实变函数论与泛函分析基础(第三版 程其襄) 习题答案第四章

合集下载

实变函数论与泛函分析曹广福到章课后答案

实变函数论与泛函分析曹广福到章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉;若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:i )(inflim )(inf lim x x nnA nnA χχ=ii )(sup lim )(sup lim x x n nA nnA χχ=证明:i )(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明i }{n B 互相正交ii i ni i ni B A N n 11,===∈∀证明:i m n N m n ≠∈∀,,;不妨设n>m,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.ii 因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: i })(|{a x f x E >=}1)({1na x f n +≥∞=ii})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:i })(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即ka a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故 ,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1k a x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim ka x f x E x m n +≤∈=}1)(|{k a x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:ka x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间a,b 上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的; 证明: 设Q 为有理数集,由定理6:Q 是不可数的;现在证:z y x z y x Q Q Q ,,|),,{(=⨯⨯}都是有理数可数Q x ∈∀,因为Q Q ⨯)}({Qx Q x ⨯=∈ 是可数个有理数集的并,故可数,又因为)}({Q Q Q Qx Q Q x ⨯⨯=⨯⨯∈ 并且Q Q Q Q x Q x ⨯⨯⨯∈∀~}{,,所以Q Q x ⨯⨯}{可数故Q Q Q ⨯⨯可数14.证明:可数集的有限子集的全体仍是可数证明: 设Q 为可数集,不妨记为:},,,,,{321 n r r r r Q =N n ∈∀,令}},,,,{|{321n n r r r r a a A ⊂=则 n A 为有限集n 2n =A ,则 n A =∈Nn A 为正交可数集,即0n C ≤A又因为}{A Q x x Q ⊂∈|}{~,所以A Q C ≤=0 ,故0C A =A 是Q 上一切有限子集的全体;15.设是两两不相交的集所组成的集列,证明:∅==∞→∞→n n n n E E lim lim证明: 因为{ ,,21E E }两两不相交,所以,∅=∈∀∞=m nm E N n ,,故∅=∅=∈=∞=∞=∞=∞→11)(lim n m nm n n n E E另一方面,若∅≠=∞=∞=∞→)(lim 1m nm n n n E E ,我们取n n E x ∞→∈lim 0则k n N k k ≥∃∈∀,,使得k n E x ∈.特别的,当 N k ∈=1时,n E x n ∈≥∃有,11,当11+=n k时:211221,E x n n k n N n ∈>+=≥∈∃,有)21n n < 从而,21n n E E x ∈ 这与∅=21n n E E 矛盾,故∅=∞→n n E lim从而∅==∞→∞→n n n n E E lim lim16.若集A 中每个元素由相互独立的可列个指标所决定,即A=}{21 x x a ,而每个指标i x 在一个势为C 的集中变化,则集A 的势为C;证明:设i x 在势为C 的集合中变化,即A=∏∞=∈121}),,(|{21i ix x B x x a因R B R B i i i i'→':,~ϕϕ 是既单又满的映射, 定义 ∏∏∞=∞∞=∈=∀→1211),,(;:i i i iB x x x R Bϕ,)),(),((),,()(2121 x x x x x ϕϕϕϕ==故∞∞=∏RB i i到是1ϕ得既单又满的映射,从而,∞∞=∏R BA i i~~1从而 C R A ==∞17.设n n A ∞=1 的势是C,证明至少有一个n A 的势也是C;证明:因为n n n A A N n ∞=⊂∈∀1, ,所以C A A n n n =≤∞=1如果C A N n n ≠∈∀,,则C A N n n <∈∀,,即,n A 正交可数,从而,n n A ∞=1正交可数.这与C A n n =∞=1矛盾.故,N ∈∃n ,使C A n =.18.证明:0,1上的实函数全体具有势C2 证明:设]}1,0[|{⊂=A A ,则C 2=记0,1上全体是函数所构成的集合为ϑ 对于 ∈∀x ,定义函数⎩⎨⎧∉∈=A x Ax x A .0,1)(χ ,即A χ是集合A 的特征函数;}{ϑ⊂⊂=]1,0[|A A ⇒ ϑ≤= C 2另一方面,ϑ∈∀f ,定义 ]}1,0[|))(,{(∈=x x f x B f则 2R R R B f =⨯⊂,}|{2R R B B R ⨯⊂=,则C R 22=}|{~ϑϑ∈f B f 2R ⊂,所以 C R 22=≤ϑ,从而,C 2=ϑ20.证明:n R 中孤立点集市有限或可数集证明:E x ∈∀中,E 是n R 的一些孤立点所构成的集合 由定义,0>∃x δ,使得}{),(x E x O x = δ.现在令 }|)2,({E x x O x∈=δξ,则ξ中任意二领域是不相交的事实上,若y x E y x ≠∈∃,,,有∅≠)2,()2,(yxy x O δδ取)2,()2,(yxy x O z δδ⋂∈,并且不失一般性设:y x δδ≤,则y yxy z z x y x δδδρρρ=+<+≤22),(),(),(.故 }{)2,()2,(y y x O x yx=∈δδ ,这推出y x =,这与y x ≠矛盾.E x ∈∀,取一个有限点)2,(xx x O r δ∈,则,当,y x r r y x =⇔≠,所以}|{~E x r E x ∈,故ξ≥∈=}|{E x r E x .E 正交可数.19.设|{0x E R E n=⊂,}的内点是E x 称为E 的内点集,证明:0E 是开集; 证明:0E x ∈∀,因为x 为E 的内点,0>∃ε使得:E x x ⊂+-),(εε,现在证:),(E x x ⊂+-εε事实上,),(εε+-∈∀x x y ,取0|y -x |>-=εδ则E x x y y ⊂+-⊂+-),(),(εεεε,故0E y ∈,从而,0),(E x x ⊂+-εε,即0E 中每个点都是0E 得内点因此,0E 为开集21.假设f(x)是a,b 上唯一有限实函数,证明:它的第一类间断点的全体是可数的; 证明:a,b 中右极限存在的间断点是至多可数的. 令)0()(lim |),[{+=∈=+→'x f x f b a x S xx 有限},N ∈∀n ,作:}0|),[{>∃∈=δb a x E n ,时,使得),[),(,b a x x x x δδ+-∈'''∀ 则:1),{)(1b a x f E n n 在是∞= 上连续点的集合事实上,0,10>∀⋂∈∀∞=εn n E x ,取)1(1εε<>nn 即 因n E x ∈0,故),[),(,,000b a x x x x ⋂+-∈'''∀>∃δδδ有ε<-|)()(|0x f x f 即,)(x f 在0x 点连续;2n E S N n -∈∀,,因)()(lim 0+→'='+x f x f xx 有限,故0>∃x δ使得),[),(b a x x x x ⊂+∈'∀δ ,nx f x f 21|)()(|0<-'+,故,),,(,x x x x x δ+∈'''∀有nx f x f 1|)()(|<''-',从而,n x E x x ⊂+),(δ.现在证:}|),{(n x E S x x x A -∈+=δ 是两两不相交的开区间集,,2121x x E S x x n ≠-∈∀,不妨设 21x x <,如果∅≠++),(),(212211x x x x x x δδ ,取),(),(212211x x x x x x x δδ++∈*则 1121x x x x x δ+<<<*即,n x E x x x ⊂+∈),(2112δ,这与n E S x -∈2矛盾,故A 两两不相交,从而n E S -可数故)(11n n n E S S -⋃=⋂-∞=∞=至多可数;即,),[b a 中第一类间断点至多可数; 20.证明nR 中孤立点集是至多可数集证明:设F 是点集E 中一些孤立点所构成的集合0,>∃∈∀x F x δ,有}{),(x E x O x = δ现在先证:}|)2,({F x x O x∈δ是两两不相交的事实上,2121,,x x F x x ≠∈∀,如果)2,()2,(2121xxx O x O y δδ⋂∈∃,则),(),(),(2121x y y x x x ρρρ+≤22122x xxδδδ≤+<不妨设21x x δδ≤,故}{),(2,212x E x O x x =⋂∈δ,这与21x x =矛盾.所以,}|)2,({F x x O x∈δ是两两不相交的.F x ∈∀,取有理点)2,(xx x O r δ∈,故Q F x r F x ⊂∈}|{~,从而,0C Q F =≤22.证明:nR 中直线上每个闭集必是可数个开集的交,每个开集必是可数个闭集的并. 证明:设F 是R '中的一个闭集,先证:0>∀δ,),(δF O =R ∈x {|}),(δρ<F x 是R 中的开集,其中}|),(inf{),(F y y x F x ∈=ρρ),(δF O x ∈∀,则δρ<),(F x ,取δρδε<-=),(F x ,故),(δF O ),(δF O ⊂事实上,),(εx O t ∈∀,所以),(δF O 是开集 现在证:)1,(1nF O F n ∞== 、事实上,N n ∈∀,)1,(n F O F ⊂,所以)1,(1nF O F n ∞=⊂ .反过来,)1,(1n F O x n ∞=∈∀ ,有nF x 1),(<ρ.故0),(=F x ρ.F x ∉,即F R x -∈.0>∃δ,使),(δx O F R -⊂.所以),(δx O ∅=F .故,δρ≥),(F x ,这与0),(=F x ρ矛盾.所以F x ∈,从而)1,(1nF O F n ∞== .再来证:每个开集必是可数个闭集的并.事实上,若G 是开集,则G R -是闭集.所以存在可数个开集N n n O ∈}{,使得}{n O G R =-,所以)(}{11n n n n Q R O R G -=-=∞=∞= .即G 是可数个闭区间集∞=-1)}{(n n Q R 的并.23.假设∞=1}{i i I 是一列开区间,如果∅≠∞=i i I 1,证明i i I ∞=1是一个开区间证明:N ∈∀i ,记}N ∈=i i |inf{αα,}N ∈=i i |sup{ββ ,其中),(i i i I βα=,因为∅≠∞=i n I 1,所以可取),(10βα⊂∈∈∞=i i n I I x现在我们证:i i I ∞==1),( βα因为N i ∈∀,),(),(βαβα⊂=i i i I ,故),(1βα⊂∞=i i I反过来,),(βα∈∀x ,即βα<<x ,当0x x ≤时,因为x <α,所以N ∈∃1i ,有ββαα≤<≤<<<110i i x x x .所以i i i i i I I x ∞=⊂=∈1),(111 βα. 如果β<≤x x 0,N ∈∃2i ,使220i i x x x β<≤<,故i i i i i I I x ∞=⊂=∈12111),( βα,从而i i I ∞==1),( βα24.设R E '⊂,}|{A B ∈λλ是E 的一个开覆盖,证明:}|{A B ∈λλ中必存在至多可数个}|{N ∈i B i λ,使得iB E i λN∈⊂ .证明:不妨设}|{A B ∈λλ中每一个元都是开区间.E x ∈∀,存在A x ∈λ,有x B x λ∈,故有:R ∃端点的开区间),(R r x x =δ,使得x B x x λδ⊂⊂.即,ix Ex E δ∈⊂ .又因为}|),({E x R r x x x ∈=δ~Q Q E x R r x x ⨯⊂∈}|),{(所以}|{E x x ∈δ可数.不妨设}|{E x x ∈δ=}|{N n x ∈δ,又记=∈}|{E x B n λ}|{N n B n ∈λ.其中,n B n λδ⊂}(N n ∈∀故n B E n n x λδδNn NEx ∈∈∈⊂=⊂25.已知:可数集},21,21,21,1{2 n E =,开区间列)1,1(εε+-,)21,21(εε+-, ),21,21(,n n εε+-,覆盖了它,这里210<<ε,从此覆盖中能否选出集E 的有限子覆盖.答:不能,证明如下:证明:反正如果k n n n ,,21∃,N k ∈,使得)21,21(1n nki E εε+-⊂= ,不妨设 k n n n <<< 21,因为)1(k i i ≤≤∀,12122112121+=->-≥-kk k i n n n n εε,则121+k n)21,21(1k k n n ki εε+-∉= .这与E k n ∈+121矛盾.所以不真.26.设}|{A F ∈λλ是一簇集合,如果A n ∈∀λλλ,,,21 ,有∅≠=i F ni λ1,则称集合簇}|{A F ∈λλ具有有限交性质.证明:如果}|{A F ∈λλ是具有有限交性质的非空有界闭集簇,那么∅≠∈λλF A.证明:取A ∈0λ,令}1),(|{0<∈=λρF x R x G n ,其中=),(0λρF x}|),(inf{0λρF y y x ∈,∑=-=ni i iy xy x 12)(),(ρ,则G 是n R 中开集.且G F ⊂0λ,如果∅=∈λλF A,则)(0λλλλλF G F G G F AA-=-=⊂∈∈ .由Borel 有限覆盖定理P27 定理9,存在m λλλ,,,21 ,使得⊂0λFi mi mi F G F G i λλ11)(==-=- .从而,∅====i mi i mi F F F λλλ01)(0 ,这与}|{A F ∈λλ具有有限交性质矛盾.27.试用Borel 有限覆盖定理证明:Bolzano-Weiestyass 定理P24定理4,若E 是是一个有界无穷点集,则∅≠'E .证明:设E 是nR 中的有界无穷点集,如果∅='E ,则E x ∈∀,0>∃x δ,使得}{),(x E x O x = δ,则),(x Ex x O E δ∈⊂ .由Borel 有限覆盖定理,E x x x n ∈∃,,,21 ,有),(1i x i m i x O E δ=⊂ ,从而)],([1i x i m i x O E E δ== =),(1i x i m i x O E δ ==}{1i mi x = =},,,{21n x x x ,这与E 为无穷集矛盾,从而∅≠'E .29.可数个开集的交称为δG 型集,可数个闭集的并称为σF 型集.证明:有理数集不是δG 型集,但是σF 型集.证明:设Q 为R '中全体有理数所构成的集合.如果Q 是δG 型集,即n n G Q ∞==1,其中n G 是开集,由开集的结构,N n ∈∀,),(k k n n kn G βα =,其中k n n k k )},{(βα是互不相交的开区间. 不是一般性,设 ≤≤≤≤<≤<11111n n n n n n k βαβαβα这是,必有1-∞=1n α事实上,如果-∞≠1n α,即r ∃为有理数,1n r α<.因为N k ∈∀,k n n r αα<<1,故Q G G r n n n n n kk k =⊃=∉∞=1),( βα,这与Q r ∈矛盾.2N k ∈∀,1,,+=k n k n αβ如果N k ∈∃*,1,,**+≠k n k n αβ.则1,,**+<k n k n αβ.因此,Q r ∈∃,有1,,**+<<k n k n r αβ.这有:Q G r n n n kkk⊃=∉),(βα 这是一矛盾.3 +∞==}{sup ,k n kn ββ.事实上,若+∞≠n β,则n β为有限实数,Q r ∈∃,使得k ∀,r n k n <≤ββ,,故Q G r n n n kk k ⊃=∉),(βα ,这也是一矛盾.}|{}{),(,,,,k R G R k n kk n kk n k n kn ααβα ==-'=-'},|{}|{}{,,111k N n k G R G R Q R k n k n n n n n n ∈==-'=-'=-'∞=∞=∞=αα 为可数集,这与C Q R =-'矛盾.因为在R '中单点集是闭集,所以Q r ∈∀,令}{r F r =,则F 为闭集,所以r Qr F Q ∈= ,故Q 为σF 型集.30.定义在]1,0[上的任何函数的连续点构成的集合是一个δG 型集.92'.证明:开区间)1,0(中有理点的全体不是一个δG 型集,但是一个δG 型集.30.是否存在]1,0[上的的函数满足:在有理点处连续,而在无理点处都不连续 是证明你的结论. 回答:不存在.为此,只需证明如下命题命题:开区间)1,0(中的任何函数的连续点构成的集合是一个δG 型集.这是因为,如果存在]1,0[上的函数f ,使得)()(lim |)1,0({)1,0(x f x f x Q xx ='∈=→'' . 当命题成立时,必有Q )1,0(为δG 型集,这与92'题的结论矛盾. 命题的证明:设)(x f 是开区间)1,0(有定义的一实函数,记)()(lim |)1,0({x f x f x E xx ='∈=→'',下证:E 是一个δG 型集.N n ∈∀,令10|),{(<<<=βαβαn A 且⇒∈∀),(2,1βαx xnx f x f 1|)()(|21<-.又记n n A G =.于是,我们只需证:n N n G E ∈= .事实上,E x ∈∀,因为)()(lim x f x f xx ='→'',所以N n ∈∀,0>∃n δ,使得)1,0(),(⊂+-∈'∀n n x x x δδ,恒有nx f x f 21|)()(|<-',所以 )1,0(),(,21⊂+-∈∀n n x x x x δδ,恒有+-≤-|)()(||)()(|121x f x f x f x fnx f x f 1|)()(|2<-,故n n n G x x ⊂+-),(δδ,所以n n n n n G x x x ∞=∞=⊂+-∈11),( δδ即,n n G E ∞=⊂1反过来,n n G x ∞=∈∀1.⇒+-∈'∀>∃>∀),(,0,0:(n n x x x f δδδε)|)()(|2ε<-'x f x f0>∀ε,取N n ∈0,使得ε<01n .因为001n n n n A G G x =⊂∈∈∞=所以R ∈∃βα,:10<<<βα,使得),(βα∈x ,并且),(,21βα∈∀x x 有ε<<-0211|)()(|n x f x f ,取0},min{>--=x x βαδ,故x '∀:δ<-'||x x ,即 x ',),(),(βαδδ⊂+-∈x x x ,所以ε<<-'01|)()(|n x f x f .从而='→'')(lim x f x x)(x f .故E x ∈.因此,n n G E ∞==1 真.31.假设R A '⊂,且对任意R x '∈,存在x 的一个δ-领域),(δδ+-x x ,使得A x x ),(δδ+-最多只有可数个点,证明:A 必有有限级或可列集.证明:因为A x ∈∀,0>∃x δ使得x x x B A x x =+- ),(δδ是一个至多可数集,而),(x x Ax x x A δδ+-⊂∈由24题,A N i x i ⊂∈∃}|{使得:),(1i i x x i n x x A δδ+-⊂∞=又i i i i i x n x x i n x x i n B x x A x x A A ∞=∞=∞==+-=+-=111)),(()],([ δδδδ.即A 至多可数. 32.证明下列陈述相互等价. i A 是无处稠密集ii A 不包含任何非空开区间iii A 是无处稠密集 iv A 的余集A C 是稠密集无处稠密集:nR E ⊂,E 称为是无处稠密的,如果,0>∀δ,nR x ∈∀,),(δx O E ⊄.证明:i ⇒ii.设A 是无处稠密集,即0>∀δ,R x '∈∀有A x x ⊄+-),(δδ. 如果)(,βαβα<'∈∃R ,有A ⊂),(βα.取2βα+=x ,取02>-=αβδ,故A x x ⊂=+-),(),(βαδδ.这与A x x ⊄+-),(δδ得假设矛盾.所以i ⇒ii 真.ii ⇒iii.如果A 不是无处稠密的,即nR x ∈∃0,0>∃δ,使得),(δδ+-x xA ⊂=),(βα.这与A 不包含任何非区间矛盾.iii ⇒iv.设A 无处稠密.现在我们证:R A R '=-'.R x '∈∀,如果A R x -'∉,则A x ∈,所以0>∀δ,有A A x x =⊄+-),(δδ.故∅≠-'+-)(),(A R x x δδ.所以A R x -'∈.iv ⇒i.设R A R '=-',R x '∈∀,0>∀δ,∅≠-'+-][),(A R x x δδ.所以A x x ⊄+-),(δδ.从而,A 无处稠密. 33.证明:若集合E 的聚点0x 不属于E ,则0x 是E 的边界点.定义:0x 称为E 的边界点,如果0>∀δ,有∅≠E x O ),(0δ且∅≠E x O ),(0δ.证明:设E E x -'∈0,则0>∀δ,∅≠=-E x O E x x O ),(}]{),([000δδ.且∅≠-∈)(),(00E R x O x n δ,即,0x 是E 的界点.第二章习题参考解答1:证明:有理数全体是R '中可测集,且测度为0.证:1先证单点集的测度为0.R x '∈∀,令}{x E =.0>∀ε,N n ∈∀)2,2(11+++-=n n n x x I εεε,因为E I I E m n n n n ⊃=∞=∞=∑11||inf{* ε,n I 为开区间≤}∑∑∞=∞===112||n n n nI εεε.故0*=E m .所以E 可测且0=mE .2再证:R '中全体有理数全体Q 测度为0.设∞=1}{n n r 是R '中全体有理数,N n ∈∀,令}{n n r E =.则}{n E 是两两不相交的可测集列,由可测的可加性有:∑∑∞=∞=∞=====11100)(*n n n n n mE E m Q m .法二:设∞==1}{n n r Q ,N n ∈∀,令)2,2(11+++-=n n n n n r r I εεε,其中ε是预先给定的与n无关的正常数,则:∑∑∑∞=∞=∞=∞===≤⊃=11)(112||}||inf{*i i nin i i n IQ I I Q m εεε .由ε得任意性,0*=Q m .2.证明:若E 是nR 有界集,则+∞<E m *.证明:若E 是nR 有界.则∃常数0>M ,使E x x x x n ∈=∀),,(21 ,有=EM xxni ini i≤=-∑∑==1212)0(,即)1(n i i <≤∀,有M x i ≤,从而],[1M x M x E i ni i +-⊂∏=.所以+∞<=≤+-≤∑∏==n ni i n i i M M M x M x m Em )2(2],[**113.至少含有一个内点的集合的外测度能否为零解:不能.事实上,设nR E ⊂,E 中有一个内点 E x x x n ∈=),(1 .0>∃δ,使得E x x x O i ni i ⊂+-=∏=)2,2(),(1δδδ.则0)]2,2([**1>=+-≥∏=n i ni i x x m E m δδδ所以0*≠E m . 4.在],[b a 上能否作一个测度为a b -,但又异于],[b a 的闭集解:不能事实上,如果有闭集],[b a F ⊂使得a b mF -=.不失一般性,可设F a ∈且F b ∈.事实上,若F a ∉,则可作F a F }{*=,],[*b a F ⊂.且mF mF a m mF =+=}{*.这样,我们可记*F 为新的F ,从而),(),(),(],[b a F b a F b a F b a -=-=-.如果∅≠-F b a ],[,即F b a F b a x -=-∈∃),(],[,而F b a -),(是开集,故x 是F b a -],[的一个内点,由3题,0),()],([)],([*≠-=-=-mF b a m F b a m F b a m .这与a b mF -=矛盾.故不存在闭集],[b a F ⊂且a b mF -=5.若将§1定理6中条件")("0∞<≥n k n E m 去掉,等式∀n n n n mE E m ∞→∞→<lim )lim (是否仍成立 解:§1定理6中条件")("0∞<≥n k n E m 是不可去掉的.事实上,N n ∈∀,令),1[n n E n --,则∞=1}{n n E 是两两相交的可测集列,由习题一得15题:∅==∞→∞→n n n n E E lim lim .故0)lim (=∞→n n E m ,但N n ∈∀,1),1[=-=n n m mE n .所以1lim =∞→n n mE .从而)lim (lim n n n n E m mE ∞→∞→≠.6.设1E , ,2E 是)1,0[中具有下述性质的可测集列:0>∀ε,N k ∈∃使ε->1k mE ,证明:1)(1=∞=i i E m证:事实上,0>∀ε,因为N k ∈∃,ε->1k mEε->≥≥≥∞=1)(]1,0[11k i i mE E m m7.证明:对任意可测集B A ,,下式恒成立.mB mA B A m B A m +=+)()( .证明:A A B A B A )(-=且∅=-A A B A )(故 mA A B A m B A m +-=)()( .即)()()(A B m A B A m mA B A m -=-=-又因为)()(A B A B B -=.且∅=-)()(A B A B ,所以=mB)()(A B m A B m +-故)()(B A m mB mA B A m -=-,从而mB mA B A m B A m +=+)()( 8.设是1A ,2A 是]1,0[中的两个可测集且满足121>+mA mA ,证明:0)(21>A A m .证:212121)()(mA mA A A m A A m +=+ .又因为1])1,0([)(21=≤m A A m所以01)()(21212121>-+≥-+=mA mA A A m mA mA A A m9.设1A ,2A ,3A 是]1,0[中的两个可测集,且2321>++mA mA mA ,证明:0)(321>A A A m证:321321321)(])[()(mA A A m A A A m A A A m +=+ =)()()()(21321A A m A m A m A m -++.所以)()()()()][()(32132132121A A A m A m A m A m A A A m A A m -++=+又因为)]()()[(133221A A A A A A m =)]()[(32121A A A A A m =)][()(32121A A A m A A m +)][()[(32121A A A A A m -=)(21A A m + 321)[(A A A m ][(321A A A m -.所以=)(321A A A m -+)][()(32121A A A m A A m )]()()[(133221A A A A A A m =)]()()[()()()()(133221321321A A A A A A m A A A m A m A m A m --++因为1]1,0[)(321=≤m A A A m1]1,0[)]()()[(133221=≤m A A A A A A m .所以02)()()(11)()()()(321321321>-++=--++≥A m A m A m A m A m A m A A A m .10.证明:存在开集G ,使mG G m >证明:设∞=1}{n n r 是]1,0[闭区间的一切有理数,对于N n ∈∀,令)21,21(22+++-=n n n n n r r I ,并且n n I G ∞==1是R '中开集2121121212111=-==≤∑∑∞=+∞=n n n n mI mG .而,]1,0[⊃G ,故mG m G m =>=≥211]1,0[. 11.设E 是R '中的不可测集,A 是R '中的零测集,证明:CA E 不可测.证明:若CA E 可测.因为A A E ⊂ ,所以0*)(*=≤A m A E m .即0)(*=A E m .故A E 可测.从而)()(CA E A E E =可测,这与E 不可测矛盾.故CA E 不可测. 12.若E 是]1,0[中的零测集,若闭集E 是否也是零测集.解:不一定,例如: E 是]1,0[中的有理数的全体.]1,0[=E .0=mE ,但1]1,0[==m E m .13.证明:若E 是可测集,则0>∀ε,存在δG 型集E G ⊃,σF 型集E F ⊃,使ε<-)(F E m ,ε<-)(F G m证明:由P51的定理2,对于nR E ⊂,存在δG 型集E G ⊃,使得E m mG *=.由E 得可测性,mE E m =*.则0>∀ε.0)(=-=-mE mG E G m .即0>∀ε,ε<-)(F G m . 再由定理3,有σF 型集F 使得E F ⊃.且ε<=-=-0)(mF mE F E m15.证明:有界集E 可测当且仅当0>∀ε,存在开集E G ⊃,闭集E F ⊃,使得ε<-)(F G m .证明:)(⇐N n ∈∀,由已知,存在开集E G n ⊃,闭集E F n ⊃使得nF G m n n 1)(<-. 令n n G G ∞==1,则E G ⊃.N n ∈∀,)(*)(*)(*n n n F G m E G m E G m -≤-≤-)(01∞→→<n n.所以,0)(*=-E G m .即E G -是零测集,可测. 从而,)(E G G E --=可测)(⇒设E 是有界可测集因为E I IE m n n n n⊃=∞=∞=∑11||inf{* ,n I 为开长方体+∞<}.故,0>∀ε,存在开长方体序列∞=1}{n n I ,使得E I n n ⊃∞=1.有2*||*1ε+<≤∑∞=E m I E m n n .另一方面,由E 得有界性,存在nR 中闭长方体E I ⊃.记E I S -=,则S 是nR中有界可测集.并且mE mI mS -=.由S 得有界可测性,存在开集S G ⊃*有2)(*ε<-S G m .因为E I ⊃,故S I G ⊃ *.因此mS I G m S I G m -=->)()(2** ε==--)()(*mE mI I G m))((*I G m mI mE --)(*I G I m mE --=令,I G I F *-=,则F 是一个闭集,并且由E I S I G -=⊃ *,有F IG I E =-⊃ *.因此2)()(*ε<--=-=-I G I m mE mF mE F E m ,从而,存在开集E G ⊃,闭集E F ⊃.有))()(()(F E E G m F G m --=- )(E G m -≤)(F E m -+εεε=+<22.由ε的任意性知,0})0{(*=⨯'R m .即}0{⨯'R 是零测集.从而,位于ox 轴上的任意集}0{⨯'⊆R E ,因此,E 为零测集.16.证明:若nm R E ⊂是单调增加集列不一定可测且m n E ∞=1,则m m m n E m E m *lim )(*1∞→∞==证明:m n E E ∞==1,即,E 有界并且E E E E E n ⊂⊂⊂⊂⊂⊂ 321故+∞<≤≤≤≤≤≤E m E m E m E m E m n *****321 ,即∞=1}*{m m E m 单调递增有上界.所以,m m E m *lim ∞→存在并且E m E m m m **lim ≤∞→下证:E m E m m m **lim ≥∞→.由于E 有界,可作一个开长方体),(1∏==∆ni iiβα,有N n ∈∀,∆⊂⊂E En.0>∀ε,因为n i n i i n E I I E m ⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故,存在开长方体序列}{i I使得n i n E I ⊃∞=1,且ε+<=≤≤∑∑∞=∞=∞=111*||*)(**i n ii ii n n E m II m I m E m .令∆=∞= )(1i n n I G ,则nG 为有界开集,且∆⊂⊂n n G E ,ε+<≤≤∞=n n i n n E m I m G m E m *)(***1.N n ∈∀,又令=n A k n G ∞=1),2,1( =n .且n n A A ∞==1,则由∆⊂⊂n n A E 知,}{n A 是单调递增的可测序列,由P46的定理4,n n n n mA A m mA E m ∞→∞→==≤lim lim *.又由,)(N n G A n n ∈∀⊂,有ε+<≤n n n E m mG mA *.从而ε+≤∞→∞→n n n n E m mA *lim lim .故ε+≤∞→n n E m E m *lim *.由ε得任意性,即得n n n E m mA *lim ∞→≤.从而,n n n m n E m E m mA *lim )(*1∞→∞=== .17.证明:n R 中的Borel 集类具有连续势.证明:为了叙述方便,我们仅以1=n 为例进行证明:用[,]b a 表示R '上的开区间,用),(b a 表示上的一个点.A 表示R '上的所有开区间的集合;Q 表示R '所有闭集;σρ和δϑ分别表示所有的σF 型集,所有δG 型集.因为R R b a R b a b a R b a b a A '⨯'⊂<'∈'∈=},,|),{(~},[,{],又因为A R a b a R ⊂'∈'}[,{]~.故C R R A R ='⨯'≤≤'.所以C A =.又因为|{O A ⊆存在可数个开区间}{k I ,有}1k k I O ∞== .所以Q A ≤.又定义映射Q A →∞:ϕ,∞=∈∀∏A I ni i 1,有Q I I k k ni i ∈=∞==∏11)( ϕ.故ϕ是一个满射.所以C A A Q A C =≤=≤=∞∞)(ϕ. 故C A =.又定义:→∞Q:ψδϑ,→∞Q :τσρ,i i ni i O O ∞===∏11)( ψ,ci i ni i O O ∞===∏11)( τ则ψ与τ都是满射.所以 C Q Q Q C =≤==≤∞∞)(ψϑδ.即,C =δϑ.同理,C =σρ.记β时R '上的Borel 集的全体.因集合的“差”运算可以化成“交”运算,例如:∆⊂=⊂=∞=∞=A A E E n n n n 11c B A B A =- .因此,β中的每个元都是δσϑρ 中可数元的并,交后而成.故C C =≤≤=∞)(δσδσϑρβϑρ .从而,C =β.即,R '上Borel 集的全体的势为C .18.证明对任意的闭集F ,都可找到完备集F F ⊂1,使得mF mF =1.19.证明:只要0>mE ,就一定可以找到E x ∈,使对0>∀δ,有0)),((>δx O E m .证明:设n R E ⊂,0>mE .首先将nR 划分成可数边长为21的左开右闭的n 维长方体 }|)21,2({1Z m m m i i ni i ∈+= .则}|)21,2({11Z m m m E i i ni i ∈+== β互不相交且至多可数.不妨记为1}{)1(1A k k E ∈=β,N A ⊂1.因)1(1k k E E ==β,则0)1(>=∑kkEm mE .故N k ∈∃1,有0)1(1>k mE .又因}|)21,2({212)1(2Z m m m E i i ni i k∈+== β互不相交且至多可数.故可记2}{)2(2A k k E ∈=β,其中 N A ⊂2,又由,)2(2)1(k k k E E ==β.故0)2()1(>=∑k kk E mE ,所以, N A k ⊂∈∃22,有0)2(>k mE .这样下去得一个单调递减的可测集列 ⊃⊃⊃=)2()1()0(210k k k E E E E ,其中:N j >∀,)]21,2([)]21,2([{111j i n i j i j i ni j i j k jk m m E m m EE j j+=+===- .记)]21,2([1j i ni ji j m m E F +== ,故闭集列∞=1}{j j F 单调递减且N j >∀,)(0)21(21)(0)(+∞→→=≤≤<j mF E m jnnj j k jj . 由闭集套定理,j j F x ∞=∈∃1! .对于0>∀δ,因jnj mF )21(≤,取N j >0,使δ<0)21(j n .则 E x O m m E F x j i ni j i j ),()]21,2([0001δ⊂+=∈=,故0)),((0>≥j mF x O E m δ .20.如果nR E ⊂可测,0>α,记}),,(|),,{(11E x x x x E n n ∈= ααα.证明:E α也可测,且mE E m n⋅=αα)(.证明:1先证:E m E m n*)(*⋅=αα因为E I IE m i i i iαα⊃=∞=∞=∑11||inf{)(* ,i I 为开长方体},对于开长方体序列∞=1}{i n I ,若E I i i α⊃∞=1,则E I i i ⊃∞=α11,E I i i ⊃∞=α11也是开长方体序列,且∑∞=≤1|1|*i i I E m α=∑∞=1||1i inIα.即∑∞=≤⋅1||*i i nI E m α.因此≤⋅E m n*αE I I i i i i α⊃∞=∞=∑11||inf{ ,i I 为开长方体}.另一方面,0>∀ε,因为E I IE m i i i i⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故存在开长方体序列n i i E m I αε+<∑∞=*||1*.所以E I i i αα⊃∞=*1 ,故εαααα+<==∑∑∞=∞=E m I I E m n i i n i i *||||)(*1*1*.由ε得任意性,知E m E m n *)(*αα≤.从而E m E m n *)(*αα=2再证:E α可测事实上,nR T ⊂∀,n R T ⊂α1,由E 得可测性,=)1(T m α+)1(*E T m α)1(*CE T m α.故,=)(1T m n α+)(*1E T m n αα )(*1CE T m n αα.因此=T m *+)(*E T m α )(*CE T m α .E α可测. 因此,当E 可测时,mE E m nαα=*.下面是外测度的平移不变性定理.定理平移不变性设nR E ⊂,nR x ∈0,记}|{}{00E x x x x E ∈+=+.则E m x E m *}){(*0=+证明:当E 是nR 中开长方体时}{0x E +也是一个开长方体,且其相应的边均相同,故E m E x E x E m *|||}{|}){(*00==+=+.如果E 是nR 中的任意点集,对于E 德任意由开长方体序列∞=1}{i i I 构成的覆盖,∞=+10}}{{i i x I 也是覆盖}{0x E +,且仍是开长方体序列,故≤+}){(*0x E m∑∑∞=∞==+110|||}{|i i i iI x I.所以≤+}){(*0x E m E I I i i i i ⊃∞=∞=∑11||inf{ ,i I 为开长方体}=E m *.即≤+}){(*0x E m E m *.下证:E m *≤}){(*0x E m +令}{01x E E +=,由上面的证明知,}){(*01x E m -+≤1*E m .所以=E m *}){(**}){(*0101x E m E m x E m +=≤-+.从而,E m x E m *}){(*0=+.21.设2)(x x f =,R E '⊂.是零测集,证明:}|)()(2E x x x f E f ∈==也是零测集.证明:设R E '⊂,0=mE1当)1,0(⊂E 时,0>∀ε,当0*=E m ,则存在开区间到∞==1)},({i i i i I βα使得)1,0(),(1⊂⊂∞=i i i E βα ,且2)(||11εαβ<-=∑∑∞=∞=i i i i iI.故==∞=)),(()(1i i i f E f βα)1,0(),(221⊂∞=iii βα .))(()(|)(|)(*12211i i i i i iii i i I f E f m αβαβαβ+-=-=≤∑∑∑∞=∞=∞=εεαβ=-=-≤∑∞=22)(21i i i .所以0)(*=E f m .第三章习题参考解答 1.设f 是E 上的可测函数,证明:R a '∈∀,})(|{a x f x E ==是可测集.解:R a '∈∀,因为)(x f 是E 上的可测,所以})(|{a x f x E ==与})(|{a x f x E ≤=均是可测集.从而})(|{a x f x E ==})(|{a x f x E ≥==})(|{a x f x E ≤= 可测.2.设f 是E 上的函数,证明:f 在E 上的可测当且仅当对一切有理数r ,})(|{r x f x E >=是可测集.证:)(⇐R a '∈∀,取单调递减的有理数序列∞=1}{k k r 使得a r k k =+∞→lim ,则})(|{})(|{1k k r x f x E a x f x E >=>=∞= .由每个k r x f x E >)(|{}的可测性,知})(|{a x f x E >=可测.从而,)(x f 在E 上的可测.)(⇒设f 在E 上的可测,即R a '∈∀,})(|{a x f x E >=可测.特别地,当r a =时有理数时,})(|{r x f x E >=可测.3. 设f 是R '上的可测函数,证明:对于任意的常数α,)(x f α是R '上的可测函数. 为证上述命题,我们先证下面二命题:命题1.若E 是R '中的非空子集,则R '∈∀α,有E m E m *||*αα=证明:当0=α时,因为}0{=E α,则E m E m *||*αα=.不妨设,0≠α.因为E I I E m i i i i ⊃=∞=∞=∑11||inf{* ,i I 为开区间}.0>∀ε,存在开区间序列∞=1}{i i I ,E I i i ⊃∞=1 ,||*||*1αε+<≤∑∞=E m I E m i i .又因为E I i i ⊃∞=α1 注:若),(i i i I βα=,则⎩⎨⎧=ααααβααβααα),,(),,(i i i i i I .所以εααααα+⋅<==≤∑∑∑∞=∞=∞=E m I I IE m i i i i i i*||||||||||||*111.由ε得任意性,有i i i i i I E I I E m ,||inf{*11αα⊃≤∞=∞=∑ 为开区间}故存在开区间∞=1}{i i I ,使E I i i α⊃∞=1,且εα+<≤∑∞=E m I E m i i *||*1.又因为E I i i ⊃∞=α11,故εαα+<≤∑∞=E m I E m i i *|1|*1.由ε得任意性,有E m E m αα**||≤从而E m E m αα**||=.命题2.设R E '⊂,+∞<E m *,则E 可测⇔R '∈∀α,E α可测.由题的直接推论.证:)(⇐是直接的,我们仅需证明)(⇒R '∈∀α,如果0=α,则}0{=E α为零测集.故E α可测.不妨设0≠α.现在证明R T '⊆∀,)(*)(**E C T m E T m T m αα +=.事实上,对于R T '⊆∀,则R T '⊆α1,因为E 在R '可测,所以)1(*)1(*)1(*CE T m E T m T m ααα+=,即)(*||1)(*||1*||1CE T m E T m T m αααα+=)(*)(**E C T m E T m T m αα +=即E α可测.3.设f 是R '上的可测函数,证明:对于任意常数α,)(E f α仍是R '上的可测函数.解:记R E '=,对于R '∈∀α,当0=α时,R a '∈∀,⎩⎨⎧>'=≤∅=>af R E a f a f x E )0(,)0(,})0(|{.故})(|{a x f x E >α可测所以:)(x f α可测.当0≠α时,R '∈∀α,令x y α=,则})(|{})(|{a y f xyE a x f x E >=>α= })(|{1a y f y E >α.在因为f 在R '可测,故})(|{a y f y E >可测,又由命题2,})(|{})(|{a x f x E a y f y E >=>可测.从而)(x f α使R E '=上哦可测函数.4.设)(x f 是E 上的可测函数,证明:3)]([x f 在E 上可测.证明:R '∈∀α,因为)(x f 在E 上可测.所以})(|{3a x f x E >是可列集.即})(|{})(|{33a x f x E a x f x E >=>可测.从而3)]([x f 在E 上可测.5.若],[b a 上的函数)(x f 在任意线段],[βα)(b a <<<βα上可测,试证它在整个。

实变函数论与泛函分析课后答案

实变函数论与泛函分析课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

第三版实变函数论课后答案

第三版实变函数论课后答案

i 1
( Ei (
m j 1
Fj )c ) ( Ek (
m j 1
Fj ) c ) , (i k )
aij ci d j , 1 i n,1 j m
则 易 知
iE
(
m i 1
El )c ) , ( j k)
i 1
n
2. 证明当 f ( x) 既是 E1 上又是 E2 上的非负可测函数时, f ( x) 也是 E1 E2 上的非负可测函数 证明:显然 f ( x) 0 于 E1 ,且 f ( x) 0 于 E2 表明 f ( x) 0 于 E1 E2 又
由 P64Th5
m( E ) lim mAk ,而 mE ,则 m( E )
k
故 0 , k0 使 0 m( E ) mAk0 ,

2
,而 Ak0 E 故 m( E \ Ak0 )

2
a R1
由 E0 , Ak0 可测, 闭集 F1 Ak0 , m( Ak0 \ F1 )

, 闭集 F0 E0 使
E1 E2 x | f ( x) a E1 x | f ( x) a E2 x | f ( x) a

证毕.

8
m( E \ Ak0 ) m( Ak0 \ F1 )

8


2


8


4


2

E
上 几 乎 处 处 有 限 , mE 0 . 由 f ( x) 可 测 于 E 上 知 ,
E0 E x | f ( x) 0 E x | f ( x) 0 是可测集(P103Th2,P64Th4 可测集

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
2.集合的包含关系
若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
例7. 若 在R上定义,且在[a,b]上有上界M,即任意对
∈[a,b]有 M.用集合语言表示为:[a,b] { : M}.
用集合语言描述函数性质,是实变函数中的常用方法,请在看下例.
定理1
(交换律)
证明我们只证明
先设 则有 且有 于是这证来自了在证反过来的包含关系,设 ,则有 ,此即 ,因此 于是 。
综合起来,便是等式成立。
这表面,集合运算的分配律,在无限并的情况下依然成立
3、集合的差集和余集
若A和B是集合,称 为A和B是差集,A\B也可以记为A-B,如图1.3是A-B的示意图:
请读者注意:我们怎样把描述函数列性质的 语言,转换为集合语言。
例12 设 是定义在E上的函数列,若x是使 收敛与0的点,则对任意的 ,存在 ,使得对任意 即
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
例1设 和 是定义在E上的函数,则对任意
例2.
例3若记
例4 若 是一族开区间,而 ,则存在
使得 (有限覆盖定理)
例5若 是定义在E上的函数,则
2、集合的交集
设A,B是任意两个集合,由一切既属于A又属于B的元素组成的集合C称为A和B的交集或积集,简称为交或积,记作 ,它可以表示为

实变函数论课后答案第三版

实变函数论课后答案第三版

1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。

证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -是B 的子集,故()()cc A A C F A ∅=∈)又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅. 则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。

实变函数与泛函分析基础 习题答案

实变函数与泛函分析基础 习题答案

n=0
n=0
xn+p ln
1 x

0,
1 xp 1

0
1 − x ln x dx = −
n=0
1 0
xn+p ln xdx
=
∞ n=0
(n +
1 p+
1)2
=
∞ n=1
1 (n + p)2 .
ßÎ 15. { fn} E
¨
¹ Ö lim
n→∞
fn(x)
=
f (x)a.e.
E,
¿ f (x) Î ¡ Æà ¶¸²³
E −
ǯ± ¡
ÝÌ [0, 1] ÙÄß ℄Ï ¨
¤¤ f
(x)
=
1, 0,
x x
[0,1] [0,1]
· ¨, ¨.
´
¨ ÙÄ n, [0,1]
¿ max 1≤i≤n
mEin
=
1 n

0(n

∞).
¾
Ó Dn = {Ein},
Ein =
i−1 n
,
i n
, i = 1, 2, · · · , n − 1, Enn =
0.
¨ª
mE[| f |= ∞] = 0.
1
¶¹ | f(x) | Î ¶ ¾ Ê´
´¹Ü° ¾ Ö ǫ > 0, δ > 0, e ⊂ E me < δ
´ ¾ ¡ δ > 0,
N,
n>N
| f (x) | dx < ǫ.
e
men < δ,
n · men ≤ | f (x) | dx < ǫ.

第三版实变函数论课后答案

第三版实变函数论课后答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载第三版实变函数论课后答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容证明:的充要条件是. 证明:若,则,故成立.反之,若,则,又,若,则,若,则.总有.故,从而有。

证毕证明.证明:,从而,故,从而,所以.另一方面,,必有,故,从而,所以.综合上两个包含式得. 证毕证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9. 证明:定理4中的(3):若(),则.证:若,则对任意的,有,所以()成立知,故,这说明.定理4中的(4):.反过来,若则或者.不妨设,则有使.故.综上所述有.定理6中第二式.证:,则,故存在,所以从而有.反过来,若,则使,故,,从而. 证毕定理9:若集合序列单调上升,即(相应地)对一切都成立,则(相应地). 证明:若对成立,则.故从定理8知另一方面,令,从对成立知.故定理8表明故.4. 证明的充要条件是.必要性若,而则存在. 所以即所以这与矛盾,所以.设,求.又如果,,问是什么.解:若,则.若,则从,易知..令..证明: 因为的任何子集. 所以有,而,故,又.任取的一子集,,且.显,故只用证的确是一个域. (1) ,且的子集,若,则(是的子集,故)又的子集,.显然是的子集,所以.又若为的子集或.则.这里是的子集.或.所以.若中除的子集外,还有,则.若中有,不影响.故是域,且.证毕.6.对于的子集,定义的示性函数为证明:(1)(2)证明:,若则。

且只有有限个,使得所以使得时从而有故若,则且有无限个故所以 .故(1)成立.(2)的证明:,若则.且有无穷个使得,所以注意到所以 .若,则且只有有限个使得所以使得时,所以 .所以(2)也成立.也可以这样证(2):注意 ..7.设f(x)是定义于E上的实函数,a为一常数,证明(1)(2).证明:(1)我们有,故存在使(因为)所以.从而有;反过来:若,则所以(1)成立.下证(2)我们有从而有反过来,若8.若实函数序列在上收敛于,则对于任意常数都有证明:先证第一个等式由定理8知我们有对成立。

泛函分析答案 第四章习题第一部分(1-18)

泛函分析答案  第四章习题第一部分(1-18)

第四章习题第一部分(1-18)1. 在 1中令ρ1(x , y ) = (x - y )2,ρ2(x , y ) = | x - y |1/2,,问ρ1, ρ2是否为 1上的距离? [解] 显然ρ1, ρ2满足距离空间定义中的非负性和对称性. 但ρ1不满足三角不等式:取点x = -1, y = 0, z = 1,则 ρ1(x , z ) = 4 > 2 = ρ1(x , y ) + ρ1(y , z ),所以ρ1不是 1上的距离。

而∀x , y , z ∈ 1,ρ2(x , y ) =||||2||||||||||y z z x y z z x y z z x y x -⋅-+-+-≤-+-≤-||||)||||(2y z z x y z z x -+-=-+-==ρ2(x , z ) + ρ2(z , y ); 所以ρ2是 1上的距离.2. 设(X , ρ)是距离空间,令ρ1(x , y ) =ny x ),(ρ,∀x , y ∈X .证明(X , ρ1)也是距离空间.[证明] 显然ρ1满足距离空间定义中的非负性和对称性, 故只需证明ρ1满足三角不等式即可. 实际上∀x , y , z ∈X ,nny z z x y x y x ),(),(),(),(1ρρρρ+≤=nnnn ny z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤),(),(),(),(11y z z x y z z x n n ρρρρ+=+=.3. 设(X , ρ)是距离空间,证明| ρ(x , z ) - ρ(y , z ) | ≤ ρ(x , y ),∀x , y , z ∈X ;| ρ(x , y ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ),∀x , y , z , w ∈X .[证明] ∀x , y , z , w ∈X ,由三角不等式有- ρ(x , y ) ≤ ρ(x , z ) - ρ(y , z ) ≤ ρ(x , y ),故第一个不等式成立. 由第一个不等式可直接推出第二个不等式:| ρ(x , y ) - ρ(z , w ) | ≤ | ρ(x , y ) - ρ(y , z ) | + | ρ(y , z ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ).4. 用Cauchy 不等式证明(| ζ1 | + | ζ1 | + ... + | ζn | )2 ≤ n (| ζ1 |2 + | ζ1 |2 + ... + | ζn |2 ). [证明] 在P159中的Cauchy 不等式中令a i = | ζi |,b i = 1,∀i = 1, 2, ..., n 即可.5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做.6. 设(X , d )是距离空间,A ⊆ X ,int(A )表示A 的全体内点所组成的集合.证明int(A )是开集.[证明] 若A = ∅,则int(A ) = ∅,结论显然成立. 若A ≠ ∅,则∀x ∈ A ,∃r > 0使得S (x , r ) ⊆ A .对∀y ∈ S (x , r ),令s = r - d (x , y ),则s > 0,并且S (y , s ) ⊆ S (x , r ) ⊆ A ; 所以y ∈ int(A ).故S (x , r ) ⊆ int(A ),从而int(A )是开集.7. 设(X , d )是距离空间,A ⊆ X ,A ≠ ∅.证明:A 是开集当且仅当A 是开球的并. [证明] 若A 是开球的并,由于开球是开集,所以A 是开集.若A 是开集,∀x ∈A ,存在r (x ) > 0,使得S (x , r (x )) ⊆ A . 显然A = ⋂x ∈A S (x , r (x )).8. 举例说明对于一般的距离空间X ,并不是总有),(),(r x S r x S =,∀x ∈X ,r > 0. [例] 设X = {a , b },定义d : X ⨯ X → 为d (a , a ) = d (b , b ) = 0,d (a , b ) = 1. 则(X , d )是距离空间.当r = 1时,不论x 为a 还是b ,总有),(}{),(r x S X x r x S =≠=.9. 设(X , d )是距离空间,X B A ⊆,.证明:B A B A ⋃=⋃,B A B A ⋂⊆⋂. [证明] 由于A A ⊆,B B ⊆,故B A B A ⋃⊆⋃.由于A 和B 都是闭集,所以B A ⋃也是闭集,所以B A B A ⋃⊆⋃.另一方面,由B A B A ⋃⊆,,得B A B A ⋃⊆,,所以B A B A ⋃⊆⋃; 这样就证明了第一个等式.由B A B A ,⊆⋂得B A B A ,⊆⋂,所以B A B A ⋂⊆⋂。

实变函数论课后答案解析第四章4

实变函数论课后答案解析第四章4
可测 为可测集(江则坚P109习题10)
现设 连续,则 开集 , 是开集,
记 ,可证 是一个 代数,且包含全部开集,从而包含全部 集
证1) 可测
2)若 ,则 显然也可测,
3)若 ,则 , 可测, 可测 是 代数
连续,则 , 包含全部开集,从而包含全部 集
为非奇异线性, 显然连续
方体半开半闭(显然为 集), 可测
(i)坐标 之间的交换
(ii)
(iii)
在(i)的情形显然 (2.9)成立
在(ii)的情形下, 矩阵可由恒等矩阵在第一行乘以 而得到
从而可知 (2.9)式成立
在(iii)的情形,此时 ( )
而且


反过来, , 则
令 则 ,
则 , )

,则
( ,则 , ,则
,且 ,则反过来, ,则存在 , Fra bibliotek使, ,且
实变函数论课后答案第四章4
第四章第四节习题
1.设 于 , 于 ,证明: 于
证明: ,
(否则,若 ,而 ,
矛盾),则
( )
从而
2.设 于 , ,且 于 ,证明 于
证明:由本节定理2( 定理)从 知 的子列 使

设 , , 于 ,从条件 于 ,设
, , 于 上
令 ,则 ,且

,则
令 ,
故 有 ,从而命题得证
显然
周民强书P35思考题:
6.设 是定义在 上的实值函数族, 是可数集,则存在 ( )使得 在 上收敛.
我怀疑本题有错:若不假设 是 上一致有界的,会有反例:
令 = ,设 这里 ,则显然任取无穷个 于 ,故 不会收敛!
时,

实变函数论课后答案第三版.doc

实变函数论课后答案第三版.doc
证明:将全体有理数排成一列r1, r2L rnL,则平面上的有理点
QQ
r , s ; r
Q, s
Q
U Aj,其中
Aj
ri, rj
; i
1,2,L nL
为可列集,
j1
故作为可数个
Aj的并QQ
U Aj为可数集。(第
20页定理
5)。
j1
2.以直线上的互不相交的开区间为元素的任意集合至多只有可数多个元素.
证明:设
k
k
1 m 1 i m
使得i m
1
,令i
, ,利用条件
时 ,fix0a
k
lim fix0
f
x0
,有
i
fx0a1, 再令k,得fx0a,所以x0E x; fxa,
k
所以I U I E x; fix
1
aE x; f x a
k 1 m 1 i m
k
故(2)得证。
注意:实际上有:对E撒谎能够任何实函数列fnx有
,3,4.
若S
1
; n
1,2,3,L
, A0
1
;为奇数
1,
1
,
1
,L
1
,L,
n
n
3
5
2i
1
则从1,1,1,L
1,L
c
1,1,L
1,L,
3
5
2i
1
2
4
2i
易知F A
, S, 1,1,1,L
2i
1,L ,1,1,L
1,L.
3
5
1
2
4
2i
A
1 ,
1

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
第一章 集合
早在中学里我们就已经接触过集合的概念,以及集合的并、交、补的运算,因此这章的前两节具有复习性质,不过,无限多个集合的并和交,是以前没有接触过的,它是本书中常常要用到,是学习实变函数论时的一项基本功。
康托尔在19世纪创立了集合论,对无限集合也以大小,多少来分,例如他断言:实数全体比全体有理数多,这是数学向无限王国挺近的重要里程碑,也是实变函数论的出发点。
{ : >1}=
习惯上,N表示自然数集,(本书中的自然数集不包含0),Z表示整数集,Q表示有理数集,R表示实数集.
设 是定义在E上的函数,记 ={ : ∈E},称之为f的值域。若D是R中的集合,则 ={ : ∈E ,},称之为D的原像,在不至混淆时,{ : ∈E, 满足条件p}可简写成{ : 满足条件 }.
1.集合的表示
一个具体集合A可以通过例举其元素 来定义,可记
也可以通过该集合中的各个元素必须且只需满足的条件p来定义,并记为
A={x:x满足条件p}
如例1可以表示为{4,7,8,3}例3可以表示为
设A是一个集合,x是A的元素,我们称x属于A,记作 ,x不是A的元素,记作 。
为方便表达起见, 表示不含任何元素的空集,例如
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
若 ,说明所有的 没有公共的元素。

实变函数论课后答案第三版

实变函数论课后答案第三版

1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。

证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -是B 的子集,故()()cc A A C F A ∅=∈) 又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅.则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。

实变函数第四章答案

实变函数第四章答案

实变函数第四章▉▉第4章 Lebesgue (习题及参考解答)E E A 1.设是)(x f 上的可积函数,如果对于上的任意可测子集,有()0Af x dx =∫,试证:=0,)(x f ].[.E e a }1)(|{}0)(|{1kx f x E x f x E k ≥=≠∞=∪k ∀∈ 证明 因为,,而}1)(|{kx f x E ≥}1)(|{}1)(|{k x f x E k x f x E −≤≥=∪,由已知,有111{||()|}{|()}{|()}()()()E x f x E x f x E x f x kkkf x dx f x dx f x dx ≥≥≤−=+∫∫∫000=+=.又因为11{|(){|()}1110(){|()}E x f x E x f x kkf x dx dx mE x f x k k k≥≥0=≥=≥∫∫≥ 并且11{|()}{|()1110(){|()E x f x E x f x kkf x dx dx mE x f x k k k ≥−≥−⎛⎞=≤−−≤⎜⎟⎝⎠∫∫}0−≤ 所以,0}1)(|{}1)(|{=−≤=≥kx f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=−≤+≥=≥kx f x mE k x f x mE k x f x mE因此,11{|()0}[{|()|}k mE x f x m E x f x k∞=≠=≥∪111{|()|}00k k mE x f x k ∞∞==≤≥==∑∑0)(=x f .从而,,.].[.E e a2. 设,f g 都是E 上的非负可测函数,并且对任意常数,都有a })(|{})(|{a x g x mE a x f x mE ≥=≥)()(x g x f =,试证:,从而,()Ef x dx =∫()Eg x dx ∫.证明 我们证与f g 是同一个简单函数序列的极限函数. ∞=1){m m ψ对于及,令m ∀∈ 12,,1,0−=mm k }21)(2|{,m m k m k x f k x E E +≤≤= })(|{2,m x f x E E mm m ≥=并且再令,则是互不相交的可测集,并且. 定义简单函数k m E ,k m m k E E m ,21==∪∑==mk m m k E m m x kx 20)(2)(,χψ. E x ∈)()(lim x f x m m =∞→ψ.下面证明:,m ∀∈ m m m E x 2,0∈E x ∈∀0+∞=)(0x f , 若. 事实上,,则,有)()(0∞→∞→=m m x m ψ)()(lim 00x f x m n =∞→ψ. 即, .所以, +∞<)(0x f 若,则可取正整数,当)(00x f m >0m m ≥∀时, 有}21)(2|{})(0|{1210mm m k k x f k x E m x f x E x m +<≤=<≤∈−=∪ 故,存在使得)120(−≤≤mm k k }21)(2|{0mm k x f k x E x +<≤∈ mm k x f k 21)(20+<≤. 因此, 即,m m k E m m kx k x mk m 2)(2)(20,==∑=χψ. 故000|()()|()()m m 0f x x f x x ψψ−=− 011()02222m m m m k k k f x +−<−=→=)()(lim 00x f x m n =∞→ψ.从而,实变函数第四章▉▉同理,对m ∀∈ ,定义简单函数列∑==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,mm k m k x g k x E E +<≤=,. 12,,1,0−=mm k 并且.})(|{*,m x g x E E k m ≥=E x ∈)()(lim 0x g x m n =∞→ψ.,同上一样,我们可以证明:因,有a ∀∈ })(|{})(|{a x g x mE a x f x mE ≥=≥,则,a ∀∈ })(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,,有)120(−≤≤∀m m k k,1{|()}22m k m mk k mE mE x f x +=≤< *,1{|()}22m k m m k k mE x g x mE +=≤<=并且.即,,mm m m m m mEm x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=N m ∈∀=)(x m ψ)(x m ϕ.)()(lim )(lim )(x g x x x f m m m m ===∞→∞→ϕψ.因此,⎪⎩⎪⎨⎧=为有理数,当为无理数,当x x x x x f 31)(3. 若,计算.∫1,0[)(dx x f x x E |]1,0[{0∈=01]1,0[E E −=为有理数},解 设,则∫]1,0[)(dx x f +=∫∫1)()(]1,0[E dx x f dx x f∫∫∫+==0111E EE dx xdx xdx x10E E E ==+∫∫∫ 2]2[11101]1,0[====∫∫x dx xdx x .4. 设是中n 个可测集,若内每一点至少属于个集中的个集,证明:中至少有一个测度不小于n 1,,n E E ]1,0[]1,0[nq 1,,q n E E . 证明 令,其中:∑==ni E x x f i1)()(χi E χ为上的特征函数并且,有i E ]1,0[∈∀x q x x f ni E i≥=∑=1)()(χ所以,. 又因为q qdx dx x f =≥∫∫]1,0]1,0[)(1[0,1][0,1]()()inE i q f x dx x χ=≤=∑∫∫dx1n.1110,1()()i i nnnE E i i i i E i x dx x dx mE χχ=======∑∑∑∑∫∫nqmE i <,则 如果每个∑∑===⋅=>ni n i i q nq n n qmE 11nqmE i ≥这与矛盾. 从而,存在∑=≤ni i mE q 1(1)i i n ≤≤. 使得5. 设与都是f g E 上的可积函数,试证明:22g f +E 也是上可积函数.E 证明:(1)先证:设与都是)(x f )(xF 0()f x ≤上的可测函数并且E E ()F x ≤ ,若在].[.E e a )(x F 可积,则在)(x f 可积.N m l ∈∀,)()(0x F x f ≤≤ ,故].[.E e a ,因为事实上,l l x F x f )}({)}({0≤≤.因此,+∞<≤≤≤∫∫∫EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m m S E E ∩=,}||||{∞<=x x S m . 从而,是∞=∫1})}({{l l E dx x F m实变函数第四章▉▉单调递增有上界的数列,故∫Edx x F )(∫∫∫≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.又因单调递增有上界,所以存在,并且∫∞=mE m dx x f 1})({∫∞→mE l dx x f )(lim∫∫∫+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim )(即. 所以,在+∞<≤∫dx x f E)(∫∞→∞→mE l l m dx x f )}({lim lim E )(x f 可积.E (2上可积.在E E 事实上,因为与在f g 上都可积. 所以, 与在||f ||g 上可积. 从而, +在E ||f ||g 上可积.||||f g ≤+E ,由(1)上可积.在6. 设+∞<mE ,是)(x f E 上的非负可测函数,,∞+<∫Edx x f )(})(|{k x f x E E k >=0lim =⋅∞→dx mE k k l .,试证明:k ∀∈ 证明 ,因为+∞<≤≤≤∫∫EE k dx x f dx x f kmE k)()(0所以)(0)(10∞→→≤≤∫k dx x f k mE Ek lim 0k k mE →∞=.故,又因为,由积分的绝对连续性(即,P85,定理4), 对于∫+∞<Edx x f )(δ<mA 0>∀ε0>∃δE A ⊂,,使得对于任何可测集,恒有,∫Adx x f |)(|∫<=Adx x f ε)(.0>δN k ∈0对于,根据,存在0lim =∞→k k mE ,0k k ≥∀时,δ<k mE ,有ε<≤⋅≤∫dx x f mE k kE k )(0.0lim =⋅∞→k k mE k .从而, +∞<mE E E 7. 设为可测集,并且,为)(x f 上的非负可测函数,,试证:在}1)(|{+<≤=∧k x f k x E E k E )(x f 上可积当且仅当级数收敛.∧∞=∑kk Ekm 1证明 设,k }1)(|{+<≤=∧k x f k x E E k ∈ )(⇒,因为在)(x f E 可积,故111()()kkk k k k EE E f x dx f x dx k dx k mE ∞∞∞====≥=∑∑∑∫∫∫⋅即,级数收敛.∑∞=∧⋅1k kEm k k ∀∈ )(⇐, 因为,则}1)(|{+<≤=k x f k x E E k k E k k E mE kmE mE k dx k dx x f kk+=+=+≤∫∫)1()1()(.又因并且,根据Lebesgue 基本定理,有∑∞==1)()()(k E x x f x f k χdx x x f dx x f m kE EE )()()(χ∫∫=1()()()kE k EE f x dx f x x dx χ∞==∑∫∫11()()kk k k k E f x dx kmE mE ∞∞===≤+∑∑∫+∞<+=+=∑∑∑∞=∞=∞=k k k k k k k mE kmE mE kmE 111.E 从而,在)(x f 上可积.8. 设是 上的可积函数,证明:.∫=−+→],[00|)()(|limb a k dx x f b x f f实变函数第四章▉▉R ′0>∀ε)(x ϕ证明 (1)先证:,使得,存在时直线上的连续函数∫<−+→],[0|)()(|limb a k dx x f b x f ε.对于,记:N ∀∈ ⎪⎩⎪⎨⎧−<−>≤=N x f N N x f N N x f x f x f n )(,)(,|)(|,)()]([],[b a E x =∈,其中则0,|()|()[()](),()(),()N f x N f x f x f x N f x N f x N f x N≤⎧⎪−=−>⎨⎪+<−⎩因此,[,]|()[()]|N a b f x f x d −∫x=+dx x f x f N f E n|)]([)(|)|(|∫≤−dx x f x f N f E n|)]([)(|)|(|∫>−(||)|()[()]|N E f N f x f x d >−∫x =dx N x f N f E |)(|)|(|∫>+≤dx x f N f E |)(|)|(|∫>≤.0>∀ε0>∃δ因为在上是Lebesgue 可积的,故对于)(x f ],[b a ,,使∀δ<mA E A ⊂,恒有:Adx x f Aε<∫|)(|又因是单调的集列并且,则)|(|)|(|1+∞==>∞=f E n f E n ∩∞=1|)}(|{n f E =>=>∞→∞→)]|(|lim [)|(|lim n f E m n f mE n n 0)|(|=+∞=f mE .4|)(|)|(|ε<∫>dx x f N f E 0>δN ∃∈ .所以,对于,使得现在对于,取04>=NεηN x f )]([,由连续扩张定理,存在闭集F [,]a b ⊂)(x ϕ以及 上的连续函数,使得F F N x x f |)(|)]([ϕ=(A ); NF E m 4)(ε<−(B );N x ≤|)(|ϕ(C ). 因此,[,][]||[]|N N a b E Ff dx f dx ϕϕ−−=−∫∫([]||)|2()242N E Ff dx N m E F N Nεεϕ−≤+≤⋅−<⋅∫=从而,[,][,]()()||()[()]||[]()|N N a b a b f x x dx f x f x dx f x dx ϕϕ−≤−+−∫∫εεεϕ=+⋅≤−+≤∫∫>242|)(][||)(|2],[)|(|dx x f dx x f b a N N f E (2)再证:.0|)()(lim],[0=−+∫→dx x f b x f b a h 0>∀ε)(x ϕ,由(1)知,存在上的连续函数 使得对于3|)()(]1,1[εϕ<−∫+−dx x x f b a .)(x ϕ因为在上一致连续,则]1,1[+−b a )1(0<>∃δδ使得,当],[b a x ∈∀)1(||<<δh 时,恒有)(3|)()(|a b x h x −<−+εϕϕ.又因为[,]|()()|a b f x h f x dx +−≤∫[,]|()()|a b f x h x h dx ϕ+−+∫++dx x h x b a |)()(|],[∫−+ϕϕdx x f x b a |)()(|],[∫−ϕ],[b a x ∈(||1)h h δ∀<<(1,1x h a b )+∈−+,故并且对于,,有3|)()(|]1,1[εϕ<−≤∫+−dx x x f b a dx h x h x f b a |)()(|],[∫+−+ϕ所以,实变函数第四章▉▉≤−+∫dx x f h x f b a |)()(|],[[1,1]|()()|a b f x x d ϕ−+−∫xεεεε=++<333dx x x f dx x h x b a b a |)()(||)()(|],[],[∫∫−+−+ϕϕϕ+.从而,.0|)()(|lim],[0=−+∫→dx x f h x f b a h9. 设是f E 上的非负可积函数,是任意常数,满足c ∫≤≤Edx x f c )(0试证:存在,使得.c dx x f E =∫1)(E E ⊂1证明:设常数,合于,当时,存在,使得. 不妨设.∫≤≤Edx x f c )(0∫=Edx x f c )(c ∫≤≤Edx x f c )(0c dx x f E =∫1)(E E =1我们先证:在∫−=Et t dx x f t F ∩],[)()(),0[0+∞∈∀t),0[+∞上连续,,事事实上,对于0t t >∀,因为000[,][,]0()()()()t t Et t EF t F t f x dx f x dx −−≤−=−∫∫∩∩00[,][,]()()t t Et t Ef x dx f x dx −−=+∫∫∩∩δ<mA 0>∃δE A ⊂∀由积分的绝对连续性(p.85,定理4),,有,,2)(|)(|ε<=∫∫AAdx x f dx x f .δ<−≤∀00:t t t δ<−≤−00)),([t t E t t m ∩,故故,对于,因为εεε=+=+=−≤∫∫−−22)()()()(0],[],[000Ety t Et t dx x f dx x f t F t F ∩∩.)()(lim 00t F t F t t =+→. 所以,),0[0+∞∈∀t 同理,对,用上述完全类似方法可得.故,在)()(lim 00t F t F t t =−→)(t F ),0[+∞上连续.又因为(根据p.89的定义4), 则,使得c dx x f dx x f EEt t t >=∫∫−+∞→)()(lim],[∩00>∃t c dx x f t F Et t >=∫−∩],[0)()(.)()0(0t F c F <<.故由于在闭区间上连续,由连续函数的介值定理,∃],0[0t 1t ∈)(t F E E t t E ⊂−=∩],[1110(0,)t ,有,使得c t F dx x f dx x f Et t E ===∫∫−)()()(1],[01∩.E 10. 设是g 上的可测函数,是大于1的数,是的共轭数,即p q p 111=+qp . 如果对任意,都有)(E L f P ∈1()fg L E ∈,试证:. )(E L g q∈11. 试证:1)1(1lim),0(1=+∫+∞∞→dt tkt kk k (i ).dx x e dx x n x x n k ∫∫+∞−+∞−∞→=−),0(),0(11(lim αα(ii) .2≥∀k 证明:(i )时,(寻找控制函数) )10(≤<t t 时,因为当tttttktt f kkk k 4111)1(1)(2111≤=≤≤+=;而当时,1>t 112111()(1)1((1)()2!k k k kk f t t k k t t k t t k k k=≤=−+⋅+++实变函数第四章▉▉224)211(2t t =−≤令⎪⎪⎩⎪⎪⎨⎧+∞≤<≤<=t t t tt F 1,410,4)(2从而,),0(+∞∈∀t ,并且在)()(t F t f k ≤)(t F ),0(+∞是R-可积的,故在)(t F ),0(+∞是L-可积的. 又因为tt kk tt kk kk k k k e etkt t ktt f −∞→∞→∞→∞→==⋅+=+=11lim])1[(1lim)1(1lim)(lim 11则由Lebesgue 控制收敛定理,∫∫∫∞∞→∞∞→∞∞→==+),0(),0(),0(1)(lim )(lim)1(1limdt t fdt t fdt tkt kk kk kk k10==∫+∞−dt e t ∫∞−=),0(dt et.(ii), 定义n ∀∈ 1(1),(0,]()0,(n n x ,)xx n f x nx n α−⎧−∈⎪=⎨⎪∈+∞⎩, 并且,1)(−−=αx ex F x),0(+∞∈x ),0(+∞∈∀x , 则对于,有)(1(lim )(lim 11x F x e x nxx f x n n n n ==−=−−−∞→∞→αα. N n ∈∀,.)()(1x f x f n n +≤下面证明:ttx t G )1()(−=),0(+∞∈∀x ),1[+∞∈t ,取 事实上,,令,1ln()(ln txt t G −=,则▉▉第四章习题参考解答x t xt x t x t x t txt G t G −+−=−+−=′)1ln(11)1ln()()(2. x t xt x t h −+−=′)1ln()(,又因 又记222)()()(11)(x t xx t t x x t x t x tx t h −−−=−−−=′0)()()(222<−−=−−−=x t t x x t t tx x t x .xt xt x t G t G t h −+−=′=)1ln()()()(所以,关于单调递减并且故,t 0)(lim =∞→t h t ),1[+∞∈∀t ,有. 因此,0)(>t h 0)()()(>⋅=′t h t G t G .即, 在)(t G ),1[+∞n ∀∈ 单调增加. 从而,,)1(11()1()(1+=+−<−=+n G n x n x n G n n .所以,)()11()1()(1111x f x n x x n x x f n n n n +−+−=+−<−=αα.因此, ,n ∀∈ 1)()(|)(|−−=≤=αx e x F x f x f x n n ),0(+∞∈x,因为在1)(−−=αx e x F x ),0(+∞上可积,由Lebesgue 控制收敛定理,有∫∫∫+∞−−+∞∞→−∞→===−),0(1),0(),0(1)(lim )1(limdx x e dx x f dx x n x x n n n n n αα.+∞<mE 12. 设,试证明:在E 上当且仅当0⇒k f 0||1||lim =+∫∞→dx f f Ek k k . k ∀∈ 0>∀σ)(⇒,因为证明 ,实变函数第四章▉▉)1|(|]||1||[σσσ−≥=≥+k k k f E f f E 并且(在0⇒k f E 上),则我们有01|(|lim )||1||{lim =−≥=≥+∞→∞→σσσk k k k k f mE f f mE .0||1||⇒+k k f f E .故在上,1||1||≤+k k f f k ∀∈ +∞<mE ,由Lebesgue又因为对于,并且有界收敛定理,有00||1||lim ==+∫∫∞→E E k k k dx dx f f .0>∀σ)(⇐,因为对于(||)0(||)11kk E f EmE f dx σσσσσσ≥≤≥=++∫ ∫≥+Ef E k k k dx f f )|(|||1||σ≤)(0∞→→k . 则有0)|(|lim 10≤≥−≤∞→δσσk k f mE . 从而,0)|(|lim =≥∞→δk k f mE . 即.0⇒k f。

第三版实变函数论课后答案

第三版实变函数论课后答案

1. 证明:()B A A B -=U 的充要条件是A B ⊂.证明:若()B A A B -=U ,则()A B A A B ⊂-⊂U ,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂U U ,又x B ∀∈,若x A ∈,则()x B A A ∈-U ,若x A ∉,则()x B A B A A ∈-⊂-U .总有()x B A A ∈-U .故()B B A A ⊂-U ,从而有()B A A B -=U 。

证毕2. 证明cA B A B -=I .证明:x A B ∀∈-,从而,x A x B ∈∉,故,cx A x B ∈∈,从而x A B ∀∈-, 所以cA B A B -⊂I .另一方面,cx A B ∀∈I ,必有,cx A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-,所以 cA B A B ⊂-I .综合上两个包含式得cA B A B -=I . 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9. 证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂I I .证:若x A λλ∈∧∈I ,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈I ,这说明A B λλλλ∈∧∈∧⊂I I .定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=U U U U U .证:若()x A B λλλ∈∧∈U U ,则有'λ∈∧,使''()()()x A B A B λλλλλλ∈∧∈∧∈⊂U U U U .反过来,若()()x A B λλλλ∈∧∈∧∈U U U 则x A λλ∈∧∈U 或者x B λλ∈∧∈U .不妨设x A λλ∈∧∈U ,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂U U U .故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂U U U U U .综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=U U U U U .定理6中第二式()c cA A λλλλ∈∧∈∧=I U .证:()c x A λλ∈∧∀∈I ,则x A λλ∈∧∉I ,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂U 从而有()c c A A λλλλ∈∧∈∧⊂I U .反过来,若c x A λλ∈∧∈U ,则'λ∃∈∧使'cx A λ∉,故'x A λ∉,x A λλ∈∧∴∉I ,从而()c x A λλ∈∧∈I()c c A A λλλλ∈∧∈∧∴⊃I U . 证毕定理9:若集合序列12,,,,n A A A K K 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==U (相应地)1lim n n n A ∞→∞==I .证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==I .故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====U I U另一方面,m n ∀,令m i i mS A ∞==U ,从1m m A A +⊂对m N ∀∈成立知11111()()m i m i m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==U U U U U U .故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========I U I U故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====U .4. 证明()()A B B A B B -=-U U 的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅U U U U必要性 若()()A B B A B B -=-U U ,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-U U 即所以,x A B x B ∈∉U 这与x B ∈矛盾, 所以x B ∈. 4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭L01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭LL ,问()()01,F A F A 是什么.解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A n n i ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭L LL 为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭L L L L ,易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭LL L L .{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭LL . 令11;1,2,,;1,2,212B i C i i i ⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭L L . {}{}{}°1,F A S A K A B K C K A =∅==∅U U @为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭L L 的任何子集()1F A . 所以有()1B F A ∈,而cB C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈U ,且()1A C F A ∈U .显°S A ∈,故只用证°A 的确是一个σ-域. (1) °,c cS S A ∅==∅∈,且B ∀的子集A ,若K =∅,则°,c K A A A C ∅==U U(B A -是B 的子集,故()°°()ccA A C F A ∅=∈U U )又B ∀的子集A ,()ccccA C A C AB ==U I I .显然是B 的子集,所以()()°cc A C A B A =∅∈U I U .又若n A 为B 的子集()1,2,3,,n n K C ==L 或∅. 则()°°111n n n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭U U U U U U . 这里°1n n A A B ∞==⊂U 是B 的子集.°1nn K K C ∞===U 或∅. 所以()°1n n n A K A ∞=∈U U .若n A 中除B 的子集外,还有S ,则()°1n n n A K S A ∞==∈U U .若n A 中有∅,不影响1n n A B ∞=⊂U .故°A 是σ-域,且()°1F A A =.证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf n n A A x x ϕϕ=(2)()()limsup limsup n n A A x x ϕϕ=证明:x S ∀∈,若()liminf n A x x ϕ∈则()liminf 1n A x ϕ=。

《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。

若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档