实变函数第一章第2讲ppt

合集下载

实变函数课件

实变函数课件

E[ f a] E[a f a n] ,
n 1

所以 E [ f a ] 是可测集.
2018年8月8日9时18分
上一页 下一页 主 页 返回 退出
推论 设 f 在 E 上可测,则 E [ f = a ] 可测,不论
a 是有限实数或±∞ .
证 因为
E[ f a] E[ f a] E[ f a]
2 可测的充要条件 定理1 设 f 是定义在可测集 E 上的实函数.下列
任一条件都是 f 在 E 上可测的充要条件:
⑴ 对任何实数 a , E [ f a ] 都可测; ⑵ 对任何实数 a , E [ f < a ] 都可测;
⑶ 对任何实数 a , E [ f a ] 都可测; ⑷ 对任何实数 a , b ( a < b ), E [ a f < b ] 都可测 (充分性要假定 | f (x ) | < ). 证 只需证明条件 ⑴ , ⑷ 的充要性.
{ x [a, b] | f ( x ) c }
下午9时18分43秒
2018年8月8日9时18分
上一页 下一页 主 页 返回 退出
2018年8月8日9时18分
上一页 下一页 主 页 返回 退出
下午9时18分43秒
下午9时18分43秒
1 可测函数的定义
2 可测的充要条件 3 函数可测的充分条件 4 可测函数的四则运算 5 可测函数列的性质 6 可测函数与简单函数的关系 7 几乎处处问题
所以, m E[ f a] 0. 即E[ f a]为零测度集,从而可测 。 由函数可测的定义知, f ( x)在E上可测。
2018年8月8日9时18分
上一页 下一页 主 页 返回 退出

简明实变函数讲义(中文版)

简明实变函数讲义(中文版)
k =n k =1


lim An = ∪∩ Ak = ∪ An .
n→∞ n =1 k = n n =1



lim An = ∩∪ Ak = ∩∪ Ak = ∪ Ak .
n→∞ n =1 k = n n =1 k =1 k =1





所以 lim An = lim An =
n→∞ n →∞
∪ An . 这表明 lim An 存在 , 并且 lim An = ∪ An . 类似可证明结论
t∈T t∈T t∈T t∈T
x ∈ Atc . 因此 x ∈ ∩ Atc . 这表明 ( ∪ At ) C ⊂ ∩ Atc . 上述推理可以反过来, 即从 x ∈ ∩ Atc
t∈T t
可以推出 x ∈ (
∪A )
t∈T
C
. 这表明 ∩ Atc ⊂ ( ∪ At ) C . 因此 (i) 成立. 类似地可以证明 (ii). ■
因此(1)成立.■ 在例 1 中, 集 A 的表达式(1)看起来较复杂, 但它是通过比较简单的集 {x : f n ( x) < 的运算得到的, 以后会看到集的这种表示方法是很有用的. 乘积集 设 A1 ,
1 } k
, An 为 n 个集. 称集 {( x1 , , x n ) : xi ∈ Ai , i = 1, , n}
A 的元素, 则用记号 a ∈ A 表示(读作 a 属于 A). 若 a 不是集 A 的元素, 则用记号 a ∉ A 表示
(读作 a 不属于 A). 不含任何元素的集称为空集, 用符号 ∅ 表示. 约定分别用 R , Q , N 和 Z 表示实数
1
集, 有理数集, 自然数集和整数集. 集的表示方法 第一种方法: 列举法, 即列出给定集的全部元素. 例如

实变函数PPT

实变函数PPT

第一讲
1. 集合运算的基本性质 定理 1 (1) A A A , A A A (2) A A, A A, A A (3) A B B A, A B B A
(4) A B C A B C , A B C A B C
(5) A B C A B A C (6) A B C A C B C
第一讲
一. 言归正传
第1章 集合
§1.1 集合的运算
一. 集合的定义及其运算
1. 集合运算的定义
m
(1) 并: A B , An , An , A
n 1
n 1
(2) 交: A B , m , An An , A
n 1
n 1
(3) 差: A B
(4) 补:设 A S ,则 Cs A : S A

(1)《微积分》或《数学分析》中讨论的函数都是比较好的函数,即
没有太多的间断点,基本上是连续函数,这些函数都有很好的可微性与可
积性,但在实际应用(理论与工程应用)中的函数一般都没有这样好的性
质。例如著名的Dirichlet函数。
D
x
1, 0,
x是0,1中的有理数 x是0,1中的无理数
在《数学分析》中,这个函数在0,1 的每一点不可微,在0,1
(9’)
S
A
S A
(10’)
S
A
S A
第一讲
一. 集合序列的上、下限集
定义 1.
假设An 是一列集合,称集合
Am
为序列
An

n1 mn
上限集,记作
lim
x
An

lim
x
sup
An
;称集合

实变函数第一章

实变函数第一章

limA (或lim supA )
n →∞ n n n
= {x : x属于无限多个集合An } = {x : 存在无限多个An,使x ∈ An }
= {x : ∀N , ∃n ≥ N , 使x ∈ An }
= ∩ ∪ An
N =1 n = N ∞ ∞
BN
下极限集
limA (或liminf A )
n n n →∞ n
则上极限集为02下极限集为1limlim上极限集上极限集如果集列如果集列的上极限集与下极限集相等即的上极限集与下极限集相等即limlim极限集极限集收敛称其共同的极限为集收敛称其共同的极限为集的极限集记为
第一章 集合
第一节 集合与运算
1. 集合的基本概念及运算
差:A − B或A \ B = {x : x ∈ A但x ∉ B}

E[ f ≥ a ] = ∩ E[ f > a − 1 ]
n =1

n
(= ∩ E[ f ≥ a − 1 ] )
n =1
n

[ a,+∞ ) = ∩ ( a − 1 ,+∞ ) n
n =1
( ∩ [ a − 1 , +∞ )) n
n =1

( a-1/n (
a-1/n-1
[ a [ ( [ [ a-1/n a-1/n+1 a

n
=
∩A
N =1
N

1 1 设A2 n −1 = (−1 + ,1 + ), A2 n = (−n,+ n), n ∈ N , 则 n n
( -n
n→∞ n
( -1
n
( 0

实变函数

实变函数
十九世纪初,曾经有人试图证明任何连续函数除个别点外总是可微的。后来,德国数学家维尔斯特拉斯提出 了一个由级数定义的函数,这个函数是连续函数,但是维尔斯特拉斯证明了这个函数在任何点上都没有导数。这 个证明使许多数学家大为吃惊。
由于发现了某些函数的奇特性质,数学家对函数的研究更加深入了。人们又陆续发现了有些函数是连续的但 处处不可微,有的函数的有限导数并不黎曼可积;还发现了连续但是不分段单调的函数等等。这些都促使数学家 考虑,我们要处理的函数,仅仅依靠直观观察和猜测是不行的,必须深入研究各种函数的性质。比如,连续函数 必定可积,但是具有什么性质的不连续函数也可积呢?如果改变积分的定义,可积分条件又是什么样的?连续函 数不一定可导,那么可导的充分必要条件又是什么样的?……
上面这些函数性质问题的研究,逐渐产生了新的理论,并形成了一门新的学科,这就是实变函数。

简介 问题
Байду номын сангаас
内容 介绍
实变函数论是以实变函数作为研究对象的数学分支,是数学分析的深入与推广,研究函数的表示与逼近问题 以及它们的局部与整体性质。在经典分析中主要研究具有一定阶光滑性的函数。但在 19世纪下半叶,一些问题 被明确提出,期望能解答并涉及更宽泛的函数类。
在这些问题中必须提到的有集合的测度,曲线长度与曲面面积,原函数与积分,积分与微分的关系,级数的 逐项积分与微分,由极限过程得到的函数的性质等。这些问题的解决对数学发展至关重要,但又非经典分析所能。 直至 19世纪末 20世纪初,在集合论的基础上,这些问题才得以解决,同时也完成了现代实变函数论基础的建立。
实变函数
数学学科术语
01 定义
03 论
目录
02 产生
以实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积 分学的进一步发展,它的基础是点集论。所谓点集论,就是专门研究点所成的集合的性质的理论,也可以说实变 函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续 性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。实变函数论的内容包括实值函数的 连续性质、微分理论、积分理论和测度论等。

实变函数论PPT课件

实变函数论PPT课件

VS
牛顿-莱布尼兹公式
对于任何给定的连续函数,在区间上的定 积分都可以通过求和的方式计算,该求和 公式称为牛顿-莱布尼兹公式。
微分与积分的应用举例
微分的应用
积分的应用
在物理学中,微分被广泛应用于计算速度、 加速度、位移等物理量;在经济学中,微分 被用于计算边际成本、边际收益等经济指标。
在物理学中,积分被广泛应用于计算面积、 体积、能量等物理量;在经济学中,积分被 用于计算总成本、总收入等经济指标。
实数集合R在通常的度量下是连 续的,即任意两个不同的实数之 间都存在其他实数。
在实数集合R中,任意两个不同 的实数之间都存在无限多的其他 实数。
实数的运算性质
加法性质
实数的加法满足交换律和结合律,即对任意实数x、y和z, 有x+y=y+x、(x+y)+z=x+(y+z)。
01
乘法性质
实数的乘法满足结合律,即对任意实数 x、y和z,有(x*y)*z=x*(y*z)。
有限覆盖定理
如果E是一个闭区间,{[a(n),b(n)}是一个开区间族,且E被 {[a(n),b(n)}覆盖,那么存在一个有限的子集族 {[a(n_i),b(n_i)}使得E被它覆盖。
03
集合论基础
集合的定义与性质
总结词
集合的基本概念和性质
详细描述
集合是由某些确定的元素所组成的,具有明确的概念和性质。集合可以通过列举法或描述法进行定义,并具有确 定性、互异性和无序性等基本性质。
实变函数论ppt课件
目录
• 引言 • 实数理论 • 集合论基础 • 测度论基础 • 可测函数与积分理论 • 微分与积分定理 • 实变函数论的应用

(完整版)《实变函数》第一章集合.doc

(完整版)《实变函数》第一章集合.doc

第一章集合(总授课时数8学时)由德国数学家 Cantor 所创立的集合论,是现代数学中一个独立的分支,按其本性而言,集合论是整个现代数学的逻辑基础;而就其发展历史而言,则与近代分析(包括实变函数论)的发展密切相关,实变函数通常是第一门大量运用集合论知识的大学数学课程.因此,在现代数学教育中,对集合论知识的较系统的介绍,通常构成实变函数教材的第一章.不过,对于实变函数论来说,集合论毕竟只是一个辅助工具,因此,本章仅介绍那些必不可少的集论知识.§1、集合及其运算教学目的引入集的概念与集的运算,使学生掌握集和集的基本运算规律.本节重点De Morgan公式是常用的公式.证明两个集相等和包含关系是经常要遇到的论证,通过例子使学生掌握其基本方法. 集列的极限是一种新型的运算,学生应理解其概念.本节难点对集列极限的理解.授课时数2学时——————————————————————————————一、集合的概念及其表示集合也称作集,是数学中所谓原始概念之一,即不能用别的概念加以定义,它像几何学中的“点”、“直线”那样,只能用一组公理去刻画.就目前来说,我们只要求掌握以下朴素的说法:“在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称为一个集合,其中每个个体事物叫做该集合的元素.”一个集合的元素必须彼此互异,而且哪些事物是给定集合的元素必须明确.以集合作为元素的集合,也常称为集族或集类.以后常用大写字母A, B,C , D , X , Y, Z L 表示集合,用小写字母a,b,c, x, yL 表示集合中的元素.如果 a 是集合 A的元素,则说 a 属于A,记作a A ,或说A含有a.如果 a 不是集A的元素,则说a 不属于A,记作a A ,或说A不含有a.有些集合可用列举其元素的办法来表示,如:只含有一个元素 a 的集合称为单元素集或独点集,可表示为{ a} .由n个元素 a1 , a2 L a n所组成的集合,可表示为{ a1 , a2 L a n }由全体自然数所组成的集合称为自然数集,可表示为{1,2,L , n,L } .当集 A是具有某性质P的元素之全体时,我们用下面的形式表示A:A { x | x具有性质 p}例如,方程x2 1 0 的解x的全体组成的数集是{ x | x210} ,实际上就是 { 1, 1} .有时我们也把集 { x | x E, x 具有性质 p} 改写成 E[ x 具有性质 p] .例如,设 f ( x) 是定义在集合 E 上的一实函数,a是一个实数,我们把集{ x | x E, f (x) a} 写成E[ f (x) a] 或 E[ f a] .不含任何元素的集合称为空集,记作.设 A , B 是两个集,若 A 和 B 的元素完全相同,就称 A 和 B 相等,记作 A = B (或B = A ).若集合 A 的元素都是集合 B 的元素,就称为 A 是 B 的子集,记作 A B (或 B A ),读作 A 包含于 B (或B包含A).若 A B 且 A B ,就称A是 B 的真子集,规定空集是任何集的子集.由集的“相等”与“包含”的定义可得如下定理:定理 1 对任何集合 A , B ,C,均有(1)A A ;(2)若A B, B C ,则A C;(3)A BA B 且 B A .二集合的运算设 A , B 是两个集合,集合 A 与 B 的并集或并 A U B { x : x A或 x B}集合 A 与 B 的交集或交 A I B { x : x A且 x B}特别地,若 A B,称A与B不相交;反之,则称 A 与 B 相交.集合 A 减 B 的差集或差:A B或 A B { x : x A但 x B}当 B A时,称差集A B 为 B 关于A的余集记作(C A B).当我们研究一个问题时,如果所讨论的集合都是某个固定集 A 的子集时,就称 A为基本集或全集,并把 A 的子集B关于 A 的余集C A B简称为B的余集,记为B C或 CB .并集与交集的概念可以推广到任意个集的情形,设为一非空集合,并且对每一个,指定了一个集合 A ,此时我们称 { A |} 是以为指标集的集族,集族{ A |} 的并与交分别定义为 :U A { x :, 使x A } IA { x :, 有xA }例 设 A n{ x : 11x 11}, n N , 则nnnA n [ 1,0],A n( 2,1)1n 1关于集合的并和交显然有下面的性质: ( 见课本 P9-P10)更一般地有 : De Morgan 公式(UA ) cIA c , ( I A )cUA c证明(略)注:通过取余集,使A 与 A C ,与 互相转换 .三、集列极限设 A 1 , A 2 ,L , A n ,L 是一个集合序列, ,其上限集和下限集分别定义为上极限集:lim A n (或 limsup A n ) { x : x 属于无限多个集合 A n } { x : 存在无限多个 A n ,使 x A n }nn{ x : N , n N , 使 x A n }I UAnN 1 n N下极限集:lim A n ( 或 liminf A n ) { x : 除去有限个集外, 有 x A n } { x : 当 n 充分大时,有 x A n }nn{ x : N , n N ,有 x A n }UIAnN 1 n N注:I A nlim A nlim A nU A nnnn 1 n 1例:设 A 2n [0,1], A 2 n 1 [1,2] ,则上极限集为 [0,2] ,下极限集为 {1} .极限集如果集列 { A n } 的上极限集与下极限集相等,即lim A n lim A n Ann则称集列 { A n}收敛,称其共同的极限为集列{ A n } 的极限集,记为: lim A n An单调增集列极限若集列 { A n } 满足 A nA n 1 ( n N ), 则称{ A n }为单调增加 ;若集列 { A n} 满足 A n A n 1 ( n N ),则称 { A n }为单调减少 ; 定理 2 :单调集列是收敛的1) 如果集列 { A n } 单调增加,则lim A n U A nn n 12) 如果集列 { A n } 单调减少,则lim A n I A nn n 1例1:设A2n 1 ( 1 1 1( n, n), n N, 则,1 ), A2 nn nlim A n ( , ) , lim A n ( 1,1] n n例 2:设A2n 1 [ 1,41], A2 n [1,11], n N, 则n n n nlim A n [0,4) , lim A n (0,1]n n小结本节介绍了集的基本概念, 集的运算和运算性质. 这些知识是本课程的基础 .证明两个集的相等是经常会遇到的, 应掌握其证明方法. De Morgan 公式很重要 , 以后会经常用到 . 集列的极限是一种与数列极限不同的极限, 应正确理解其概念 .——————————————————————————————作业: P30 5, 7, 8练习题1. 设{ A n}为一集列:n 1(1)作B1A1 , B n A n U A k (n1) ,证明{ B n}为一列互不相交的集列,且k 1n nU A k U B k ( n 1,2,L )k 1k 1(2)若{ A n}是单调减少的集列,证明A1( A1 A2 ) ( A2 A3 ) L( A n A n 1 ) L( I A k ),k 1并且其中各项互不相交.2. 证明 :(1) nUIA n,n IUA n lim A n lim A nN 1 n N N 1 n N(2) lim A n lim A nn n(3) { A n } 单调递增时,有 lim A n lim A n lim A n U A nn n n n 1(4) { A n } 单调递减时,有 lim A n lim A n lim A n I1 A nn n n n3. 已知A2n E, A2n 1 F ,( n 1,2,L ) ,求 lim A n和 lim A n ,并问 lim A n是否存在?n n n§2对等与基数教学目的介绍映射,基数,等概念和它们的属性.本节要点一一对应的思想与方法是贯穿本节的核心. 基数的概念,讨论都要用一一对应的方法 . 证明两个集对等或具有相同的基数 , 有时需要一定的技巧 , 因而具有一定难度 , 通过较多的例题和习题 , 使学生逐步掌握其中的技巧 .本节难点证明两个集对等或具有相同的基数.授课时数2学时——————————————————————————————1映射的定义在数学分析课程中我们对函数已经很熟悉. 其中函数的定义域通常是R n的子集,值域是实数集或者复数集. 若将函数的定义域和值域换成一般的集, 可得到映射的概念.定义:设 X ,Y 是两个非空集合,若依照对应法则 f ,对X中的每个 x ,均存在Y中唯一的 y 与之对应,则称这个对应法则 f 是从X到Y的一个映射,记作 f : X Y 或:设 X , Y 是两个非空集合, f 是X Y 的子集,且对任意 x X ,存在唯一的y Y 使 (x, y) f ,则 f 是从X到Y的一个映射.注:集合,元素,映射是一相对概念.略:像,原像,像集,原像集,映射的复合,单射,满射,一一映射(双射)在数学分析课程中研究的函数当然是一种映射. 除此之外 , 我们还经常会遇到许多其它的映射 . 例如 , 定积分可以看作是可积函数集到实数集的映射, 求导运算可以看作是可导函数集到函数集的映射, 线性代数中的线性变换就是线性空间到线性空间的映射等.2集合运算关于映射的性质(像集)定理 1 :设f : X Y, A, B, A () 是X的子集,称 { f ( x) : x A} 为A的像集,记作 f ( A) ,则有:1) A B f ( A) f (B);U A ) U f ( A );2) f ( A U B) f ( A) U f ( B), 一般地有 f (3) f ( A I B) f ( A) I f ( B), 一般地有 f ( I A )I f ( A );证明的过程略注: f (A I B) f ( A) I f ( B)一般不成立,如常值映射,等号成立当且仅当 f 为单射.集合运算关于映射的性质(原像集)定理 2:设f : X Y, A X ,C , D ,C () 是Y的子集,称{ x : f (x)C} 为C的原像集,记作 f 1(C )( f不一定有逆映射),则有:1)C D f 1 (C ) f 1 ( D );1 1 1一般地有:1 12) f (C U D ) f (C ) U f ( D ), f ( U C ) U f (C );3) f 1 (C I D ) f 1 (C ) I f 1 (D ), 一般地有: f 1 ( I C ) I f 1 (C );4) f 1 (C D) f 1 (C) f 1( D );5) f 1 (C c ) [ f 1 (C)] c ;6) A f 1 [ f ( A)];7) f [ f 1 (C)] C;证明略 .注: 6), 7)一般不能使等号成立,6)等号成立当且仅当 f 为单射,7)等号成立当且仅当 f 为满射.3对等与势1)定义设 A , B 是两非空集合,若存在着 A 到 B 的一一映射(既单又满),则称 A 与 B 对等,记作 A ~ B .约定 ~ .注:( 1)称与A对等的集合为与A 有相同的势(基数),记作A .(2)势是对有限集元素个数概念的推广.2)性质a) 自反性:b)对称性:c) 传递性:A ~ A;A ~B B ~ A;A ~ B,B ~C A ~ C;例: 1)N ~ N 奇数 ~ N 偶数 ~ Z2)( 1,1) ~ ( , )证明:令 f : x tg ( x) ,则 f 是 ( 1,1) 到 ( , ) 的一一映射.故2( 1,1) ~ ( , )注:有限集与无限集的本质区别:无限集可与其某个真子集合有相同多的元素个数(对等)且一定能做到,而有限集则不可能.3)基数的大小比较a) 若 A ~ B, 则称 A B;b) 1B, 则称A B; A到B有一个单射,也相当于B到A有一个满射 .若 A ~ B 相当于:c) 若A B,且 A B,则称 A B .注:不能用 A 与 B 的一个真子集对等描述. 如:( 1,1) ~ ( 1,1) ( , )4 Bernstein 定理引理:设 { A : }{ B : }是两个集族,是一个指标集,又,, A ~ B , 而且 { A : } 中的集合两两不交, { B : } 中的集合两两不交,那么:U A ~ U B证明略定理 3:( Bernstein 定理)若有A的子集A* ,使 B ~ A* , 及B的子集B* ,使 A ~ B* , 则A ~ B. 即:若 A B,B A, 则A B.证明:根据题设,存在 A 到 B*上的一一映射 f ,以及B到A*上的一一映射g .令A1 A A*, B1 f ( A1 ) , A2 g ( B1 ) , B2 f ( A2 ) , A3 g( B2 ) , B3 f ( A3 ) ,L L 由 g(B) A*知 A2 g( B1 ) A* , 而 A1 A A*,故 A1与 A2不交.从而 A1, A2在 f 的像B1 , B2不交, B1 , B2在g下的像 A2 , A3不交.由 A3A* , 知 A1与 A3不交,故 A1 , A2 , A3两两不交.从而 A1, A2 , A3在 f 的像 B1 , B2 , B3也两两不交, L Lf从而 A1 , A2 , A3 ,L两两不交,B1 , B2 , B3 ,L 也两两不交且A n ~B n (n 1,2,L ),fU A n~ U B nn 1n 1g另外由 B k ~ A k 1 (k 1,2,L ), 可知gU B k~ U A k 1k 1k 1g又 B ~ A* , 所以g U A k 1, A* U A k 1 ( A A1 )U A k 1 A U A kB U B k ~ A*k 1 k 1 k 1 k 1 k 1B U Bk ~ A U Akk 1k 1A ( A U A k ) U (U A k ) ~ (B U B k ) U (U B k )Bk 1k 1k 1k 1 证毕.注:要证 A B,需要在A与B间找一个既单又满的映射;而要证A B,,只需找一个单射即可;从而我们把找既单又满的映射转化成找两个单射.例: ( 1,1) ~ [ 1,1]证明:由 ( 1,1) [ 1,1] (,) ~ ( 1,1)可知, ( 1,1) ~ [1,1]——————————————————————————————作业: P30 9, 10练习题1.R1上以有理数为端点的区间的全体所成之集与自然数集之间能否建立一一对应?2.证明:若A B C , A : C , 则A : B : C.3. 证明:若A B , A : A C ,则有 B : B C .4.设F是[0,1]上的全体实函数所成的集合,而M 是[0,1]的全体子集所成的集合,则F : M .§3、可数集合教学目的介绍可数集概念及其运算它们的属性.本节要点可数集是具有最小基数的无限集. 可数集性质十分重要,不少对等问题可以与可数集联系起来 , 可数集证明技巧较强通过较多的例题和习题, 使学生逐步掌握 .本节难点证明集合可数 .授课时数2学时——————————————————————————————1可数集的定义与自然数集N 对等的集合称为可数集或可列集,其基数记为 a 或01,2,3,4,5,6 L La1 , a2 , a3 , a4 , a5 , a6 L L注: A 可数当且仅当 A 可以写成无穷序列的形式{ a1 , a2 , a3 , a4 , a5 , a6 L L } 例: 1)Z={0,1,-1,2,-2,3,-3 L }2)[0,1] 中的有理数全体 ={0,1,1/2,1/3,2/3,1/4,3/4,1/5,2/5, L }2可数集的性质(子集)定理 1 任何无限集合均含有可数子集 .证明:设M是一个无限集,取出其中的一个元素从M中任取一元素,记为则e1.M { e1} ,在M{ e1}中取一元素e2 ,显然e2e1 .设从M中已取出n个互异元素1, 2 n,由于M 是无限集,故 M { e1, e2 ,L e n } ,于是又可以从1, 2n 中e e ,L e M { e e ,L e }取出一元素 e n 1,它自然不同于 e1, e2 ,L e n.所以,由归纳法,我们就找到 M 的一个无限子集{ e1,e2,L , e n L } 它显然是一个可数集.证毕.这个定理说明可数集的一个特征:它在所有无限集中有最小的基数.可数集的性质(并集)有限集与可数集的并仍为可数集有限个可数集的并仍为可数集可数个可数集的并仍为可数集A a1 , a2 , a3 ,L,B b1 , b2 ,L , b n,C c1 , c2 , c3 ,L假设 A, B, C 两两不交,则A B b1 ,b2 ,L , b n , a1 ,a2 ,L(当集合有公共元素时,不重复排)第9页(共 14 页)A C a1 ,c1 , a2 ,c2 , a3 , c3 ,L关于可数个可数集的并仍可数集的明a11 , a12 , a13 , a14,La21 , a22 , a23 , a24,La31 , a32 , a33 , a34,La41 , a42 , a43 , a44,LL , L , L , L ,L当A i互不相交,按箭所示,我得到一个无序列;当A i有公共元,在排列的程中除去公共元素;因此U A n是可数集。

实变函数论讲义

实变函数论讲义

第1章集合与点集实变函数论作为现代分析数学的基础,其知识结构是建立在集合论之上的.集合论产生于19世纪70年代,由德国数学家康托尔(Cantor)创立,它是整个现代数学的开端及逻辑基础.作为本科教材,本章只介绍必需的集合论知识,而不涉及有关集合论公理的讨论.1.1 集合及相关概念大家在中学就认识了集合这个概念.所谓集合,是指具有某种特定性质的对象的全体.集合中的对象称为该集合的元素.集合通常用大写英文字母A,B,C,…表示;元素通常用小写英文字母a,b,c,…表示.今后用一些特殊的记号表示特殊的集合:R表示全体实数形成的集合;C表示全体复数形成的集合;N,Z,Q分别表示自然数集、整数集和有理数集.另外,不含任何元素的集合称为空集,用记号表示.集合的具体表示方法一般有两种:一种是枚举法,如集合{1,2,3,4,5};一种是描述法,例如,大于20的自然数组成的集合,可写为{x|x>20,且x为自然数}.一般地,若A是具有某种性质P的元素组成的集合,通常记为A={x|x具有性质P}.对于给定的某集合A及某对象a,若a是A中的元素,就说a属于集合A,记为a∈A;否则,就说a不属于集合A,记为给定两个集合A和B,若A中的元素都属于B,则称A是B的子集,记为或进而,若同时有和,则A=B.对于任意的非空集合A,空集和A当然是A的子集,这两个子集称为平凡子集.除此之外的子集称为真子集.例1.1.1 写出{1,2,3}的所有子集,由此计算{1,2,…,n}的子集的个数,其中n∈N.{1,2,3}的所有子集是:,{1,2,3},{1},{2},{3},{1,2},{1,3},{2,3},第1章集合与点集1.1集合及相关概念共个.一般地,{1,2,…,n}的子集的个数是:C0n+C1n+…+C n n=2n,其中C k n=n!k!(n-k)! (k∈{0,1,…,n})为组合数公式.任给集合A,它的所有子集构成的集合称为它的幂集,记为1.1.1 集合的运算我们知道,数可以进行运算,并由此生成新的数.类似地,集合之间也可以进行运算,并由此生成新的集合.其中,最常用的运算有“并”、“交”、“差”三种.定义1.1.1任意给定集合A和B,集合{x|x∈A或x∈B}称为A与B的并集,并集也称为和集,记为A∪B,或A+B;集合{x|x∈A且x∈B}称为它们的交集,交集也称为积集,记为A∩B,或AB;推而广之,给定集合族∈Γ,其中Γ是指标集,则此集合族的并集与交集分别为∪α∈∈Γ,x∈Aα};(1.1)∩α∈∈Γ,x∈Aα}.(1.2)集合{x|x∈A且称为A与B的差集,又称补集,记为A\\B,或A-B.注意:一般来说(A-B)∪B未必等于A.如果已知则A-B称为B相对于A的余集,记为AB,特别地,如果我们在某一问题中所考虑的一切集合都是某一给定集合S的子集时,集合B相对于S的余集就简称为B的余集, SB简记为而集合(A-B)∪(B-A)称为A与B的对称差,记为A△B.例1.1.2 设-1+1i≤x≤1--1k<x<1k,k=1,2,…,则∪mi=1B i=x-1+1m≤x≤1-1m, -1p<x<1p. 其中n,m,p∈N.由此知∪-1<x<1},集合的并、交、差(补)运算满足下面的运算律:定理1.1.1 (1) 交换律A∪B=B∪A, A∩B=B∩A;特别地A∩A=A,A∪A=A, A∪=A,(2) 结合律A∪(B∪C)=(A∪B)∪C, A∩(B∩C)=(A∩B)∩C.(3) 分配律A∩(B∪C)=(A∩B)∪(A∩C);一般地A∩∪α∈∪α∈(4) 大小关系∪B).(5) 若∈Γ,则∪α∈∪α∈∩α∈∈特别地,若或∈Γ,则∪α∈∈证明下面仅证A∩∪α∈∪α∈任取x∈A∩∪α∈则x∈A且α0∈Γ,使得x∈Bα0,于是x∈∪α∈由x 的任意性得A∩∪α∈∪α∈反过来,任取x∈∪α∈α),则α0∈Γ,使得x∈即x∈A且x∈Bα0,从而x∈A且x∈∪α∈故x∈A∩∪α∈由x的任意性得∪α∈∪α∈综合起来,等式成立.□以下给出关于余集计算的部分性质. 定理1.1.2 (1) A-(2) 若则SA SB,B\\A=B∩A c;(3) 对偶律(德摩根(De)律)若则(A∪B)c=A c∩B c,∪B c.一般地∩α∈∪α∈∪α∈∈证明下面仅证对偶律:若则(A∪B)c=A c∩B c,其余结合相关定义类似可得.事实上,由补集定义, (A∪B)c={x|x∈X且∪B}={x|x∈X,x A且={x|x∈X,x∈A c且x∈B c}=A c∩B c.□德摩根律使我们通过余集的运算把并集变为交集,把交集变为并集.这种转化在集合的运算及论证中是很有用的.1.2 集合列的上极限和下极限众所周知,数列可以讨论极限.类似地,集合列也可以讨论极限.以下我们给出集合列及其极限的定义.定义1.1.2 一列集合(n=1,2,…)称为集合列,也可记为属于上述集合列中无限多个集的元素的全体所形成的集称为该集合列的上极限,或称为上限集,记为lim n→∞或lim n→∞sup A n;对于上述集合列,那些除了有限个下标外,属于该集合列中每个集合的元素的全体形成的集称为这个集合列的下极限,或称为下限集,记为lim n→∞A n或lim n→∞inf等价地,lim n→∞sup A n={x|对于任意的自然数n,存在k≥n,使得x∈A k}, lim n→∞inf存在∈N,当时,x∈A n}. 由此知,lim n→∞inf n→∞sup A n.进而,对于给定集合列若其上、下极限相等,则称集合列收敛,其极限即为它的上(或下)极限,记为lim n→∞A n.集合列的上(下)极限可以用“并”与“交”运算来表达. 定理1.1.3 给定集合列n},则lim n→∞∪lim n→∞inf∪证明利用lim n→∞∈N,k≥n,使得x∈A k}(1.3)来证明关于上极限的等式,关于下极限的情况可类似证得.记∪事实上,设x∈A,则对任意取定的n,存在m>n,使得x∈A m,即对任意n,总有x∈∪故x∈B,继而反之,设x∈B,则对任意的n>0,总有x∈∪即总存在m(m≥n),使得x∈A m,故x∈A,继而从而A=B,另一等式可同样证明.□若集合列满足:∈N,则称是单调增加集合列;若∈N,则称之为单调减少集合列.统称为单调集合列.由定理1.1.3易知,单调集合列是收敛的.具体地,若为单调增加集合列,则lim n→∞A n=∪若为单调减少集合列,则lim n→∞A n=∩∞n=1A n.例1.1.3 设是如下一列点集:A2m+1=0,2-12m+1〗,m=0,1,2,…, 〗, 我们来确定的上、下极限.因为闭区间\中的点属于每个而对于开区间(1,2)中的每个点x,必存在自然数N(x),使得当n>N(x)时,有1+12n<x≤2-12n+1,即当n>N(x)时但x∈A2n+1.换言之,对于开区间(1,2)中的x,具有充分大的奇数指标的集合都含有x,即中有无限多个集合含有x,而充分大的偶数指标的集合都不含有x,即中不含有x的集合不会是有限个.又区间\n→∞sup\n→∞inf\例1.1.4 设为:当n=2k时,k∈N;当n=2k+1时,k∈N. 则lim n→∞sup∪{(0,y)|y≥0};lim n→∞inf定义1.1.3设A,B是两个集合,称一切有序“元素对”(x,y)(其中x∈A,y∈B)形成的集合为A与B的直积集或笛卡儿(Descartes)积,记为A×B,即A×B={(x,y)|x∈A,y∈B},其中(x,y) =(x′,y′)是指x=x′,y=y′,X×X也记为例1.1.5 设A={1,2,3},B={4,5},则A×B={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}.例1.1.6 \×\为平面上单位闭正方形.例1.1.7 Q×Q=Q Q2为平面上有理点集.习题习题1.3 试证:(1) A∩(B∪C)=(A∩B)∪(A∩C);(2) (A\\B)∪B=(A∩B)\\B的充要条件是(3) A-(B-C)=(A-B)∪(A∩C).1.4 证明:(1) A△B=B△A;(2) (A△B)△C=A△(B△C);(3) A∩(B△C)=(A∩B)△(A∩C);(4) 对任意的A,B,存在C使得A△C=B.1.5 设是一集合列,作-∪n-1k=1A k,n=2,3,…,试证互不相交,且∪ni=1A i=∪nj=1B j,n=1,2,…,∞.1.6 设f(x),g(x)是点集E上定义的两个函数,a,k为任意实数,但k≠0.则(1) {x: f(x)≥a}=∩∞n=1x:f(x)>a-1n;(2) {x: |f(x)|>k}∪x: |g(x)|>ak.1.7 试证:(1) ∪∞i=1(A\\(2) ∩∞i=1(A\\∪i.1.8 设-求出集合列的上限集和下限集.1.9 设A n=E,n=2k-1,F,n=2k, 求集合列的上限集和下限集.1.10 设m为整数,n=1,2,…,试证lim n→∞sup n→∞inf1.11 设是\上的一列函数,且存在\使得lim n→∞f n(x)=1,x∈\\\E, 0, x∈E.令∈\: 求集合lim n→∞E n.1.12设以及f(x)是定义在R上的实值函数,则使不收敛于f(x)的一切点x所形成的集合为∪∞k=1∩∞N=1∪∞n=Nx:-11. 设(k=1,2,…)随着k→∞单调下降趋于(n=1,2,…)定义在E上∈E),试证:对任意的a有(1) E\=∪\;(2) E\\;(3) E\=∪\.注:E\={x∈E|f(x)>a}.1.1.2 映射、基数与可数集1.2 映射、基数与可数集我们都知道,实数是可以比较大小的,那么自然地联想一下,集合有没有大小的差别呢?直观地想,如果是有限集合,可能集合元素的个数多集合就大,那么对于含有无限个元素的集合,集合的大小该怎么比较呢?全体实数构成的集合就一定比全体正实数构成的集合大吗?在对集合的定义和基础运算有了一定的了解之后,我们接下来就介绍一下用以刻画集合大小的概念:基数.在此之前,我们要引入映射的概念,本节的最后,我们还将向大家介绍一种最常见的集合:可数集.1.2.1 映射大家都熟悉函数概念,下面要讲到的映射是函数概念的抽象化.定义1.2.1给定两个非空集合X,Y,若对于X中每个元素x在Y中都存在唯一的元素y与之对应,则称这个对应为映射.若用φ表示这种对应,则记为φ:并称φ是从X到Y的一个映射.此时,x∈X在Y中对应元y称为x在映射φ下的像, x称为y的一个原像,记为y=φ(x).进而,y的原像集为{x|y=φ(x),x∈X},记为-1(∈X}Y称为映射φ:X→Y的值域,而X为定义域.特别地,若φ(X)=Y,则称映射φ是满射,也称为到上的映射(X到Y上的映射);若对于每个y∈φ(X)其原像集-1(y)是单点集,等价地,若x1,x2∈X,当时必有则称该映射是单射,也称为一一映射.注1.2.1 一一映射存在逆映射,即-1:-1(y)=x,当φ(x)=y时.进而,到上的一一映射称为双射,也称为一一对应.给定映射φ:X→Y,及则A的像集为∈A},B的原像集为-1(B)={x|φ(x)∈B}.综上易得下面关于映射与集合的并和交运算的关系式:φ∪α∈∪α∈φ∩α∈∈φ-1∪α∈∪α∈--1∩α∈∈-例1.2.1给定非空集合X,定义其非空子集A上的特征函数为χA(x)=1,x∈A,于是是从X的幂集到{0,1}上的映射.而且可以利用特征函数来反馈集合本身的特征:1.2.2 基数给定一个集合,若它只含有限个元素则称为有限集;否则,就称为无限集.对于有限集来说,若不考虑元素的具体特性,则所含元素的个数是一个基本而重要的量,因与元素个数有关的问题一般会涉及元素个数的比较.两个有限集是否含有相同数量的元素可用能否建立一一对应来衡量.受此启发,尽管对于无限集来说谈论个数没有实际意义,但比较两个无限集所含元素的多少,仍然可以用能否建立一一对应来度量.定义1.2.2 给定集合A,B,若存在从A到B的一一对应,则称集合A与B对等,记为A~B.对等关系有下述性质. 定理1.2.1 任给集合A,B,C,有(1) (自反性)A~A;(2) (对称性)若A~B,则B~A;(3) (传递性)若A~B,且B~C,则A~C.符合上述三条的关系称为等价关系.因此,集合之间的对等是一种等价关系.下面,我们描述性地给出集合基数的概念.定义1.2.3设A,B为给定两个集合,如果A~B,那么就称集合A与集合B的基数或者势相同.记为=.因此,对等的集合具有相同的基数(势).特别地,当A是非空有限集时,则存在某自然数使得A与一一对应,而由唯一确定,于是可以认为=n 0.由此知,基数(势)的概念是通常元素个数的推广.以下给出一些常见的集合的例子.例1.2.2 (0,1)~R.事实上,令φ:-π2,则易知φ建立了(0,1)与R之间的一一对应.例1.2.3任意两个圆周上的点集具有相同的基数.事实上,不妨令任给的两个圆同圆心,于是让从圆心出发的同一条射线与两个圆的交点相互对应,则该对应是一一对应.有了集合大小的概念--基数,接下来,我们给出基数大小比较的法则.定义1.2.4给定两个集合A和B,若存在B的子集使得A~则称A的基数不大于B的基数, 记为≤;若≤,并且≠,此时称A的基数小于B的基数,记为<.自然数可以比较大小,类似地,基数也可以比较大小.即,对于任意给定的两个基数α,β,关系式α<β,α=β,α>β,这三者中有且仅有一式成立.证明要涉及集合论的公理系统,超出本教材范围,故略.对于自然数a,b,若a≤b且b≤a则a=b.对于基数也有类似的结论,也就是说集合的大小在某种意义下也是可以比较的. 定理1.2.2(伯恩斯坦(Bernstein)定理)给定集合A,B,若≤且≥,则=.证明由题设,存在双射φ:及双射ψ:下面用迭代法寻找及使得φ(A′)=B\\B′,同时ψ(B′)=A\\A′.为此,考虑下面的方程组:φ(A′)=B\\B′,ψ(B′)=A\\等价地A′=A\\ψ(B′),B′=B\\φ(A′).(1.4) 为了求解方程组(1.4),运用迭代法,逐次作A1=A\\ψ(B), \\\\\\\\-1),\\由上述构造知注意到ψ是一一映射,于是有再结合德摩根律,有∪∪∞i=1(A\\-1))=A∩∞-- 此处记类似地,可得\\∪从而,式(1.4)有解A′=∪定义映射Φ(x)=φ(x),x∈-1(x),x∈A\\A′. 由上述构造知,φ(A′)=B\\-1(A\\A′)=B′,于是Φ是满射.至于Φ的单射性由φ及ψ的单射性即得.因此,Φ是从A到B上的一一对应.从而,A~B.□推论1.2.1 设~C,则A~B,B~C.证明以A~B为例,设φ是A和C之间的一个一一对应,令x∈A,φ(x)∈B},则~B,取则自然有~A.于是由伯恩斯坦定理有A~B.1.13 可数集本小节我们给出最常见的一种无穷集合--可数集的定义,并研究其相关性质.定义1.2.5与自然数集对等的集合称为可数集,或称为可列集.于是任意的可数集A均可写成A={反之,这种形式的集合均为可数集.可数集的基数记为0.下面的定理表明,可数集的基数在无限集中是最小的. 定理1.2.3任意无限集均包含可数子集.证明设A是任意给定的无限集,任意取定∈A,因A\\仍然是无限集,再任意取定2∈A\\{a1},依次类推,在A\\中取出在A\\中取出照此继续,即得A的可数子集进一步,我们有下述定理.□定理1.2.4若X是一个无限集,Y是有限集或可数集,则X∪Y=.证明因X∪Y=X∪(Y\\X),故不妨设若Y是可数集,记由于X是无限集,由定理1.2.3知,X有可数子集于是有分解∪(X\\X1) .令φ:X∪Y→X,使得-1,n=1,2,…;φ(x)=x,x∈X\\X 1.由此构造知φ是X与X∪Y之间的一一对应;若Y为有限集,则对应的取为与Y有相同个数的X中的有限集,然后类似于上面的证明即得.□众所周知,有限集不可能和它的任意真子集建立一一对应关系.无限集与有限集的本质区别就在于此,即下面的定理. 定理1.2.5集合X是无限集的充要条件是,存在X的真子集Y有Y~X.证明因若X是有限集时,X不可能与它的任意真子集对等,由此得证充分性;下证必要性:任取X的一个有限子集A,因X是无限集,故X\\A亦是无限集,利用定理1.2.4得,X\\A=(X \\A)∪A=,记Y=X\\A,得证.□下面一系列定理关心的是集合及其子集的可数性问题. 定理1.2.6可数集的子集如果不是有限集,则一定是可数集.证明设A是可数集是A的一个无限子集.首先,因故其次,因是无限集,由定理1.2.3可知于是由伯恩斯坦定理得即是可数集.□定理1.2.7 设A为可数集,B为有限或可数集,则A∪B为可数集.证明设或(1)先设由于可数集总可排成无穷序列,当B有限时,A∪B={b1,b2,…,b n,a;当B可数时,A∪B={a1,b1,a2,b2,…,a n,b n,…},可见A∪B总可以排成无穷序列,从而是可数集.(2) 一般情况下,此时令-A,则A∩B*=,A∪B*=A∪B.由于B至多可数,故作为B的子集,也至多可数(有限集或可数集),由(1)的证明知,A∪B*可数,故A∪B也可数.□推论1.2.2设是有限集或可数集,则∪ni=1A i也是有限集或可数集,但如果至少有一个是可数集,则∪ni=1A i必为可数集. 定理1.2.8 可列个可数集的并集是可数集.证明设(n=1,2,…)是一列可数集.(1)先设因为都是可数集,于是可记A n={a n1,a n2,…,a nk,…},n,k=1,2,…,从而∪中元素可按下述方式排成一列:∪规则是:排第一位,当i+j>2时排在第j+∑i+j-2k=1k位因此∪是可数集(注:当部分是有限集时仍适用).(2) 一般情况下,各可能相交,令-∪i-1j=1A j(i≥2),则且∪∪由可数易知都是有限集或可数集,如果只有有限个不为空集,则由推论1.2.2易知∪为可数集(因为至少为可数集);如果有无限多个(必为可数个)不为空集,则由(1)知∪∪也是可数集,故在任何场合∪都是可数集.□推论1.2.3 (1) 有限集与可数集的并是一可数集;(2) 有限个可数集的并是一可数集;(3) 可数个互不相交的非空有限集的并是一可数集;(4) 可数个可数集的并是一可数集. 例1.2.4 整数集,有理数集均为可数集.事实上,整数集Z=N∪(-N),其中-为负自然数全体的集合. 因映射f:N→-N,f(n)=-n,建立了N与-之间的一一对应,故-N是可数集.于是由定理1.2.7知Z是可数集.对于有理数集,记Q+为正有理数全体的集;Q-为负有理数全体的集,于是Q=Q+∪Q-∪{0}.令A n=1n,2n,3n,…则(n∈N)是一列可数集,而Q+=∪从而由定理1.2.8知Q+亦可数;又Q-与Q+通过映射f(x)=-x (x∈Q+)建立了一一对应,于是Q-也可数.再利用定理1.2.7即得Q是可数集.由例1.2.4易得下面一些今后很有用的结论:有理系数多项式全体所构成的集合是可数集;R中无限个互不相交的开区间所形成的集是可数集.事实上,在每一个开区间中任意取定一个有理数,由题设可知开区间与取定的有理数是一一对应的.因此这些有理数形成Q的一个无限子集,记为Q 1,由定理1.2.6得Q1可数,从而得证.注1.2.2若A中每个元素可由n个互相独立的记号一对一地加以决定,各记号跑遍一个可数集,即A={a x1,x2,…,x n|x k=x k(1),x k(2),x k(3),…;k=1,2,…,n},则A为可数集.例1.2.5元素是由k个正整数所组成的集合,其全体构成一可数集A={(n 1,n2,…,n k)|n i∈Z+}.例1.2.6 整系数多项式a0x n+a1x n- -的全体是一可数集.记a a0,a1,…,a n=a0x n+a1x n- -则整系数多项式的全体可记为∪,为可数集,其中代数数的全体是一个可数集(所谓代数数,就是整系数多项式的根).事实上,整系数多项式的全体可数,而每一个整系数多项式只有有限个根,故代数数的全体是一个可数集.例1.2.7 N与R不对等,即N≠R.若不然,存在N与R的一个一一对应,将与N中n对应的元素(n)记为则R上至少有一个单位长度的区间不含不妨设此区间为\,将\分为三等分,则0,13〗,23,1〗中至少有一个不含以表示这个区间,将三等分,其左、右两个区间中至少有一个区间不含记为依此类推,可得一串闭区间},满足:(1) 且的长度趋于0; (2)由闭区间套定理知但对任意的换言之不在R中,这是不可能的.这一矛盾说明与R不可能对等.例1.2.8R上任一单调函数的不连续点全体的集至多可数,即或为空集,或为有限集,或为可数集.不妨设f(x)是单调递增函数.若f(x)在R上连续,则其不连续点集为空集;若存在间断点由柯西(Cauchy)收敛原理可知-0)与均存在,于是f(x1-0)=lim x→x1-表明对应开区间-对于两个不同间断点和由函数f(x)的单调性可得,开区间-与-互不相交.进而,由上面的分析知,f(x)的不连续点集与上述开区间形成的集合之间存在一一对应,于是,或为有限集,或为可数集.1.14 不可数集与连续基数对于一个无限集,若不是可数集,则称之为不可数集. 定理1.2.9开区间(0,1)是不可数集.证明用反证法:假若(0,1)是可数集,则可记而每个(i=1,2,…)均可按下述方式唯一表示成十进制纯小数:a(1)=0.a(1)1a2(1)a3(1)…,(2)…,(3)…,规定,上述各数不能从某位起全为0.令满足:当当由上述构造知∈(0,1),但这与假设矛盾.□由前面的例1.2.2及定理1.2.9得,实数集R是不可数集.今后用c表示实数集R的基数,称之为连续基数(势).而且由定理1.2.9知例1.2.9 (a,b)=c,其中a,b∈R.事实上,令φ(x)=a+x(b-a),x∈(0,1),则φ建立了(0,1)与(a,b)之间的一一对应,于是(a,b)=(0,1)=c.类似地,可证(-∞,0)=(0,+∞)=\=(a,b\]=\=\=(0,1)=c.下面的定理关心的是连续基数的性质问题. 定理1.2.10设是一列互不相交的集合,它们均有连续基数,则并集∪n也有连续基数.证明注意到\及\故∪~∪∞n=1\即∪n有连续基数.□由定理1.2.10易知,平面R2有连续基数,即R2=c.类似地有R n=R∞=c,此处R∞是指可数个R的笛卡儿积.定理1.2.3告诉我们,可数集在无限集中间基数最小,那么有没有最大的基数呢?答案是否定的,即下面的结论. 定理1.2.11任给一个非空集合是其幂集,即由A的所有子集形成的集合.则证明假若A~则存在一一对应φ:于是对于每个a∈A,都唯一存在A的子集φ(a)与之对应.作A的子集∈A|xφ(x)}.根据假定,应有A中元素与对应.由此,若∈A0,则与的定义矛盾;若,则由的定义知又应该属于矛盾.于是A与不对等.进而,单点集全体形成的真子集,记为A ~,显然A~~A,因此例1.2.10其中记从自然数集N到两点集{0,1}的所有映射形成的集.事实上,对于任意的f∈{0,1}N,令φ:则φ是从到(0,1\]的一一映射,于是有0,1\];另一方面,每个x∈(0,1\]均可唯一表示(规定下面二进制表达式中必须出现无限多个1)为x=∑∞n=1x n2n,∈{0,1}.令∈N,则∈{0,1}N.进而,定义映射φ:∈(0,1\],则φ是从(0,1\]到的一一映射,于是有(0,1\再利用伯恩斯坦定理即得\]=c.注意到N=0,例1.2.10用记号表示,即既然没有最大的基数,那么限定在0与c之间情况又如何呢?集合论的奠基者康托尔于1878年提出下面的猜想:在0与c之间没有基数存在,即不存在集合X,使得0<<c.这个问题又被称为连续统假设问题.20世纪伟大的数学家希尔伯特(Hilbert)在1900年国际数学家大会上提出了23个重大数学问题,其中就包括连续统假设问题.而连续统假设问题直到1963年才由科恩(Korn)和哥德尔(Godel)解决:他们证明了,连续统假设与已有的集合论公理系统是相容的,既不能被证明也不能被否定. 习题习题1.15 设f: X→Y是一个满射,证明下列3个命题等价:(1) f是一一映射;(2) 对任意的有f(A∩B)=f(A)∩f(B);(3) 对任意的若则1.16 设f: X→Y,证明f是满射的充要条件是,对任意的有-1(A))=A.1.17 设映射f: ∈I(I为指标集),试证:(1) f∪α∈IAα=∪α∈If(Aα);(2) f∩α∈IAα∩α∈If(Aα);(3) 若则--∈I,i=1,2; (4) -1∪α∈IBα=∪α∈If-1(Bα);(5) -1∩α∈IBα=∩α∈If-1(Bα);(6) -1(Y--1(Y)--1.18 设E是X的子集,定义在X上的特征函数为χE(x)=1,x∈E, 0,x∈X-E.如果都是X的子集.证明:(1) ∪B(x)-(2) (3) --(4) n→∞sup sup(5) n→∞inf n→∞inf 5.设分别是到到的一一映射,问是否一定存在\\到\\的一一映射?1.1.3 试构造(0,1)与\7.试构造出一个从无理数集Q c到实数集R之间的一一映射.1.2.2 试证:若集合A中每个元素由n个独立的记号决定,各记号跑遍一可数集B,即A={a x∈B,k=1,2,…,n},则A为可数集.1.19平面点集A中任意两点之间的距离都大于某一固定常数d,且d>0,则A至多为可数集.1.20 设A=B∪C,=c,则B与C中至少有一个集合的势为c.1.21 如果A=∪则至少有一个的势为c.1.22 试证:若且A~A∪C,则有B~B∪C.1.23 证明:\上的全体无理数作成的集合其基数是c.1.24 证明:若E是可列集,则E中存在可列个互不相交的真子集. 15.若f(x)是R上的实值函数,则集合A1={x|x∈R,f(x)在x处不连续,但右极限f( x+0)存在是可数集.1.1.4 证明\上的连续函数全体C\的势为c.1.1.5 若对任意有限个x:使得∑ni=1f(x)≤M成立,试证,能使f(x)≠0的x的集合至多为可数集.1.1.6 证明(a,b)上的凸函数在除一个至多可数集的点外都是可微的.1.3R n中的点集1.3 中的点集1.3.1 n维欧氏空间R是实数集,其几何表示即数轴;R2={(x,y)|x,y∈R}是有序实数对全体形成的集合,其几何表示即坐标平面.对于任意的∈R2, 定义两种线性运算:(1) 加法(2)数乘∈R.则R2关于这两种运算构成线性空间,(0,1),(1,0)是R2的一组基,因个数为两个,故R2称为二维线性空间.因平面上的点与从原点出发以该点为终点的向量一一对应,故R2又称为向量空间,其中的元素又称为向量.平面几何(欧几里得(Euclid)几何)及平面解析几何就是建立在R2基础之上的.推而广之,有下面的定义.定义1.3.1 n维欧氏空间为集合{x=(x1,x2,…,x n)|x i∈R,i=1,2,…,n(n∈N)},记为R n,或记为R×R×…×R,共n个R.类似地关于上述加法及数乘运算构成一个线性空间为R n的一组基.沿用二维线性空间的称谓也称为n维向量空间,其中的元素称为点或向量.对于任意的∈R n,定义d(x,y)=∑ni= -则d(x,y)有下述3条性质:(1) 正定性,d(x,y)≥0,且d(x,y)=(2) 对称性,d(x,y)=d(y,x);(3) 三角不等式,d(x,z)≤d(x,y)+d(y,z).这3条性质是距离的本质刻画,因此,上面定义的d(·)是R n上的一种距离,于是称为距离空间.性质(1), (2)由定义立得;性质(3)的证明要用到下述柯西-施瓦茨(Cauchy- Schwarz)不等式.引理1.3.1(柯西-施瓦茨不等式)。

实变函数与泛函分析全册精品完整课件

实变函数与泛函分析全册精品完整课件

University of science & Technology of China
五大论:
集合论-着重介绍 Cantor 关于集合的势论的知识.
测度论-讲解 Lebesgue 测度的思想与方法.
积分论-讲解 L 积分的定义、性质、极限定理和 L 可积函数空间,积分与微分的关系.
空间论-主要讲述无穷维赋范空间和内积空间,以 及与共轭空间有关的知识. 算子论-主要讲述三大基本定理(共鸣定理、开映 射定理、闭图像定理),共轭算子以及算子谱理
论.
University of science & Technology of China
教学目的
使学生掌握 L 测度与 L 积分的基本理论、基本思想 与方法,为今后进一步使用现代分析普遍应用的这 一基本工具打下基础。
使学生掌握有关空间和算子的基本理论和思想方法 . 认识和理解现代数学中公理化、抽象与具体、理 论和应用密切联系的特点并加以应用.
前言
课程的重要性 课程讲授的主要内容 教学目的 难易程度 考核方式
University of science & Technology of China
《实变函数与泛函分析》的重要性 在20世纪初期产生并发展起来的学科,是整 个分析数学中最年轻的学科之一 从“经典理论”向“现代理论”转折的关口 是联系各门课程的纽带
通过与其他学科的联系,加强学生对于数学思想方 法的内在联系和一致性的认识,从整体上提高学生 的数学素养
University of science & Technology of China
课程难度与考核方式
内容抽象,难度较大 平时表现分+考试分数, 比例 认真学习则无须担心考核

实变函数论课件24讲

实变函数论课件24讲
应用:实变函数的积分在数学、物理、工程等领域有着广泛的应用,如求解某些物理量、优化 问题等。
04
实变函数的微分
实变函数的微分定义
实变函数的微分概念 微分的基本性质 微分与导数的关系 微分的应用
实变函数的微分性质
实变函数的微分定义 微分性质:可加性、可数性、可交换性 微分与导数的关系 微分在函数逼近中的应用
物理学:实变函数论在物理学中也有着重要的应用,例如在量子力学、热力学等领域 中,实变函数论可以用来描述一些物理现象。
工程学:实变函数论在工程学中也有着广泛的应用,例如在电气工程、机械工程等领 域中,实变函数论可以用来解决一些实际问题。
经济学:实变函数论在经济学中也有着重要的应用,例如在金融工程、计量经济 学等领域中,实变函数论可以用来描述一些经济现象和解决一些实际问题。
投资组合优化:实变函数论可以用于优化投资组合,提高投资收益并降低风险。
信用评级:实变函数论可以用于评估借款人的信用等级,帮助金融机构做出更明智的贷款 决策。
金融衍生品定价:实变函数论可以用于定价金融衍生品,如期权、期货等,为金融机构提 供更准确的定价模型。
在其他领域的应用
数学分析:实变函数论是数学分析的重要分支,在数学分析中有着广泛的应用。
实变函数在复分析中的应用
添加标题
添加标题
实变函数在概率论中的应用
添加标题
添加标题
实变函数在微分方程中的应用
在工程中的应用
实变函数在工程力学中的应用
实变函数在流体力学中的应用
实变函数在电气工程中的应用
实变函数在计算机科学中的应 用
在金融中的应用
风险度量和管理:实变函数论提供了一种量化风险的方法,帮助金融机构更好地管理风险。

实变函数讲义(中文版)

实变函数讲义(中文版)
D D i =1 n
n
(Hale Waihona Puke i =1))为积分值,定义并讨论新积分的性质(即第
五章内容)。 以上所述, 既是 Lebesgue 创立新积分的原始思路, 也是传统教材介绍 Lebesgue 积分定义的普遍方法。 鉴于人们在研究可测函数时发现:可测函数的本质特征是正、负部函数的下方 图形均为可测集。结合 Riemann 积分的几何意义,使我们自然想到:与其说测度推 广了定义域的长度(面积、体积)概念后使得我门作大、小和更加灵活多样,以达 推广积分的目的,不如说由于定义域与实数域的乘积空间的面积(体积)概念的推 广,使得大量的象 Dinichni 函数那样图形极其不规则的下方图形可以求面积 (体积) 了,从而拓宽了可积范围。于是我们在本教材中采取直接规定其测度之差为积分值 (如果差存在的话)的办法,该定义简单、明了、直观。既有效地避免了分划、大 (小)和、确界概念的繁琐,又成功地回避了先在测度有限,函数有界条件下讨论 积分性质,然后推广到测度无限,函数无界的一般情形的重复、哆嗦。
n 2 n +1 k =1 n → +∞ → n 处处
UE
k
下的小
和 s(f, Tn ), 即 ∫ fdx = lim mG (Φ n , E ) = lim s( f , Tn ) 。 这与定义(R)积分的分割、 求和、
E n→∞ n→∞
取极限三大步骤基本相似;区别仅在于(R)积分直接将定义域分成区间,(L)积分可 能是通过将值域分成区间后反过来将定义域分成有限个不一定是区间的集合。”不 仅是达前后呼应的目的,更重要的是展示了数学新体系形成过程中的“提出问题、 分析问题、克服障碍解决问题、最后完善方法、简化思路”数学创新过程。
1≤i ≤ n

实变函数第一章,第二节

实变函数第一章,第二节

* P42:16. 设A是一个无限集,则存在 A A, 使得
A ~ A, 而A A 是可数集。
* *
假设这是集合A
A\M
从中可以取出可数子集M
M={a1, a2, a3, a4, a5, a6, …} M1 ={a1, a3, a5, …} 很容易将M一分为二M ,M ,
1 2
使得两个都是可数集
第一章 集合
第二节 集合的势、可数集与不可数集
1 映射的定义
定义1:设X,Y是两个非空集合,若依照对应法则 f, 对X中的每个x,均存在Y中唯一的y与之对应,则称 这个对应法则 f 是从 X 到 Y 的一个映射, 记作 f: X→Y
[ ]
注:集合,元素,映射是一相对概念 略:像,原像,像集,原像集,映射的复合,单射,满射, 一一映射(双射)

1、 定积分运算 a 为从[a,b]上的可积函数集 到实数集的映射 (函数,泛函,算子)
2、 集合的特征函数 : X {0,1} A (集合A与特征函数互相决定) 称 A ( x)
b

1 xA 0 xA
为集A的特征函数,
对等与势
1)设A,B是两非空集合,若存在着A到B的 一一映射(既单又满),则称A与B对等, 记作 A ~ B 约定 ~
3){去掉一个点的圆周 } ~ (,)
有限集与无限集的本质区别: 无限集可与其某个真子集合有相同多的元素个数(对等) 且一定能做到,而有限集则不可能。
基数的大小比较
1)若A ~ B, 则称A B;
2)若A ~ B0 B, 则称 A B;
若存在单射f : A B, 则A B 特别地: 若A B, 则A B
证明:平面上的圆由其圆心 (x,y) 和半径 r 唯一决定,从而

实变函数直播课程课件

实变函数直播课程课件

设X是 一 个 无 限 集 取 ,x1, x2 ,L,
xn ,L X是 互 不 相 同 的 元 素 。
令X 0 {x1 , x2 ,L, xn ,L}。作 映 射 f : X X \ {x1},
f
(
x)


xn1 x,
,
当x x(n n 1,2,3,L) 时 ,
当x

X
3,L, xn x,则x A A A' A。 : 设x A',则 存 在xn A, n 1,2, 3,L, xn x, 从 而x A, 因 此 A' A,故A是 闭 集 。
第三章测 度 论
主要内容 外测度及其性质。 Lebesgue 可测集及其性质。
3 理解开集、闭集、完备集的意义,掌 握其性质。
4 理解直线上开集、闭集、完备集的构 造。
5 理解康托集的构造、特性。
例1
已 知 某 一 平 面 点 集E, 其 所 有 相 异 两 点 的 距 离 的 下 确界 是 正 的 , 则E没 有 极 限 点 。
设r inf{d( x, y) | x y, x, y E} 0。
直播课程二
例4:
设A为 平 面 上 以 有 理 点 为 中心 , 以 有 理 数 为 半 径 的 圆 组成 的 集 合 。 则A为 可 数 集 。
O A,O O(a,b, r)
{ } ( x, y) R2 | ( x a)2 ( y b)2 r 2
其中a,b, r Q。
十九世纪初,曾经有人试图证明任 何连续函数除个别点外总是可微的。 后来,德国数学家维尔斯特拉斯提出 了一个由级数定义的函数,这个函数 是连续函数,但是维尔斯特拉斯证明 了这个函数在任何点上都没导数,这 个证明使许多数学家大为吃惊。

实变函数论ppt课件

实变函数论ppt课件

21
第27讲 Lp-空间简介
| f (x) g(x) || f (x) | | g(x) | a.e.[E]
这意味着 f (x) 与 g (x) 的符号在E上几乎处处
1
相 同, 从而由 | f (x) | c p | g(x) | a.e.[E] 得
1
1
f (x) c p g (x) a.e.[E] 所以 f (x) c p g(x) a.e.[E] ,
由上面的讨论,显见对任意 f , g Lp (E,) 有
0 ( f , g)
7
第27讲 Lp-空间简介
即 是Lp (E) Lp (E) 上非负的有限函数。它是不是Lp (E) 上的距离呢?为此,设 ( f , g) 0 ,则得
1
[ | f (x) g(x) |p dx] p 0 , E
则显然有 [ f ] [g] 。这样, 作为 Lp (E) Lp (E)
上的函数的确满足距离定义中的(i),至于(ii)则是
显而易见的,所以只需验证它是否满足(iii)。
10
第27讲 Lp-空间简介
为方便起见,以后也用 f 记 [ f ],只要说f Lp (E)
则指的就是与 f 几乎处处相等的函数类[ f ] ,若
证毕。
由定理2不难看到 Lp (E) Lp (E上) 的函数
满足三角不等式,即对任意 f , g, h Lp (E) ,
22
第27讲 Lp-空间简介
有 ( f , g) ( f , h) (h, g) 。 1
事实上, ( f , g) [ |f (x) g(x) |p dx] p 1
|f g |p dx 0 ,且
p 1
,注意到
p

最新实变函数课件课件ppt

最新实变函数课件课件ppt

执业医师法
医务科
主要内容
概述 医师的权利和义务 医师执业规则 医师考核与培训 医师的法律责任
一、执业医师的权利和义务
医师的权利 1、在注册的执业范围内,进行医学诊查、疾
病调查、医学处置、出具相应的医学证明 文件,选择合理的医疗、预防、保健方案 2、按照国务院卫生行政部门规定的标准,获 得与本人执业活动相当的医疗设备基本条 件; 3、从事医学研究、学术交流,参加专业学术 团体;
二、医师执业规则
5、拒绝受贿及不正当利益 • 第27条:医师不得利用职务之便,索取、
非法收受患者财物或者牟取其他不正当利 益。 •
二、医师执业规则
• 刑法第163条【非国家工作人员受贿罪】公 司、企业或者其他单位的工作人员利用职 务上的便利,索取他人财物或者非法收受 他人财物,为他人谋取利益,数额较大的, 处五年以下有期徒刑或者拘役;数额巨大 的,处五年以上有期徒刑,可以并处没收 财产。
实变函数课件
•达布上和与下和
上积分(外包) 达布上和的极限
b
n
a f(x)dx|T l||i |m 0i1Mixi
xi-1 xi
b
n
(R) a
f(x)dx |T l| || i0m i1f(i)xi

Riemann积分
下积分(内填) 达布下和的极限
b
n
a f(x)dx|T l||i | m 0i1mixi
十分危重,身体处于危险状态的患者。 • 对急危患者,医师应当采取紧急措施进行
诊治;不得拒绝急救处置。
二、医师执业规则
遗弃患者的法律责任: • 拒绝救治或不负责任延误抢救和诊治,造
成严重后果的,由县级以上人民政府卫生 行政部门给予警告或者责令暂停六个月以 上一年以下执业活动;情节严重的,吊销 其执业证书;构成犯罪的,依法追究刑事 责任(过失致人死亡罪)

实变函数(程伟)

实变函数(程伟)

Vitali 覆盖定理
任给 E ⊂ Rn ,{B (x, rx )}x∈E 为 E 的开覆盖,我们引入 Vitaili 覆盖定 理是为了解决下面看似矛盾的因素: (1) 在 {B (x, rx )}x∈E 中选取一族两两互不相交的球; (2) E 被这些球所覆盖。 显然这两者是不可能同时满足的。但我们可以放宽一些要求:Vitali 覆 盖定理牺牲了 (2),而 Besicovitch 覆盖定理牺牲了 (1)。 为方便起见, 对 Rn 中开 (闭) 球 B, 记 B 的半径为 r(B )。 对 0 < a < ∞, 记 aB 为 B 的同心球且 r(aB ) = ar(B )。 定理 6.1. (Vitali 覆盖定理) 设 E ⊂ Rn 为有界集。设 F 为以 E 中每一点 为中心的开球族,则存在可数开球列 {Bα }∞ ,使得 α=1 ⊂ F (可能有限个) (1) {Bα } 两两互不相交; (2) E ⊂ ∪α⩾1 3Bα 。 证明:不妨设 supB ∈F r(B ) < ∞。我们利用数学归纳法选取这样的球:
5.2.1 5.2.2 5.. . . . . . . . . . . . . . . . . . . .
p
卷积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . L (R ) 空间,1 ⩽ p < ∞ . . . . . . . . . . . . . . . .
B (x,r)
若 |x − x′ | ⩽ r′ − r,则 B (x, r) ⊂ B (x′ , r′ )。 (若 |y − x| < r,|y − x′ | ⩽ |y − x| + |x − x′ | < r′ 。 )因此 ∫ 1 t< |f (y )| dy m(B (x, r′ )) B (x′ ,r′ ) ∫ 1 = |f (y )| dy m(B (x′ , r′ )) B (x′ ,r′ ) ⩽ M f (x). 这证明了 M f 的下半连续性,从而 M f 可测。

实变函数-集合PPT28页

实变函数-集合PPT28页


30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
实变函数-集合
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
END

实变函数-集合

实变函数-集合

设有基数 , , 取集合A, B, 使得 A , A ,
3)设A B { f | f : B A}, 记 AB ;
对一些记号的说明
2 A 表示A的子集全体,
思考:如何推广 A A 不可数个集合的 2 与{0, 间存在一一对应 1} (一个子集对应到其相应特征函数) 卡氏积?

2 Zorn引理与选择公理 Zorn引理:设 ( A, ) 是一偏序集,A中的 每个全序子集有上界,则A必有极大元。
选择公理:设 {A } 为一簇两两不交的 非空集簇,则存在一集B使得 , B A 是单元素集。
对选择公理的说明

利用选择公理,Banach在1924年证明了分 球定理,即一个闭球U可分解成两个互不 相交的集合A,B且U与A可 由相同多的有 限多个互相合同的子集并成,U与B可由相 同多的有限多个互相合同的子集并成;粗 略来说即可把一个球U分解成两个与U具有 同样体积的球A和B。 (见:王世强《数理逻辑与范畴论应用》)
Cantor认为把所有的集合汇总在一起,也能组成一个集合, 记为M .根据Cantor定理,M M ; 另一方面,由M的定义知, 2 2 M 的任意元素已在M中,所以2 M M ,因此2 M M , 这样就 得到了矛盾。
因此Cantor在1899年给 Dedekind 的一封信中曾指出,人们 要想不陷于矛盾的话,就不能谈论由一切集合所组成的集合.
5 可数势与连续势
N N
N上的特征函数全体
0
定理 2 R或{0, R(即: 2 ) 1}
证明:由于N的子集全体与特征函数全体存在一一对 应关系,故2N 与{0,1}N对等;下证:
{0, 1}
N
对任意的 {0, , 令f ( ) 1}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 集合
第二节 映射与势
1 映射的定义
定义1:设X,Y是两个非空集合,若依照对应法则 定义1:设X,Y是两个非空集合,若依照对应法则 f, 对X中的每个x,均存在Y中唯一的y与之对应,则称 中的每个x,均存在Y 唯一的 这个对应法则 这个对应法则 f 是从 X 到 Y 的一个映射, 记作 f: X→Y
令B1 = f ( A1 ) B 2 = f ( A2 )
A3 = g ( B 2 ) K
A1
f g f
B 3 = f ( A3 )
K
A2
g
A3
A
*
A
f B
B1
B2
B3
B
*
Bernstein定理的证明 Bernstein定理的证明
A1
f g f
A2
g
A3
A
*
A
f
*
B B 由g ( B) = A*知A2 = g ( B1 ) ⊂ A* , 而A1 = A \ A*,故A1与A2不交
4 Bernstein定理 Bernstein定理
设A, B是两个集,若有 的子集A*,使B ~ A* , A 及B的子集B*,使A ~ B* , 则A ~ B.
即:若A ≤ B, B ≤ A, 则A = B.)
注:要证A = B,需要在A与B间找一个既单又满的映 射; 而要证A ≤ B,只需找一个单射即可 ;从而我们把找既单 又满的映射转化找两个 单射。

1、 定积分运算 ∫a 为从[a,b]上的可积函数集 到实数集的映射 (函数,泛函,算子, 变换) 2、 实数的加法运算+: R×R→R 3、 集合的特征函数 χ : X →{0,1} A (集合A与特征函数互相决定) 称 χA (x) = {
1 x∈A 0 x∉A
b
(群 (群,环,域)
为集A的特征函数,
基数的大小比较
1)若A ~ B, 则称 A = B;
2)若A ~ B1 ⊂ B, 则称A ≤ B; 相当于:A到B有一个单射,也相当于B到A有一个满射
3)若 A ≤ B, 且 A ≠ B,则称 A < B 注:不能用A与B的一个真子集对等描述
如: 1,1) ~ (−1,1) ⊂ (−∞, +∞) (−
注:模糊集:
f : X →[0,1]
参见:《模糊集合、语言变量及模糊逻辑》,L.A.Zadeh
2 集合运算关于映射的性质(像集)
定理1:设 f : X → Y , A, B , Aα (α ∈ Γ )是 X 的子集, 称{ f ( x ) : x ∈ A}为 A的像集,记作 f ( A), 则有: 1) A ⊂ B ⇒ f ( A) ⊂ f ( B ); 2) f ( A U B ) = f ( A) U f ( B ), 一般地有: f ( U Aα ) =
α ∈Γ α ∈Γ
U f ( Aα ); α
∈Γ
3) f ( A I B ) ⊂ f ( A) I f ( B ), 一般地有: f ( I Aα ) ⊂
I f ( Aα ); α
∈Γ
证明的过程略
f ( A I B ) = f ( A) I f ( B )一般不成立, 如常值映射, 等号成立当且仅当 f为单射
从而 A1 , A2 , A3 , L 两两不交 , B1 , B 2 , B3 , L 也两两不交 而且 An ~ B n ( n = 1, 2 , L ), 所以 U An ~ U B n
n =1 n =1 f ∞ f ∞
另 外 由 B k ~ A k + 1 ( k = 1, 2 , L ), 可 知 U B k ~ U A k + 1
n
1,3,5,7,9,11,13,15,...
2n-1
2,4,6,8,10,12,14,16...
2n
0,1, -1, 2, -2, 3, -3, 4 , -4,...

2)(−1,1) ~ (−∞,+∞)
f : x → tg (
π
2
x)
3){去掉一个点的圆周} ~ (−∞,+∞)
Galileo在17世纪最 先考虑自然数与自 然数平方的多少, 1870Cantor开始系 统考虑. 有限集与无限集的本质区别: 无限集可与其某个真子集合有相同多的元素个数(对等) 且一定能做到,而有限集则不可能。
B1
B2
B3
从而A1 , A2在f的象B1 , B2不交 B1 , B2 在 g下的象 A2 , A3不交
由A3 ⊂ A , 知A1与A3不交, 故A1 , A2 , A3两两不交
*
从而A1 , A2 , A3在f 下的象B1 , B2 , B3也两两不交, LL
Bernstein定理的证明 Bernstein定理的证明
注:称与A对等的集合为与A有相同的 势(基数),记作
A
势是对有限集元素个数概念的推广
2)性质 1)自反性:A ~ A; 2)对称性:A ~ B ⇒ B ~ A; 3)传递性:A ~ B, B ~ C ⇒ A ~ C ;

1) N ~ N 奇数 ~ N 偶数 ~ Z
…,-5,-4,-3,-2,…,-5,-4,-3,-2,-1,0,1,2,3,4,5,... 1,2,3,4,5,6,7,8,9,10,...
α ∈Γ α ∈Γ
3) f −1 (C I D) = f −1 (C ) I f −1 ( D), 一般地有:f −1 ( I Cα ) = I f −1 (Cα );
α ∈Γ α ∈Γ
4) f −1 (C \ D ) = f −1 (C ) \ f −1 ( D ); 5) f −1 (C c ) = [ f −1 (C )]c ; 6) A ⊂ f −1[ f ( A)]; 7) f [ f −1 (C )] ⊂ C ;
集合运算关于映射的性质(原像集)
定理2:设f : X → Y , A ⊂ X , C , D, Cα (α ∈Γ)是Y的子集,称{x : f ( x) ∈ C} 为C的原像集,记作f −1 (C )( f 不一定有逆映射),则有: 1)C ⊂ D ⇒ f −1 (C ) ⊂ f −1 ( D); 2) f −1 (C U D) = f −1 (C ) U f −1 ( D), 一般地有:f −1 ( U Cα ) = U f −1 (Cα );
[ ]
或:设X,Y是两个非空集合,f是X×Y的子集,且 :设X,Y是两个非空集合,f 子集,且 对任意x∈X,存在唯一的y ∈Y使(x,y) ∈ f,则f 是从 任意x 存在唯一的 ,则f X 到 Y的一个映射
注:集合,元素,映射是一相对概念 略:像,原像,像集,原像集,映射的复合,单射,满射, 一一映射(双射)
k =1 k =1 k =1 k =1 k =1
∴ A = ( A \ U Ak ) U ( U Ak ) ~ ( B \ U B k ) U ( U B k ) = B
k =1 k =1 k =1 k =1




注:6),7)一般不能使等号 成立,6)等号成立当且仅当 f为单射, 7)等号成立当且仅 当f为满射
证明的过程略
3 对等与势
1)设A,B是两非空集合,若存在着A到B的 设A,B是两 集合,若存在着A 一一映射(既单又满),则称A 一一映射(既单又满),则称A与B对等, 对等, 记作 A ~ B 约定 Φ ~ Φ
k =1 k =1
g

g

又B ~ A , 所以B \ U Bk ~ A \ U Ak +1
* * k =1 k =1
∞ ∞ ∞
g

g

此处都是关于映射g, g, 如果不是同一映射, 则不一定成立.
∞ ∞
A* \ U Ak +1 = ( A \ A1 ) \ U Ak +1 = A \ U Ak ∴ B \ U Bk ~ A \ U AkU λAλ Nhomakorabea∈Λ
Aλ ~

U λ
∈Λ


Bernstein定理的证明 Bernstein定理的证明
证明: 证明:
根据题设,存在 到B*上的一一映射f ,以及B到A* A 上的一一映射g.
A*
f g A
B
*
B
Bernstein定理的证明 Bernstein定理的证明
令A1 = A \ A*
A2 = g ( B1 )
例:由 (−1,1) ⊂ [−1,1] ⊂ (−∞,+∞) ~ (−1,1) 可知 (−1,1) ~ [ −1,1] , 试问如何构造两者间的既单又满的映射。
Bernstein定理的证明 Bernstein定理的证明
引理:设{ Aλ : λ ∈ Λ}, λ : λ ∈ Λ}是两个集族, Λ是一个 {B 指标集,又∀λ ∈ Λ, Aλ ~ Bλ , 而且{ Aλ : λ ∈ Λ}中的集合 两两不交, {Bλ : λ ∈ Λ}中的集合两两不交,那么:
相关文档
最新文档