专题四数列推理与证明第1讲等差数列与等比数列课件 文 2018年高考数学二轮复习

合集下载

最新-2018高考数学二轮复习 专题三:第一讲等差数列与等比数列 文 课件 精品

最新-2018高考数学二轮复习 专题三:第一讲等差数列与等比数列 文 课件 精品

②法一:依题意有:Sn=na1+nn- 2 1d
=-n2+4n=-(n-2)2+4. ∴当n=2时,Sn有最大值4. 法二:∵an=-2n+5. ∴该数列为递减数列,设其前n项和最大,则有
an≥0
,即-2n+5≥0

an+1<0
-2n+1+5<0
∴23<n≤25.又∵n∈N*,∴n=2, ∴{an}的前2项和最大,最大值 S2=2a1+2×2 1d=2×3-2=4. 答案:(1)n2-2n+6 (2)见解析
数列{an}满足________(其中n∈N*,d为与n值无关且为常数)
{an}是等差数列.
2.等差数列的通项公式
若等差数列的首项为a1,公差为d,则an=a1+________= am+________(n,m∈N*).
3.等差中项
若x,A,y成等差数列,则A=________,其中A为x、y的等
高分突破
有关等差数列的基本问题
(1)将全体正整数排成一个三角形数阵: 1
23 456 7 8 9 10 根据以上排列的规律,数阵中第n行(n≥3)从左向右的 第3个数为________. (2)已知{an}是一个等差数列,且a2=1,a5=-5. ①求{an}的通项an; ②求{an}的前n项和Sn的最大值.
等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数 列
(1)求{an}的公比q; (2)若a1-a3=3,求Sn
解析:(1)依题意有
a1+(a1+a1q)=2(a1+a1q+a1q2), 由于a1≠0,故2q2+q=0,又q≠0,从而q=-
21.
(2)由已知可得a1-a1-212=3故a1=4,
②-①得:ban+1-ban-2n=(b-1)an+1. 即an+1=ban+2n.③ (1)当b=2时,由③得an+1=2an+2n, ∴an+1-(n+1)·2n=2an+2n-(n+1)·2n =即2a(n+aa1nn---nnn·+2=·n2-121n·-,2n1又).∵a1-1·21-1=1≠0, ∴{an-n·2n-1}是首项为1,公比为2的等比数列. (2)当b=2时,由(1)知,an-n·2n-1=2n-1, ∴an=(n+1)·2n-1. 当b≠2时,由③知:

2019届高考数学二轮复习第一篇专题四数列第1讲等差数列与等比数列课件理ppt版本

2019届高考数学二轮复习第一篇专题四数列第1讲等差数列与等比数列课件理ppt版本

巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一
座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔
的顶层共有灯(
)
B
(A)1盏
(B)3盏
(C)5盏
(D)9盏
解析:依题意可知, S7=381,q=2,
所以 S7= a1 1 27 =381, 1 2 解得 a1=3.故选 B.
(2)求Sn,并求Sn的最小值.
解:(2)由(1)得 Sn= a1 an ·n=n2-8n=(n-4)2-16. 2
所以当 n=4 时,Sn 取得最小值,最小值为-16.
考情分析
1.考查角度 考查等差数列、等比数列基本量的计算,考查等差数列、等比数列性质的 应用,考查等差数列、等比数列的判断与证明等. 2.题型及难易度 选择题、填空题、解答题均有,难度中等偏下.
2
方法技巧
解等差数列、等比数列基本运算问题的基本思想是方程思想,即通过等差 数列、等比数列的通项公式及前n项和公式得出基本量(等差数列的首项和 公差、等比数列的首项和公比),然后再通过相关公式求得结果.
热点训练 1:(1)(2018·柳州一模)《九章算术》第三章“衰分”介绍比例分配 问题:“衰分”是按比例递减分配 的意思,通常称递减的比例(即百分比)为“衰 分比”,今共有粮 98 石,按甲、乙、丙的顺序进行“衰分”,已知乙分得 28 石, 则“衰分比”为( )
3.(2016·全国Ⅰ卷,理3)已知等差数列{an}前9项的和为27,a10=8,则a100等于 ( C)
(A)100
(B)99
(C)98 (D)97
解析:
9a1

98 2
d

2018年高考数学二轮复习专题四数列推理与证明第1讲等差数列与等比数列专题突破讲义文

2018年高考数学二轮复习专题四数列推理与证明第1讲等差数列与等比数列专题突破讲义文

第讲等差数列与等比数列.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现..数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.热点一等差数列、等比数列的运算.通项公式等差数列:=+(-);等比数列:=·-..求和公式等差数列:==+;等比数列:==(≠)..性质若+=+,在等差数列中+=+;在等比数列中·=·.例()(届江西师大附中、临川一中联考)已知数列,满足=,∈*,其中是等差数列,且=,则+++…+等于( )... )答案解析由题设可得+=,即+=,由等差数列的通项的性质,可得+=+=,所以+++…+=(+ ()=,故选.()(届四川省成都市诊断性检测)在等比数列{}中,已知=, ++=,则等于( )....答案解析由于++=++=(++)=,得+-=,得=或=-(舍去),则==×=,故选.思维升华在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于和()的方程组求解,但要注意消元法及整体计算,以减少计算量.跟踪演练()(·河北省曲周县第一中学模拟)设等差数列{}的前项和为,若=-,=,则等于( )..-..答案解析由题设可得(\\(+(×)=-,+(×)=))⇒(\\(=-,=,))则=-×+×=,故选.()(届长沙一模)等比数列的公比为-,则))-))=.答案解析))-))=)))== .热点二等差数列、等比数列的判定与证明数列{}是等差数列或等比数列的证明方法()证明数列{}是等差数列的两种基本方法:①利用定义,证明+-(∈*)为一常数;②利用等差中项,即证明=-++(≥).()证明{}是等比数列的两种基本方法①利用定义,证明(∈*)为一常数;②利用等比中项,即证明=-+(≥).例(届东北三省三校联考)已知数列{}满足=,+=-+,数列{}满足=,+=+-.()证明:{-}为等比数列;()数列{}满足=,求数列{}的前项和.()证明∵+=-+,∴+-(+)=(-),又-=,∴{-}是以为首项,为公比的等比数列.()解由()知-=(-)·-=,∵+=+-,∴+-=,(\\(-=,-=,,…,--=-,))。

2018年高考数学二轮总复习 第一部分 专题攻略 专题四 数列 4.1 等差数列与等比数列课件 文

2018年高考数学二轮总复习 第一部分 专题攻略 专题四 数列 4.1 等差数列与等比数列课件 文
较强,同时还要注意性质成立的条件,如等差数列{an}中,a1+an =a2+an-1,但 a1+an≠an+1;等比数列的前 n 项和为 Sn,则在公比 不等于-1 或 m 不为偶数时,Sm,S2m-Sm,S3m-S2m,…成等比数 列.
4.(2017·山西运城联考)已知在等比数列{an}中,a2a10=6a6, 在等差数列{bn}中,b4+b6=a6,则数列{bn}的前 9 项和为( )
TS59=(
)
3
5
1
27
A.5
B.9
C.3
D.25
解析:由{an}为等差数列可得 S5=5a12+a5=5×22a3=5a3. 同理可得 T9=9b5.
所以TS59=95ba53=59×35=13.故选 C. 答案:C
6.一个项数为偶数的等比数列{an},全部各项之和为偶数项之 和的 4 倍,前 3 项之积为 64,则 a1=( )
答案:A
2.(2017·武汉市武昌区调研考试)设公比为 q(q>0)的等比数列 {an}的前 n 项和为 Sn.若 S2=3a2+2,S4=3a4+2,则 a1=( )
A.-2 B.-1
1
2
C.2
D.3
解析:由 S2=3a2+2,S4=3a4+2 得 a3+a4=3a4-3a2,即 q+ q2=3q2-3,解得 q=-1(舍)或 q=32,将 q=32代入 S2=3a2+2 中得 a1+32a1=3×32a1+2,解得 a1=-1,故选 B.
1.(2017·课标全国卷Ⅲ)等差数列an的首项为 1,公差不为 0.
若 a2,a3,a6 成等比数列,则an前 6 项的和为(
)
A.-24 B.-3
C.3
D.8

专题四第1讲:等差数列、等比数列

专题四第1讲:等差数列、等比数列

专题四 数列第一讲 等差数列、等比数列考点一 等差、等比数列的基本运算1.等差数列的通项公式及前n 项和公式a n =a 1+(n -1)d ; S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列的通项公式及前n 项和公式a n =a 1q n -1(q ≠0);S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q =a 1-a n q1-q (q ≠1).[对点训练]1.在等差数列{a n }中,已知a 5+a 10=12,则3a 7+a 9=( ) A .12 B .18 C .24 D .30[解析] 设等差数列{a n }的首项为a 1,公差为d , 因为a 5+a 10=12, 所以2a 1+13d =12,所以3a 7+a 9=3(a 1+6d )+a 1+8d =4a 1+26d =2(2a 1+13d )=2×12=24. [答案] C2.(2018·山东青岛模拟)公差不为0的等差数列{a n }的前n 项和为S n ,若a 6=3a 4,且S 9=λa 4,则λ的值为( )A .18B .20C .21D .25[解析]设公差为d ,由a 6=3a 4,且S 9=λa 4,得⎩⎪⎨⎪⎧a 1+5d =3a 1+9d ,9a 1+9×8d2=λa 1+3λd ,解得λ=18,故选A.[答案] A3.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.18[解析] 设等比数列{a n }的公比为q ,由a 1=14,a 3a 5=4(a 4-1),可知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4⎝ ⎛⎭⎪⎫14×q 3-1,∴q 6-16q 3+64=0,∴(q 3-8)2=0,即q 3=8,∴q =2,∴a 2=12,故选C.[答案] C4.在等比数列{a n }中,若a 4-a 2=6,a 5-a 1=15,则a 3=________.[解析] 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1q 3-a 1q =6,a 1q 4-a 1=15,两式相除,得q1+q 2=25,即2q 2-5q +2=0,解得q =2或q =12.所以⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=-16,q =12.故a 3=4或a 3=-4.[答案] 4或-4[快速审题] 看到求项、求和,想到求a 1,d ,q 及通项公式、前n 项和公式.等差(比)数列的运算注意两点(1)在等差(比)数列中,首项a 1和公差d (公比q )是两个最基本的元素.(2)在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a 1和d (q )的方程组求解,但要注意消元法及整体计算,以减少计算量.考点二 等差、等比数列的性质[对点训练]1.(2018·山西太原一模)已知等差数列{a n }的前n 项和为S n ,若a 2+a 3+a 10=9,则S 9=( )A .3B .9C .18D .27[解析] 设等差数列{a n }的公差为d ,∵a 2+a 3+a 10=9,∴3a 1+12d =9,即a 1+4d =3,∴a 5=3,∴S 9=9(a 1+a 9)2=9a 5=27,故选D.[答案] D2.(2018·山东菏泽一模)在等比数列{a n }中,a 2,a 16是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( ) A .2 B .- 2 C. 2 D .-2或 2[解析] 设等比数列{a n }的公比为q ,由a 2,a 16是方程x 2+6x +2=0的根,可得a 2a 16=2,所以a 29=2,则a 2a 16a 9=a 9=±2,故选D.[答案] D3.(2018·合肥模拟)设等比数列{a n }的前n 项和为S n ,若S 5=1,S 10=3,则S 15的值是________.[解析]∵数列{a n}是等比数列,∴S5,S10-S5,S15-S10成等比数列,∴(S10-S5)2=S5·(S15-S10),4=1×(S15-3),得S15=7.[答案]7[探究追问] 3题中条件不变,如何求S100的值?[解析]在等比数列{a n}中,S5,S10-S5,S15-S10,…成等比数列,因为S5=1,S10=3,所以S100可表示为等比数列1,2,4,…的前20项和,故S100=1×(1-220)1-2=220-1.[答案]220-1[快速审题] 看到等差、等比数列,想到等差、等比数列项的性质、和的性质.等差(比)数列性质应用策略解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.考点三等差、等比数列的判定与证明1.证明数列{a n}是等差数列的两种基本方法(1)利用定义,证明a n+1-a n(n∈N*)为一常数;(2)利用等差中项,即证明2a n=a n-1+a n+1(n≥2).2.证明数列{a n}是等比数列的两种基本方法[解] (1)证明:由a 1=1,及S n +1=4a n +2, 有a 1+a 2=4a 1+2,a 2=3a 1+2=5, ∴b 1=a 2-2a 1=3. 由S n +1=4a n +2①知当n ≥2时,有S n =4a n -1+2② ①-②得a n +1=4a n -4a n -1, ∴a n +1-2a n =2(a n -2a n -1) 又∵b n =a n +1-2a n ,∴b n =2b n -1,∴{b n }是首项b 1=3,公比为2的等比数列. (2)由(1)可得b n =a n +1-2a n =3·2n -1, ∴a n +12n +1-a n 2n =34, ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)×34=34n -14,a n =(3n -1)·2n -2.等差、等比数列的判定与证明应注意的两点(1)判断一个数列是等差(比)数列,也可以利用通项公式及前n 项和公式的特征,但不能作为证明方法.(2)a n +1a n=q 和a 2n =a n -1a n +1(n ≥2)都是数列{a n }为等比数列的必要不充分条件,判断时还要看各项是否为零.[对点训练]若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.[解] (1)证明:当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)由(1)可得1S n =2n ,∴S n =12n ,当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12[解析] 解法一:设等差数列{a n }的公差为d ,∵3S 3=S 2+S 4,∴3⎝ ⎛⎭⎪⎫3a 1+3×22d =2a 1+d +4a 1+4×32d ,解得d =-32a 1,∵a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10,故选B.解法二:设等差数列{a n }的公差为d ,∵3S 3=S 2+S 4,∴3S 3=S 3-a 3+S 3+a 4,∴S 3=a 4-a 3,∴3a 1+3×22d =d ,∵a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10,故选B.[答案] B2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8[解析] 解法一:等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,得d =4,故选C.解法二:由已知条件和等差数列的通项公式与前n 项和公式可列方程组,得⎩⎪⎨⎪⎧2a 1+7d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得⎩⎪⎨⎪⎧a 1=-2,d =4,故选C.[答案] C3.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8[解析] 设等差数列{a n }的公差为d ,依题意得a 23=a 2·a 6,即(1+2d )2=(1+d )(1+5d ),解得d =-2或d =0(舍去),又a 1=1,∴S 6=6×1+6×52×(-2)=-24,故选A.[答案] A4.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B.322f C.1225f D.1227f[解析] 由题意知,十三个单音的频率构成首项为f ,公比为122的等比数列,设该等比数列为{a n },则a 8=a 1q 7,即a 8=1227f ,故选D.[答案] D5.(2017·江苏卷)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.[解析] 设等比数列{a n }的公比为q .当q =1时,S 3=3a 1,S 6=6a 1=2S 3,不符合题意,∴q ≠1,由题设可得⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2,∴a 8=a 1q 7=14×27=32.[答案] 32高考主要考查两种基本数列(等差数列、等比数列),该部分以选择题、填空题为主,在4~7题的位置或13~14题的位置,难度不大,以两类数列的基本运算和基本性质为主.热点课题10 数列中的最值问题[感悟体验]1.(2018·江西五校联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1、S 2、…、S 9中最小的是( )A .S 5B .S 6C .S 7D .S 8 [解析] 在等差数列{a n }中, ∵a 3+a 8>0,S 9<0, ∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0, ∴a 5<0,a 6>0,∴S 1、S 2、…、S 9中最小的是S 5,故选A. [答案] A2.(2018·山东青岛模拟)已知a n =n -2017n -2018(n ∈N *),则在数列{a n }的前50项中,最小项和最大项分别是( )A.a1,a50B.a1,a44 C.a45,a50D.a44,a45[解析]a n=n-2017n-2018=n-2018+2018-2017n-2018=1+2018-2017n-2018.结合函数y=a+cx-b(c>0)的图象,要使a n最大,则需n-2018最小且n-2018>0,∴当n=45时,a n最大,当n=44时,a n最小,故选D.[答案] D专题跟踪训练(十八)一、选择题1.(2018·长郡中学摸底)已知等差数列{a n}的前n项和为S n,若a4+a12-a8=8,a10-a6=4,则S23=( )A.23 B.96 C.224 D.276[解析]设等差数列{a n}的公差为d,依题意得a4+a12-a8=2a8-a8=a8=8,a10-a6=4d=4,解得d=1,所以a8=a1+7d=a1+7=8,解得a1=1,所以S23=23×1+23×222×1=276,故选D.[答案] D2.已知数列{a n}为等比数列,且a1+1,a3+4,a5+7成等差数列,则公差d为( ) A.2 B.3 C.4 D.5[解析]设{a n}的公比为q,由题意得2(a3+4)=a1+1+a5+7⇒2a3=a1+a5⇒2q2=1+q4⇒q2=1,即a1=a3,d=a3+4-(a1+1)=4-1=3,故选B.[答案] B3.等比数列{a n}中,已知a1+a3=8,a5+a7=4,则a9+a11+a13+a15的值为( )A .1B .2C .3D .5[解析] 因为{a n }为等比数列,所以a 5+a 7是a 1+a 3与a 9+a 11的等比中项, 所以(a 5+a 7)2=(a 1+a 3)(a 9+a 11), 故a 9+a 11=(a 5+a 7)2a 1+a 3=428=2;同理,a 9+a 11是a 5+a 7与a 13+a 15的等比中项,所以(a 9+a 11)2=(a 5+a 7)(a 13+a 15),故a 13+a 15=(a 9+a 11)2a 5+a 7=224=1.所以a 9+a 11+a 13+a 15=2+1=3,故选C.[答案] C4.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( ) A .(-∞,-1] B .(-∞,0)∪[1,+∞) C .[3,+∞)D .(-∞,-1]∪[3,+∞)[解析] 因为等比数列{a n }中a 2=1,所以S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎪⎫1+q +1q =1+q +1q .当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3; 当公比q <0时,S 3=1-⎝⎛⎭⎪⎫-q -1q ≤1-2(-q )·⎝ ⎛⎭⎪⎫-1q =-1,所以S 3∈(-∞,-1]∪[3,+∞),故选D. [答案] D5.(2018·江西七校联考)等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =38n +142n +1(n ∈N *),则a 6b 7=( )A .16 B.24215 C.43223 D.49427[解析] 令S n =38n 2+14n ,T n =2n 2+n ,∴a 6=S 6-S 5=38×62+14×6-(38×52+14×5)=38×11+14;b 7=T 7-T 6=2×72+7-(2×62+6)=2×13+1,∴a 6b 7=38×11+142×13+1=43227=16,故选A.[答案] A6.(2018·河南郑州二中期末)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }的前n 项的和,则2S n +16a n +3(n ∈N *)的最小值为( )A .4B .3C .23-2 D.92[解析] ∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d .得d =2或d =0(舍去) ∴a n =2n -1, ∴S n =n (1+2n -1)2=n 2,∴2S n +16a n +3=2n 2+162n +2.令t =n +1, 则2S n +16a n +3=t +9t -2≥6-2=4当且仅当t =3, 即n =2时,∴2S n +16a n +3的最小值为4,故选A.[答案] A 二、填空题7.(2018·福建四地六校联考)已知等差数列{a n }中,a 3=π4,则cos(a 1+a 2+a 6)=________.[解析] ∵在等差数列{a n }中,a 1+a 2+a 6=a 2+a 3+a 4=3a 3=34π,∴cos(a 1+a 2+a 6)=cos 34π=-22.[答案] -228.(2018·山西四校联考)若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.[解析] 解法一:设数列{a n }的公比为q ,由已知得S 4S 2=1+a 3+a 4a 1+a 2=5,即1+q 2=5,所以q 2=4,S 8S 4=1+a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=1+q 4=1+16=17.解法二:由等比数列的性质可知,S 2,S 4-S 2,S 6-S 4,S 8-S 6成等比数列,若设S 2=a ,则S 4=5a ,由(S 4-S 2)2=S 2·(S 6-S 4)得S 6=21a ,同理得S 8=85a , 所以S 8S 4=85a5a=17.[答案] 179.已知数列{x n }各项均为正整数,且满足x n +1=⎩⎪⎨⎪⎧x n 2,x n 为偶数,x n +1,x n 为奇数,n ∈N *.若x 3+x 4=3,则x 1所有可能取值的集合为________.[解析] 由题意得x 3=1,x 4=2或x 3=2,x 4=1. 当x 3=1时,x 2=2,从而x 1=1或4; 当x 3=2时,x 2=1或4,因此当x 2=1时,x 1=2,当x 2=4时,x 1=8或3. 综上,x 1所有可能取值的集合为{1,2,3,4,8}. [答案] {1,2,3,4,8} 三、解答题10.(2018·沈阳市高三第一次质量监测)已知数列{a n }是等差数列,满足a 1=2,a 4=8,数列{b n }是等比数列,满足b 2=4,b 5=32.(1)求数列{a n }和{b n }的通项公式; (2)求数列{a n +b n }的前n 项和S n .[解] (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=2,所以a n =a 1+(n -1)·d =2+(n -1)×2=2n .设等比数列{b n }的公比为q ,由题意得q 3=b 5b 2=8,解得q =2.因为b 1=b 2q=2,所以b n =b 1·q n -1=2×2n -1=2n .(2)由(1)可得,S n =n (2+2n )2+2(1-2n )1-2=n 2+n +2n +1-2.11.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.[解] (1)设{a n }的公差为d ,由题意得 3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.12.已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论.[解] (1)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4,故49λ2-4λ+9=49λ2-4λ,即9=0,这与事实相矛盾.所以对任意实数λ,数列{a n }都不是等比数列.(2)因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1·⎝ ⎛⎭⎪⎫23a n -2n +14=-23(-1)n(a n -3n +21)=-23b n ,b 1=-(λ+18),所以当λ=-18时,b 1=0(n ∈N *),此时{b n }不是等比数列;当λ≠-18时,b 1=-(λ+18)≠0,则b n ≠0,所以b n +1b n =-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.。

高考数学二轮复习 专题四 数列 第1讲 等差数列与等比数列课件 文

高考数学二轮复习 专题四 数列 第1讲 等差数列与等比数列课件 文
解析:数列{an}为等差数列, 设公差为 d, 所以 a1+a3+a5=3a1+6d=3, 所以 a1+2d=1,
所以 S5=5a1+ 5 4 ×d=5(a1+2d)=5. 2
3.(2014 新课标全国卷Ⅱ,文 5)等差数列{an}的公差为 2,若 a2,a4,a8 成 等比数列,则{an}的前 n 项和 Sn 等于( A ) (A)n(n+1) (B)n(n-1)
(4)前n项和公式法:Sn=An2+Bn(A,B为常数)⇒{an}是等差数列;Sn=Aqn-A(A 为非零常数,q≠0,1)⇒{an}是等比数列.
4.等差、等比数列的单调性 (1)等差数列的单调性 d>0⇔{an}为递增数列,Sn有最小值. d<0⇔{an}为递减数列,Sn有最大值. d=0⇔{an}为常数列.
则公比q=
.
解析:由题意,q≠1,
由S3+3S2=4a1+4a2+a3 =a1(4+4q+q2) =a1(q+2)2 =0,
a1≠0知q=-2. 答案:-2
6.(2013 新课标全国卷Ⅱ,文 17)已知等差数列{an}的公差不为零,a1=25, 且 a1,a11,a13 成等比数列. (1)求{an}的通项公式; (2)求 a1+a4+a7+…+a3n-2.
(C) n(n 1) 2
(D) n(n 1) 2
解析:因为 a2,a4,a8 成等比数列,
所以 a42 =a2·a8, 所以(a1+6)2=(a1+2)·(a1+14),
解得 a1=2.
所以 Sn=na1+ n(n 1) d=n(n+1). 2

2018届高考数学二轮复习 第一部分 专题四 数列 1.4.1 等差数列、等比数列教案 理

2018届高考数学二轮复习 第一部分 专题四 数列 1.4.1 等差数列、等比数列教案 理

B.1
1
1
C.2
D.8
解析:通解:∵a3=a1·q2,a4=a1·q3,a5=a1·q4, ∴a21·q6=4(a1·q3-1) ∵a1=14, ∴q6-16q3+64=0,∴q3=8,∴q=2,∴a2=a1·q=12.
优解:设{an}的公比为q,由等比数列的性质 可知a3a5=a24,∴a24=4(a4-1),即(a4-2)2=0, 得a4=2, 则q3=aa14=21=8,得q=2,
(2)由(1)可得 Sn=-2[11-+2-2n]=-23+(-1)n2n3+1. 由于Sn+2+Sn+1=-43+(-1)n2n+3-3 2n+2 =2-23+-1n2n3+1=2Sn, 故Sn+1,Sn,Sn+2成等差数列.
专题四 数 列
[高考领航]——————————摸清规律 预测考情
(大纲卷) T18(等差数列 求和)
解题必备 解题方略 走进高考 限时规范训练
考点一 等差数列、等比数列
1.等差、等比数列的性质
等差数列
等比数列
(1)若m,n,p,q∈N*, 且m+n=p+q,则am+ 性 an=ap+aq; 质 (2)an=am+(n-m)d; (3)Sm,S2m-Sm,S3m- S2m,…仍成等差数列
4
则a2=a1q=14×2=12,故选C.
1.解题关键:抓住项与项之间的关系及项的序号之间的关 系,从这些特点入手选择恰当的性质进行求解.
2.运用函数性质:数列是一种特殊的函数,具有函数的一些 性质,如单调性、周期性等,可利用函数的性质解题.
[自我挑战]
3.等比数列{an}中,a4=2,a5=5,则数列{lg an}的前 8 项和 等于( C )
解得d=4.故选C.

高考数学二轮复习专题4数列第1讲等差数列与等比数列理

高考数学二轮复习专题4数列第1讲等差数列与等比数列理

第1讲等差数列与等比数列等差、等比数列的基本运算1.(2015新课标全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10等于( B )(A)(B)(C)10 (D)12解析:设等差数列{a n}的首项为a1,公差为d.由题设知d=1,S8=4S4,所以8a1+28=4(4a1+6),解得a1=,所以a10=+9=,选B.2.(2015辽宁省锦州市质量检测(一))已知各项不为0的等差数列{a n}满足a4-2+3a8=0,数列{b n}是等比数列,且b7=a7,则b2b8b11等于( D )(A)1 (B)2 (C)4 (D)8解析:因为a4-2+3a8=0,所以a1+3d-2+3(a1+7d)=0,所以4(a1+6d)-2=0,即4a7-2=0,又a7≠0,所以a7=2,所以b7=2,所以b2b8b11=b1q·b1q7·b1q10=(b1q6)3==8.故选D.3.(2015河南郑州第二次质量预测)设等比数列{a n}的前n项和为S n,若27a3-a6=0,则= .解析:设等比数列公比为q(q≠1),因为27a3-a6=0,所以27a3-a3q3=0,所以q3=27,q=3,所以====28.答案:28等差、等比数列的性质及应用4.(2015河南省六市第二次联考)已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为( C )(A)10 (B)20 (C)100 (D)200解析:a7(a1+2a3)+a3a9=a1a7+2a3a7+a3a9=+2a4a6+=(a4+a6)2=102=100.故选C.5.设等比数列{a n}中,前n项和为S n,已知S3=8,S6=7,则a7+a8+a9等于( A )(A)(B)-(C)(D)解析:因为a7+a8+a9=S9-S6,在等比数列中S3,S6-S3,S9-S6也成等比数列,即8,-1,S9-S6成等比数列,所以有8(S9-S6)=1,即S9-S6=.故选A.6.(2015新课标全国卷Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4-1),则a2等于( C )(A)2 (B)1 (C)(D)解析:法一根据等比数列的性质,结合已知条件求出a4,q后求解.因为a3a5=,a3a5=4(a4-1),所以=4(a4-1),所以-4a4+4=0,所以a4=2.又因为q3===8,所以q=2,所以a2=a1q=×2=.故选C.法二直接利用等比数列的通项公式,结合已知条件求出q后求解.因为a3a5=4(a4-1),所以a1q2·a1q4=4(a1q3-1),将a1=代入上式并整理,得q6-16q3+64=0,解得q=2,所以a2=a1q=.故选C.7.(2015哈师大附中、东北师大附中、辽宁实验中学第一次联合模拟)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n等于( B )(A)6 (B)7 (C)8 (D)9解析:依题意得S9-S5=a6+a7+a8+a9=0,所以2(a7+a8)=0,所以a7+a8=0,又a1>0,所以该等差数列的前7项为正数,从第8项开始为负数.所以当S n最大时,n=7.故选B.8.(2015东北三校第一次联合模拟)若等差数列{a n}中,满足a4+a6+a2010+a2012=8,则S2015= .解析:因为a4+a6+a2010+a2012=8,所以2(a4+a2012)=8,所以a4+a2012=4.所以S2015===4030.答案:4030等差、等比数列的综合问题9.(2015甘肃二诊)设等差数列{a n}的前n项和为S n,且满足S17>0,S18<0,则,,…,中最大的项为( C )(A)(B)(C)(D)解析:因为S17==17a9>0,S18==9(a10+a9)<0,所以a9>0,a10+a9<0,所以a10<0.所以等差数列为递减数列,则a1,a2,…,a9为正,a10,a11,…为负,S1,S2,…,S17为正,S18,S19,…为负,所以>0,>0,…,>0,<0,<0,…,<0,又S1<S2<…<S9,a1>a2>…>a9,所以,,…,中最大的项为.故选C.10.(2014辽宁卷)设等差数列{a n}的公差为d,若数列{}为递减数列,则( C )(A)d<0 (B)d>0(C)a1d<0 (D)a1d>0解析:因为数列{}为递减数列,a1a n=a1[a1+(n-1)d]=a1dn+a1(a1-d),等式右边为关于n的一次函数,所以a1d<0.11.(2015兰州高三诊断)在等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的前n项和S n.解:(1)因为{a n}为等比数列,所以=q3=8;所以q=2.所以a n=2·2n-1=2n.(2)b3=a3=23=8,b5=a5=25=32,又因为{b n}为等差数列,所以b5-b3=24=2d,所以d=12,b1=a3-2d=-16,所以S n=-16n+×12=6n2-22n.一、选择题1.(2015云南第二次检测)设S n是等差数列{a n}的前n项和,若a1∶a2=1∶2,则S1∶S3等于( D )(A)1∶3 (B)1∶4 (C)1∶5 (D)1∶6解析:S1∶S3=a1∶(a1+a2+a3)=a1∶3a2,又a1∶a2=1∶2,所以S1∶S3=1∶6.故选D.2.(2015银川九中月考)已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n等于( B )(A)2n-1 (B)()n-1(C)()n-1(D)解析:由S n=2a n+1得S n=2(S n+1-S n),所以S n+1=S n.所以{S n}是以S1=a1=1为首项,为公比的等比数列.所以S n=()n-1.故选B.3.(2015河北石家庄二模)等比数列{a n}的前n项和为S n,已知S3=a2+5a1,a7=2,则a5等于( A )(A)(B)-(C)2 (D)-2解析:设公比为q,因为S3=a2+5a1,所以a1+a2+a3=a2+5a1,所以a3=4a1,所以q2==4,又a7=2,所以a5===.故选A.4.已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10等于( D )(A)7 (B)5 (C)-5 (D)-7解析:法一利用等比数列的通项公式求解.由题意得所以或所以a1+a10=a1(1+q9)=-7.法二利用等比数列的性质求解.由解得或所以或所以a1+a10=a1(1+q9)=-7.故选D.5.(2015兰州高三诊断)已知等差数列{a n}的前n项和为S n,若a4=18-a5,则S8等于( D )(A)18 (B)36 (C)54 (D)72解析:因为a4=18-a5,所以a4+a5=18,所以S8====72.故选D.6.(2014郑州市第二次质量预测)在数列{a n}中,a n+1=ca n(c为非零常数),前n项和为S n=3n+k,则实数k为( A )(A)-1 (B)0 (C)1 (D)2解析:由a n+1=ca n,可知{a n}是等比数列,设公比q,由S n=,得S n=-·q n+.由S n=3n+k,知k=-1.故选A.7.设{a n}是公差不为零的等差数列,满足+=+,则该数列的前10项和等于( C )(A)-10 (B)-5 (C)0 (D)5解析:设等差数列{a n}的首项为a1,公差为d(d≠0),由+=+得,(a1+3d)2+(a1+4d)2=(a1+5d)2+(a1+6d)2,整理得2a1+9d=0,即a1+a10=0,所以S10==0.故选C.8.(2015北京卷)设{a n}是等差数列,下列结论中正确的是( C )(A)若a1+a2>0,则a2+a3>0(B)若a1+a3<0,则a1+a2<0(C)若0<a1<a2,则a2>(D)若a1<0,则(a2-a1)(a2-a3)>0解析:因为{a n}为等差数列,所以2a2=a1+a3.当a2>a1>0时,得公差d>0,所以a3>0,所以a1+a3>2,所以2a2>2,即a2>,故选C.9.(2015大连市二模)已知等差数列{a n}的前n项和为S n,a2=4,S10=110,则的最小值为( C )(A)7 (B)(C)(D)8解析:设等差数列{a n}的公差为d,则解得所以a n=2+2(n-1)=2n,S n=2n+×2=n2+n,所以==++≥2+=.当且仅当=,即n=8时取等号.故选C.10.(2015福建卷)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( D ) (A)6 (B)7 (C)8 (D)9解析:由题可知a,b是x2-px+q=0的两根,所以a+b=p>0,ab=q>0,故a,b均为正数.因为a,b,-2适当排序后成等比数列,所以-2是a,b的等比中项,得ab=4,所以q=4.又a,b,-2适当排序后成等差数列,所以-2是第一项或第三项,不妨设a<b,则-2,a,b成递增的等差数列,所以2a=b-2,联立消去b得a2+a-2=0,得a=1或a=-2,又a>0,所以a=1,此时b=4,所以p=a+b=5,所以p+q=9.故选D.二、填空题11.(2015黑龙江高三模拟)等差数列{a n}中,a4+a8+a12=6,则a9-a11= .解析:设等差数列{a n}公差为d,因为a4+a8+a12=6,所以3a8=6,即a8=a1+7d=2,所以a9-a11=a1+8d-(a1+10d)=a1+ d=(a1+7d)=×2=.答案:12.(2015宁夏石嘴山高三联考)若正项数列{a n}满足a2=,a6=,且=(n≥2,n∈N*),则log2a4= .解析:因为=(n≥2,n∈N*),所以=a n-1·a n+1,所以数列{a n}为等比数列.又a2=,a6=,所以q4==.因为数列为正项数列,所以q>0,所以q=.所以a4=a2q2=×=,所以log2a4=log2=-3.答案:-313.(2015安徽卷)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.解析:因为a1=1,a n=a n-1+(n≥2),所以数列{a n}是首项为1、公差为的等差数列,所以前9项和S9=9+×=27.答案:2714.(2015湖南卷)设S n为等比数列{a n}的前n项和.若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:设等比数列{a n}的公比为q(q≠0),依题意得a2=a1·q=q,a3=a1q2=q2, S1=a1=1,S2=1+q,S3=1+q+q2.又3S1,2S2,S3成等差数列,所以4S2=3S1+S3,即4(1+q)=3+1+q+q2,所以q=3(q=0舍去).所以a n=a1q n-1=3n-1.答案:3n-1。

高考数学考前专题复习篇 主题四 数列、推理与证明 等差数列、等比数列4-1 课件

高考数学考前专题复习篇 主题四 数列、推理与证明 等差数列、等比数列4-1 课件

数列.
注意:(1)a2n=an-1an+1 是 an-1,an,an+1 成等比数列的必要不 充分条件.
(2)利用等比数列前 n 项和的公式求和时,不可忽视对公比 q
是否为 1 的讨论.
.
分类突破
一、等差数列的有关问题
例 1 已知{an}是一个等差数列,且 a2=1,a5=-5. (1)求{an}的通项 an; (2)求{an}的前 n 项和 Sn 的最大值.
na1 (3)前 n 项和公式:Sn=a1(1-qn)
1-q
(q=1), (q≠1).
(4)等比中项公式:an2=an-1an+1(n∈N*,n≥2).
(5)性质:①an=amqn-m(n,m∈N*).
②若 m+n=p+q,则 aman=apaq(p,q,m,n∈N*).
③等比数列中,q≠-1 时,Sn,S2n-Sn,S3n-S2n 也成等比
.
考点整合
1.等差数列
(1)定义式:an+1-an=d(n∈N*,d 为常数).
(2)通项公式:an=a1+(n-1)d. (3)前 n 项和公式:Sn=n(a12+an)=na1+n(n-2 1)d.
(4)等差中项公式:2an=an-1+an+1(n∈N*,n≥2). (5)性质:①an=am+(n-m)d(n,m∈N*). ②若 m+n=p+q,则 am+an=ap+aq(m,n,p,q∈N*).
.
3.(2011·四川改编)数列{an}的前 n 项和为 Sn,若 a1=1,an+1 1(n=1),
=3Sn(n≥1),则 an=_3__×__4_n-_2_(_n_≥__2_)___. 解析 当 n≥1 时,an+1=3Sn,则 an+2=3Sn+1, ∴an+2-an+1=3Sn+1-3Sn=3an+1,即 an+2=4an+1, ∴该数列从第二项开始是以 4 为公比的等比数列. 又 a2=3S1=3a1=3,∴an=31×(n=4n-12)(,n≥2).

等差数列的推理与证明

等差数列的推理与证明

等差数列的推理与证明一、等差数列的定义与性质1.1 等差数列的定义:等差数列是一个数列,从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。

1.2 等差数列的性质:(1)等差数列的任意两项之差等于它们下标之差乘以公差;(2)等差数列的任意一项都可以用它的首项和公差表示;(3)等差数列的前n项和可以表示为首项与末项的平均值乘以项数。

二、等差数列的通项公式2.1 等差数列的通项公式为:an = a1 + (n - 1)d,其中an表示数列的第n项,a1表示数列的首项,d表示数列的公差,n表示项数。

三、等差数列的证明方法3.1 数学归纳法:(1)证明等差数列的通项公式成立,首先验证n=1时公式成立;(2)假设n=k时公式成立,证明n=k+1时公式也成立。

3.2 反证法:(1)假设等差数列的某一项不满足通项公式,即存在一项an不满足an = a1 + (n - 1)d;(2)通过推导得出矛盾,从而证明假设不成立,即等差数列的每一项都满足通项公式。

四、等差数列的推理与应用4.1 等差数列的推理:根据等差数列的性质,可以推理出数列的任意一项都可以用首项和公差表示,以及前n项和的计算公式。

4.2 等差数列的应用:(1)解决实际问题:例如计算等差数列的前n项和,求等差数列中的某一项等;(2)其他数学问题的解决:例如求等差数列的极限、求等差数列的通项公式的反函数等。

五、等差数列的综合考察5.1 考察等差数列的性质与通项公式的运用;5.2 考察等差数列的推理与证明方法的应用;5.3 考察等差数列在前n项和、极限等方面的综合运用。

总结:等差数列是数学中的一种基本数列,通过学习等差数列的定义、性质、通项公式以及推理与证明方法,可以更好地理解和运用等差数列解决实际问题。

在教学过程中,要注重培养学生的逻辑思维能力,提高他们对等差数列概念的理解和运用能力。

习题及方法:1.习题:已知等差数列的首项为2,公差为3,求该数列的第10项。

高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理

高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理

高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理第一讲 等差数列与等比数列1.等差数列的定义.数列{a n }满足a n +1-a n =d (其中n∈N *,d 为与n 值无关的常数)⇔{a n }是等差数列. 2.等差数列的通项公式.若等差数列的首项为a 1,公差为d ,则a n =a 1+(n -1)d =a m +(n -m )d (n ,m ∈N *). 3.等差中项.若x ,A ,y 成等差数列,则A =x +y2,其中A 为x ,y 的等差中项.4.等差数列的前n 项和公式.若等差数列首项为a 1,公差为d ,则其前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.1.等比数列的定义. 数列{a n }满足a n +1a n=q (其中a n ≠0,q 是与n 值无关且不为零的常数,n ∈N *)⇔{a n }为等比数列.2.等比数列的通项公式.若等比数列的首项为a 1,公比为q ,则a n =a 1·q n -1=a m ·qn -m(n ,m ∈N *).3.等比中项.若x ,G ,y 成等比数列,则G 2=xy ,其中G 为x ,y 的等比中项,G 值有两个. 4.等比数列的前n 项和公式.设等比数列的首项为a 1,公比为q ,则S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.判断下面结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√) (3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.(×) (4)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.(×) (5)G 为a ,b 的等比中项⇔G 2=ab .(×) (6)1+b +b 2+b 3+b 4+b 5=1-b51-b.(×)1.在等差数列{a n }中,a 2=1,a 4=5,则数列{a n }的前5项和S 5=(B ) A .7 B .15 C .20 D .25解析:2d =a 4-a 2=5-1=4⇒d =2,a 1=a 2-d =1-2=-1,a 5=a 2+3d =1+6=7,故S 5=(a 1+a 5)×52=6×52=15.2. (2015·北京卷)设{a n }是等差数列,下列结论中正确的是(C ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:设等差数列{a n}的公差为d,若a1+a2>0,a2+a3=a1+d+a2+d=(a1+a2)+2d,由于d正负不确定,因而a2+a3符号不确定,故选项A错;若a1+a3<0,a1+a2=a1+a3-d=(a1+a3)-d,由于d正负不确定,因而a1+a2符号不确定,故选项B错;若0<a1<a2,可知a1>0,d>0,a2>0,a3>0,∴a22-a1a3=(a1+d)2-a1(a1+2d)=d2>0,∴a2>a1a3,故选项C正确;若a1<0,则(a2-a1)(a2-a3)=d·(-d)=-d2≤0,故选项D错.3.(2015·新课标Ⅱ卷)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=(B)A.21 B.42C.63 D.84解析:∵ a1=3,a1+a3+a5=21,∴ 3+3q2+3q4=21.∴ 1+q2+q4=7.解得q2=2或q2=-3(舍去).∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.故选B.4.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是(B)A.90 B.100C.145 D.190解析:设公差为d,则(1+d)2=1·(1+4d).∵d≠0,解得d=2,∴S10=100.一、选择题1.已知等差数列{a n}中,前n项和为S n,若a3+a9=6,则S11=(B)A.12 B.33 C.66 D.99解析:∵{a n}为等差数列且a3+a9=6,∴a 6+a 6=a 3+a 9=6. ∴a 6=3. ∴S 11=a 1+a 112×11=a 6+a 62×11=11a 6=11×3=33.2.在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则数列{a n }的前6项和S 6=(B ) A .120 B .140 C .160 D .180 解析:∵{a n }为等比数列,∴a 1+a 2,a 3+a 4,a 5+a 6为等比数列. ∴(a 3+a 4)2=(a 1+a 2)(a 5+a 6). 即a 5+a 6=(a 3+a 4)2a 1+a 2=40220=80.∴S 6=a 1+a 2+a 3+a 4+a 5+a 6=20+40+80=140.3.已知数列{a n }的前n 项和S n =n 2-2n -1,则a 3+a 17=(C ) A .15 B .17 C .34 D .398 解析:∵S n =n 2-2n -1, ∴a 1=S 1=12-2-1=-2. 当n ≥2时,a n =S n -S n -1=n 2-2n -1-[(n -1)2-2(n -1)-1] =n 2-(n -1)2+2(n -1)-2n -1+1 =n 2-n 2+2n -1+2n -2-2n =2n -3.∴a n =⎩⎪⎨⎪⎧-2,n =1,2n -3,n ≥2.∴a 3+a 17=(2×3-3)+(2×17-3)=3+31=34. 4.(2014·陕西卷)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 解析:由a n +a n +12<a n ⇒a n +1<a n ⇒{a n }为递减数列,所以原命题为真命题;逆命题:若{a n }为递减数列,则a n +a n +12<a n ,n ∈N +;若{a n }为递减数列,则a n +1<a n ,即a n +a n +12<a n ,所以逆命题为真;否命题:若a n +a n +12≥a n ,n ∈N +,则{a n }不为递减数列;由a n +a n +12≥a n ⇒a n ≤a n +1⇒{a n }不为递减数列,所以否命题为真;因为逆否命题的真假为原命题的真假相同,所以逆否命题也为真命题. 故选A.5.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为(C )A .5B .7C .9D .11解析:由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入m =9,因此选C.二、填空题6.(2015·安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于27.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.7.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =32. 解析:将S 2=3a 2+2,S 4=3a 4+2两个式子全部转化成用a 1,q 表示的式子,即⎩⎪⎨⎪⎧a 1+a 1q =3a 1q +2,a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2,两式作差得:a 1q 2+a 1q 3=3a 1q (q 2-1),即:2q 2-q -3=0,解得q =32或q =-1(舍去).8.(2014·广东卷)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.解析:由题意知a 1a 5=a 23=4,且数列{a n }的各项均为正数,所以a 3=2, ∴a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=(a 23)2·a 3=a 53=25,∴log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 三、解答题9.已知数列{a n }满足,a 1=1,a 2=2,a n +2 =a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 解析:(1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, 当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1.所以a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).10.(2015·安徽卷)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解析:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.。

高考数学二轮复习第二编专题四数列第1讲等差数列与等比数列课件文

高考数学二轮复习第二编专题四数列第1讲等差数列与等比数列课件文

解 (1)当 n≥2 时,由 an+1=2Sn+3,得 an=2Sn-1+3, 两式相减,得 an+1-an=2Sn-2Sn-1=2an, ∴an+1=3an,∴aan+n 1=3. 当 n=1 时,a1=3,a2=2S1+3=2a1+3=9,则aa21=3. ∴数列{an}是以 3 为首项,3 为公比的等比数列. ∴an=3×3n-1=3n.
12/11/2021
核心知识回顾
12/11/2021
1.等差数列
□ (1)通项公式: 01 an=an+(n-1)d=am+(n-m)d . □ (2)等差中项公式: 02 2an=an-1+an+1(n∈N*,n≥2) . □ (3)前 n 项和公式: 03 Sn=na1+ 2 an=na1+nn-2 1d .
12/11/2021
真题VS押题
12/11/2021
『真题模拟』
1.(2018·陕西商洛模拟)在等差数列{an}中,a5=9,且
2a3=a2+6,则公差 d=( )
A.-3
B.-2
C.3
D.2
解析 因为 2a3=a2+6,所以 a2+a4=a2+6,所以 a4 =6,故 d=a5-a4=9-6=3.
12/11/2021
考向2 等差数列、等比数列的判定与证明 例 2 (2018·银川质检)已知数列{an}中,a1=1,其前 n 项的和为 Sn,且满足 an=2S2nS-2n 1(n≥2,n∈N*). (1)求证:数列S1n是等差数列; (2)证明:13S1+15S2+17S3+…+2n1+1Sn<12.
12/11/2021
□ 2.等比数列
(1)等比数列的通项公式: 01 an=a1qn-1=amqn-m .
□ (2)等比中项公式: 02 a2n=an-1·an+1(n∈N*,n≥2) .

最新-2018高考数学二轮复习 专题三 数列 推理与证明第1讲 等差数列 等比数列配套课件 精品

最新-2018高考数学二轮复习 专题三 数列 推理与证明第1讲 等差数列 等比数列配套课件 精品

探究提高 基本量法是求数列通项和前 n 项和的最常 用方法.但如果对于一个数列无法将它转化为常见的 数列形式,这时可用常见的求和方法将它转化为常见 的数列形式,其中常见的求和方法有分解法、裂项法, 并项求和法、分组求和法等.
变式训练 2 已知数列{an}的首项 a1=a,an=12an-1+ 1(n∈N*,n≥2).若 bn=an-2(n∈N*). (1)问数列{bn}是否能构成等比数列?并说明理由. (2)若已知 a1=1,设数列{an·bn}的前 n 项和为 Sn,求
题型三 等差、等比数列的综合问题 例 3 在等比数列{an}中,已知 a1=2,a4=16.
(1)求数列{an}的通项公式; (2)若 a3,a5 分别为等差数列{bn}的第 3 项和第 5 项, 试求数列{bn}的通项公式及前 n 项和 Sn. 思维启迪
解 (1)设{an}的公比为 q. 由已知得 16=2q3,解得 q=2.∴an=a1qn-1=2n. (2)由(1)得 a3=8,a5=32,则 b3=8,b5=32.
①利用定义,证明aan+n 1(n∈N*)为一常数; ②利用等比中项,即证明 a2n=an-1an+1(n≥2).
3.常用性质 (1)等差数列{an}中,若 m+n=p+q,则 am+an= ap+aq;等比数列{an}中,若 m+n=p+q,则 aman =apaq; (2)在等差数列{an}中,Sn,S2n-Sn,S3n-S2n,…, Skn-S(k-1)n,…成等差数列,其中 Sn 为前 n 项的和, 且 Sn≠0(n∈N*); 在等比数列{an}中,Sn,S2n-Sn,S3n-S2n,…,Skn -S(k-1)n,…成等比数列,其中 Sn 为前 n 项的和, 且 Sn≠0(n∈N*).
热点分类突破

高考数学第二轮复习专题四数列第1讲等差数列、等比数列文试题

高考数学第二轮复习专题四数列第1讲等差数列、等比数列文试题

智才艺州攀枝花市创界学校专题四数列第1讲等差数列、等比数列真题试做1.(2021·高考,文4)在等差数列{a n}中,a4+a8=16,那么a2+a10=().A.12B.16C.20D.242.(2021·高考,文5)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,那么a5=().A.1B.2C.4D.83.(2021·高考,文6){a n}为等比数列.下面结论中正确的选项是().A.a1+a3≥2a2B.a+a≥2aC.假设a1=a3,那么a1=a2D.假设a3>a1,那么a4>a24.(2021·高考,文14)等比数列{a n}为递增数列.假设a1>0,且2(a n+a n+2)=5a n+1,那么数列{a n}的公比q=__________.5.(2021·高考,文16)等比数列{a n}的公比q=-.(1)假设a3=,求数列{a n}的前n项和;(2)证明:对任意k∈N+,a k,a k+2,a k+1成等差数列.考向分析高考中对等差(等比)数列的考察主、客观题型均有所表达,一般以等差、等比数列的定义或者以通项公式、前nn项和公式建立方程组求解,属于低档题;(2)对于等差、等比数列性质的考察主要以客观题出现,具有“新、巧、活〞的特点,考察利用性质解决有关计算问题,属中低档题;(3)对于等差、等比数列的判断与证明,主要出如今解答题的第一问,是为求数列的通项公式而准备的,因此是解决问题的关键环节.热点例析热点一等差、等比数列的根本运算【例1】(2021·质检,20)设数列{a n}的前n项和为S n,a1=1,等式a n+a n+2=2a n+1对任意n∈N*均成立.(1)假设a4=10,求数列{a n}的通项公式;(2)假设a2=1+t,且存在m≥3(m∈N*),使得a m=S m成立,求t的最小值.规律方法此类问题应将重点放在通项公式与前n项和公式的直接应用上,注重五个根本量a1,a n,S n,n,d(q)之间的转化,会用方程(组)的思想解决“知三求二〞问题.我们重在认真观察条件,在选择a1,d(q)两个根本量解决问题的同时,看能否利用等差、等比数列的根本性质转化条件,否那么可能会导致列出的方程或者方程组较为复杂,无形中增大运算量.同时在运算过程中注意消元法及整体代换的应用,这样可减少计算量.特别提醒:(1)解决等差数列{a n}前n项和问题常用的有三个公式:S n=;S n=na1+d;S n=An2+Bn(A,B 为常数),灵敏地选用公式,解决问题更便捷;(2)利用等比数列前n项和公式求和时,不可无视对公比q是否为1的讨论.变式训练1(2021·质检,20)等差数列{a n}的公差大于零,且a2,a4是方程x2-18x+65=0的两个根;各项均为正数的等比数列{b n}的前n项和为S n,且满足b3=a3,S3=13.(1)求数列{a n},{b n}的通项公式;(2)假设数列{c n}满足c n=求数列{c n}的前n项和T n.热点二等差、等比数列的性质【例2】(1)在正项等比数列{a n}中,a2,a48是方程2x2-7x+6=0的两个根,那么a1·a2·a25·a48·a49的值是().A.B.93C.±9D.35(2)正项等比数列{a n}的公比q≠1,且a2,a3,a1成等差数列,那么的值是().A.或者B.C.D.规律方法(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进展求解;(2)应结实掌握等差、等比数列的性质,特别是等差数列中假设“m+n=p+q,那么a m+a n=a p+a q〞这一性质与求和公式S n=的综合应用.变式训练2(1)(2021·玉山期末,3)等差数列{a n}的前n项和为S n,且满足S15=25π,那么tan a8的值是().A.B.-C.±D.-(2)(2021·调研,7)数列{a n}是等比数列,其前n项和为S n,假设公比q=2,S4=1,那么S8=().A.17B.16 C.15D.256热点三等差、等比数列的断定与证明【例3】(2021·一模,20)在数列{a n}中,a1=5且a n=2a n-1+2n-1(n≥2,且n∈N*).(1)证明:数列为等差数列;(2)求数列{a n}的前n项和S n.规律方法证明数列{a n}为等差或者等比数列有两种根本方法:(1)定义法a n+1-a n=d(d为常数)⇔{a n}为等差数列;=q(q为常数)⇔{a n}为等比数列.(2)等差、等比中项法2a n=a n-1+a n+1(n≥2,n∈N*)⇔{a n}为等差数列;a=a n-1a n+1(a n≠0,n≥2,n∈N*)⇔{a n}为等比数列.我们要根据题目条件灵敏选择使用,一般首选定义法.利用定义法一种思路是直奔主题,例如此题方法;另一种思路是根据条件变换出要解决的目的,如此题还可这样去做:由a n=2a n-1+2n-1,得a n-1=2a n-1-2+2n,所以a n-1=2(a n-1-1)+2n,上式两边除以2n,从而可得=+1,由此证得结论.特别提醒:(1)判断一个数列是等差(等比)数列,还有通项公式法及前n项和公式法,但不作为证明方法;(2)假设要判断一个数列不是等差(等比)数列,只需判断存在连续三项不成等差(等比)即可;(3)a=a n-1a n+1(n≥2,n∈N*)是{a n}为等比数列的必要而不充分条件,也就是要注意判断一个数列是等比数列时,要注意各项不为0.变式训练3在数列{a n}中,a n+1+a n=2n-44(n∈N*),a1=-23,是否存在常数λ使数列{a n-n+λ}为等比数列,假设存在,求出λ的值及数列的通项公式;假设不存在,请说明理由.思想浸透1.函数方程思想——等差(比)数列通项与前n项和的计算问题:(1)等差(比)数列有关条件求数列的通项公式和前n项和公式,及由通项公式和前n项和公式求首项、公差(比)、项数及项,即主要指所谓的“知三求二〞问题;(2)由前n项和求通项;(3)解决与数列通项、前n项和有关的不等式最值问题.2.求解时主要思路方法为:(1)运用等差(比)数列的通项公式及前n项和公式中的5个根本量,建立方程(组),进展运算时要注意消元的方法及整体代换的运用;(2)数列的本质是定义域为正整数集或者其有限子集的函数,数列的通项公式即为相应的函数解析式,因此在解决数列问题时,应用函数的思想求解.在等比数列{a n}中,a n>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3与a5的等比中项为2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,数列{b n}的前n项和为S n,当++…+最大时,求n的值.解:(1)∵a1a5+2a3a5+a2a8=25,∴a+2a3a5+a=25.又a n>0,∴a3+a5=5.又a3与a5的等比中项为2,∴a3a5=4.而q∈(0,1),∴a3>a5.∴a3=4,a5=1,q=,a1=16.∴a n=16×n-1=25-n.(2)b n=log2a n=5-n,∴b n+1-b n=-1,∴{b n}是以4为首项,-1为公差的等差数列.∴S n=,=,∴当n≤8时,>0;当n=9时,=0;当n>9时,<0;∴n=8或者9时,++…+最大.1.(2021·一模,5)在等差数列{a n}中,a9=a12+6,那么数列{a n}前11项的和S11等于().A.24B.48 C.66D.1322.(2021·名校创新冲刺卷,4)设{a n}是等比数列,那么“a1<a2<a3”是“数列{a n}是递增数列〞的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2021·质检,2)等比数列{a n}的公比q为正数,且2a3+a4=a5,那么q的值是().A.B.2 C.D.34.(2021·调研,6)等差数列{a n}的前n项和为S n,满足S20=S40,那么以下结论中正确的选项是().A.S30是S n的最大值B.S30是S n的最小值C.S30=0D.S60=05.正项等比数列{a n}满足a7=a6+2a5,假设存在两项a m,a n,使得=4a1,那么+的最小值为________.6.(原创题)数列{a n}为等差数列,数列{b n}为等比数列,且满足a1000+a1013=π,b1b13=2,那么tan=__________.7.(2021·五校联考,20)数列{a n}的前n项和为S n,a1=,S n=n2a n-n(n-1),n=1,2,….(1)证明:数列是等差数列,并求S n;(2)设b n=,求证:b1+b2+…+b n<1.8.设{a n}是公比大于1的等比数列,S n为数列{a n}的前n项和.S3=7,且a1+3,3a2,a3+4构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=ln a3n+1,n=1,2,…,求数列{b n}的前n项和T n.参考答案·明晰考向真题试做1.B解析:由等差数列的性质知,a2+a10=a4+a8=16,应选B.2.A解析:由题意可得,a3·a11=a=16,∴a7=4.∴a5===1.3.B解析:A中当a1,a3为负数,a2为正数时,a1+a3≥2a2不成立;B中根据等比数列的性质及均值不等式得,a+a≥2=2a;C中取a1=a3=1,a2=-1,显然a1≠a2;D中取a1=1,a2=-2,a3=4,a4=-8,可知a4>a2不成立.综上可知仅有B正确.4.2解析:∵等比数列{a n}为递增数列,且a1>0,∴公比q>1.又∵2(a n+a n+2)=5a n+1,∴2a n+2a n q2=5a n q.∵a n≠0,∴2q2-5q+2=0.∴q=2或者q=(舍去).∴公比q为2.5.(1)解:由a3=a1q2=及q=-,得a1=1,所以数列{a n}的前n项和S n==.(2)证明:对任意k∈N+,2a k+2-(a k+a k+1)=2a1q k+1-(a1q k-1+a1q k)=a1q k-1(2q2-q-1),由q=-得2q2-q-1=0,故2a k+2-(a k+a k+1)=0.所以,对任意k∈N+,a k,a k+2,a k+1成等差数列.精要例析·聚焦热点热点例析【例1】解:(1)∵a n+a n+2=2a n+1对n∈N*都成立,∴数列{a n}为等差数列.设数列{a n}的公差为d,∵a1=1,a4=10,且a4=a1+3d=10.∴d=3.∴a n=a1+(n-1)d=3n-2.∴数列{a n}的通项公式为a n=3n-2.(2)∵a2=1+t,∴公差d=a2-a1=t.∴a n=a1+(n-1)d=1+(n-1)t.S n=na1+d=n+t.由a m=S m得1+(m-1)t=m+t,∴(m-1)t=(m-1)+t.∴t=1+t.∴t=.∵m≥3,∴-2≤t<0.∴t的最小值为-2.【变式训练1】解:(1)设{a n}的公差为d(d>0),{b n}的公比为q(q>0),那么由x2-18x+65=0,解得x=5或者x=13.因为d>0,所以a2<a4,那么a2=5,a4=13.那么解得a1=1,d=4,所以a n=1+4(n-1)=4n-3.因为解得b1=1,q=3.所以b n=3n-1.(2)当n≤5时,T n=a1+a2+a3+…+a n=n+×4=2n2-n;当n>5时,T n=T5+(b6+b7+b8+…+b n)=(2×52-5)+=.所以T n=【例2】(1)B解析:依题意知a2·a48=3.又a1·a49=a2·a48=a=3,a25>0,∴a1·a2·a25·a48·a49=a=9.(2)C解析:因为a2,a3,a1成等差数列,所以a3=a1+a2.∴q2=1+q.又q>0,解得q=,故===.【变式训练2】(1)B解析:∵S15=15a8=25π,∴a8=.∴tan a8=tan=tan=-tan=-.(2)A解析:S8=S4+(a5+a6+a7+a8)=S4+q4S4=17.【例3】(1)证明:设b n=,b1==2,∴b n+1-b n=-=[(a n+1-2a n)+1]=[(2n+1-1)+1]=1,∴数列是首项为2,公差为1的等差数列.(2)解:由(1)知,=+(n-1)×1,∴a n=(n+1)·2n+1.∵S n=(2·21+1)+(3·22+1)+…+(n·2n-1+1)+[(n+1)·2n+1],∴S n=2·21+3·22+…+n·2n-1+(n+1)·2n+n.设T n=2·21+3·22+…+n·2n-1+(n+1)·2n,①那么2T n=2·22+3·23+…+n·2n+(n+1)·2n+1.②由②-①,得T n=-2·21-(22+23+…+2n)+(n+1)·2n+1=n·2n+1,∴S n=n·2n+1+n=n·(2n+1+1).【变式训练3】解:假设a n+1-(n+1)+λ=-(a n-n+λ)成立,整理得a n+1+a n=2n+1-2λ,与a n+1+a n=2n-44比较得λ=.∴数列是以-为首项,-1为公比的等比数列.故a n-n+=-(-1)n-1,即a n=n--(-1)n-1.创新模拟·预测演练1.D解析:设等差数列{a n}的公差为d,那么由a9=a12+6得a1+8d=(a1+11d)+6,整理得a1+5d=12,即a6=12,∴S11=11a6=132.2.C解析:由a1<a2<a3,得有或者那么数列{a n}是递增数列,反之显然成立,应选C.3.B解析:由2a3+a4=a5得2a3+a3q=a3q2,∴q2-q-2=0,解得q=2或者q=-1(舍去).4.D解析:由S20=S40得a21+a22+a23+…+a40=0,∴a21+a40=0.∴S60=(a1+a60)×60=(a21+a40)×60=0.5.解析:由a7=a6+2a5,得q2-q-2=0,解得q=2或者q=-1(舍去),∴a m a n=a1q m-1·a1q n-1=16a.∴q m+n-2=2m+n-2=24.∴m+n-2=4.∴m+n=6.∴+=··(m+n)=≥(5+4)=(当且仅当4m2=n2时,“=〞成立).6.-解析:因为数列{a n}为等差数列,数列{b n}为等比数列,所以由它们的性质可得a1000+a1013=a1+a2012=π,b1b13=b=2,那么tan=tan=-.7.证明:(1)由S n=n2a n-n(n-1)(n≥2),得S n=n2(S n-S n-1)-n(n-1),即(n2-1)S n-n2S n-1=n(n-1),所以S n-S n-1=1,对n≥2成立.S1=1,所以是首项为1,公差为1的等差数列,S1=a1=,所以S n=,当n=1时也成立.(2)b n===-,∴b1+b2+…+b n=1-+-+…+-=1-<1.8.解:(1)设数列{a n}的公比为q(q>1).由得即即解得a1=1,q=2或者a1=4,q=(舍去).∴a n=2n-1.(2)由(1)得a3n+1=23n,∴b n=ln a3n+1=ln23n=3n ln2,∴b n+1-b n=3ln2.∴{b n}是以b1=3ln2为首项,公差为3ln2的等差数列.∴T n=b1+b2+…+b n===,即T n=.。

2018届高考数学二轮复习 等差数列与等比数列 ppt课件(全国通用)

2018届高考数学二轮复习 等差数列与等比数列 ppt课件(全国通用)

2.等差(比)数列基本运算的解题途径: (1)设基本量 a1 和公差 d(公比 q). (2)列、解方程组:把条件转化为关于 a1 和 d(q)的方 程(组),然后求解,注意整体计算,以减少运算量.
[变式训练] (2017· 北京卷)若等差数列{an}和等比数 a2 列{bn}满足 a1=b1=-1,a4=b4=8,则 =________. b2 (2)(2017· 衡水中学第二次调研)已知数列{an}的前 n 项 和为 Sn,若 Sn=1+2an(n≥2),且 a1=2,则 S20=( A.219-1 C.219+1 B.221-2 D.221+2 )
2 49 7 1 1 n- - 6 2 此时22 4 取得最大值 2 .
所以 a1·a2·„·an 的最大值为 64. 答案:(1)B (2)64
[规律方法] 1.第(2)题求解的思路是:先利用等比数列的通项公 式构建首项 a1 与公式 q 的方程组,求出 a1,q,得到{an} 的通项公式,再将 a1a2·„·an 表示为 n 的函数,进而求最 大值.
3.(2016· 全国卷Ⅲ)已知数列{an}的前 n 项和 Sn=1 +λan,其中 λ≠0.(导学号 54850036) (1)证明数列{an}是等比数列,并求其通项公式; 31 (2)若 S5= ,求 λ. 32 (1)证明:由题意得 a1=S1=1+λa1,
1 故 λ≠1,a1= ,a1≠0. 1- λ 由 Sn=1+λan, Sn+1=1+λan+1 得 an+1=λan+1-λan,
1 2 2 2 2 Sk = 1×2 + 2×3 + „ + n(n-1) + 1 2n 1- 2 . = n + 1 n+1
1 1 1 1 -n+n- = n-1 n+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析
5×4 则 S5=-4×5+ 2 ×2=0,故选 A.
解析 答案
2 2 a a a (2)(2017 届长沙一模)等比数列 n 的公比为- 2,则 ln 2 017 -ln 2 016 =

ln 2 ______.
解析 ln a2
3.性质 若m+n=p+q, 在等差数列中am+an=ap+aq; 在等比数列中am· an=ap· aq.
例1
(1)(2017 届江西师大附中、临川一中联考)已知数列{an},{bn}满足
* 009=4,则
bn=log2an,n∈N ,其中{bn}是等差数列,且 a9a2 +„+b2 017 等于 A.2 016 C.log22 017 B.2 017 √ 2 017 D. 2
思维升华
解析
答案
跟踪演练1 A.0 √
(1)(2017· 河北省曲周县第一中学模拟)设等差数列{an}的前n B.-2 C.4 D.1
a1=-4, ⇒ d=2,
项和为Sn,若S4=-4,S6=6,则S5等于
4a +4×3d=-4, 1 2 由题设可得 6×5 6a1+ 2 d=6
②利用等差中项,即证明2an=an-1+an+1(n≥2).
(2)证明{an}是等比数列的两种基本方法
an+1 ①利用定义,证明 a (n∈N*)为一常数; n ②利用等比中项,即证明 a2 校联考)已知数列{an}满足a1=3,an+1=2an-n
b1+b2+b3
解析
答案
(2)(2017届四川省成都市诊断性检测)在等比数列{an}中,已知a3=6, a3 +a5+a7=78,则a5等于 A.12 解析 B.18 √ C.24 D.36 由于a3+a5+a7=a3+a3q2+a3q4=6(q4+q2+1)=78,得q4+q2-
12=0,得q2=3或q2=-4(舍去),则a5=a3q2=6×3=18,故选B.
+1,数列{bn}满足b1=2,bn+1=bn+an-n. (1)证明:{an-n}为等比数列; 证明 ∵an+1=2an-n+1, ∴an+1-(n+1)=2(an-n), 又a1-1=2, ∴{an-n}是以2为首项,2为公比的等比数列.
思维升华
证明
an-n (2)数列{cn}满足 cn= ,求数列{cn}的前 n 项和 Tn. bn+1bn+1+1
解答
(2)将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比 数列 {bn} 的前 3 项,记 {bn} 的前 n 项和为 Tn ,若存在 m∈N* ,使对任意 n∈N*,总有Sn<Tm+λ恒成立,求实数λ的取值范围.
思维升华
解答
跟踪演练3
(2017· 北京)已知等差数列{an}和等比数列{bn}满足a1=b1=
思维升华 an+1 2 = q 和 a n=an-1an+1(n≥2)都是数列{an}为等比数列的必要 an
不充分条件,判断时还要看各项是否为零.
思维升华
解答
跟踪演练 2
(2017 届吉林省长白山市模拟 ) 在数列 {an} 中,设 f(n) = an ,
且f(n)满足f(n+1)-2f(n)=2n(n∈N*),且a1=1.
2 017
-ln a2

2 016
a 2 0172 =lna =lnq2=ln 2 016
2.
解析
答案
热点二 等差数列、等比数列的判定与证明
数列{an}是等差数列或等比数列的证明方法
(1)证明数列{an}是等差数列的两种基本方法:
①利用定义,证明an+1-an(n∈N*)为一常数;
所以b2n-1=b1q2n-2=3n-1.
从而 b1+b3+b5+„+b2n-1=1+3+3 +„+3
1,a2+a4=10,b2b4=a5. (1)求{an}的通项公式; 解 设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10, 解得d=2,所以an=2n-1.
解答
(2)求和:b1+b3+b5+„+b2n-1. 解 设等比数列{bn}的公比为q,
4 2 因为 b2b4=a5,所以 b2 q = 9 ,解得 q =3, 1
an (1)设 bn= n-1,证明:数列{bn}为等差数列; 2 证明 由已知得an+1=2an+2n,
an+1 2an+2n an 得 bn+1= 2n = 2n = n-1+1=bn+1, 2
∴bn+1-bn=1, 又a1=1,∴b1=1, ∴{bn}是首项为1,公差为1的等差数列.
证明
(2)求数列{an}的前n项和Sn. an n-1. 解 由(1)知,bn= n- = n , ∴ a = n · 2 n 1 2 ∴Sn=1+2· 21+3· 22+„+n· 2n-1, 两边乘以2,得
2Sn=1· 21+2· 22+„+(n-1)· 2n-1+n· 2n,
两式相减得-Sn=1+21+22+„+2n-1-n· 2n
=2n-1-n· 2n=(1-n)2n-1,
∴Sn=(n-1)· 2n+1.
解答
热点三 等差数列、等比数列的综合问题
解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清
它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的
单调性、最值求解.
例3 已知等差数列{an}的公差为-1,且a2+a7+a12=-6.
(1)求数列{an}的通项公式an与前n项和Sn; 解 由a2+a7+a12=-6,得a7=-2,∴a1=4,
n9-n ∴an=5-n,从而 Sn= 2 .
专题四 数列、推理与证明
第1讲
等差数列与等比数列
热点分类突破
真题押题精练

热点分类突破
热点一 等差数列、等比数列的运算 1.通项公式 等差数列:an=a1+(n-1)d; 等比数列:an=a1· qn-1. 2.求和公式
na1+an n n -1 等差数列:Sn= = na d ; 1+ 2 2 a11-qn a1-anq 等比数列:Sn= = (q≠1). 1-q 1-q
相关文档
最新文档