九年级数学下册 第27章《相似三角形判定》第四课时教案 新人教版
新人教版数学九年级下册第27章27.2相似三角形的判定(教案)
-对于一些复杂的几何图形,能够准确找到相似三角形的对应角和对应边,进而解决问题。
举例:针对SAS与ASA、AAS之间的区别,通过具体例题和图形进行讲解,强调SAS判定定理中两边和夹角的关系,以及ASA、AAS中两角和一边的关系。对于实际问题,可以设计一些与生活相关的习题,如房屋建筑设计中的相似三角形问题,引导学生从实际情境中抽象出相似三角形的模型。对于复杂的几何图形,教师应引导学生学会画辅助线、寻找对应关系,以便准确找到相似三角形,进而求解。通过这些方法,帮助学生突破教学难点,提高解题能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似三角形的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状相似但大小不同的三角形?”比如,放大镜下的三角形和原来的三角形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形的判定方法。
4.激发学生数学探究兴趣,引导他们主动探索相似三角形的判定方法,培养数学探究和创新意识。
三、教学难点与重点
1.教学重点
-理解并掌握相似三角形的定义及其性质,特别是对应角相等、对应边成比例的特点;
-熟练运用SSS、SAS、ASA、AAS判定定理判断两个三角形是否相似;
-能够应用相似三角形的性质和判定方法解决具体问题,如求线段长度、角度大小等。
举例:在讲解相似三角形的性质时,强调对应角相等、对应边成比例的概念,并通过具体图形进行展示,使学生直观感受这一性质。在讲解判定定理时,通过多个例题,让学生掌握如何使用SSS、SAS、ASA、AAS定理判断相似三角形。
九年级数学下册 27.2.1《相似三角形的判定》教案 新人教版
思考题:若相等的角是邻角而不是夹角,那么这两个三角形还相似吗?
4、归纳判定两个三角形相似的判定方法:
(1)如果两个三角形的三组边的比相等,那么这两个三角形相似。
(2)如果两个三角形的两对应组边的比相等,且相应的夹角也相等,那么这两个三角形相似。
三、练习巩固
1、课本P45第1、2、3题
同桌讨论、发言,互相补充、点评。
(想、讲、听)
提问的人数应该再多些,要关注不同层次的学生。
小组讨论时要多关注边缘人
应将学生不同的证明方法都展示出来
讲思路即可
将思考留给学生,也将发言的机会留给学生,老师只做引导者。
做得比较好,将主动权留给学生。
中
通过独立完成定理的证明,巩固新学习的相似三角形判定定理。
A、0个B、1个C、2个D、无数个
2、△ABC与△DEF分别满足下列条件,其中△ABC与△DEF不相似的是()
A、∠A=∠D=450,∠,C=260,∠E=1090
B、AB=1,AC=1.5,BC=2,DE=8,DF=12,EF=16
C、AB=a,BC=b,AC=c,DE=a2,EF=b2,DF=c2
《27.2.1相似三角形的判定》
目
标
目标1:
通过小组合作、探究三角形相似的判定方法,增进学生合作精神,训练学生解决几何问题的能力,培养学生的观察能力和逻辑思维能力。
目标2:
掌握相似三角形的两个判定定理,会运用两个判定定理判定两个三角形相似。
检测
内容提要
T
方法&策略
反思/评价
前
通过提问学生,巩固已学知识。
(2)画图探究
(3)初步形成结论:如果两个三角形的三组边的比相等,那么这两个三角形相似。
九年级数学下册 第27章 相似复习课教案 (新版)新人教版
与方法
培养学生运用几何知识进行推理及计算的能力。
情感态度与价值观
通过问题情境和探索活动的创设,激发学生的学习兴趣。
重点
掌握三角形相似的判定与性质。
课堂小结
1.回顾本节课知 识点;
2.回顾解题方法和易错点。
总结本节课的知识点和需要注意的地方。
难点
能够应用相似三角形的判定与性质进行推理及计算。
教学过程设计
27章相似第教案年月日星期教学过程设计课题27章相似复习课备课人知识与目标方法与策略学生活动教师活动师生互动个性化设计课型新授课教法22师友互助审核人目标c
27章相似
第____教案
_____年_____月_____日
星期_____
教学过程设计
课题
27章相似(复习课)
备课人
知识与目标
方法与策略
学生活动
教师活动(师 生互动)
个性化设计
课型新授课ຫໍສະໝຸດ 教法“2+2”师友互助
审核人
目标C:同步测试
独立思考后师友交流,四人小组讨论,小组展示讲解。
1.教师按小组指导。
2.提问学生 讨论结果。
3.核对答案,讲解易错点。
教
学
目
标
知 识
与技能
1.掌握三角形相似 的判定 与性质。
2.能够应用相似三角形的判定与性质进行推理 及计算。
1.完成题组A的 1、2、3题。
2.师友纠错,展示
1.对学生的回答进行归纳和补充。
2.对3题适度拓展补充。
目标B:应用相似三角形的判定与性质进行推理及计算
1.独立完成
2.师友交流
3、展示讲解
1.环视学生对小组进行辅导;
人教版九年级数学下册第二十七章相似三角形的性质与判定教学设计
2.利用多媒体教学资源,如动态图、实物模型等,直观演示相似三角形的性质和判定方法,帮助学生形象地理解。
-通过动态图展示相似三角形的性质,让学生清晰地看到对应角相等、对应边成比例的关系。
3.采用任务驱动法,设计不同层次的练习题,引导学生逐步掌握相似三角形的判定方法。
3.教学目标:使学生掌握相似三角形的性质与判定方法,为解决实际问题奠定基础。
(三)学生小组讨论
1.教学活动设计:教师提出具有挑战性的问题,引导学生以小组为单位进行讨论,共同解决问题。
2.教学实施:教师将学生分成若干小组,每组针对给定的问题进行讨论。讨论过程中,教师巡回指导,引导学生运用相似三角形的性质与判定方法解决问题。
3.教学目标:培养学生团队合作意识,提高学生运用相似三角形知识解决问题的能力。
(四)课堂练习
1.教学活动设计:教师设计不同难度的练习题,让学生在课堂上独立完成,巩固所学知识。
2.教学实施:教师给出基础题、提高题和拓展题,要求学生在规定时间内完成。教师对学生的解答进行点评,针对错误进行讲解,确保学生真正掌握相似三角形的性质与判定。
3.教学目标:通过课堂练习,使学生熟练运用相似三角形的性质与判定方法,提高解题能力。
(五)总结归纳
1.教学活动设计:教师引导学生回顾本节课所学内容,总结相似三角形的性质与判定方法。
2.教学实施:教师与学生一起总结相似三角形的性质与判定方法,强调重点、难点。同时,鼓励学生提出疑问,解答学生在学习过程中遇到的问题。
学生在学习过程中,可能对相似三角形的定义和性质理解不够深入,对判定方法的运用不够熟练。因此,在教学过程中,教师需要关注以下几点:
九年级数学下册 27 相似教案 (新版)新人教版
第二十七章相似1.通过具体实例认识图形的相似.2.了解相似多边形和相似比的含义,探索相似多边形的性质.3.了解三角形相似的概念,探索相似三角形的性质.4.掌握平行线分线段成比例定理.5.理解并掌握相似三角形的判定定理,并能应用判定定理解决问题.6.探索相似三角形的性质定理,能应用相似三角形的性质进行有关计算.7.了解图形的位似,能够利用图形的位似将一个图形放大或缩小.8.了解在同一坐标系中位似变换后图形的坐标变化.将一个多边形的顶点坐标扩大或缩小相同倍数时对应的图形与原图形是位似的.9.会利用图形的相似解决一些简单实际问题.1.结合相似图形性质和判定方法的探索与证明,进一步培养学生的合情推理能力,发展学生逻辑思维能力和推理论证的表达能力.2.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.培养学生用联系和转化的观点看待周围的事物,增强探索问题的信心和热情.前面学习了图形的全等和全等三角形的有关知识,也研究了几何图形的全等变换,“全等”和“相似”都是图形之间的一种变换,全等图形是相似比为1的相似图形,所以本章相似形的学习,以全等形和全等变换为基础,是全等三角形在边上的推广,比全等形更具有一般性,是前面学习图形全等的拓展和发展.本章内容是对三角形知识的进一步认识,是通过许多生活中的具体实例来研究相似图形的.在全等三角形的基础上,总结出相似三角形的判定方法和性质,使学过的知识得到巩固和提高.在学习过程中,按照研究对象的“一般→特殊→特殊位置关系”的顺序展开研究.首先,教科书从现实世界中形状相同的物体谈起,然后把研究对象确定为形状相同的图形——相似图形,举例说明了放大、缩小两种操作与相似图形之间的关系.接着教科书把研究对象缩小为特殊的相似图形——相似多边形,由相似多边形的定义推出了相似多边形的性质.对于相似多边形的判定,教科书以三角形为载体进行研究,此外,还研究了相似三角形的其他性质和应用.最后,教科书研究了一种具有特殊位置关系的相似图形——位似图形.本章的知识不仅将在后面学习“锐角三角函数”和“投影与视图”时得到应用,而且对于建筑设计、测量、绘图等实际工作也具有重要价值.在本章中,相似三角形的判定和性质是本章的重点内容,相似三角形判定定理的证明是本章的难点内容.此外,综合应用相似三角形的判定和性质,以及学生前面学过的平行线、全等三角形、平行四边形等知识解决问题(包括实际问题)也是本章的一个难点.为了降低学生在推理论证方面的难度,本章加强了证明思路的引导,或者用分析法分析出由条件到结论必需的转化,或者提示了证明的关键环节;为了降低学生在解决实际问题中的难度,本章专门设置了相似三角形应用举例,从不同角度为解决实际问题作出示范.【重点】1.相似三角形的判定与性质及应用判定和性质解决问题.2.位似图形的性质及画法.【难点】1.相似三角形的判定定理的证明.2.位似变换的坐标表示.1.初中数学从《全等三角形》开始,已经进入了推理证明阶段,本章的学习在已有的基础上继续进行必要的推理证明,本章的证明所涉及的问题不仅包含相似的知识,也有很多是和三角形、全等、平行、勾股定理、平面直角坐标系等知识融合在一起的,例如相似三角形判定定理的证明中利用了全等三角形作为“桥梁”,性质的证明借助了代数运算,因此推理论证的难度提高了.教学时应注意帮助学生复习已有的知识,做到以新带旧、新旧结合;也要注意以具体问题为载体,加强证明思路的引导,帮助学生确定证明的关键环节,指导学生写出完整的证明过程.同时注意根据教学内容及时安排相应的训练,让学生能够逐步达到独立分析、完成证明.2.学生通过前面对三角形、四边形、圆等几何图形的学习,对于研究几何图形的基本问题、思路和方法已经形成了一定的认识.本章教学中要充分利用学生已有的研究几何图形的经验,用研究几何图形的基本套路贯穿全章的教学.例如,在教授本章之前,可以让学生类比对全等三角形研究的主要内容,提出对形状相同、大小不同的三角形应研究的主要问题和方法,构建本章内容的基本线索,使他们对将学习的内容做到心中有数.因此本章在教学相似三角形的性质之前,可以先让学生自己发现性质,再给出证明.3.相似是生活中常见的现象,日常生活中存在着相似的例子,相似图形的性质在实际生活中有着广泛的应用,能直接应用相似三角形的判定和性质的实例很多,教材中融入了许多实际背景问题,所以在教学中要注重数学与实际生活的联系,每个课时都让学生体会数学来源于生活,又应用到生活中去.27.1 图形的相似2课时27.2 相似三角形27.2.1相似三角形的判定(3课时) 27.2.2相似三角形的性质(1课时) 27.2.3相似三角形应用举例(2课时)6课时27.3位似2课时单元概括整合1课时27.1图形的相似1.在具体生活实例中认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的特征,掌握相似图形的识别方法.3.了解成比例线段的含义,会判断是不是成比例线段.4.理解相似多边形的概念、性质及判定,并能计算和相似多边形有关的角度和线段的长.1.通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活密切联系,激发学生学习的兴趣.2.通过观察、测量、辨析、归纳等数学活动,经历相似多边形的概念的形成过程,体会由特殊到一般的数学思想方法.3.通过应用成比例线段定义及相似多边形的性质进行有关计算,体会方程思想在几何中的应用,渗透数形结合思想.1.通过观察识别相似图形,渗透生活和数学中美的教育.2.经历相似多边形概念的形成过程,培养学生的观察、推理能力,激发学生探究、发现数学问题的兴趣.3.在探索相似多边形的性质过程中,培养学生与他人交流、合作的意识和品质.4.在观察、操作、推理的探究过程中,体验数学活动充满探索性和创造性.【重点】1.理解并掌握相似图形、相似多边形的概念及特征.2.能利用成比例线段的概念及相似多边形的性质进行有关计算.【难点】1.理解相似图形的特征,掌握识别相似图形的方法.2.探索相似多边形的性质中的“对应”关系.第课时1.通过具体实例认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的性质定理,掌握相似图形的判定定理.1.通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活密切联系,激发学生学习兴趣.2.通过观察、测量、辨析、归纳等数学活动,经历相似图形的概念的形成过程,培养学生观察能力及归纳总结能力.1.通过观察识别相似图形,渗透生活和数学中美的教育.2.通过小组合作交流,培养学生共同探究的合作意识.3.通过识别生活中的相似图形,激发学生探究、发现数学问题的兴趣.【重点】理解并掌握相似图形的概念及特征.【难点】理解相似图形的特征,掌握识别相似图形的方法.【教师准备】多媒体课件1~2.【学生准备】预习教材P24~25.导入一:欣赏图片.【课件1展示】(1)汽车和它的模型(2)大小不同的两个足球(3)大小不同的两张照片【引导语】上面各组图片的共同之处是什么?这些图形涉及的就是我们这章要学习的相似形问题.导入二:请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星它们的形状、大小有什么关系?导入三:【复习提问】1.什么是全等形?全等形的形状和大小有什么关系?(能够完全重合的图形是全等形,全等形的形状相同、大小相等)2.判断下列图形是不是全等形?如何判断?(下列两幅图片均是全等形.判断依据:形状相同、大小相等)[设计意图]通过欣赏生活中的图片,让学生体会数学来源于生活,激发学生学习的兴趣,感受数学中的美.在欣赏国旗上的五角星时,对学生进行爱国主义思想教育.同时通过复习全等形的概念及全等形的判定,为本节课相似形的学习做铺垫.[过渡语]在上面的全等形的图片中放大或缩小其中一张图片,得到的图片与另一张图片的形状和大小有什么关系?通过今天的学习,我们将认识这一类图形.思路一【思考1】以上展示的图片之间有什么特点?它们的形状和大小有怎样的关系?【师生活动】学生观察思考,教师引导点拨它们形状相同、大小不等.共同归纳本节课学习重点——相似形的概念.【结论】形状相同的图形叫做相似图形.【思考2】全等形一定是相似图形吗?相似图形一定全等吗?它们之间有什么关系?【师生活动】学生通过观察导入中图片,独立思考后小组交流,教师对学生回答进行点评,归纳全等形与相似形之间的关系.【结论】全等图形是相似图形的一种特殊情况.全等图形一定相似,相似图形不一定全等.【思考3】你能举出现实生活中一些相似图形的例子吗?【师生活动】学生积极回答,通过生活中相似图形的实例巩固相似图形的概念,教师对思维活跃、积极参与的学生给予鼓励.思路二教师引导学生思考回答下列问题.(1)全等形的形状和大小之间有什么关系?(全等形的形状相同、大小相等)(2)观察上述图片,它们的形状和大小之间有什么关系?(形状相同、大小不等)(3)你能给出相似图形的定义吗?(形状相同的图形叫做相似形)(4)全等图形一定相似吗?相似图形一定全等吗?(全等图形一定相似,相似图形不一定全等)(5)归纳全等图形和相似图形之间的关系.(全等图形是相似图形的特例)(6)你能举出现实生活中一些相似图形的例子吗?【师生活动】学生在教师设置的问题下积极思考回答,教师及时点拨和引导,最后课件展示探究结论.【结论】形状相同的图形叫做相似图形.全等图形是相似图形的一种特殊情况.[设计意图]让学生亲自观察实际生活中的图形,在教师问题的引导下,进行分析、探究,根据图形特点归纳出相似形的概念,培养学生的观察能力,激发学生的求知欲望,经历相似形概念的形成过程,体会数学与生活息息相关.二、相似图形的特征【课件2展示】观察下列每组图形,是不是相似图形?【思考】(1)两个相似的平面图形之间有什么关系?(2)两个相似图形的主要特征是什么?(3)如何判定两个图形是相似图形?(4)相似图形的大小是不是一定相等?(5)相似图形是否可以看作其中一个图形是由另一个图形放大或缩小得到的?【师生活动】学生观察独立思考,小组合作交流,展示小组成果,教师点评,共同归纳相似图形的特征.【结论】相似图形的特征是:形状相同.两个图形的形状相同,则两个图形就是相似图形.相似图形的大小不一定相等,其中一个图形可以看作是由另一个图形放大或缩小得到的. [设计意图]让学生通过观察思考、合作交流,共同归纳出相似形的特征,培养学生的观察能力、归纳总结能力及合作交流的能力,激发学生学习的兴趣,加深学生对相似图形的概念的理解和掌握.三、例题讲解[过渡语]我们了解了相似形的概念和基本特征,让我们一起利用所学知识判断下列图形是不是相似图形.如图所示的是一个女孩从平面镜和哈哈镜里看到的自己的形象,这些镜中的形象相似吗?【思考】(1)在平面镜中的像与物体的形状 ,大小,则从平面镜里看到的自己的形象与女孩相似图形(填“是”或“不是”).(2)哈哈镜里看到的形象,有的被“压扁”了,有的被“拉长”了,所以哈哈镜中的像与物体的形状 ,大小,则从哈哈镜里看到的自己的形象与女孩相似图形(填“是”或“不是”).〔解析〕女孩从平面镜中看到的自己的形象是相似的;女孩从哈哈镜里看到的自己的形象不是相似的.〔答案〕(1)相同相等是(2)不同不相等不是【师生活动】学生独立思考回答,教师点评.观察下列图形,哪些是相似图形?第一组:第二组:【师生活动】教师引导、点拨、分析.要找出图中的相似图形,只要仔细观察每个图形特征,通过图形变化后是否具备“形状相同”这一特征.学生观察后回答即可.解:第一组图,图1,2,5是相似图形.第二组相似图形分别是:(1)和(8);(2)和(6);(3)和(7).[设计意图]通过经历对例题的探究过程,加深学生对相似形的基本特征的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.[知识拓展]所谓“形状相同”,就是与图形的大小、位置无关,与摆放角度、摆放方向也无关.有些图形之间虽然只有很小的形状差异,但也不能认为是“形状相同”.1.相似图形定义:形状相同的图形叫做相似图形.2.相似图形与全等形之间的关系.3.相似图形的特征:形状相同.1.下列四个命题:①所有的直角三角形都相似;②所有的等腰三角形都相似;③所有的正方形都相似;④所有的菱形都相似.其中正确的有()A.2个B.3个C.4个D.1个解析:所有的正方形的形状相同,所以③正确;直角三角形、等腰三角形、菱形的形状和内角有关,角度不同,图形的形状就不同,所以所有的直角三角形、所有的等腰三角形、所有的菱形不一定相似.故选D.2.下列图形是相似图形的是()A.①②③B.②③④C.①③④D.①②④解析:观察图形可得①②③中图形的形状相同.故选A.3.下列图形不是相似图形的是()A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体图案放大过程中原有图案和放大图案C.某人的侧身照片和正面照片D.大小不同的两张中国地图解析:某人的侧面照片和正面照片形状不相同,不是相似图形.故选C.4.如图所示,用放大镜将图形放大,应该属于()A.相似变换B.平移变换C.对称变换D.旋转变换解析:相似图形的形状相同,其中一个图形可以看作是由另一个图形放大或缩小得到的.所以用放大镜放大图形属于相似变换.故选A.第1课时1.认识相似图形2.相似图形的特征3.例题讲解例1例2一、教材作业【必做题】教材第25页练习第1,2题.【选做题】教材第27页习题27.1第4题.二、课后作业【基础巩固】1.下列图形中,相似的一组图形是()2.下列属性中,是相似图形的本质属性的是()A.大小不同B.大小相同C.形状相同D.形状不同3.下列图形中,不是相似图形的有()A.0组B.1组C.2组D.3组4.下列四组图形中,一定相似的是()A.正方形和矩形B.正方形和菱形C.菱形与菱形D.正五边形与正五边形5.如图所示的是小华拍摄的足球的照片,下列说法不正确的是()A.足球上所有“黑片”形状相同B.足球上所有“白片”形状相同C.足球上“黑片”“白片”形状相同D.足球上“黑片”“白片”形状不相同6.放大镜下的图形和原来的图形相似图形.哈哈镜中的图形和原来的图形相似图形(填“是”或“不是”).7.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角是80°的两个等腰三角形;⑤两个正六边形;⑥有一个内角是100°的两个等腰三角形.其中一定是相似图形的是.8.如图所示,各组图形中相似的是.(只填序号)9.在实际生活和数学学习中,我们常会看到许多形状相同的图形,下图中,形状相同的图形有哪几组?10.如何将图中的图形ABCDE放大,使新图形的各顶点仍在格点上?【能力提升】11.用一个10倍的放大镜看一个15°的角,看到的角的度数是.12.在实际生活和数学学习中,我们常会看到许多形状相同的图形,在下图中,形状相同的图形有哪些?【拓展探究】13.用相似图形设计美丽的图案.生活中有许多形状相同的图形,我们可以用相似图形设计出各种各样的美丽图案.例如:已知如图(1)所示的是由相似的直角三角形拼成的一个商标图案,请你参照此图案用相似图形设计出几个你喜欢的图案,并联系实际为你的设计取一个合适的名字. (下面举两例供参考,如图(2)所示)【答案与解析】1.D(解析:观察各图形,只有D中两个图形形状相同,大小不相等.故选D.)2.C(解析:相似图形的形状相同,但大小不一定相同,所以形状相同是相似图形的本质属性.故选C.)3.B(解析:(1)中形状相同,但大小不同,符合相似形的定义;(2)中形状相同,但大小不同,符合相似形的定义;(3)中形状不相同,不符合相似形的定义;(4)中形状相同,符合相似形的定义.故不是相似图形的有1组.故选B.)4.D(解析:正方形和矩形的形状不一定相同,所以不一定相似;正方形和菱形的对应角不一定相等,所以不一定相似;菱形与菱形对应角不一定相等,所以不一定相似;正五边形与正五边形的形状相同,所以两个图形相似.故选D.)5.C(解析:“黑片”是正五边形,“白片”是正六边形,两个图形的形状不相同.故选C.)6.是不是(解析:放大镜下的图形与原来的图形形状相同,大小不相等,所以是相似图形;哈哈镜中的图形与原来的图形形状不同,大小也不相等,所以不相似.)7.②⑤⑥(解析:两个平行四边形的角不一定相等,所以不一定相似;两个矩形的边不确定,所以不一定相似;80°的内角可能是顶角也可能是底角,所以形状不一定相同;两个圆、两个正六边形、一个内角是100°的两个等腰三角形的形状相同,所以图形相似.故填②⑤⑥.)8.②③(解析:观察图形可得:②③的形状相同,大小不相等.故填②③.)9.解:(1)中的左边图形是圆,右边图形是椭圆,形状不同;(2)中的左边是正六边形,右边不是正六边形,形状不同;(3)中的两个图形形状相同;(4)中的左边是长方形,右边的是正方形,形状不同;(5)中的两个图形形状相同;(6)中的左边是圆形脸,右边是椭圆形脸,形状不同,故(3),(5)组中的图形形状相同,(1),(2),(4),(6)组中的图形形状不同.10.如图所示.11.15°(解析:用放大镜看后的图形与原图形形状相同,大小不相等,角放大后度数不变.故填15°.)12.解:(1)和(3),(2)和(13),(4)和(11),(5)和(10),(6)(7)(8)和(9).13.解:答案不唯一,如图所示.本节课通过对生活中形状相同的图形的观察和欣赏导入新课,让学生体会数学来源于生活,激发学生学习的兴趣,同时感受数学和生活中的美,再让学生观察、思考、分析、探究,然后归纳结论,得出相似图形的特征,相似图形只与形状有关,与图形大小、位置无关,培养了学生观察事物的能力,提高了学生分析问题与归纳的能力,例题的探究让学生体会把实际问题转化为数学问题,获得成功的体验,在探究知识的形成过程中,学生积极参与,思维活跃,尤其在举生活中相似图形的实例时,学生发言积极,课堂气氛活跃,让课堂教学达到高潮.本节课比较简单,通过观察图形,形状相同的图形是相似图形,所以学生学习起来比较简单,所以学生在课堂上非常活跃,发言积极,虽然有些学生发言不够准确,但可以看出大家情绪高涨、积极思考的状态.但是在简单课时的教学中,忽略了学生能力的培养和知识的拓展,如在探究图形相似的特征后,可以让学生在网格图中画相似图形,培养学生动手操作能力.本节课的重点是通过欣赏图形,观察图形的特征,归纳总结相似图形的概念和特征,并能总结全等图形与相似图形之间的关系,由于课时内容较少,学生易于掌握,在教学时用多媒体多展示一些相似图形的图片,可以用一些图形不同的角度和方向的图片,培养学生的观察能力,同时在课堂上注重培养学生自主学习的能力,教师起到引导作用即可,让学生多参与、思考、归纳,通过小组合作交流,达到掌握知识的目的.练习(教材第25页)1.解:相似.2.解:(d)与(1)相似,(e)与(2)相似.(1)相似图形是现实生活中广泛存在的现象,本章是在研究了图形的全等及图形的一些变换后,进一步研究的一种变换——相似,本课时重点掌握相似图形的概念,可用大量的实例引入,让学生体会数学与实际生活之间的联系,通过学生观察、思考,得出相似图形的概念,但要注意教材中“形状相同的图形是相似图形”,只是对相似图形概念的一个描述,不是定义,还要强调:相似图形一定形状相同,与它的位置、颜色、大小无关;相似图形不仅仅指平面图形,也包括立体图形;两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.在教学中,要通过大量实例让学生观察、思考、归纳、辨析,从而理解和掌握相似图形的概念.(2)本节课内容比较简单,易理解掌握,所以在教学设计中注重培养学生的自主探究、合作交流能力,教师要大胆放手,学生通过自主学习,探索知识的形成过程,从而真正成为课堂的主人,享受成功的快乐.同时在课堂上注重培养学生的能力,如通过辨析图形是否为相似图形,探索相似图形的特征时,注重培养学生观察、分析问题、解决问题的能力.如图所示,下面右边的四个图形中,与左边的图形相似的是()〔解析〕因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B 是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180°后,再按一定比例缩小得到的,因此图C与左图相似.故选C.如图所示,下列四组图形中,两个图形相似的有A.1组B.2组C.3组D.4组〔解析〕观察图形可得,四组图形的形状都分别相同,只是大小不同,所以四组图形都是相似图形.故选D.第课时1.了解成比例线段的概念,会判断已知线段是否成比例.2.理解相似多边形的概念、性质及判定.3.能根据相似多边形的有关概念和性质进行判断及有关计算.1.通过观察、测量、辨析、归纳等数学活动,经历相似多边形的概念的形成过程,体会由特殊到一般的数学思想方法.2.通过应用成比例线段定义及相似多边形的性质进行有关计算,体会方程思想在几何中的应用,渗透数形结合思想.1.经历相似多边形概念的形成过程,培养学生的观察、推理能力,激发学生探究及发现数学问题的兴趣.2.在探索相似多边形性质的过程中,培养学生与他人交流、合作的意识和品质.在观察、操作、推理的探究过程中,体验数学活动充满探索性和创造性.【重点】1.理解并掌握相似多边形的概念及性质.2.能利用成比例线段的概念及相似多边形的性质进行有关计算.【难点】。
新人教版九年级下册-第27章-相似-全章教案
初三数学九(下)第二十七章:相似第1课时图形的相似(1)教学目标:1、知识目标:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.2、能力目标:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题.3、情感目标:在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点: 认识图形的相似.教学难点: 理解相似图形概念.一.创设情境活动1观察图片,体会相似图形同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?(课本图27.1-1)( 课本图27.1-2)师生活动: 教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.得到相似图形的概念.教师活动:什么是相似图形?学生活动:共同交流,得到相似图形的概念.学生归纳总结:(板书)形状相同的图形叫做相似图形在活动中,教师应重点关注:学生用数学的语言归纳相似图形的概念;活动2思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?学生活动: 学生观察思考,小组讨论回答;二. 通过练习巩固相似图形的概念活动3练习问题:1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形(1)或(2)相似的?教师活动:教师出示图片,提出问题;学生活动:学生看书观察,小组讨论后回答问题.教师活动:在活动中,教师应重点关注:在练习中检验学生对相似图形的几何直觉.三. 小结巩固活动3(1)谈谈本节课你有哪些收获.(2)课外作业1、下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.2、填空题1、形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。
课后反思:第2课时 图形的相似 (2)教学目标:1、 知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比; (2)掌握判定三角形相似的预备定理。
人教版数学九年级下册第27章《相似》课堂教学设计
人教版数学九年级下册第27章《相似》课堂教学设计一. 教材分析人教版数学九年级下册第27章《相似》主要介绍了相似图形的性质和判定。
本章内容是学生学习几何知识的重要环节,为后续学习函数、解析几何等知识点奠定基础。
本章内容涉及的概念和性质较多,学生需要通过实例理解和掌握相似图形的相关知识。
二. 学情分析九年级的学生已具备一定的几何知识基础,能理解并运用平行、相交、三角形、四边形等基本图形的性质。
但学生在学习过程中,对抽象概念的理解和运用仍有困难,需要通过具体实例和动手操作来加深理解。
此外,学生对数学语言的表达和逻辑推理能力有待提高。
三. 教学目标1.理解相似图形的概念,掌握相似图形的性质。
2.学会判定两个图形是否相似,并能运用相似性质解决实际问题。
3.培养学生的逻辑推理能力和数学语言表达能力。
四. 教学重难点1.相似图形的概念和性质。
2.判定两个图形相似的方法。
3.相似图形在实际问题中的应用。
五. 教学方法1.采用直观演示法,通过实物模型和几何画板软件展示相似图形的性质和判定。
2.运用案例分析法,让学生通过分析具体实例,理解和掌握相似图形的性质。
3.采用分组合作法,让学生在小组内讨论和探究相似图形的问题,培养学生的团队协作能力。
4.运用问答法,引导学生积极思考,提高学生的数学思维能力。
六. 教学准备1.准备相应的教案和教学课件。
2.准备实物模型和几何画板软件。
3.准备相关案例分析和练习题。
七. 教学过程1.导入(5分钟)通过展示实物模型和几何画板软件,引导学生观察和分析,提出问题:“这些图形有什么共同特点?”让学生思考和讨论,引出相似图形的概念。
2.呈现(10分钟)讲解相似图形的定义和性质,通过实例和几何画板软件展示相似图形的判定方法。
引导学生理解和掌握相似图形的性质。
3.操练(10分钟)让学生分组讨论,分析给定的图形,判断它们是否相似。
每组选取一个代表进行回答,教师点评并给予指导。
4.巩固(10分钟)让学生运用相似图形的性质解决实际问题,如计算图形面积、比例问题等。
人教版九年级数学下册: 27.2.1《相似三角形的判定》教学设计4
人教版九年级数学下册: 27.2.1《相似三角形的判定》教学设计4一. 教材分析人教版九年级数学下册第27.2.1节《相似三角形的判定》是初中数学的重要内容,是学生进一步学习几何学的基石。
本节内容通过引导学生探究相似三角形的判定方法,培养学生的逻辑思维能力和空间想象能力。
教材通过丰富的实例和循序渐进的问题,使学生掌握AA、SAS、ASA、SSS四种判定方法,并能运用这些方法解决实际问题。
二. 学情分析九年级的学生已具备一定的基础知识和数学思维能力,但仍有部分学生对几何图形的认识和判定方法不够清晰。
针对这一情况,教师在教学过程中要关注学生的个体差异,引导学生通过实际操作和思考,深入理解相似三角形的判定方法,提高他们的数学应用能力。
三. 教学目标1.让学生掌握AA、SAS、ASA、SSS四种相似三角形的判定方法。
2.培养学生运用相似三角形的判定方法解决实际问题的能力。
3.提高学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.重点:掌握AA、SAS、ASA、SSS四种相似三角形的判定方法。
2.难点:灵活运用判定方法解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生探究相似三角形的判定方法。
2.利用直观演示法,让学生通过观察和操作,加深对相似三角形判定方法的理解。
3.运用实例分析法,培养学生解决实际问题的能力。
4.采用小组合作学习法,提高学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关教学课件和教学素材。
2.准备几何模型和教具,以便进行直观演示。
3.设计具有代表性的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入相似三角形的概念,激发学生的学习兴趣。
2.呈现(10分钟)呈现教材中关于相似三角形判定方法的内容,引导学生观察和思考。
3.操练(10分钟)让学生分组进行实际操作,运用判定方法判断给定的三角形是否相似。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生自主完成教材中的练习题,巩固所学知识。
人教版九年级数学下册27.2.1相似三角形的判定(教案)
2.案例分析:接下来,我们来看一个具体的案例。通过这个案例,展示相似三角形在实际中的应用,以及如何利用判定定理来解决问题。
3.重点难点解析:在讲授过程中,我会特别强调AAA、AA、SAS相似判定定理这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
人教版九年级数学下册27.2.1相似三角形的判定(教案)
一、教学内容
人教版九年级数学下册第27章第二节,27.2.1相似三角形的判定:
1.掌握相似三角形的定义及性质。
2.学习并掌握AAA(角角角)相似判定定理、AA(角角)相似判定定理、SAS(边角边)相似判定定理。
3.能够运用相似三角形的判定定理解决实际问题。
此外,我在教学过程中也注意到了一些同学在解决实际问题时,仍然存在困难。这让我意识到,在今后的教学中,要更加注重培养同学们的数学建模素养,让他们学会从实际问题中抽象出数学模型,并运用所学知识解决问题。
-能够运用相似三角形的判定定理进行几何问题的证明和计算。
-通过实际案例分析,让学生感受相似三角形在实际问题中的应用。
举例解释:重点在于学生能够准确理解相似三角形的定义,并能够运用判定定理。例如,通过具体图形,讲解AAA相似判定定理,强调当三角形的三个角分别相等时,可以判定两个三角形相似。
2.教学难点
同学们,今天我们将要学习的是《相似三角形的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个三角形看起来很相似,但不知道如何证明的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形的判定方法。
第27章相似三角形-相似三角形中怎样找对应边教案
此外,学生小组讨论的环节让我感到欣慰。他们能够围绕相似三角形在实际生活中的应用提出自己的观点,并进行深入的交流。但在引导讨论的过程中,我发现有些学生对于开放性问题的回答不够自信,这可能是因为他们在批判性思维和创造性思维方面还有待提高。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的基本概念、判定方法以及在实际问题中的应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
第27章相似三角形-相似三角形中怎样找对应边教案
一、教学内容
第27章相似三角形-相似三角形中怎样找对应边教案:
1.知识点一:相似三角形的定义及性质
-列举相似三角形的定义及性质,如对应角相等、对应边成比例等。
2.知识点二:相似三角形的判定方法
人教版九年级下册数学第27章 相似 【教案】 用边角关系判定三角形相似
27.2.5 用边角关系判定三角形相似
〔教学目标〕
1.掌握判定两个三角形相似的方法:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
2.培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法2与全等三角形判定方法(SAS)的区别与联系,体验事物间特殊与一般的关系。
3.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
〔教学重点与难点〕
重点:两个三角形相似的判定方法2及其应用
难点:探究两个三角形相似判定方法2的过程
〔教学设计〕
设计思想:
本节课主要是探究相似三角形的判定方法2,由于上节课已经学习了探究两个三角形相似的判定引例﹑判定方法1,而本节课内容在探究方法上又具有一定的相似性,因此本教学设计注意方法上的“新旧联系”,以帮助学生形成认知上的正迁移。
此外,由于判定方法2的条件“相应的夹角相等”在应用中容易让学生忽视,所以教学设计采用了“小组讨论+集中展示反例”的学习形式来加深学生的印象。
人教版九年级数学下册第27章相似相似三角形相似三角形的性质研究课导教案
人教版九年级数学下册第27章相似相似三角形相似三角形的性质研究课导教案教学目的知识与技艺:1.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方;2.可以运用相似三角形的性质定理处置相关效果.进程与方法:经过观察、猜想、类比等活动,进一步提高先生的思想才干和推实际证才干.情感、态度与价值观:经过对性质的发现和论证,提高学习热情,增强探求看法.教学重点相似三角形性质定理的了解与运用.教学难点探求相似三角形面积的性质,并运用相似三角形的性质定理处置效果.教学流程一、温习引入1.相似三角形的判定方法有哪些?2.曾经知道了哪些相似三角形的性质,依据是什么?3.除了角度和边长三角形中还有哪些几何量?效果:假设两个三角形相似,那么它们的这些几何量之间有什么关系呢?引出课题:明天,我们就来研讨相似三角形的这些几何量之间的关系.二新知探求:如图1,△ABC∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少.图1图2效果1:如图2,△ABC ∽△A ′B ′C ′,相似比为k ,区分作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.AD 和A ′D ′的比是多少?追问:对应高在哪两个三角形中,它们相似吗?如何证明?解:∵△ABC ∽△A ′B ′C ′∴∠B =∠B ′∵△ABD 和△A ′B ′D ′都是直角三角形∴△ABD ∽△A ′B ′D ′效果2:它们的对应中线、角平分线的比能否也等于相似k ?结论:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.练习1:1. 两个相似三角形的相似比为1∶3,它们的对应高的比为 ,对应中线的比为 ,对应角平分线的比为 。
2. 假设两个相似三角形对应高的比为4∶5,那么这两个相似三角形的相似比是 ,对应中线的比是 ,对应角平分线的比为 。
3. 如图,在ΔABC 中,DE ∥BC ,AF ⊥BC ,交DE 于点G , A 假定DE=3cm,BC=5cm,AF=4cm, DE 那么AG= cm 。
九年级数学下册第27章相似教案 (4)
年级九年级课题27.1 图形的相似课型新授教学媒体多媒体教学目标知识技能1.使学生理解并掌握两个图形相似的概念,理解相似形的特征,掌握相似形的识别方法;2.掌握相似多边形的特征,会根据相似多边形的特征识别两个多变形是否相似,并能运用相似多边形的性质进行相关计算.过程方法观察生活中的形状形同的图形,学生初步认识理解相似形的概念,在此基础上理解相似形的特征,进一步掌握相似形的识别方法,发展学生的归纳,类比、反思、交流、的能力,提高数学思维水平.情感态度培养学生的观察能力,激发学生的探究的兴趣和欲望,并进行美育渗透.教学重点理解并掌握两个图形相似的概念及特征.教学难点理解相似形的特征,掌握识别相似图形的方法,能运用相似多边形的特征进行相关的计算.教学过程设计教学程序及教学内容师生行为设计意图情境引入欣赏下面4组图片,说说你的想法引出本章,及本节课题二、自主探究(一)相似图形1.类比上面几幅图片,再举一些其它例子.2.这些图片有什么共同特征?3.从平面镜和哈哈镜里看到的不同镜像,它们相似吗?4.已学习过的几何图形中有没有相似的?自己设计一些相似图形,在与同学交流一下.5.完成课本25页练习.(二)相似多边形1.观察正△ABC和正△'''CBA中,它们的对应角有什么关系?对应边呢?2.能否说任意两个正三角形都相似?3.阅读课本26页中的方框旁注,比例线段的特点是什么?教师展示图片并提出问题,学生观察,思考.教师引导点拨:它们的形状相同,大小不等,学生总结归纳,初步感知相似图形的基本特征.学生根据生活经验举例,进一步理解相似,教师组织学生以小组形式进行讨论,探究这些图片的共同特征学生完成练习,之后订正,师生达成共识教师设计问题,学生思考分析,理解相似多边形概念激起学生的好奇心,探索欲望,初步感受相似,引入本节课.让学生亲自进行观察,分析,探究,得到结论,举出生活中的实例,培养学生的观察能力,体验数学与生活的密切关系.学生通过思考回答教师提出的问题,初步感知相似多边形及其的特征,为后续学习做铺垫21123年 级 九年级 课题27.2.1相似三角形的判定(第一课时)课型 新授教学媒体 多媒体教 学 目 标知识 技能3. 了解相似三角形及相似比的概念; 4. 掌握平行线分线段成比例定理和推论;5. 掌握相似三角形两种判定方法:平行线法,三边法.过程 方法 类比全等三角形的判定方法探究相似三角形的判定,体会特殊与一般的关系,从而掌握相似三角形的判定方法. 情感 态度发展学生的探究能力,渗透类比思想,体会特殊与一般的关系.教学重点 掌握相似三角形的概念,能运用相似三角形的判定方法判定两个三角形相似. 教学难点能运用相似三角形的判定方法判定两个三角形相似教学程序及教学内容师生行为 设计意图一、复习引入1.什么是相似多边形?2.怎样判断两个多边形相似?3.三角形也属于多边形吗?相似三角形属于相似多边形吗?4.给相似三角形下定义.5.怎么样判断两个三角形相似? 二、自主探究(一)平行线分线段成比例定理及其推论教材29页探究● 平行线分线段成比例定理 分析:1.线段AB,BC,DE,EF 的长度随着直线5,43,l l l 的位置的变化而变化吗?2.猜测BCAB 与EFDE 相等吗?3.通过画图,测量,计算验证你的猜想.4.用数学语言描述你的发现. 得到:平行线分线段成比例定理教师点拨:其它成比例的线段还有哪些?实际上,线段左上、左下、左全,右上、右下、右全只要写在对应位置, 所得比就是相等的. ●平行线分线段成比例定理的推论1.定理图形中的直线21,l l 交点在直线43,l l 上时,对应线段还成比例吗?2.擦去四周的部分,只留下△ABC 和△ADE ,原来的对应线段还成比例吗?你可以得到什么结论?得到:平行线分线段成比例定理构的推论 (二)相似三角形的判定方法 ●平行线法在上面的两幅图形中,△ABC 和△ADE 相似吗?你能用学过的知识说明吗? 教师提出问题,学生回忆,思考,并回答 教师组织学生按照探究要求进行活动,并回答教师设计的问题,逐步完善探究到的结论.教师进行必要点拨,让学生认识到所有的成比例线段以及他们的内在联系. 教师利用图形的变化自然将教学内容过渡到推论的探究,引导学生思考问题,逐步认识到定理内容在三角形中体现,从而得到推论,学生尝试叙述,教师引导完善,规范.复习相关知识,引出课题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27章《相似三角形判定》第四课时教案
教学目标:
1、掌握“两角对应相等,两个三角形相似”这一判定三角形相似的方法以及直角三角形所特有的相似的判定方法。
2、能够运用三角形相似解决简单问题
3、让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力。
教学重点:两个三角形相似的两个判定定理3及直角三角形所特有的相似判定方法的应用。
教学难点:探究两个判定定理的过程
教学方法:讲授法
教具:黑板、多媒体、三角板、量角器
教学过程设计:
一复习回顾
问题1:我们已经学习过哪些判定三角形相似的方法呢?
定义,预备定理,判定定理1,判定定理2
二新知探究
1、观察你与老师的直角三角尺(60°与30°),它们相似吗?
2、这两个三角形的三个内角的大小有什么关系?
3、与你的同桌各画一个三角形,使三个角分别为60°,45°, 75°。
(1)同桌分别度量所画三角形三边的长度,并计算对应边的比值;
(2)经过计算,你发现你与同桌所画的三角形有什么关系?
4、刚才所画的三角形满足的条件是。
5、两个三角形一定需要三组角对应相等才能相似吗?你认为满足什么条件就可以了?
我的猜想是。
6、把这个猜想的已知和结论结合下面的图形写下来,并进行证明。
7、结论
文字语言:如果一个三角形的两个角与另一个三角形的两个角相等,那么这两个三角形相似。
几何语言:
三典型例题
例1、如图,弦AB和CD相交于⊙O内一点P,求证:PA·PB=PC·PD
经验积累:
(1)等积式→→→。
(2)根据等比式找三角形相似时,可以横着找,也可以竖着找。
1、基础训练
(1)如图所示,点D是⊿ABC中AC边上一点。
①若∠1= ,则⊿CBD∽⊿CAB;
②若∠2= ,则⊿CBD∽⊿CAB;
③若,则⊿CBD∽⊿CAB;
(2)如图所示,如果∠B=∠C,那么∽,
∽。
(3)如图,Rt⊿ABC中,CD是斜边上的高,那么图形中相似的三角形有∽,∽,∽。
问题1:对于判定两个直角三角形相似来说,一般三角形的判定方法中的条件还能不能再减少?
能,除了直角外,再知道任何一个角对应相等即可,或把判定定理2简化为“任何两条直角边的比相等,则它们相似”
问题2:直角三角形作为特殊的三角形,在判定相似时,是否还有特殊的方法?请同学们根据直角三角形全等的特殊判定方法做出猜想
问题3:同学们能证明这个猜想吗?
(略)
判定定理:在直角三角形中,斜边的比与一直角边的比对应相等的两个直角三角形相似。
符号语言:
例2、已知,如图,矩形ABCD中,E为BC上的一点,DF⊥AE与F,若AB=4,AD=5,AE=6,求DF的长
四当堂训练
1、如图,P为AB上一点,在下列条件中:(1)∠ACP=∠B;
(2) ∠APC=∠ACB;(3);(4),
能使△APC∽△ACB的条件是。
3、如图,在⊿ABC中,点D在AB上,E在AC上,若∠C=∠ADE,
且AB=5,AC=4,AD=x,AE=y,则y与x的函数关系是
4、如图所示,已知∠1=∠2=∠3,则下列关系式正确的是()
A B
C D
5、如图,已知CD是斜边Rt⊿ABC的斜边上的高线,其中AD=9cm,BD=4cm,那么CD等于 cm.
6、如图,已知⊙O的弦AB、CD相交于P,AP=6,BP=2,CP=4,则PD= 。
五、总结反思
(1)判定定理2:两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似
(2)思想:类比,转化思想
六、作业。