二次函数中考真题2017年(第1部分)
2017中考数学复习----二次函数综合题
2017中考数学复习----二次函数综合题1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B 两点,与x轴交于另一个点C,对称轴与直线AB交于点E.(1)求抛物线的解析式;(2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标;(3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM ⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C.(1)求△AOD的面积;(2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标;(3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标.5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2,与y轴交于点C.(1)求抛物线L2的解析式;(2)判断△ABC的形状,并说明理由;(3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.7.如图,已知抛物线与x轴交于A (﹣4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q点,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标.6.抛物线y=ax2+bx+c(a≠0)的顶点为P(1,﹣4),在x轴上截得的线段AB长为4个单位,OA<OB,抛物线与y轴交于点C.(1)求这个函数解析式;(2)试确定以B、C、P为顶点的三角形的形状;(3)已知在对称轴上存在一点F使得△ACF周长最小,请写出F点的坐标.8.如图,抛物线y=﹣x2+ax+8(a≠0)于x轴从左到右交于点A,B于y轴交于点C于直线y=kx+b 交于点c和点D(m,5),tan∠DCO=1。
山东省青岛市年中考数学真题试题含解析
山东省青岛市2017年中考数学真题试题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.的相反数是().A.8B.C.D.【答案】C【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:的相反数是.故选:C考点:相反数定义2.下列四个图形中,是轴对称图形,但不是中心对称图形的是().【答案】A考点:轴对称图形和中心对称图形的定义3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A、众数是6吨B、平均数是5吨C、中位数是5吨D、方差是【答案】C考点:1、方差;2、平均数;3、中位数;4、众数4.计算的结果为().A. B. C. D.【答案】D【解析】试题分析:根据幂的混合运算,利用积的乘方性质和同底数幂相除计算为:考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算5. 如图,若将△ABC绕点O逆时针旋转90°则顶点B的对应点B1的坐标为()A. B. C. D.【答案】B【解析】试题分析:将△ABC绕点O逆时针旋转90°后,图形如下图所以B1的坐标为故选:B考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算6. 如图,AB 是⊙O 的直径,C,D,E 在⊙O 上,若∠AED=20°,则∠BCD的度数为()A、100°B、110°C、115°D、120°【答案】B【解析】试题分析:如下图,连接AD,AD,根据同弧所对的圆周角相等,可知∠ABD=∠AED=20°,然后根据直径所对的圆周角为直角得到∠ADB=90°,从而由三角形的内角和求得∠BAD=70°,因此可求得∠BCD=110°. 故选:B考点:圆的性质与计算7. 如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,,AC=2,BD=4,则AE 的长为()A. B.C. D.【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. 一次函数的图像经过点A(),B(2,2)两点,P为反比例函数图像上的一个动点,O为坐标原点,过P 作y轴的垂线,垂足为C,则△PCO的面积为()A、2B、4C、8D、不确定【答案】试题分析:如下图,考点: 1、一次函数,2、反比例函数图像与性质第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。
2017年全国中考数学真题分类 二次函数概念、性质和图象2017(解答题)
2017年全国中考数学真题分类 二次函数概念、性质和图象解答题三、解答题1. (2017山东滨州,24,14分)(本小题满分14分)如图,直线y =kx +b (k 、b 为常数)分别与x 轴、y 轴交于点A (-4,0)、B (0,3),抛物线y =-x 2+2x +1与y 轴交于点C . (1)求直线y =kx +b 的解析式;(2)若点P (x ,y )是抛物线y =-x 2+2x +1上的任意一点,设点P 到直线AB 的距离为d ,求d 关于x 的函数解析式,并求d 取最小值时点P 的坐标;(3)若点E 在抛物线y =-x 2+2x +1的对称轴上移动,点F 在直线AB 上移动,求CE +EF 的最小值.思路分析:(1)将A 、B 两点坐标代入y =kx +b 中,求出k 、b 的值;(2)作出点P 到直线AB的距离后,由于∠AHC =90°,考虑构造“K 形”相似,得到△MAH 、△OBA 、△NHP 三个三角形两两相似,三边之比都是3∶4∶5.由“345NH CN CH==”可得23(3)(21)4345m x x x m d +--++-==,整理可得d 关于x 的二次函数,配方可求出d 的最小值;(3)如果点C 关于直线x =1的对称点C ′,根据对称性可知,CE =C ′E .当C ′F ⊥AB 时,CE+EF 最小. 解:(1)∵y =kx +b 经过A (-4,0)、B (0,3),∴403k b b -+=⎧⎨=⎩,解得k =34,b =3.∴y =34x +3.(2)过点P 作PH ⊥AB 于点H ,过点H 作x 轴的平行线MN ,分别过点A 、P 作MN 的垂线段,垂足分别为M 、N .设H (m ,34m +3),则M (-4,34m +3),N (x ,34m +3),P (x ,-x 2+2x +1).∵PH ⊥AB ,∴∠CHN +∠AHM =90°,∵AM ⊥MN ,∴∠MAH +∠AHM =90°.∴∠MAH =∠CHN ,∵∠AMH =∠CNH =90°,∴△AMH ∽△HNP . ∵MA ∥y 轴,∴△MAH ∽△OBA .∴△OBA ∽△NHP . ∴345NH CN CH==. ∴23(3)(21)4345m x x x m d+--++-==. 整理得:24855d x x =-+,所以当x =58,即P (58,11964).(3)作点C 关于直线x =1的对称点C ′,过点C ′作C ′F ⊥AB 于F .过点F 作JK ∥x 轴,,分别过点A 、C ′作AJ ⊥JK 于点J ,C ′K ⊥JK 于点K .则C ′(2,1)设F (m ,34m +3)∵C ′F ⊥AB ,∠AFJ +∠C ′FK =90°,∵CK ⊥JK ,∴∠C ′+∠C ′FK =90°.∴∠C ′=∠AFJ ,∵∠J =∠K =90°,∴△AFJ ∽△FC ′K .∴'AJ JF FK C K =,∴33443224m m m m ++=-+,解得m =825或-4(不符合题意). ∴F (825,8125),∵C ′(2,1),∴FC ′=145.∴CE +EF 的最小值=C ′E =145.2. (2017江苏徐州,26,9分)如图① ,菱形ABCD 中,5AB =cm ,动点P 从点B 出发,沿折线BC CD DA --运动到点A 停止,动点Q 从点A 出发,沿线段AB 运动到点B 停止,它们运动的速度相同.设点P 出发xs 时,BPQ ∆的面积为y 2cm .已知y 与x 之间的函数关系.如图②所示,其中,OM MN 为线段,曲线NK 为抛物线的一部分,请根据图中的信息,解答下列问题:(1)当12x <<时,BPQ ∆的面积 (填“变”或“不变”); (2)分别求出线段OM ,曲线NK 所对应的函数表达式; (3)当x 为何值时,BPQ ∆的面积是52cm ?Ds )图① 图②思路分析:(1)观察图象②可知,当1<x <2时,y =10,故△BPQ 的面积不变; (2)用待定系数法求其解析式即可;(3)把y =5分别代入(2)中的一次函数及二次函数解析式,求出x 的值即可,对x 的值注意取舍.解:(1)不变(2)设OM所在直线的函数表达式为y=kx,把M(1,10)代入,得k=10. ∴线段OM的函数表达式为y=10x(0<x<1)在曲线NK上取一点G,使它的横坐标52,由题意可得其纵坐标为52.∴曲线NK过三点N(2,10),G(52,52),K(3,0)∵曲线NK为抛物线的一部分,设其表达式为y=ax2+bx+c,可得42102555422930a b ca b ca b c++=⎧⎪⎪++=⎨⎪++=⎪⎩解得106090abc=⎧⎪=-⎨⎪=⎩∴曲线NK的函数表达式为y=10x2-60x+90(2<x<3)(3)把y=5代入y=10x,解得x=1 2,把y=5代入y=10x2-60x+90,解得x1=3-22,x2=3+22(舍去)∴当x=3-22或x=12时,BPQ∆的面积是52cm3.(2017江苏南京,26,8分)已知函数y=-x2+(m-1)x+m(m为常数)(1)该函数的图像与x轴公共点的个数是()A.0 B.1 C.2 D.1或2(2)求证∶不论m为何值,该函数的图像的顶点都在函数y=(x+1)2的图像上.(3)当-2≤m≤3时,求该函数的图像的顶点纵坐标的取值范围.思路分析∶(1)计算二次函数对应一元二次方程的判别式b2-4ac,判断即可;(2)先利用配方法求出(1)的函数的顶点坐标,然后代入y=(x+1)2,即可得证;(3)由(2)可知函数图像的顶点纵坐标,再表示为z=,然后分类讨论即可.解∶(1)D.二次函数对应的一元二次方程为-x2+(m-1)x+m=0,则b2-4ac=(m-1)2+4m=(m+1)2≥0,所以一元二次方程有两个相等或两个不相等的实数根,即对应的二次函数图像与x轴有1个或2个交点.(2)y=-x2+(m-1)x+m=-,所以该函数的图像的顶点坐标为(,)()211,24mm⎛⎫⎝+-⎪⎪⎭.把x=代入y=(x+1)2,得y=.因此,不论m为何值,该函数的图像的顶点都在函数y=(x+1)2的图像上.(3)设函数z=.当m=-1时,z有最小值0.当m<-1时,z随m的增大而减小;当1m>-时,z随m的增大而增大.又当2m=-时,在z=;当m=3时,z==4.因此,当-2≤m≤3时,该函数的的图像的顶点纵坐标的取值范围是0≤z≤4.4.(2017湖南衡阳,26,10分)(本小题满分10分)如图,△AOB的顶点A、B分别在x轴、y轴上,∠BAO=450,且△AOB的面积为8.(1)直接写出A、B两点的坐标;(2)过点A、B的抛物线G与x轴的另一个交点为点C.①若△ABC是以BC为腰的等腰三角形,求此时抛物线的解析式;②将抛物线G 向下平移4个单位后,恰好与直线AB只有一个交点N,求点N的坐标.思路分析:(1)因为∠BAO=450,所以OA=OB,且△AOB的面积为8,所以OA=OB=4,故直接写出点A、B的坐标为(4,0),(0,4)。
(完整word版)2017中考二次函数专题(含答案),推荐文档.docx
1.如图,抛物线y=x 2+bx+c 与直线 y=x ﹣ 3 交于 A、 B 两点,其中点 A 在 y 轴上,点 B 坐标为(﹣ 4,﹣ 5),点 P为 y 轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A ,P, D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由.(3)当点P运动到直线 AB 下方某一处时,过点P 作 PM⊥ AB ,垂足为 M ,连接 PA 使△PAM 为等腰直角三角形,请直接写出此时点 P 的坐标.2. 在直角坐标系xoy 中, A(0, 2) 、 B( 1,0) ,将ABO 经过旋转、平移变化后得到如图15.1所示的BCD .若直线 PC 将ABC 的面积分成 1: 3 两部分,求此时点P 的坐标;(3)现将ABO 、BCD 分别向下、向左以 1: 2 的速度同时平移,求出在此运动过程中ABO 与BCD 重叠部分面积的最大值.yACB O D x图15.13.如图,已知抛物线y= ax2+ bx+ c( a≠ 0) 的对称轴为直线 x=- 1,且经过A( 1,0), C(0, 3)两点,与x 轴对称轴 x=- 1 上的一个动点,求使△BPC为直角三角形的点P 的坐标.第25 题图4. 如图,在平面直角坐标系中,已知抛物线y ax2bx 8 与 x 轴交于 A,B 两点,与 y 轴交于点C,直线 l 经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接 CE,已知点 A, D 的坐标分别为否存在点F,使FOE ≌FCE ,若存在,请直接写出点 F 的坐标;若不存在,请说明理由;(3)若点P是y 轴负半轴上的一个动点,设其坐标为(0,m),直线 PB 与直线 l 交于点 Q.试探究:当m 为何值时,OPQ 是等腰三角形.5. 如图,抛物线 y=ax 2+bx﹣ 5( a≠0)经过点 A( 4,﹣ 5),与 x 轴的负半轴交于点 B ,与 y 轴交于点C,且 OC=5OB ,抛物线的顶点为点 D .( 1)求这条抛物线的表达式;( 2)联结 AB 、BC、CD 、DA ,求四边形 ABCD 的面积;( 3)6. 如图,已知抛物线 y=ax 2+bx+c 经过点 A (﹣ 3, 0), B (9, 0)和 C ( 0, 4). CD 垂直于 y 轴,交抛物线于点 D , DE 垂直与 x 轴,垂足为 E , l 是抛物线的对称轴,点F 是抛物线的顶点.( 1)求出二次函数的表达式以及点 D 的坐标;( 2)若 Rt △ AOC 沿 x 轴向右平移到其直角边OC 与对称轴 l 重合,再沿对称轴 l 向上平移到点 C 与点 F 重合,得到 Rt△ A 1O1F,求此时 Rt△ A1O1F 与矩形 OCDE 重叠部分的图形的面积;(3)若 Rt△ AOC 沿 x 轴向右平移 t 个单位长度( 0< t≤6)得到 Rt△ A 2O2C2,Rt△ A 2O2C2与 Rt△ OED 重叠部分的图形面积记为S,求 S 与 t 之间的函数表达式,并写出自变量t 的取值范围.7.如图,抛物线 y=ax 2+bx+c 的图象经过点 A (﹣ 2, 0),点 B(4,0),点 D( 2, 4),与 y 轴交于点 C,作直线BC ,连接 AC , CD .( 1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ ECD=∠ ACO的点E的坐标;( 3)点 M 在 y 轴上且位于点 C 上方,点 N 在直线 BC 上,点 P 为第一象限内抛物线上一点,若以点C,M , N, P 为顶点的四边形是菱形,求菱形的边长.8.如图,在平面直角坐标系 xOy 中,抛物线 y=ax 2+bx 经过两点 A (﹣ 1, 1), B ( 2, 2).过点 B 作 BC∥ x存在点 M ,使得△ BCM 的面积为,求出点 M 的坐标;( 3)连接 OA 、 OB 、OC、 AC ,在坐标平面内,求使得△ AOC 与△ OBN 相似(边 OA 与边 OB 对应)的点 N 的坐标.1.【解答】解:( 1)∵直线y=x ﹣ 3 交于 A 、B 两点,其中点 A 在 y 轴上,∴ A (0, 3),∵ B ( 4, 5),∴,∴,∴抛物 解析式 y=x 2+x 3,( 2)存在, P (m ,m 2+m 3),( m < 0),∴ D ( m , m 3),∴ PD=|m 2+4m|∵ PD ∥ AO ,∴当 PD=OA=3 ,故存在以 O ,A ,P , D 点的平行四 形,∴|m 2+4m|=3,① 当 m 2+4m=3 ,∴ m 1= 2, m 2= 2+(舍),∴ m 2+m 3= 1,∴ P ( 2, 1),21212,∴ P ( 1,),② 当 m +4m= 3 ,∴ m = 1, m = 3,Ⅰ、 m =1,∴ m +m 3=Ⅱ、 m 2= 3,∴ m 2+m 3=,∴ P ( 3,),∴点 P 的坐 ( 2,1),( 1 ,),( 3,).( 3)如 ,∵△ PAM 等腰直角三角形,∴∠ BAP=45 °,∵直 AP 可以看做是直AB 点 A 逆 旋45 °所得,直 AP 解析式 y=kx 3,∵直 AB 解析式 y=x 3,∴ k==3,∴直 AP 解析式 y=3x3, 立 ,∴ x 1=0(舍) x 2=当 x= , y= ,∴P ( ,).2. 解析:( 1)∵ A(0, 2)、 B( 1,0) ,将ABO 旋 、平移 化得到如 4.1所示的 BCD ,∴ BDOA 2,CD OB 1, BDCAOB 90 . ∴ C 1,1 . ⋯⋯⋯⋯⋯⋯⋯ (1 分 )yA 、B 、C 三点的抛物 解析式y ax 2 bx c ,Aab c 0P EC3 1有 ab c 1 ,解得: a2 ., b,cx22B FOc 2D∴抛物 解析式y3 x 2 1 x2 .22图 4.1( 2)如 4.1 所示, 直PC 与 AB 交于点 E . ∵直 PC 将ABC 的面 分成 1: 3 两部分,∴ AE1 或 AE 3, E 作 EF OB 于点 F , EF ∥ OA .BE3 BE∴ BEF ∽BAO , ∴EFBE BF . ∴当 AE 1 , EF 3BF ,AOBA BO BE 3 241∴EF3, BF 3,∴ E (1 324,) .4 2直 PC 解析式 ymx n , 可求得其解析式 y2 x 7 ,31 272552 39∴2 ,∴(舍去),∴.xx 2xx 1, x 2 11) 25P ( ,2555 25当AE3 ,同理可得 P 2 ( 6 ,23) .BE7 49( 3) ABO 平移的距离 ,A 1B 1O 1 与 B 2C 1D 1 重叠部分的面 S .可由已知求出A 1B 1 的解析式 y2 x2 t , A 1B 1 与 x 交点坐 (t2,0) .2C 1B 2 的解析式 y1 x t 1, C 1 B 2 与 y 交点坐 (0, t1) .⋯⋯⋯ (9 分 )3 222①如 4.2 所示,当0 tA 1B 1O 1 与 B 2C 1D 1 重叠部分 四 形 .,5A 1B 1 与 x 交于点 M ,C 1B 2 与 y 交于点 N , A 1 B 1 与 C 1B 2 交于点 Q , OQ .y 2 x2 tx4t 3y34t3 5t由11 ,得) .⋯⋯⋯⋯⋯ (10分 )t5t ,∴ Q (3,y x2 y3A 123C 1Q∴ SSQMOSQNO1 2 t5t1 (t1)3 4tNB 2 M O D 1223 22313 t 2 t 1∴ S 的最大25B 1 O 1..12452②如 4.3所示,当34, A 1B 1O 1 与图 4.2tB 2C 1D 1 重叠部分 直角三角形 .55yA 1B 1 与 x 交于点 H ,A 1B 1 与C 1D 1 交于点 G . G (1 2t, 4 5t ) ,D 1H 2 t1 2t45t2, D 1G 4 5t .A 12C 11 D 1H gD 1G 1g 4 5tg(4 5t)1(5t 4) 2∴ S.G2 2 24H∴当341 .B 2 D 1 Ot , S 的最大55425B 1 O 1上所述,在此运 程中ABO 与 BCD 重叠部分面 的最大.52图 4.3b1,a1,2ax 23. ( 1)依 意,得a b c 0, 解之,得 b2, ∴抛物 解析式 y2x 3 .c 3.c3.∵ 称 x =- 1,且抛物 A ( 1, 0),∴ B (- 3, 0). xxPC 2= ( - 1) 2+ (t - 3) 2=t 2- 6t + 10.①若 B 为直角顶点,则 22222-6t + 10.解之 , 得 t =- 2.BC + PB = PC ,即 18+ 4+ t =t ②若 C 为直角顶点,则2222+ 10= 2.解之,得 t = 4.BC + PC = PB ,即 18+ t - 6t 4+t③若 P 为直角顶点,则222,即 4 22+ 10= 18.解之,得 t 1= 317 , t 2 = 3 17 .PB + PC = BC + t + t - 6t224. 解答:( 1)抛物线 yax 2 bx 8 经过点 A (- 2, 0), D (6,- 8),4a 2b 8 0 a 11 x 23x 8 2 抛物线的函数表达式为 36a 6b8解得y8b32y1 x 23x 81 x 3 225 , 抛物线的对称轴为直线x 3.又抛物线与 x 轴交于 A ,B 两点,点 A 的222坐标为(- 2, 0). 点 B 的坐标为( 8, 0)设直线 l 的函数表达式为 y kx . 点 D ( 6,- 8 )在直线 l 上,6k=- 8,解得k4y4 x 点 E 为直线 l 和抛物线对称轴的交点.点 E 的横. 直线 l 的函数表达式为33坐标为 3,纵坐标为4 4 ,即点 E 的坐标为( 3,- 4 )33( 2)抛物线上存在点 F ,使 FOE ≌ FCE .点 F 的坐标为( 317, 4)或( 3 17, 4).( 3)解法一:分两种情况:①当 OPOQ 时, OPQ 是等腰三角形.点 E 的坐标为( 3,- 4), OE 324 25 ,过点 E 作直线 ME// PB , 交 y 轴于点 M ,交 x 轴于点 H ,则OMOE , OM OE5OPOQ点 M 的坐标为( 0,- 5).设直线 ME 的表达式为 yk x 53k5 4,解得k11 ME 的函数表达式为15,令 y=0,, , y x11331得 x 5 0 ,解得 x=15,点 H 的坐标为( 15, 0)3MH//PB ,OP OB ,即 m 8 , 8又mOMOH5153②当 QO QP 时, OPQ 是等腰三角形.当 x=0 时, y1 x 23 x88 , 点 C 的坐标为( 0,- 8),2CE32(8 4)25 , OE=CE ,12 ,又因为 QOQP ,13 ,38 4 ,解得 k 24,设直线交轴于点, 其函数表达式为,,23CE//PB CE x yk 2 x 8Nk 23CE 的函数表达式为y 4 x 8 ,令 y=0,得 4 x 8 0 , x6,点 N 的坐标为( 6, 0)3 3 CN//PB ,OP OB ,m8,解得 m 32OCON8 6 3m 的值为832时, OPQ 是等腰三角形.综上所述,当 或33解法二:当 x=0 时, y1 2 3x88 , 点 C 的坐标为( 0,- 8), 点 E 的坐标为x2( 3 ,- 4), OE32 42 5 , CE 32 (8 4)2 5 ,OE=CE ,12 ,设抛物线的对称轴交直线PB 于点 M ,交 x 轴于点 H .分两种情况: ① 当 QOQP 时, OPQ 是等腰三角形.13 ,2 3 , CE// PB又HM/ /y 轴, 四边形 PMEC 是平行四边形, EM CP 8 m ,HMHE EM4 ( 8 m) 4 mBH8 3 5 , HM//y轴,BHM ∽ BOP ,HM BH4 m5m32OPBOm83②当 OP OQ 时, OPQ 是等腰三角形.EH // y 轴,OPQ ∽ EMQ ,EQ EM , EQEMOQOPEM EQ OEOQ OE OP5 ( m) 5 m , HM4 (5m) ,EH // y 轴,BHM ∽BOP ,HM BHOPBO1 m5 m8 当 m 的值为8 32 时, OPQ 是等腰三角形.或m83335. 解:( 1) ∵ 抛物线 y=ax 2+bx ﹣ 5 与 y 轴交于点 C , ∴C ( 0,﹣ 5), ∴OC=5 . ∵ OC=5OB , ∴OB=1 ,又点 B 在 x 轴的负半轴上, ∴ B (﹣ 1, 0).∵ 抛物线经过点 A ( 4,﹣ 5)和点 B (﹣ 1, 0),∴,解得, ∴ 这条抛物线的表达式为 y=x 2﹣ 4x ﹣ 5.( 2)由 y=x 2﹣ 4x ﹣ 5,得顶点 D 的坐标为( 2,﹣ 9).连接 AC ,∵ 点 A 的坐标是( 4,﹣ 5),点 C 的坐标是( 0,﹣ 5), 又S△ABC = ×4×5=10, S △ACD = ×4×4=8,∴ S 四边形 ABCD =S △ABC +S △ACD =18.( 3)过点 C 作 CH ⊥ AB ,垂足为点 H . ∵ S △ABC = ×AB ×CH=10 ,AB=5 ,∴ CH=2,在 RT △ BCH 中, ∠ BHC=90 °, BC=, BH==3,∴ tan ∠CBH== .∵ 在 RT △ BOE 中, ∠ BOE=90 °, tan ∠ BEO= ,∵ ∠ BEO= ∠ ABC , ∴,得 EO= , ∴ 点 E 的坐标为( 0,6. 解:( 1) ∵ 抛物线 y=ax 2+bx+c 经过点 A (﹣ 3, 0), B ( 9, 0)和 C ( 0,4). ∴ 设抛物线的解析式为 y=a (x+3 )( x ﹣ 9), ∵ C ( 0,4)在抛物线上, ∴4=﹣ 27a ,∴ a= , ∴ 设抛物线的解析式为 y= ﹣ ( x+3 )( x 9 ) = ﹣ x 2,﹣﹣ + x+4 ∵ CD 垂直于 y 轴, C ( 0 4 ∴ ﹣ x 2 x+4=4 , ∴ x=6, ∵ D ( 6,4),, ) + ( 2)如图 1, ∵ 点 F 是抛物线 y= ﹣ x 2+x+4 的顶点,∴ F ( 3,), ∴ FH= , ∵GH ∥ A 1O 1,∴,∴ , ∴ GH=1 ,∵ Rt △ A 1O 1F 与矩形 OCDE 重叠部分是梯形 A 1O 1HG ,∴ S 重叠部分 =S △A1O1F ﹣S △FGH = A 1O 1×O 1F ﹣ GH ×FH= ×3×4 ﹣ ×1× = .( 3) ① 当 0< t ≤3 时,如图 2, ∵ C 2O 2∥ DE , ∴,∴, ∴ O 2G=t , ∴ S=S = OO 2×O 2G=t × t=t 2,△OO2G② 当 3< t ≤6 时,如图 3,∵ C 2 H ∥ OC ,∴,∴, ∴ C 2H= ( 6 ﹣ t ), ∴ S=S 四边形 A2O2HG =S △A2O2C2﹣S△C2GH= OA ×OC ﹣ C 2H ×( t ﹣3) = ×3×4﹣ × ( 6﹣ t )( t ﹣ 3)= t 2﹣ 3t+12∴ 当 0< t ≤3 时, S= t 2,当 3< t ≤6 时, S= t 2﹣ 3t+12.7. 解:( 1) ∵ 抛物线 y=ax 2+bx+c 的图象经过点 A (﹣ 2,0),点 B ( 4,0),点 D ( 2, 4),∴ 设抛物线解析式为 y=a ( x+2)( x ﹣ 4), ∴ ﹣ 8a=4, ∴ a=﹣,∴ 抛物线解析式为 y=﹣( x+2)( x ﹣ 4)=﹣ x 2+x+4 ;( 2)如图 1, ① 点 E 在直线 CD 上方的抛物线上,记E ′,连接 CE ′,过 E ′作 E ′F ′⊥ CD ,垂足为F ′,由( 1)知, OC=4 ,∵ ∠ ACO= ∠ E ′CF ′,∴ tan ∠ ACO=tan ∠E ′CF ′,∴=,设线段 E ′F ′=h ,则 CF ′=2h , ∴ 点 E ′( 2h ,h+4 )14∴ h=0 (舍) h= ∴ E ′( 1,),② 点 E 在直线 CD 下方的抛物线上,记 E ,同 ① 的方法得, E ( 3,),点 E 的坐标为( 1,),(3,)( 3) ① CM 为菱形的边,如图 2,在第一象限内取点P ′P ′ P ′N ′∥ y 轴,交 BC于 N ′ P ′ P ′M ′∥ BC ,,过点 作,过点 作 交 y 轴于 M ′, ∴ 四边形 CM ′P ′N ′是平行四边形, ∵ 四边形 CM ′P ′N ′是菱形,∴ P ′M ′=P ′N ′,过点 P ′作 P ′Q ′⊥ y 轴,垂足为 Q ′, ∵ OC=OB ,∠ BOC=90 °,∴ ∠ OCB=45 °, ∴ ∠ P ′M ′C=45 °,设点 P ′( m ,﹣ m 2+m+4 ),在 Rt △ P ′M ′Q ′中, P ′Q ′=m , P ′M ′= m , ∵ B ( 4, 0), C (0, 4),∴ 直线 BC 的解析式为 y= ﹣ x+4 ,∵ P ′N ′∥ y 轴, ∴ N ′( m ,﹣ m+4),∴ P ′N ′=﹣ m 2+m+4 ﹣(﹣ m+4) =﹣ m 2+2m , ∴ m= ﹣ m 2+2m , ∴ m=0 (舍)或 m=4 ﹣ 2 ,菱形 CM ′P ′N ′的边长为 ( 4﹣ 2 ) =4﹣ 4.② CM 为菱形的对角线,如图 3,在第一象限内抛物线上取点P ,过点 P 作 PM ∥BC ,交 y 轴于点 M ,连接 CP ,过点 M 作 MN ∥ CP ,交 BC 于 N ,∴ 四边形 CPMN 是平行四边形,连接PN 交 CM 于点 Q ,∵ 四边形 CPMN 是菱形, ∴ PQ ⊥ CM , ∠ PCQ=∠ NCQ , ∵ ∠OCB=45 °,∴ ∠ NCQ=45 ° ∴ ∠PCQ=45 ° ∴ ∠CPQ= ∠ PCQ=45° ∴ PQ=CQ, , , , 设点 P ( n ,﹣ n 2+n+4), ∴CQ=n , OQ=n+2 , ∴ n+4=﹣ n 2+n+4 , ∴ n=0 (舍), ∴ 此种情况不存在. ∴ 菱形的边长为4 ﹣ 4.8. 解:( 1)把 A (﹣ 1,1), B ( 2, 2)代入 y=ax 2+bx 得:,解得 ,故抛物线的函数表达式为y=x 2﹣ x , ∵BC ∥x 轴,设 C (x 0, 2). ∴ x 02﹣ x 0=2,解得: x 0=﹣或 x 0=2,∵ x 0< 0∴ C (﹣, 2);( 2)设 △BCM 边 BC 上的高为 h , ∵BC= , ∴ S △BCM =h=, ∴ h=2 ,点 M 即为抛物线上到 BC 的距离为2 的点, ∴ M 的纵坐标为 0 或 4,令 y=x 2﹣ x=0 , 解得: x 1 =0,x 2=,∴ M 1(0,0), M 2(, 0),令 y=x 2﹣x=4 ,解得: x 3=, x 4= ,∴ M 3( , 0), M 4(, 4),综上所述: M 点的坐标为:(0, 0),(, 0),(, 0),(, 4);( 3)∵ A (﹣ 1, 1), B( 2, 2), C(﹣, 2), D( 0, 2),∴ OB=2, OA=, OC=,∴ ∠ AOD= ∠ BOD=45 ° tan∠ COD=,①如图1,当△ AOC ∽ △ BON时,,∠ AOC= ∠ BON,,∴ ON=2OC=5 ,过 N 作 NE ⊥ x 轴于 E,∵ ∠ COD=45°﹣∠ AOC=45°﹣∠ BON=∠NOE,在 Rt△ NOE 中, tan∠ NOE=tan ∠ COD= ,∴ OE=4 , NE=3,∴ N(4,3)同理可得N (3, 4);②如图 2,当△ AOC ∽△ OBN 时,,∠ AOC=∠OBN,∴ BN=2OC=5,过 B 作 BG ⊥ x 轴于 G,过 N 作 x 轴的平行线交BG 的延长线于F,∴ NF⊥ BF,∵ ∠ COD=45 °﹣∠ AOC=45 °﹣∠ OBN= ∠NBF ,∴ tan∠NBF=tan ∠ COD= ,∴ BF=4,NF=3,∴ N (﹣ 1,﹣ 2),同理N (﹣ 2,﹣ 1),综上所述:使得△AOC与△ OBN相似(边OA 与边 OB 对应)的点N 的坐标是( 4, 3),( 3, 4),(﹣ 1,﹣ 2),(﹣ 2,﹣ 1).。
2017中考数学二次函数压轴题含答案解析
选择性环氧合酶-2抑制剂的疗效和不良反应云宇;段为钢;沈志强【期刊名称】《国际药学研究杂志》【年(卷),期】2005(032)003【摘要】环氧合酶-2(COX-2)是环氧合酶-1(COX-1)的同工酶,共同参与前列腺素的生物合成.针对COX非选择性抑制剂的缺点,COX-2选择性抑制剂的发现是非甾体类抗炎药(NSAID)研究史上的一个里程碑,为开发疗效高、不良反应少的NSAID 开拓了新的前景.在10多年的应用中,选择性COX-2抑制剂的疗效已被广大患者和医务工作者肯定,但越来越多的资料表明,选择性COX-2抑制剂并非是理想中高效低毒的NSAID,本文就其疗效和不良反应进行简要综述.【总页数】4页(P176-179)【作者】云宇;段为钢;沈志强【作者单位】云南省天然药物药理重点实验室/昆明医学院药理学教研室,云南,昆明,650031;云南省天然药物药理重点实验室/昆明医学院药理学教研室,云南,昆明,650031;云南省天然药物药理重点实验室/昆明医学院药理学教研室,云南,昆明,650031【正文语种】中文【中图分类】R971+.1【相关文献】1.选择性环氧合酶抑制剂联合用药控制老年前列腺增生下尿路症状的疗效 [J], 王翼;徐婷;张勤;牛海涛2.选择性环氧合酶-2抑制剂NS-398依赖和不依赖环氧合酶-2途径抑制胰腺癌细胞作用机制的研究 [J], 刘华;万荣;周莹群;徐选福;郭传勇;王兴鹏3.环氧合酶- 2选择性抑制剂联合放疗治疗晚期食管癌的近期疗效观察 [J], 胡清;吴清明;马玉芳;王道梅;熊奎4.神经病理性痛后全脑环氧合酶表达的变化及不同选择性环氧合酶抑制剂镇痛效应的比较(英文) [J], 路志红;熊晓云;林国成;孟静茹;梅其炳5.应用选择性环氧合酶-2抑制剂在全膝关节置换术后的疗效及安全性 [J], 丁裕润;王博;王伟力;沈奕;王圆因版权原因,仅展示原文概要,查看原文内容请购买。
2017年中考数学之二次函数(带详解答案)
2017年中考数学之二次函数(带详解答案)一.选择题1.(2017•广安)如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3其中正确的有()个.A.1 B.2 C.3 D.42.(2017•金华)对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是23.(2017•台湾)已知坐标平面上有两个二次函数y=a(x+1)(x﹣7),y=b(x+1)(x﹣15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移4单位 B.向右平移4单位C.向左平移8单位 D.向右平移8单位4.(2017•绵阳)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8 B.b>﹣8 C.b≥8 D.b≥﹣85.(2017•临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是()A.1 B.2 C.3 D.46.(2017•丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位7.(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<08.(2017•随州)对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小9.(2017•陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)10.(2017•攀枝花)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列命题中正确的是()A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m(am+b)+b<a(m是任意实数)D.3b+2c>011.(2017•贵港)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1 12.(2017•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个13.(2017•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个14.(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3 15.(2017•恩施州)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B 作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S=5,四边形ABCD其中正确的个数有()A.5 B.4 C.3 D.216.(2017•遂宁)函数y=x2+bx+c与函数y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c=0;③b<0;④方程组的解为,;⑤当1<x<3时,x2+(b﹣1)x+c>0.其中正确的是()A.①②③B.②③④C.③④⑤D.②③⑤17.(2017•泰安)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm218.(2017•宿迁)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A.20cm B.18cm C.2cm D.3cm19.(2017•资阳)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是()A.4 B.3 C.2 D.120.(2017•玉林)对于函数y=﹣2(x﹣m)2的图象,下列说法不正确的是()A.开口向下B.对称轴是x=m C.最大值为0 D.与y轴不相交21.(2017•宜宾)如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A (1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个22.(2017•长沙)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)23.(2017•日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤24.(2017•兰州)下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.325.(2017•盘锦)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m为任意实数);⑤一元二次方程ax2+bx+c=n有两个不相等的实数根,其中正确的有()A.2个 B.3个 C.4个 D.5个26.(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<0 27.(2017•乐山)已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.B.C.或D.或28.(2017•眉山)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2﹣ax()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣29.(2017•哈尔滨)抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)30.(2017•南宁)如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则的值为()A.B.C.D.31.(2017•牡丹江)若抛物线y=﹣x2+bx+c经过点(﹣2,3),则2c﹣4b﹣9的值是()A.5 B.﹣1 C.4 D.1832.(2017•包头)已知一次函数y1=4x,二次函数y2=2x2+2,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y233.(2017•淄博)将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2 34.(2017•枣庄)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大35.(2017•黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个36.(2017•济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.437.(2017•徐州)若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0 B.b>1 C.0<b<1 D.b<138.(2017•襄阳)将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1 B.y=2x2﹣3 C.y=2(x﹣8)2+1 D.y=2(x﹣8)2﹣3 39.(2017•连云港)已知抛物线y=ax2(a>0)过A(﹣2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>0 40.(2017•苏州)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2=D.x1=﹣4,x2=0 41.(2017•泰安)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A.1个 B.2个 C.3个 D.4个42.(2017•荆门)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是()A.a<0,b<0,c>0B.﹣=1C.a+b+c<0D.关于x的方程ax2+bx+c=﹣1有两个不相等的实数根43.(2017•遵义)如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示.则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④44.(2017•常德)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5 B.y=2(x+3)2+5 C.y=2(x﹣3)2+5 D.y=2(x+3)2﹣545.(2017•宁波)抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限46.(2017•辽阳)如图,抛物线y=x2﹣2x﹣3与y轴交于点C,点D的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为()A.1+B.1﹣C.﹣1 D.1﹣或1+47.(2017•盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.48.(2017•泸州)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()A.3 B.4 C.5 D.649.(2017•扬州)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C (2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣250.(2017•天津)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B 平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1 51.(2017•阜新)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+c的图象可能是()A.B.C.D.52.(2017•贵阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④53.(2017•黄石)如图,是二次函数y=ax2+bx+c的图象,对下列结论:①ab>0,②abc>0,③<1,其中错误的个数是()A.3 B.2 C.1 D.054.(2017•六盘水)已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0 B.b>0,c<0 C.b<0,c<0 D.b<0,c>0 55.(2017•阿坝州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个56.(2017•宿迁)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+1 D.y=(x﹣2)2﹣1 57.(2017•烟台)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④58.(2017•鄂州)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个 B.2个 C.3个 D.4个59.(2017•南充)二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.4ac<b2B.abc<0 C.b+c>3a D.a<b60.(2017•兰州)抛物线y=3x2﹣3向右平移3个单位长度,得到新抛物线的表达式为()A.y=3(x﹣3)2﹣3 B.y=3x2C.y=3(x+3)2﹣3 D.y=3x2﹣6 61.(2017•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1 B.2 C.3 D.4二、填空题1.(2017•百色)经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是.2.(2017•镇江)若二次函数y=x2﹣4x+n的图象与x轴只有一个公共点,则实数n=.3.(2017•鄂州)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.4.(2017•邵阳)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)5.(2017•乌鲁木齐)如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a ≥0,其中所有正确的结论是.6.(2017•玉林)已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c<2;③0<m<;④n≤1.则所有正确结论的序号是.7.(2017•永州)一小球从距地面1m高处自由落下,每次着地后又跳回到原高度的一半再落下.(1)小球第3次着地时,经过的总路程为m;(2)小球第n次着地时,经过的总路程为m.8.(2017•株洲)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为.9.(2017•广元)已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①abc <0;②a+c>b;③3a+c<0;④a+b>m(am+b)(其中m≠1),其中正确的结论有.10.(2017•仙桃)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣t2,则飞机着陆后滑行的最长时间为秒.11.(2017•牡丹江)若将图中的抛物线y=x2﹣2x+c向上平移,使它经过点(2,0),则此时的抛物线位于x轴下方的图象对应x的取值范围是.12.(2017•广州)当x=时,二次函数y=x2﹣2x+6有最小值.13.(2017•黔西南州)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.14.(2017•莱芜)二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有(请将结论正确的序号全部填上)15.(2017•大祥区三模)把抛物线y=﹣x2向上平移2个单位,那么所得抛物线与x轴的两个交点之间的距离是.16.(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.17.(2017秋•杜尔伯特县校级期中)抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.18.(2017•阿坝州)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为.19.(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.20.(2017•锦州)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程ax2+bx+c=1有两个相等的实数根,其中正确的结论是.(只填序号即可).21.(2017•天水)如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是.(只填写序号)22.(2017•新疆)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.23.(2017•金华)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=m2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.24.(2017•乐山)对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1(m、n为常数).例如y=x4+x2,则y'=4x3+2x.已知:y=x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为;(2)若方程y′=m﹣有两个正数根,则m的取值范围为.25.(2017•河北)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}=;若min{(x﹣1)2,x2}=1,则x=.26.(2017•咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B (4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.27.(2017•常德)如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为.28.(2017•上海)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)29.(2017•巴中)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为y=x2﹣2x﹣3,则半圆圆心M的坐标为.30.(2017•贺州)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.31.(2017•兰州)如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为.32.(2017•德阳)若抛物线y=﹣ax2+x﹣与x轴交于A n、B n两点(a为常数,a≠0,n为自然数,n≥1),用S n表示A n、B n两点间的距离,则S1+S2+…+S2017=.33.(2017•沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是元/件,才能在半月内获得最大利润.34.(2017•青岛)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.35.(2017•衡阳)已知函数y=﹣(x﹣1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1y2(填“<”、“>”或“=”)三、解答题1.(2017•菏泽)如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D 作DC⊥x轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM面积的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.2.(2017•日照)如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x 轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C 交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S (3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明△QAB理由.3.(2017•金华)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.4.(2017•兴安盟)如图,在平面直角坐标系中,抛物线的顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0).(1)写出C点的坐标,并求出抛物线的解析式;(2)观察图象直接写出函数值为正数时,自变量的取值范围.5.(2017•荆门)我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t 为整数,单位:天)的部分对应值如表所示,网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的部分对应值如图所示.(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.6.(2017•南通)某学习小组在研究函数y=x3﹣2x的图象与性质时,已列表、描点并画出了图象的一部分.…﹣﹣0﹣﹣﹣(1)请补全函数图象;(2)方程x3﹣2x=﹣2实数根的个数为;(3)观察图象,写出该函数的两条性质.7.(2017•辽阳)如图1,抛物线y=x2+bx+c经过A(﹣2,0)、B(0,﹣2)两点,点C在y轴上,△ABC为等边三角形,点D从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,设运动时间为t秒(t>0),过点D作DE ⊥AC于点E,以DE为边作矩形DEGF,使点F在x轴上,点G在AC或AC的延长线上.(1)求抛物线的解析式;(2)将矩形DEGF沿GF所在直线翻折,得矩形D'E'GF,当点D的对称点D'落在抛物线上时,求此时点D'的坐标;(3)如图2,在x轴上有一点M(2,0),连接BM、CM,在点D的运动过程中,设矩形DEGF与四边形ABMC重叠部分的面积为S,直接写出S与t之间的函数关系式,并写出自变量t的取值范围.8.(2017•广安)如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.9.(2017•齐齐哈尔)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)10.(2017•十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?11.(2017•泰安)如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标;若不存在,说明理由.12.(2017•潍坊)如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l 将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.13.(2017•荆州)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m (m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.14.(2017•朝阳)今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元/件,月生产量y(千件)与出厂价x(元)(25≤x≤50)的函数关系可用图中的线段AB和BC表示,其中AB的解析式为y=﹣x+m(m为常数).(1)求该企业月生产量y(千件)与出厂价x(元)之间的函数关系式,并写出自变量x的取值范围.(2)当该企业生产出的产品出厂价定为多少元时,月利润W(元)最大?最大利润是多少?[月利润=(出厂价﹣成本)×月生产量﹣工人月最低工资].15.(2017•广东)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A (1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y 轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.16.(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.17.(2017•随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为,点A的坐标为,点B 的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.18.(2017•巴中)如图,已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),且两条直线相交于y轴的正半轴上的点C,当点C的坐标为(0,)时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与l1、l2、x轴分别交于点G、E、F,D为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG与DE的数量关系?并说明理由;(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,请直接写出点M的坐标.。
2017年中考试卷中二次函数压轴题解析
1、如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(-3,0)两点(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.2、如图,抛物线c bx x 21-y 2++=与x 轴交与A(-4,0),B(1,0)两点(1)求该抛物线的解析式;(2)已知点P 在抛物线上,连接PC,PB,△PBC 是以BC 为直角边的直角三角形,求点P 的坐标(3)已知点E 在x 轴上,点P 在抛物线上,是否存在以ACEF 四点为顶点的四边形为平行四边形?若存在说明,计算出E的左边,不存在说明理由。
ABC A B CV3、如图①,已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.4.如图,抛物线y =ax 2+bx +4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长;(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK的面积最大?并求出最大面积.C E D G A xy O B F7、如图,抛物线y=ax2﹣8ax+12a(a>0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.(1)请直接写出A、B两点的坐标;(2)求抛物线的解析式;(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.8、如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.9、如图①,在平面直角坐标中,点A 的坐标为(1,﹣2),点B 的坐标为(3,﹣1),二次函数y=﹣x 2的图象为l 1.(1)平移抛物线l 1,使平移后的抛物线经过点A,但不过点B.①满足此条件的函数解析式有个.②写出向下平移且经点A 的解析式.(2)平移抛物线l 1,使平移后的抛物线经过A,B 两点,所得的抛物线l 2,如图②,求抛物线l 2的函数解析式及顶点C 的坐标,并求△ABC 的面积.(3)在y 轴上是否存在点P,使S △ABC =S △ABP ?若存在,求出点P 的坐标;若不存在,请说明理由.10、如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B的左边),与y 轴交于点C ,连接BC 。
2017年全国中考数学真题分类二次函数几何方面的应用
2017年全国中考数学真题分类 二次函数几何方面的应用一、选择题1. 8.(2017江苏扬州,,3分)如图,已知△ABC 的顶点坐标分别为A (0,2)、B (1,0)、C (2,1),若二次函数21y x bx =++的图像与阴影部分(含边界)一定有公共点,则实数b 的取值范围是 A .2b ≤- B .2b <- C .2b ≥- D .2b >-【答案】C【解析】由二次函数系数a 、b 、c 的几何意义可知该函数的开口方向和开口大小是确定不变的,与y 轴的交点(0,1)也是确定不变的。
唯一变化的是“b ”,也就是说对称轴是变化的。
若抛物线经过点(0,1)和C(2,1)这组对称点,可知其对称轴是直线12bx =-=,即b =-2时是符合题意的,所以可以排除B、D两个选择支,如果将该抛物线向右平移,此时抛物线与阴影部分就没有公共点了,向左平移才能符合题意,所以12b-≤,即2b ≥-。
二、解答题1. (2017重庆,26,12分)(本小题满分12分)如图,在平面直角坐标系中,抛物线3332332--=x x y 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当∆PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线3332332--=x x y 沿x轴正方向平移得到新抛物线y ',y '经过点D ,y '的顶点为点F .在新抛物线y '的对称轴上,是否存在点Q ,使得∆FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.思路分析:(1)首先求出A 、E 点的坐标,然后设出直线AE 的解析式,并将A 、E 点的坐标代入,求得方程组的解,便可得到直线AE 的解析式;(2)由抛物线解析式求得C 点坐标,则可得出直线CE 的解析式;过点P 作PH ∥x 轴,交CE 于点H ,设出P 点坐标,可推出H 点坐标,根据斜三角形面积公式“2铅垂高水平宽⨯”可表示出∆PCE 的面积,并可计算出其面积最大时P 点的坐标;分别作K 关于CP 、CD 的对称点的对称点K 1、K 2,将KM +MN +KN 即可确定出转化成一条线段,由“两点之间,线段最短”及勾股定理计算出其最小值即可;(3)运用已知两定点时确定等腰三角形常用的方法“两圆一线”即可在抛物线y '的对称轴上找到符合条件的四个点,分别确定其坐标即可. 解:(1)∵抛物线3332332--=x x y 与x 轴交于A ,B 两点,且点E (4,n )在抛物线上, ∴03332332=--x x ,解得:x 1=-1,x 2=3,∴A ,B 两点的坐标分别为(-1,0),(3,0);343324332-⨯-⨯=y =335,∴点E 坐标为(4,335).设直线AE 的解析式的解析式为y =kx +b ,将A 点、E 点坐标分别代入,得:⎪⎩⎪⎨⎧+=+-=b k b k 43350,解得:⎪⎪⎩⎪⎪⎨⎧==3333b k ,∴y =33x +33;(2)∵令x =0,得y = 3-,∴点C (0,3-),∵点E 坐标为(4,335),∴直线CE 的解析式为y =3332-x ,过点P 作PH ∥x 轴,交CE 于点H ,如图,设点P 的坐标为(t ,3332332--t t ),则H (t ,3332-t ),∴PH =3332-t -(3332332--t t )=t t 334332+-, ∴t t t t PH x x S C E PCE338332334334212122+-=⎪⎪⎭⎫ ⎝⎛+-⨯⨯=⋅-=∆, ∵0332<-,抛物线开口向下,40<<t ,∴当⎪⎪⎭⎫⎝⎛-⨯-=3322338t =2时,PCE S ∆取得最大值,此时P 为(2,3-);∵点C (0,3-),B (3,0),由三角形中位线定理得K (23,23-),∵y C =y P =3-,∴PC ∥x 轴,作K 关于CP 的对称点K 1,则K 1(23,233-); ∵333tan ==∠OCB ,∴∠OCB =60゜,∵D (1,0),∴3331tan ==∠OCD ,∴∠OCD = 30゜,∴∠OCD =∠BCD =30゜,∴CD 平分∠OCB ,∴点K 关于CD 的对称点K 2在y 轴上,又∵CK =OC = 3,∴点K 2与点O 重合,连接OK 1,交CD 于点N ,交CP 于点M ,如图,∴KM = K 1M ,KN =ON ,∴KM +MN +KN = K 1M +MN +ON ,根据“两点之间,线段最短”可得,此时KM +MN +KN 的值最小,∴K 1 K 2 =O K 1=32332322=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛,∴KM +MN +KN 的最小值为3;(3)点Q 的坐标为(3,321234+-),(3,321234--),(3,32),(3,332-).2. (2017浙江衢州,22,10分)(本题满分10分)定义:如图1,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A ,B 两点,点P 在抛物线上(P 点与A 、B 两点不重合),如果△ABP 的三边需满足AP 2+BP 2=AB 2,则称点P 为抛物线y =ax 2+bx +c (a ≠0)的勾股点. (1)直接写出抛物线y =-x 2+1的勾股点坐标.(2)如图2,已知抛物线C :y =ax 2+bx (a ≠0)与x 轴交于A ,B 两点,点P (13C 的勾股点,求抛物线C 的函数表达式.(3)在(2)的条件下,点Q 在抛物线C 上,求满足条件S △ABQ =S △ABP 的Q 点(异于点P )的坐标.思路分析:(1)所谓勾股点,即以AB为直径的圆与抛物线的交点.y=-x2+1与x轴交点坐标为(1,0),(-1,0),故圆心为原点,半径为1,与抛物线交点为(0,1).(2)由P点坐标可知∠PAB=60°,又∠APB=90°,从而求得B点坐标,利用待定系数法即可求解.(3)由S△ABQ=S△ABP,故有|y Q|y Q解(1)勾股点的坐标(0,1).(2)抛物线y=ax2+bx(a≠0)过原点(0,0),即A为(0,0).如图,作PG⊥x轴于点G,连结PA,PB.∵点P的坐标为(1,∴AG=1,PG PA=2,tan∠PAB∴∠PAB=60°,∴Rt△PAB中,AB=cos60PA=4,∴点B(4,0).设y=ax(x-4),当x=1时,ya∴y=-(x-4)=-2x.(3)①当点Q在x轴上方时,由S△ABQ=S△ABP易知点Q则有-2=x1=3,x2=1(不合题意,舍去).∴Q1(3.②当点Q在x轴下方时,由S△ABQ=S△ABP易知点Q2解得x1=2+x2=2-Q2(2,Q2(2.综上,满足条件的Q点有三个:Q1(3,Q2(2,Q2(2.3.(2017山东济宁,21,9分)已知函数2(25)2y mx m x m=--+-的图象与x轴有两个公共点.(1)求m的取值范围,写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1①当1n x≤≤-时,y的取值范围是13y n≤≤-,求n的值;②函数C2:22()y x h k=-+的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为5C 1的图象顶点为M ,求点P 与点M 距离最大时函数C 2的解析式.思路分析:(1)根据函数2(25)2y mx m x m =--+-图象与x 轴有两个公共点,即一元二次方程2(25)20mx m x m --+-=有两个不同的实数解,即需满足m ≠0且根的判别式△>0,解不等式组得25,12m <且0m ≠;(2)由二次函数22y x x =+性质,当14x <-时,y 随x 的增大而减小,求出n 的值为—2;(3)由图形可知当P 为射线MO 与圆的交点时,距离最大,先求出MO 的解析式,设出点P 的坐标,根据勾股定理求出点P 的坐标,继而求出PM 最大时的函数解析式为()2221y x =-+.解:(1)由题意可得:()()20,25420.m m m m ≠⎧⎪⎨---->⎡⎤⎪⎣⎦⎩解得:25,12m <且0,m ≠ 当2m =时,函数解析式为:22y x x =+.(2)函数22y x x =+图象开口向上,对称轴为1,4x =-∴当14x <-时,y 随x 的增大而减小. ∵当1n x ≤≤-时,y 的取值范围是13y n ≤≤-, ∴223n n n +=-.∴ 2n =-或0n =(舍去). ∴2n =-.(3)∵221122,48y x x x ⎛⎫=+=+- ⎪⎝⎭ ∴图象顶点M 的坐标为11,48⎛⎫-- ⎪⎝⎭,由图形可知当P 为射线MO 与圆的交点时,距离最大.∵点P 在直线OM 上,由11(0,0),(,)48O M --可求得直线解析式为:12y x =, 设P (a ,b ),则有a =2b , 根据勾股定理可得()2222PO b b =+求得2,1a b ==.∴PM 最大时的函数解析式为()2221y x =-+.4.(2017山东威海,25,12分)如图,已知抛物线y=ax²+bx+c过点A(-1,0),B(3,0),C(0,3).点M,N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E.(1)求二次函数y=ax²+bx+c的表达式;(2)过点N作NF⊥x轴,垂足为点F.若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若∠DMN=90°,MD=MN,求点M的横坐标.解:∵抛物线2y ax bx c=++的图像经过点A(-1,0),B(3,0),∴抛物线的函数表达式为y=a(x+1)(x-3),将点C(0,3)代入上式,得3=a(0+1)(0-3),解得a=-1.∴所求函数表达式为y=-(x+1)(x-3)=-x2+2x+3.(2)由(1)知,抛物线的对称轴为212(1)x==⨯-.如图1,设M点的坐标(m,-m2+2m+3),∴ME=|-m2+2m+3|.∵M,N关于x=1对称,且点M在对称轴右侧,∴N点横坐标为2-m.∴MN =2m -2∵四边形MNEF 为正方形∴ME =MN . ∴22322m m m -++=- . 分两种情况: ①2m - +2m +3=2m -2.解,得12m m =不符合题意,合去).当 m =,正方形的面积为22(2224⎡⎤-=+⎣⎦综上所述,正方形的面积为24-或24+(3)设直线BC 的函数表达式为y =kx +b .把点B (3,0),C (0,3)代入表达式,得30,3,k b b +=⎧⎨=⎩解得1,3.k b =-⎧⎨=⎩∴直线BC 的函数表达式为y =-x +3,设点M 的坐标为(a ,223a a -++), 则点D 的坐标为(a ,-a +3), ∴DM =23a a -+ ,∵DM //y 轴,DM ⊥MN ,∴MN //x 轴. ∴M ,N 关于x =1对称. ∴N 点的横坐标为2-a , ∴MN =22a -, ∵DM =MN ,∴2322a a a -+=- .分两种情况:①如图2,2322a a a -+=- , 解,得122,1a a ==- . ②如图3,2322a a a -+=-, 解,得34517517,a a +-==. 综上所述,M 点的横坐标为122,1a a ==-,34517517,a a +-==.5. (2017年四川绵阳,24,11分)(本题满分12分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2).直线y =x +1与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 于直线m 交于对称轴右侧的点M (t ,1).直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F .求BE ∶MF 的值.解:(1)设抛物线方程为,因为抛物线的顶点坐标是(2,1),所以…………………………1分又抛物线经过点(4,2),所以,解得,………………2分所以抛物线的方程是.……………………………3分(2)联立,消去y,整理得,………………………4分解得,,…………………………5分代入直线方程,解得,,所以B(),D(),因为点C是BD的中点,所以点C的纵坐标为,………………………6分利用勾股定理,可算出BD=,即半径R=,即圆心C到x轴的距离等于半径R,所以圆C与x轴相切.…………………………7分(3)连接BM和DM,因为BD为直径,所以∠BMD=90°,所以∠BME+∠DMF=90°,又因为BE⊥m于点E,DF⊥m于点F,所以∠BME=∠MDF,所以△BME∽△MDF,所以,……………………………9分即,代入得,化简得,解得t=5或t=1,………………………………10分因为点M在对称轴右侧,所以t=5,………………………11分所以…………………………………………………12分法2:过点C作CH⊥m,垂足为H,连接CM,由(2)知CM=R=25,CH=R-1=23,由勾股定理,得MH=2,…………………9分又HF=,所以MF=HF-MH=-2,…………………10分又BE=y1-1=23-25,所以MF BE=25+1,………………………………………………12分思路分析:(1)知抛物线的顶点和其它任意一点,可设出抛物线的顶点式,代入点的坐标即可求出抛物线的解析式;(2)由抛物线与直线交于B、D,联立方程组,求出点B点D坐标,求出直径BD 的长度,从而求出半径,与C的纵坐标进行比较,得出结论;(3)连接BM和DM,因为BD为直径,所以∠BMD=90°,所以∠BME+∠DMF=90°,又因为BE⊥m于点E,DF⊥m于点F,所以∠BME=∠MDF,所以△BME∽△MDF,所以,即,代入得,化简得,解得t =5或t =1,因为点M 在对称轴右侧,所以t =5,所以.6. (2017四川攀枝花,24,12分)如图15,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)点P 在x 轴下方的抛物线上,过点P 的直线y =x +m 与直线BC 交于点E ,与y 轴交于点F ,求PE +EF 的最大值.(3)点D 为抛物线对称轴上一点.① 当∆BCD 是以BC 为直角边的直角三角形时,求点D 的坐标; ② 若∆BCD 是锐角三角形,求点D 的纵坐标的取值范围.图1 备用图思路分析:(1)由点B 、C 的坐标利用待定系数法即可求出抛物线的解析式;(2)方法1:(代数法)设点的坐标转化成所求线段,找特殊角转化成所求线段,联立函数关系,代入整理成关于目标线段和的二次函数关系式,从而找到最值;方法2:(几何法)以BC 为对称轴将FCE ∆对称得到F CE '∆,作PH CF '⊥于H ,则PF +EF =PF ′= 2PH =))223C P P y y y -=-∴当P y 最小时,PF EF +取最大值42.(3)①先设点再分类讨论,利用勾股定理得到关于所求D 点的一元方程式,解得即为D 1和D 2;②利用直径圆周角性质构造圆,利用线段距离公式建立一元方程式,解得即为D 3和D 4. 结合①中D 1和D 2的坐标,当D 在D 2D 4和D 3D 1之间时候为锐角三角形,从而得到点D 的纵坐标的取值范围.解析:(1)由题意得:⎩⎨⎧32+3b +c =0,c =3. 解得⎩⎪⎨⎪⎧b =-4,c =3.∴抛物线的解析式为:y =x 2-4x +3. (2)方法1:如图,过P 作PG ∥CF 交CB 与G ,由题意知∠BCO =∠CEF =45°,F (0,m )C (0,3), ∴∆CFE 和∆GPE 均为等腰直角三角形, ∴EF =22CF =22(3-m ) PE =22PG , 设x P =t (1<t <3), 则PE =22PG =22(-t +3-t -m )=22(-m -2t +3),t 2-4t +3=t +m , ∴PE +EF =22(3-m )+22(-m -2t +3)= 22(-2t -2m +6)=-2(t +m -3)=-2(t 2-4t )= -2(t -2)2+42, ∴当t =2时,PE +EF 最大值=42.方法2:(几何法)由题易知直线BC 的解析式为3y x =-+,OC =OB =3, ∴∠OCB =45°. 同理可知∠OFE =45°, ∴△CEF 为等腰直角三角形,以BC 为对称轴将△FCE 对称得到△F ′CE ,作PH ⊥CF ′于H 点,则PF +EF =PF ′= 2 PH .yxHPF'CBAOFE又PH=3C P Py y y-=-.∴当Py最小时,PF+EF取最大值,∵抛物线的顶点坐标为(2,-1),∴当1Py=-时,(PF+EF)max= 2 ×(3+1)=4 2 .(3)①由(1)知对称轴x=2,设D(2,n),如图.当∆BCD是以BC为直角边的直角三角形时,D在C上方D1位置时由勾股定理得CD2+BC2=BD2,即(2-0)2+(n-3)2+(32)2=(3-2)2+(0-n)2 ,解得n=5;当∆BCD是以BC为直角边的直角三角形时,D在C下方D2位置时由勾股定理得BD2+BC2=CD2 即(2-3)2+(n-0)2+(32)2=(2-0)2+(n-3)2 ,解得n=-1.∴当△BCD是以BC为直角边的直角三角形时,D为(2,5)或(2,-1).②如图:以BC的中点T(3,3),12BC为半径作⊙T,与对称轴x=2交于D3和D4,由直径所对的圆周角是直角得∠CD3B=∠CD2B=90°,设D(2,m),由DT=12BC=32得(32-2)2+(32-m)2=2322⎛⎝⎭,解得m=173∴D3(2,1732+D4(2,1732-),又由①得D1为(2,5),D2(2,-1),∴若∆BCD 是锐角三角形,D 点在线段13D D 或24D D 上时(不与端点重合),则点D 的纵坐标的取值范围是-1<D y <173-或173+<D y <5.7. (2017四川内江,28,12分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与y 轴交于点C (0,3),与x 轴交于A ,B 两点,点B 坐标为(4,0),抛物线的对称轴方程为x =1. (1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN 的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值; (3)在点M 运动过程中,是否存在某一时刻t ,使△MBN 为直角三角形?若存在,求出t 的值;若不存在,请说明理由.思路分析:(1) 由点B 的坐标与对称轴可求得点C 的坐标,把点A ,B ,C 的坐标分别代入抛物线的解析式,列出关于系数a ,b ,c 的方程组,求解即可;(2)设运动时间为t 秒,利用三角形的面积公式列出S △MBN 与t 的函数关系式,用配方法求的最大值;(3) 根据余弦函数,可得关于t 的方程,解方程,可得答案,注意分类讨论.解:(1)∵点B 坐标为(4,0),抛物线的对称轴方程为x =1,∴A (-2,0).把点A (-2,0),B(4,0),点C(0,3),分别代入y=ax2+bx+c(a≠0),得⎪⎩⎪⎨⎧==++=+-.3,0416,024ccbacba解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=.3,43,83cba∴该抛物线的解析式为y=343832++-xx.(2) 如图1,设运动时间为t秒,则AM=3t,BN=t,∴MB=6-3t.由题意得,点C的坐标为(0,3).在Rt△BOC中,BC=2243+=5.如图1,过点N作NH⊥AB于点H,∴NH∥CO,∴△BHN∽△BOC,∴BCBNOCHN=,即53tHN=,∴HN=t53.∴S△MBN=21MB·HN=21(6-3t)·t53==+-tt591092109)1(1092+--t.当△MBN存在时,0<t<2,∴当t=1时,S△MBN最大=109.∴S与t的函数关系为S=109)1(1092+--t, S的最大值为109.(3)如图2,在Rt△OBC中,cos∠B=54=BCOB,设运动时间为t秒,则AM=3t,BN=t.∴MB=6-3t.当∠MNB=90°时,cos∠B=54=BMBN,即5436=-tt,解得t=1724.当∠BM'N'=90°时,cos∠B=5436=-tt,解得t=1930.综合上所述,当t=1724或t=1930时,△MBN为直角三角形.8. (2017江苏无锡,27,10分)如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A 、B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C 、D 两点(点C 在点D 的上方),直线AC 、DB 交于点E .若AC :CE =1:2. (1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.xyEDCAB OP 思路分析:(1)过点E 作E F ⊥x 轴于F ,设P (m ,0).①由相似三角形的判定与性质证得AF =3AP ,BF =3PB ;②由关系式AF -BF =AB ,可得m =1.∴点P 的坐标(1,0).(2)①由已知证得A (-3,0),E (9,25,0);②用待定系数法可得抛物线的函数表达式.解:(1)过点E 作E F ⊥x 轴于F ,xym FEDCABO P∵CD ⊥AB ,∴CD ∥EF ,PC =PD . ∴△ACP ∽△AEF ,△BPD ∽△BEF . ∵AC :CE =1:2.∴AC :AE =1:3.∴AP AF =CP EF =13,DP EF =PB BF =13. ∴AF =3AP ,BF =3PB . ∵AF -BF =AB .又∵⊙O 的半径为3,设P (m ,0), ∴3(3+m )-3(3-m )=6 ∴m =1.∴P (1,0)(2)∵P (1,0),∴OP =1,A (-3,0). ∵OA =3,∴AP =4,BP =2.∴AF =12. 连接BC .∵AB 是直径,∴∠ACB =90°.∵CD ⊥AB ,∴△ACP∽△CBP .∴AP CP =CPBP. ∴CP 2=AP ·BP =4×2=8. ∴CP=2EF =3CP = ∴E (9,6.∵抛物线的顶点在直线CD 上,∴CD 是抛物线的对称轴, ∴抛物线过点(5,0).设抛物线的函数表达式为y =ax 2+bx +c .根据题意得09-30255819a b c a b c a b c ⎧⎪+⎨⎪+⎩=+,=+,+,解得28249232abc⎧⎪⎪⎪⎪⎨⎪⎪--⎪⎪⎩=,=-,=,∴抛物线的函数表达式为y=28x2-24x-928-324.9.(2017山东潍坊)(本小题满分13分)如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(-1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PFE为直角三角形?若存在,求出t的值;若不存在,说明理由.思路分析:(1)利用待定系数法列方程组求解抛物线的解析式;(2)由平行四边形的对称性可知直线l必过其对称中心,同时利用抛物线的对称性确定E点坐标,进而可求直线l的解析式,结合二次函数解析式确定点F的坐标.作PH⊥x轴,交l于点M,作FN ⊥PH,列出PM关于t的解析式,最后利用三角形的面积得S△PFE关于t的解析式,利用二次函数的最值求得t值,从而使问题得以解决;(3)分两种情形讨论:①若∠P1AE=90°,作P1G⊥y轴,易得P1G=AG,由此构建一元二次方程求t 的值;②若∠AP2E=90°,作P2K⊥x轴,AQ⊥P2K,则△P2KE∽△AQP2,由此利用对应边成比例构建一元二次方程求t的值.解:(1)将点A(0,3)、B(-1,0)、D(2,3)代入y=ax2+bx+c,得⎪⎩⎪⎨⎧=++=+-=,324,0,3cbacbac得⎪⎩⎪⎨⎧-==-=.1,2,1cba所以,抛物线解析式为:y=-x2+2x+3.(2)因为直线l将平行四边形ABCD分割为面积相等的两部分,所以必过其对称中心(21,23).由点A、D知,对称轴为x=1,∴E(3,0),设直线l的解析式为:y=kx+m,代入点(21,23)和(3,0)得⎪⎩⎪⎨⎧=+=+.03,2321mkmk解之得⎪⎪⎩⎪⎪⎨⎧=-=.59,53mk所以直线l的解析式为:y=53-x+59.由⎪⎩⎪⎨⎧++-=+-=,32,59532xxyxy解得x F=52-.作PH⊥x轴,交l于点M,作FN⊥PH.点P的纵坐标为y P=-t2+2t+3,点M的纵坐标为y M=53-t+59.所以PM=y P-y M=-t2+2t+3+53t-59=-t2+513t+56.则S △PFE =S △PFM + S △PEM =21PM ·FN +21PM ·EH =21PM ·(FN + EH ) =21·(-t 2+513t +56)(3+52) =1017-·(t -1013)2+100289×1017 所以当t =1013时,△PFE 的面积最大,最大值的立方根为31017100289⨯=1017. (3)由图可知∠PEA ≠90°. ①若∠P 1AE =90°,作P 1G ⊥y 轴, 因为OA =OE ,所以∠OAE =∠OEA =45°, 所以∠P 1AG =∠AP 1G =45°,所以P 1G =AG . 所以t =-t 2+2t +3-3,即-t 2+t =0, 解得t =1或t =0(舍去).②若∠AP 2E =90°,作P 2K ⊥x 轴,AQ ⊥P 2K , 则△P 2KE ∽△AQP 2,所以QP KEAQ K P 22=, 所以tt tt t t 233222+--=++-,即t 2-t -1=0, 解之得t =251+或t =251-<52-(舍去).综上可知t =1或t =251+适合题意.10. (2017湖南岳阳,本题满分10分)如图,抛物线223y x bx c =++经过点()3,0B ,()0,2C -,直线l :2233y x =--交y 轴于点E ,且与抛物线交于A ,D 两点.P 为抛物线上一动点(不与A ,D 重合).(1) 求抛物线的解析式;(2) 当点P 在直线l 下方时,过点P 作PM x ∥轴交l 于点M ,PN y ∥轴交l 于点N .求PM PN+的最大值;(3) 设F 为直线l 上的点,以E ,C ,P ,F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.备用图解:(1)将()3,0B ,()0,2C -代入223y x bx c =++,得:6302b c c ++=⎧⎨=-⎩解得:432b c ⎧=-⎪⎨⎪=-⎩∴抛物线的解析式为:224233y x x =--;(2)设()224,21233P a a a a ⎛⎫---<< ⎪⎝⎭,则22,33N a a ⎛⎫-- ⎪⎝⎭∴222242133=3333222PN a a a ⎛⎫=-++--+≤ ⎪⎝⎭ ∵M ,N 在直线l :2233y x =--上,PM x ∥,PN y ∥∴23PN PM = ∴51524PM PN PN +=≤即:PM PN +的最大值为:154;(3)能设22,33F m m ⎛⎫-- ⎪⎝⎭① 当EC 为边时,有224,233P m m m ⎛⎫-- ⎪⎝⎭,EC PF =解得:m =0m =时不成立,舍去; ② 当EC 为对角线时,PF 中点即为EC 中点(0,43-)2,23P m m ⎛⎫-- ⎪⎝⎭在抛物线上所以,224222333m m m +-=-解得:01m =-或,其中0m =时不成立,舍去; 综上所述:F 点的坐标为:41,3⎛⎫-⎪⎝⎭、()1,0-、⎝⎭、⎝⎭.11. (2017湖南常德,25,10分)如图12,已知抛物线的对称轴是y 轴,且点(2,2),(1,54)在抛物线上,点P 是抛物线上不与顶点N 重合的一动点,过点P 作PA ⊥x 轴于A ,PC ⊥y 轴于C ,延长PC 交抛物线于E ,设M 是O 关于抛物线顶点N 的对称点,D 是C 点关于N 的对称点. (1)求抛物线的解析式及顶点N 的坐标; (2)求证:四边形PMDA 是平行四边形;(3)求证:△DPE ∽△PAM ,并求出当它们的相似比为P 的坐标.图12思路分析:(1)将点(2,2),(1,54)坐标代入y=ax2+k中求出解析式,即可得到顶点N的坐标;(2)根据解析式设出点P坐标,从而得到点A、C的坐标,再通过N的坐标求出点M的坐标和D 的坐标,即可求出MD和PA的长度,得出长度相等,而MD∥PA,所以四边形PMDA是平行四边形;(3)在(2)证明之后继续证明PM=PA,则四边形PMDA是菱形,∠MDP=12∠PDE=12∠ADM=12∠APM,所以∠PDE=∠APM,而△DPE和△PAM都是等腰三角形,顶角相等,则两个三角形相似.解:(1)设抛物线的解析式为:y=ax2+k,∵点(2,2),(1,54)在抛物线上,∴4254a ka k+=⎧⎪⎨+=⎪⎩,解得141ak⎧=⎪⎨⎪=⎩.∴该抛物线的解析式为:y=14x2+1,顶点N的坐标为(0,1);(2)设点P坐标为(x, 14x2+1),∵PA⊥x轴于A,PC⊥y轴于C,M是O关于抛物线顶点N的对称点,D是C点关于N的对称点.∴A(x,0),C(0,14x2+1),M(0,2),D(0,1-14x2);PA∥y轴;∴MD=2-(1-14x2)=14x2+1=PA且MD∥PA∴四边形PMDA是平行四边形;(3)由(2)得四边形PMDA是平行四边形,PC=x,CM=14x2+1-2=14x2-1;∵在Rt△PCM中,PM=2114x=+=PA∴四边形PMDA是菱形,△PAM是等腰三角形;∴∠APM=∠ADM;∠MDP=12∠ADM;根据抛物线的对称性,PD=ED,∴△DPE是等腰三角形,DC平分∠PDE,∴∠MDP=12∠PDE,∴∠PDE=∠APM;又∵∠PDE,∠APM分别为等腰△DPE和△PAM的顶角;∴△DPE∽△PAMPE =2x ,AM =222x +∵PE :AM =3时,解得:x =23±; ∴相似比为3时P 点坐标为:(23±,4)12. 24.(2017湖北咸宁,24,12分)如图,抛物线c bx x y ++=221与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知OB=OC=6.⑴求抛物线的解析式及点D 的坐标;⑵连接BD ,F 为抛物线上一动点,当∠FAB=∠EDB 时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于M 、N 两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且PQ=12MN 时,求菱形对角线MN 的长. 思路分析:(1)利用OB=OC=6得到点B(6,0),C(0,-6),将其代入抛物线的解析可以求出b 、c 的值,进而得到抛物线的解析式,最后通过配方得到顶点坐标;(2)由于F 为抛物线上一动点,∠FAB=∠EDB ,可以分两种情况求解:一是点F 在x 轴上方;二是点F 在x 轴下方.每一种情况都可以作FG ⊥x 轴于点G ,构造Rt △AFG 与Rt △DBE 相似,利用对应边成比例或三角函数的定义求点F 的坐标.(3)首先根据MN 与x 轴的位置关系画出符合要求的两种图形:一是MN 在x 轴上方;二是MN 在x 轴下方.设菱形对角线的交点T 到x 轴的距离为n ,利用PQ=12MN ,得到MT=2n ,进而得到点M 的坐标为(2+2n ,n),再由点M 在抛物线上,得21(22)2(22)62n n n =+-+-,求出n 的值,最后可以求得MN=2MT=4n 的两个值. 解:(1)∵OB=OC=6, ∴B(6,0),C(0,-6).∴216+6026b c c ⎧⨯+=⎪⎨⎪=-⎩, 解得26b c =-⎧⎨=-⎩,∴抛物线的解析式为21262y x x =--. ……2分 ∵21262y x x =--=21(2)82x --, ∴点D 的坐标为(2,-8). ……4分(2)如图,当点F 在x 轴上方时,设点F 的坐标为(x ,21262x x --).过点F 作FG ⊥x 轴于点G ,易求得OA=2,则AG=x+2,FG=21262x x --.∵∠FAB=∠EDB , ∴tan ∠FAG=tan ∠BDE ,即21261222x x x --=+,解得17x =,22x =-(舍去). 当x=7时,y=92, ∴点F 的坐标为(7,92). ……6分 当点F 在x 轴下方时,设同理求得点F 的坐标为(5,72-).综上所述,点F 的坐标为(7,92)或(5,72-). ……8分(3)∵点P 在x 轴上,∴根据菱形的对称性可知点P 的坐标为(2,0). 如图,当MN 在x 轴上方时,设T 为菱形对角线的交点.∵PQ=12MN , ∴MT=2PT. 设TP=n ,则MT=2n. ∴M(2+2n ,n). ∵点M 在抛物线上,∴21(22)2(22)62n n n =+-+-,即2280n n --=. 解得1165n +=2165n -=舍去). ∴MN=2MT=4n=65+1. ……10分 当MN 在x 轴下方时,设TP=n ,得M(2+2n ,-n). ∵点M 在抛物线上,∴21(22)2(22)62n n n -=+-+-,即22+80n n -=.解得114n -=,214n -=(舍去). ∴MN=2MT=4n=1.综上所述,菱形对角线MN的长为1. ……12分13. 24.(2017湖北宜昌)(本小题满分12分)已知抛物线y=ax 2+bx+c ,其中2a=b>0>c ,且a+b+c=0. (1)直接写出关于x 的一元二次方程ax 2+bx+c =0的一个根; (2)证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3)直线y= x+m 与轴,x y 轴分别相交于B,C 两点,与抛物线y=ax 2+bx+c 相交于A,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△OCB 相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.xyO思路分析:(1)利用抛物线的对称轴、对称性及二次函数与方程的关系数形结合得出二次方程的根;(2)确定抛物线的顶点位置一可借助数形结合,二可借助顶点坐标的正负性;(3)借助一次函数与二次函数的关系确定与求解相关点的坐标,将坐标转化为相应的线段长,进而借助题意中的相似及面积关系等构建方程求解未知系数的值.解:(1)ax 2+bx+c =0的一个根为1(或者-3) (2)证明:∵ b =2a ,∴对称轴x=2ba-=-1,将b=2a 代入a+b+c=0.得c=-3a . 方法一:∵a=b>0>c ,∴b 2-4ac>0,∴244ac b a-<0,所以顶点A (-1,244ac b a-)在第三象限.方法二:∵b =2a , c=-3a ,∴244ac b a -=221244a b a --=-4a <0,所以顶点A (-1,244ac b a-)在第三象限.(3)∵b =2a , c=-3a∴x=242a a a -±∴x 1=-3,x 2=1,所以函数表达式为y=ax 2+2ax-3a ,∵直线y= x+m 与x 轴、y 轴分别相交于B,C,两点,则OB=OC=m所以△BOC 是以∠BOC 为直角的等腰三角形,这时直线y=x+m 与对称轴x=-1的夹角∠BAE=45°. 又因点F 在对称轴左侧的抛物线上,则∠BAE>45°,这时△BOC 与△ADF 相似,顶点A 只可能对应△BOC 中的直角顶点O ,即△ADF 是以A 为直角顶点的等腰三角形,且对称轴是x =-1,设对称轴x =-1与OF 交于点G.∵直线y=x+m 过顶点A ,所以m=1-4a ,∴直线解析式为y=x+1-4a,解方程组21423y x a y ax ax a =+-⎧⎨=+-⎩,解得1114x y a =-⎧⎨=-⎩,221114x ay aa ⎧=-⎪⎪⎨⎪=-⎪⎩, 这里的(-1,4a )即为顶点A ,点(1a -1,1a -4a )即为顶点D 的坐标(1a -1,1a-4a )D 点到对称轴x=-1的距离为1a -1-(-1)=1a,AE =4a -=4a,S △ADE =12×1a×4a=2,即它的面积为定值.这时等腰直角△ADF 的面积为1,所以底边DF =2,而x=-1是它的对称轴,这时D,C 重合且在y 轴上,由1a-1=0,∴a=1,此时抛物线的解析式y=x 2+2x-314. (2017湖南邵阳,26,10分)(本小题满10分)如图(十六)所示,顶点(49-21,)的抛物线y =ax 2+bx +c 过点M (2,0). (1)求抛物线的解析式;(2)点A 是抛物线与x 轴的交点(不与点M 重合),点B 是抛物线与y 轴的交点,点C 是直线y =x +1上一点(处于x 轴下方),点D 是反比例函数y =xk(k >0)图象上一点.若以点A 、B 、C 、D 为顶点的四边形是菱形,求k 的值.思路分析:(1)已知抛物线的顶点坐标,可设顶点式为 y =a (x -21)2-49,再把点M (2,0)代入,可求a =1,所以抛物线的解析式可求.(2)先分别求出A 、B 两点的坐标,及AB 线段长,再根据反比例函数y =xk(k >0),考虑点C 在x 轴下方,故点D 只能在第一、三象限.确定菱形有两种情形:①菱形以AB 为边,如图一。
2017年中考数学真题汇编系列 10 二次函数(原卷+解析卷)
专题10 二次函数真题呈现【真题来源一】2017浙江金华第21题【真题原题】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点上正方1m 的P 处发出一球,羽毛球飞行的高度()y m 与水平距离()x m 之间满足函数表达式()24y a x h =-+.已知点O 与球网的水平距离为5m ,球网的高度为1.55m .(1)当124a =-时,①求h 的值.②通过计算判断此球能否过网. (2)若甲发球过网后,羽毛球飞行到点O 的水平距离为7m ,离地面的高度为125m 的Q 处时,乙扣球成功,求a 的值. 【答案】(1)①h=53;②此球能过网,理由见解析;(2)a=15- . 【解析】试题分析:(1)①利用a=124-,(0,1)代入解析式即可求出h 的值;②利用x=5代入解析式求出y ,再与1.55比较大小即可判断是否过网;(2)将点(0,1),(7,125)代入解析式得到一个二元一次方程组求解即可得出a 的值. 试题解析:(1)解:①∵a=124-,P (0,1); ∴1=21(04)24--+h; ∴h=53; ②把x=5代入y=215(4)243x --+得: y=215(4)243x --+=1.625;∵1.625>1.55; ∴此球能过网.(2)解:把(0,1),(7, 125)代入y=2(4)a x h -+得:1611295a h a h +=⎧⎪⎨+=⎪⎩;解得:15215a h ⎧=-⎪⎪⎨⎪=⎪⎩;∴a=15- . 【真题来源二】2017山东日照第12题【真题原题】已知抛物线y=ax 2+bx +c (a ≠0)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论: ①抛物线过原点; ②4a +b +c=0; ③a ﹣b +c <0;④抛物线的顶点坐标为(2,b ); ⑤当x <2时,y 随x 增大而增大. 其中结论正确的是( )A .①②③B .③④⑤C .①②④D .①④⑤【答案】C .试题分析:①∵抛物线y=ax 2+bx +c (a ≠0)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,0),∴抛物线与x 轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax 2+bx +c (a ≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣2ba=2,c=0,∴b=﹣4a ,c=0,∴4a +b +c=0,结论②正确;③∵当x=﹣1和x=5时,y 值相同,且均为正,∴a ﹣b +c >0,结论③错误;④当x=2时,y=ax 2+bx +c=4a +2b +c=(4a +b +c )+b=b ,∴抛物线的顶点坐标为(2,b ),结论④正确; ⑤观察函数图象可知:当x <2时,yy 随x 增大而减小,结论⑤错误. 综上所述,正确的结论有:①②④.故选C .考点:抛物线与x 轴的交点;二次函数图象与系数的关系. 【真题来源三】2017山东临沂第26题【真题原题】如图,抛物线23y ax bx =+-经过点()2,3A -,与x 轴负半轴交于点B ,与y 轴交于点C ,且3OC OB =.(1)求抛物线的解析式;(2)点D 在y 轴上,且BDO BAC ∠=∠,求点D 的坐标;(3)点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点A ,B ,M ,N 为顶点的四边形是平行四边形?若存在。
江苏省南京市2017年中考数学真题试题(含解析)
江苏省南京市2017年中考数学真题试题第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算12+(-18)÷(-6)-(-3)×2的结果是( )A . 7B . 8C . 21D .36【答案】C考点:有理数的混合运算2. 计算()3624101010⨯÷的结果是( ) A . 310 B . 710 C .810 D .910【答案】C【解析】试题分析:根据乘方的意义及幂的乘方,可知623410(10)10⨯÷=664810101010⨯÷=. 故选:C考点:同底数幂相乘除3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙间学:它有8条棱.该模型的形状对应的立体图形可能是 ( )A .三棱柱B .四棱柱C . 三棱锥D .四棱锥【答案】D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选:D考点:几何体的形状4. a < ( )A .13a <<B .14a << C. 23a << D .24a <<【答案】B【解析】 试题分析:根据二次根式的近似值可知134=2<<,而3=9104<<,可得1<a <4.故选:B考点:二次根式的近似值5. 若方程()2519x -=的两根为a 和b ,且a b >,则下列结论中正确的是 ( )A .a 是19的算术平方根B .b 是19的平方根 C.5a -是19的算术平方根 D .5b +是19的平方根【答案】C考点:平方根6. 过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( )A .(4,176)B .(4,3) C.(5,176) D .(5,3) 【答案】A【解析】试题分析:根据题意,可知线段AB 的线段垂直平分线为x=4,然后由C 点的坐标可求得圆心的横坐标为x=4,然后设圆的半径为r ,则根据勾股定理可知2222(52)r r =+--,解得r=136,因此圆心的纵坐标为1317566-=,因此圆心的坐标为(4,176). 故选:A考点:1、线段垂直平分线,2、三角形的外接圆,3、勾股定理第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)7. 计算:3-=;= . 【答案】3,3【解析】 试题分析:根据绝对值的性质(0)0(0)(0)a a a a a a ⎧⎪==⎨⎪-⎩><,可知|-3|=32(0)0(0)(0)a a a a a a a ⎧⎪===⎨⎪-⎩><,3=.故答案为:3,3.考点:1、绝对值,2、二次根式的性质8. 2016年南京实现GDP 约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是.【答案】1.05×104考点:科学记数法的表示较大的数9. 若式子21x -在实数范围内有意义,则x 的取值范围是 . 【答案】x ≠1【解析】试题分析:根据分式有意义的条件,分母不为0,可知x-1≠0,解得x ≠1.故答案为:x ≠1.考点:分式有意义的条件10. 1286的结果是 .【答案】【解析】=故答案为:考点:合并同类二次根式11. 方程2102x x-=+的解是 . 【答案】x=2考点:解分式方程12. 已知关于x 的方程20x px q ++=的两根为-3和-1,则p = ;q = .【答案】4,3【解析】试题分析:根据一元二次方程的根与系数的关系,可知p=-(-3-1)=4,q=(-3)×(-1)=3.故答案为:4,3.考点:一元二次方程的根与系数的关系13. 下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大的是 年.【答案】2016,2015【解析】试题分析:根据条形统计图可知私家车拥有最多的年份为2016年,由折线统计图可知2015年的私家车的拥有量增长率最高.故答案为:2016,2015.考点:1、条形统计图,2、折线统计图14. 如图,1∠是五边形ABCDE 的一个外角,若165∠=︒,则A B C D ∠+∠+∠+∠= .【答案】425考点:1、多边形的内角和,2、多边形的外角15. 如图,四边形ABCD 是菱形,⊙O 经过点,,A C D ,与BC 相交于点E ,连接,AC AE ,若78D ∠=︒,则EAC ∠= .【答案】27【解析】试题分析:根据菱形的性质可知AD=DC ,AD ∥BC ,因此可知∠DAC=∠DCA ,AE DC =,然后根据三角形的内角和为180°,可知∠DAC=51°,即∠ACE=51°,然后根据等弧所对的圆周角可知∠DAE=∠D=78°,因此可求得∠EAC=78°-51°=27°.故答案为:27.考点:1、菱形的性质,2、圆周角的性质,3、三角形的内角和16. 函数1y x =与24y x=的图像如图所示,下列关于函数12y y y =+的结论:①函数的图像关于原点中心对称;②当2x <时,y 随x 的增大而减小;③当0x >时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是 .【答案】①③考点:一次函数与反比例函数三、解答题 (本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17. 计算112a a a a ⎛⎫⎛⎫++÷- ⎪ ⎪⎝⎭⎝⎭. 【答案】11a a +- 【解析】试题分析:根据分式的混合运算的法则,可先算括号里面的(通分后相加减),然后把除法转化为乘法,再约分化简即可. 试题解析:112a a a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝++÷⎭- 22211a a a a a++-=÷ 22211a a a a a ++=⋅- ()()()2111a a aa a +=⋅+- 11a a +=-. 考点:分式的混合运算18. 解不等式组()26,2,31 1.x x x x -≤>--<+⎧⎪⎨⎪⎩①②③请结合题意,完成本题的解答.(1)解不等式①,得 ,依据是______.(2)解不等式③,得 .(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .【答案】22x -<<【解析】试题分析:分别求解两个不等式,系数化为1时可用性质2或性质3,然后画数轴,确定其公共部分,得到不等式组的解集.考点:解不等式19. 如图,在ABCD 中,点,E F 分别在,AD BC 上,且,,AE CF EF BD =相交于点O .求证OE OF =.【答案】证明见解析试题解析:∵四边形ABCD 是平行四边形,∴//,AD BC AD BC =.∴,EDO FBO DEO BFO ∠=∠∠=∠.∵AE CF =,∴AD AE CB CF -=-,即DE BF =.∴DOE BOF ∆∆≌.∴OE OF =.考点:1、平行四边形的性质,2、全等三角形的判定与性质20. 某公司共25名员工,下标是他们月收入的资料.(1)该公司员工月收入的中位数是 元,众数是 元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.【答案】(1)3400,3000. (2)利用中位数可以更好地反映这组数据的集中趋势【解析】试题分析:(1)根据大小排列确定中间一个或两个的平均数,得到中位数,然后找到出现最多的为众数;(2)根据表格信息,结合中位数、平均数、众数说明即可.试题解析:(1)3400,3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大.该公司员工月收入的中位数是3400元,这说明除去收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.因此,利用中位数可以更好地反映这组数据的集中趋势.考点:1、中位数,2、众数21. 全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【答案】(1)12 (2)34考点:概率22. “直角”在初中几何学习中无处不在.如图,已知AOB ∠,请仿照小丽的方式,再用两种不同的方法判断AOB ∠是否为直角(仅限用直尺和圆规).【答案】作图见解析【解析】试题分析:方法一是根据勾股定理作图,方法二是根据直径所对的圆周角为直角画图.方法2:如图②,在,OA OB 上分别取点,C D ,以CD 为直径画圆.若点O 在圆上,则90AOB ∠=︒.考点:基本作图——作直角23. 张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具.(1)①当减少购买一个甲种文具时,x = ,y = ;②求y 与x 之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲,乙两种文具各购买了多少个?【答案】(1)①99,2②2200y x =-+(2)甲、乙两种文具各购买了60个和80个【解析】试题分析:(1)①根据“每减少购买1个甲种文具,需增加购买2个乙种文具”可直接求解;②根据①的结论直接列式即可求出函数的解析式;(2)根据题意列出二元一次方程组求解即可.考点:1、一次函数,2、二元一次方程组24. 如图,,PA PB 是⊙O 的切线,,A B 为切点.连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D .(1)求证:PO 平分APC ∠.(2)连结DB ,若30C ∠=︒,求证//DB AC .【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)连接OB ,根据切线的性质和角平分线的概念可证明;(2)根据角平分线的性质可证明△ODB 是等边三角形,然后根据平行线的判定得证.试题解析:(1)如图,连接OB .∵,PA PB 是⊙O 的切线,∴,OA AP OB BP ⊥⊥,又OA OB =,∴PO 平分APC ∠.又OD OB =,∴ODB ∆是等边三角形.∴60OBD ∠=︒.∴906030DBP OPB OBD ∠=∠-∠=︒-︒=︒.∴DBP C ∠=∠.∴//DB AC .考点:1、圆的切线,2、角平分线的性质与判定,3、平行线的判定25. 如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远?(参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)【答案】35km【解析】试题分析:过点C 作CH AD ⊥,垂足为H .构造直角三角形的模型,然后解直角三角形和平行线分线段成比例的定理列方程求解即可.∵,CH AD BD AD ⊥⊥,∴90AHC ADB ∠=∠=︒.∴//HC DB . ∴BAH HD AC C =. 又C 为AB 的中点,∴AC CB =.∴AH HD =. ∴tan 375x x ︒=+. ∴5tan 3750.75151tan 3710.75x ⨯︒⨯=≈=-︒-. ∴()151535tan 37AE AH HE km =+=+≈︒. 因此,E 处距离港口A 大约为35km .考点:解直角三角形26. 已知函数()21y x m x m =-+-+(m 为常数) (1)该函数的图像与x 轴公共点的个数是( )A.0B.1C.2D.1或2(2)求证:不论m 为何值,该函数的图像的顶点都在函数()21y x =+的图像上.(3)当23m -≤≤时,求该函数的图像的顶点纵坐标的取值范围.【答案】(1)D (2)证明见解析(3)04z ≤≤试题解析:(1)D .(2)()()22211124m m y x m x m x ⎛⎫ ⎪⎝+-=-+-+=--+⎭, 所以该函数的图像的顶点坐标为()211,24m m ⎛⎫ ⎝+ -⎪⎪⎭. 把x =12m -代入()21y x =+,得()2211124m m y ⎛⎫ ⎪⎭=⎝+-=+. 因此,不论m 为何值,该函数的图像的顶点都在函数()21y x =+的图像上. (3)设函数z =()214m +. 当1m =-时,z 有最小值0.当1m <-时,z 随m 的增大而减小;当1m >-时,z 随m 的增大而增大. 又当2m =-时,()221144z -+==;当3m =时,()23144z +==. 因此,当23m -≤≤时,该函数的的图像的顶点纵坐标的取值范围是04z ≤≤.考点:二次函数的图像与性质27. 折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片()ABCD AB BC >(图①),使AB 与DC 重合,得到折痕EF ,把纸片展平(图②). 第二步,如图③,再一次折叠纸片,使点C 落在EF 上的P 处,并使折痕经过点B ,得到折痕BG ,折出,PB PC ,得到PBC ∆.(1)说明PBC ∆是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形ABCD 和等边三角形PBC .他发现,在矩形ABCD 中把PBC ∆经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3cm ,另一边长为acm .对于每一个确定的a 的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的a 的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm 和1cm 的直角三角形铁片,所需正方形铁片的边长的最小值为 cm .【答案】(1)PBC ∆是等边三角形(2)答案见解析(3)330a <≤3323a <<a ≥ (4)165试题解析:(1)由折叠,,PB PC BP BC == ,因此,PBC ∆是等边三角形.(2)本题答案不惟一,下列解法供参考.例如,如图,以点B 为中心,在矩形ABCD 中把PBC ∆逆时针方向旋转适当的角度,得到11PBC ∆;再以点B 为位似中心,将11PBC ∆放大,使点1C 的对应点2C 落在CD 上,得到22P BC ∆.(3)本题答案不惟一,下列解法供参考,例如,3302a <≤ 33223a <<23a ≥(4)165. 考点:1、规律探索,2、矩形的性质,3、正方形的性质,4、等边三角形。
2017二次函数中考试题分类汇编
2017二次函数中考试题分类汇编2017二次函数中考试题分类汇编ax 2 bx c (a 0)的图象如下图1所示,有下列5个结论:① abc 0;② b a c ;③ 4a 2b c 0;④ 2c 3b;⑤ a b m (am b ), (m 1 的实数)其中正确的结论有()A. 2个 B. 3个 C. 4 个 D. 5 个2、如上图2是二次函数y=ax 2+bx + c 图象的一部分,图象过点 A ( — 3, 0),对称轴为 x=—1.给出四个结论:①b 2>4ac ;②2a+ b=0;③a —b+c=0;④5a< b.其中正确结论 是( ). (A )②④ (B )①④ (C )②③(D )①③3、二次函数y x 2 2x 1与x 轴的交点个数是( )A. 0 B . 1 C . 2 D . 34、在同一坐标系中一次函数y ax b 和二次函数y ax 2 bx 的图象可能为( )5、已知二次函数y ax 2 bx c (aw 0)的图象开口向上,并经过点(-1 ,2), (1,0).下歹结 论正确的是()A. 当x>0时,函数值y 随x 的增大而增大 B.当x>0时,函数值y 随x 的增大而减小C.存在一个负数XQ ,使得当x<x °时,函数值y 随x 的增大而减小;当x> x 0时,函数值y 随 x 的增大而增大D.存在一个正数x o,使得当x<x o 时,函数值y 随x 的增大而减小;当X >X Q 时,函数值y 随x 的增大而增大、选择题1、已知二次函数y6、已知二次函数y=x 2-x+a(a>0),当自变量x 取m 时,其相应的函数值小于 0,那么下列结 论中正确的是()(A) m-1的函数值小于0(B) ml 的函数值大于01、二次函数y =ax 2+bx+ c 的图象如下图1所示,且P=| a —b + c | + | 2 a+b | , Q=| a+b+c |+| 2 a —b |,则P 、Q 的大小关系为、解答题:1、知一抛物线与x 轴的交点是A( 2,0)、B (1, 0),且经过点C (2, 8)(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标2、在直角坐标平面内,二次函数图象的顶点为 A(1, 4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得 图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.(C) mi 的函数值等于0 、填空题(D) mi 的函数值与0的大小关系不确定3、4、 2x m 的部分图象如上图所示,则关于 x 的4、 x 2 2x m0的解为已知二次函数 y ax 2 bx c 的图象如上图所示,则点P(a, bc)在第 已知二次函数 y2x如下图2所示的抛物线是二次函数y ax 2 次方程儿3、已知二次函数图象的顶点是(1,2),且过点0,-.2(1)求二次函数的表达式,并在下图中画出它的图象;(2)求证:对任意实数m,点M(m, m2)都不在这个二次函数的图象上.5、如图,已知二次函数y ax2 4x c的图像经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P (m, m与点Q均在该函数图像上(其中no0),且这两点关于抛物线的对称轴对称, 求m的值及点Q到x轴的距离.4、二次函数y ax 2 bx c (a 0)的图象如图所示,根据图象解答下列问题: 写出方程ax 2 bx c 0的两个根.(2)写出不等式ax 2 bx c 0的解集.6、在平面直角坐标系xOy 中,已知二次函数y ax 2 点(点A 在点B 的左边),与y 轴交于点C,其顶点的横坐标为1,且过点(2,3)和(3, 12). (1)求此二次函数的表达式;(2)若直线1:y kx (k 0)与线段BC 交于点D (不与点B, C 重合),则是否存在这样的直线1,使得以B, O, D 为顶点的三角形与ABAC 相似?若存在, 求出该直线的函数表达式及点 D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角 PCO 与 ACO 的大小(不必证明),并写出此时点 P 的横坐标xp 的取值范围.*x」11O : 1(1) (3) 写出y 随x 的增大而减小的自变量x 的取值范围. (4)若方程ax 2 bx c k 有两个不相等的实数根,求 bx c (a 0)的图象与x 轴交于A, B 两7、如图,矩形A BC O'是夕!形OABC 边OA 在x 轴正半轴上,边 OC 在y 轴正半轴上)绕B 点逆时针旋转得到的.O 点在x 轴的正半轴上,B 点的坐标为(1 , 3).(1)如果二次函数y=ax2+bx+c (a W0)的图象经过Q O 两点且图象顶点M 的纵坐标为一1 . 求这个二次函数的解析式;(2)在(1)中求出的二次函数图象对称轴的右支上是否存在点P,使得APOMfe 直角三角形?若存在,请求出P 点的坐标和A POM 勺面积;若不存在,请说明理 由;(3)求边C' O'所在直线的解析式.8、容积率t 是指在房地产开发中建筑面积与用地面积之比, 即t = M 建筑面积,为充分利用土地S用地面积资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般地容积率 且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积 M (m2)与容 积率t 的关系可近似地用如图(1)中的线段l 来表示;1 m2建筑面积上的资金投入 Q (万元) 与容积率t 的关系可近似地用如图(2)中的一段抛物线段c 来表示. (I )试求图(1)中线段l 的函数关系式,并求出开发该小区的用地面积; (H )求出图(2)中抛物线段c 的函数关系式.t 不小于1 09、如图10,已知抛物线P: y=ax2+bx+c(aw0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG勺一条边DE在线段AB上,顶点F、G分别在线段BC AC 上,抛物线P上部分点的横坐标对应的纵坐标如下:x…-3-212…y…5—-2-45—-20…⑴ 求A、B C三点的坐标;(2)若点D的坐标为(m, 0),矩形DEFG勺面积为S, 的函数关系,并指出m的取值范围;(3)当矩形DEFG勺面积S取最大值时,连接至点M使FM=k- DF,若点M不在抛物线P上,求k的取值范围.求S与m DF并延长10、如图①,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(31),二次函数y x2的图象记为抛物线li. (1)平移抛物线li,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:(2)平移抛物线l i,使平移后的抛物线过A, B两点,记为抛物线12,如图②,求抛物线12的函数表达式.(3)设抛物线12的顶点为C , K为y轴上一点.若S A ABK S A ABC ,求点标.(4)请在图③上用尺规作图的方式探究抛物线12上是否存在点P,使4ABP为等形.若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明师. K的坐腰三角11、如图,抛物线y x2 2x 3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2。
2017全国中考数学真题分类-二次函数概念、性质和图象(选择题+填空题+解答题)解析版
2017全国中考数学真题分类知识点18二次函数概念、性质和图象(选择题+填空题+解答题)解析版一、选择题1. .(2017四川广安,10,3分)如图所示,抛物线y =ax ²+bx +c 的顶点为B (-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间,以下结论:①b ²-4ac =0 ②a +b +c >0 ③2a -b =0 ④c -a =3A .1B .2C .3D .4答案:B ,解析:由图象可知,抛物线与x 轴有两个交点,∴b ²-4ac >0,故结论①不正确;∵抛物线的对称轴为x =-1,与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,∴抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,∴当x =1时,y <0,∴a +b +c <0,故结论②不正确.∵抛物线的对称轴x =-2ba=-1,∴2a =b ,即2a -b =0,故结论③正确;∵抛物线y =ax ²+bx+c 的顶点为B (-1,3),∴a -b +c =3,∵抛物线的对称轴x =-1,∴2a =b ,∴a -2a +c =3,即c -a =3,故结论④正确;综上所述,正确的结论有2个.故选B .2. (2017浙江丽水·8·3分)将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位答案:D . 解析: 选项 知识点结果 A将函数y =x 2的图象向左平移1个单位得到函数y =(x +1)2,其图象经过点(1,4).×B 将函数y =x 2的图象向右平移3个单位得到函数y =(x -3)2,其图象经过点(1,4). ×C 将函数y =x 2的图象向上平移3个单位得到函数y =x 2+3,其图象经过点(1,4). ×D 将函数y =x 2的图象向下平移1个单位得到函数y =x 2-1,其图象不经过点(1,4).√3. (2017山东枣庄12,3分)已知函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是A .当a =1时,函数图象经过点(-1,0)B .当a =-2时,函数图象与x 轴没有交点C .若a <0,函数图象的顶点始终在x 轴的下方D .若a >0,则当1x ≥时,y 随x 的增大而增大答案:D ,解析:A 、当a =1时,函数解析式为y =x 2-2x -1,当x =-1时,y =1+2-1=2, ∴当a =1时,函数图象经过点(-1,2),∴A 选项不符合题意; B 、当a =2时,函数解析式为y =-2x 2+4x -1,令y =-2x 2+4x -1=0,则△=42-4×(-2)×(-1)=8>0,∴当a =-2时,函数图象与x 轴有两个不同的交点,∴B 选项不符合题意;C 、∵y =ax 2-2ax -1=a (x -1)2-1-a ,∴二次函数图象的顶点坐标为(1,-1-a ),当-1-a <0时,有a >-1,∴C 选项不符合题意;D 、∵y =ax 2-2ax -1=a (x -1)2-1-a ,∴二次函数图象的对称轴为x =1.若a >0,则当x ≥1时,y 随x 的增大而增大,∴D 选项符合题意.故选D .4. (2017四川成都,10,3分)在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A .20,40abc b ac <-> B .20,40abc b ac >->C. 20,40abc b ac <-<D .20,40abc b ac >-<答案:B ,解析:由二次函数2y ax bx c =++的图象开口向上,则a >0,与y 轴交点在y 轴的负半轴上,由c <0,对称轴在y 轴的左侧,则2b a->0,所以b <0,所以0abc >;图象与x 轴有两点交点,则240b ac ->,综上,故选B .5. (2017浙江金华,6,3分)对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是A .对称轴是直线x =1,最小值是2B .对称轴是直线x =1,最大值是2C .对称轴是直线x =-1,最小值是2D .对称轴是直线x =-1,最大值是2 答案:B ,解析:二次函数y =-(x -1)2+2的对称轴是直线x =1. ∵-1<0,∴抛物线开口向下,有最大值,最大值是2.6. (2017安徽中考·9.4分)已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y bx ac =+的图象可能是( )答案:B .解析:由公共点的横坐标为1,且在反比例函数by x=的图象上,当x =1时,y =b ,即公共点坐标为(1,b ),又点(1,b )在抛物线2y ax bx c =++上,得a +b +c =b ,a +c =0,由a ≠0知ac <0,一次函数y bx ac =+的图象与y 轴交点在负半轴上,反比例函数by x=的图象的一支在第一象限,b >0,一次函数y bx ac =+的图象满足y 随x 增大而增大,选项B 符合条件,选B .7. (2017山东德州,7,3分)下列函数中,对于任意实数x 1,x 2,当x 1>x 2时,满足y 1<y 2的是( )A .y =-3x +2B .y =2x +1C .y =2x 2+1D .y =x1-答案:A ,解析:一次函数y =-3x +2中,由于k =-3<0,所以y 随着x 的增大而减小,即对于任意实数x 1,x 2,当x 1>x 2时,满足y 1<y 2. 8. (2017山东威海,11,3分).已知二次函数y =ax ²+bx +c (a ≠0)的图像如图所示.若正比例函数y =(b +c )x 与反比例函数y =a b cx-+在同一坐标系中的大致图像是( )答案:C,解析:由抛物线知a>0,b<0,c>0,故a-b+c>0,反比例函数过一三象限;当x=1时,y=a+b+c <0,即b+c<-a, 因为a>0,所以b+c<0,所以正比例函数过二四象限,故选C.9.(2017山东菏泽,8,3分)一次函数y=ax+b和反比例函数y=cx在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()答案:A,解析:根据反比例函数图象和一次函数图象经过的象限,即可得出a<0、b>0、c<0,由此即可得出:二次函数y=ax2+bx+c的图象开口向下,选项D不符合题意,对称轴x=-2ba>0,选项B不符合题意,与y轴的交点在y轴负半轴,选项C不符合题意,只有选项A符合题意.10. 10.(2017年四川绵阳,10,3分)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是A.b>8 B.b>-8 C.b≥8 D.b≥-8答案:D 解析:二次函数向下平移1个单位,再向右平移3个单位后,得到y=(x-3)2+1,再结合与一次函数y=2x+b有公共点,联立方程组,建立关于x的一元二次方程,利用一元二次方程有解的条件△≥0,可求出b的范围.11. (2017年四川南充,10,3分)二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图5所示,下列结论错误的是( )A.4ac<b2B.abc<0 C.b+c>3a D.a<bxOy--图5(8题图) A. B. C. D答案:D 解析:(1)∵抛物线与横轴有两个交点,∴△>0,即b 2-4ac >0.∴4ac <b 2.可见选项A 中的结论正确.(2)∵抛物线的开口向下,∴a <0;∵对称轴在y 轴左边,∴-2b a<0.∴b <0;∵抛物线与y 轴的负半轴相交,∴c <0.∴abc <0.可见选项B 中的结论正确. (3)∵-2b a>-1,a <0,∴b >2a ①.∵x =-1时,y >0,∴a -b +c >0②.①+②,得c >a ③.①+③,得b +c >3a .可见选项C 中的结论正确. (4)∵-2b a<-12,a <0,∴a >b .可见选项D 中的结论错误.综上所述,选项D .12. (2017浙江舟山,10,3分)下列关于函数y =x 2-6x +10的四个命题:①当x =0时,y 有最小值10;②n 为任意实数,x =3+n 时的函数值大于x =3-n 时的函数值;③若n >3,且n 是整数,当n ≤x ≤n +1时,y 的整数值有(2n -4)个;④若函数图象过点(a ,y 0)和(b ,y 0+1),其中a >0,b >0,则a <b .其中真命题的序号是( ) A .① B .②C .③D .④答案:C ,解析:因为y =x 2-6x +10=(x -3)2+1,所以当x =3时,y 有最小值1,故①错误;n 为任意实数,当x =3+n 时,y =(3+n -3)2+1= n 2+1, 当x =3-n 时,y =(3-n -3)2+1= n 2+1,所以两函数值相等,故②错误;若n >3,且n 是整数,当n ≤x ≤n +1时,令x =n ,则y 1=(n -3)2+1= n 2-6n +10, 令x =n +1,则y 2=(n +1-3)2+1= n 2-4n +5, 由于y 2- y 1=2n -5,所以之间的整数值的个数是2n -5+1=2n +4个,故③正确;由二次函数的图象知④错误.令x =4,则y =(4-3)2+1=2, 令x =5,则y =(5-3)2+1=5,y 的整数值有2,3,4,5,2n -4=2×4-4=4个,令x =6,则y =(6-3)2+1=10, y 的整数值有5,6,7,8,9,10,2n -4=2×5-4=6个,令x =7,则y =(7-3)2+1=10, y 的整数值有10,11,12,13,14,15,16,17共8个,2n -4=2×6-4=8个, 13. (2017四川攀枝花,9,3分)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y =ax +c 的图像不经过第四象限C .m (am +b )+b =a (m 是任意实数)D .3b +2c >0 答案:D解析:由题意知抛物线对称轴为12b x a =-=-,即12a b =,故A 错误;a >0,c <0∴一次函数y =ax +c 的图像不经过第二象限,故B 错误;m (am +b )+b =a ,2b a =可得m =-112a b =,故C 错误;又当1x =时,0y a b c =++>,∴102b bc ++>,即320b c +>,故选D .14. (2017江苏盐城,6,3分)如图,将函数y =21(2)12x -+的图像沿y 轴向上平移得到一条新函数的图像,其中点A (1,m )、B (4,n )平移后的对应点分别为点A ′、B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图像的函数表达式是A .y =21(2)22x --B .y =21(2)72x -+C .y =21(2)52x --D .y =21(2)42x -+答案:D ,解析:连接AB 、A ′B ′,则S 阴影=S 四边形ABB ′A ′.由平移可知,AA ′=BB ′,AA ′∥BB ′,所以四边形ABB ′A ′是平行四边形.分别延长A ′A 、B ′B 交x 轴于点M 、N .因为A (1,m )、B (4,n ),所以MN =4-1=3.因为ABB A S''=AA ′·MN ,所以9=3AA ′,解得AA ′=3,即沿y 轴向上平移了3个单位,所以新图像的函数表达式y =21(2)42x -+.B 'A 'ABOyx第6题图2 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有 A .1个 B .2个 C .3个 D .4个答案:B ,解析:由表格所给出的自变量与函数值变化趋势,随x 的值增大,y 值先增大后变小可知抛物线的开口向下;由对称性知其图象的对称轴为x =32,所以当x <1时,函数值y 随x 的增大而增大正确;由表可知,方程ax 2+bx +c =0根在-1与0和3与4之间所以正确的2个.此题也可求出解析式进行判断.16.7.(2017江苏连云港,7,3分)已知抛物线20yax a 过12,Ay ,21,B y 两点,则下列关系式一定正确的是A .120y yB .210y y C .120y yD .210y y答案:C ,解析:∵20y ax a ∴抛物线的开口向上,对称轴为y 轴,12,Ay 在对称轴的左侧,21,B y 在对称轴的右侧,点A 离开对称轴的距离大于点B 离开对称轴的距离,∴120yy 因此选择C 选项.17. (2017四川达州8,3分)已知二次函数2y ax bx c =++的图象如下,则一次函数2y ax b =-与反比例函数cy x=在同一平面直角坐标系中的图象大致是( )A B C D答案C,解析:由于抛物线的开口向下,∴a<0,由于抛物线与y轴的交点在y轴的正半轴,∴c>0,由于抛物线的对称轴是x=-1∴-12ba=-,∴b=2a,∴y=ax-4a,对于方程组4y ax acyx=-⎧⎪⎨=⎪⎩,消去y,可整理成:240ax ax c--=,∆=2164a ac+,∵抛物线过点(-3,0),∴9a-3b+c=0,∴c=-3a,∴2222164=161240a ac a a a+-=>,∴直线与反比例函数有交点,故本题选C.18. 11.(2017四川眉山,11,3分)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2-axA.有最大值a4B.有最大值-a4C.有最小值a4D.有最小值-a4答案:B,解析:因为一次函数y=(a+1)x+a的图象过第一、三、四象限,所以⎩⎨⎧a+1>0,a<0,因此-1<a<0,而y=ax2-ax=a(x-12)2-14a,所以二次函数有最大值-a4.19. 8.(2017四川宜宾,8,3分)如图,抛物线211(1)12y x=++与22(4)3y a x=--交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①23a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2,其中正确结论的个数是A .1个B .2个C .3个D .4个答案:C ,解析:抛物线22(4)3y a x =--过点A (1,3),∴3=9a -3,解得a =23,由题意可知E (4,﹣3),点A (1,3)、C 关于x =4对称,得到C (7,3),∴AC =6,而AE = ,故AC ≠AE ,由抛物线的对称性可知,AD =BD 显然.根据抛物线的对称性可知,AD =BD ,两个函数比较大小,首先要知道这两个函数图象的交点,则2212(1)1(4)323x x ++=--,解得x 1=1,x 2=37,所以当1<x <37时,y 1>y 2.20. (2017山东滨州,7,3分)将抛物线y =2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A .y =2(x -3)2-5B .y =2(x +3)2+5C .y =2(x -3)2+5D .y =2(x +3)2-5答案:A ,解析:抛物线y =2x 2的顶点坐标为(0,0), ∵向右平移3个单位,再向下平移5个单位, ∴平移后的顶点坐标为(3,﹣5),∴平移后的抛物线解析式为y =2(x -3)2-5.故选A.21. 8.(2017江苏苏州,8,3分)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程 a (x -2)2+1=0的实数根为 A .x 1=0,x 2=4B .x 1=—2,x 2=6C . x 1=32,x 2=52D .x 1=—4,x 2=0答案:A ,解析:根据“二次函数图象上点的坐标特征”可得4a +1=0,a =-14,则21(2)104x --+=,解一元二次方程得x 1=0,x 2=4.22. 9.(2017甘肃兰州,9,4分)抛物线y =3x ²-3向右平移3个单位长度,得到新抛物线的表达式为A. y =3(x -3)²-3B. y =3x ²C. y =3(x +3)²-3D. y =3x ²-6【答案】A【解析】由题知,y =3x ²-3为顶点式,直接根据二次函数图像左加右减,上加下减的平移规律进行解答即可。
2017年中考数学试题汇编:二次函数
2017中考试题汇编 ------ 二次函数(2017贵州铜仁)25.( 14分)如图,抛物线y=x 2+bx+c 经过点A (- 1, 0), B (0, - 2),并与x 轴交于点C ,点M 是抛物线对称轴I 上任意一点(点M , B , C 三点不在同一直线上).(1) 求该抛物线所表示的二次函数的表达式;(2) 在抛物线上找出两点 P 1, P 2,使得△ MP 1P 2与厶MCB 全等,并求出点P 1, P 2的坐标;(3) 在对称轴上是否存在点 Q ,使得/ BQC 为直角,若存在,作出点Q (用尺【分析】(1)利用待定系数法求二次函数的表达式;(2) 分三种情况:① 当△ P 1MP 2BA CMB 时,取对称点可得点 P 1, P 2的坐标;② 当△ BMC ◎△ P 2P 1M 时,构建?P 2MBC 可得点P 1, P 2的坐标;③ 厶P 1MP 2^^ CBM ,构建?MP 1P 2C ,根据平移规律可得 P 1, P 2的坐标;(3) 如图3,先根据直径所对的圆周角是直角, 以BC 为直径画圆,与对称轴的 交点即为点Q ,这样的点Q 有两个,作辅助线,构建相似三角形,证明△ BDQ 1 Q 1EC ,列比例式,可得点Q 的坐标.【解答】解:(1)把A (- 1, 0), B (0,- 2)代入抛物线y=x 2+bx+c 中得: n-b+cpo lc=-2 ?解得:lc=-2Q 的坐标.二抛物线所表示的二次函数的表达式为:y=x 2- x - 2;(2)如图1, P i 与A 重合,P 2与B 关于I 对称,二 MB=P 2M ,P i M=CM ,P i F 2=BC ,•••△ P i MP 2^^ CMB ,••• B (0,- 2),对称轴:直线x 二, •-P 2 (i ,- 2);如图 2,MP 2// BC ,且 MP 2=BC ,此时,P i 与C 重合,••• MP 2=BC ,MC=MC ,/ P 2MC= / BP i M ,•••△ BMCP 2P i M ,•-P i (2, 0),如图3,构建?MP i P 2C ,可得△ P i MP 2^^ CBM ,此时P 2与B 重合,由点C 向左平移2个单位到B ,可知:点M 向左平移2个单位到P i ,••点 P 1的横坐标为-—,(3)如图3,存在,作法:以BC 为直径作圆交对称轴I 于两点Q i 、Q 2,则/ BQ i C= / BQ 2C=90° ;此时P i (- 1,• y=x 2 - x - 2= 由点B 向右平移+个单位到M ,可知:点C 向右平移 当x=§时,y= 当x=-(3 ,y = (-~ 9 = 7 4 4 •- P i (- ),P 2 (0,- 2);个单位到P 2,52 =4 4过Q i作DE丄y车由于D,过C作CE丄DE于E, 设Qi y)(y>0),易得△ BDQ i s^ Q i EC,(舍),y2=•••Qi(寺,同理可得:);22■:),Q2 (芜仝吨)或(丄,)•解得:y i=:ffil【点评】本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、圆周角定理以及三角形全等的性质和判定,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的对称性解决三角形全等问题;(3)分类讨论•本题属于中档题,难度不大,解决该题型题目时,禾I」用二次函数的对称性,再结合相似三角形、方程解决问题是关键.(2017湖南)27.(12分)如图,正方形ABCD的边长为1,点E为边AB上一动点,连结CE并将其绕点C顺时针旋转90°得到CF,连结DF,以CE、CF为邻边作矩形CFGE,GE与AD、AC分别交于点H、M , GF交CD延长线于点N .(1)证明:点A、D、F在同一条直线上;(2)随着点E的移动,线段DH是否有最小值?若有,求出最小值;若没有,请说明理由;(3)连结EF、MN,当MN // EF时,求AE的长.【分析】(1)由厶DCFBCE,可得/ CDF= / B=90°,即可推出/ CDF+ZCDA=180,由此即可证明.(2)有最小值.设AE=x,DH=y,贝U AH=1 - y,BE=1 - x,由厶ECB s^ HEA,推出4=丄,可得丄=]-貸,推出y=x2-x+1= (x -丄)2碍,由a=1>0,y有最AE AH 玄 1-y 2 4小值,最小值为二.4(3)只要证明厶CFN◎△ CEM,推出/ FCN= / ECM,由/ MCN=4°,可得/ FCN= / ECM= / BCE=22.5° 在BC 上取一点G,使得GC=GE,则△ BGE 是等腰直角三角形,设BE=BG=a,贝U GC=GE= :a,可得a+ :a=1,求出a即可解决问题;【解答】(1)证明:•••四边形ABCD是正方形,••• CD=CB,/ BCD= / B= / ADC=90 ,v CE=CF,Z ECF=90 ,•••/ ECF=Z DCB,•••/ DCF= / BCE,•••△DCF^A BCE,•••/ CDF= / B=90°,•••/ CDF+Z CDA=180 ,•••点A、D、F在同一条直线上.(2)解:有最小值.理由:设AE=x,DH=y,贝U AH=1 - y, BE=1 - x,•••四边形CFGE是矩形,•/ CEG=90 ,•/ CEB+Z AEH=90CEB+Z ECB=90 ,• Z ECB= Z AEH , vZ B=Z EAH=90 ,• △ECB s^ HEA ,v a=1>0,•y有最小值,最小值为晋.•DH的最小值为亍.(3)解:v四边形CFGE是矩形,CF=CE,•四边形CFGE是正方形,•GF=GE,Z GFE=Z GEF=45 ,v NM // EF,•Z GNM= Z GFE,Z GMN= Z GEF,•Z GMN= Z GNM ,••• GN=GM ,••• FN=EM ,T CF=CE,/ CFN= / CEM ,•••△CFN^A CEM ,•••/ FCN= / ECM , vZ MCN=4° ,:丄 FCN= Z ECM= Z BCE=22.5 ,在BC上取一点G,使得GC=GE,贝仏BGE是等腰直角三角形,设BE=BG=a,则GC=GE= %,二a+ r:a=1,二a= 1,••• AE=AB —BE=1-(V^- 1)=2-屁【点评】本题考查四边形综合题、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会构建二次函数解决最值问题,学会用方程的思想思考问题,属于中考压轴题.二次函数y=- 2x +bx+c (2017辽宁)28. (14分)如图①,在平面直角坐标系中, 的图象与坐标轴交于A, B, C三点,其中点A的坐标为(-3, 0),点B的坐标为(4, 0),连接AC, BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b= —, c= 4(2)在点P, Q运动过程中,△ APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△ PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t ;若不存在,请说明理由;(4)如图②,点N的坐标为(-手,0),线段PQ的中点为H,连接NH,当抛物线的解析式,从而可确定出b、c的值;(2)连结QC.先求得点C的坐标,贝U PC=5-t,依据勾股定理可求得AC=5,CQ2=t2+16,接下来,依据CQ2- CP2=AQ2- AP2列方程求解即可;(3)过点P作DE // x轴,分别过点M、Q作MD丄DE、QE丄DE,垂足分别为D、E,MD交x轴与点F,过点P作PG丄x轴,垂足为点G,首先证明厶PAGACO,依据相似三角形的性质可得到PG专t,AG==t,然后可求得PE、DF的长,然后再证明△ MDP也PEQ,从而得到PD=EQ』t, MD=PE=3^t,然后可求得FM和OF的长,从而可得到点M的坐标,然后将点M的坐标代入抛物线的解析式求解即可;(4)连结:OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q .首先依据三角形的中位线定理得到RH丄QO〒t, RH // OQ, NR』AP气~t,贝URH=NR,接下来,依据等腰三角形的性质和平行线的性质证明NH是/QNQ的平分线,然后求得直线NR和BC的解析式,最后求得直线NR和BC的交点坐标即可. 【解答】解:(1)设抛物线的解析式为y=a (x+3) (x -4).将&=-一代入得:••• b」,c=4・(2)在点P 、Q 运动过程中,△ APQ 不可能是直角三角形.•••在点P 、Q 运动过程中,/ PAQ 、/ PQA 始终为锐角,•••当厶APQ 是直角三角形时,则/ APQ=90 .将x=0代入抛物线的解析式得:y=4,•-C (0, 4).AP=OQ=t ,••• PC=5-t ,•••在Rt A AOC 中,依据勾股定理得:AC=5,在Rt A COQ 中,依据勾股定理可 知:CQ 2=t 2+16,在Rt A CPQ 中依据勾股定理可知:PQ 2=CQ 2- CP 2,在Rt A APQ 中,AQ 2- AP 2=PQ 2,••• CQ 2- CP 2=AQ 2- AP 2,即(3+t ) 2 - t 2=t 2+16-( 5 -t ) 2,解得:t=4.5.•••由题意可知:O W t < 4,••• t=4.5不合题意,即△ APQ 不可能是直角三角形.(3)如图所示:y=—丄 x 2+二 x+4.过点P 作DE // x 轴,分别过点M 、Q 作MD 丄DE 、QE 丄DE ,垂足分别为D 、E ,MD 交x 轴与点F,过点P 作PG 丄x 轴,垂足为点G,则PG//y 轴,/ E=Z D=90° . ••• PG// y 轴,PG AG. AP DC 0A AC PG = A G= t q3 1 5 ••• PG=t , AG==t , 5 5••• PE=GQ=GO+OQ=AO - AG+OQ=3-丄 t+t=3 t ,DF =GP ^t -vZ MPQ=9°,/ D=90 ,•••/ DMP+Z DPM= Z EPQ+Z DPM=90 ,•••Z DMP= Z EPQ.又vZ D= Z E , PM=PQ ,• △ MDP 也PEQ ,4• PD=EQ=- 5t , OF=FG+GO=PD+OA - AG=3理t - 5 • M (-3-丄t , - 3^t ). v 点M 在x 轴下方的抛物线上,•- 3心=-护(-3-寺t ) 2— x( -3*t ) +4,解得:t=f£土:十 205 .v 0< t <4,…t= --------------- t 2 -(4)如图所示:连结OP ,取OP 的中点R ,连结RH , NR ,延长NR 交线段BC 与点Q\,即 t ,3 5•••点H为PQ的中点,点R为0P的中点,••• RH二丄Q0二丄t, RH // 0Q.•- A (-3, 0), N (-「0),•••点N为0A的中点.又••• R为0P的中点,•NUt,•RH=NR,•/ RNH= / RHN .••• RH // OQ,•/ RHN= / HNO,•/ RNH= / HNO,即卩NH 是/QNQ 的平分线.设直线AC的解析式为y=mx+n,把点A (- 3, 0)、C(0, 4)代入得a解得:m==, n=4,•直线AC的表示为y=—x+4.J同理可得直线BC的表达式为y= - x+4.设直线NR的函数表达式为y斗x+s,将点N的坐标代入得:斗X•J W*解得:s=2,•直线NR的表述表达式为y=—x+2.将直线NR和直线BC的表达式联立得:尸$时女,解得:x4 ,尸-K十4r_3in+n-0(门二4[)+s=°,22y—,法求二次函数的解析式、相似三角形的性质和判定、全等三角形的性质和判定,依据勾股定理列出关于t的方程是解答问题(2)的关键;求得点M的坐标(用含t的式子表示)是解答问题(3)的关键;证得NH为/QHQ的平分线是解答问题(4)的关键.(2017山东)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=-翠X2-冬x+^3与X轴正半轴交于点A,与y轴交于点B,连接AB ,12 3点M , N分别是OA,AB的中点,Rt△ CDE也Rt A ABO,且△ CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是8 ,/ ABO的度数是30 度:(2)如图2,当DE // AB,连接HN .①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ// OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI //OB,在KI上取一点P,使得/ PDK=45 (点P, Q在直线ED的同侧),连接正切值可得/ ABO=30 ;£22,7•••Q)•【点评】本题主要考查的是二次函数的综合应用, 解答本题主要应用了待定系数PQ,请直接写出PQ的长.【分析】(1)先求抛物线与两坐标轴的交点坐标,表示OA和OB的长,利用E3(2)①根据三角形的中位线定理证明HN // AM,由两组对边分别平行的四边形是平行四边形得结论;②如图1作垂线段DR,根据直角三角形30度角的性质求DR=2,可知:点D的横坐标为-2,由抛物线的解析式可计算对称轴是直线:x= = - 2,所以点2aD在该抛物线的对称轴上;(3)想办法求出P、Q的坐标即可解决问题;【解答】解:(1)当x=0时,y=8.;,••• B (0,8:),••• 0B=8 _「;,当y=0 时,y= - ^^x2- ^~x+8岳=0,X2+4X - 96=0,(x- 8)(x+12) =0,x i=8,X2= - 12,•- A (8, 0),• OA=8,在Rf A OB中,E ABO』故答案为:8, 30;(2)①证明::DE // AB ,•丄J丁:…_卜,••• OM=AM ,•OH=BH,••• BN=AN ,•HN // AM ,•四边形AMHN是平行四边形;②点D在该抛物线的对称轴上,理由是:如图1,过点D作DR丄y轴于R,••• HN // OA ,•••/ NHB= / AOB=90 ,•••DE // AB ,•••/ DHB= / OBA=30 , • Rt A CDE 也 Rt A ABO , •••/ HDG=Z OBA=30 ,•••/ HGN=2 / HDG=6° , •••/ HNG=9° -Z HGN=9° - 60°=30° , •••/ HDN= Z HND ,DH=HN 」OA=4,••• Rt A DHR 中,DR==DH 丄 一 =2, •••点D 的横坐标为-2,••抛物线的对称轴是直线: •••点D 在该抛物线的对称轴上;(3)如图3中,连接PQ ,作DR 丄PK 于R ,在DR 上取一点T ,使得PT=DT .设 PR=a.E3=-2,x=—••• NA=NB ,ON=NA=NB ,vZ ABO=30 ,•••/ BAO=60 ,.△ AON是等边三角形,.Z NOA=60 = Z ODM +Z OMD ,vZ ODM=3O ,.Z OMD= Z ODM=3O ,•••OM=OD=4,易知D (- 2,- 2.「;),Q (-2, 10 ;), v N (4, 4;),.DK=DN珂* +(奶)2=12,v DR// x 轴,,.Z KDR= Z OMD=3O.RK」DK=6 , DR=6 J;,vZ PDK=45 ,.Z TDP=Z TPD=15 ,.Z PTR=Z TDP+Z TPD=30 ,.TP=TD=2a, TR= :a,•••一_;a+2a=6「;,.a=1^3- 18,可得P (- 2 - 6岛,10角-18),.PQ=-…-12 \【点评】本题考查二次函数综合题、平行四边形的判定和性质、锐角三角函数、30度角的直角三角形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.(2017辽宁)29. (9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0, 6),直线AD 交 B C 于点D,ta n/OAD=2,抛物线M i:y=ax1 2 3+bx (a^ 0) 的交点的横坐标;结合上述的结论即可判断.【解答】解:(1)如图1中,作DH丄OA于H .则四边形CDHO是矩形.1 求点D的坐标和抛物线M i的表达式;2 点P是抛物线M i对称轴上一动点,当/ CPA=90时,求所有符合条件的点P的坐标;3 如图2,点E ( 0, 4),连接AE,将抛物线M i的图象向下平移m (m>0) 个单位得到抛物线M2.①设点D平移后的对应点为点D',当点D恰好在直线AE上时,求m的值;②当Kx<m (m> 1)时,若抛物线M2与直线AE有两个交点,求m的取值范围. 【分析】(1)如图1中,作DH丄OA于H .贝U四边形CDHO是矩形.在Rt A ADH 中,解直角三角形,求出点D坐标,利用待定系数法即可解决问题;(2)如图1- 1 中,设P (2, m).由/ CPA=9°,可得PC2+PA2=AC2,可得22+ (m-6) 2+22+m2=42+62,解方程即可;(3)①求出D的坐标;②构建方程组,利用判别式△> 0,求出抛物线与直线AE有两个交点时的m的范围;③求出x=m时,求出平移后的抛物线与直线AE•••四边形CDHO是矩形,••• OC=DH=6,••• tan/ DAH=^=2,AH••• AH=3 ,••• OA=4,••• CD=OH=1 ,•-D (1, 6),把D (1, 6), A (4, 0)代入y=ax2+bx中,则有严皿[16a4 4b=0 解得严2 , lb=8•••抛物线M1的表达式为y=- 2X2+8X.•••/ CPA=90 ,••• PC2+PA2=AC2,••• 22+ (m-6)2+22+m2=42+62,解得m=3土I:;,•-P (2, 3血),P' (2, 3-负)易知直线AE的解析式为y= - x+4,x=1 时,y=3,•-D (1, 3),平移后的抛物线的解析式为y= - 2X2+8X - m,把点D坐标代入可得3=- 2+8- m,二m=3.|fy=-x+4 2②由口,消去y得到2X2 - 9x+4+m=0,y=-2 产+Sx-m 当抛物线与直线AE有两个交点时,△> 0,t92- 4X 2X(4+m)>0,③ x=m 时,-m+4=- 2m2+8m - m,解得m=2+- 丫或2—丫(舍弃),综上所述,当2+ < m<L时,抛物线M2与直线AE有两个交点.【点评】本题考查二次函数综合题、一次函数的应用、解直角三角形、锐角三角函数、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程组,利用判别式解决问题,属于中考压轴题.(2017四川)24. (12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y轴交于点C (0, 3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E, 与y 轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△ BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△ BCD是锐角三角形,求点D的纵坐标的取值范围.【分析】(1 )利用待定系数法求抛物线的解析式;(2)易得BC的解析式为y= - x+3,先证明△ ECF为等腰直角三角形,作PH丄y轴于H , PG// y轴交BC于G,如图1,则厶EPG为等腰直角三角形,PG,设P (t, t2- 4t+3)( 1v t v 3),贝U G (t, - t+3),接着利用t 表示PF、PE,所以PE+EF=2PE+PF=-血t2+鉅t",然后利用二次函数的性质解决问题;(3)①如图2,抛物线的对称轴为直线x=--- =2,设D (2, y),利用两点间的距离公式得到BC2=18, DC2=4+ (y - 3) 2, BD2=1+y2,讨论:当△ BCD是以BC为直角边,BD为斜边的直角三角形时,18+4+ (y - 3) 2=1+y2;当厶BCD是以BC为直角边,CD为斜边的直角三角形时,4+(y- 3) 2=1+y2+18,分别解方程求出t即可得到对应的D点坐标;②由于△ BCD是以BC为斜边的直角三角形有4+ (y-3) 2+1+y2=18,解得y1 =「丨)或(2,,得到此时D点坐标为(2,然后结合图形可确定△ BCD是锐角三角形时点D的纵坐标的取值范围.【解答】解:(1)把B (3, 0), C (0, 3)代入y=x2+bx+c得,解Id得忖•••抛物线的解析式为y=x2- 4x+3;(2)易得BC的解析式为y= - x+3,•••直线y=x - m与直线y=x平行,•直线y= - x+3与直线y=x - m 垂直,• △ ECF为等腰直角三角形,作PH丄y轴于H , PG// y轴交BC于G,如图1, △ EPG为等腰直角三角形,PE=V2,PG,设P (t, t2- 4t+3)( 1v t v3),贝U G (t,- t+3),•PF=「PH= .1t, PG=- t+3-( t2- 4t+3) = - t2+3t,PE= _ PG二-二t2+ t,•PE+EF=PE+PE+PF=2PE+PF=-Ht2+^2t^2=-並t2+^=-^ (t- 2) 2+铠,当t=2时,PE+EF的最大值为4「;(3)①如图2,抛物线的对称轴为直线x=-学=2,设 D (2, y),则BC2=32+32=18, DC2=4+ (y - 3) 2, BD2= (3 -2) 2+y2=1+y2, 当厶BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+ (y- 3) 2=1+y2,解得y=5,此时 D 点坐标为(2, 5);当厶BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+ (y- 3) 2=1+y2+18,解得y= - 1,此时D 点坐标为(2,- 1);②当△ BCD是以BC为斜边的直角三角形时,DC2+DB2=BC2, 即卩4+( y- 3)2+1+y2=18,解得y1= , y2= J ,此时D 点坐标为(2, >「)或(2, ■:),所以△ BCD是锐角三角形,点D的纵坐标的取值范围为一v y v 5或-1v y 2【点评】本题考查了二次函数的综合题:熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;会利用两点间的距离公式计算线段的长;理解坐标与图形的性质;会运用分类讨论的思想和数形结合的思想解决数学问题.(2017新疆)24.( 12分)(2017?乌鲁木齐)如图,抛物线y=ax2+bx+c (a^0) 与直线y=x+1相交于A (- 1, 0), B (4, m)两点,且抛物线经过点C (5, 0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD 丄x轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使厶BEC为等腰三角形?若存在请直接写出点P的坐标;若不【分析】(1)由直线解析式可求得B点坐标,由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出E、D的坐标,从而可表示出PE和ED的长,由条件可知到关于P点坐标的方程,则可求得P点坐标;②由E、B、C三点坐标可表示出BE、CE和BC的长,由等腰三角形的性质可得到关于E点坐标的方程,可求得E点坐标,则可求得P点坐标.【解答】解:(1)v点 B (4,m)在直线y=x+1 上,m=4+1=5,•-B (4, 5),r a-b+^=0a=-l 把A、B、C三点坐标代入抛物线解析式可得1如4卅二5,解得口,125a+5b+c=0L c=5•••抛物线解析式为y= - X2+4X+5;(2)①设P (x,—X2+4X+5),则E (x,x+1),D (x,0),则PE=| —X2+4X+5-(x+1) |=| -X2+3X+4|,DE=| x+1|,••• PE=2ED,•| —X2+3X+4| =2| x+1|,当-X2+3X+4=2 (x+1 )时,解得x= —1或x=2,但当x= —1时,P与A重合不合题意,舍去,•P (2, 9);当-X2+3X+4=—2 (x+1 )时,解得x= —1或x=6,但当x= —1时,P与A重合不合题意,舍去,•P (6,—7);综上可知P点坐标为(2, 9)或(6,—7);②设P (x, —X2+4X+5),贝U E (x, x+1),且B (4, 5), C (5, 0),•BE= (■—丄・1:|x—4| , CE八…J ;'=「;.:「;,BC=J(Q_5) + (5-0 ) <=殛,当厶BEC为等腰三角形时,则有BE=CE、BE=BC或CE=BC三种情况,当BE=CE时,则应|x—4| =寸2/气直+我,解得x今,此时P点坐标为(會器);当BE=BC时,贝U .二| x —4| = -r.,解得x=4 +一一;或x=4 -一一;,此时P点坐标为 (4+迈1, —4岳—8)或(4-伍,4履—8);当CE=BC时,贝U「「’;・.「=.;汴,解得x=0或x=4,当x=4时E点与B点重合,不合题意,舍去,此时P点坐标为(0, 5);综上可知存在满足条件的点P,其坐标为([,十)或(4+ I ■;,- 4 一;- 8)或(4- . 4 | ■- 8)或(0,5).【点评】本题为二次函数的综合应用,涉及待定系数法、勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识•在(1)中注意待定系数法的应用,在(2)①中用P点坐标分别表示出PE和ED的长是解题关键,在(2)②中用P点坐标表示出BE、CE和BC的长是解题的关键,注意分三种情况讨论•本题考查知识点较多,综合性较强,难度适中.(2017浙江)22. (10分)如图,过抛物线y订x2-2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为-2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【分析】(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB- OD;②当点D在对称轴上时,在Rt A OD=OC=5,OE=4,可得DE=「;’:= ■ J=3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A (-2, 5),对称轴x=-—巴厂=4,••• A、B关于对称轴对称,••• B (10, 5).由题意点D在以0为圆心0C为半径的圆上,•••当0、D、B 共线时,BD 的最小值=0B- 0D=「- , ' - 5=5 - - 5.②如图2中,图2当点D在对称轴上时,在Rt△ 0DE中,0D=0C=5, 0E=4,••• DE= F :匕.匸 「・=3, •••点D 的坐标为(4, 3).设 PC=PD=x ,在 Rt △ PDK 中, x 4 5=(4-x ) 2+22,•直线PD 的解析式为y=-【点评】本题考查抛物线与X 轴的交点、待定系数法、最短问题、勾股定理等 知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题, 属于中考常考题型.26. (12分)(2017殛庆)如图,在平面直角坐标系中,抛物线 y=「x 2 -x - . ■与 x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴 与x 轴交于点D ,点E (4, n )在抛物线上.4 求直线AE 的解析式;5 点P 为直线CE 下方抛物线上的一点,连接PC , PE .当厶PCE 的面积最大 时,连接CD , CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求 KM +MN+NK 的最小值;(3) 点G 是线段CE 的中点,将抛物线y= x 2 得到新抛物线y', y 经过点D , y 的顶点为点F .在新抛物线y 的对称轴上,是否存在一点Q ,使得△ FGQ 为等腰二角形?若存在,直接写出点 Q 的坐标;若 不存在,请说明理由.• x =_5 •-P (,5),—-x —:沿x 轴正方向平移【分析】(1)抛物线的解析式可变形为y(x+1)( x-3),从而可得到点3A和点B的坐标,然后再求得点E的坐标,设直线AE的解析式为y=kx+b,将点A 和点E的坐标代入求得k和b的值,从而得到AE的解析式;(2)设直线CE的解析式为y=mx -.';,将点E的坐标代入求得m的值,从而得到直线CE的解析式,过点P作PF// y轴,交CE与点F.设点P的坐标为(x,逅x2-^^x-亦),则点F (x,-x-近),贝U FP=^X2^^X•由三3 3 3 3 3角形的面积公式得到△ EPC的面积二-空3x2困3x,利用二次函数的性质可求| 3| 3 |得x的值,从而得到点P的坐标,作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M .然后利用轴对称的性质可得到点G和点H的坐标, 当点0、N、M、H在条直线上时,KM +MN +NK有最小值,最小值=GH ;(3)由平移后的抛物线经过点D,可得到点F的坐标,利用中点坐标公式可求得点G的坐标,然后分为QG=FG、QG=QF, FQ=FQ三种情况求解即可. 【解答】解:(1):y=」x2-〔「x -.';,••• y=丄一(x+1)( x - 3).••• A (- 1, 0),B (3, 0).当x=4 时,y= .3•-E (4,二).设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:「,解得:k=L, b= .•••直线AE的解析式为y^x年.(2)设直线CE的解析式为y=mx - 「;,将点E的坐标代入得:4m- 一「;=':.',解得:m=——•••直线CE的解析式为沪]x -:.过点P 作PF // y 轴,交CE 与点F .如图2所示:作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP2, 2 7•••点H 与点K 关于CP 对称, 目普). •••点G 与点K 关于CD 对称,则FP=(岂良-體) x 2x -Jj ),则点 F (x ,x -:;) • △ EPC 的面积二X (2•••当x=2时,△ EPC 的面积最大.)X 4=— 3=•X 2+ :33:/x2+ 3x -/3),x.3•••点H 的坐标为(V3 3设点P 的坐标为(x ,x 2-:二 k (由两点间的距离公式可知:'■-—八,解得:a=•••点 G (0, 0).••• KM +MN +NK=MH +MN +GN .当点0、N 、M 、H 在条直线上时,KM +MN +NK 有最小值,最小值=GH . GH=• KM +MN+NK 的最小值为3.•••点 Q (3, 2 ■;).当QG=QF 时,设点Q i 的坐标为(3, a ).=3.•••当 FG=FQ 时,点 Q (3,3当GF=GQ 时,点F 与点Q'关于 y - ),Q (3,S-2届).对称,•••点G 为CE 的中点,• FG=:'•••点Q i的坐标为(3,-—5综上所述,点Q的坐标为(3,皿严)或,(3, -吒逅)或(3,砺)w1或(3,- ).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数的解析式、轴对称最短路径问题、等腰三角形的定义和性质,找到KM +MN+NK取得最小值的条件是解答问题(2)的关键;分为QG=FG、QG=QF,FQ=FQ三种情况分别进行计算是解答问题(3)的关键.(2017湖北)25. (12分)抛物线y= x2+ bx+ c与x轴交于A(1, 0), B(m, 0),与y轴交于C.(1)若m= —3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物10线上有一点E,使S^ACE = 3 S AACD,求E点的坐标;(3)如图2,设F(—1, —4), FG丄y轴于G,在线段OG上是否存在点P,使/ OBP= Z FPG?若存在,求m的取值范围;若不存在,请说明理由.x3 2 . y — xbx c(2017内蒙古)26 •如图,在平面直角坐标系中,已知抛物线2与x轴交于A 1,0 , B 2,0两点,与y轴交于点C•(1)求该抛物线的解析式;(2)直线y x n与该抛物线在第四象限内交于点D,与线段BC交于点E,与X轴交于点F ,且BE 4EC .①求n的值;②连接A C,CD,线段AC与线段DF交于点G, AGF与CGD是否全等?请说明理由;(3)直线y m m 0与该抛物线的交点为M ,N (点M在点N的左侧),点M关于5y轴的对称点为点M ,点H的坐标为1,0.若四边形OM NH的面积为3 .求点H到OM的距离d的值.(2017山西)23 •综合与探究y 逼x2蚁3逅° 口如图,抛物线9 3与x轴交于A, B两点(点A在点B的左侧),与y轴交于点C ,连接AC,BC •点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ,过点Q作QD X轴,与抛物线交于点D,与BC交于点E.连接PD,与BC交于点F .设点P的运动时间为t秒(t 0)(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简).②在点P,Q运动的过程中,当PQ PD时,求t的值.(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点•若存在, 请直接写出此时t的值与点F的坐标;若不存在,请说明理由.。
2017年天津市中考数学试卷含答案
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前天津市2017年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(3)5-+的结果等于( ) A .2B .2-C .8D .8- 2.cos60的值等于( )AB .1 CD .123.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是 ( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截至2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .80.126310 ⨯ B .71.26310⨯ C .612.6310⨯ D .5126.310⨯ 5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 7.计算111a a a +++的结果为( )A .1B .aC .1a +D .11a + 8.方程组2,315y x x y =⎧⎨+=⎩的解是( )A .2,3x y =⎧⎨=⎩B .4,3x y =⎧⎨=⎩C .4,8x y =⎧⎨=⎩D .3,6x y =⎧⎨=⎩9.如图,将ABC △绕点B 顺时针旋转60得DBE △,点C 的对应点E 恰好落在AB 的延长线上,连接AD .下列结论一定正确的是 ( )A .ABD E ∠=∠B .CBEC ∠=∠ C .AD BC ∥ D .AD BC =10.若点1(1,)A y -,2(1,)B y ,3(3,)C y 在反比例函数3y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .231y y y <<C .321y y y <<D .213y y y <<11. 如图,在ABC △中,AB AC =,AD ,CE 是ABC △的两条中线,P 是AD 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .BCB .CEC .ADD .AC12.已知抛物线243y x x =-+于x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为( )A .221y x x =++B .221y x x =+-ABCDABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)C .221y x x =-+D .221y x x =--第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.计算74xx ÷的结果等于 .14.计算(4的结果等于 .15.不透明袋子中装有6个球,其中有5个红球,1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ; (2)在ABC △的内部有一点P ,满足::1:2:3PAB PBC PCA S S S =△△△,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解不等式组12,54 3.x x x +⎧⎨+⎩≥①≤②请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为 . 20.(本小题满分8分)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:图1 图2(1)本次接受调查的跳水运动员人数为 ,图1中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数. 21.(本小题满分10分)已知AB 是O 的直径,AT 是O 的切线,50ABT ∠=,BT 交O 于点C ,E 是AB上一点,延长CE 交O 于点D .图1图2(1)如图1,求T ∠和CDB ∠的大小;(2)如图2,当BE BC =时,求CDO ∠的大小.22.(本小题满分10分)如图,一艘海轮位于灯塔P 的北偏东64方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45方向上的B 处,求BP 和BA 的长(结果取整数).参考数据:sin 640.90≈,cos640.44≈,tan 64 2.05≈取1.414.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)23.(本小题满分10分)用A4纸复印文件.在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)(2)1212关于x 的函数关系式;(3)当70x >时,顾客在哪家复印店复印花费少?请说明理由.24.(本小题满分10分)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点A ,点(0,1)B ,点(00)O ,.P 是边AB 上的一点(点P 不与点A ,B 重合),沿着OP 折叠该纸片,得点A 的对应点A '.图1 图2(1)如图1,当点A '在第一象限,且满足A B OB '⊥时,求点A '的坐标; (2)如图2,当P 为AB 中点时,求A B '的长;(3)当30BPA '∠=时,求点P 的坐标(直接写出结果即可).25.(本小题满分10分)已知抛物线23y x bx =+-(b 是常数)经过点(1,0)A -. (1)求该抛物线的解析式和顶点坐标;(2)(,)P m t 为抛物线上的一个动点,P 关于原点的对称点为P '. ①当点P '落在该抛物线上时,求m 的值;②当点P '落在第二象限内,2P A '取得最小值时,求m 的值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共18页) 数学试卷 第8页(共18页)1cos602=. 【解析】3638<【提示】利用二次根式的性质,得出【考点】无理数的估算【解析】ABC △绕点60得DBE △60,AB =ABD ∴△是等边三角形,60DAB ∴∠=,DAB CBE ∴∠=∠,AD BC ∴∥.60,AB 【解析】3k =-<,10y >,数学试卷 第9页(共18页) 数学试卷 第10页(共18页)231y y y ∴<<.【提示】根据反比例函数的性质判断即可. 【考点】反比例函数的图象和性质 11.【答案】B【解析】如图连接PC ,AB AC =,BD CD =,AD BC ∴⊥,PB PC ∴=,PB PE PC PE ∴+=+,PE PC CE +≥,∴P 、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度.【提示】如图连接PC ,只要证明PB PC =,即可推出PB PE PC PE +=+,由P E P C C E +≥,推出P 、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度.【考点】等腰三角形的性质 12.【答案】A【解析】当0y =,则2043x x -=+,(1)(3)0x x --=,解得11x =,23x =,(1,0)A ∴,(3,0)B ,2243(2)1y x x x =+=---,∴M 点坐标为(2,1)-,平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为22(1)21y x x x =+=++.【提示】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出A ,B ,M 点坐标,进而得出平移方向和距离,即可得出平移后解析式. 【考点】二次函数图象的平移交换第Ⅱ卷二、填空题 13.【答案】3x【解析】共【解析】若正比例函数.P 直角45,∴△1,∴数学试卷 第11页(共18页) 数学试卷 第12页(共18页)四边形DEMG 的面积,PAB PBC PCA S S S ∴=△△△.(2)解不等式②,得3x ≤;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为13x ≤≤.【提示】(1)移项、合并同类项即可求得答案; (2)移项、合并同类项、系数化为1即可求得答案; (3)根据不等式解集在数轴上的表示方法,画出即可;(4)根据各不等式解集在数轴上的表示,由公共部分即可确定不等式组的解集. 【考点】解不等式组 20.【答案】(1)40 30(2)平均数为15 众数为16 中位数为15【解析】(1)410%40÷=(人),10027.5257.51030m =----=;(2)平均数(134141015111612173)4015=⨯+⨯+⨯+⨯+⨯÷=,16出现12次,次数最多,众数为16;按大小顺序排列,中间两个数都为15,中位数为15.【提示】(1)÷=频数所占百分比样本容量,10027.5257.51030m =----=; (2)根据平均数、众数和中位数的定义求解即可. 【考点】统计的初步知识运用21.【答案】(1)40T ∠=40CDB ∠=(2)15CDO ∠=【解析】(1)如图①,连接AC , AT 是⊙O 切线,AB 是⊙O 的直径,AT AB ∴⊥,即90TAB ∠=,50ABT∠=,9040ABT∴∠-∠=;由AB是⊙的直径,得90ACB=,9040CAB ABC∴∠=-∠=,40CAB=;AD,50,65,65BCD∴∠∠,OA OD=65ODA OAD=∠,50ADC∠=,655015CDO ODA ADC∴∠=∠-∠=-=.90,根据的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等65,利用同圆的半径相等65,由此可得结论【考点】圆的切线性质,三角形的内角和定理,圆的相关性质,等腰三角形的性质64,45B∠,PAsin120sin64PA A=,cos120cos64AC PA A=;PCB中,45B∠=,PC BC∴,12045=120cos64120sin641200.90+≈⨯所以BP的长为153海里,BA的长为161海里.数学试卷第13页(共18页)数学试卷第14页(共18页)数学试卷 第15页(共18页) 数学试卷 第16页(共18页))点A B OB '⊥90,在Rt A '△2OA OB '-∴点A '的坐标为P 60,180120BPO ∴∠∠=-,120OPA '=,180,OB ∴,又OB PA =,∴四边形OPA A B OP '=3)设(P x45,(,)P x y ,32P ⎛-∴ ⎝30,OA 30BPA '∠=,∴∠OA AP '∴∥,PA '∥∴四边形OAPA 30A ∠=,PM ∴把32y =30时,点⎝⎭⎝⎭60,求120,由120,1PA=,证出,得出四边形B OP=45,得出点330,OAM,由直角三角形的性质求出)抛物线2y x-=(2)①由点P'与点抛物线的顶点坐标为P(10)A-,,2( P A'∴=10 m>,∴∴m的值为数学试卷第17页(共18页)数学试卷第18页(共18页)。
中考数学一轮复习《二次函数的图像与性质》练习题(含答案)
中考数学一轮复习《二次函数的图像与性质》练习题(含答案)课时1二次函数图象与性质、抛物线与系数a、b、c的关系(建议答题时间:20分钟)1. (2017长沙)抛物线y=2(x-3)2+4的顶点坐标是()A. (3,4)B. (-3,4)C. (3,-4)D. (2,4)2. (2017金华)对于二次函数y=-(x-1)2+2的图象与性质,下列说法正确的是()A. 对称轴是直线x=1,最小值是2B. 对称轴是直线x=1,最大值是2C. 对称轴是直线x=-1,最小值是2D. 对称轴是直线x=-1,最大值是23. (2017连云港)已知抛物线y=ax2(a>0)过A(-2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A. y1>0>y2B. y2>0>y1C. y1>y2>0D. y2>y1>04. (人教九上41页第6题改编)对于二次函数y=-3x2-12x-3,下面说法错误的是()A. 抛物线的对称轴是x=-2B. x=-2时,函数存在最大值9C. 当x>-2时,y随x增大而减小D. 抛物线与x轴没有交点5. (2017眉山)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2-ax()A. 有最大值a4B. 有最大值-a4C. 有最小值a4D. 有最小值-a46. (2017广州)a≠0,函数y=ax与y=-ax2+a在同一直角坐标系中的大致图象可能是()7. (2017重庆巴蜀月考)已知二次函数y=a2x+bx+c(a≠0)的图象如图所示,对称轴为直线x=1,下列结论中正确的是()A. abc>0B. b=2aC. a+c>D. 4a+2b+c>0第7题图第9题图第11题图8. (2017乐山)已知二次函数y=x2-2mx(m为常数),当-1≤x≤2时,函数值y的最小值为-2,则m的值是()A. 32B. 2 C.32或 2 D. -32或 29. (2017日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a-b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A. ①②③B. ③④⑤C. ①②④D. ①④⑤10. (2017广州)当x=________时,二次函数y=x2-2x+6有最小值________.11. (2017兰州)如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则点Q的坐标为________.课时2 抛物线的平移、解析式的确定、与方程(不等式)的关系(建议答题时间:20分钟)1. (2017重庆南开模拟)将二次函数y =(x -1)2+2的图象向左平移2个单位,再向下平移3个单位,则新的二次函数解析式为( )A . y =(x -3)2-1B . y =(x +1)2+5C . y =(x +1)2-1D . y =(x -3)2+52. (2017徐州)若函数y =x 2-2x +b 的图象与坐标轴有三个交点,则b 的取值范围是( )A . b <1且b ≠0B . b >1C . 0<b <1D . b <13. (2017苏州)二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( )A . x 1=0,x 2=4B . x 1=-2,x 2=6C . x 1=32,x 2=52D . x 1=-4,x 2=04. (2017绵阳)将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( )A . b >8B . b >-8C . b ≥8D . b ≥-85. (2017天津)已知抛物线y =x 2-4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M ,平移该抛物线,使点M 平移后的对应点M ′落在x 轴上,点B 平移后的对应点B ′落在y 轴上,则平移后的抛物线解析式为( )A . y =x 2+2x +1B . y =x 2+2x -1C . y =x 2-2x +1D . y =x 2-2x -16. (2017随州)对于二次函数y =x 2-2mx -3,下列结论错误的是( )A . 它的图象与x 轴有两个交点B . 方程x 2-2mx =3的两根之积为-3C . 它的图象的对称轴在y 轴的右侧D . x <m 时,y 随x 的增大而减小7. (2018原创)在-2,-1,0,1,2五个数字中,任取一个作为a ,使不等式组⎩⎨⎧x +a ≥01-x >x +2无解,且函数y =ax 2+(a +2)x +12a +1的图象与x 轴只有一个交点,那么a 的值为( )A . 0B . 0或-2C . 2或-2D . 0,2或-28. (2017青岛)若抛物线y =x 2-6x +m 与x 轴没有交点,则m 的取值范围是________.9. 注重开放探究(2017上海)已知一个二次函数的图像开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是________.(只需写一个)10. (2017武汉)已知关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是________.11. (2017鄂州)已知正方形ABCD 中A (1,1)、B (1,2)、C (2,2)、D (2,1),有一抛物线y =(x +1)2向下平移m 个单位(m >0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是________.12. (2017杭州)在平面直角坐标系中,设二次函数y 1=(x +a )(x -a -1),其中a ≠0.(1)若函数y 1的图象经过点(1,-2),求函数y 1的表达式;(2)若一次函数y 2=ax +b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )在函数y 1的图象上.若m <n ,求x 0的取值范围.答案第1课时 二次函数图象与性质,抛物线与系数a 、b 、c 的关系1. A2. B3. C 【解析】画出抛物线y =ax 2(a >0)的草图如解图,根据图象可知,y 1>0,y 2>0,且y 1>y 2.第3题解图4. D 【解析】由y =-3x 2-12x -3=-3(x +2)2+9,可知对称轴是x =-2,选项A 正确;抛物线的开口向下,顶点坐标是(-2,9),当x =-2时,y 存在最大值9,选项B 正确;开口向下,当x >-2时,图象处于对称轴的右边,y 随x 增大而减小,选项C 正确;当y =0时,一元二次方程-3x 2-12x -3=0有实数解,所以抛物线与x 轴有交点,选项D 错误.5. B 【解析】∵一次函数y =(a +1)x +a 的图象过第一、三、四象限,∴⎩⎨⎧a +1>0a <0,解得-1<a <0,∵二次函数y =ax 2-ax =a (x -12)2-a 4,又∵-1<a <0,∴二次函数y =ax 2-ax 有最大值,且最大值为-a 4.6. D 【解析】如果a >0,则反比例函数y =a x 图象在第一、三象限,二次函数y=-ax 2+a 图象开口向下,排除A ;二次函数图象与y 轴交点(0,a )在y 轴正半轴,排除B ;如果a <0,则反比例函数y =a x图象在第二、四象限,二次函数y =-ax 2+a 图象开口向上,排除C ;故选D .7. D 【解析】观察函数图象,抛物线开口向下,则a <0.对称轴在y 轴右边,则a 、b 异号,∴b >0.抛物线与y 轴的交点在x 轴上方,则c >0,∴abc <0,选项A 错误;由抛物线的对称轴x =-b 2a =1,∴b =-2a ,选项B 错误;当x =-1时,y =a -b +c <0,∴a +c <b ,选项C 错误;根据对称性可知,当x =2时,y=4a +2b +c >0,选项D 正确.8. D 【解析】因为二次函数的对称轴为x =m ,所以对称轴不确定,因此需要讨论研究x 的范围与对称轴的位置关系,①当m ≥2时,此时-1≤x ≤2落在对称轴的左边,当x =2时y 取得最小值-2,即-2=22-2m ×2,解得m =32<2(舍);②当-1<m <2时,此时在对称轴x =m 处取得最小值-2,即-2=m 2-2m ·m ,解得m =-2或m =2,又-1<m <2,故m =2;③当m ≤-1时,此时-1≤x ≤2落在对称轴的右边,当x =-1时y 取得最小值-2,即-2=(-1)2-2m ×(-1),解得m =-32,综上所述,m =-32或 2.9. C 【解析】∵抛物线与x 轴交于(4,0),对称轴为x =2,∴抛物线与x 轴的另一个交点为(0,0).故①正确;∵抛物线经过原点,∴c =0.∵抛物线的对称轴为x =2,即-b 2a =2,∴4a +b =0,∴4a +b +c =0,故②正确;当x =-1时,抛物线的函数图象在x 轴上方,∴a (-1)2+(-1)b +c >0,即a -b +c >0,故③错误;∵c =0,4a +b =0,∴抛物线的解析式为y =-b 4x 2+bx =-b 4(x -2)2+b ,∴抛物线的顶点坐标为(2,b ),故④正确;由图象可知,抛物线开口向上,对称轴为x =2,当x <2时,y 随x 的增大而减小.故⑤错误.综上所述,①②④正确.10. 1,5 11.(-2,0)第2课时 抛物线的平移、解析式的确定、与方程(不等式)的关系1. C2. A3. A 【解析】∵二次函数y =ax 2+1的图象经过点(-2,0),∴代入得a (-2)2+1=0,解得a =-14,∴所求方程为-14(x -2)2+1=0,解方程得x 1=0,x 2=4.4. D 【解析】将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的函数为y =(x -3)2-1,与一次函数联立得⎩⎨⎧y =(x -3)2-1y =2x +b ,整理得x 2-8x +8-b =0,∵两个函数图象有公共点,∴方程x 2-8x +8-b =0有解,则(-8)2-4(8-b )≥0,解得b ≥-8.5. A 【解析】∵抛物线与x 轴交于A 、B 两点,∴令y =0,即x 2-4x +3=0,解得,x 1=1,x 2=3,∴A (1,0),B (3,0),∵y =x 2-4x +3=(x -2)2-1,∴M (2,-1).∵要使平移后的抛物线的顶点在x 轴上,需将图象向上平移1个单位,要使点B 平移后的对应点落在y 轴上,需向左平移3个单位,∴M ′(-1,0),则平移后二次函数的解析式为y =(x +1)2,即y =x 2+2x +1.6. C 【解析】∵Δ=(-2m )2-4×1×(-3)=4m 2+12>0,∴图象与x 轴有两个交点,A 正确;令y =0得:x 2-2mx -3=0,方程的解即抛物线与x 轴交点的横坐标,由A 知图象与x 轴有两个交点,故方程有两个根,再根据一元二次方程根与系数的关系可得两根之积为c a =-31=-3,B 正确;根据抛物线对称轴公式可得对称轴为x =-b 2a =--2m 2=m ,∵m 的值不能确定,故对称轴是否在y 轴的右侧不能确定,C 错误;∵a =1>0,抛物线开口向上,∴对称轴的左侧的函数值y 随x 的增大而减小,由C 知抛物线对称轴为x =m ,∴当x <m 时,y 随x 的增大而减小,D 正确,故选C .7. B 【解析】解不等式x +a ≥0得x ≥-a ,解不等式1-x >x +2得x <-12,因为不等式组无解,故-a ≥-12,解得a ≤12;当a ≠0时,b 2-4ac =(a +2)2-4a (12a +1)=0,解得a =2或-2,当a =0时,函数是一次函数,图象与x 轴有一个交点,所以当a =0,2或-2时,图象与x 轴只有一个交点,但a ≤12,∴a =0或-2.8. m >9 9. y =x 2-1(答案不唯一)10. 13<a <12或3<a <-2 【解析】令y =0,即ax 2+(a 2-1)x -a =0,(ax -1)(x+a )=0,∴关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的交点为(1a ,0)和(-a ,0),即m =1a 或m =-a ,又∵2<m <3,则13<a <12或-3<a <-2.11. 2≤m ≤8 【解析】∵将抛物线y =(x +1)2向下平移m 个单位,得到抛物线y =(x +1)2-m ,由平移后抛物线与正方形ABCD 的边有交点,则当点B 在抛物线上时,m 取最小值,此时(1+1)2-m =2,解得m =2,当点D 在抛物线上时,m 取最大值,此时(2+1)2-m =1,解得m =8,综上所述,m 的取值范围是2≤m ≤8.12. 解:(1)由题意知(1+a )(1-a -1)=-2,即a (a +1)=2,∵y 1=x 2-x -a (a +1),∴y1=x2-x-2;(2)由题意知,函数y1的图象与x轴交于点(-a,0)和(a+1,0),当y2的图象过点(-a,0)时,得-a2+b=0;当y2的图象过点(a+1,0)时,得a2+a+b=0;(3)由题意知,函数y1的图象的对称轴为直线x=12,所以点Q(1,n)与点(0,n)关于直线x=12对称.因为函数y1的图象开口向上,所以当m<n时,0<x0<1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前二次函数中考真题--2017年第1部分一.解答题(共40小题)1.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.2.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC 的最大面积.3.如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标;若不存在,说明理由.4.已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).(1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.①当点P'落在该抛物线上时,求m的值;②当点P'落在第二象限内,P'A2取得最小值时,求m的值.5.若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.6.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.7.在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c 为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B 的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.8.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y 轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.9.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E 是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE 上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.10.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.11.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.12.如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.13.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.14.如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.(1)试求A,B,C的坐标;(2)将△ABC绕AB中点M旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.15.如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.16.如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P在直线BD上,当PE=PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF 上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.17.如图,抛物线y=﹣x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)试探究△ABC的外接圆的圆心位置,求出圆心坐标;=S△ABC,求∠APB的度数;(2)点P是抛物线上一点(不与点A重合),且S△PBC(3)在(2)的条件下,点E是x轴上方抛物线上一点,点F是抛物线对称轴上一点,是否存在这样的点E和点F,使得以点B、P、E、F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.18.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S=S△ABD?若存在请△ABC直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.19.如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M 相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i.探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变.若存在,试求出P点坐标;若不存在,请说明理由;ii.试求出此旋转过程中,(NA+NB)的最小值.20.如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P 作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】21.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).22.已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.23.如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF 周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.如图所示,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x 轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a 的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.25.如图,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(3,0),D(﹣1,0),与y轴交于点C,点B在y轴正半轴上,且OB=OD.(1)求抛物线的解析式;(2)如图1,抛物线的顶点为点E,对称轴交x轴于点M,连接BE,AB,请在抛物线的对称轴上找一点Q,使∠QBA=∠BEM,求出点Q的坐标;(3)如图2,过点C作CF∥x轴,交抛物线于点F,连接BF,点G是x轴上一点,在抛物线上是否存在点N,使以点B,F,G,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.26.如图,已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),且两条直线相交于y轴的正半轴上的点C,当点C的坐标为(0,)时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与l1、l2、x轴分别交于点G、E、F,D为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG与DE的数量关系?并说明理由;(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,请直接写出点M的坐标.27.如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(0,3),点M、N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E.(1)求二次函数y=ax2+bx+c的表达式;(2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若∠DMN=90°,MD=MN,求点M的横坐标.28.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.29.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S (3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明△QAB理由.30.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.31.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.32.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B 坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P 在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.33.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.34.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B (0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.35.已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1.①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上.设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.36.如图,在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左侧),将该抛物线位于x轴上方曲线记作M,将该抛物线位于x轴下方部分沿x轴翻折,翻折后所得曲线记作N,曲线N交y轴于点C,连接AC、BC.(1)求曲线N所在抛物线相应的函数表达式;(2)求△ABC外接圆的半径;(3)点P为曲线M或曲线N上的一动点,点Q为x轴上的一个动点,若以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.37.如图,抛物线y=x2+bx+c经过B(﹣1,0),D(﹣2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.(1)求抛物线的解析式;(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?38.如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=3x﹣1与直线y=mx+2互相垂直,求m的值;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.39.如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.40.如图,在平面直角坐标系中,抛物线y=ax2+bx(a,b为常数,a≠0)经过两点A(2,4),B(4,4),交x轴正半轴于点C.(1)求抛物线y=ax2+bx的解析式.(2)过点B作BD垂直于x轴,垂足为点D,连接AB,AD,将△ABD以AD为轴翻折,点B的对应点为E,直线DE交y轴于点P,请判断点E是否在抛物线上,并说明理由.(3)在(2)的条件下,点Q是线段OC(不包含端点)上一动点,过点Q垂直于x轴的直线分别交直线DP及抛物线于点M,N,连接PN,请探究:是否存在点Q,使△PMN是以PM为腰的等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.二次函数中考真题参考答案与试题解析一.解答题(共40小题)1.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.【分析】方法一:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.(3)△MBC的面积可由S=BC×h表示,若要它的面积最大,需要使h取△MBC最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.方法二:(1)略.(2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出AC ⊥BC,从而求出圆心坐标.(3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出△MBC的面积函数,从而求出M点.【解答】方法一:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.方法二:(1)略.(2)∵y=(x﹣4)(x+1),∴A(﹣1,0),B(4,0).C(0,﹣2),∴K AC==﹣2,K BC==,∴K AC×K BC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0).(3)过点M作x轴的垂线交BC′于H,∵B(4,0),C(0,﹣2),∴l BC:y=x﹣2,设H(t,t﹣2),M(t,t2﹣t﹣2),=×(H Y﹣M Y)(B X﹣C X)=×(t﹣2﹣t2+t+2)(4﹣0)=﹣t2+4t,∴S△MBC∴当t=2时,S有最大值4,∴M(2,﹣3).【点评】考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强.熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键.2.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC 的最大面积.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PC,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)×∴S△PBC4=﹣2(t﹣2)2+8,∴当t=2时,S最大值为8,此时t2﹣3t﹣4=﹣6,△PBC∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.【点评】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的性质、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出P点的位置是解题的关键,在(3)中用P点坐标表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.3.如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标;若不存在,说明理由.【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证△OBC是等腰直角三角形,过点N作NH⊥y 轴,垂足是H,设点N纵坐标是(a,﹣a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,即可求解.【解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N坐标是(a,﹣a2+2a+3).∴a+3=﹣a2+2a+3,解得a=0(舍去)或a=1,∴N的坐标是(1,4);(3)∵四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,则﹣t2+2t+3=(t+1)+,整理,得2t2﹣t=0,解得t=0或.∴﹣t2+2t+3的值为3或.∴P、Q的坐标是(0,3),(1,3)或(,)、(,).当P在Q右边时,﹣t2+2t+3=(t﹣1)+,解得t=2或﹣,∴P(2,3),Q(1,3)(舍去)或P(﹣,﹣),Q(﹣,﹣)(舍去).综上所述,P、Q的坐标是(0,3),(1,3)或(,)、(,).【点评】本题考查了待定系数法求二次函数解析式,以及等腰三角形、平行四边形的性质,注意到△OBC是等腰直角三角形是解题的关键.4.已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).(1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.①当点P'落在该抛物线上时,求m的值;②当点P'落在第二象限内,P'A2取得最小值时,求m的值.【分析】(1)把A点坐标代入抛物线解析式可求得b的值,则可求得抛物线解析式,进一步可求得其顶点坐标;(2)①由对称可表示出P′点的坐标,再由P和P′都在抛物线上,可得到关于m 的方程,可求得m的值;②由点P′在第二象限,可求得t的取值范围,利用两点间距离公式可用t表示出P′A2,再由点P′在抛物线上,可以消去m,整理可得到关于t的二次函数,利用二次函数的性质可求得其取得最小值时t的值,则可求得m的值.【解答】解:(1)∵抛物线y=x2+bx﹣3经过点A(﹣1,0),∴0=1﹣b﹣3,解得b=﹣2,∴抛物线解析式为y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线顶点坐标为(1,﹣4);(2)①由P(m,t)在抛物线上可得t=m2﹣2m﹣3,∵点P′与P关于原点对称,∴P′(﹣m,﹣t),∵点P′落在抛物线上,∴﹣t=(﹣m)2﹣2(﹣m)﹣3,即t=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m=或m=﹣;②由题意可知P′(﹣m,﹣t)在第二象限,∴﹣m<0,﹣t>0,即m>0,t<0,∵抛物线的顶点坐标为(1,﹣4),∴﹣4≤t<0,∵P在抛物线上,∴t=m2﹣2m﹣3,∴m2﹣2m=t+3,∵A(﹣1,0),P′(﹣m,﹣t),∴P′A2=(﹣m+1)2+(﹣t)2=m2﹣2m+1+t2=t2+t+4=(t+)2+;∴当t=﹣时,P′A2有最小值,∴﹣=m2﹣2m﹣3,解得m=或m=,∵m>0,∴m=不合题意,舍去,∴m的值为.【点评】本题为二次函数的综合应用,涉及待定系数法、中心对称、二次函数的性质、勾股定理、方程思想等知识.在(1)中注意待定系数法的应用,在(2)①中求得P′点的坐标,得到关于m的方程是解题的关键,在(2)②中用t表示出P′A2是解题的关键.本题考查知识点较多,综合性较强,难度适中.5.若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,。