线性代数期末试卷样卷d

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

大一线性代数期末考试试题

大一线性代数期末考试试题

大一线性代数期末考试试题一、选择题(每题2分,共10分)1. 向量空间的定义中,下列哪一项不是其公理化系统的一部分?A. 向量加法的封闭性B. 向量的数乘封闭性C. 向量加法的交换律D. 存在非零零向量2. 设A是一个3阶方阵,且满足A^2 - 2A + I = 0,其中I是3阶单位矩阵。

则A^3的值为:A. AB. 2AC. 3AD. 03. 在线性代数中,下列哪个矩阵是不可逆的?A. 单位矩阵B. 对角矩阵C. 行最简矩阵D. 行阶梯矩阵4. 特征值和特征向量的定义中,下列说法正确的是:A. 特征向量可以是零向量B. 每个特征值都有对应的特征向量C. 一个矩阵的特征值是唯一的D. 一个矩阵可能没有特征值5. 设T是一个线性变换,且T保持向量加法和数乘,那么T是一个:A. 线性变换B. 非线性变换C. 仿射变换D. 恒等变换二、填空题(每题2分,共10分)6. 若向量v = (1, 2, 3),向量w = (x, y, z),且v与w垂直,则x + y + z = _______。

7. 设矩阵A = (\*, \*, \*; \*, \*, \*; \*, \*, \*),若A的行列式为0,则称A为奇异矩阵,否则称为非奇异矩阵。

对于3阶方阵,其行列式计算公式为:det(A) = \*\*\* - \*\*\* + \*\*\* - \*\*\*+ \*\*\*。

8. 在求解线性方程组时,若系数矩阵的秩小于增广矩阵的秩,则该方程组是_______的。

9. 设P是n阶置换矩阵,那么P的行(或列)向量中,有_______个1,n-_______个0。

10. 对于一个n维向量空间,其基可以通过_______个线性无关的向量来构造。

三、简答题(每题10分,共30分)11. 请简述线性相关与线性无关的定义,并给出一个例子说明两者的区别。

12. 给出一个具体的3维向量空间,并说明其基和维数。

13. 解释何为矩阵的秩,并举例说明如何计算一个矩阵的秩。

线性代数期末试题及参考答案

线性代数期末试题及参考答案

线性代数期末试卷及参考答案一、单项选择题(每小题3分,共15分)1.下列矩阵中,( )不是初等矩阵。

(A )001010100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B)100000010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C) 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D) 100012001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是( )。

(A )122331,,αααααα--- (B )1231,,αααα+ (C )1212,,23αααα- (D )2323,,2αααα+3.设A 为n 阶方阵,且250A A E +-=。

则1(2)A E -+=( )(A) A E - (B) E A + (C) 1()3A E - (D) 1()3A E +4.设A 为n m ⨯矩阵,则有( )。

(A )若n m <,则b Ax =有无穷多解;(B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;(C )若A 有n 阶子式不为零,则b Ax =有唯一解; (D )若A 有n 阶子式不为零,则0=Ax 仅有零解。

5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则()(A )A 与B 相似(B )A B ≠,但|A-B |=0 (C )A=B (D )A 与B 不一定相似,但|A|=|B|二、判断题(正确填T ,错误填F 。

每小题2分,共10分)1.A 是n 阶方阵,R ∈λ,则有A A λλ=。

()2.A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。

()3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。

( ) 4.若B A ,均为n 阶方阵,则当B A >时,B A ,一定不相似。

( )5.n 维向量组{}4321,,,αααα线性相关,则{}321,,ααα也线性相关。

大学线代期末试题及答案

大学线代期末试题及答案

大学线代期末试题及答案一、选择题(每题5分,共20分)1. 设A为3阶方阵,且|A|=2,则|2A|等于多少?A. 4B. 8C. 16D. 32答案:B2. 若矩阵A可逆,则下列说法正确的是:A. A的行列式为0B. A的行列式不为0C. A的逆矩阵不存在D. A的逆矩阵是唯一的答案:B3. 向量组α1, α2, α3线性无关,则下列说法正确的是:A. 这三个向量可以构成一个平面B. 这三个向量可以构成一个空间C. 这三个向量可以构成一个直线D. 这三个向量可以构成一个点答案:B4. 设A是n阶方阵,如果A的特征值为λ,则下列说法正确的是:A. λ是A的最小特征值B. λ是A的最大特征值C. λ是A的特征值D. λ不是A的特征值答案:C二、填空题(每题5分,共20分)1. 若矩阵A的秩为2,则矩阵A的行列式|A|等于______。

答案:02. 设向量组α1, α2, α3线性相关,则至少存在不全为零的实数k1, k2, k3使得k1α1 + k2α2 + k3α3 = ______。

答案:03. 若A是3阶方阵,且A的迹等于6,则A的特征值之和等于______。

答案:64. 设向量空间V中有两个子空间U和W,若U与W的交集只包含零向量,则称U和W为______。

答案:互补子空间三、解答题(每题15分,共40分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的逆矩阵。

答案:首先计算A的行列式,|A| = 1*4 - 2*3 = -2。

然后计算A的伴随矩阵,即\[\begin{pmatrix} 4 & -2 \\ -3 & 1\end{pmatrix}\]。

最后,A的逆矩阵为\[\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}\] / (-2) = \[\begin{pmatrix} -2 & 1 \\1.5 & -0.5 \end{pmatrix}\]。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 0; 0, 0]2. 如果向量v = (3, -2),那么其对应的单位向量是什么?A. (1, -2/3)B. (3/√13, -2/√13)C. (3/√29, -2/√29)D. (3/√10, -2/√10)3. 对于矩阵A,|A|表示其行列式,那么|A| = 0表示:A. A是单位矩阵B. A是零矩阵C. A不是满秩矩阵D. A是可逆矩阵4. 矩阵的特征值是什么?A. 矩阵的对角元素B. 矩阵的迹C. 满足Av = λv的非零向量v对应的λD. 矩阵的行列式5. 下列哪个矩阵是对称矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, -1; 1, 1]D. [1, 0; 0, 1]二、填空题(每题3分,共15分)6. 如果矩阵A的秩为1,那么A的零空间的维数是_________。

7. 对于任意非零向量α和β,如果α + β和α - β都是零向量,那么向量α和β_________。

8. 一个向量空间的一组基的向量数量至少是_________。

9. 如果矩阵A是n阶方阵,且A^2 = I(单位矩阵),那么矩阵A是_________矩阵。

10. 对于实数域上的向量空间,任意两个非零向量的标量积是_________的。

三、简答题(每题10分,共20分)11. 解释什么是线性变换,并给出一个线性变换的例子。

12. 证明如果矩阵A和B是可交换的,即AB = BA,那么它们的行列式之积等于各自行列式的乘积,即|AB| = |A||B|。

四、计算题(每题15分,共30分)13. 给定矩阵A = [4, 1; 3, 2],求A的逆矩阵A^-1。

14. 设向量空间V是所有2x2实对称矩阵的集合,证明V是一个向量空间,并找出一组基。

线性代数期末考试试题

线性代数期末考试试题

线性代数期末考试试题一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [0, 1; 1, 0]D. [1, 1; 1, 1]2. 设向量空间V的一组基为{v1, v2, v3},向量v = 2v1 + 3v2 - v3,向量w = v1 - v2 + v3,那么v与w的内积为:A. 0B. -1C. 1D. 23. 对于n阶方阵A,其行列式|A|=0,这意味着:A. A是单位矩阵B. A是零矩阵C. A不是可逆矩阵D. A的所有特征值都是14. 在实数域上,以下哪个矩阵的特征多项式与矩阵本身不同?A. [1, 0; 0, 1]B. [0, 1; -1, 0]C. [1, 2; 2, 1]D. [2, 3; -1, -2]5. 设A和B是两个n阶方阵,若AB=BA,则称A和B是可交换的。

若A和B可交换,那么它们的行列式满足:A. |AB| = |A||B|B. |AB| = |A| + |B|C. |AB| = |B||A|D. |AB| = |A + B|10. 对于任意的3×3矩阵A,以下哪个结论是正确的?A. |A^T| = |A|B. |A^2| = |A|^2C. |kA| = k^3|A|D. |A + I| = |A| + 1二、填空题(每题3分,共15分)11. 若矩阵A的秩为1,则A的行列式|A|等于______。

12. 设矩阵B是矩阵A经过初等行变换后得到的矩阵,若B=S_1S_2...S_kA,其中S_i是初等矩阵,那么|B|与|A|的关系是|B|=_______。

13. 向量组α1, α2, ..., αs线性无关的充分必要条件是它们的行最简形矩阵中主对角线上的元素______。

14. 设A是一个m×n矩阵,B是一个n×m矩阵,若AB=I_m,则称矩阵A和B互为______。

线性代数期末考试题及答案

线性代数期末考试题及答案

《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。

同济大学线性代数期末试卷全套试卷(1至4套)

同济大学线性代数期末试卷全套试卷(1至4套)

《线性代数》期终试卷1( 2学时)本试卷共七大题一、填空题(本大题共7个小题,满分25分):1.(4分)设阶实对称矩阵的特征值为, , , 的属于的特征向量是, 则的属于的两个线性无关的特征向量是();2.(4分)设阶矩阵的特征值为,,,, 其中是的伴随矩阵, 则的行列式();3.(4分)设, , 则();4.(4分)已知维列向量组所生成的向量空间为,则的维数dim();5.(3分)二次型经过正交变换可化为标准型,则();6.(3分)行列式中的系数是();7.(3分) 元非齐次线性方程组的系数矩阵的秩为, 已知是它的个解向量, 其中, , 则该方程组的通解是()。

二、计算行列式:(满分10分)三、设, , 求。

(满分10分)四、取何值时, 线性方程组无解或有解?有解时求出所有解(用向量形式表示)。

(满分15分)五、设向量组线性无关, 问: 常数满足什么条件时, 向量组, , 也线性无关。

(满分10分)六、已知二次型,(1)写出二次型的矩阵表达式;(2)求一个正交变换,把化为标准形, 并写该标准型;(3)是什么类型的二次曲面?(满分15分)七、证明题(本大题共2个小题,满分15分):1.(7分)设向量组线性无关, 向量能由线性表示, 向量不能由线性表示 . 证明: 向量组也线性无关。

2. (8分)设是矩阵, 是矩阵, 证明: 时, 齐次线性方程组必有非零解。

《线性代数》期终试卷2( 2学时)本试卷共八大题一、是非题(判别下列命题是否正确,正确的在括号内打√,错误的在括号内打×;每小题2 分,满分20 分):1. 若阶方阵的秩,则其伴随阵。

()2.若矩阵和矩阵满足,则。

()3.实对称阵与对角阵相似:,这里必须是正交阵。

()4.初等矩阵都是可逆阵,并且其逆阵都是它们本身。

()5.若阶方阵满足,则对任意维列向量,均有。

()6.若矩阵和等价,则的行向量组与的行向量组等价。

()7.若向量线性无关,向量线性无关,则也线性无关。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案第一节:选择题1. 下列哪个向量不是矩阵A的特征向量?A. [2, 1, 0]B. [0, 1, 0]C. [1, 1, 1]D. [0, 0, 0]答案:D2. 线性变换T:R^n -> R^m 可逆的充分必要条件是?A. T是一个单射B. T是一个满射C. T是一个双射D. T是一个线性变换答案:C3. 设线性空间V的维数为n,下列哪个陈述是正确的?A. V中的任意n个线性无关的向量都可以作为V的基B. V中的任意n - 1个非零向量都可以扩充为V的基C. V中的任意n个非零向量都可以扩充为V的基D. V中的任意n - 1个非零向量都可以作为V的基答案:A4. 设A和B是n阶方阵,并且AB = 0,则下列哪个陈述是正确的?A. A = 0 或 B = 0B. A = 0 且 B = 0C. A ≠ 0 且 B = 0D. A = 0 且B ≠ 0答案:C第二节:计算题1. 计算矩阵乘法A = [1, 2; 3, 4]B = [5, 6; 7, 8]答案:AB = [19, 22; 43, 50]2. 计算矩阵的逆A = [1, 2; 3, 4]答案:A^(-1) = [-2, 1/2; 3/2, -1/2]3. 计算向量的内积u = [1, 2, 3]v = [4, 5, 6]答案:u ∙ v = 32第三节:证明题证明:对于任意向量x和y,成立下列关系式:(x + y) ∙ (x - y) = x ∙ x - y ∙ y证明:设x = [x1, x2, ..., xn],y = [y1, y2, ..., yn]。

左边:(x + y) ∙ (x - y) = [x1 + y1, x2 + y2, ..., xn + yn] ∙ [x1 - y1, x2 - y2, ..., xn - yn]= (x1 + y1)(x1 - y1) + (x2 + y2)(x2 - y2) + ... + (xn + yn)(xn - yn)= x1^2 - y1^2 + x2^2 - y2^2 + ... + xn^2 - yn^2= (x1^2 + x2^2 + ... + xn^2) - (y1^2 + y2^2 + ... + yn^2)= x ∙ x - y ∙ y右边,由向量的内积定义可得:x ∙ x - y ∙ y = x1^2 + x2^2 + ... + xn^2 - (y1^2 + y2^2 + ... + yn^2)综上,左边等于右边,证毕。

线性代数期末试卷三套附答案解析

线性代数期末试卷三套附答案解析

x1
x2 (1 k)x3 k.
k 取何值时,此方程组有唯一解、无解或有无限多解?并在有无限多解时求其通解.
四 证明题(本题 6 分) 设有向量组 α1, α2 , , αn 和 β1, β2 , , βn ,且 β1 α1 α2 , β2 α2 α3 , ,
βn1 αn1 αn , βn αn α1 .若向量组 α1, α2 , , αn 线性无关,问向量组 β1, β2 , , βn 是否一定线性
附录 A-----《线性代数》期末考试试题及解答(三套)
附录 A《线性代数》期末考试试题及解答(三套)
试卷一(2014 秋)
一 填空题 (本题共 10 小题,每小题 3 分,共 30 分)
1 2 3
1
1. 设 A 2 4 6 ,则 A 2( , , ).
3
6
9
3
2. 设 A 与 B 为同阶方阵,则 ( A B)2 A2 vvvvv
8.
2 k 1
k k2
1 1
,
(k 1)2 ,
无.
1 1 0 9. 6. 10. 1 2 1 .
0 1 1
二 单项选择题(每小题 4 分,共 20 分) CBADA
三 计算题 (共 44 分)
1.(本小题 9 分) 解 由 2AB 3B XX T 知 (2A 3E)B XX T .经计算得
.
a d f
6. 设 A 0 b e .若 A 的列向量组线性相关,则 a, b, c 应满足关系式

0 0 c
7. 设 A 为 m n 矩阵, R( A) r .已知 Ax (1, 0, 0)T 无解, Ax (0, 1, 0)T 有唯一解,则 m

线性代数期末考试考核试卷

线性代数期末考试考核试卷
(答题括号:________)
4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,满足以下哪两个条件?A. 线性无关B. 可以表示空间中的任何向量C. 可以线性组合出空间中的任何向量D. 以上都是2. 矩阵的秩是指:A. 矩阵中非零行的最大数目B. 矩阵中非零列的最大数目C. 矩阵的行向量组的秩D. 矩阵的列向量组的秩3. 线性变换的核是指:A. 变换后为零的向量集合B. 变换后为单位向量的向量集合C. 变换后保持不变的向量集合D. 变换后向量长度为1的向量集合4. 特征值和特征向量是线性变换中的基本概念,特征向量满足以下条件:A. 变换后保持不变B. 变换后与原向量成比例C. 变换后与原向量垂直D. 变换后与原向量正交5. 对于矩阵A,下列哪个矩阵是A的逆矩阵?B. A的伴随矩阵C. A的行列式D. 与A相乘结果为单位矩阵的矩阵6. 行列式的性质不包括:A. 行列式与矩阵的转置相等B. 行列式与矩阵的伴随矩阵无关C. 行列式与矩阵的行(列)交换有关D. 行列式与矩阵的行(列)乘以常数有关7. 线性方程组有唯一解的条件是:A. 方程组的系数矩阵是可逆的B. 方程组的系数矩阵是方阵C. 方程组的系数矩阵的秩等于增广矩阵的秩D. 方程组的系数矩阵的秩等于未知数的个数8. 矩阵的迹是指:A. 矩阵的对角线元素之和B. 矩阵的行向量长度之和C. 矩阵的列向量长度之和D. 矩阵的行列式9. 线性无关的向量组可以作为向量空间的基,其必要条件是:A. 向量组中的向量数量等于向量空间的维数B. 向量组中的向量数量大于向量空间的维数C. 向量组中的向量数量小于向量空间的维数D. 向量组中的向量数量可以任意10. 对于矩阵A,下列哪个矩阵是A的共轭转置?A. A的转置矩阵C. A的伴随矩阵D. A的复共轭矩阵的转置答案:1. D 2. D 3. A 4. B 5. D 6. B 7. D 8. A 9. A 10. D二、填空题(每空2分,共20分)1. 设向量空间V的基为{v1, v2, ..., vn},则向量v可以表示为______ 。

(完整)线性代数 期末测试题及其答案

(完整)线性代数 期末测试题及其答案

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题5分,共25分)1。

若022150131=---x ,则=χ__________. 2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵. 4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( )A.054<<-t B 。

5454<<-t C.540<<t D 。

2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A 。

3B 。

-2 C.5 D.—58.设A 为n 阶可逆矩阵,则下述说法不正确的是( )A 。

0≠AB 。

01≠-A C.n A r =)( D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y xC.14322+=+=-z y x D 。

24322+=+=z y x10.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( )A 。

4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 (每小题10分,共50分)11。

设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式EX B C T =-)(, 求X 。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案线性代数期末考试试题及答案线性代数是一门重要的数学课程,广泛应用于各个领域,如物理学、工程学、计算机科学等。

期末考试是对学生对于线性代数知识的综合考察,下面将给出一些线性代数期末考试试题及答案,供大家参考。

一、选择题(每题2分,共20分)1. 设A是一个3×3矩阵,若A的行列式值为0,则A的秩为:A. 0B. 1C. 2D. 3答案:C2. 设A是一个3×3矩阵,若A的特征值为1,2,3,则A的特征向量个数为:A. 0B. 1C. 2D. 3答案:D3. 设A是一个3×3矩阵,若A的秩为2,则A的零空间的维数为:A. 0B. 1C. 2D. 3答案:B4. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的列向量组是否线性无关?A. 是B. 否答案:A5. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的列向量组是否线性相关?A. 是B. 否答案:A6. 设A是一个3×3矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2D. 3答案:C7. 设A是一个2×2矩阵,若A的特征值为1,2,则A的特征向量个数为:A. 0B. 1C. 2答案:C8. 设A是一个2×2矩阵,若A的特征值为1,1,则A的特征向量个数为:A. 0B. 1C. 2答案:B9. 设A是一个2×2矩阵,若A的秩为1,则A的零空间的维数为:A. 0B. 1C. 2答案:B10. 设A是一个2×2矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2答案:C二、填空题(每题3分,共30分)1. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的秩为____。

答案:32. 设A是一个3×3矩阵,若A的列向量组线性无关,则A的秩为____。

答案:33. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的秩为____。

线性代数期末考试试卷(doc 6页)

线性代数期末考试试卷(doc 6页)

D .12.n ααα⋅⋅⋅中任一部分线性无关。

5.下列条件中不是n 阶方阵A 可逆的充要条件的是( )。

A .0A ≠;B .()R A n =;C .A 是正定矩阵;D .A 等价于n 阶单位矩阵。

二、填空题(每小题3分,共15分)6.123212233031332x x x x x x x x x ------=+-的根的个数为 个。

7.20102009100110100001012010010101001-⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪-= ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭。

8.010100002A x ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,当 时,矩阵A 为正交矩阵。

9.设A 为5阶方阵,且()3R A =,则()*R A = 。

10.设三阶方阵A 的特征值为1、2、2,则14A E --= 。

三、计算题(每小题10分,共50分)11.计算行列式ab ac ae bd cd de bfcf ef ---。

得分 得分12.已知111022003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求()1*A -、()*1A -、1A -。

13.问,a b 各取何值时,线性方程组1231231232021324x x x x x ax x x x b ++=⎧⎪++=⎨⎪++=⎩有唯一解?无解?有无穷多解?有无穷多解时求其通解。

得分 得分14.设向量组()131T a α=,()223T b α=,()3121T α=,()4231T α=的秩为2,求,a b 。

15. 设n 维向量(),0,0,T a a α=⋅⋅⋅,0a <,且T A E αα=-⋅,11T A E a αα-=+⋅,求a 。

得分得分学院:专业:班级:四、解答题(10分)16.设3阶对称矩阵A的特征值为6、3、3,与6对应的特征向量为()1111TP=,,,求矩阵A。

得分五、证明题(每小题5分,共10分) 17.设A 、B 为两个n 阶方阵,且A 的n 个特征值互异,若A 的特征向量恒为B 的特征向量,证明AB BA =。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。

答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。

答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。

答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。

答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。

2020-2021学年第一学期线性代数期末考试卷(含答案)

2020-2021学年第一学期线性代数期末考试卷(含答案)

《线性代数》期末考试卷(2020—2021学年第一学期)一、 单项选择题(每题3分,共18分)1.设A 、B 为n 阶方阵,当( )时,22()()A B A B A B +-=-不成立。

A . A E = B. ,AB 为任意矩阵C . AB BA =D .A B = 2.下列命题正确的是 ( )。

A .如果有全为零的数12,,,n k k k 使得11220n n k k k ααα+++=,则12,,,n ααα线性无关 B. 向量组12,,,n ααα,若其中有一个向量可由该向量组线性表示,则12,,,n ααα线性相关C .向量组12,,,n ααα的一个部分组线性相关,则原向量组线性相关D .向量组12,,,n ααα线性相关,则每一个向量都可由其余向量线性表示3.若方程13213602214x x xx -+-=---,则x =( )。

A. 2-或3B.3-或2C.2-或3-D.2或3 4.设A 是n 阶可逆矩阵,则()**A =( )。

A.n A EB. AC. nA A D. 2n AA -5.设A 为m n ⨯矩阵,则n 元齐次方程组0Ax =有非零解的充分必要条件是( )。

A. A 的行向量组线性相关 B. A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关6.下列( )是初等矩阵。

A.100002⎛⎫ ⎪⎝⎭B. 100010011⎛⎫ ⎪ ⎪ ⎪⎝⎭C. 011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭D. 010002100⎛⎫⎪- ⎪ ⎪⎝⎭二、 填空题(每题3分,共24分)1. 排列975824361的逆序数为__________。

2. 行列式222111ab c a b c =__________。

3. 设()33ijA a ⨯=,且2A =-,则22112112221323212122222323()()a A a A a A a A a A a A ++++++ 2312132223323()a A a A a A ++=__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东师范大学期末试卷样卷(4)
课程名称:线性代数
1.(15分)已知五阶行列式
求和这里是行列式D中第i行j列元素对应的代数余子式.
2.(15分)设A;B均为n阶矩阵, 且

3.(15分)设向量组线性无关.则当满足什么条件时向量组
也线性无关?
4.(15分)判断如下方程组是否有解.如果无解,求出其最小二乘解.
5.(15分)将方阵
分解为初等矩阵的乘积.
6.(15分)设E是欧几里得空间,
证明如下平行四边形等式成立:
7.(10分)设A为n阶矩阵,且
证明可逆并求出其逆矩阵.
线性代数模拟试卷(4)答案第1题 (15分)


那么由行列式展开性质,就有
由此解得
第2题 (15分)
利用关于伴随矩阵的基本关系式
得到
第3题 (15分)
即要求行列式
所以
即可.
第4题 (15分)
无解.代公式直接计算就得到最小二乘解
第5题 (15分)

利用初等变换将A化为单位阵E3,也即通过初等矩阵P1;;P n左乘得到
于是利用逆矩阵定义就可知
所以利用作行初等变换化A为单位阵时写出相应初等矩阵就可.答案之一为(注意答案未必唯一):
第6题 (15分)
利用内积性质直接展开计算即可.
第7题 (10分)
由条件可得
左边可用因式分解看出等于
所以。

相关文档
最新文档