m +2k -1)(m +6k +3)=0.而P ∉AB ,∴m =-6k -3,从而直线AB 的方程为y =kx -6k -3.将y =kx -6k -3代入x 2-2y 2-2=0中,判别式Δ=8(34k 2+36k +10)>0恒成立,∴y =kx -6k -3即为所求直线.∴P 到AB 的距离d =|2k -6k -3-1|1+k 2=4|k +1|k 2+1. ∵⎝ ⎛⎭⎪⎫d 42=k 2+1+2k k 2+1=1+2k k 2+1≤2. ∴d ≤42,即点P 到直线AB 距离的最大值为4 2.。

高三人教版数学(理)一轮复习课时作业第八章平面解析几何第六节

高三人教版数学(理)一轮复习课时作业第八章平面解析几何第六节

课时作业一、选择题1.(2014 ·唐山模拟 )已知双曲线的渐近线为 y =± 3x ,焦点坐标为 (-4,0),(4,0),则双曲线方程为()x 2 y 2x 2 y 2 A. 4 -12=1B.2- 4 =1x 2 y 2x 2 y 2C.24- 8 =1D. 8 -24=1x2y2A [由题意可设双曲线方程为a 2-b 2= 1(a > 0, b > 0),b = 3,b = 3,由已知条件可得 a即 ac =4,a 2+b 2=42,a 2=4,x 2 y 2解得 b 2=12,故双曲线方程为 4 - 12=1.]2. (2014 ·广东六校联考 )在平面直角坐标系xOy 中,已知△ ABC 的极点 A(-5,0)2-y2和 C(5, 0),极点 B 在双曲线x=1 上,则sin B为 () 169|sin A -sin C|3 2 A. 2B. 354C.4D.5C [设△ ABC 中角 A ,B ,C 所对的边分别是 a , b , c ,由正弦定理得sin B = b ,|sin A - sin C| |a -c|由双曲线的标准方程和定义可知, A ,C 是双曲线的焦点,且 b =10,|c -a|=8.因此sin B= b =5|sin A - sin C| |a -c| 4.应选 C.]3.已知 m 是两个正数 2,8 的等比中项,则圆锥曲线x2+y 2=1 的离心率为 ()m35 3A. 2 或2B. 23C. 5D. 2 或 5 D [∵ m 2=16,∴ m = ±4,故该曲线为椭圆或双曲线.ca 2-b 2 3当 m = 4 时, e =a =a= 2.22当 m =- 4 时, e = c =a+b = 5.]aa4. (2013 ·浙江高考 )如图, F 1,F 2 是椭圆 C 1:x 2+y 2=1 与双曲线 C 2 的公共焦点,4A ,B 分别是 1,C 2 在第二、四象限的公共点.若四边形AF 1 2 为矩形,则C BFC 2 的离心率是( )A. 2B. 336C.2D. 2D 1 中, |AF 1 +2 == , 12=2c = 2 又四边形 12为矩[椭圆 C | |AF | 2a 4 |F F | 3. AF BF形,∴∠ F 1AF 2= 90°,∴ |AF 1|2+|AF 2|2= |F 1F 1|2,∴ |AF 1|=2- 2, |AF 2|=2+ 2,∴双曲线 C 2 中, 2c =2 3, 2a =|AF 2|-|AF 1|=2 2,故 e = 3= 6,应选 D.] 225. (理)(2014 辽·宁五校联考 )已知点 M(- 3,0)、N(3,0)、B(1, 0),动圆 C 与直线 MN 切于点 B ,分别过点 M 、 N 且与圆 C 相切的两条直线订交于点 P ,则点 P的轨迹方程为()2 y 2 2 -y 2A .x - 8 = 1(x > 1)B .x =1(x >0)102- y 2 2- y 2C .x8 = 1(x > 0)D . x= 1(x >1)10A [如图,设两切线分别与圆切于点 S 、T ,则 |PM|- |PN| = (|PS|+ |SM|) - (|PT|+ |TN|) = |SM|- |TN|=|BM|-|BN|=2=2a ,因此所求曲线为双曲线的右支且不可以与 x 轴订交, a =1,c =3,,因此 b 2= 8,故点2P 的轨迹方程为 x 2-y8= 1(x > 1).]5. (文)(2014 青·岛模拟 )设 F 1,F 2 分别是双曲线 x 2-y 2=1的左、右焦点,若点 P9→ →→→ =在双曲线上,且 PF 1·PF 2= 0,则 |PF 1+PF 2|()A. 10 B .2 10 C. 5D . 25B→ → → →[如图,由 PF 1·PF 2=0 可得 PF 1 ⊥PF 2,又由向量加法的平行四边形法例可知?PF 1→ → = → = = , QF 2 为矩形,因为矩形的对角线相等, 故有 |PF 1+PF 2| |PQ| 2c 2 10 因此选 B.]二、填空题22y6. (2014 ·锡常镇一调苏 )若双曲线 x - a = 1(a > 0)的一个焦点到一条渐近线的距离等于 3,则此双曲线方程为 ________.2分析双曲线 x 2-ya =1(a >0)的一个焦点 (1+a ,0)到一条渐近线 ax - y = 0的距离为 a (1+a )3,=a + 12y 2解得 a = 3,故此双曲线方程为 x - 3=1.2y 2 答案 x - 3 =1x 2 y 27. (2014 ·乌鲁木齐第一次诊疗 )设 A 、B 为双曲线 a 2-b 2=1(b >a >0)上两点, O为坐标原点.若 OA ⊥OB ,则△ AOB 面积的最小值为 ________.分析设直线OA的方程为y= kx(k≠0),则直线OB的方程为1y=- kx,则点y=kxA(x1,y1)知足x2y2,a2-b2=12 2 2 222 a b2a b k∴x1=b2-a2k2,y1=b2-a2k2,222(1+k2)a2b2∴|OA|=x1+y1=b2- a2k2,( 1+ k2)a2 2同理 |OB|2=k2b2-a2 b ,22( 1+k2) a2b2(1+k2) a2b2∴|OA| ·|OB| =b2-a2k2·k2b2-a2=a4b4k2,222 2 22-a b+( a + b )·2(k+1)∵k22=11(当且仅当 k=±1 时,取等号 ),21)21≤(k +4k+k2+2224a4b4∴|OA|·|OB|≥(b2-a2)2,又 b>a>0,221 a ba2b2答案b2-a2三、解答题8.已知双曲线的中心在原点,焦点F1,F2在座标轴上,离心率为2,且过点 (4,-10).点 M(3,m)在双曲线上.(1)求双曲线方程;(2)求证: MF 1―→·MF 2―→= 0.分析(1)∵e=2,∴可设双曲线方程为x2- y2=λ(λ≠0).∵过点 (4,-10),∴ 16-10=λ,即λ=6.2 2x y∴双曲线方程为6-6= 1.(2)证明:由 (1)可知,双曲线中 a = b = 6,∴ c = 2 3,∴F 1 - 2 , , 2 , 0) ,( 3 0) F (2 3 ∴kMF 1=m , kMF 2=m , kMF 1· kMF 2= m 23+2 33-2 3 9-12 m 2=- 3.∵点 (3, m)在双曲线上,∴ 9-m 2=6,m 2= 3,故 kMF 1· kMF 2 =- 1,∴ MF 1⊥MF 2.∴MF 1―→·MF 2―→=0.9.(2014 ·太原四校联考 )已知双曲线 G 的中心在原点, 它的渐近线与圆x 2+y 2-10x+20= 0 相切.过点 P(-4,0)作斜率为-1的直线 l ,使得 l 与 G 交于 A , B 两4点,和 y 轴交于点 C ,而且点 P 在线段 AB 上,又知足 |PA| ·|PB|= |PC|2.(1)求双曲线 G 的渐近线方程; (2)求双曲线 G 的方程;(3)椭圆 S 的中心在原点,它的短轴是G 的实轴,假如 S 中垂直于 l 的平行弦的中点的轨迹恰巧是 G 的渐近线截在 S 内的部分.求椭圆 S 的方程. 分析 (1)设双曲线 G 的渐近线方程为 y =kx ,22相切可得 |5k|=1 则由渐近线与圆 x + y -10x +20= 05,∴ k =± ,k 2+121即双曲线 G 的渐近线方程为y =±x.2(2)由 (1)可设双曲线 G 的方程为 x 2-4y 2=m ,1把直线 l 的方程 y =- 4(x +4)代入双曲线方程,28 整理得 3x -8x - 16-4m =0,即 x A +x B = 3,16+4mx A x B =- 3 .(*)∵ |PA|·|PB|=|PC|2,P ,A ,B ,C 共线且 P 在线段 AB 上,∴ (x P -x A )(x B -x P )=(x P -x C )2,即(x B +4)(- 4- x A )= 16,整理得 4(x A + x B )+x A x B +32= 0.22将(*) 代入上式得 m = 28,∴双曲线方程为x-y=1.28 7x 2 y 2(3)由题可设椭圆 S 的方程为 28+a 2= 1(a > 27),设垂直于 l 的平行弦的两头点分别为M(x 1,y 1) ,2 ,y 2, MN 的中点为0,N(x)P(xy 0),2 22 2x 1y 1x 2y 2即28+a 2=1,28+ a 2=1,( x 1-x 2)( x 1+x 2) (y 1-y 2)( y 1+y 2)两式作差得28+2= 0.ay 1- y 2因为 x 1- x 2=- 4,x 1+ x 2=2x 0,y 1+y 2= 2y 0,x 0 4y 0∴28- a 2 = 0.x 4y∴垂直于 l 的平行弦中点的轨迹为直线 28- a 2 =0 截在椭圆 S 内的部分. 又由已知,这个轨迹恰巧是G 的渐近线截在 S 内的部分,a 212x 2 y 2 因此 112= 2,即 a = 56,故椭圆 S 的方程为 28+56=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学 习 资 料 专 题第六节 双曲线课时作业 A 组——基础对点练1.已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. 3 B .3 C.3mD .3m解析:双曲线方程为x 23m -y 23=1,焦点F 到一条渐近线的距离为 3.选A.答案:A2.已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2B .62C.52D .1解析:因为双曲线的方程为x 2a 2-y 23=1,所以e 2=1+3a2=4,因此a 2=1,a =1.选D.答案:D3.双曲线x 2-4y 2=-1的渐近线方程为( ) A .x ±2y =0 B .y ±2x =0 C .x ±4y =0D .y ±4x =0解析:依题意,题中的双曲线即y 214-x 2=1,因此其渐近线方程是y 214-x 2=0,即x ±2y =0,选A. 答案:A4.已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为( ) A .1 B . 3 C. 5D .12解析:在双曲线x 23-y 2=1中,a =3,b =1,c =2.不防设P 点在双曲线的右支上,则有|PF 1|-|PF 2|=2a =23,又|PF 1|+|PF 2|=25,∴|PF 1|=5+3,|PF 2|=5- 3.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12×|PF 1|×|PF 2|=12×(5+3)×(5-3)=1.故选A. 答案:A5.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),直线l :y =2x -2.若直线l 平行于双曲线C 的一条渐近线且经过C 的一个顶点,则双曲线C 的焦点到渐近线的距离为( ) A .1 B .2 C. 5D .4解析:根据题意,双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),其焦点在x 轴上,渐近线方程为y =±b a x ,又由直线l 平行于双曲线C 的一条渐近线,可知ba=2,直线l :y =2x -2与x 轴的交点坐标为(1,0),即双曲线C 的一个顶点坐标为(1,0),即a =1,则b =2a =2,故双曲线C 的焦点到渐近线的距离为2,故选B. 答案:B6.已知双曲线的焦点到渐近线的距离等于半实轴长,则该双曲线的离心率为( ) A.5+12B .2 C. 2D .2 2解析:不妨设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),因为焦点F (c,0)到渐近线bx -ay =0的距离为a ,所以bc a 2+b 2=a ,即bc c =a ,所以b a =1,所以该双曲线的离心率e =ca =1+ba2=2,故选C.答案:C7.已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1B .x 29-y 216=1C.x 216-y 29=1 D .x 23-y 24=1解析:由题意得e =1+b 2a 2=54,又右焦点为F 2(5,0),a 2+b 2=c 2,所以a 2=16,b 2=9,故双曲线C 的方程为x 216-y 29=1.答案:C8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( ) A.x 24-y 2=1 B .x 2-y 24=1C.3x 220-3y25=1 D .3x 25-3y220=1解析:由题意得c =5,b a =12,则a =2,b =1,所以双曲线的方程为x 24-y 2=1.答案:A9.(2018·山西八校联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,直线y =33(x +c )与双曲线的一个交点P 满足∠PF 2F 1=2∠PF 1F 2,则双曲线的离心率e 为( ) A. 2 B . 3 C .23+1 D .3+1解析:∵直线y =33(x +c )过左焦点F 1,且其倾斜角为30°,∴∠PF 1F 2=30°,∠PF 2F 1=60°,∴∠F 2PF 1=90°,即F 1P ⊥F 2P .∴|PF 2|=12|F 1F 2|=c ,|PF 1|=|F 1F 2|sin 60°=3c ,由双曲线的定义得2a =|PF 1|-|PF 2|=3c -c ,∴双曲线C 的离心率e =ca=c3c -c2=3+1,选D. 答案:D10.已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是双曲线C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( ) A.2x ±y =0 B .x ±2y =0 C .2x ±y =0D .x ±2y =0解析:不妨设|PF 1|>|PF 2|,则⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a ,且|F 1F 2|=2c ,即|PF 2|为最小边,即∠PF 1F 2=30°,则△PF 1F 2为直角三角形,所以2c =23a ,所以b =2a ,即渐近线方程为y =±2x ,故选A. 答案:A11.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦距为10,点P (2,1)在C 的一条渐近线上,则C的方程为( ) A.x 220-y 25=1 B .x 25-y 220=1C.x 280-y 220=1 D .x 220-y 280=1 解析:依题意⎩⎪⎨⎪⎧a 2+b 2=251=ba×2,解得⎩⎪⎨⎪⎧a 2=20b 2=5,∴双曲线C 的方程为x 220-y 25=1.答案:A12.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.解析:法一:因为双曲线过点(4,3)且渐近线方程为y =±12x ,故点(4,3)在直线y =12x 的下方.设该双曲线的标准方程为x 2a 2-y2b 2=1(a >0,b >0),所以⎩⎪⎨⎪⎧42a 2-32b 2=1,b a =12,,解得⎩⎪⎨⎪⎧a =2,b =1,故双曲线方程为x 24-y 2=1.法二:因为双曲线的渐近线方程为y =±12x ,故可设双曲线为x 24-y 2=λ(λ≠0),又双曲线过点(4,3),所以424-(3)2=λ,所以λ=1,故双曲线方程为x 24-y 2=1.答案:x 24-y 2=113.双曲线Γ:y 2a 2-x 2b2=1(a >0,b >0)的焦距为10,焦点到渐近线的距离为3,则Γ的实轴长等于________.解析:双曲线的焦点(0,5)到渐近线y =a bx ,即ax -by =0的距离为|5b |a 2+b2=5bc=b =3,所以a =4,2a =8. 答案:814.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)与椭圆x 29+y 24=1有相同的焦点,且双曲线C 的渐近线方程为y =±2x ,则双曲线C 的方程为________. 解析:易得椭圆的焦点为(-5,0),(5,0),∴⎩⎪⎨⎪⎧a 2+b 2=5,ba=2,∴a 2=1,b 2=4,∴双曲线C 的方程为x 2-y 24=1.答案:x 2-y 24=115.(2018·合肥市质检)双曲线M :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线x =a 与双曲线M 的渐近线交于点P ,若sin ∠PF 1F 2=13,则该双曲线的离心率为________.解析:不妨设P 为直线x =a 与双曲线M 的渐近线在第一象限内的交点,则P 点坐标为(a ,b ),因为sin ∠PF 1F 2=13,所以|PF 1|=3b ,所以(a +c )2+b 2=9b 2,即9a 2+2ac -7c 2=0,7e 2-2e -9=0,又e >1,解得e =97.答案:97B 组——能力提升练1.已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,若在双曲线上存在点P 满足2|PF 1→+PF 2→|≤|F 1F 2→|,则双曲线的离心率的取值范围是( ) A .(1,2] B .(1,2] C .[2,+∞)D .[2,+∞)解析:∵2|PF 1→+PF 2→|≤|F 1F 2→|⇒4|OP →|≤2c ⇒|OP →|≤c 2,又|OP →|≥a ,∴a ≤c 2,即c ≥2a ,∴e=ca≥2.故选D. 答案:D2.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .离心率相等B .虚半轴长相等C .实半轴长相等D .焦距相等解析:由0<k <9,易知两曲线均为双曲线且焦点都在x 轴上,由25+9-k =25-k +9,得两双曲线的焦距相等. 答案:D3.(2018·云南五市联考)设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆(x +4)2+y2=4和(x -4)2+y 2=1上的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( ) A .4 B .5 C .6D .7解析:易知双曲线的两个焦点分别为F 1(-4,0),F 2(4,0),恰为两个圆的圆心,两个圆的半径分别为2,1,所以|PM |max =|PF 1|+2,|PN |min =|PF 2|-1,故|PM |-|PN |的最大值为(|PF 1|+2)-(|PF 2|-1)=(|PF 1|-|PF 2|)+3=5,同理|PM |-|PN |的最小值为(|PF 1|-2)-(|PF 2|+1)=(|PF 1|-|PF 2|)-3=-1,所以|m -n |=6,故选C. 答案:C4.(2018·江南十校联考)已知l 是双曲线C :x 22-y 24=1的一条渐近线,P 是l 上的一点,F 1,F 2分别是C 的左、右焦点,若PF 1→·PF 2→=0,则点P 到x 轴的距离为( )A.233B . 2C .2D .263解析:由题意知F 1(-6,0),F 2(6,0),不妨设l 的方程为y =2x ,点P (x 0,2x 0),由PF 1→·PF 2→=(-6-x 0,-2x 0)·(6-x 0,-2x 0)=3x 20-6=0,得x 0=±2,故点P 到x 轴的距离为2|x 0|=2,故选C. 答案:C5.已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A.x 24-3y 24=1 B .x 24-4y 23=1C.x 24-y 24=1 D .x 24-y 212=1解析:根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b2x ,x 2+y 2=4得x A =44+b2,y A =2b4+b2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,选D.答案:D6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,以|F 1F 2|为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( ) A.x 216-y 29=1 B .x 23-y 24=1C.x 29-y 216=1 D .x 24-y 23=1解析:因为以|F 1F 2|为直径的圆与双曲线渐近线的一个交点为(3,4),所以c =5,b a =43,又c 2=a 2+b 2,所以a =3,b =4,所以此双曲线的方程为x 29-y 216=1.答案:C7.过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB →=2FA →,则此双曲线的离心率为( ) A. 2 B . 3 C .2D . 5解析:不妨设B (x ,-b a x ),|OB |=x 2+-bax2=c ,可取B (-a ,b ),由题意可知点A为BF 的中点,所以A (c -a 2,b2),又点A 在直线y =b a x 上,则b a ·c -a 2=b2,c =2a ,e =2. 答案:C8.若直线l 1和直线l 2相交于一点,将直线l 1绕该点逆时针旋转到与l 2第一次重合时所转的角为θ,则角θ就称为l 1到l 2的角,tan θ=k 2-k 11+k 1k 2,其中k 1,k 2分别是l 1,l 2的斜率,已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,A 是右顶点,P 是直线x =a 2c上的一点,e是双曲线的离心率,直线PA 到PF 的角为θ,则tan θ的最大值为( ) A.1eB .e1+eC.e21+eD .e2解析:设PA ,PF 的斜率分别为k 3,k 4,由题意可知tan θ=k 4-k 31+k 3k 4,不妨设P (a 2c ,y )(y >0),则k 3=y a 2c -a ,k 4=y a 2c -c .令m =a 2c -a ,n =a 2c -c ,则tan θ=y n -ym 1+y n ×y m =m -nmn y+y ,由m -n =c-a >0,得当mny +y 取得最小值时tan θ取最大值,又y >0,m <0,n <0,所以mn y+y ≥2mn ,当且仅当y =mn 时等号成立,此时tan θ=m -n2mn=c -a 2a 2c-a a 2c-c =e21+e,故选C. 答案:C9.(2018·淄博模拟)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1,作圆x 2+y 2=a 2的切线交双曲线的右支于点P ,切点为T ,PF 1的中点M 在第一象限,则以下结论正确的是( ) A .b -a =|MO |-|MT | B .b -a >|MO |-|MT | C .b -a <|MO |-|MT | D .b -a =|MO |+|MT |解析:如图,连接OT ,则OT ⊥F 1T ,在直角三角形OTF 1中,|F 1T |=|OF 1|2-|OT |2=b ,连接PF 2,∵M 为线段F 1P 的中点,O 为F 1F 2的中点, ∴|OM |=12|PF 2|,∴|MO |-|MT |=12|PF 2|-⎝ ⎛⎭⎪⎫12|PF 1|-|F 1T |=12(|PF 2|-|PF 1|)+b =12×(-2a )+b =b -a ,故选A. 答案:A10.(2018·昆明市检测)已知点F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,以点F 为圆心的圆与C 的渐近线相切,且与C 交于A ,B 两点,若AF ⊥x 轴,则C 的离心率为________. 解析:不妨设F 为双曲线的右焦点,则F (c,0),易知双曲线的渐近线方程为y =±bax ,则双曲线的焦点F 到渐近线的距离d =bca 2+b 2=b ,所以圆F 的半径为b .在双曲线方程中,令x =c ,得y =±b 2a ,所以A (c ,±b 2a ).因为点A 在圆F 上,所以b 2a=b ,即a =b ,所以c =a 2+b2=2a ,所以e =c a= 2. 答案: 211.双曲线x 2a 2-y 2b2=1(a >0,b >0)上一点M (-3,4)关于一条渐近线的对称点恰为右焦点F 2,则该双曲线的标准方程为______________.解析:不妨设双曲线x 2a 2-y 2b 2=1的右焦点F 2(c,0)关于渐近线y =bax 对称的点在双曲线上,则过焦点F 2且垂直于该渐近线的直线方程为y -0=-ab(x -c ), 即y =-a b(x -c ).联立可得方程组⎩⎪⎨⎪⎧y =b ax ,y =-ab x -c ,解得⎩⎪⎨⎪⎧x =a 2c,y =abc ,由中点坐标公式可得F 2关于渐近线对称的点的坐标为(2a 2c -c ,2abc),将其代入双曲线的方程可得a 2-c 22a 2c 2-4a 2c2=1,化简可得c 2=5a 2,c 2=a 2+b 2=5a 2,所以b 2=4a 2.因为M (-3,4)在双曲线x 2a 2-y 2b 2=1上,所以9a 2-16b 2=1,9a 2-164a2=1,所以a 2=5,b 2=20,则该双曲线的标准方程为x 25-y 220=1. 答案:x 25-y 220=112.设双曲线x 2-y 23=1的左,右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是______.解析:由题意不妨设点P 在双曲线的右支上,现考虑两种极限情况:当PF 2⊥x 轴时,|PF 1|+|PF 2|有最大值8;当∠P 为直角时,|PF 1|+|PF 2|有最小值27.因为△F 1PF 2为锐角三角形,所以|PF 1|+|PF 2|的取值范围为(27,8). 答案:(27,8)13.(2018·沈阳质量监测)已知P 是双曲线x 23-y 2=1上任意一点,过点P 分别作双曲线的两条渐近线的垂线,垂足分别为A ,B ,则PA →·PB →的值是________. 解析:设P (x 0,y 0),因为该双曲线的渐近线分别是x3-y =0,x3+y =0,所以可取|PA |=|x 03-y 0|13+1,|PB |=|x 03+y 0|13+1,又cos ∠APB =-cos ∠AOB =-cos2∠AOx =-cos π3=-12,所以PA →·PB →=|PA →|·|PB →|·cos∠APB =|x 23-y 20|43·(-12)=34×(-12)=-38.答案:-38。

相关文档
最新文档