幂的运算经典习题
(完整版)幂的运算经典习题
一、同底数幂的乘法1、下列各式中,正确的是( ) A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-•-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =•6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =••,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-•n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. 二、幂的乘方 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x •的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-•342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘方1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、()()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。
(完整版)幂的运算经典习题
(完整版)幂的运算经典习题⼀、同底数幂的乘法1、下列各式中,正确的是() A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-?-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =?6、在等式a 3·a 2·( )=a 11中,括号⾥⾯⼈代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =??,则m=7、-t 3·(-t)4·(-t)58、已知n 是⼤于1的⾃然数,则()c -1-n ()1+-?n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. ⼆、幂的乘⽅ 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221??-z xy =6、计算()734x x ?的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-?342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘⽅1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、() ()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。
完整版)幂的运算练习题及答案
完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。
-299 B。
-2 C。
299 D。
22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。
4个 B。
3个 C。
2个 D。
1个3.下列运算正确的是()A。
2x+3y=5xy B。
(-3x^2y)^3=-9x^6y^3C。
D。
(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。
an与XXX^(2n)与b^(2n)C。
a^(2n+1)与b^(2n+1) D。
a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。
0个 B。
1个 C。
2个 D。
3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。
9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。
幂运算练习题
幂运算练习题一、基础概念回顾幂运算是指对一个数进行多次乘法的操作。
其中,被乘方称为底数,乘方数称为指数,乘积称为幂。
例如,在表达式2³中,2是底数,3是指数,2³的结果为8,8就是一个幂。
二、简单幂运算题1. 计算以下幂运算的结果:(1) 5² =(2) 3³ =(3) 4⁴ =(4) 7¹ =2. 计算以下幂运算的结果,并将结果化简:(1) 2⁴ × 2² =(2) 8³ ÷ 8⁰ =(3) (5²)³ =(4) (6 × 4²)³ × 2² =三、幂运算的性质1. 幂运算的乘法性质:对于任意正整数a和b以及整数m,有:aⁿ × aᵐ= a^(ⁿ⁺ᵐ),这里的符号^表示幂运算。
2. 幂运算的除法性质:对于任意正整数a和b以及整数m(m≠0),有:(aⁿ) ÷ (aᵐ) = a^(ⁿ⁻ᵐ)。
3. 幂运算的幂运算性质:对于任意正整数a以及整数m和n,有:(aⁿ)ⁿ = a^(ⁿ×ᵐ)。
四、深入应用题1. 计算以下幂运算的结果,并将结果化简:(1) (2⁸)⁶ × (4³ × 2²) =(2) (5 × 10²)⁴ ÷ (25 × 10⁶)² =2. 已知 x = 2²⁻³,y = 2⁻²,计算 x + y 的结果,并将结果写成幂的形式。
3. 若 (a⁸)⁶ = aⁿ ,求n的值。
五、解决实际问题1. 已知一边长为2米的正方形,计算正方形的面积,并将结果写成幂的形式。
2. 一辆汽车以每小时70公里的速度行驶,求1.5小时内汽车所行驶的路程(结果保留两位小数),并将结果写成幂的形式。
六、综合练习题1. 计算以下幂运算的结果,并将结果化简:(1) (3⁵)⁻² =(2) (2⁻³)⁴ =(3) (0.1⁵)⁴ =2. 解方程4ⁿ⁺² = 256 ,求整数n的值。
幂运算练习题大全
幂运算练习题大全幂运算,是数学领域中一种常见的运算方式。
它用于表示一个数的某个指数次幂,例如2的3次幂就是2×2×2,通常表示为2^3。
幂运算在数学、物理、计算机科学等领域有着重要的应用。
在本文中,我们将提供一系列幂运算的练习题,帮助读者更好地掌握幂运算的概念和运用。
1. 简化以下幂运算:a) 2^4b) 3^2c) 5^3d) 10^02. 计算以下幂运算的结果:a) 2^5b) 4^3c) 6^2d) 8^43. 给定以下幂运算,求未知数的值:a) 2^x = 16b) 3^x = 27c) 4^x = 256d) 5^x = 6254. 简化以下幂运算的结果,使用负指数:a) 2^-3b) 3^-2c) 5^-4d) 10^-15. 简化以下幂运算的结果,使用幂与根相互抵消的关系:a) √(4^3)b) ∛(8^2)c) ∜(16^2)d) ⁵√(32^3)6. 简化以下幂运算的结果,使用幂运算的运算法则:a) (2^3) × (2^4)b) (3^2) ÷ (3^5)c) (5^6)^2d) (10^4)^07. 计算以下复合幂运算的结果:a) (2^3)^2b) (4^2)^3c) (6^4)^2d) (8^5)^08. 解决以下问题,应用幂运算的概念:a) 一台计算机每秒钟可以执行10^9次运算,那么1分钟内可以执行多少次运算?b) 一辆汽车每小时行驶80公里,那么2小时内可以行驶多远?c) 一块土地的面积为5^2平方米,如果将其分割成边长为1米的小方块,可以得到多少个小方块?9. 解决以下问题,应用幂运算的运算法则:a) 简化表达式:(2^3 × 2^4) ÷ 2^2b) 简化表达式:(3^5)^2 ÷ (3^2)c) 简化表达式:(5^3 ÷ 5^2) × 5^4d) 简化表达式:(10^6)^2 ÷ 10^3通过以上的练习题,可以帮助读者巩固幂运算的知识点和运用技巧。
幂的运算综合专项练习题(有答案过程)ok
幂的运算专项练习50题(有答案)1.2 2 2 32.(4ab)×(﹣ab)3.(1);(2)(3x3)2(?﹣x);(3)m2?7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d的大小.2 3 77.计算:(﹣2m)+m÷m.2 ﹣33﹣2)﹣28.计算:(2mn) ?(﹣mn9.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x?32y的值.mn3m+2n 13.已知3×9m×27m=316,求m的值.5.已知3=x,3=y,用x,y表示3 .nm3915,求2 m+n 14.若(abb ) =ab 的值.2 3 2 615.计算:(x?x )÷x .2n 2 3n+2 216.计算:(a )÷a ?a .17.若a m =8,a n = ,试求a 2m ﹣3n的值.n+1 2n18.已知9 ﹣3=72,求n 的值.m n 2m+n19.已知x=3,x=5,求x 的值.20.已知3m =6,9n =2,求32m ﹣4n+1的值.21.(x ﹣y )5[(y ﹣x )4]3(用幂的形式表示)m m m m 3024.已知:3?9?27?81=3,求m 的值.6﹣b 2b+1 11 a ﹣1 4﹣b 525.已知x ?x =x ,且y ?y =y ,求a+b 的值.x ﹣1 y26.若2x+3y ﹣4=0,求9 ?27.2 43 3 6 227.计算:(3ax )﹣(2ax ).28.计算: .m2n ﹣2 n m+3 2010 的值. 29.已知16=4×2 ,27=9×3 ,求(n ﹣m )30.已知162×43×26=22m ﹣2,(102)n =1012.求m+n 的值.5 3 4 231.(﹣a )(?﹣a )÷(﹣a ).22.若x m+2n =16,x n =2,(x ≠0),求x m+n ,x m ﹣n的值. 32.(a ﹣2b ﹣1)﹣3(?2ab 2)﹣2.﹣3 4 2 2﹣2 a+b 2b ﹣a 9 b 323.计算:(5a b )(?ab ) . 33.已知x ?x =x ,求(﹣3)+(﹣3)的值.2/64 4 2 4 4234.a?a+(a)﹣(﹣3x )5m+n2m﹣n 3 6 15 m 35.已知(x y )=xy,求n的值.m n 3m+2n 2n﹣3m 36.已知a=2,a=7,求a ﹣a 的值.2n+2 n 3 3 2 n 37.计算:(﹣3x y)÷[(﹣xy)]2 6 n n 3n 23 2 n 42.计算:(ab)+5(﹣ab)﹣3[(﹣ab)].43..n﹣5 n+13m﹣2 2 n﹣1 m﹣2 33m+244.计算:a (a b )+(a b )(﹣b )45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.﹣2 ﹣3 ﹣1 2 ﹣3 238.计算:(x y )(?xy ).46.已知2a?27b?37c=1998,其中a,b,c为整数,2m 3n3m 2 2n 3 2m 3n求(a﹣b﹣c)1998的值.39.已知a=2,b =3,求(a)﹣(b)+a?b的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n47.﹣(﹣0.25)1998×(﹣4)1999.的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n2n+1 3?(2a+b)n ﹣448.(1)(2a+b)?(2a+b)的值.3/6(2)(x ﹣y )2?(y ﹣x )5. 50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a 2b 3(2a ﹣1b 3);22 ﹣1﹣2 ﹣232 49.(1)(3xyz ) ?(5xy z ).2 ﹣12 ) ﹣43 ﹣2 (2)(4xyz )?(2xyz ÷(yz ) .幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2 4 63 8 72.原式=16ab ×(﹣ ab )=﹣2ab3.解:(1)原式=(﹣5)×3=﹣15; (2)原式=9x 6(?﹣x )=﹣9x 7; 3 2 2(3)原式=7mp ÷(﹣7mp )=﹣mp ;2 2( 4)原式=6a+2a ﹣9a ﹣3=6a ﹣7a ﹣3.故答案为﹣15、﹣9x 7、﹣m 2p 、6a 2﹣7a ﹣34.解:a x+y=a x?a y =2×3=6; a 2x ﹣y =a 2x ÷a y =22÷3=3m 2n5.解:原式=3×3,=(3m )3×(3n )2, 3 2 =xy5 11 116.解:a=(2)=32;3 11 11 c=(4)=48; 2 11 11d=(5)=25; 可见,b >c >a >d2 3 77.解:(﹣2m )+m ÷m ,3 2 3 6=(﹣2)×(m )+m ,6 6 =﹣8m+m ,6 =﹣7m2﹣33 ﹣2 ﹣26 ﹣9 ﹣248.解:(2mn )?(﹣mn )=8mn ?mn=9.解:原式=(﹣4)+4×1=010.解:原式= ÷(﹣ )+2×1=﹣2+2 =0﹣2 ﹣3 ﹣1 3(2)(a )(bc );2﹣3 2 ﹣2 (3)2(2abc )÷(ab).11.解:∵2x=4y+1,x2y+2,∴2=2∴x=2y+2①y x﹣1又∵27=3 ,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x?32y=22x?25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,2m 3m=3×3×3,=31+5m,1+5m 16∴3=3,∴1+5m=16,解得m=3nm3n3m333n3m+3 14.解:∵(abb)=(a)(b)b=ab ,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2?a2=a4n÷a3n+2?a24n﹣3n﹣2 2=a ?an﹣22=a ?a=a n﹣2+2n=a17.解:a2m﹣3n=(a m)2÷(a n)3,m n∵a=8,a=,4/6∴原式=64÷ =512.故答案为 51218.解:∵9n+1﹣32n =9n+1﹣9n =9n (9﹣1)=9n×8,而72=9 ×8, ∴当9n+1﹣32n =72时,9n×8=9×8, ∴ 9n=9, ∴n =1 19.解:原式=(x m )2?x n2 =3×5 =9×5 =45 20.解:由题意得, 9n =32n =2,32m =62=36,故 32m ﹣4n+1=32m ×3÷34n=36×3÷4=275 4 3 5 4 321.解:(x ﹣y )[(y ﹣x )]=(x ﹣y )[(x ﹣y )]=( x ﹣y )5(?x ﹣y )12=(x ﹣y )1722.解:∵x m+2n=16,x n=2,m+2nn m+n ∴x ÷x=x =16÷2=8, x m+2n ÷x 3n =x m ﹣n =16÷23=223.解:( ﹣3 4 22﹣2 5a b )?(ab )﹣6 8 ﹣4 ﹣2 =25a b?a b =24.解:由题意知, 3m ?9m ?27m ?81m,m 2m3m 4m =3?3 ?3?3 , m+2m+3m+4m =3 , =330,∴ m +2m+3m+4m=30,整理,得10m=30, 解得m=325.解:∵x 6﹣b ?x 2b+1=x 11,且y a ﹣1?y 4﹣b =y 5, ∴ ,解得: ,则 a+b=1026.解:∵2x+3y ﹣4=0, ∴2x+3y=4, x ﹣1y 2x ﹣23y 2x+3y ﹣22∴9 ?27=3 ?3 =3=3=9 27.解:(3a 2x 4)3﹣(2a 3x 6)2=27a 6x 12﹣4a 6x 12=23a 6x 1228.解:原式= ? a 2b 3=29.解:∵16m =4×22n ﹣2,∴(24)m=22×22n ﹣2,∴24m =22n ﹣2+2,∴ 2n ﹣2+2=4m ,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,2010∴(n﹣m)=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5?a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣17 2 15a÷a=﹣a.32.解:(a ﹣2﹣1﹣3 2﹣2 b)?(2ab)=(a6b3)(? a﹣2b﹣4)= a4b﹣1=33.解:∵x a+b?x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,b 3 3 3 3∴(﹣3)+(﹣3)=(﹣3)+(﹣3) =2×(﹣3)=2 ×(﹣27)=﹣5434.解:原式88 8=a+a ﹣9x,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,5m+n2m﹣n 3 6 15∵(xy )=xy ,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,3m+2n 2n﹣3m m 3 n 2 n 2 m 3 ∴a ﹣a =(a)(?a)﹣(a)÷(a)=8×49﹣49÷8=2n+2 n 3 3 2 n37.解:(﹣3x y)÷[(﹣xy)],=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2?y﹣3)﹣1(?x2?y﹣3)2,5/6234﹣6=xy?xy ,=39.解:(a3m)2﹣(b2n)3+a2m?b3n,=(a2m)3﹣(b3n)2+a2m?b3n,3 2=2﹣3+2×3,=56n6n40.解:原式=27x﹣4x=23(x3n)2=23×7×7=11272n41.解:∵x=5,∴(3x3n)2﹣34(x2)3n6n6n=9x﹣34x2n3=﹣25(x )3=﹣25×5=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n =6a2n b6n﹣3a2n b6n=3a2n b6n50 50)50101543.解:原式=()x?(x =x44.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0a b45.解:(1)∵x=2,x=6,∴x a﹣b=x a÷x b=2÷6=;(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a?33b?37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=4(2n+1)+3+(n﹣4)48.解:(1)原式=(2a+b)3n =(2a+b);WORD 格式专业资料整理( 2)原式=﹣(x ﹣y )2(?x ﹣y )5=﹣(x ﹣y )749.解:(1)原式=( )﹣2(? )2= ?= ;(2)原式= ? ÷= ?y 2z 6=150.解:(1)a 2b 3(2a ﹣1b 3)=2a 2﹣1b 3+3=2ab 6;( 2)(a ﹣2)﹣3(bc ﹣1)3,=a 6b 3c ﹣3,= ;( 3)2(2ab 2c ﹣3)2÷(ab )﹣2,=2(4a 2b 4c ﹣6)÷(a ﹣2b ﹣2),=8a 4b 6c ﹣6, =6/6。
幂的运算经典练习题
同底数幂的乘法1、下列各式中,正确的是( )A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-∙-y x y x 4、若a m=2,a n=3,则a m+n等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =∙6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ). (A)a7(B)a8(C)a6(D)a 383a a a a m =∙∙,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-∙n c 等于 ( ) A. ()12--n c B.nc 2- C.c-n2D.nc29、已知x m -n ·x 2n+1=x 11,且y m -1·y4-n =y 7,则m=____,n=____.幂的乘方 1、()=-42x 2、()()84a a =3、( )2=a 4b 2; 4、()21--k x = 5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x ∙的结果是 ( )A. 12x B. 14x C. x 19D.84x7、()()=-∙342a a8、nn 2)(-a 的结果是 ()[]52x --= 若2,xa =则3xa =同底数幂的除法1、()()=-÷-a a 42、()45a aa =÷3、()()()333b a ab ab =÷ 4、=÷+22x x n5、()=÷44ab ab . 6、下列4个算式(1)()()-=-÷-24c c 2c (2)()y -()246y y -=-÷ (3)303z z z =÷(4)44a a a mm=÷其中,计算错误的有 ( )A.4个B.3个C.2个D.1个幂的混合运算1、a 5÷(-a 2)·a = 2、(b a 2)()3ab ∙2=3、(-a 3)2·(-a 2)34、()m mx x x 232÷∙=5、()1132)(--∙÷∙n m n m x x x x6、(-3a)3-(-a)·(-3a)27、()()()23675244432x x x x x x x +∙++8、下列运算中与44a a ∙结果相同的是( ) A.82a a ∙ B.()2a 4C.()44aD.()()242a a ∙4*9、32m×9m×27=10、化简求值a 3·(-b 3)2+(-21ab 2)3, 其中a =41,b =4。
幂的运算专项练习50题(有答案)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
(完整版)幂的运算练习题
幂的运算练习题(每日一页)【基础能力训练】一、同底数幂相乘1.下列语句正确的是()A.同底数的幂相加,底数不变,指数相乘;B.同底数的幂相乘,底数合并,指数相加;C.同底数的幂相乘,指数不变,底数相加;D.同底数的幂相乘,底数不变,指数相加2.a4·a m·a n=()A.a4m B.a4(m+n)C.a m+n+4D.a m+n+4 3.(-x)·(-x)8·(-x)3=()A.(-x)11B.(-x)24C.x12D.-x12 4.下列运算正确的是()A.a2·a3=a6B.a3+a3=2a6C.a3a2=a6D.a8-a4=a4 5.a·a3x可以写成()A.(a3)x+1B.(a x)3+1C.a3x+1D.(a x)2x+1 6.计算:100×100m-1×100m+17.计算:a5·(-a)2·(-a)38.计算:(x-y)2·(x-y)3-(x-y)4·(y-x)二、幂的乘方9.填空:(1)(a8)7=________;(2)(105)m=_______;(3)(a m)3=_______;(4)(b2m)5=_________;(5)(a4)2·(a3)3=________.10.下列结论正确的是()A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C.a的m次幂的n次方等于a的m+n次幂;D.a的m次幂的n次方等于a的mn次幂11.下列等式成立的是()A.(102)3=105B.(a2)2=a4C.(a m)2=a m+2D.(x n)2=x2n 12.下列计算正确的是()A.(a2)3·(a3)2=a6·a6=2a6B.(-a3)4·a7=a7·a2=a9C.(-a2)3·(-a3)2=(-a6)·(-a6)=a12D.-(-a3)3·(-a2)2=-(-a9)·a4=a1313.计算:若642×83=2x,求x的值.三、积的乘方14.判断正误:(1)积的乘方,等于把其中一个因式乘方,把幂相乘()(2)(xy)n=x·y n()(3)(3xy)n=3(xy)n()(4)(ab)nm=a m b n()(5)(-abc)n=(-1)n a n b n c n()15.(ab3)4=()A.ab12B.a4b7C.a5b7D.a4b1216.(-a2b3c)3=()A.a6b9c3B.-a5b6c3C.-a6b9c3D.-a2b3c317.(-a m+1b2n)3=()A.a3m+3b6n B.-a3m+b6n C.-a3m+3b6n D.-a3m+1b8m3 18.如果(a n b m b)3=a9b15,那么m,n的值等于()A.m=9,n=-4 B.m=3,n=4 C.m=4,n=3 D.m=9,n=6【综合创新训练】一、综合测试19.计算:(1)(-13x m+1·y)·(-13x2-m y n-1)(2)10×102×1 000×10n-3(3)(-a m b n c)2·(a m-1b n+1c n)2(4)[(12)2] 4·(-23)3二、创新应用20.下列计算结果为m14的是()A.m2·m7B.m7+m7C.m·m6·m7D.m·m8·m6 21.若5m+n=56·5n-m,求m的值.22.已知2×8n×16n=222,求n的值.23.已知x3n=2,求x6n+x4n·x5n的值.24.若2a=3,4b=6,8c=12,试求a,b,c的数量关系.25.比较6111,3222,2333的大小.26.比较3555,4444,5333的大小.三、巧思妙想27.(1)(214)2×42(2)[(12)2] 3×(23)3(3)(-0.125)12×(-123)7×(-8)13×(-35)9(4)-82003×(0.125)2002+(0.25)17×417答案:【基础能力训练】1.D 2.D 3.C 4.C 5.C 6.1002m+17.-a108.原式=(x-y)5-(x-y)4·[-(x-y)]=2(x-y)59.(1)a56(2)105m(3)a3m(4)b10m(5)a1710.D 11.B 12.D13.左边=(82)2×83=84×83=87=(23)7=221而右边=2x,所以x=21.14.(1)×(2)×(3)×(4)×(5)∨15.D 16.C 17.C 18.C【综合创新运用】19.原式=(-13)×(13)·x m+1·x2-m·y·y n-1=19x m+1+2-m·y1+n-1=19x3y n(2)原式=10×102×103×10n-3=101+2+3+n-3=103+n(3)原式=(-1)2(a m)2·(b n)2·c2·(a m-1)2·(b n+1)2(c n)2 =a2m·b2n·c2·a2m-2b2n+2c2n=a4m-2b4n+2c2n+2(4)原式=(12)2×4·(-1)3·23×3=-(12)8·29=-9822=-220.C 解析:A应为m9,B应为2m7,D应为m15.21.由5m+n=56·5n-m=56+m-n得m+n=6+n-m,即2m=6,所以m=3.22.式子2×8n×16n可化简为:2×23n×24n=21+7n,而右边为222比较后发现1+7n=22,n=3.23.x6n+x4n·x5n=x6n+x9n=(x3n)2+(x3n)3把x3n=2代入可得答案为12.24.由4=6得22b=6,8c=12即23c=12,所以2a·22b=2×6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.25.3222=(32)111=9111,2333=(23)111=8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>533327.(1)原式=(94)2×42=81(2)原式=(12)6×29=(12×2)6×23=23=8(3)原式=(-18)12×(-53)7×(-8)13×(-35)9=-(18)12×813×(53)7×(35)9=-(18×8)12×8×(53×35)7×(35)2=-8×9722525=-(4)原式=-82003×(18)2002+(-14)17×417=-(8×18)2002×8+(-14×4)17=-8+(-1)=-9【探究学习】设拉面师傅拉n次就可以变成一碗面条,则2n=256,由于256=28,∴n=8.。
七年级幂的运算计算题
七年级幂的运算计算题一、同底数幂的乘法。
1. 计算:a^3 · a^4- 解析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加。
所以a^3· a^4 = a^3 + 4=a^7。
2. 计算:2^3×2^5- 解析:同底数幂相乘,底数2不变,指数3+5 = 8,所以2^3×2^5=2^8 = 256。
3. 计算:(-x)^2· x^3- 解析:先计算(-x)^2=x^2,然后根据同底数幂乘法法则,x^2· x^3=x^2 +3=x^5。
4. 计算:y· y^2· y^3- 解析:同底数幂y相乘,指数相加1+2 + 3=6,所以y· y^2· y^3=y^6。
二、幂的乘方。
5. 计算:(a^3)^4- 解析:根据幂的乘方法则,幂的乘方,底数不变,指数相乘。
所以(a^3)^4=a^3×4=a^12。
6. 计算:(2^2)^3- 解析:底数2不变,指数2×3 = 6,所以(2^2)^3 = 2^6=64。
7. 计算:[(-m)^3]^2- 解析:先计算(-m)^3=-m^3,然后[(-m)^3]^2=(-m^3)^2=m^6(负数的偶次幂是正数)。
8. 计算:(y^4)^2· y- 解析:先算幂的乘方(y^4)^2=y^4×2=y^8,再根据同底数幂乘法y^8· y=y^8 + 1=y^9。
三、积的乘方。
9. 计算:(2a)^3- 解析:根据积的乘方法则(ab)^n=a^n b^n,所以(2a)^3 = 2^3× a^3=8a^3。
10. 计算:(-3xy)^2- 解析:(-3xy)^2=(-3)^2× x^2× y^2 = 9x^2y^2。
11. 计算:((1)/(2)ab^2)^3- 解析:((1)/(2))^3× a^3×(b^2)^3=(1)/(8)a^3b^6。
幂的运算数学题
幂的运算1. 同底数幂相乘a m ·a n =a m +n a m +n = a m ·a n同底数幂相乘,底数不变,指数相加.计算,结果用幂的形式表示.(1) a ·a 6 ; (2) (-2)3×(-2)2 ;(3) –a m ·a 2m ; (4) 25×23×24 .计算,结果用幂的形式表示.1)(2y +1)2·(2y +1)5;(2)(p -q )5·(q -p )2;(3)a 4·a 6+a 5·a 5.2. 幂的乘方幂的乘方法则:(a m )n =a mn . a mn =(a m )n .幂的乘方,底数不变,指数相乘.1.计算 (102)3 ;(b 5)5 ;(a n )3 ;-(x 2)m .2.计算:(1) ( 104 )2;(2)(x 5)4;(3)-(a 2)5 ;(4) (-23)20 .3.积的乘方(ab )n =a n b n a n b n =(ab )n积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.计算:1(1) (5m )3; (2) (-xy 2)3.2(1)(31xy 2)2; (2)(-2ab 3c 2)4. 4. 同底数幂的除法运1)n m n m a a a -=÷(m 、n 为正整数) m n m n a a a -=÷(m 、n 为正整数) 同底数幂相乘除,底数不变,指数相减.计算:(1)26a a ÷;(2)()()b b -÷-8;(3)()()24ab ab ÷; (4)232t t m ÷+(m 是正整数)2)当m =n 时,0a a a a n m n m ==÷-1=÷=÷m m n m a a a a10=a (a ≠0)即任何不等于0的数的0次幂等于1.3).n n aa 1=-(a ≠0, n 为正 整数),即任何不等于0的数的-n (n 是正整数)次幂,等于这个数的n 次幂的倒数.计算:(1)05a a ÷(a ≠0);(2)25-÷a a (a ≠0).用小数或分数表示下列各数:(1)24-;(2)33--;(3)51014.3-⨯练习2.(1)812=x ,则x = ; (2)1011=-x ,则x = ; (3)1000.010=x ,则x = .。
幂的运算经典练习题
幂的运算经典练习题一、选择题1. 下列运算错误的是( )A. x 2•x 4=x 6B. (﹣b)2•(﹣b)4=﹣b 6C. x•x 3•x 5=x 9D. (a+1)2(a+1)3=(a+1)52. 计算的结果是( )A. B. C. D.3. ()A. B. C. D.4.A. 5B. 6C. 8D. 95. 若3 x=15,3 y=5,则3 x-y等于().A. 5B. 3C. 15D. 106. 数N=2 12×5 9是()A. 10位数B. 11位数C. 12位数D. 13位数7. 若a =1.6×10 9,b =4×10 3,则a÷ 2b等于()A. 4×10 5B. 2×10 7C. 2×10 6D. 2×10 58. 计算的结果是()A. B. C. D.9. 我们约定,如,那么为()A. 32B.C.D.10. 已知a=3 55,b=4 44,c=5 33,则有()A. a<b<cB. c<b<aC. c<a<bD. a<c<b11. 若, ,则的值为()A. B. C. D.12. 已知n是大于1的自然数,则(-c) n-1•(-c) n+1等于()A. B. -2nc C. -c 2n D. c 2n二、填空题13. 当x__________时,( x-4) 0=1.14. 若,则(ab) 2x=.15. 若(2x+1)º=(3x-6) º,则x的取值范围是16. 已知:,则17.18. 如果9 m+3×27 m+1÷3 4m+7=81,则m的值为__________.19. 。
20. 计算:()2014×(-)2015×(-1)2016=________.21.22. 已知则的值为.三、解答题23.24. 计算:[ a3(-a4)] 3÷(a2)3·(a3)2.25. 计算(a-b)m+3·(b-a)2·(a-b)m·(b-a)526. 比较,,三数的大小,并用“>”号连接.27. 若2, 3,求出的值?29. 计算( × × ×…× ×1) 10•(10×9×8×7×…×3×2×1) 10.30. 计算:(-x) 2•x 3•(-2y) 3+(2xy) 2•(-x) 3•y.28. (1)若,,求的值(2)若能被x+1整除,求a的值31. 已知(x-1)x+2=1,求整数x.32. 已知2 a=3,2 b=6,2 c=12,那么a,b,c是否满足a+ c=2 b的关系?请说明理由.33. 若5 2x+1=125,求(x-2) 2 010+x的值.34. (1)已知a m=2, a n=3,求a2m+3n的值.(2)已知16m =4×22n-2,27n=9× 3 m+3,求m,n.。
七年级数学幂的运算经典习题
七年级数学幂的运算经典习题一、同底数幂的乘法1、下列各式中,正确的就是( )A.844m m m = B 、25552m m m = C 、933m m m = D 、66y y 122y = 2、102·107 = 3、()()()345-=-•-y x y x4、若a m =2,a n =3,则a m+n等于( )(A)5 (B)6 (C)8 (D)9 5、()54a a a =• 6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当就是( )、(A)a 7 (B)a 8 (C)a 6 (D)a 3 83a a a a m =••,则m= 7、-t 3·(-t)4·(-t)58、已知n 就是大于1的自然数,则()c -1-n ()1+-•n c 等于 ( )A 、 ()12--n c B 、nc 2-C 、c -n2 D 、nc 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____、 二、幂的乘方 1、()=-42x 2、()()84a a=3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-z xy = 6、计算()734x x •的结果就是 ( )A 、 12xB 、 14xC 、 x 19D 、84x 7、()()=-•342a a8、n n 2)(-a 的结果就是 9、()[]52x --=10、若2,x a =则3x a = 三、积的乘方 1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0、2x 4y 3)2 5)、(-1、1x m y 3m )2 6)、(-0、25)11×411 7)、-81994×(-0、125)1995 四、同底数幂的除法 1、()()=-÷-a a 42、()45a aa =÷3、()()()333b a ab ab =÷4、=÷+22x xn5、()=÷44ab ab 、 6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷其中,计算错误的有 ( )A 、4个B 、3个C 、2个D 、1个 7、 ÷a 2=a 3。
完整版)幂的运算经典习题
完整版)幂的运算经典习题幂的运算练一、同底数幂的乘法1、下列各式中,正确的是()A.m4m4=m8B.m5m5=2m25C.m3m3=m9D.y6y6=2y12正确答案为A。
2、102·107=10(2+7)=109.3、(x-y)5·(x-y)4=(x-y)9.4、若am=2,an=3,则am+n=2+3=5.5、a4·a=a5.6、在等式a3·a2·()=a11中,括号里面的代数式应当是a6.a·a3·am=a4+m,所以a4+m=a8,解得m=4.7、-t3·(-t)4·(-t)5=-t12.8、已知n是大于1的自然数,则(-c)n-1·(-c)n+1=-c2n。
9、已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=5,n=3.二、幂的乘方1、(-x2)4=x8.2、a4·a4=a8.3、(ab)2=a4b2.4、(-xk-1)2=x2k-2.5、(-xy2z3)5=-x5y10z15.6、计算(x4)3·x7的结果是x19.7、a8·(-a)3=-a5.8、(-an)2n=(-a)2n·n=an·n。
9、[-(-x)2]5=-x10.10、若ax=2,则a3x=23=8.三、积的乘方1)、(-5ab)2=25a2b2;2、-(3x2y)2=-9x4y2;3、-(1/abc3)3=-1/a3b3c9;4、(0.2x4y3)2=0.04x8y6;5、(-1.1xm y3m)2=1.21x2m y6m;6、(-0.25)11×411=-0.2511+4=-0.2515;7、-×(-0.125)1995=.四、同底数幂的除法1、(-a)4÷(-a)=-a3.2、a5÷a=a4.3、(ab)3÷(ab)=a3b3.4、xn+2÷x2=xn。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、同底数幂的乘法
1、下列各式中,正确的是()
A. B.
C. D.
2、102·107=
3、
4、若a m=2,a n=3,则a m+n等于( )
(A)5 (B)6 (C)8 (D)9
5、
6、在等式a3·a2·( )=a11中,括号里面人代数式应当是( ).
(A)a7 (B)a8 (C)a6 (D)a3
,则m=
7、-t3·(-t)4·(-t)5
8、已知n是大于1的自然数,则等于 ( )
A. B.
C. D.
9、已知x m-n·x2n+1=x11,且y m-1·y4-n=y7,则m=____,n=____.
二、幂的乘方
1、
2、
3、( )2=a4b2;
4、=
5、=
6、计算的结果是 ( )
A. B. C. D.
7、
8、的结果是
9、=
10、若则=
三、积的乘方
1)、(-5ab)2
2)、-(3x2y)2
3)、
4)、(0.2x4y3)2
5)、(-1.1x m y3m)2
6)、(-0.25)11×411
7)、-81994×(-0.125)1995
四、同底数幂的除法
1、
2、
3、
4、
5、 .
6、下列4个算式:
(1)
(2)
(3)
(4)
其中,计算错误的有 ( )
A.4个
B.3个
C.2个
D.1个
7、 ÷a=a。
8、.若5=1,则k= 。
9、3+()= 。
10、用小数表示-3.021×10=
11、计算: =
=
=
五、幂的混合运算
1、a5÷(-a2 )·a=
2、()=
3、(-a3)2·(-a2)3
4、=
5、
6、(-3a)3-(-a)·(-3a)2
7、
8、下列运算中与结果相同的是( )
A. B.
C. D.
*9、32m×9m×27=
10、化简求值a3·(-b3)2+(-ab2)3,其中a=,b=4。
六、混合运算整体思想
1、(a+b)2·(b+a)3=
2、(2m-n)3·(n-2m)2= ;
3、(p-q)4÷(q-p)3·(p-q)2
4、
5、
6、 (m为偶数,)
7、++
七、零指数幂与负整指数幂
1、用小数表示2.61×10-5=__________, .
2、(3x-2)0=1成立的条件是_________.
3、用科学记数法表示0.000695并保留两个有效数字为_______.
4、计算(-3-2)3的结果是_________.
5、若x2+x-2=5,则x4+x-4的值为_________.
6、若x=-1,则x+x-1=__________.
7、计算(-2a-5)2的结果是_________.
8、若则k的值是 .
9、用正整数指数幂表示 .
10、若,则 = .
11、要使(x-1)0-(x+1)-2有意义,x的取值应满足什么条件?
12、如果等式,则的值为
13、已知: ,求x的值.
14、
15、
八、数的计算
1、下列计算正确的是()
A. B.
C. D.
2、
3、-
4、4-(-2)-2-32÷(3.14-π)0
5、0.25×55=
7、0.125 2004×(-8)2005=
8、=
9、
10、
11、()
12、________;
13、
14、长为2.2×103 m,宽是1.5×102m,高是4×102m的长方体体积为
_________。
15、的值.
九、科学计数法
1、一种细菌的半径是厘米,用科学计数法表示为厘米用
2、最薄的金箔的厚度为0.000000091m,用科学记数法表示为 ;
3、小数表示
4、每立方厘米的空气质量为1.239×10-3g,用小数把它表示为;
5、有一句谚语说:“捡了芝麻,丢了西瓜。
”意思是说有些人办事只抓一些无关紧要的小事,却忽略了具有重大意义的大事。
据测算,5万粒芝麻才200克,你能换算出1粒芝麻有多少克吗?可别“占小便宜吃大亏”噢!(把你的结果用科学记数法表示)
6、三峡一期工程结束后的当年发电量为5.5×109度,某市有10万户居民,若平均每户用电2.75×103度,那么三峡工程该年所发的电能供该市居民使用多少年?(结果用科学计数法表示)
十、分类讨论
1、有人说:当n为正整数时,1n都等于1,(-1)n也等于1,你同意吗?
2、你能求出满足(n-3)n =(n-3)2n-2的正整数n吗?
3、你能求出满足(n-3)n+3=(n-3)2n的正整数n吗?
4、若n为正整数,则的值( )
A.一定是0;
B.一定是偶数;
C.不一定是整数;
D.是整数但不一定是偶数.
十一、化归思想
1、计算25m÷5m的结果为
2、若,则=
3、已知a m=2,a n=3,求a2m-3n的值。
4、已知: 8·22m-1·23m = 217.求m的值.
5、若2x+5y—3=0,求4x-1·32y的值
6、解关于x的方程:
33x+1·53x+1=152x+4
7、已知:2a·27b·37c=1998,其中a,b,c是自然数,求(a-b-c)2004的值.
8、已知:2a·27b·37c·47d =1998,其中a,b,c,d是自然数,求(a-b-c+d)2004的值.
9、若整数a,b,c满足
求a,b,c的值.
10、已知x3=m,x5=n,用含有m,n的代数式表示x14=
11、设x=3m,y=27m+2,用x的代数式表示y是__ ___.
12、已知x=2m+1,y=3+4m,用x的代数式表示y是___ __.
13、与的大小关系是
14、已知a=2-555,b=3-444,c=6-222,请用“>”把它们按从小到大的顺序连接起来
16、若a=8131,b=2741,c=961,则a、b、c的大小关系为 .
17、已知,求的值。
18、已知: ,.
19、已知10m=20,10n=,
*20、已知25x=2000,80y=2000.。