全等三角形常见的辅助线的作法(提高题)

合集下载

全等三角形培优专题之常见辅助线的作法

全等三角形培优专题之常见辅助线的作法

全等三角形培优专题之常见辅助线的作法证明三角形全等是初中几何的基础和重点,也是中考必考知识点之一。

小伙伴们一定要认真学习并要全面掌握三角形全等的证明!但在证明三角形全等时很多时候需添加辅助线,对学习几何证明不久的小伙伴们而言往往是难点。

下面介绍证明三角形全等时常用的辅助线作法,供小伙伴们学习时参考。

辅助线作法一:中线倍长三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路.【模型举例】【学力训练】1、如图所示,在△ABC中,AD为BC边上的中线,E为AC上一点,BE与AD交于点F,若AE=EF,求证:AC=BF.2、如图所示,△ABC(AB≠AC)中,点D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC.3、如图,△ABC中,D为BC的中点,E、F分别是AB、AC上的点,且DE⊥DF.求证:BE+CF>EF.辅助线作法二:截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.【模型举例】【学力训练】1、如图,在△ABC中,∠B=60°,∠BAC、∠BCA的平分线AD、CE交于点O,猜想OE与OD的大小关系和AC与AE、CD的关系,并说出你的理由.2、如图所示,在△ABC中,AC=BC,∠ACB=90°,AD平分∠CAB.求证:AC+CD=AB.3、如图,在正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于点F.求证:AE=BE+DF.辅助线作法三:利用角的平分线对称构造全等当题目中涉及角平分线时,在证明全等过程中不仅提供了两个相等的角,还有一条公共边,利用角的平分线在角的两边上截取相等的线段,或向两边作垂线,对称构造出全等三角形是常用的证明方法.【模型举例】【学力训练】1、如图所示,AD平分∠BAC,AB>AC,BD=CD.求证:∠B+∠C=180°.2、如图,已知BM,CN是△ABC的两条角平分线,相交于点P.求证:P点也在∠BAC的角平分线上.3、如图所示,在△ABC中,AD平分∠BAC,DG⊥BC于G且平分BC,DE⊥AB于E,DF⊥AC的延长线于F.(1)说明BE=CF的理由;(2)如果AB=a,AC=b,求AE、BE的长.辅助线作法四:作平行线当三角形问题中有相等的角(特别是有角平分线时)或等腰等条件时,可通过作平行线将相等的角转换到某一个三角形中得到另外的等腰三角形或相等的角,从而为证明全等提供条件.【模型举例】【学力训练】1、如图,在等腰△ABC中,AB=AC,在AB上截取BD,在AC的延长线上截取CE,且使CE=BD,连接DE交BC于F,求证:DF=EF.2、如图,已知在△ABC内,∠BAC=60°,∠C=40°,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的角平分线.求证:BQ+AQ=AB+BP.。

2024八年级上《全等三角形》常见辅助线作法总结

2024八年级上《全等三角形》常见辅助线作法总结

全等三角形是初中数学中的重要概念,掌握全等三角形的判断和性质是解决三角形问题的关键。

常用的辅助线作法可以帮助我们更好地理解和应用全等三角形的知识。

下面将对2024八年级上《全等三角形》常见的辅助线作法进行总结。

一、三角形内部的辅助线作法:1.外切圆:对于一个三角形,可以在它的外面作出三个外接圆,然后通过外接圆的协调定理来判断和证明两个三角形全等。

2.角平分线:对于一个角,可以作出它的角平分线,然后利用角平分线的性质来判断和证明两个三角形全等。

3.中位线:对于一个三角形,可以连接它的两个顶点和中点,得到两条中位线。

根据中位线的性质,可以判断和证明两个三角形全等。

4.高线:对于一个三角形,可以分别作出它的三条高线,然后根据高线的性质来判断和证明两个三角形全等。

5.角高线和中线:对于一个锐角三角形,可以连接其中一个角的顶点和对边的中点,得到一条角高线和一条中线。

根据角高线和中线的性质,可以判断和证明两个三角形全等。

二、三角形外部的辅助线作法:1.外接圆和割线:对于一个三角形,可以通过外接圆和割线的性质来判断和证明两个三角形全等。

2.正弦定理和余弦定理:对于一个三角形,可以通过正弦定理和余弦定理来判断和证明两个三角形全等。

3.对称性和重叠法:对于一个三角形,可以利用对称性和重叠法来判断和证明两个三角形全等。

4.平移法和旋转法:可以通过平移法和旋转法来判断和证明两个三角形全等。

以上仅是2024八年级上《全等三角形》常见的辅助线作法的总结,实际问题中可能还会有其他的辅助线作法。

在解决三角形问题时,选择合适的辅助线作法可以简化问题,提高解题效率。

同时,还需要对全等三角形的基本知识进行深入理解和掌握,不仅要掌握判断全等三角形的条件,还要熟练运用全等三角形的性质和定理。

全等三角形经典题型辅助线

全等三角形经典题型辅助线

全等三角形常见辅助线作法【例1】.已知:如图6,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE AD =,△CDE 是等边三角形.求证:△ABC 是等边三角形.【例2】、如图,已知BC > AB ,AD=DC 。

BD 平分∠ABC 。

求证:∠A+∠C=180°.一、线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。

1、倍长中线法【例. 3】如图,已知在△ABC 中,90C ︒∠=,30B ︒∠=,AD 平分BAC ∠,交BC 于点D 。

求证:2BD CD =证明:延长DC 到E ,使得CE=CD ,联结AE ∵∠ADE=60°∵∠C=90° ∴△ADE 为等边三角形 ∴AC ⊥CD ∴AD=DE ∵CD=CE ∵DB=DA∴AD=AE ∴BD=DE ∵∠B=30°∠C=90° ∴BD=2DC ∴∠BAC=60° ∵AD 平分∠BAC ∴∠BAD=30°∴DB=DA ∠ADE=60°DCBADCB EA【例 4.】 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

证明:延长AE 到点F,使得EF=AE 联结DF在△ABE 和△FDE 中 ∴∠ADC=∠ABD+∠BDA BE =DE ∵∠ABE=∠FDE∠AEB=∠FED ∴∠ADC=∠ADB+∠FDE AE=FE 即 ∠ADC = ∠ADF ∴△ABE ≌ △FDE (SAS ) 在△ADF 和△ADC 中 ∴AB=FD ∠ABE=∠FDE AD=AD ∵AB=DC ∠ADF = ∠ADC ∴ FD = DC DF =DC∵∠ADC=∠ABD+∠BAD ∴△ ADF ≌ ADC(SAS) ∵ADB BAD ∠=∠ ∴AF=AC ∴AC=2AE【变式练习】、 如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.【小结】熟悉法一、法三“倍长中线"的辅助线包含的基本图形“八字型"和“倍长中线”两种基本操作方法,倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。

初中几何全等三角形常见辅助线作法

初中几何全等三角形常见辅助线作法

全等三角形常见辅助线作法【例1】.已知:如图6, 4BCE、△ACO分别是以8E、为斜边的直角三角形,且= ACDE是等边三角形.求证:△ A3c是等边三角形.【例2】、如图,已知BC>AB, AD=DCo BD 平分NABC。

求证:ZA+ZC=180°.线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。

1、倍长中线法【例.3]如图,己知在△ABC中,ZC = 90°, ZB = 30°, A。

平分NB4C,交BC于点D.求证:BD = 2CD证明:延长DC到E,使得CE=CD,联结AEZC=90°A AC ± CDVCD=CEAD=AEVZB=30° ZC=90°ZBAC=60°YAD 平分NBACJ ZBAD=30°A DB=DA ZADE=60°VDB=DA:.BD=DE/. BD=2DC4B D笫3题•/ ZADE=60° AD=AEA △ ADE为等边三角形,AD=DE【例4.】如图,。

是AABC的边上的点,且CD = AB, ZADB = ZBAD, AE是AARD的中线。

求证:AC = 2AEo 证明:延长AE至IJ点F,使得EF=AE联结DF在4ABE和4FDE中BE=DEZAEB=ZFEDAE=FE/.△ABE 也AFDE (SAS) A AB=FD ZABE=ZFDE VAB=DCJ FD = DCZADC=ZABD+ZBAD ZADB = ZBAD,ZADC=ZABD+ZBDA VZABE=ZFDE・・・NADONADB+NFDE即ZADC= ZADF ffiAADF 和AADC 中AD=AD< ZADF= ZADC、DF =DC・•・△ ADF也ADC(SAS) AAF=ACAC=2AE【变式练习】、如图,AABC中,BD二DOAC, E是DC的中点,求证:AD平分NBAE.【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法, 倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。

全等三角形问题中常见的8种辅助线的作法

全等三角形问题中常见的8种辅助线的作法

全等三角形问题中常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂D C BAED F CB A线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

全等三角形常用辅助线做法

全等三角形常用辅助线做法

五种辅助线助您证全等姚全刚在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往就是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考.一、截长补短一般地,当所证结论为线段的与、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD.证明:在AC上截取AF=AE,连接OF.∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60°∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°.显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60°在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC∴△DOC≌△FOC, CF=CD∴AC=AF+CF=AE+CD.截长法与补短法,具体作法就是在某条线段上截取一条线段与特定线段相等,或就是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的与、差、倍、分等类的题目。

例2:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

求证:CD=AD+BC。

思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。

2)解题思路:结论就是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

解答过程:证明:在CD上截取CF=BC,如图乙∴△FCE≌△BCE(SAS),∴∠2=∠1。

(完整版)全等三角形常用辅助线做法

(完整版)全等三角形常用辅助线做法

五种辅助线助你证全等姚全刚在证明三角形全等时有时需增加辅助线,对学习几何证明不久的学生而言常常是难点.下面介绍证明全等常常有的五种辅助线,供同学们学习时参照.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同素来线上时,平时能够考虑用截长补短的方法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例 1.如图 1,在△ ABC 中,∠ ABC=60 °, AD 、CE 分别均分∠ BAC 、∠ ACB .求证:AC=AE+CD .解析:要证AC=AE+CD ,AE 、CD 不在同素来线上.故在AC 上截取 AF=AE ,则只要证明 CF=CD .证明:在 AC 上截取 AF=AE ,连接 OF.∵ AD 、 CE 分别均分∠ BAC 、∠ ACB ,∠ ABC=60 °∴∠ 1+∠ 2=60 °,∴∠ 4=∠ 6=∠ 1+∠ 2=60 °.显然,△ AEO ≌△ AFO ,∴∠ 5=∠4=60°,∴∠ 7=180°-(∠ 4+ ∠ 5) =60 °在△ DOC 与△ FOC 中,∠ 6=∠ 7=60°,∠ 2=∠ 3, OC=OC∴△ DOC ≌△ FOC, CF=CD∴ AC=AF+CF=AE+CD.截长法与补短法,详尽作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲, AD∥BC,点 E 在线段 AB上,∠ ADE=∠CDE,∠ DCE=∠ECB。

求证: CD=AD+BC。

思路解析:1)题意解析:此题观察全等三角形常有辅助线的知识:截长法或补短法。

2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD上截取 CF=CB,只要再证 DF=DA即可,这就转变成证明两线段相等的问题,进而达到简化问题的目的。

专题05 全等三角形中的常见辅助线强化练习(举一反三)

专题05 全等三角形中的常见辅助线强化练习(举一反三)

专题05 全等三角形中的常见辅助线【举一反三】【人教版】【考点1 角分线上点向角两边作垂线构全等】【方法点拨】过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题;【例1】如图,已知BP平分∠ABC,PD⊥BC于D,BF+BE=2BD,求证:∠BFP+∠BEP=180°.【变式1-1】(2019秋•汉阳区期中)已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P 在射线OM上滑动,两直角边分别与OA、OB交于C、D.(1)PC和PD有怎样的数量关系是.(2)请你证明(1)得出的结论.【变式1-2】(2019•北京校级期中)已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【变式1-3】(2019秋•东区校级月考)如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(不需证明)(2)如图③,在△ABC中,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【考点2 截取法构全等】【方法点拨】利用对称性,在角的两边截取相等的线段,构造全等三角形;【例2】(2019秋•黄浦区校级期中)已知:在四边形ABCD中,BC>BA,∠A+∠C=180°,且∠C=60°,BD平分∠ABC,求证:BC=AB+DC.【变式2-1】已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.【变式2-2】(2019秋•邵阳期末)如图①,在△ABC中,∠ACB=2∠B,AD为∠BAC的角平分线,求证:AB=AC+CD小明同学经过思考,得到如下解题思路:在AB上截取AE=AC,连接DE,得到△ADE≌△ADC,从而易证AB=AC+CD(1)请你根据以上解思路写出证明过程;(2)如图②,若AD为△ABC的外角∠CAE平分线,交BC的延长线于点D,∠D=25°,其他条件不变,求∠B的度数.【变式2-3】(2019•长汀县校级模拟)观察、猜想、探究:在△ABC中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,求证:AB=AC+CD;(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【考点3 延长垂线段构全等】【方法点拨】题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形;【例3】如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE=(AC﹣AB).(提示:延长BE交AC于点F).【变式3-1】已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.求证:AC﹣AB=2BE.【变式3-2】(2019秋•通州区期末)已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.【变式3-3】(2019•成都校级期中)如图,△ABC中,过点A分别作∠ABC,∠ACB的外角的平分线的垂线AD,AE.D,E为垂足,求证:(1)ED∥BC;(2)ED=(AB+AC+BC).【考点4 倍长中线法构全等】【方法点拨】遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形.【例4】(2019秋•津南区校级期中)已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.【变式4-1】(2019秋•闵行区期中)如图,在△ABC中,AE平分∠BAC,交BC于点E,D是BC边上点,且DE=CE,点F在AE上,联结DF,满足DF=AC,求证:DF∥AB.【变式4-2】(2019春•富阳市校级期中)如图,AD为△ABC的中线,∠ADB和∠ADC的平分线分别交AB、AC于点E、F.求证:BE+CF>EF.【变式4-3】(2019秋•启东市校级月考)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.【考点5 作平行线构全等】【方法点拨】有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.【例5】若两个三角形的一边及其对角对应相等,并有一对角互补(不是直角),则这两个三角形为友好三角形.如图1,点D在AB边上,CD=CB,则△ABC和△ACD就是友好三角形.(1)两个友好三角形全等.(从下面选择一个正确的填入)A.一定B.不一定C.一定不(2)如图2,在△ABC中,AB=AC,点D在AB上,点E在AC延长线上,连结DE交BC于其中BD≠BF,若△BDF和△CEF是友好三角形,求证:DF=EF.(3)如图3,CE是△ABC的中线,点D在AC上,BD与CE交于点F,CF=AE,DF=DC,图中与△ACE 成友好三角形的是.【变式5-1】(2019秋•建湖县期末)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.【变式5-2】(2019春•河口区校级期中)如图所示,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC 交BC于E,交CD于F,FG∥AB交BC于G.试判断CE,CF,GB的数量关系,并说明理由.【变式5-3】△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ.(有多种辅助线作法)【考点6 旋转法构全等】【方法点拨】对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。

下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。

一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。

具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法适用于证明线段的和、差、倍、分等类的题目。

例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。

要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。

具体证明过程为:在AC上截取AF=AE,连接OF。

由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。

显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。

在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。

另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

要证明CD=AD+BC。

因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

全等三角形经典题型——辅助线问题

全等三角形经典题型——辅助线问题

全等三角形问题中常见的辅助线的作法(含答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

全等三角形问题中常见的辅助线的作法

全等三角形问题中常见的辅助线的作法

全等三角形问题中常见的辅助线的作法郭建新【摘要】全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。

判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。

一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易【关键词】全等三角形辅助线作法人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

一、找全等三角形的方法:1 可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;2 可以从已知条件出发,看已知条件可以确定哪两个三角形全等;3 可从条件和结论综合考虑,看它们能确定哪两个三角形全等;4 若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

二、三角形中常见辅助线的作法:1 延长中线构造全等三角形;2 利用翻折,构造全等三角形;3 引平行线构造全等三角形;4 作连线构造等腰三角形。

三、常见辅助线的作法有以下几种:1 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。

求证:BD=2CE。

思路分析:(1)题意分析:本题考查等腰三角形的三线合一定理的应用(2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。

(3)解答过程:证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。

全等三角形问题中常见的辅助线的作法(教师版)

全等三角形问题中常见的辅助线的作法(教师版)

全等三角形问题中常见的辅助线的作法(教师版)常见的辅助线的作法(教师版)全等三角形问题常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长线:倍长线,使延长线段与原线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换的“对折”法构造全等三角形.2)遇到三角形的线,倍长线,使延长线段与原线长相等,构造全等三角形,利用的思维模式是全等变换的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置CCBA上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

全等三角形中的辅助线的作法

全等三角形中的辅助线的作法

全等三角形中的辅助线的作法在《全等三角形》的解题中,在解决一些复杂的全等三角形问题中往往需要构造辅助线,本文将对添加辅助线的一些常用方法进行介绍,通常有连线构全等、截长补短法、倍长中线法、角平分线构全等等四种常见辅助线。

一、连线构全等例1:已知,如图,AD =BC ,AC =BD ,求证:D C ∠=∠分析:此题是一道易错的全等三角形证明题,很多学生会错误地认为需要证明的是ADO ∆和BCO ∆,但条件明显是不能证明的,所以本题的正确解法是连结AB (或者CD )构造ADB ∆和BCA ∆全等,再得到D C ∠=∠证明:连结AB在ADB ∆和BCA ∆中⎪⎩⎪⎨⎧===BA AB BD AC BC ADADB ∆∴≌BCA ∆ (SSS )D C ∠=∠∴练习1:如图,CD AB =,DC BC =,求证:D B ∠=∠.练习2:如图,CD AB //,CD AB =,求证:BC AD =练习3:如图,AB=AC ,BD=CD ,M 、N 分别是BD 、CD 的中点,求证:ANC AMB ∠=∠二、截长补短法截长补短法:在某条线段上截取一条线段与特定线段相等,或者将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:已知在ABC ∆,B C ∠=∠2,21∠=∠,求证:CD AC AB +=分析:本题证明的是线段的和差问题,可考虑利用截长或补短法。

方法一(截长法):如图1,在AB 上截取AE=AC ,连结BE ,易证ADE ∆≌ADC ∆,从而得DC DE =,AED C ∠=∠,AC AE =又因为B C ∠=∠2所以得B AED ∠=∠2,又因为BDE B AED ∠+∠=∠所以得BDE B ∠=∠可得DE BE =从而得CD AC AB +=方法二(补短法):如图2,延长AC 到点E ,使得AE=AB ,易证ADE ∆≌ADB ∆,从而得AE AB =,E B ∠=∠又因为B ACB ∠=∠2所以得E ACB ∠=∠2,又因为E CDE ACB ∠+∠=∠所以得E CDE ∠=∠可得CE CD =从而得CD AC AB +=练习1:如图所示,已知BC AD //,AE 平分DAB ∠,BE 平分ABC ∠,线段CD 经过点E 交AD 于点D ,交BC 于点C ,求证:AB BC AD =+图1图2练习2:如图,在四边形ABDE 中,C 是BD 边的中点,若AC 平分BAE ∠,︒=∠90ACE ,猜想线段AE 、AB 、DE 的长度满足的数量关系,并证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D C B
A
E
D F C
B A
全等三角形问题中常见的辅助线的作法
常见辅助线的作法有以下几种:
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变
换中的“对折”.
2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的
思维模式是全等变换中的“旋转”.
3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角
形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.
4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平
移”或“翻转折叠”
5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条
线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.
一、倍长中线(线段)造全等
例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.
例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.
例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.
E D C
B
A
应用:
1、(09崇文二模)以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.
(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;
(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒
θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.
C
C
B
A
二、截长补短
1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC
2、如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E ,求证;AB =AC+BD
3、如图,已知在ABC 内,0
60BAC ∠=,0
40C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,
BQ 分别是BAC ∠,ABC ∠的角平分线。

求证:BQ+AQ=AB+BP
4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0
180=∠+∠C A
C
D
B
A
P
21
D
C
B
A
5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC 应用:
三、平移变换
例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .
C
B
例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.
E
D C
B
A
四、借助角平分线造全等
1、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD
2、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长.
E
D
G
F
C
B
A
A
F E D C B A 应用:
1、如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全
等三角形。

请你参考这个作全等三角形的方法,解答下列问题:
(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA
的平分线,AD 、CE 相交于点F 。

请你判断并写出FE 与FD 之间的数量关系; (2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你
在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

五、旋转
例1 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.
例2 D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。

(1) 当MDN ∠绕点D 转动时,求证DE=DF 。

(2) 若AB=2,求四边形DECF 的面积。

(第23题图)
O P A
M N
E B C
D
F A
C
E F B
D 图①
图② 图③
例3 如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0
120BDC ∠=,以D 为顶点做一个0
60角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则AMN ∆的周长为 ;
B
C
应用:
1、已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,
60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,(或它们的延长线)
于E F ,.
当MBN ∠绕B 点旋转到AE CF =时(如图1),易证AE CF EF +=.
当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系?请写出你的猜想,不需证明.
(图1) A B C
D E F
M N
(图2)
A B C
D E F
M N
(图3)
A
B
C D E F M
N
2、(西城09年一模)已知:PA=2,PB=4,以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧.
(1)如图,当∠APB=45°时,求AB 及PD 的长;
(2)当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.
3、在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N ,D 为ABC 外一点,且
︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,
BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.
图1 图2 图3
(I )如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时
=L
Q
; (II )如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想(I )问的两个结论还
成立吗?写出你的猜想并加以证明;
(III ) 如图3,当M 、N 分别在边AB 、CA 的延长线上时, 若AN=x ,则Q= (用x 、L 表示).。

相关文档
最新文档