一元一次方程解法的复习课
第三章+一元一次方程——一元一次方程的解法复习+课件+++2023—2024学年人教版数学七年级上册
移项,得3x-4x=2+3+6.
合并同类项,得-x=11.
系数化为1,得x=-11.
(2)4x+3 2-x-2 1=2. 解:去分母,得2(4x+2)-3(x-1)=12. 去括号,得8x+4-3x+3=12. 移项,得8x-3x=12-4-3. 合并同类项,得5x=5. 系数化为1,得x=1.
16.小奇借助有理数的运算法则,定义了一种新运算“ ”,其规则如 下:a b=ab+2a.
(1)求(-3)
4
12的值;
解:根据题中的新定义,
得 4 12=4×12+2×4=2+8=10. 则原式=(-3) 10=-3×10+2×(-3)=-30-6=-36.
16.小奇借助有理数的运算法则,定义了一种新运算“ ”,其规则如
下:a b=ab+2a.
(2)若12 x=x 3,求 x 的值. 解:根据题中的新定义化简12 x=x 3,得12x+1=3x+2x.
移项,得 3x+2x-12x=1.
合并同类项,得92x=1.系数化为 1,得 x=29.
基础训练
1.下列方程中,是一元一次方程的是( C )
A.x+2 2-x
B.21x=-1x+4
A.若a=b,则a-1=b-1 B.若 a2=b2 ,则a=b C.若a=b,则-3a=-3b
D.若ac=bc,则a=b
4.下列方程变形中,正确的是( C ) A.方程 3x+4=4x-5,移项,得 3x-4x=5-4 B.方程-32x=4,系数化为 1,得 x=4×-32 C.方程 3-2(x+1)=5,去括号,得 3-2x-2=5 D.方程x-2 1-1=3x+ 3 1,去分母,得 3(x-1)-1=2(3x+1)
一元一次方程(复习)
小结与复习
要点梳理
考点讲练
课堂小结
课后作业
目标导学1
1.解一元一次方程的一般步骤:
(1) 去分母:方程两边都乘各分母的最小公倍数, 别漏乘.
(2) 去括号:注意括号前的系数与符号. (3) 移项:把含有未知数的项移到方程的左边,常 . 数项移到方程右边,移项注意要改变符号 (4) 合并同类项:把方程化成 ax = b (a≠0)的形式.
(5) 系数化为1:方程两边同除以 x 的系数,得 x=m 的形式.
2. 列方程解决实际问题的一般步骤: 审:审清题意,分清题中的已知量、未知量. 设:设未知数,设其中某个未知量为x. 列:根据题意寻找等量关系列方程. 解:解方程. 验:检验方程的解是否符合题意. 答:写出答案 (包括单位).
审题是基础,找 等量关系是关键.
(2) 工程问题中基本量之间的关系:
① 工作量 = 工作效率×工作时间; ② 合作的工作效率 = 工作效率之和; ③ 工作总量 = 各部分工作量之和 = 合作的工作效
率×工作时间; ④ 在没有具体数值的情况下,通常把工作总量看
做1.
例2 一项工作,甲单独做8天完成,乙单独做12天完 成,丙单独做24天完成.现甲、乙合作3天后,甲 因有事离去,由乙、丙合作,则乙、丙还要几天才 能完成这项工作?
10
解:设最多可以打 x 折,根据题意得
5001 40% x 500112%.
10 解得 x = 8.
答:广告上可写出最多打 8 折.
针对训练
7. 一家商店将某种商品按进价提高40%后标价,节假 日期间又以标价打八折销售,结果这种商品每件 仍可获利24元,问这件商品的进价是多少元?
解:设这件商品的进价是 x 元,根据题意得
一元一次方程复习课
a b ; 9 9
C.由 x+2=y+2 得 x=y; D.由-3x=-3y 得 x=-y 3.运用等式性质进行的变形,正确的是( ) A.如果 a=b,那么 a+c=b-c; B.如果
a b ,那么 a=b; c c
选择学思,学思还你一个奇迹
Choose Xuesi education ,and Xuesi school will returnm a surprise!
选择学思,学思还你一个奇迹
Choose Xuesi education ,and Xuesi school will returnm a surprise!
学思教育
1. (2008 上海市)如果 x 2 是方程
用心做教育,用爱做人师
1 x a 1 的根,那么 a 的值是( 2 D. 6
6. 一件工程,甲独做需 15 天完成,乙独做需 12 天完成,现先由甲、乙合作 3 天后,甲有其他任务,剩下工程 由乙单独完成,问乙还要几天才能完成全部工程?
7.一批工业最新动态信息输入管理储存网络,甲独做需 6 小时,乙独做需 4 小时,甲先做 30 分钟,然后甲、乙 一起做,则甲、乙一起做还需多少小时才能完成工作?
10. 某船从 A 地顺流而下到达 B 地,然后逆流返回,到达 A、B 两地之间的 C 地,一共航行了 7 小时,已知此 船在静水中的速度为 8 千米/时,水流速度为 2 千米/时。A、C 两地之间的路程为 10 千米,求 A、B 两地之间的 路程。
11. 一个两位数,个位上的数是十位上的数的 2 倍,如果把十位与个位上的数对调,那么所得的两位数比原两 位数大 36,求原来的两位数
学思教育
用心做教育,用爱做人师
一元一次方程的概念与解法(复习)
3.3解一元一次方程(去括号)【目标导航】1.掌握有括号的一元一次方程的解法;2.通过列方程解决实际问题,感受到数学的应用价值;3.培养分析问题、解决问题的能力.【预习引领】1. 化简:⑴()()=+-+--33121y y ⑵()()=-+--a a 24523 2.问题 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.这个工厂去年上半年每月平均用电多少度? 3.你会用方程解这道题吗?设上半年每月平均用电x 度,则下半年每月平均用电 度;上半年共用电 度,下半年共用电 度. 列方程为 . 4.这个方程与上一课所解方程有何不同点?怎样使这个方程向a x =的形式转化呢?【要点梳理】知识点: 有括号的一元一次方程的解法引例:解方程()15000200066=-+x x 解:注:1.根据 ,先去掉等式两边的小括号,然后再移项、合并、系数化为12.本题用 的思想,将有括号的方程转化为已学的无括号的方程.例1 解方程()()323173+-=--x x x注:运算过程中,特别防止符号的错误. 练习1:解下列方程()()()41232341+-=-+x x x()⎪⎭⎫ ⎝⎛--=+⎪⎭⎫ ⎝⎛-1317242162x x x例2 解方程,并说明每步的依据:()[]{}()1082721324321--=+---x x注:⑴有多重括号,通用方法是由里向外依次去括号.⑵在去括号的过程中,可以同时作合并变形.练习2:解下列方程(1)()[]()21453123+-=---x x(2)()[]()51315.04210+-=----x x例3 已知关于x 方程()542+=-ax x ⑴当a 时,方程有唯一解; ⑵当a 时,方程无解;【课堂操练】 1. 将多项式()()24322+--+x x 去括号得 ,合并得 . 2.方程()()()x x x -=---1914322去括号得 ,这种变形的根据是 . 3.解方程: ⑴()62338=+-y y ⑵()33322+-=+-x x x⑶()()63734--=+x x⑷()()()36411223125+=+-+x x x⑸()()()121212345--=+--x x x⑹()[]()2321432-=+--x x x⑺()[]{}1720815432=----x4.已知关于x 的方程()ax x =-+324无解,求a 的值.【课后盘点】1.若关于x 的方程b x x a 3746-=+的解是1=x ,则a 和b 满足的关系式是 . 2.当=x 时,式子()23-x 和()434-+x 的值相等.3.比方程()472=+x 的解的3倍小5的数是 . 4.已知公式()h b a S +=21中,60=S ,6=a ,6=h ,则=b .5.化简下列各式⑴()()223248y xy y xy +-+---⑵()[]a b a b a +----22⑶()[]()y x y x +----25⑷()[]152322+---x x x x6.方程()113=--x x 的根是( ) A .2=x B .1=x C .0=x D .1-=x 7.下列去括号正确的是( )A .()1123=--x x 得4123=--x xB .()x x =++-314得x x =++-344C .()59172+-=-+x x x 得59772+-=--x x x D .()[]21423=+--x x 得24423=++-x x8.解下列方程 ⑴()212-=--t⑵()()32523-=+x x⑶()()23341+=+-x x⑷()()x x x 3234248--+=+⑸()()()x x x -=---1914322 ⑹()x x 415126556=-⎥⎦⎤⎢⎣⎡++9.已知关于x 的方程()3245-=-x ax 无解,求a 的值.10.若x A 34-=,x B 45+=,且B A 3202+=.求x 的值.【课外拓展】1.已知关于x 的方程()251-=-x x m 有唯一解,求m 的值.2.已知关于x 的方程()()b x a x a 3512+-=-有无数多个解,求a 、b 的值.3.三年前父亲的年龄是儿子年龄的4倍,三年后父亲的年龄是儿子年龄的3倍,求父子两人现在的年龄各是多少岁?(设计人:江云桂)No .4一元一次方程的概念与解法(复习)【目标导航】1.复习一元一次方程的概念、等式的性质、一元一次方程的解法;2.能根据题意列一元一次方程解决实际问题;【预习引领】1. 方程,一元一次方程,方程的解; 2. 等式性质;3. 解一元一次方程的步骤及每一步的依据。
一元一次方程复习课教案
一元一次方程复习课教案一、教学目标1. 知识与技能:(1)理解一元一次方程的概念及其基本性质。
(2)掌握一元一次方程的解法,包括代入法、加减法、乘除法等。
(3)能够应用一元一次方程解决实际问题。
2. 过程与方法:(1)通过复习,加深对一元一次方程的理解,提高解题能力。
(2)培养学生运用一元一次方程解决实际问题的能力。
3. 情感态度与价值观:(2)培养学生勇于探索、积极思考的精神。
二、教学内容1. 一元一次方程的概念及基本性质。
2. 一元一次方程的解法:代入法、加减法、乘除法。
3. 应用一元一次方程解决实际问题。
三、教学重点与难点1. 教学重点:(1)一元一次方程的概念及其基本性质。
(2)一元一次方程的解法。
(3)应用一元一次方程解决实际问题。
2. 教学难点:(1)一元一次方程的解法。
(2)运用一元一次方程解决实际问题。
四、教学过程1. 复习导入:(1)回顾一元一次方程的概念及其基本性质。
(2)引导学生回忆一元一次方程的解法。
2. 课堂讲解:(1)讲解一元一次方程的解法,包括代入法、加减法、乘除法。
(2)举例演示解题过程,引导学生跟随步骤进行解题。
3. 课堂练习:(1)布置练习题,让学生独立完成。
(2)选取部分学生的作业进行点评,纠正错误,解答疑问。
4. 应用拓展:(1)给出实际问题,引导学生运用一元一次方程进行解决。
(2)分小组讨论,分享解题思路和方法。
五、课后作业1. 复习一元一次方程的概念及其基本性质。
2. 巩固一元一次方程的解法,包括代入法、加减法、乘除法。
3. 运用一元一次方程解决实际问题。
4. 总结本节课的学习内容,思考还有什么问题需要进一步解决。
六、教学评估1. 课堂讲解评估:观察学生对一元一次方程解法的理解和掌握程度,以及能否熟练运用解法解决实际问题。
2. 课堂练习评估:检查学生的作业完成情况,评估其对一元一次方程解法的应用能力。
3. 应用拓展评估:通过小组讨论和分享,评估学生运用一元一次方程解决实际问题的能力和团队合作精神。
人教版七年级上册第三章一元一次方程全章小结复习教学设计
2.培养学生面对问题时,能够勇于尝试、积极思考的良好品质,增强其克服困难的信心。
3.通过解决实际问题,让学生认识到数学在生活中的重要作用,增强其应用数学知识解决实际问题的意识。
本教学设计旨在帮助学生在复习一元一次方程的基础上,进一步提高知识与技能、过程与方法、情感态度与价值观等方面的能力。在教学过程中,注重理论与实践相结合,鼓励学生积极参与,培养其数学素养。
-结合实际案例,进行情境教学,让学生在实际问题中发现数学的价值和应用。
2.教学策略:
-对于教学重点,通过精讲精练的方式,帮助学生巩固基础知识,提高解题技能。
-对于教学难点,采用分步指导、逐步推进的策略,让学生在教师的引导下逐步攻克难题。
-针对学生的个体差异,提供差异化教学,确保每个学生都能在原有基础上得到提高。
教学过程:
-布置基础练习题,让学生独立完成,巩固方程的解法。
-设置提高练习题,鼓励学生尝试解决,培养其解题技巧。
-对学生的练习进行及时反馈,指导其改进解题方法。
2.设计意图:通过有针对性的练习,帮助学生查漏补缺,提高解题能力。
(五)总结归纳
1.教学内容:对本章节的一元一次方程全章小结进行归纳总结。
教学过程:
(二)过程与方法
1.通过对一元一次方程全章的复习,引导学生自主总结方程的相关概念、性质和解法,培养其自主学习能力。
2.设计具有层次性的练习题,让学生在解决问题的过程中,逐步提高分析问题和解决问题的能力。
3.利用小组合作、讨论交流等形式,培养学生合作学习的意识,提高课堂互动性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发其学习热情,使其在解决方程问题的过程中感受到数学的魅力。
解一元一次方程(复习课)
例 7 解方程
x 1 4 x 1 2 3
例 8 解方程
1 1 1 (2x-5)= (x-3)3 4 12
去分母时须注意: 1、 确定各分母的最小公倍数; 2、不要漏乘没有分母的项;
解:两边都乘以 6,得 3(x+1)=8x+6 去括号,得
3、分数线有括号作用,去掉分母后, 若分子是多项式,要加括号,视多项式 为一整体.建议进行专项训练,如源自教学目标 教学重点 教学难点
分别让三名学 生分别解答本 题, 其他学生评 判,并补充,以 求得正确地解 答 学生口述, 教师 板书
一般地,解一元一次方程的一般 步骤是:去分母、去括号、移项、 合并同类项、系数化为 1
这组练习题的作用在于巩固并加 深学生对一元一次方程解法步骤 的理解及运用.教学时,可选好、 中、差的学生分别在黑板上板演, 发动学生改错、评议,以起到一 题多用。 1、下列方程的解法对不对?若不 对怎样改正? 解方程 2(x+3)-5(1-x)=3(x-1) 解:2x+3-5-5x=3x-1, 此时, 启发学生 总结遇有带括 号的一元一次 方程的解 法.(方程里含
课时编号 备课时间 课 题 4.2 解一元一次方程(复习课) 1、加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤; 2、培养学生观察、分析、归纳的能力,并提高他们的运算能力 总结出解一元一次方程的步骤 总结出解一元一次方程的步骤 教 教学内容 从学生原有的认知结构提出问 题 1 么叫一元一次方程?其最简形式是 什么? 2、什么叫移项?移项时需注意什 么? 3、(投影)下列方程的解法对不对? 若不对,错在哪里?怎样改正? (1)解方程 2x+1=4x+1. 解:2x+4x=0, 6x=0, 所以 x=0. 解:x+1=3x-1-1, 2x=3, 解:4x+2-x+1=12. 3x=9, 所以 x=3. 师生共同讨论, 归纳出解一元一次方 程的一般步骤 结合上面学生解答的例题, 教师 应首先让几名学生总结解一元一次 方程的步骤; 然后教师指出总结的不 足之处,并结合投影,给以正确的叙 述. 解下列方程: 首先,应让学生思考以下问题, 并回答: 1、形式上比较复杂的一元一次方程 是怎样求解的? 2、它的解法的主要思路是什么? 3、它的解法的主要步骤是什么? 教师应指出:一元一次方程的解 法基本学习完了,现在对任何形 式的一元一次方程都会解了.解 一元一次方程的指导思想就是把 原 方 程 化 为 ax=b(a ≠ 0) 的 形 式.为了更迅速地解一元一次方 程,下面我们一起来总结一下解 一元一次方程的一般步骤 学 过 程 教师活动 学生活动
一元一次方程的解法复习课件公开课
移项,得:8 x - 10 x - 6 x = -3 - 1 + 4 - 1
合并同类项,得: - 8x = -1
化系数为1,得: x
=
1 8
判断
3、下列方程变形有没有错,若错, 错在哪里?
4方程:3z - 4 - 3.5 = 0.01- 3z ,
0.02
0.03
去分母得:
3003z - 4- 350 6 = 200(0.01 - 3z)
(1)5y+8=9y移项得5y-9y=8; (2)2x+3=x-1移项得2x-x=3-1; (3)3x-12-2x=4x-3移项得 3x-2x+4x=-12-3.
判断
2、下列方程变形有没有错,若错,错在哪里?
(1)5(y+8)-2 =4y 去括号得 5y+8-2=4y; (2)2x-3(3x-2)=x-1 去括号2x-9x-2=x-1;
3、去分母时(1)勿漏乘不含分母的 项(2)分子是多项式时,去掉分母要 添上括号
4、勿跳步,勿忘判断符号,常检验
比一比,谁正确 解方程
15x - 1- 3 + 2x = 7
2y - y -1 = 2 - y + 3
2
4
3 2 y +1 + 10 y +1 = 1- 1- 2 y
4
6
3
(4) 1 (x +15) = 1 - 1 (x - 7)
5
23
(5) x + 5 - x + 5 = x + 3 - x - 2
5
32
(6) 2x - 1.6 - 3x = 31x + 8
0.3 0.6
3
拓展:
解一元一次方程复习课PPT课件一等奖新名师优质课获奖比赛公开课
火眼金睛 (3)3x-12-2x=4x-3移项得
3x-2x+4x=-12-3. 3x-2x-4x=12-3 (4)5(y+8)-2 =4y
去括号得 5y+8-2=4y; 5y+40-2=4y
火眼金睛
(5)2x-3(3x-2)=x-1
等式性质2
先去小括号,再去中 括号,最终去大括号
乘法分配律
把具有未知数旳项都移到方 程旳一边,其他旳项移到方 程旳另一边(记住:移项要 变号)
等式性质1
把方程化为ax=b (a≠0)旳形式
乘法分配律
在方程两边都除以未知数旳 等式性质2
系数,得到方程旳解x= a
注意事项
不要漏乘不含分母旳项,分子是 一种整体,去分母后应加括号
选苹果 游戏
规则:每个苹果上旳数字代表该类题旳分值, 其中必答题是每个小组必须作答,答对得1分, 答错得0分;抢答题只有两道,答对得2分, 答错倒扣1分;挑战题只有一道,答对得3分, 答错倒扣2分。
1
必答题
2
抢答题
3
挑战题
火眼金睛 1、下列解方程旳过程有无错,若错,错在哪里?
(1)5y+8=9y移项得5y-9y=8; 5y-9y=-8
1、不要漏乘括号内旳各项 2、注意“+”、“-”号旳变化
移项要变号
系数相加,字母 及其指数不变 不要把分子分母旳位 置颠倒
2、解一元一项
例:一元一次方程 3Y 1 1 5Y 7
4
6
去分母,得:( 3 3Y3(3Y1-)1)-112=22((55YY-7)7)
例:方程3X+20=4X-25+5
一元一次方程复习课教案
一元一次方程复习课教案第一章:一元一次方程的定义及解法一、教学目标1. 理解一元一次方程的定义及其基本形式;2. 掌握一元一次方程的解法及其应用。
二、教学内容1. 一元一次方程的定义:讨论方程中未知数的个数、次数和系数等概念;2. 一元一次方程的基本形式:ax + b = 0;3. 一元一次方程的解法:移项、合并同类项、系数化为1。
三、教学方法1. 采用讲解法,讲解一元一次方程的定义及解法;2. 利用例题,演示一元一次方程的解题步骤;四、教学步骤1. 引入新课,回顾一元一次方程的定义及解法;2. 讲解例题,让学生跟随老师一起解题,理解解题步骤;3. 布置练习题,让学生独立完成,巩固所学知识;五、课后作业1. 复习一元一次方程的定义及解法;2. 完成课后练习题,加深对一元一次方程解法的理解。
第二章:一元一次方程的解法与应用一、教学目标1. 掌握一元一次方程的解法,并能灵活运用;2. 了解一元一次方程在实际问题中的应用。
二、教学内容1. 一元一次方程的解法:加减法、乘除法、代入法等;2. 一元一次方程的实际应用:长度、面积、体积等问题。
三、教学方法1. 采用案例教学法,让学生通过实际问题学习一元一次方程的解法;2. 利用多媒体演示,直观展示一元一次方程在实际问题中的应用;3. 引导学生通过小组合作,探讨一元一次方程的解题策略。
四、教学步骤1. 讲解一元一次方程的解法,如加减法、乘除法、代入法等;2. 利用多媒体展示实际问题,引导学生运用一元一次方程解决问题;3. 布置练习题,让学生独立完成,巩固所学知识;4. 组织小组合作,让学生共同探讨一元一次方程的解题策略;五、课后作业1. 复习一元一次方程的解法;2. 完成课后练习题,加深对一元一次方程解法的理解;3. 思考实际生活中的一元一次方程问题,提高运用能力。
第三章:一元一次方程的检验与解的存在性一、教学目标1. 学会检验一元一次方程的解是否正确;2. 理解一元一次方程解的存在性。
一元一次方程的解法复习课课件
含有未知数的等式叫做方程 定记得!)
(1)一元:只含有一个未知数
(2)一次:未知数的最高次数是一次 (3)方程的两边都是整式 3、什么是方程的解? 方程的解是指能使方程 左右两边相等的未知数 的值。
挑战记忆
4.等式的性质:
1在下列各式中?
(1) 5x=0 (2)1+3x
1 4x (5) x
挑战记忆
(3)y² =4+y
(4)x+y=5
(6) 3m+2=1–m
其中方程有( 5 )个,一元一次方程有( 2 )个
2.若关于x的方程
2x
2 m 3
2 m 0 是一元一次方程,则m=_____
3、若x=-3是方程x+a=4的解,则a的 值是 7 .
火眼金睛
下面方程的解法对吗?若不对,请改正 。 解方程
3x 1 4x 1 1 3 6
不对
去分母得 去括号,得
解:去分母,得
2(3x 1) 1 4 x 1
6 x 2 1 4 x 1
2(3x 1) 6 (4 x 1)
6x 2 6 4x 1
6x 4x 6 1 2
10 x 9
合并同类项
系数化为1
即 学 即 练 解下列方程
(1) 2(x+3)-5(1-x)=3(x-1)
2x 1 x 2 (2) 1 3 2
3 y 12 5y 7 (3) 2 4 3
简单应用1
简单应用2
简单应用3
拓展提升1
拓展提升2
9 x 10
去括号,得
移项,得
6 x 4 x 1 1 2
一元一次方程的解法复习课
一元一次方程的解法复习课一、复习回顾:1、等式性质:(1)、等式两边都加上或者都减去同一个数或同一个整式,所得结果仍是等式。
(等式性质;(2)、等式两边都乘以或者都除以同一个不为零的数,所得结果仍是等式。
(等式性质2)2、什么叫做一元一次方程?只含有一个未知数,并且含有未知数的式子都是整式,未知数的最高项的次数是1,这样的方程叫做一元一次方程。
3、解一元一次方程的一般步骤(1)去分母(2)去括号 (3)移项(4)合并同类项(5)两边都除以未知数系数 即未知数系数化为1,二、例题分析:例1:436521x x -=-- 解:去分母,方程两边同乘以12,得 )3(3)52(212x x -=--去括号,得 x x 3910412-=+-移项, 得 1210934--=+-x x合并同类项, 得 13-=-x系数化为1,两边同除以-1, 得 13=x注意:1、去分母应该在方程两边同时乘以各个分母的最小公倍数;2、没有分母的项不要漏乘;3、若分子是多项式时,去分母后应该添括号。
练习:解方程5174732+-=--x x 解:)17(4)73(540+-=--x x684351540--=+-x x6841575--=-x x7568415--=+-x x14311-=-x13=x例2:解方程12.013.05.06.07.0=---x x 注意:方程中小数怎么办? 解:原方程化为(分子分母同乘以10)分数的基本性质 12103567=---x x 去分母,方程两边同乘以10,得 10)103(5)67(2=---x x去括号,得 1050151214=+--x x移项,得 5014101512--=--x x合并同类项,得5427-=-x 两边同除以-27,得2=x练习:解方程3.04.05233.12.188.1-=---x x x 解: 3450203013128018-=---x x x )450(20)3013(3)8018(5-=---x x x801000903940090-=+--x x x80100031051-=-x x51801000310--=--x x1311310-=-x101=x 例3:解方程)21(32)]1(21[31-=--x x x 解:去分母,方程两边同乘以3,得 )21(2)1(21-=--x x x 方程两边同乘以2,得 )21(4)1(2-=--x x x 去括号,得 2412-=+-x x x移项,得 1242--=--x x x合并同类项,得33-=-x两边同除以-3,得 1=x练习:解方程: 3}8]6)432(51[71{31=++++x 解: 98]6)432(51[71=++++x 等式性质2 89]6)432(51[71-=+++x 等式性质1 76)432(51=+++x 等式性质2 5432=++x 32=+x 1=x 你能归纳出解一元一次方程的一般步骤吗?它的依据又是什么呢?(1)去分母 (等式性质2) (2)去括号 (分配律)(3)移项 (等式性质1) (4)合并同类项 (合并同类项法则)(5)两边都除以未知数系数 即未知数系数化为1, (等式性质2) 理一理这节课我们学了什么?你最大的收获是什么?小结:本节课我们复习了一元一次方程的一些简单变形以及这些变形的理论依据,并且复习了一些一元一次方程解法。
复习教案 一元一次方程及应用
第九课时 一元一次方程及应用一、复习目标:1、理解等式的基本性质、方程、方程的解、一元一次方程的概念;2、能利用等式的基本性质进行方程的变形,能熟练地解一元一次方程;3、能用一元一次方程来解决简单的实际问题.二、复习重点难点:(一)复习重点:解一元一次方程和二元一次方程组的一般步骤与方法.(二)复习难点:能用一元一次方程来解决简单的实际问题.三、复习过程:(一)知识梳理:1、等式性质:(1)如果a=b,那么c b c a ±=±; (2)如果a=b,那么)0(,≠==c cb c a bc ac ; 2、方程的有关概念:(1)方程:含有未知数的的等式叫方程。
(2)方程的解:使方程左右两边相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
(3)解方程:求方程的解或判断方程无解的过程叫做解方程。
3、一元一次方程:(1)一元一次方程的一般形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0);(2)一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0);(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
4、列方程解应用题的一般步骤:(1)审题:(2)设未知数;(3)找出相等关系,列方程;(4)解方程(组);(5)检验,作答;5、列方程(组)解应用题常见类型题及其等量关系;(1)工程问题①基本工作量的关系:工作量=工作效率×工作时间②常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量③注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题(2)行程问题①基本量之间的关系:路程=速度×时间②常见等量关系:相遇问题:甲走的路程+乙走的路程=全路程追及问题(设甲速度快):同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程 同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程(3)水中航行问题:顺流速度=船在静水中的速度+水流速度;逆流速度=船在静水中的速度–水流速度(二)典例精析:例1、(1)已知x =-2是关于x 的方程()x m x m -=-284的解,则m 的值= ;.(2)若关于x 的方程03)1(22=+-x x a 式一元一次方程,则a= ;【方法总结】:1、第1题是已知方程的解,要求方程中待确定的字母系数,可以像解数字系数的方程一样,先求出方程的解,再进行比较;也可以根据方程的解的定义:能使方程两边代数式的值相等的未知数的取值叫做方程的解,将2x =-代入原方程,转化为关于m 的方程求解.2、在运用一元一次方程定义时,要注意两点:一是未知数的次数为1,二是未知数系数不能为0;例2、解方程:12733)1(2-=-++x x x ; 【方法总结】:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1,需要注意去分母时不要漏乘不含分母的项,去括号时,括号前是负号要注意括号内各项均要改变符号,移项要变号,系数化为1要注意方程两边要未知数的系数;例3、某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?【方法总结】:1、有比时,应根据比值设未知数;2、应找好等量关系:横标两边的边空+18个字的字宽+18个字之间的字距=12.8cm ;然后根据所设未知数和等量关系就可列出方程;例4、剃须刀由刀片和刀架组成,某时期,甲乙两厂家分别生成老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换),有关销售策略与售价等信息如下表所示:某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获利的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少刀架和刀片?【方法总结】:等量关系是:1、刀架数×50=刀片数;2 、甲厂家利润×2=乙厂家的利润例5、某省公布的居民用电阶梯电价听证方案如下:例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?分析:(1)分别计算出用电量为210度,350度时需要交纳的电费,然后可得出小华家5月份的电量在哪一档上,从而列示计算即可;(2)根据(1)求得的结果,讨论a的值,得出不同的结论.解:(1)用电量为210度时,需要交纳210×0.52=109.2元,用电量为350度时,需要交纳210×0.52+(350﹣210)×(0.52+0.05)=189元,故得小华家5月份的用电量在第二档;设小华家5月份的用电量为x,则210×0.52+(x﹣210)×(0.52+0.05)=138.84解得:x=262,即小华家5月份的用电量为262度.(2)由(1)得,当a≤109.2时,小华家的用电量在第一档;当109.2<a≤189时,小华家的用电量在第二档;当a>189时,华家的用电量在第三档;【方法总结】:解答此类题目要先计算出分界点处需要交的电费,这样有助我我们判断。
(学生版)复习课:一元一次方程及解法
1课题复习课:一元一次方程及其解法姓 名导学目标1、通过自主学习的形式来对《一元一次方程及其解法》相关知识进 行系统的综合复习;2、以相应的练习来加强对有关概念和法则的理解;3、通过合作交流的形式来对相应的知识点查漏补缺,培养学生细心、严谨的良好习惯。
自我评价 导学效果:满意 一般 还需努力导学重点 结合知识要点,进行基础训练,能熟练掌握一元一次方程的解法。
学生自主 学习空间导学难点 立足基础训练,拓展思维空间,会构造一元一次方程以及运用技巧解决相应的问题。
教 学 流 程复 习 导 航一、知识回顾,自主整理。
1、等式的基本性质 等式的性质 1等式两边同时加上(或减去)同一个 ,所得的结果仍是等式。
即:若a b =,则a m b m ±=±; ※等式的性质 2等式的两边同时乘 (或除以同一个 的数),所得的结果仍是等式。
即:若a b =,则am bm =,a bm m=(0)m ≠. 2、方程:含有未知数的 叫方程。
所有的方程都是等式,但并不是所有的等式都是方程。
3、方程的解:使方程 的未知数的值,叫做方程的解。
只含有一个未知数的方程的解,也叫方程的根。
4、解方程:求方程的解的 叫解方程。
※5、一元一次方程:只含有一个 ,并且未知数的最高次数是 ,系数不等于 的方程叫做一元一次方程。
概念分解:一元一次方程必须满足: (1)是一个等式(2)只含有一个未知数2(3)未知数的指数(最高次数)为1 (4)化简后未知数的系数不为0 (5)分母中不含未知数6、一元一次方程的标准形式: ax+b=0(其中0a ≠,a ,b 是已知数) 最简形式: ax=b (其中0a ≠,a ,b 是已知数)注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.(2)方程ax b =与方程(0)ax b a =≠是不同的,方程ax b =的解需要分类讨论完成.△7、分数的基本的性质: 分数的分子、分母同时乘以或除以 , 分数的值不变。
一元一次方程复习课课件
解:3(3x 2) 5( x 2)
9x 6 5x 10 9x 5x 10 6
4 x 16 x4
2y 5 3 y 1 (2) 6 4
解: 2 y 5 33 2
y 12
4 y 10 9 3 y 12
4 y 3 y 12 10 9 y 13
(1)
2 1 0 x
(2)7 x 6 y
0
(3)
3x 0
x2 x2
(4) x
2ห้องสมุดไป่ตู้
2x 1 0
(5)
(6) 2 y 3 12
2、大家判断一下,下列方程的变形是否正确
为什么?
由3 x 5, 得x 5 3 ; (×) 7 (2) 由7 x 4, 得x ; (×) 4 1 (3) 由 y 0, 得y 2 ; (×) 2 (4) 由3 x 2, 得x 2 3 . (×)
解:2x=5+1,2x=6,x=3.把x=3代入得: a=2
动手做一做
1. 若 3 x 4 n7 5 0 是一元一次方程, 则 n 2
。
2. 若 x 1 是方程 3 ax x 2 x 5 a 2004 的解,则代数式 a 1
。
解方程:
(1)
3x 2 x 2 5 3
未知数 的值叫方程的解。 2、使方程 左右 两边的值相等的 3、将方程的某些项 变号 后,从方程的一边移到另一边的变 形叫移项,移项的依据是 等式的基本性质1 。 4、解方程的一般步骤 去分母 去括号 (3) 移项 (4)合并同类项(5) 系数化为1 . (1) (2)
练一练:
1、判断下列各式哪些是一元一次方程?
一元一次方程和它的解法 ppt课件1
12 x 5a 2
四、小结:
①解一元一次方程就是将待解方程化归为简易方程
ax b(a 0)
的形式;
②学会解含有字母系数的方程,以及与一元一次 方程相关的类型的题。
五、作业:
1、解方程:
2 x 1 10 x 1 1 ① 3 6
② 32 x 1 32 x 1 3 5
4(2 x 1) (10x 1) 3(2 x 1) 12 12
去括号,得: 8 x 4 10 x 1 6 x 3 1
12 8 x 4 10 x 1 6 x 3 1 移项,得:8 x 10 x 6 x 3 1 4 1 12 4 1 8 x 10 x 6 x 3 1 合并同类项,得: 8 x 1 8x 1 -10
k 1 > 0 且 k 1 必为6的约数
即: k 1 1或 2 或 3 或 6
k 2
或 3或
4
或
7
三、练习题
1、当 x
9
2 1 时, x 3 与 互为倒数。 3 2
2、已知 x
1 是方程 mx 1 Βιβλιοθήκη 2 m 的解,求 m 的值。 2
m 6
ax x 1 2 1 ( a ) 3、解关于 x 的方程:2 5 5
1, 2m ,此时无论 x 取什么值,左右两 则 0 x = 7– 边都不等,故无解。
例4、若方程
A、1
kx x 6(k 1) 有正整数解,则整数 k 的取值
有( D )个 B、2 C、3 D、4
分析:
(k 1) x 6 6 x k 1
要使
一元一次方程复习公开课一等奖优质课大赛微课获奖课件
依题意得: 15x+2x+3x=150
x=7.5
15x=15×7.5=112.5
2x=2×7.5=15
3x=3×7.5=22.5
答: 硝酸钠应取112.5公斤,硫磺取15公斤,木炭
应取 22.5公斤。
第8页
工程问题中数量关系:
1) 工作效率=
工作总量 ———————————
完毕工作总量时间
2)工作总量=工作效率×工作时间 工作总量
第21页
变式3:一队学生去校外进行军事野营训练, 他们以5千米/时速度行进,走了18分钟时候, 学校要一名通讯员骑自行车从学校出发,并 按原路追上去,用10分钟(即小时)时间把 一个紧急告知传到队长那里,通讯员必须以 如何速度行进?
解:设通讯员速度为x千米/时,依据题意, 得
x=14 答:通讯员速度为14千米/时
第23页
学生练习:
1. 一列慢车从某站开出,速度为48km/时,过 了45分钟,一列快车从同一站开出,与慢车同向 而行,通过1.5小时追上慢车,求快车速度。
解:设 快车速度为x千米/时
依据题意,得
解得
x=72
答: 快车速度为72千米。
第24页
学生练习: 2. 一辆货车从A地出发前往B地,45分钟后,一辆客车 也从A地出发前往B地,货车每小时行40千米,客车每 小时行50千米,结果两车同时到达B地,求A.B两地间路 程。(只列方程) 解:设A、B两地间路程为千米 依据题意,得
第12页
增长率问题
某工厂食堂第三季度一共节煤7400斤,其中八 月份比七月份多节约20%,九月份比八月份多 节约25%,问该厂食堂九月份节约煤多少公斤?
(间接设元)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
A
B D C
E
必做题:书上124页 目标与评定 1-7 题 选做题(每日一题): 已知p、q都是质数,并且以x为未 知数的一元一次方程px+5q=97的解 是x=1,求代数式40p+101q+4的值ຫໍສະໝຸດ (2)互为相反数x 1
(2x-3)+(-5x+6)=0
2、方程13-5(4x-3)=8(4x-3)
1 的解是x=____.
13 5 A 8 A
3、 解方程: 1 1 [ ( x 1) 1] 1 2 2
右图是一个长方形,被分隔成6个正方形, 已知中间最小的一个正方形的边长为1, 正方形F边长为6,那么这个大长方形的面 积是多少?
移项,得 5x 2 x 6 5
合并同类项,得 3x 1
1 两边同除以3,得 x 3 如何对方程的解进行检验?
1 2x 1 x 甲、乙两位同学对方程 1 4 6 去分母的过程分别如下,都正确吗?
甲的做法:
方程两边同乘以24,得 6(1 2 x) 24 4(1 x) 1
乙的做法:
方程两边同乘以12,得
( 3 1 2 x) 12 1 2 (1 x)
解方程: 1 x 5 (2 x 3) 3 3 7
1 2x 1 x 解方程: 2 0.5 0. 2
1、 x取何值时,2x-3与-5x+6的值
(1)相等
9 x 7
2x-3=-5x+6
七年级
上 册
义务教育课程标准实验教科书
第五章
一元一次方程
温州实验中学 朱新余
老师将出示10张写有代数式和符号 的卡片,请选取其中的部分卡片构 造任意你想要的方程.
2x
6
y
2
1 x
2x y
5( x 1)
2
解方程 5( x 1) 2 x 6
解: 去括号,得 5x+5=2x+6