硅酸盐水泥的水化硬化概述
硅酸盐水泥的水化硬化概述
硅酸盐水泥的水化硬化概述硅酸盐水泥是一种常见的建筑材料,广泛用于混凝土制作和结构修复。
水泥的水化硬化是指水泥与水反应形成胶凝体,并使混凝土逐渐硬化和强度增加的过程。
水泥的水化硬化过程可以分为三个阶段:溶解阶段、胶凝阶段和结晶阶段。
在溶解阶段,水分与水泥中的化学物质发生作用,形成水化产物。
其中最主要的是硅酸钙水化产物及其水化过渡产物。
这个过程伴随着水泥的溶解和离子交换,同时释放热量。
在胶凝阶段,水化产物开始形成胶凝体,由于产物的粘结作用,使硅酸盐水泥与骨料颗粒和其他成分紧密结合。
这个阶段是水泥的强度急剧增加的阶段。
在结晶阶段,水化产物继续结晶生长,形成更稳定的晶体结构。
这个阶段通常需要较长的时间来完成,并且能使混凝土的性能逐渐稳定。
水泥水化硬化的过程受到多种因素的影响,包括水泥的成分、水化环境的温度和湿度、所用水分质量等。
适当的水泥成分和良好的水化环境有助于水泥的硬化过程。
水泥水化硬化是一个复杂的过程,需要一定的时间来完成。
因此,在施工中要合理控制混凝土的浇筑时间和养护时间,以确保水泥的充分水化硬化,从而提高混凝土的强度和耐久性。
总之,硅酸盐水泥的水化硬化是一个多阶段的过程,经过溶解、胶凝和结晶,最终形成硬化的胶凝体。
合理地控制水泥的成分和水化环境,能够有效地提高混凝土的性能。
水泥的水化硬化是一项复杂的化学物理过程,涉及多个组分和反应。
了解水泥的水化硬化过程对于我们了解硅酸盐水泥混凝土的性能和使用特性都非常重要。
水泥的基本成分是石灰和硅酸盐矿物,这些矿物在加入水后会发生化学反应,产生水化产物。
最主要的水化产物是硅酸钙几何多聚体C-S-H和钙水化硅石(C-S-H)以及钙羟基石灰(CH)。
这些水化产物的生成是水泥硬化的核心过程。
在溶解阶段,水与水泥中的化合物发生反应,其中最重要的是硅酸钙和水的反应。
在水中,硅酸盐矿物发生溶解和饱和的过程,释放出的离子与水中的离子发生化学作用。
这些离子的重组形成了水泥颗粒的表面电荷,并开启了水化反应。
硅酸盐水泥的水化和硬化
C3 A CS H12 和C4AH13的固溶体。
石膏的存在延缓了C3A的水化
(四)铁相固溶体(C4AF)的水化 水化速率比C3A低。其水化产物与C3A很相似。相当于C3A 中一部分氧化铝被氧化铁所置换,生成水化铝酸钙和水化铁酸 钙的固溶体。
C-S-H(Ⅱ)
定义:水化硅酸钙凝胶体(C-S-H) 组成:不固定,随钙硅比和水硅比变化 结构:微晶,尺寸接近于胶体范畴; 形貌:纤维状,网络状,等大粒子,内部产物; CH:晶体,层状,六方板状,生长在孔洞之间。
C3S水化历程:
五个阶段: 起始期 15min PH=12 急剧 诱导期(静止期)——使硅酸盐水泥保持塑性的原因; 2-4h诱导期结束的时间,即初凝时间。 加速期(4-8h)C-S-H和Ca(OH)2 大量形成,达到终凝。 减速期(12-24h) 稳定期 受扩散控制
C-S-H凝胶的组成与它所处 的溶液中的CaO浓度有关, C-S-H在一定的碱度下才能存 在,如2- 2-3图所示:
下表是对上图的总结:
CaO浓度 g/l
0.06-0.11
0.11-1.12
>1.12
CaO摩尔浓度 mol/l 1-2
2-20
>20
C/S
<1
0.8-1.5
1.5-2
水化产物
水化硅酸钙和硅酸凝胶 C-S-H(Ⅰ)
钙矾石在常温和一般湿度条件下的脱水曲线
四、水泥的凝结、硬化过程
1882年,雷霞特利提出的结晶理论; 1892年,米哈艾利斯又提出了胶体理论; 拜依柯夫将上述两理论加以发展,把水泥的硬化为三个时期: 第一,溶解期;第二,胶化期;第三,结晶期 列宾捷尔提出凝聚-结晶三维网状结构理论; 鲍格提出是巨大表面能的作用引起互相粘结; 洛赫尔提出的三阶段论:
硅酸盐水泥的水化产物
硅酸盐水泥的水化产物硅酸盐水泥是一种重要的建筑材料,广泛应用于各种建筑结构中。
在水泥的使用过程中,水泥会发生水化反应,产生一系列的水化产物。
这些水化产物对于水泥的强度、耐久性、抗裂性等性能具有重要影响。
因此,研究硅酸盐水泥的水化产物对于提高水泥的性能和应用价值具有重要意义。
一、硅酸盐水泥的水化反应硅酸盐水泥的水化反应是指水泥与水发生化学反应,产生一系列的水化产物。
水化反应是一个复杂的过程,涉及到多种化学反应和物理过程。
一般来说,硅酸盐水泥的水化反应可以分为以下几个阶段: 1. 溶解阶段:水泥颗粒与水接触后,水中的离子会进入水泥颗粒内部,与水泥中的化合物发生反应。
在这个阶段,水泥中的硅酸钙(C3S)和硅酸三钙(C3A)会首先与水发生反应,产生一些离子和化合物。
2. 硬化阶段:随着时间的推移,水泥中的化合物会逐渐形成新的晶体结构,从而使水泥颗粒逐渐硬化。
在这个阶段,水泥中的硅酸钙和硅酸三钙会分别形成硬石膏和钙铝石,从而使水泥颗粒逐渐硬化。
3. 成熟阶段:水泥颗粒逐渐硬化后,水泥中的化合物会进一步发生反应,形成一系列的水化产物。
这些水化产物包括硬石膏、水合硅酸钙、水合铝酸盐等。
二、硅酸盐水泥的水化产物硅酸盐水泥的水化产物是指水泥与水发生反应后形成的化合物。
这些化合物对于水泥的性能具有重要影响。
以下是硅酸盐水泥的主要水化产物:1. 硬石膏:硬石膏是水泥中的一种水化产物,是由硅酸钙和水反应形成的。
硬石膏在水泥中起到了一定的收缩作用,同时也能够提高水泥的强度和抗裂性。
2. 水合硅酸钙:水合硅酸钙是水泥中的一种水化产物,是由硅酸钙和水反应形成的。
水合硅酸钙是水泥中最主要的水化产物之一,能够提高水泥的强度和耐久性。
3. 水合铝酸盐:水合铝酸盐是水泥中的一种水化产物,是由硅酸三钙和水反应形成的。
水合铝酸盐能够提高水泥的强度和耐久性,同时也能够提高水泥的抗裂性和耐久性。
4. 水合硅酸钙和水合铝酸盐的复合物:水合硅酸钙和水合铝酸盐的复合物是水泥中的一种水化产物,是由水合硅酸钙和水合铝酸盐相互作用形成的。
硅酸盐水泥的基本组成水化和硬化机理
硅酸盐水泥的基本组成水化和硬化机理
硅酸盐水泥(Portland cement)是建筑中常用的一种水泥类型,它由若干种矿物质混合制成。
硅酸盐水泥的基本组成包括硅酸盐、铝酸盐、铁酸盐、钙酸盐等矿物质。
硅酸盐水泥的主要性质是其水化反应及硬化机理,其中水化反应是硬化的基础。
硅酸盐水泥的水化反应
硅酸盐水泥的水化反应分为两个阶段,分别是初始水化反应和二次水化反应。
初始水化反应: 初始水化反应是硅酸盐水泥与水开始反应产生物质的重要阶段。
该反应主要是由硅酸盐矿物质和水中的氢氧根离子(OH-)形成硅酸钙凝胶(C-S-H),同时还生成小量结晶状的钙矾土(Ca(OH)2)。
硬化反应: 当硅酸钙凝胶形成后,硬化反应就开始了。
硬化反应是指钙矾土与硅酸钙凝胶再次反应,产生附着在硅酸钙凝胶上的二次水化产物(例:钙硅酸盐、铝酸钙、铁酸钙等),从而导致硬化的过程。
硅酸盐水泥水化反应和硬化机理导致水泥成品逐渐硬化并得到强度的增加。
硅酸盐水泥的硬化机理包括两个阶段。
初始硬化阶段: 在初始硬化阶段中,主要发生的是水泥粉末与水反应生成硅酸钙溶胶,这个阶段是水泥松散质地逐渐变硬的转折点,经历了3-5小时左右时材料开始渐渐变硬,表现出初始硬度。
二次硬化阶段: 在这个阶段中,水泥产物进一步硬化,矿物质之间的结合变得更加紧密。
此时,水泥得到的韧性、强度等性能逐渐增强。
因此,硅酸盐水泥的水化和硬化反应是建筑中非常关键的部分。
这些反应可以向我们展示水泥是如何在混凝土中发挥作用的。
了解这些机制可以帮助建筑师、设计师、土木工程师、建筑工人或其他与建筑相关的人员掌握常用的建筑材料的工作机制并做出相应的设计和施工。
硅酸盐水泥的水化
硅酸盐水泥的水化硅酸盐水泥加水后,首先石膏迅速溶解于水,C3A立即发生反应,C4AF与C3S亦很快水化而β-C2S则稍慢。
几分钟后在电子显微镜下可以观察到水泥颗粒表面生成针状晶体、立方片状晶体和无定型的水化硅酸钙凝胶(C-S-H)。
尺寸相对较大的立方板状晶体是氢氧化钙,针状晶体(或立方棱柱状晶体)是三硫型水化硫铝酸钙晶体(钙矾石AFt)。
以后由于不断地生成三硫型水化硫铝酸钙,使液相中SO42-离子逐渐耗尽后,C3A与C4AF和三硫型水化硫铝酸钙作用生成单硫型水化硫铝酸钙(AFm)。
生成的3Ca0·(A1203·Fe203)·CaS04&middo t;12H20可再和4Ca0·(A1204·Fe304)·13H20形成固溶体,如果石膏不足,还有C3A或C4AF剩留,则会生成单硫型水化硫铝酸钙和C4(AF)H13的固溶体,甚至单独的C4(AF)H13,而后再逐渐变成稳定的等轴晶体C3(AF)H6。
综上所述,硅酸盐水泥水化生成的主要水化产物有:C-S-H 凝胶、氢氧化钙、水化铝(铁)酸钙和水化硫铝(铁)酸钙晶体。
在充分水化的水泥石中,C-S-H凝胶约占70%,Ca(OH)2约占20%,钙矾石和单硫型水化硫铝酸钙约占70%。
水泥石结构是由未水化的水泥颗粒、水化产物以及孔隙组成,水化产物晶体共生和交错,形成结晶网络结构,在水泥石中起重要的骨架作用,水化硅酸钙凝胶填充于其中。
C-S-H凝胶比表面积很大,表面能高,相互间受到分子间的引力作用,相互接触而发展了水泥石的强度。
因此,随着水化龄期的推移,C-S-H凝胶生成量增加,有助于水泥石强度增长。
水泥石的强度与其他多孔材料一样,取决于内部孔隙的数量,这类影响强度的孔隙,是指拌合水泥浆时形成的气孔及不参与水化反应的自由水所形成的毛细孔,但不包括极为微小的凝胶孔。
硅酸盐水泥的水化硬化概述
3、硅酸盐水泥的水化产物主要有哪几种,其特征和性能如何?
4、论述硬化水泥浆体强度的形成。
30
三相多孔体
20
一、水泥硬化机理
21
硬化水泥浆体形成的原因
水泥石具有强度的原因
构成三度空间牢固结合、密实的整体
22
二、硬化水泥浆体结构
C/S< 2,在 近程(纳米级)有序:层 1.4~1.6左右 状结构;
初期:纤维状 早期:网络状 中期:等大粒子、球状 后期:内部产物
23
与AFt相比,AFm中的结构水少,其密度更大。当AFm接触到各种来源的 SO42-离子而转变成AFt时,结构水增加,密度减小,从而产生相当的体 积膨胀,是引起硬化水泥浆体体积变化的一个主要原因。
(2)间接法:测定结合水、水化热、Ca(OH)2生成量。较为简单。
17
三、影响水化速率的因素 (1)熟料矿物的组成和性质
水化速率大小:C3A > C4AF > C3S > C2S B矿有四种不同晶型,对水化速率影响很大,β-C2S水化快,γ-C2S水化慢。 熟料矿物晶体中含有杂质、晶格缺陷、晶格畸变,水化速率快。 熟料矿物为固溶状态,如:F固溶在A矿,水化活性高,水化速率快。
凝结:塑性浆体失去流动性和可塑性
水泥水化
硬化:建立具有一定机械强度的结构
硬化之后还在继续水化
硬化水泥浆体:水泥加水发生水化反应后,变成具有一定强度 的固体,叫硬化水泥浆体。由于外观和一些性能与天然石材相 似,又称之为水泥石。
非均质的多相体系
水化产物和残存熟料-固相 孔隙中的水-液相 孔隙中的空气-气相
C3A + 6H = C3AH6
硅酸盐水泥的水化与硬化
硅酸盐水泥的水化与硬化硅酸盐水泥是一种常用的水泥材料,具有较好的水化和硬化性能,广泛应用于建筑和工程领域。
本文将对硅酸盐水泥的水化和硬化进行详细的介绍,包括水泥的成分、水化反应过程、硬化机理以及影响水化和硬化的因素等内容。
硅酸盐水泥是以矿渣、石灰石和黏土为原料,经过磨碎、燃烧和砂浆等工艺加工而成。
一般情况下,硅酸盐水泥的主要成分包括三种物质:硅酸盐矿物、石灰和无定形物质。
硅酸盐矿物是硅酸盐水泥的主要成分,其含有的SiO2和CaO可以发生水化反应,形成具有胶凝性的凝胶体。
石灰则是硅酸盐水泥中的辅助胶凝材料,其主要作用是加速水化反应的进行。
无定形物质是水泥中的杂质,一般情况下不参与水化和硬化过程。
水化反应是硅酸盐水泥的重要特性之一。
当硅酸盐水泥与水接触后,水分子与硅酸盐矿物中的CaO和SiO2发生反应,导致硅酸盐矿物发生水化并形成胶体物质。
水化反应的过程可以分为两个阶段:低水化率的溶解和高水化率的凝胶化。
在溶解阶段,水分子侵入硅酸盐矿物的晶体结构中,使其结构发生破坏并释放出Ca2+和OH-离子。
随着时间的推移,硅酸盐矿物的溶解率逐渐降低,凝胶化过程逐渐主导。
硬化是硅酸盐水泥水化反应的结果,也是水泥材料使用的关键性质。
在硬化过程中,水泥和水反应生成的胶凝体逐渐结晶并与无定形物质相结合,形成稳定的硬质凝胶,从而增强了水泥材料的强度和硬度。
硬化的机理主要涉及胶凝凝胶的形成、晶体生长和无定形物质的变化等过程。
胶凝凝胶的形成使水泥材料具有粘结性,晶体生长则使水泥材料具有硬度和强度。
无定形物质的变化则会影响水泥材料的性能,如开裂、收缩和腐蚀等。
水化和硬化过程受到各种因素的影响,包括水泥成分、水化温度、水化时间、水泥颗粒大小和水泥与水的质量比等因素。
水泥成分的不同会影响水化反应的速率和产物的特性。
水化温度越高,水化反应的速率越快,而水化时间越长,水泥材料的强度和硬度越高。
水泥颗粒的大小和分布会影响水泥的填充效果和反应程度,从而影响水化和硬化的速率和特性。
水泥工艺硅酸盐水泥的水化和硬化
2020/11/22
水泥工艺硅酸盐水泥的水化和硬化
硅酸盐水泥的水化和硬化
水泥加水以后为什么可以凝结硬化?
水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的水化和硬化
水化产物 填充空隙 并将水泥 颗粒连接 在一起
水泥工艺硅酸盐水泥的水化和硬化
1 熟料单矿物的水化
三、铝酸三钙 (一) 无石膏 1.常温下水化
C4AH13和C2AH8在常温下处于介稳状态,且随温度升高而转化 加速。C3A本身水化热高,因而极易按上式转化。
2.在温度较高(35℃以上)的情况下,可直接生成C3AH6晶体。 这些产物均为片状。
水泥工艺硅酸盐水泥的水化和硬化
早期水化产物,大部分在颗粒原始周界以外由水所填充的 空间----这部分C-S-H称外部产物。
后期的生长则在颗粒原始周界以内的区域形成----内部产 物。
随着内部产物的形成和发展,C3S的水化即由减速期向稳定 期转变。
水泥工艺硅酸盐水泥的水化和硬化
1 熟料单矿物的水化
7.C3S的后期水化 泰勒认为:水化过程中存在一个界面区,并逐渐向颗粒内 部推进,H2O离解成的H+在内部产物中从一个氧原子(或水分子) 转移到另一个氧原子,一直到达C3S界面并与之作用;而界面区 内部分Ca2+和Si4+则通过内部产物向外迁移,转入CH和外部C-SH。因此,界面内是得到H+,失去Ca2+和Si4+,原子重新排组, 从而使C3S转化成内部C-S-H。如此,随着界面区向内推进,水 化继续进行。由于空间限制及离子浓度变化,内部C-S-H在形貌 和成分等方面与外部C-S-H会有所不同,通常是较为密实。
硅酸盐水泥的水化、凝结与硬化
凝结硬化过程
初始反应期 潜伏期 凝结期 硬化期
初始的溶解和水化,约持续5-10分钟。
流动性可塑性好凝胶体膜层围绕水泥颗 粒成长,1h
凝胶膜破裂、长大并连接、水泥颗粒进 一步水化,6h。多孔的空间网络—凝聚 结构,失去可塑性
凝胶体填充毛细管,6h-若干年硬化石状 体密实空间网
3CaO·Al2O3·6H2O+ H2O+CaSO4·2H2O 3CaO·Al2O3·3CaSO4·31H2O
钙矾石
水泥熟料单矿物水化时特征
矿物种类
硅酸三钙
硅酸二钙
铝酸三钙
缩写 含量(%) 水化速度
C3S 37-60
快Leabharlann C2S 15-37慢
C3A 7-15 最快
水化热
多
少
最多
反应速度: 强放度 热量:
3CaO·SiO2+H2O CaO·2SiO2·3H2O+Ca(OH)2
硅酸二钙水化生成水化硅酸钙凝胶和氢氧化钙晶 体。
该水化反应的速度慢,对后期龄期混凝土强度的 发展起关键作用。水化热释放缓慢。
产物中氢氧化钙的含量减少时,可以生成更多的 水化产物。
2CaO·SiO2+H2O 3CaO·2SiO2·3H2O+Ca(OH)2
铝酸三钙水化生成水化铝酸钙晶体。 该水化反应速度极快,并且释放出大量的热量。 如果不控制铝酸三钙的反应速度,将产生闪凝现象,水泥将 无法正常使用。 通常通过在水泥中掺有适量石膏,可以避免上述问题的发生。
3CaO·Al2O3+H2O
3CaO·Al2O3·6H2O
铁铝酸四钙水化生成水化铝酸钙晶体和水化铁酸钙凝胶
硅酸盐水泥的水化
CCC高 好333AAS>>>CCC332SS早S低好>>>后高CCC443AAAFF>>>低差CCC422ASSF
收缩
中
较大
大
铁铝酸四钙
C4AF 10-18
快 较多
低 极好
小
凝结与硬化
何为凝结? 水泥加水拌和形成具有一定流动性和可塑性的浆体,经过自身的物理
化学变化逐渐变 稠失去可塑性的过程。 何为硬化? 失去可塑性的浆体随着时间的增长产生明显的强度,并逐渐发展成为
坚硬的水泥石的过程。 水泥的凝结与硬化过程由以下四个过程组成。
凝结硬化过程
初始反应期 潜伏期 凝结期 硬化期
初始的溶解和水化,约持续5-10分钟。
流动性可塑性好凝胶体膜层围绕水泥颗 粒成长,1h
凝胶膜破裂、长大并连接、水泥颗粒进 一步水化,6h。多孔的空间网络—凝聚 结构,失去可塑性
凝胶体填充毛细管,6h-若干年硬化石状 体密实空间网
2CaO·SiO2+H2O 3CaO·2SiO2·3H2O+Ca(OH)2
铝酸三钙水化生成水化铝酸钙晶体。 该水化反应速度极快,并且释放出大量的热量。 如果不控制铝酸三钙的反应速度,将产生闪凝现象,水泥将 无法正常使用。 通常通过在水泥中掺有适量石膏,可以避免上述问题的发生。
3CaO·Al2O3+H2O
3CaO·Al2O3·6H2O
铁铝酸四钙水化生成水化铝酸钙晶体和水化铁酸钙凝胶
该水化反应的速度和水化放热量均属中等。
4CaO·Al2O3·Fe2O3+H2O
3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O
石膏调节凝结时间的原理
石膏与水化铝酸钙反应生成水化硫铝酸钙针状晶体(钙矾石)。 该晶体难溶,包裹在水泥熟料的表面上,形成保护膜,阻碍水分进 入水泥内部,使水化反应延缓下来,从而避免了纯水泥熟料水化产生 闪凝现象。 所以,石膏在水泥中起调节凝结时间的作用。
水泥工艺学第八章水化和硬化
第二节
硅酸盐水泥的水化
水泥颗粒与水接触时,其表面的熟料矿物立即与水发生水 解或水化作用,生成一系列的水化产物并放出一定的热量。 水泥的水化过程与熟料中C3S水化过程基本相似,一般可 分为三个阶段: 第一阶段:钙矾石形成期:C3A率先水化,在石膏存在的条 件下,迅速形成钙矾石,放热出现第一个高峰。 第二阶段: C3S水化期: C3S开始迅速水化,大量放热,出现 第二个放热峰。
第八章 硅酸盐水泥的水化和硬化
水泥用适量的水拌合后,便形成能粘结砂石集 料的可塑浆体,并通过水化作用凝结硬化成具有 强度的石状体。 水泥的水化和硬化是水泥熟料中各种矿物水化 反应的结果,它包含一系列的物理和化学变化过 程,并伴随着水化热的放出。
第一节
一、硅酸三钙
熟料矿物的水化
1、常温下C3S的水化反应
3、AFt(钙矾石)
一般呈六方柱状或针状晶体,结晶良好,属三方晶系。 有些以空心管状存在,在硬化浆体中,晶粒细小,不易分 辨,甚至可能转变为无定形。
4、 AFm
在适宜的水化条件下,能形成较好的六方片状AFm , 晶体为层状结构,属于三方晶系。但多数情况下形成结晶 较差的AFm。
5、孔及其结构特征
孔的类型、分布、孔隙率
1、C-S-H凝胶 xCaO·SiO2·yH2O
(1)组成不固定:随CaO浓度、水灰比、水化龄期而变化。 (2)结构:聚合度不同的凝胶体(固体凝胶),结晶度极差。 (3)形貌:水化龄期不同,形貌也不同,包括:纤维状粒子、 网络状粒子、等大粒子、斑驳状粒子。
2、C H
结晶较好的层状结构体,属于三方晶系,呈六角片状, 其形态与水灰比、外加剂及温度因素有关。
一、浆体结构的形成和发展
1882年,法国化学家提出“结晶理论”。 1892年,德国化学家提出“胶体理论”。 俄国学者对以上两种理论加以综合发展,认为 水泥的硬化是溶解、胶化和结晶的结果。 此外,世界上还有很多专家通过不同的研究, 从不同角度提出了许多观点。 从各种观点可以看出,水泥的凝结和硬化是一 个很复杂的过程,不同的化学组成和水化条件都 会对凝结硬化产生极其复杂的影响。只用一种单 一的方法或样品研究所得到的结果只能是片面的。
简述硅酸盐水泥的凝结硬化过程与特点
硅酸盐水泥是一种常用的建筑材料,它在建筑领域具有重要的应用价值。
它的凝结硬化过程与特点对于理解其在建筑中的作用具有重要意义。
本文将对硅酸盐水泥的凝结硬化过程与特点进行简要的阐述,以便读者对其有一个清晰的认识。
一、硅酸盐水泥的凝结硬化过程1. 凝结过程硅酸盐水泥在加水后会发生水化反应,形成胶凝体,然后在适当的条件下开始凝结。
水化反应的化学方程式为:4CaO·SiO2 + 2CaO·SiO2·2H2O + 3CaSO4 + 32H →3CaO·2SiO2·4H2O + 3CaSO4·2H2O此过程是一个放热反应,可以产生大量的热量。
硅酸盐水泥的初凝时间一般在30~120分钟,凝结时间为几十小时至几天。
在这个过程中,水泥逐渐凝固成坚硬的体积稳定的水化硅酸盐凝胶体系。
2. 硬化过程硅酸盐水泥的硬化过程是水化反应的延续。
在一定的条件下,水泥的强度随着时间的推移而不断增加。
硅酸盐水泥的硬化特点是初期强度低、中后期强度高,长期强度稳定的特点。
二、硅酸盐水泥的特点1. 抗渗透性能硅酸盐水泥在水化硬化后,形成的凝胶体系具有良好的致密性,抗渗透性能较好。
在一定程度上能够抵御外部水分的侵蚀,保护混凝土结构的耐久性。
2. 抗压抗折性能硅酸盐水泥在水化硬化后,其强度随时间增长而不断提高,最终形成坚固的凝结体系,具有较高的抗压抗折性能。
在混凝土结构中能够承受一定的荷载。
3. 与混凝土的黏结性能硅酸盐水泥在水化硬化过程中,会与骨料及混凝土基材发生化学反应,形成良好的结合力,因此与混凝土的黏结性能较好。
能够有效地将混凝土的各部分紧密连接起来。
4. 抗碱骨料反应性能硅酸盐水泥在水化硬化后,其凝胶体系具有较低的碱骨料反应性,可以有效防止混凝土中的碱骨料反应,提高混凝土的耐久性。
硅酸盐水泥的凝结硬化过程是一个复杂而又精细的化学过程,它决定了水泥的性能和应用。
而硅酸盐水泥的特点使其在建筑领域具有广泛的应用前景,为建筑结构的强度与耐久性提供了有力的保证。
硅酸盐水泥的水化过程讲解
硅酸盐水泥的水化
? 水泥水化的液相环境
水泥拌水后,立即发生水化反应,各组分开始溶解。 所以极短的时间后,填充在颗粒之间的液相不再是纯水, 而是含有各种离子的溶液,主要为:
硅酸钙 → Ca 2+,OH -
铝酸钙
→
Ca
2+
,Al(OH)
4
铁铝酸钙 →
Ca 2+
,Fe(OH)
4
硫酸钙
→
Ca 2+
,SO
因而水化是从表面开始,在浓度和温度不断变化的条件下,通 过扩散作用缓慢向中心深入。较大水泥颗粒的中心往往会完全停止 水化,当温度、湿度条件适当时,再重新缓慢水化。
12
硅酸盐水泥的水化
? 硅酸盐水泥的水化过程
13
硅酸盐水泥的水化
? 水化前后固相及其所占体积比的变化14Fra bibliotek 硅酸盐水泥的水化
? 水化产物的基本特征
Cement Water Hydration Products
8
水泥加水以后为什么可以凝结硬化?
Hydration products connect grains
9
水泥加水以后为什么可以凝结硬化?
Pore space remains in hydrated cement paste
Unhydrated grains
15
硅酸盐水泥的水化
? 硅酸盐水泥的水化放热曲线
?钙矾石形成期: C3A率先水化→形成AFt → 第一放热峰 ?C3S水化期:C3S水化→第二放热峰(有时AFt→AFm 形成第三放热峰) ?结构形成和发展期 :放热速率很低并趋于稳定,水化产物相互交织
16
请各位老师批评指正! 非常感谢!
硅酸盐水泥水化反应
硅酸盐水泥水化反应
硅酸盐水泥是目前最常用的建筑材料之一,而水化反应则是硅酸盐水泥胶凝固化的关键过程。
硅酸盐水泥水化反应是指硅酸盐水泥与水发生化学反应,形成胶凝体、水化产物和剩余水。
硅酸盐水泥的水化反应主要分为两个阶段:初期和晚期水化反应。
初期水化反应是指水和硅酸盐水泥中的硬质物质反应,形成初期胶凝体。
晚期水化反应则是指先前形成的胶凝体与水中未反应的硅酸盐水泥再次发生反应,形成更加牢固的胶凝体。
在水化反应中,硅酸盐水泥中的主要化合物是三钙硅酸盐(C3S)、双钙硅酸盐(C2S)、三钙铝酸盐(C3A)和四钙铝酸盐(C4AF)。
其中,C3S 和C2S是水化反应的主要产物,其在水中会分解出氢氧化钙(Ca(OH)2)和硅酸钙(C-S-H凝胶),这是硅酸盐水泥胶凝的基本过程。
此外,水化反应还会产生一些副产物,如氢氧化铝和铝酸钙,这些产物能够与氢氧化钙反应,形成硬化的水化产物。
总之,硅酸盐水泥的水化反应是一个复杂的过程,它需要适当的水泥配比、合适的水泥水化时间、水泥质量和水质量等因素的协同作用,才能产生高质量的建筑材料。
- 1 -。
水泥工艺学第六章 硅酸盐水泥的水化与硬化
➢C4AF的水化放热曲线与C3A 很相似,但早期水化受石 膏的延缓更为明显;
➢在氢氧化钙饱和溶液中, 石膏能使其放热速率变得 极为缓慢。
6.2 硅酸盐水泥的水化
➢硅酸盐水泥是由多种熟料矿物、石膏及混合材共同组 成,因此当水泥加水后,石膏要溶解于水,C3A和C3S 很快与水反应,C3S水化时析出Ca(OH)2,故填充在颗 粒之间的液相实际上不是纯水、而是充满多种离子的 溶液。
• 由于水泥熟料是多种矿物的集合体,与 水的作用比较复杂,因此先分析水泥单 矿物的水化反应,然后再探讨水泥总的 水化硬化过程。
熟料矿物水化的原因
硅酸盐水泥熟料矿物结构的不稳定性
➢熟料烧成后的快速冷却,保留了高温介稳状态 的晶体结构
➢工业熟料中的矿物不是纯的C3S、C2S等,而是 Alite和Belite等有限固溶体
➢水泥是多矿物、多组分的体系,各熟料矿物并不可能单独进行水化, 它们之间的相互作用必然对水化进程有一定影响。
➢应用一般的方程式,实际上很难真实地表示水泥的水化过程。
6.3 水化速率
熟料矿物ቤተ መጻሕፍቲ ባይዱ水泥的水化速率常以单位时间内的 水化程度或水化深度来表示。
➢水化程度:是指在一定时间内发生水化作用的 量和完全水化量的比值;
水化产物:
Ca(OH)2的晶体开始可能在C3S表面生长,但有些晶体会远 离颗粒或在浆体的充水孔隙中形成。
由于硅酸根离子比Ca2+较难迁移,C-S-H的生长仅限于表面;
(2)C3S的中期水化
在C3S水化的加速期内,伴随着Ca(OH)2及C-S-H的 形成和长大,液相中Ca(OH)2和C-S-H的过饱和度降 低,又会相应地使Ca(OH)2和C-S-H的生长速度逐渐 变慢。随着水化产物在颗粒周围的形成,C3S的水 化也受到阻碍。因而,水化加速过程就逐渐转入减 速阶段。
硅酸盐水泥的水化和硬化
图3 a
图3 c
图3 a 即为水化12 h 的水泥浆体在SEM 下的形貌. 圈出的位置即为水化产物CSH 凝胶,
呈现不规则絮状, 絮状的尺寸大致为200~500 nm. 从整体来看, 水泥浆体水化12 h后, CSH
凝胶生成量并不大, 产物层较薄, 但各处分布均匀. 在SEM 中使用EDX 对CSH 凝胶进行元
各单矿在龄期达28天时水化速度关系为: C3A>C3S>C4AF>C2S
各单矿水化放热量及放热速率: C3A>C3S>C4AF>C2S
因此,适当增加C4AF减少C3A含量,或减少C3S,并相应增加C2S含,均 能降低水泥水化热,
三、水化放热模型
水泥水化放热模型 关于水泥的水化放热模型,近年来国外研究有了新进展,
水泥拌水后,很快发生水化反应,水化产物相互交结,使浆 体失去流动性,变成具有一定强度的石状体,此为水泥的凝结, 即水化导致凝结硬化。
一、水泥浆体能凝结硬化的原因 1.结晶理论:雷霞特利。水化物的结晶交结而凝结硬化 2.胶体理论:米哈艾利斯。胶体由于内吸脱水而成刚性凝 胶的过程 3.拜依柯夫三阶段学说 综合1、2理论 :溶解、胶化、结 晶 4.洛赫尔三阶段学说:水化产物形成强弱不等的接触点, 将各颗粒联接成网而形成强度 5.泰勒早、中、后三时期
如图5 所示, 中心黑色部分为未水化的熟料颗粒, 直径约3 um, 外围包 裹的颜色较浅的产物为疏松的早期CSH 凝胶, 厚度约400 nm.大圈为SEM 附带EDX 的测量范围, 小圈为TEM 附带EDX 的测量范围. 可以发现, SEM 附带的EDX 测量不论选取哪个位置, 都会导致大部分元素分析结果来自 未水化的水泥颗粒. 水泥未水化熟料主要是由C3S, C2S, C3A 和C4AF 四 种矿物相组成, 4 种组分未水化前的Ca/Si 比都大于或等于2, 必然造成 SEM中EDX 测量的Ca/Si 比结果远大于CSH 凝胶实际的Ca/Si 比, 并导致 结果的波动增加, 数据方差增大;而TEM 则可以保证测量范围内均为CSH 凝胶, 得到的Ca/Si 比较为真实, 波动也较小.
简述硅酸盐水泥的水化过程及其水化后的主要产物
简述硅酸盐水泥的水化过程及其水化后的主要产物
硅酸盐水泥是一种重要的建筑材料,其水化过程是指在水的作用下,
硅酸盐水泥中的主要成分与水发生反应形成新的化合物的过程。
硅酸
盐水泥的主要成分是三氧化二铝和二氧化硅,加入适量石膏、熟石灰
等辅助材料后,在水的作用下发生复杂的化学反应。
硅酸盐水泥在与水接触时,首先发生快速反应,生成一些新型物质。
这个阶段称为初凝期。
初凝期内,硬化体积变化不大,但强度增长很快。
随着时间推移,在细胞结构中形成了一种立体网状结构,并且由
于反应放热而产生高温。
随着时间的推移,硬化体积逐渐增加,强度也逐渐增加。
这个阶段称
为混凝土晚期强度增长期。
在这个阶段内,硬化体积变化很小或者不变,但强度仍然在增长。
最终,在混凝土完全干燥时达到最终强度和稳定性。
硅酸盐水泥水化
后的主要产物是硅酸钙凝胶和水化硅酸钙。
硅酸钙凝胶是一种胶态物质,具有良好的粘结性能,可以将混凝土中的颗粒紧密地粘合在一起。
水化硅酸钙则是一种晶体物质,具有良好的抗压性能。
总之,硅酸盐水泥的水化过程非常重要,它决定了混凝土的强度和稳
定性。
在实际应用中,需要根据不同的工程要求和环境条件选择合适的硅酸盐水泥及其配方,并且控制好水化反应过程,以保证混凝土结构品质和使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水化放热速率
Ca2+浓度
诱导前期 (15分钟以
发生急剧反应,放热迅速, Ca2+ 、OH-从C3S表面释放, 形成第一放热峰,而后放热 浓度急剧增大,pH值几分钟
内)
早 速率下降
就超过12,而后浓度增长减慢
诱导期 期 反应缓慢,放热速率很小, Ca2+浓度持续增长并超过饱
(1~4小时)
水泥浆体保持塑性,诱导期 和浓度,在诱导期结束时达到
二、测定水化速率的方法
(1)直接法:岩相分析、x射线分析、热分析பைடு நூலகம்定量测定已水化 和未水化部分的数量。较为复杂。
(2)间接法:测定结合水、水化热、Ca(OH)2生成量。较为简单。
三、影响水化速率的因素 (1)熟料矿物的组成和性质
水化速率大小:C3A > C4AF > C3S > C2S B矿有四种不同晶型,对水化速率影响很大,β-C2S水化快,γ-C2S水化慢。 熟料矿物晶体中含有杂质、晶格缺陷、晶格畸变,水化速率快。 熟料矿物为固溶状态,如:F固溶在A矿,水化活性高,水化速率快。
活化粉煤灰用作水泥促凝剂的研究
——解决掺氟硫复合矿化剂水泥出现缓凝的问题
水泥主要是含氟A矿缓凝的原因
含氟A矿水化活性高,水化速率快,为何缓凝? 水化产物C-S-H和Ca(OH)2形成速率快,但长大速率慢,不 足以相互搭接形成凝聚结构。 加速凝结的启示: 出窑熟料凝结时间长,加矿渣共同粉磨制成水泥后,凝结时 间缩短,为什么? 矿渣具有潜在水硬性,本身含有部分熟料矿物组成,经水淬 时与水反应,生成了部分水化产物,它们作为“晶种”,加 速了水泥水化时生成的水化产物以它们为晶核而长大。
稳定期
后 反应速率很低,基本稳定, Ca2+浓度趋近饱和浓度 期 完全受扩散控制
2、C3S的水化机理
(1)早期水化
保护膜理论(一致溶理论):假设C3S在水中是一致溶解的,最初生成 的第一水化产物(C/S≈3)很快在C3S周围形成致密保护膜层,阻碍其 进一步水化,使放热变慢,向液相溶出Ca2+的速率也降低(Ca2+浓度增 长下降) ,导致诱导期开始。 当第一水化产物转变为第二水化产物(C/S≈0.8~1.5)时,第二水化产物 较易使离子通过,较多的Ca2+和OH-进入液相达到过饱和,水化重新加 速并加快放热,诱导期结束。
水泥水化
硬化:建立具有一定机械强度的结构
硬化之后还在继续水化
硬化水泥浆体:水泥加水发生水化反应后,变成具有一定强度 的固体,叫硬化水泥浆体。由于外观和一些性能与天然石材相 似,又称之为水泥石。
非均质的多相体系
水化产物和残存熟料-固相 孔隙中的水-液相 孔隙中的空气-气相
三相多孔体
一、水泥硬化机理
硬化机理 结晶理论 胶体理论
层内:离子键,结合强 尺寸取决液相中Ca2+离子
层间:范德华力,结合 弱,受力时的薄弱环节,
浓度增长的速度:越快, 尺寸越小,强度越高
沿层间产生裂缝
物质
组成
结构
形貌
3.AFt
[Ca3(Al,Fe)(OH)6·12H2O]2·X3 ·yH2OX-二价,SO4、CO3、Cl2、
(OH)2
C3A · 3CaX · mH2O
硅酸盐水泥的水化过程
50%
70%
20%
8% 15%
2% 2%
其它
其它
3%
20% 7%
水化前后固相及其体积变化
按水化放热曲线,把硅酸盐水泥的水化过程划分为三阶段
1.钙矾石形成期:C3A率先水化,在石膏存在条件下,迅速形成钙矾石, 是导致第一放热峰的主要原因。
2.C3S水化期:C3S开始迅速水化,生成Ca(OH)2和C-S-H,大量放热,形 成第二放热峰。有时会有第三放热峰或在第二放热峰上出现一个“峰肩”, 一般认为是AFt转化成AFm而引起的。
四、铁相的水化
C4AF的水化速率比C3A略慢,水化热较低,其水化反应及 其产物与C3A极为相似。
Fe2O3基本上起着与Al2O3相同的作用,在水化产物中铁置 换部分铝,形成水化硫铝酸钙和水化硫铁酸钙的固溶体, 或水化铝酸钙和水化铁酸钙的固溶体。
如:
C3A + CH + 12H = C4AH13 C4AF + 4CH + 22H = 2C4 (A、F)H13
结束相当于初凝时间
最大
加速期
反应重新加快,放热速率随 随反应进行Ca2+浓度下降,
(4~8小时) 减速期
时间增长,出现第二放热峰,但始终超过饱和浓度 在达到峰顶时本阶段结束, 中 终凝已过,开始硬化 期 反应速率下降,放热速率由 Ca2+浓度继续下降
(12~24小时)
第二放热峰顶下降,水化逐
渐受扩散速率控制
m=30~32
三方晶系 针棒状、杆状、 柱状结构 柱状、空心管状
4.AFm
[Ca2(Al,Fe)(OH)6]·X·yH2O C3A · CaY · nH2O n=10~
三方晶系 层状结构
第二节 硅酸盐水泥的水化
水泥与水拌合后,立即发生化学反应,在很短的瞬间不再是 纯水,而是含有各种离子的溶液。
C3S、C2S Ca2+、OH- C3A Ca2+、Al(OH)4-
石膏 Ca2+、SO42-
碱的硫酸盐 K+、Na+、SO42-
水化是在含碱的Ca(OH)2、CaSO4的饱和溶液中进行。
SO42- AFt、AFm Ca2+ 在碱存在下,溶解度很小,形成Ca(OH)2晶体。 OH-浓度越高, Ca2+浓度越低。 所以,液相最后成为K+、Na+和OH-离子为主的溶液。
研究目标: 活化粉煤灰,使其生成部分水化产物,加速缓凝水泥的凝结。
如何活化粉煤灰: 粉煤灰化学成分:SiO2、Al2O3,而形成胶凝材料:需要CaO 粉煤灰玻璃体表面致密,硅氧四面体结构稳定,火山灰活性 低,需要高碱度破坏其结构
加Ca(OH)2及强碱溶液
(2)中期水化
诱导期结束,C3S水化加速,伴随Ca(OH)2及C-S-H的形成和长大,液相中 Ca(OH)2和C-S-H的过饱和度降低,又会相应地使它们的生长速度逐渐变 慢。随着水化产物在颗粒周围的形成, C3S的水化也受到阻碍。因此, 水化加速过程之间转入减速阶段。 最初产物——外部产物:生长在颗粒原始周界以外由水所填充的空间 后期产物——内部产物:生长在颗粒原始周界以内的区域。
晶核形成延缓理论(不一致溶理论): C3S最初不一致溶,主要是Ca2+ 和OH-溶出,液相中C/S>>3, C3S表面变为缺钙的“富硅层”。 Ca2+吸附 到富硅的表面,使其带上正电荷,形成双电层,因而C3S溶出Ca2+的速 度减慢,导致诱导期的产生。 一直到液相中的Ca2+和OH-缓慢增长,达到足够的过饱和度,才形成稳 定的Ca(OH)2晶核。当生长到相当尺寸且数量又足够多时,液相的Ca2+ 和OH-就迅速沉析出晶体,促使C3S加快溶解,水化重又加速。
第七章 硅酸盐水泥的水化硬化
水泥用适量的水拌合后,便形成能粘结砂石集料的可塑性浆体, 随后通过凝结硬化逐渐变成具有强度的石状体。同时,还伴随 着水化放热和体积变化。这说明产生了复杂的物理化学变化。
由于水泥熟料是多矿物的聚集体,与水的相互作用比较复杂, 通常先分别研究各水泥单矿物的水化反应,然后再研究硅酸盐 水泥总的水化硬化过程。
三阶段理论
产生凝结硬化的原因
水化硬化过程
水化反应生成晶体 相互交叉联结
溶解-沉淀过程:熟料 矿物溶解于水,与水发 生水化反应,产物溶解 度更小,结晶沉淀。
水化反应生成大量胶体, 局部化学反应:熟料矿
由于干燥或继续水化
物不溶于水,固体直接
“内吸”作用失水,胶 与水反应,通过水的扩
体凝聚成刚性凝胶而硬 散,反应界面由颗粒表
化
面向内延伸。
凝结是由胶体形成凝聚 结构,硬化是晶体结构 的发展
溶解-胶化-结晶过程: 生成溶胶-凝胶-晶体
比较统一的意见
水化反应生成胶体和晶 体,它们共同作用,相 互交叉联结
液相中反应-局部化学 反应:化学反应控制- 扩散控制
硬化水泥浆体形成的原因
水泥石具有强度的原因
水化产物
胶体 C-S-H凝胶
六方片状
立方状,强度下降
液相CaO浓度达到饱和 C3A + CH + 12H = C4AH13
该反应在硅酸盐水泥浆体的碱性液相中最易发生,且常温下C4AH13在 碱性介质中稳定存在,其数量迅速增多,就足以阻碍粒子的相对移动, 是浆体产生瞬时凝结的主要原因。所以,掺加石膏调节凝结时间。
温度较高(35℃以 上)
结晶度极差
近程(纳米级)有序:层 状结构;
远程无序胶体,取决水 化龄期,初期溶胶,中 后期凝胶
取决水化龄期-与生长 空间有关:水化龄期长, 尺寸越小,2~0.1µm 初期:纤维状
早期:网络状
中期:等大粒子、球状
后期:内部产物
2.Ca(OH)2
组成固定,纯 度高,结晶好
三方晶系层状结构
六方板状,几十微米,
W/C=0.25~1.0,对早期水化速率无明显影响。 对后期水化,W/C大些好:水泥颗粒高度分散,水泥与水接触面积大,水化速 率快;水化产物有足够的空间容纳。
(4)温度
温度升高,水化速率快,对早期水化影响更大。
(5)外加剂
促凝剂:CaCl2 促硬剂:Na2SO4
缓凝剂:石膏
第四节 硬化水泥浆体
凝结:塑性浆体失去流动性和可塑性
C3A + 6H = C3AH6
凝结机理:水化产物长大、增多 各种颗粒初步联结
成网,形成凝聚结构
水泥浆体开始凝结
(2)有石膏时
C3A + CH + 12H = C4AH13