现代控制理论课件2-wzj

合集下载

现代控制理论课件2

现代控制理论课件2

38
二、从系统的机理出发建立状态空间表达式
例1、求图示机械系统的状态空间表达式
外力 u(t)
K ---弹性系数 m
牛顿力学定律 my u by ky
阻 尼 系 数
y(t) b
位移 令
b u(t ) ky m y y
x1 y
x2 y
39



动态方程如下
x1 x2
x1 y 1 0 x2
41
例:设有如图所示的机 械系统。它由两个彼 此耦合的平台构成。 并借助于弹簧和阻尼 到达地基。试选择合 适的状态变量,写出 该系统的状态空间模 型。
42

解答:依题意,进行受力分析,可得如下的微分方程:
M1y1 = u -k1 (y1 - y 2 )-f1 (y1 - y 2 ) M2y 2 = k1 (y1 - y 2 ) + f1 (y1 - y 2 )-k 2y 2 -f 2y 2
其中: a11 a12 a1n a a22 a2 n 21 A — 系统内部状态的联系, an1 an 2 ann
18
称为系统矩阵 , 为n n方阵;
多输入——多输出定常系统: 用向量矩阵表示时的状态空间表达式为:
Ax Bu x y Cx Du
其状态变量为: x1 , x2 ,, xn , 则状态方程的一般形式 为:
1 a11x1 a12 x2 a1n xn b11u1 b12u2 b1r ur x 2 a21x1 a22 x2 a2 n xn b21u1 b22u2 b2 r ur x n an1 x1 an 2 x2 ann xn bn1u1 bn 2u2 bnr ur x

《现代控制理论》PPT课件

《现代控制理论》PPT课件

精选ppt
8
4、控制理论发展趋势
❖ 企业:资源共享、因特网、信息集成、 信息技术+控制技术 (集成控制技术)
❖ 网络控制技术
❖ 计算机集成制造CIMS:(工厂自动化)
精选ppt
9
三、现代控制理论与古典控制理论的对比
❖ 共同 对象-系统 主要内容 分析:研究系统的原理和性能 设计:改变系统的可能性(综合性能)
现代控制理论
Modern Control Theory
精选ppt
1
绪论
❖ 学习现代控制理论的意义: 1.是所学专业的理论基础 2.是研究生阶段提高理论水平的重要环节。 3. 是许多专业考博士的必考课。
精选ppt
2
一、控制的基本问题
❖ 控制问题:对于受控系统(广义系统)S,
寻求控制规律μ(t),使得闭环系统满足给
精选ppt
10ቤተ መጻሕፍቲ ባይዱ
四、本课程主要内容
❖ 系统描述:状态空间表示法 ❖ 系统分析:状态方程的解、线性系统的能控
和能观测性、稳定性分析 ❖ 系统设计:状态反馈和状态观测器、 ❖ 最优控制:最优控制系统及其解法
精选ppt
11
五、使用教材
❖ 《现代控制理论》(第二版)刘豹主编 机械工业出版社
参考书 现代控制理论与工程 西安交大
定的性能指标要求。
精选ppt
3
求解包括三方面:
1. 系统建模 用数学模型描述系统 2. 系统分析 定性:稳定性、能控能观性
定量:时域指标、频域指标 3. 系统设计
控制器设计、满足给定要求 结构设计 参数设计
精选ppt
4
二、控制理论发展史(三个时期)
❖1.古典控制理论:

《现代控制理论》课件

《现代控制理论》课件
现代控制理论
目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论
01
引言
什么是现代控制理论
现代控制理论是一门研究动态系统控制的学科,它利用数学模型和优化方法来分析 和设计控制系统的性能。
它涵盖了线性系统、非线性系统、多变量系统、分布参数系统等多种复杂系统的控 制问题。
20世纪60年代
线性系统理论和最优控制理论得到发展,为现代控制理论的建立奠定 了基础。
20世纪70年代
非线性系统理论和自适应控制理论逐渐发展起来,进一步丰富了现代 控制理论的应用范围。
20世纪80年代至今
现代控制理论在智能控制、鲁棒控制、预测控制等领域取得了重要进 展,为解决复杂系统的控制问题提供了更有效的工具。
01
利用深度学习算法对系统进行建模和学习,实现更高
效和智能的自适应控制。
多变量自适应控制
02 研究多变量系统的自适应控制方法,以提高系统的全
局性能。
非线性自适应控制
03
发展非线性系统的自适应控制方法,以处理更复杂的
控制系统。
06
鲁棒控制理论
鲁棒控制的基本概念
鲁棒控制是一种设计方法,旨在 提高系统的稳定性和性能,使其 在存在不确定性和扰动的情况下
自适应逆控制
一种基于系统逆动态特性的自适应控制方法,通过对系统 逆动态特性的学习和控制,实现系统的自适应控制。
自适应控制系统设计
系统建模
建立被控对象的数学模型,包括线性系统和非线性系统。
控制器设计
根据系统模型和性能指标,设计自适应控制器,包括线性自适应控制器和 非线性自适应控制器。
参数调整
根据系统运行状态和环境变化,调整控制器参数,以实现最优的控制效果 。

现代控制理论课件PPT

现代控制理论课件PPT
西华大学电气与电子信息学院
▪ 系统辨识(系统辨识,参数估计) 未知系统的建模,在仅知道y和u,根据输入输出关系建立 系统模型。 包括两部分:模型结构及模型参数的确立。 系统辨识:包括模型结构及参数的辨识; 参数估计:模型结构已定,估计其参数;以下三阶系统: a3 y(3) a2 y(2) a1 y' a0 y b0u
问题称为极点配置问题。
3)使一个MIMO系统实现一个输入只控制一个输出作为
性能指标,相应的综合问题称为解耦问题。
4)将系统的输出y(t)无静差地跟踪一个外部信号 u(t) 的能
力,作为性能指标,相应的综合问题称为跟踪问题。
西华大学电气与电子信息学院
3 控制系统仿真 系统
建立数 学模型
仿真 实验
结果分析
模型
计算机
建立仿真模型
MATLAB工程软件简介
在控制类学科中, MATLAB/Simulink是首选的计算机 工具。 MATLAB软件中有大量的MATLAB配套工具箱 功能强大的控制系统仿真环境SIMULINK,它用形象的图 形环境为控制系统的分析设计提供了很好的试验工具。
西华大学电气与电子信息学院
F135-PW-100
西华大学电气与电子信息学院
蒸气发电机的谐调控制系统模型
西华大学电气与电子信息学院
0.1.2 现代控制理论和经典控制理 论的区别
经典控制理论
单输入单输出(SISO) 黑箱问题,不完全描述 近似分析、设计,采用拼凑法 无法考虑系统的初始条件(传递函数的定义) 传递函数、微分方程 时域法、根轨迹法、频域法
现代控制理论
宋潇潇 西华大学电气与电子信息学院
现代控制理论
地位和重要性 所需基础知识 知识构架 笔记和课件 出勤和考试

《现代控制理论基础》课件

《现代控制理论基础》课件

预测控制
预测控制是一种基于模型预测 未来系统行为的控制方法。
控制器
控制器是控制系统中的核心 组件,负责计算并施加控制 信号。
操作对象
控制系统的操作对象可以是 各种各样的设备或系统,了 解操作对象的特性是设计有 效控制策略的基础。
模型化
系统状态方程
通过建立系统状态方程,我们 可以描述控制系统的动态行为。
传递函数
传递函数是描述输入和输出之 间关系的数学表达式,常用于 分析系统的频率响应。
通过绘制根轨迹来分析系统的稳定性和性能。
2 Nyquist法
利用Nyquist图来评估系统的稳定性和抗干扰能力。
鲁棒性设计
扰动抑制
了解如何设计鲁棒控制器来抑制 系统中的扰动。
鲁棒控制
鲁棒控制是一种能够保持系统稳 定性和性能的控制策略。
H∞控制
H∞控制是一种能够优化系统鲁 棒性和性能的控制策略。
非线性控制
《现代控制理论基础》PPT课件
现代控制理论基础是一门关于控制系统的基本概念、模型化、控制器设计、 稳定性分析、鲁棒性设计、非线性控制和优化控制的课程。通过本课程的学 习,您将掌握现代控制理论的基础知识和思想,并能够运用所学知识解决实 际控制问题。
控制系统基本概念
控制过程
了解控制过程是理解控制系 统工作原理的重要一步。
1 反馈线性化
通过反馈线性化技术,我们可以设计控制器来稳定非线性系统。
2 滑模控制
滑模控制是一种鲁棒而有效的非线性控制方法。
3 非线性规划
非线性规划方法可以用来优化非线性系统的控制策略。
优化控制
最优化法
最优化法是一种通过优化目标 函数来设计最优控制策略的方 法。
非线性规划

1.2-现代控制理论的主要内容PPT优秀课件

1.2-现代控制理论的主要内容PPT优秀课件
6
最优控制(1/1)
1.2.2 最优控制
最优控制理论是研究和解决从一切可能的控制方案中寻找最 优解的一门学科。 ➢ 具体地说就是研究被控系统在给定的约束条件和性能指 标下,寻求使性能指标达到最佳值的控制规律问题。 ➢ 例如要求航天器达到预定轨道的时间最短、所消耗的燃 料最少等。
该分支的基本内容和常用方法为 ➢ 变分法; ➢ 庞特里亚金的极大值原理; ➢ 贝尔曼的动态规划方法。
8
随机系统理论和最优估计(2/2)
最优估计讨论根据系统的输入输出信息估计出或构造出随机 动态系统中不能直接测量的系统内部状态变量的值。 ➢ 由于现代控制理论主要以状态空间模型为基础,构成反馈 闭环多采用状态变量,因此估计不可直接测量的状态变量 是实现闭环控制系统重要的一环。 ➢ 该问题的困难性在于系统本身受到多种内外随机因素扰 动,并且各种输入输出信号的测量值含有未知的、不可测 的误差。
系统辨识是重要的建模方法,因此亦是控制理论实现和应用 的基础。 ➢ 系统辨识是控制理论中发展最为迅速的领域,它的发展还 直接推动了自适应控制领域及其他控制领域的发展。
11
自适应控制(1/5)
1.2.5 自适应控制
自适应控制研究当被控系统的数学模型未知或者被控系统的 结构和参数随时间和环境的变化而变化时,通过实时在线修正 控制系统的结构或参数使其能主动适应变化的理论和方法。 ➢ 自适应控制系统通过不断地测量系统的输入、状态、输 出或性能参数,逐渐了解和掌握对象,然后根据所得的信息 按一定的设计方法,做出决策去更新控制器的结构和参数 以适应环境的变化,达到所要求的控制性能指标。 ➢ 该分支诞生于1950年代末,是控制理论中近60年发展最为 迅速、最为活跃的分支。
12
自适应控制(2/5)

现代控制理论(II)-讲稿课件ppt

现代控制理论(II)-讲稿课件ppt

03
通过具体例子说明最小值原理在最优控制问题中的应
用方法。
06 现代控制理论应用案例
倒立摆系统稳定控制
倒立摆系统模型建立
分析倒立摆系统的物理特性,建立数学模型,包括运动方程和状态 空间表达式。
控制器设计
基于现代控制理论,设计状态反馈控制器,使倒立摆系统实现稳定 控制。
系统仿真与实验
利用MATLAB/Simulink等工具进行系统仿真,验证控制器的有效性; 搭建实际实验平台,进行实时控制实验。
最优控制方法分类
根据性能指标的类型和求解方法, 最优控制可分为线性二次型最优控 制、最小时间控制、最小能量控制 等。
最优控制应用举例
介绍最优控制在航空航天、机器人、 经济管理等领域的应用实例。
05 最优控制理论与方法
最优控制问题描述
控制系统的性能指标
定义控制系统的性能评价标准,如时间最短、能量最小等。
随着网络技术的发展,分布式控制系统逐渐 成为现代控制理论的研究热点,如多智能体 系统、协同控制等。
下一步学习建议
01
02
03
04
深入学习现代控制理论相关知 识,掌握更多先进的控制方法
和技术。
关注现代控制理论在实际系统 中的应用,了解不同领域控制
系统的设计和实现方法。
加强实践环节,通过仿真或实 验验证所学理论知识的正确性
机器人运动学建模
分析机器人的运动学特性, 建立机器人运动学模型, 描述机器人末端执行器的 位置和姿态。
运动规划算法设计
基于现代控制理论,设计 运动规划算法,生成机器 人从起始点到目标点的平 滑运动轨迹。
控制器设计与实现
设计机器人运动控制器, 实现机器人对规划轨迹的 精确跟踪;在实际机器人 平台上进行实验验证。

第2章 现代控制理论1PPT课件

第2章 现代控制理论1PPT课件

时不变系统状态转移矩阵Φ tt0或 Φ t是满足如下矩阵微分
方程和初始条件的解,这也是检验一个矩阵是不是状态转移
的条件。
Φ (tt0)AΦ (tt0)或 Φ (t)AΦ (t)
Φቤተ መጻሕፍቲ ባይዱ(0)I
Φ (0)I
(2.5)
1Φ t在 t0的值 lim ΦtI
t0
(2)Φt对t的导 Φ 数 tA Φ tΦ tA
故可求出其解为:
t
X ( t) ( t) X ( 0 ) o ( t ) B () U d ( 2 .2 b )
式中 (t) eAt 为系统的状态转移矩阵。
对于线性时变系统非齐次状态方程,
X ( t) A ( t) X ( t) B ( t) U ( t) ( 2 3 )
类似可求出其解为
x (0 )e a t tb(u )e a (t )d 0
同样,将方程(2.1)写为 X (t)A(X t)B(U t)
在上式两边左乘eAt ,可得:
e A [X t(t) A(t) X ]d[e AX t(t) ]e A B t (tU )
dt
3
将上式由 0 积分到 t ,得
X ( t) e A X t ( 0 ) te A (t )B () U d (2 .2 a ) o
的解,X(t)=Ф (t, t0)X(0) 。 下面不加证明地给出线性时变系统状态转移矩阵的几个
重要性质: 1、 (t,t)I
2 、 ( t 2 ,t 1 ) ( t 1 ,t 0 ) ( t 2 ,t 0 )
3 、 1 (t,t0) (t0 ,t) 4、当A给定后,(t,t0) 唯一
5、计算时变系统状态转移矩阵的公式
令 x (t) b 0 b 1 t b 2 t2 b iti b iti,t 0

现代控制理论(II)-讲稿-课件-ppt-2-2

现代控制理论(II)-讲稿-课件-ppt-2-2

X (t0 ) e
t0
tf
A(t f )
B U ( ) d
0e
A( t f t0 )
X (t0 ) e
t0
tf
A( t f )
B U ( ) d
X (t0 ) Ak 1 B ( k (t0 ) U ( ) d )
现代控制工程基础 单输入单输出系统的可控标准型的另一种形式(标准II型)
0 0 1 0 A 0 1 0 a0 a1 0 , 0 an 2 0 1 an 1 0 1 0 B , 0
Mc=[B, AB, A2B, …,An-1B]
(2)定常线性系统是单输入时,可控的充分必要条件是det(Mc) ≠0
现代控制工程基础
(3)系统可控的充分必要条件是系统矩阵A为对角线矩 阵,输入矩阵B中没有全零的行;或者系统矩阵A是约 当对角形矩阵,输入矩阵B中与约当块最前一行对应 的行不是全为零
解:
C x1

u x1 R1
电流方程
u 电压方程
C R1
1 R12C 2 R2 2 L
L R2
L x2 u R2 x2
1 1 x1 x1 u R1C R1C x R2 x 1 u 2 2 L L
M c B
X (0) A1 B

A 2 B A( n 1) B
u (0) u (1) n M c U A B u (n 1)

M c U X (0)
此非奇次线性方程组有唯一解的充分必要条件是: rank(Mc)=rank(Mc -X(0))=n

现代控制理论课件-华东交大2-wzj

现代控制理论课件-华东交大2-wzj

x1
y
x2

2 s 1
x3
1 s2
指定状态变量组后,列写变量间的关系方程:
1 4 x1 5(u x3 ) x 2 x2 2(u x3 ) x 3 2 x3 y x y x1 x2
14
写成矩阵形式
1 4 0 5 x1 5 x x 2 0 1 2 x 2 2 u 3 1 2 x 1 x3 0 x1 y 1 1 0 x2 x3
y
(n)
a n1 y
( n 1)
a1 y
(1)
a0 y b0 u
G(s)
选取n个状态变量
x1 y =x 1 x2 y n 1 xn y ( n 1) x y (n) x
b0 s n an 1s n 1 a1s a0
15
线性定常连续系统的状态空间表达式的建立 建立系统状态空间表达式的两种方式: (1)直接通过物理机理推导 A、确定系统的输入变量、输出变量和状态变量 B、根据物理化学定理列写微分方程 C、将微分方程转化为关于状态变量的一阶导数 与状态变量、输入变量的关系式 D、整理得到标准形式
2014-2-26 16
(3) 状态变量选取的不唯一性, 变量之间是相互独立的。
(4) 变量个数等于微分方程阶数,即等于系统独立储能元 件的个数。
2014-2-26 10
状态空间表达式的系统框图
A(t ) x B(t )u x y C (t ) x D(t )u
D(t )
u
B (t )
x
2014-2-26

现代控制理论理论.ppt

现代控制理论理论.ppt

(t) eAt
1
(sI

A)1

2et 2et
e2t 2e2t
et e2t
et

2e2t

1(t)

(t)

e At

2et 2et
e2t 2e2t
et e2t
et

2e2t

§2 状态转移矩阵的求解
(m
1
1)
!
t
m1

e At e1t
1t
.
.
(m
1
2)
!
t
m
1

...
.


..
.


.
t

0
1

(2-23)
§2 状态转移矩阵的求解
若矩阵A为一约当矩阵,即
A1


A

J


A2


Aj

其中 A1, A2 , , Aj 为约当块
(t) eAt
(2-9)
t0 0
(t t0 ) e A(tt0 )
(2-10)
§1 自由运动
齐次方程的解,可表示为
x(t) (t)x(0)

x(t) (t t0)x(t0)
(2-11) (2-12)
上式表明齐次状态方程的解,在初始状态确定情况下,由状态
转移矩阵唯一确定,即状态转移矩阵 (t)包含了系统自由运动的全
§2 状态转移矩阵的求解
例2-5
考虑如下矩阵

现代控制理论教学课件

现代控制理论教学课件
数字仿真实验结果分析 阐述如何对数字仿真实验结果进 行分析,包括性能指标的计算和 评估,以及对实验结果进行解释 和讨论。
数字仿真软件 介绍常用的数字仿真软件,如 MATLAB/Simulink等,并解释其 基本原理和使用方法。
数字仿真实验设计 详细说明数字仿真实验的设计方 法,包括如何建立系统模型、如 何设计控制器、如何设置仿真参 数等。
该方法能够全面地反映系统的性能,具有较强的适用性和实用 性。同时,该方法可通过实验手段进行验证,可靠性高。
设计过程相对较为复杂,需要一定的专业知识和经验。
适用于高阶系统和多变量系统的控制器设计,广泛应用于工程 实践中。
最优控制设计法
定义
最优控制设计法是一种基于最优化理论进行控制器设计的 方法。
缺点
现代控制理论阶段
自20世纪60年代开始,状态空间 法成为主导,适用于多输入多输 出、非线性、时变系统的分析与 设计。
现代控制理论的特点
状态空间描述
现代控制理论基于状态空间描述 ,通过状态变量全面反映系统内 部状态,提供更深入的系统分析

时域分析法
相比古典控制理论的频域分析法, 现代控制理论采用时域分析法,能 够直接反映系统的时间响应特性。
05
现代控制理论进阶知 识
系统的数学模型 ,包括微分方程、差分方程和状态方程等

A 非线性现象
介绍系统中的非线性现象,如死区 、饱和、滞后等,并分析其对系统
性能的影响。
B
C
D
非线性系统设计
探讨非线性控制系统的设计方法,如反馈 线性化、滑模变结构控制、反步法等。
稳定性分析
利用状态空间方程的特征值分析系统的稳定性,通过判断 特征值的分布来确定系统的稳定性。

现代控制理论ppt

现代控制理论ppt

求解方法
通过利用拉格朗日乘子法或Riccati方程,求 解线性二次调节器问题,得到最优控制输入

动态规划与最优控制策略
动态规划的基本思想
将一个多阶段决策问题转化为一系列单 阶段问题,通过求解单阶段问题得到多 阶段的最优解。
பைடு நூலகம்
VS
最优控制策略的确定
根据动态规划的递推关系,逐步求解每个 阶段的优化问题,最终得到最优控制策略 。
总结词
稳定性分析是研究非线性系统的重要方法,主要关注系统在受到扰动后能否恢 复到原始状态或稳定状态。
详细描述
稳定性分析通过分析系统的动态行为,判断系统是否具有抵抗外部干扰的能力。 对于非线性系统,稳定性分析需要考虑系统的初始状态、输入信号以及系统的 非线性特性等因素。
非线性系统的控制设计方法
总结词
要点二
详细描述
线性系统是指在输入和输出之间满足线性关系的系统,即 系统的输出量可以用输入量的线性组合来表示。线性系统 的性质包括叠加性、均匀性和时不变性等。叠加性是指多 个输入信号的响应等于各自输入信号响应的总和;均匀性 是指系统对不同频率信号的响应是一样的;时不变性是指 系统对时间的变化不敏感,即系统在不同时刻的响应是一 样的。
量随时间的变化规律,输出方程描述了输出量与状态变量之间的关系。
线性系统的稳定性分析
• 总结词:稳定性是控制系统的重要性能指标之一,线性系统的稳定性分 析是现代控制理论的重要研究内容。
• 详细描述:稳定性是控制系统的重要性能指标之一,如果一个系统受到 扰动后能够自我恢复到原来的状态,那么这个系统就是稳定的。线性系 统的稳定性分析是现代控制理论的重要研究内容,常用的方法有劳斯赫尔维茨稳定判据和奈奎斯特稳定判据等。劳斯-赫尔维茨稳定判据是 一种基于系统极点的判据,通过判断系统的极点是否都在复平面的左半 部分来判断系统的稳定性;奈奎斯特稳定判据是一种基于频率域的判据, 通过判断系统的频率响应是否在复平面的右半部分来判断系统的稳定性。

现代控制理论课件

现代控制理论课件

图中,I为(n n )单位矩阵,s是拉普拉斯算子,z为单位延时算子。
9
❖ 讨论: 1、状态变量的独立性。
2、由于状态变量的选取不是唯一的,因此状态方程、输出方程、 动态方程也都不是唯一的。但是,用独立变量所描述的系统的维数应该是 唯一的,与状态变量的选取方法无关。
3、动态方程对于系统的描述是充分的和完整的,即系统中的任 何一个变量均可用状态方程和输出方程来描述。 例1-1 试确定图8-5中(a)、(b)所示电路的独立状态变量。图中u、i分别是是输入
y2
up
yq
被控过程
5
典型控制系统由被控对象、传感器、执行器和控制器组成。
被控过程具有若干输入端和输出端。
数学描述方法: 输入-输出描述(外部描述):高阶微分方程、传递函数矩阵。
种完整的描述。
状态空间描述(内部描述):基于系统内部结构,是对系统的一
6
1.2 状态空间描述常用的基本概念
1) 输入:外部对系统的作用(激励); 控制:人为施加的激励;
3) 状态空间:以状态向量的各个分量作为坐标轴所组成的n维空间称为状态空间。 4) 状态轨线:系统在某个时刻的状态,在状态空间可以看作是一个点。随着时间的
推移,系统状态不断变化,并在状态空间中描述出一条轨迹,这种轨迹称为状态 轨线或状态轨迹。
5) 状态方程:描述系统状态变量与输入变量之间关系的一阶向量微分或差分方程称
b2
p
bnp
c11 c12 c1n
C
c21
c22
c2n
cq1 cq2
cqn
d11 d12 L
D
d21
d22
L
d2
p
M
dqp

现代控制理论(第二章) PPT

现代控制理论(第二章) PPT

2.2.3 几个特殊的矩阵指数函数 1.若 A 为对角线矩阵,即
(5) 则
(6) 2.若 A 能够通过非奇异变换予以对角线化,即
则 (7)
3.若 A 为约旦矩阵
则 (8)
4.若 (9)
2.2.4 1.根据
的计算 的定义直接计算
编程,用计算机算,最终能得到收敛解。但很难得到解析解。例2-1 2.变换 A 为约旦标准型 (1)A 特征根互异
3)用拉氏变换法求解 e A tL 1 (s I A ) 1
s3
sIA1 2s
11 s3
(s
1)(s 2
2)
(s 1)(s 2)
1
(s
1)(s s
2)
(s 1)(s 2)
s3 eAtL1(s1)(2s2)
(s1)(s2)
(s1)1s(s2)L1s221s212 (s1)(s2) s1 s2

上式左乘
,得:
注意式(5)等式右边第二项,其中:
(5)
两个拉氏变换函数的积是一个卷积的拉氏变换,即 以此代入式(5),并取拉氏反变换,即得 :
在特定控制作用下,如脉冲函数、阶跃函数和斜坡函数的激励下,则 系统的解式(2)可以简化为以下公式:
1.脉冲响应
即当

2.阶跃响应
即当

3.斜坡响应
即当

(6) (7)
(8)
例2-8 要求掌握!
例试求2-解8:该已系知统系的统单状位态阶方跃程响中应。A02 13,b10 解法一:积分法
x(t)eA tx(0)teA (t )B(u )d Φ (t)x(0)tΦ (t)B(u )d
当初始时刻
初始状态

现代控制理论教学课件

现代控制理论教学课件

现代控制理论教学课件现代控制理论教学课件切斯特·巴纳德是西方现代管理理论中社会系统学派的创始人。

他在人群组织这一复杂问题上的奉献和影响,可能比管理思想开展过程中的任何人都更为重要。

下面了现代控制理论教学课件,一起去看看吧!(1)强调系统化,运用系统思想和系统分析方法来指导管理实践,解决和处理管理的实际问题。

(2)重视人的因素,就是要注意人的社会性,对人的需要予以研究和探索,在一定的环境条件下,尽最大可能满足人们的需要,以保证组织中全体成员齐心协力地为完成组织目标而自觉作出奉献。

(3)更视“ 非正式组织”的作用。

非正式组织是人们以感情为根底而结成的集体,这个集体有约定俗成的信念,人们彼此感情融洽。

在不违背组织原那么的前提下,发挥非正式群体在组织中的积极作用,从而有助于组织目标的实现。

(4)广泛地运用先进的管理理论与方法。

先进的科学技术和方法在管理中的应用越来越重要,各级主管人员必须利用现代的科学技术与方法,促进管理水平的提高。

(5)加强信息工作。

主管人员必须利用现代技术,建立信息系统,以便有效、及时、准确地传递信息和使用信息,促进管理的现代化。

(6)把“ 效率”( Efficiency)和“效果”(Effectiveness)结合起来。

管理工作不仅仅是追求效率,更重要的是要从整个组织的角度来考虑组织的整体效果以及对社会的奉献。

因此要把效率和效果有机地结合起来,使管理的目的表达在效率和效果之中,也即通常所说的绩效(Pedonnance)。

(7)重视理论联系实际。

(8)强调“预见”能力。

社会是迅速开展的,客观环境在不断变化,这就要求人们运用科学的方法进展预测,进展前馈控制,从而保证管理活动的顺利进展。

(9)强调不断创新。

在保证“惯性运行”的状态下,不满足现状,利用一切可能的时机进展变革,从而使组织更加适应社会条件的变化。

一一哈洛德·孔茨在1961年12月发表的《管理理论的丛林》一文,19年后又开展《再论管理理论的丛林》,他对管理流派进展分类,指出管理已由6个学派开展形成了11个学派。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 书p26-29
2015-3-16
25
2015-3-16
26
特点:分子多项式的次数小于等于分母多项式的次数。
技术路线的执行:从一个特殊、简单的传递函数入手。 给定单输入,单输出线性时不变系统的输入输出描述,其 对应的状态空间描述可按如下三类情况导出 (1)m=0情形 (微分方程不含导数项) 此时输入输出描述为:
R1 1 ( R1 R2 )C uc ( R1 R2 )C e R1 R2 R i 2 L L( R1 R2 ) L( R1 R2 ) e(t ) R1 R2 uc R2 i e R1 R2 L R1 R2
24
0 x1 0 x 0 0 2 u a1 xn b
y 1 0
2015-3-16
• 2. 微分方程中含 输入函数导数项 • 见书p24-26(非考试范围)
• 三、由系统方框图建立状态空间表达式
x1
y
x2

2 s 1
x3
1 s2
指定状态变量组后,列写变量间的关系方程:
1 4 x1 5(u x3 ) x 2 x2 2(u x3 ) x 3 2 x3 y x y x1 x2
14
写成矩阵形式
1 4 0 5 x1 5 x x 2 0 1 2 x 2 2 u 3 1 2 x 1 x3 0 x1 y 1 1 0 x2 x3
状态空间:状态空间定义为状态向量的一个集合,状态空间的 维数等同于状态的维数。 状态空间表达式:描述系统输入、输出和状态变量之间关系的 方程组,包括状态方程(描述输入和状态变量之间的关系)和
输出方程(描述输出和输入、状态变量之间的关系)。
2015-3-16 9
几点解释 (1)状态变量组对系统行为的完全表征性
2015-3-16
1
线性系统和非线性系统 设系统的状态空间描述为
f ( x,u, t ) x y g ( x,u, t )
向量函数
g1 ( x,u, t ) f1 ( x,u, t ) g ( x,u, t ) f ( x,u, t ) ,g( x,u, t ) 2 f ( x,u, t ) 2 g ( x, u , t ) f n ( x,u, t ) q
x1 y x2 y ' x3 y '' xn y ( n 1)
2015-3-16 22
(2)将高阶微分方程化为一阶微分方程
x1 ' y ' x2 x2 ' y '' x3 xn 1 ' y ( n 1) xn xn ' y ( n ) an y an 1 y ' an x1 an 1 x2
27
其对应的状态空间描述为:
0 0 x 0 a0 1 0 0 0 0 0 x u 1 0 an 1 b0
友矩阵
0 0 a1 a2
y( Βιβλιοθήκη ) an1 y( n1)
a1 y a0 y b0u
(1)
选取n个状态变量
x1 y =x 1 x2 y
b0 G( s) n s an1s n1 a1s a0
n 1 xn y ( n 1) x y (n) x
19
1 c ( R1 R2 )C u i R1 L L( R1 R2 ) R2 u R2 R1 R2 1 1 ( R1 R2 )C x x R1 2 L( R1 R2 ) R2 y R1 R2
2015-3-16
a1 y ( n 1) bu a1 xn bu
23
(3)转化为向量形式
x1 ' 0 x ' 0 2 xn ' an 1 0 an 1 0 1 an 2 x1 x 0 2 xn
(3) 状态变量选取的不唯一性, 变量之间是相互独立的。
(4) 变量个数等于微分方程阶数,即等于系统独立储能元 件的个数。
2015-3-16 10
状态空间表达式的系统框图
A(t ) x B(t )u x y C (t ) x D(t )u
D(t )
x
u
B(t )

特点:状态矩阵为友 矩阵,最后一行由传 递函数分母多项式系 数决定,从低次幂系 数到高次幂系数排列, 并加负号;输出矩阵 的第一个元是1,其 它为零;直接转移矩 阵为零。
y 1, 0, , 0x
u
b0
n 1 xn x

s
1 s
xn 1
x2
1 s
x1
x1 y =x 1 x2 y
以上方程可表为形如
Ax Bu x y Cx Du
20
二、系统微分方程转化为状态空间表达式
1、 微分方程中不包含输入导数项 不包含输入导数项的线性微分方程形式为:
y(n) a1 y( n1)
an1 y ' an y bu
2015-3-16
21
(1)选择状态变量:
内部描述则是系统的一种完全的描述,能够完全反映系 统的所有动力学特性。
2015-3-16
8
状态和状态空间的定义 状态变量: 足以表征系统运动状态的最小个数的一组变量 状态(矢量): 由其状态变量所组成的一个列向量
x1 (t ) x (t ) x (t ) 2 x ( t ) n
复频域描述即传递函数描述
bn1s n1 b1s b0 y ( s) g ( s) n u( s) s an1s n1 a1s a0
7
(2)系统的内部描述 状态空间描述是系统内部描述的基本形式,需要由两个 数学方程表征—— 状态方程和输出方程。 (3)外部描述和内部描述的比较 一般的说外部描述只是对系统的一种不完全描述,不能 反映系统内部结构的不能控或不能观测的部分。
只要给定初始时刻 t0 的任意初始状态变量组 x1 (t0 ), x2 t0 ,, xn (t0 )
和t≥t0 各时刻的任意输入变量 u1 (t ),u2 t ,, u p (t ),那么系统的 任何一个内部变量在 t≥t0 各时刻的运动行为也就随之而完全
确定。
(2) 状态变量组最小性的特征
该系统称为时不变系统 若向量f,g显含时间变量t,即
f f ( x, u, t ) g g ( x, u, t )
该系统称为时变系统
2015-3-16 3
连续时间系统和离散时间系统
当且仅当系统的输入变量,状态变量和输出变量取值于连 续时间点,反映变量间因果关系的动态过程为时间的连续过程, 该系统称为连续时间系统 当且仅当系统的输入变量,状态变量和输出变量只取值于 离散时间点,反映变量间因果关系的动态过程为时间的不连续 过程,该系统称为离散时间系统. 确定性系统和不确定性系统 称一个系统为确定性系统,当且仅当不论是系统的特性 和参数还是系统的输入和扰动,都是随时间按确定的规律而变 化的. 称一个动态系统为不确定性系统,或者系统的特性和参数 中包含某种不确定性,或者作用于系统的输入和扰动是随机变 量
R1
C
iC

L
iL
Uc
R2 U R2

R1 1 ( R1 R2 )C x1 ( R1 R2 )C u R1 R2 R 2 x2 L( R1 R2 ) L( R1 R2 ) R1 R2 x1 R2 x u R1 R2 R R 2 1 2
2015-3-16
18
电路系统状态空间描述的列写示例
R1
C
iC
duc di L u c R 2C dt L dt 0 duc di L R1i L R1C L e dt dt
1 c ( R1 R2 )C u i R1 L L( R1 R2 ) R2 u R2 R1 R2
y
n1 xn y ( n1) x n y ( n ) x
28
an 1 an2
a1
a0
2015-3-16
(2)m<n,即系统为严真情形 (如书中p30 的标准型法)
还是从简单的形式开始! 考虑传递函数
2015-3-16 4
2015-3-16
5
2015-3-16
6
状态变量和状态空间表达式
系统动态过程的两类数学描述 (1) 系统的外部描述 外部描述常被称作为 输入—输出描述
u1
y1
u2
up
x1, x2 ,, xn
y2
yq
例如.对SISO线性定常系统:时间域的外部描述:
y ( n) an1 y ( n1) a1 y (1) a0 y bn1u ( n1) b1u (1) b0u
若f(x,u,t),g(x,u,t)的全部或至少一个组成元为x、u的非线性 函数,该系统称为非线性系统 若f(x,u,t),g(x,u,t)的全部组成元为x、u的线性函数,该系统称 为线性系统
非线性系统可以用泰勒展开方法化为线性系统
2
时变系统和时不变系统 若向量f,g不显含时间变量t,即
相关文档
最新文档