第三章 统计热力学
热力学与统计物理第三章知识总结
§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。
这些条件可以利用一些热力学函数作为平衡判据而求出。
下面先介绍几种常用的平衡判据。
oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。
于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。
孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。
如果只有体积变化功,孤立系条件相当与体积不变和内能不变。
因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。
在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。
如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。
如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。
亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。
如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。
熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。
不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。
2、自由能判据表示在等温等容条件下,系统的自由能永不增加。
这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。
我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。
这一判据称为自由能判据。
三章统计热力学基础
(
nx2 a2
n2y b2
nz2 c2
)
振动:
1
εv
(v
)hν 2
转动:
εr
J(J
1)
h2 8π 2 I
十一、配分函数 q 的分离:
q = qn qe qtqvqr
这是配分函数的重要性质。
十二、利用配分函数 q 直接计算体系的宏观性质
热力学函数表达式:
F -kBT lnqN
F
-kBT
一维: 二维:
qt
(
2πmk h2
BT
)1/2
l
qt
2ππmBT h2
A
三维:
qt
(
2ππmBT h2
)3/2V
2. 振动:
双原子分子
qv
e hν / 2kBT 1 e hν / kBT
e Θv / 2T 1 eΘv /T
线型多原子
Θv hν Θv为振动特征温度 k
B
3n5 hνi / 2kBT
故玻尔兹曼分布即为宏观平衡分布。
在 A、B 两个能级上粒子数之比:
A / kBT
N g e A
A
B / kBT
N g e B
B
玻色-爱因斯坦统计*;(如空腔辐射的频率分布)
Ni
gi e i
1
( 1 / kBT )
费米-狄拉克统计*(金属半导体中的电子分布)
Ni
gi e i
1 Ni
• 由 gi >> Ni e i 1 >> 1 e i 1 e i
• 当温度不太高或压力不太高时,上述条件容易满足。
• 此时玻色-爱因斯坦及费米-狄拉克统计可还原为玻尔
热力学与统计物理第三章知识总结
§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。
这些条件可以利用一些热力学函数作为平衡判据而求出。
下面先介绍几种常用的平衡判据。
oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。
于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。
孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。
如果只有体积变化功,孤立系条件相当与体积不变和内能不变。
因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。
在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。
如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。
如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。
亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。
如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。
熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。
不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。
2、自由能判据表示在等温等容条件下,系统的自由能永不增加。
这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。
我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。
这一判据称为自由能判据。
统计热力学
= NkT ⎜⎛ ∂ ln q' ⎟⎞ ⎝ ∂V ⎠T ,N
(5)H = NkT 2⎜⎛ ∂ ln q ⎟⎞ + NkTV ⎜⎛ ∂ ln q ⎟⎞
⎝ ∂T ⎠V ,N
⎝ ∂V ⎠T ,N
=
NkT 2 ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂T ⎠V ,N
+
NkTV ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂V ⎠T ,N
可见θr只取决于分子本身的结构特征,一般分子的氏只有几度或十几度。
11.
qV
= =
exp(−θV / 2T )
1e−xepx(−p(h−νθV/
/T) 2kT )
1− exp(− hν / kT )
或
q'V
=
1−
1
exp(−θV
/T
)
=
1−
1
exp(− hν
/
kT
)
式中qv为双原子分子振动配分函数,q’V为将振动零点能值指定为 0 时的振动配分函数;θV为分 子的振动特征温度,其定义为
⎤ ⎥ ⎦
3.3 思 考 题
1.Stirling 公式 的适用条件是什么?
N!≈ ⎜⎛ N ⎟⎞N ⎝e⎠
2.对于由少数(例如 20 个)离域子构成的系统,我们能否用公式
∑∏ Ω =
g ni i
i ni!
计算其微观状态数?若不能用此式计算,请说应如何计算Ω。
3.什么是最可几分布?最可几分布的各能级分布数如何计算?
⎝ ∂T ⎠V ,N
⎝ ∂V ⎠T ,N
=
NkT 2 ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂T ⎠V ,N
热力学统计物理 第三章 课件
故而,由δS=0可以得到平衡条件,由δ2S<0可以得到 平衡的稳定性条件。
熵判据是基本的平衡判据,适用于孤立系统。 自由能判据和吉布斯函数判据 自由能判据:等温等容系统处在稳定平衡状态的必要 和充分条件为 ΔF > 0
将F作泰勒展开,准确到二级,有 1 F F 2 F 2 由δF=0和δ2F>0可以确定平衡条件和平衡的稳定性条件。
在平衡曲线上两相的化学势相等,两相可以以任意比 例共存。两相平衡是一种中性平衡。
当系统缓慢地从外界吸收或放出热量时,物质将由一
相转变到另一相而始终保持在平衡态,称为平衡相变。
单元系三相共存时,三相的温度、压强和化学势都必须相等,即 Tα = Tβ = Tγ = T , p α = p β = p γ = p
δS = 0
因为δUα、δVα、δnα是可以独立改变的,这要求 1 1 p p 0, 0, 0 T T T T T T 即
Tα = Tβ(热平衡条件)
pα = pβ(力学平衡条件)
μα =μβ(相变平衡条件)
上式指出,整个系统达到平衡时,两相的温度、压强和化 学势必须分别相等。
吉布斯函数是一个广延量,当物质的量发生变化时,吉布斯函 数也将发生变化。
对于开系,上式应推广为
dG = -SdT + Vdp +μdn 式中第三项代表由于物质的量改变dn所引起的吉布斯函数 的改变,而
称为化学势。
G n T , p
由于吉布斯函数是广延量,系统的吉布斯函数等于物
H和F分别是以S、p、n和T、V、n为独立变量的特性函数。
定义一个热力学函数 J = F -μn 称为巨热力势。
第三章 统计热力学基础 (2)
第三章统计热力学基础返回上一页1. 设有一个体系,由三个定位的单维简谐振子所组成,体系能量为11/2 hν,这三个振子在三个固定的位置上振动,试求体系全部的微观状态数。
2. 当热力学体系的熵函数S增加0.418 J/K时,则体系的微观状态数增加多少?用ΔΩ/Ω1表示。
3. 对于双原子分子,证明:U r=NkT U v=NkT设基态振动能为零,≈1+x 。
4.将N2气在电弧中加热,从光谱中观察到处于第一激发态的相对分子数N(v=1)/N(v=0)=0.26,式中ν为振动量子数N(v=0)为基态占有的分子数,N(v=1)为第一激发振动态占有的分子数,已知N2的振动频率ν= 6.99×,(1) 计算气体温度。
(2) 计算振动能量在总能量(包括平动,转动和振动)中所占的百分数。
5.设某理想气体A,其分子的最低能级是非简并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级。
(1)写出A分子的总配分函数的表达式。
(2)设ε=kT,求出相邻两能级上最概然分子数之比n1/n0。
(3)设ε=kT,试计算1 摩尔该气体的平均能量是多少?6.某气体的第一电子激发态比基态能量高400 kJ/mol,试计算(1)在300 K时,第一激发态分子所占的百分数?(2)若要使激发态的分子数占10%,则需多少温度?7.零族元素氩(Ar)可看作理想气体,相对分子量为40,取分子的基态(设其简并度为1)作为能量零点,第一激发态(设其简并度为2)与基态能量差为ε,忽略其它高能级。
(1)写出氩分子的总的配分函数表达式。
(2)设ε=5kT,求在第一激发态上最可几分布的分子数占总分子数的百分数。
(3)计算1 mol Ar气在标准状态下的统计熵值。
设Ar 的核和电子的简并度均等于1。
8. Na原子气体(设为理想气体)凝聚成一表面膜(1)若Na原子在膜内可自由运动(即二维平动),试写出此凝聚过程的摩尔平动熵变的统计表达式。
03章 统计热力学
3.2 热力学的统计基础
一.体系状态的描述
平衡统计热力学与经典热力学一样,其基本问题是 如何定量的描述宏观体系平衡态的性质。
体系:
被研究的对象. 即宏观热力学体系。
宏观体系一般由基本微观粒子组成,组成体系的微 观粒子简称为粒子。组成体系的粒子通常是分子或 原子,但某些特殊的体系,也可能由其他基本粒子 如电子、声子等组成。
其结果具有高度的可靠性与普适性。
2
热力学研究的一个基本特点是:它所考察的均为体系的宏 观性质,如温度、压强、熵、自由能等等。它对于体系的微 观状态如微观粒子的位置、动量、分子间相互作用状况等毫 不关心。
例如,如果我们要了解体系内能随体积的变化,我们可以 利用热力学定律推出下式:
U p T p V T T V
11
微观状态: 1: A: 1/2hν B: 1/2hν C: 9/2hν 2: A: 1/2hν B: 3/2hν C: 7/2hν 3: A: 1/2hν B: 5/2hν C: 5/2hν 4: A: 1/2hν B: 7/2hν C: 3/2hν 5: A: 1/2hν B: 9/2hν C: 1/2hν 当A粒子能量为3/2hν,5/2hν,…,9/2hν时,还可推出满足要求 的其它微观状态。可以算出,与题给条件相适应的微观状态 共有15种。 随着体系拥有的粒子数的增多和总能量的增加,每一宏观 状态所对应的微观状态数急剧增加。 以上题为例,当粒子增至5个,体系总能量增至15/2hν时, 与此要求相对应的微观状态便增至126种。 而热力学上的宏观体系大约拥有1023个分子,故一个体系的 平衡态,即宏观状态,具有几乎数不清的相应微观运动状态。
20
四.统计热力学的基本假设:
热力学与统计物理学第三章 相平衡与相变
(3) 范氏气体出现一个不稳定区,是任何一个物态方程均有 的共同性质。事实上,T TK ,气液二相的可逆转变必 然经历一个双相共存的区域。
(4) p-T-V的函数关系的物态方程,它只能描写系统的一种性 质,而不能同时反映体系具有两种不同的状态:相变。
(5) 等面积法则:饱和蒸气压的数值由该法则确定。
解:设2相为气体,1相为液体,则有 v2 v1,与气相的比容 相变可以忽略液相的比 容,气体近似为理想气 体,它的物态
方程是
v2
RT p
。将这些事实代入到克
拉珀龙方程之中,有
dp dT
L
T
RT p
Lp RT 2
dp p
LdT RT 2
假设潜热与温度无关, 对以上方程进行不定积 分
ln
p
L RT
C
p
24
第三章 相平衡与相变
动机和目的 一、开放系统与相律 二、克拉珀龙方程 三、气液两相的平衡与转变 四、相变的分类
小结和习题课
25
第三章习题课
[3.1]温度为T的长圆柱形物质处于重力场中,圆柱分成 两部分,上部是液体,下部是固体。温度降低 T时,
发现固-液分界面上升了 l,如果忽略固体的热膨胀并设
15
再加大压强,液体难以压缩,p很大,而v的变化很小。
2.0
p/p c
1.5
T=1.2Tc
T=1.0Tc
1.0
T=0.9Tc
0.5
T=0.85Tc
0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
v/vc
(2)等温线中的水平段随温度的升高而缩短,说明液、气两相 的比容随温度的升高而接近;
热力学统计物理第三章PPT课件
S
U
pV
T
n
S
U
pV
T
n
根据熵的广延性,整个系统的熵变
SSS
UT 1T 1VT p T p nT T
CHENLI
14
整个系统达到平衡时,总熵有极大值,必有
δS = 0
因为δUα、δVα、δnα是可以独立改变的,这要求
T 1 T 1 0 ,
T p T p 0 ,
T T 0
G n
T , p
由于吉布斯函数是广延量,系统的吉布斯函数等于物 质的量n与摩尔吉布斯函数Gm(T,p)之积
因此
G(T,p,n) = nGm(T,p)
G n
T
,
p
Gm
即是说,化学势μ等于摩尔吉布斯函数。
由上面开系吉布斯函数的全微分可知,G是以T、p、n
为独立变量的特性函数。若已知G(T,p,n) ,则
即
Tα = Tβ(热平衡条件)
pα = pβ(力学平衡条件)
μα =μβ(相变平衡条件)
上式指出,整个系统达到平衡时,两相的温度、压强和化 学势必须分别相等。
这就是单元复相系达到平衡所要满足的平衡条件。
整个系统孤立,则总内能等应是恒定的,即 Uα + Uβ = 常量 Vα + Vβ = 常量 nα + nβ = 常量
设想系统发生一个虚变动。在虚变动中两相的内能、 体积和物质的量均有变化,但孤立条件要求
CHENLI
13
δUα + δUβ = 0
δVα + δVβ = 0
δnα + δnβ = 0
由上节内能全微分知,两相的熵变分别为
CHENLI
3
统计热力学
统计热力学
统计热力学,从粒子的微观性质及结构数据出发,以粒子遵循的力学定律为理论基础;用统计的方法推求大量粒子运动的统计平均结果,以得出平衡系统各种宏观性质的值。
相关资料:
统计热力学从粒子的微观性质及结构数据出发,以粒子遵循的力学定律为理论基础;用统计的方法推求大量粒子运动的统计平均结果,以得出平衡系统各种宏观性质的值。
研究方法:统计力学的方法,应用几率规律和力学定律求出大量粒子运动的统计规律。
优点:揭示了体系宏观现象的微观本质,可以从分子或原子的光谱数据直接计算体系平衡态的热力学性质。
缺点:受对物质微观结构和运动规律认识程度的限制。
统计系统的分类与术语:
①粒子(子):组成系统的分子,原子,离子等的统称。
①独立子系统:粒子间相互作用可忽略的系统。
如理想气体,完美晶体。
①相依子系统:粒子间相互作用不能忽略的系统。
如真实气体,液体。
①定域子系统(可辨粒子系统):粒子有固定的平衡位置,运动是定域的;如固体。
①离域子系统(全同粒子系统):粒子处于混乱的运动中,无法分别,粒子彼此是等同的。
如:气体,液体。
热力学统计物理第三章
G0
系统的温度和压强不变的条件下,对于各种可能的变动,
系统的吉布斯永不增加,即平衡态的吉布斯最小。
4、泰勒展开:
G G 1 22 G G 2 G 0 0 确 平 定 衡 平 稳 衡 定 条 性 件 条 件
第十页,共87页
5、判断方法
趋向平衡态的变化过程中: G 0
G是T, p, n 以为独立变量的特性函数。
已知G(T, p, n),其它热力学量可通过下列偏导数求得:
d= G Sd V T+ d dPn
S (GT )p,n
V
(
G p
)T
,n
G ( n )T,p
第二十页,共87页
二、开系中内能
UGTSpV
内能的全微分
dU Td p Sd V d由n 于摩尔数的改变所
体积的变化 内能的变化
V+V0=0 U+U0=0
整个系统是孤立系统,则这些量一个变 大,另一个变小,总量不变。
子系统的熵变 S=S+2S
媒质的熵变 S0=S0+2S0
虚变动引起的系统的熵变 S总 = S +S0
稳定的平衡条件下,
S总 = S+S0=0
整个孤立系统的熵取极大值,
第十三页,共87页
对于一个孤立的均匀系统
热量传递将使子系统温度降低,从而恢复平衡。
3子系子统系的统压的强体将积增发高生,收缩大,于根媒据质的压强,( 于VP是)T子系0统将膨胀。系统恢复
平衡。
第十七页,共87页
3、单(多)元系,单(多)相系
【单元系】:指化学纯的物质系统.只含一种化学组分(组元).
【单相系】:一个均匀的部分称为一个相, 均匀系也称单相系.
第三章 统计热力学
第三章 统计热力学一、内容提示统计热力学研究对象是由大量微观粒子(分子、原子)构成的宏观系统,统计热力学根据微观粒子遵循的力学定律、从微观性质和结构数据(核间距离、键角、振动频率等)出发,应用统计的方法,直接推求系统的宏观性质,从而建立宏观性质与微观性质的联系,要掌握的内容:统计单位的分类;一些基本概念:如能级、简并度、分布和微态,统计热力学的基本假定,最概率分布与平衡分布,玻尔兹曼分布和配分函数,配分函与热力学的关系配分函数的分离,分子全配分函数。
三、判断说明原因1、当系统折U 、N 、V 一定时,由于粒子可以处于不同的能级上,因而分布数不同,所以系统总的微态数Ω不能确定;2、玻尔兹曼分布就是最概率分布,也是平衡分布;3、分子能量零点的选择不同,各能级的能量值也不同;4、分子能量零点的选择不同,分子的配分函数值也不同;5、由压力趋于零的氧气组成的系统是独立粒子系统;6、与分子运动空间有关的分子运动的配分函数是振动配分函数;7、分子的能量零点的选择不同,玻兹曼公式也不同;8、在低温下,可以用q r =Hr T来计算双原子分子的转动配分函数;9、一定量的纯理想气体恒温变化时平动配分函数q t 发生变化;10、全配分函数的q 总=qt+q r +q v +q e +q n 。
三、填空:1、由N 个分子组成的理想气体系统,一种分布的微态数为 ,N 个原子组成的原子晶体系统,一种分布的微态数为 ;2、由N 个分子组成的理想气体系统,具有微态数最多的分布是 ,这种分布的微态数W B = ;3、对于一个U 、V 、N 一定的系统,任何一种分布都必须满足的两个条件是和 ;4、CO 分子的平动自由度为 ,转动自由度为 ,振动自由度为 ;5、Cl 2分子的振动频率为1.663×1013S -1,300K 时,相邻两振动能级上分子数之比v v n n 1+= ;6、1mol 双原子理想气体的平动能U t = 转动能Ur= ;7、1mol 双原子理想气体常温下热力学能为 ;8、O 2的转动慢量I=19.3×10-47kg ,则O 2的转动特征温度是 ;9、下列物质中,298.15k 时标准摩尔熵S m 最大的是(He 、N 2、CO )。
第三章 统计热力学基础
陕西师范大学物理化学精品课程
能量量子化的概念引入统计热力学,对经典统计进行某些修正,发展成为麦克斯韦-玻 兹曼统计热力学方法。1924 年量子力学建立后,在统计力学中不但所依赖的力学基础要 改变,而且所用的统计方法也需要改变。由此产生了玻色-爱因斯坦(Bose-Einstein)统计 和费米-狄拉克(Fermi-Dirac)统计,分别适用于不同的体系。这两种统计方法都可以在 一定的条件下通过适当的近似而得到玻兹曼统计。本章的内容就是简要介绍麦克斯韦- 玻兹曼统计热力学的基本原理和应用。
n1 n2
……….ni
ε1
ε2
………. εi
φ1 φ2
………φi
简并度:一种能级有多种量子状态即一种能量对应多个波函数。
n1
n2 …………… ni
ε1
ε2 ………. εi
φ11φ12...φ1gi φ21φ22...φ2gi ……… φi1φi2...φigi 注:gi是能级εi具有的量子状态数,称该能级的简并度或者统计权重。
由大量粒子组成的体系的微观运动状态也是千变万化的,如何描述粒子及体系的微观运 动状态呢?经典力学与量子力学有不同的描述方法。
经典力学:粒子运动遵守牛顿运动方程,常用空间坐标(qx, qy, qz)、瞬时速度或动量 (px, py, pz)来描述粒子的运动状态。在经典力学中,可根据粒子的空间坐标识别它们,故 在经典力学中认为粒子是可别的。
系的总能量等于各个粒子的能量之和,即U =∑εi ;后者或称为相依粒子体系,其粒子
i
之间其的相互作用不容忽略,如高圧下的实际气体等,这种体系的总能量除了各个粒子
∑ 的能量之和外,还存在粒子之间相互作用的位能,即U = εi + UI (x1, y1, z1,......xN , yN , zN ) 。
热力学与统计物理答案第三章
热⼒学与统计物理答案第三章第三章单元系的相变3.1 证明下列平衡判据(假设S >0);(a )在,S V 不变的情形下,稳定平衡态的U 最⼩. (b )在,S p 不变的情形下,稳定平衡态的H 最⼩. (c )在,H p 不变的情形下,稳定平衡态的S 最⼩. (d )在,F V 不变的情形下,稳定平衡态的T 最⼩. (e )在,G p 不变的情形下,稳定平衡态的T 最⼩. (f )在,U S 不变的情形下,稳定平衡态的V 最⼩. (g )在,F T 不变的情形下,稳定平衡态的V 最⼩.解:为了判定在给定的外加约束条件下系统的某状态是否为稳定的平衡状态,设想系统围绕该状态发⽣各种可能的⾃发虚变动. 由于不存在⾃发的可逆变动,根据热⼒学第⼆定律的数学表述(式(1.16.4)),在虚变动中必有,U T S W δδ<+ (1)式中U δ和S δ是虚变动前后系统内能和熵的改变,?W 是虚变动中外界所做的功,T 是虚变动中与系统交换热量的热源温度.由于虚变动只涉及⽆穷⼩的变化,T 也等于系统的温度. 下⾯根据式(1)就各种外加约束条件导出相应的平衡判据.(a )在,S V 不变的情形下,有0,0.S W δ==根据式(1),在虚变动中必有0.U δ< (2)如果系统达到了U 为极⼩的状态,它的内能不可能再减少,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,S V 不变的情形下,稳定平衡态的U 最⼩.(b )在,S p 不变的情形下,有0,,S W pdV δ==-根据式(1),在虚变动中必有0,U p V δδ+<或0.H δ< (3)如果系统达到了H 为极⼩的状态,它的焓不可能再减少,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,S p 不变的情形下,稳定平衡态的H 最⼩.(c )根据焓的定义H U pV =+和式(1)知在虚变动中必有.H T S V p p V W δδδδ<+++在H 和p 不变的的情形下,有0,0,,H p W p V δδδ===-在虚变动中必有0.T S δ> (4)如果系统达到了S 为极⼤的状态,它的熵不可能再增加,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,H p 不变的情形下,稳定平衡态的S 最⼤.(d )由⾃由能的定义F U TS =-和式(1)知在虚变动中必有.F S T W δδ<-+在F 和V 不变的情形下,有0,0,F W δ==故在虚变动中必有0.S T δ< (5)由于0S >,如果系统达到了T 为极⼩的状态,它的温度不可能再降低,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,F V 不变的情形下,稳定平衡态的T 最⼩.(e )根据吉布斯函数的定义G U TS pV =-+和式(1)知在虚变动中必有.G S T p V V p W δδδδ<-++-在,G p 不变的情形下,有0,0,,G p W p V δδδ===-故在虚变动中必有0.S T δ< (6)由于0S >,如果系统达到了T 为极⼩的状态,它的温度不可能再降低,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,G p 不变的情形下,稳定的平衡态的T 最⼩.(f )在,U S 不变的情形下,根据式(1)知在虚变动中⼼有0.W >上式表明,在,U S 不变的情形下系统发⽣任何的宏观变化时,外界必做功,即系统的体积必缩⼩. 如果系统已经达到了V 为最⼩的状态,体积不可能再缩⼩,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,U S 不变的情形下,稳定平衡态的V 最⼩.(g )根据⾃由能的定义F U TS =-和式(1)知在虚变动中必有δδ?.F S T W <-+在,F T 不变的情形下,有δ0,δ0,F T ==必有0W > (8)上式表明,在,F T 不变的情形下,系统发⽣任何宏观的变化时,外界必做功,即系统的体积必缩⼩. 如果系统已经达到了V 为最⼩的状态,体积不可能再缩⼩,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,F T 不变的情形下,稳定平衡态的V 最⼩.3.2 试由式(3.1.12)导出式(3.1.13)解:式(3.1.12)为22δδ2δδδ0.S S S S U U V V U U V V ??=++(1)将2δS 改写为2δδδδδδδ.S S SS S U V U U V V UU V U U VV V=+++ ?(2)但由热⼒学基本⽅程TdS dU pdV =+可得1,,V U S S p U T V T== ? ?(3)代⼊式(2),可将式(1)表达为211δδδδδδδS p p S U V U U V V U T V T U T V T=+++ ? ? ? ????? 1δδδδ0.p U V T T ?? =+< ? ?(4)以,T V 为⾃变量,有δδδV TU U U T V T V=+ ? ???????δδ,V V p C T T p V T =+- ???(5)T V T T T V T=+ ? ? ?????????21δ,T T =-(6)δδδV Tp p p T V T T T V T =+ ? ? ?211δδ.V T p p T p T V T T T V =-+ ? ???????????(7)将式(5)—(7)代⼊式(4),即得()()22221δδδ0,V TC p S T V T T V =-+< (8)这就是式(3.1.13).3.3 试由0V C >及0Tp V <证明0p C >及0.S p V< 解:式(2.2.12)给出2.p V TVT C C ακ-=(1)稳定性条件(3.1.14)给出0,0,V Tp C V>< (2)其中第⼆个不等式也可表为10,T TV V p κ=-> (3)故式(1)右⽅不可能取负值. 由此可知0,p V C C ≥> (4)第⼆步⽤了式(2)的第⼀式.根据式(2.2.14),有.S S VT p TV p C C Vp κκ??? ?==(5)因为V p C C 恒正,且1V pCC ≤,故0,S TV V p p≤< ? ? (6)第⼆步⽤了式(2)的第⼆式.3.4 求证:(a ),,;V n T V S T n µ=- ? ?(b ),,.T p t n V p n µ= ? ????解:(a )由⾃由能的全微分(式(3.2.9))dF SdT pdV dn µ=--+ (1)及偏导数求导次序的可交换性,易得,,.V n T VS T n µ=- ? ??????? (2)这是开系的⼀个麦⽒关系.(b )类似地,由吉布斯函数的全微分(式(3.2.2))dG SdT Vdp dn µ=-++ (3)可得,,.T pT n V p n µ= ? ? (4)这也是开系的⼀个麦⽒关系.3.5 求证:,,.T V V nU T n T µµ-=- ? ???????解:⾃由能F U TS =-是以,,T V n 为⾃变量的特性函数,求F 对n 的偏导数(,T V 不变),有,,,.T V T V T VF U S T n n n=- ? ? ?????????? (1)但由⾃由能的全微分dF SdT pdV dn µ=--+可得,,,,,T VT V V nF n S n T µµ==- ? ??????? (2)代⼊式(1),即有,,.T V V nU T n T µµ-=- ? ? (3)3.6 两相共存时,两相系统的定压热容量p pSC T T= ,体胀系数1pV V T α= ?和等温压缩系数1T TV V p κ=- ?均趋于⽆穷,试加以说明. 解:我们知道,两相平衡共存时,两相的温度、压强和化学势必须相等.如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从⽐熵较低的相准静态地转移到⽐熵较⾼的相,过程中温度保持为平衡温度不变. 两相系统吸取热量⽽温度不变表明它的(定压)热容量p C 趋于⽆穷. 在上述过程中两相系统的体积也将发⽣变化⽽温度保持不变,说明两相系统的体胀系数1pV V T α= 也趋于⽆穷. 如果在平衡温度下,以略⾼(相差⽆穷⼩)于平衡压强的压强准静态地施加于两相系统,物质将准静态地从⽐容较⾼的相转移到⽐容较低的相,使两相系统的体积发⽣改变. ⽆穷⼩的压强导致有限的体积变化说明,两相系统的等温压缩系数1T T V V p κ??=- 也趋于⽆穷.3.7 试证明在相变中物质摩尔内能的变化为1.m p dT U L T dp ??=-如果⼀相是⽓相,可看作理想⽓体,另⼀相是凝聚相,试将公式化简. 解:发⽣相变物质由⼀相转变到另⼀相时,其摩尔内能m U 、摩尔焓m H 和摩尔体积m V 的改变满⾜.m m m U H p V ?=?-? (1)平衡相变是在确定的温度和压强下发⽣的,相变中摩尔焓的变化等于物质在相变过程中吸收的热量,即相变潜热L :.m H L ?=克拉珀龙⽅程(式(3.4.6))给出,mdp L dT T V =? (3)即.m L dTV T dp=(4)将式(2)和式(4)代⼊(1),即有1.m p dT U L T dp ??=-(5)如果⼀相是⽓体,可以看作理想⽓体,另⼀相是凝聚相,其摩尔体积远⼩于⽓相的摩尔体积,则克拉珀龙⽅程简化为2.dp LpdT RT= (6)式(5)简化为1.m RT U L L ??=-(7)3.8 在三相点附近,固态氨的蒸⽓压(单位为Pa )⽅程为3754ln 27.92.p T =-液态氨的蒸⽓压⼒⽅程为3063ln 24.38.p T=-试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热.解:固态氨的蒸⽓压⽅程是固相与⽓相的两相平衡曲线,液态氨的蒸⽓压⽅程是液相与⽓想的两相平衡曲线. 三相点的温度t T 可由两条相平衡曲线的交点确定:3754306327.9224.38,t tT T -=- (1)由此解出195.2.t T K =将t T 代⼊所给蒸⽓压⽅程,可得5934Pa.t p =将所给蒸⽓压⽅程与式(3.4.8)In Lp A RT=-+ (2)⽐较,可以求得443.12010J,2.54710J.L L =?=?升汽氨在三相点的熔解热L 溶等于40.57310J.L L L =-=?溶升汽3.9 以C βα表⽰在维持β相与α相两相平衡的条件下1mol β相物质升⾼1K 所吸收的热量,称为β相的两相平衡摩尔热容量,试证明:.m p m m pV LC C V V T βββαβα=- ?- 如果β相是蒸⽓,可看作理想⽓体,α相是凝聚相,上式可简化为,p LC C Tββα=-并说明为什么饱和蒸⽓的热容量有可能是负的.解:根据式(1.14.4),在维持β相与α相两相平衡的条件下,使1mol β相物质温度升⾼1K 所吸收的热量C βα为.mm m p T dS S S dp C T T T dT T p dTββββα==+(1)式(2.2.8)和(2.2.4)给出,.m p pS T C T S V p T ββββ= ??=- ? ? (2)代⼊式(1)可得.m p pV dp C C T T dT βββα=- ?(3)将克拉珀龙⽅程代⼊,可将式(3)表为.m p m m pV LC C V V T βββαβα=- ?- (4)如果β相是⽓相,可看作理想⽓体,α相是凝聚相,mm V V αβ,在式(4)中略去m V α,且令m pV RT β=,式(4)可简化为.p LC C Tββα=-(5) C βα是饱和蒸⽓的热容量. 由式(5)可知,当p L C Tβ<时,C βα是负的.3.10 试证明,相变潜热随温度的变化率为.m m p p m mp p V V dL L L C C dT T T T V V βαβαβα=-+--?? ? ???- 如果β相是⽓相,α相是凝聚相,试证明上式可简化为.p p dL C C dTβα=- 解: 物质在平衡相变中由α相转变为β相时,相变潜热L 等于两相摩尔焓之差:.m m L H H βα相变潜热随温度的变化率为.mm m m p T p T H H H H dL dp dp dT T p dT T p dTββαα=+-- ? ? ? ?(2)式(2.2.8)和(2.2.10)给出,,p pp TH C T H V V T p T = ?=- ? ? (3)所以().m m p p m m p p V V dL dp dp C C V V T dT dT T T dT βαβαβα=-+---?? ? ???将式中的dpdT⽤克拉珀龙⽅程(3.4.6)代⼊,可得,m m p p m mp p V V dL L L C C dT T T T V V βαβαβα=-+--?? ? ???- (4)这是相变潜热随温度变化的公式.如果β相是⽓相,α相是凝聚相,略去m V α和m pV T α,并利⽤m pV RT β=,可将式(4)简化为.p p dL C C dTβα=- (5)3.11 根据式(3.4.7),利⽤上题的结果计及潜热L 是温度的函数,但假设温度的变化范围不⼤,定压热容量可以看作常量,试证明蒸⽓压⽅程可以表为ln ln .Bp A C T T+ 解: 式(3.4.7)给出了蒸⽓与凝聚相两平衡曲线斜率的近似表达式21.dp Lp dT RT = (1)⼀般来说,式中的相变潜热L 是温度的函数. 习题3.10式(5)给出.p p dL C C dTβα=- (2)在定压热容量看作常量的近似下,将式(2)积分可得()0,p p L L C C T βα=+- (3)代⼊式(1),得021,p pC C L dL p dT RT RTβα-=+ (4)积分,即有ln ln ,Bp A C T T=-+ (5)其中0,,p pC LB C A R C βα==是积分常数.3.12 蒸⽓与液相达到平衡. 以mdV dT表⽰在维持两相平衡的条件下,蒸⽓体积随温度的变化率. 试证明蒸⽓的两相平衡膨胀系数为111.m m dV L V dT T RT ??=-解:蒸⽓的两相平衡膨胀系数为11.m m m p m m T dV V V dp V dT V T p dT ??=+??,11.m p m m m T V V T T V V p p= ?=- ?(2)在克拉珀龙⽅程中略去液相的摩尔体积,因⽽有2.m dp L LpdT TV RT== (3)将式(2)和式(3)代⼊式(1),即有111.m m dV L V dT T RT ??=-(4)3.13 将范⽒⽓体在不同温度下的等温线的极⼤点N 与极⼩点J 联起来,可以得到⼀条曲线NCJ ,如图所⽰. 试证明这条曲线的⽅程为()32,m m pV a V b =-并说明这条曲线划分出来的三个区域Ⅰ、Ⅱ、Ⅲ的含义.解:范⽒⽅程为2.m mRT ap V b V =-- (1)求偏导数得()232.m m Tm p RT aV V V b =-+ ??-?? (3)等温线的极⼤点N 与极⼩点J 满⾜0,m Tp V = ? 即()232,mm RT()()32.m m mRT aV b V b V =-- (3)将式(3)与式(1)联⽴,即有()322,m m ma ap V b V V =-- 或()32m m m pV a V b aV =--()2.m a V b =- (4)式(4)就是曲线NCJ 的⽅程.图中区域Ⅰ中的状态相应于过热液体;区域Ⅲ中的状态相应于过饱和蒸⽓;区域Ⅱ中的状态是不能实现的,因为这些状态的0m Tp V ??> ,不满⾜平衡稳定性的要求.3.14 证明半径为r 的肥皂泡的内压强与外压强之差为4rσ. 解:以p β表⽰肥皂泡外⽓体的压强,p γ表⽰泡内⽓体的压强,p α表⽰肥皂液的压强,根据曲⾯分界的⼒学平衡条件(式(3.6.6)),有2,p p r αβσ=+(1)2,p p rγασ=+ (2)式中σ是肥皂液的表⾯张⼒系数,r 是肥皂泡的半径. 肥皂液很薄,可以认为泡内外表⾯的半径都是r . 从两式中消去p α,即有4.p p rγβσ-=(3)3.15 证明在曲⾯分界⾯的情形下,相变潜热仍可表为().m m mm L T S S H H βαβα.T T T αβ== (1)当物质在平衡温度下从α相转变到β相时,根据式(1.14.4),相变潜热为().m m L T S S βα=- (2)相平衡条件是两相的化学势相等,即()(),,.T p T p ααββµµ= (3)根据化学势的定义,m m m U TS pV µ=-+式(3)可表为,m m m m m m U TS p V U TS p V ααααββββ-+=-+因此()()m m m m m mL T S S U p V U p V βαβββααα=-=+-+.m m H H βα=- (4)3.16 证明爱伦费斯特公式:()(2)(1)(2)(1)(2)(1)(2)(1),.p p dp dT C C dp dT TV αακκαα-=--=- 解:根据爱⽒对相变的分类,⼆级相变在相变点的化学势和化学势的⼀级偏导数连续,但化学势的⼆级偏导数存在突变. 因此,⼆级相变没有相变潜热和体积突变,在相变点两相的⽐熵和⽐体积相等. 在邻近的两个相变点(),T p 和(),T dT p dp ++,两相的⽐熵和⽐体积的变化也相等,即(1)(2)v v ,d d = (1)(1)(2).ds ds = (2)v v v v .p Td υdT dp T p dT dp ακ=+ ? ?=- 由于在相变点(1)(2)v v =,所以式(1)给出(1)(1)(2)(2),dT dp dT dp ακακ-=-即(2)(1)(2)(1).dp dT αακκ-=- (3)同理,有v .p T p pp s s ds dT dp T p C υdT dpT T C dT dp Tα=+ ? ?=- =- 所以式(2)给出(1)(2)(1)(1)(2)(2)v v ,ppC C dT dp dT dp TTαα-=-即()(2)(1)(2)(1),v p p C C dp dT T αα-=- (4)式中(2)(1)v v v ==. 式(3)和式(4)给出⼆级相变点压强随温度变化的斜率,称为爱伦费斯特⽅程.3.17 试根据朗道⾃由能式(3.9.1)导出单轴铁磁体的熵函数在⽆序相和有序相的表达式,并证明熵函数在临界点是连续的。
统计热力学(班)第三章电科
第三章 封闭系 (Closed systems )微正则分布应用不方便,本章讨论应用更为方便的正则分布。
§3-1 正则分布(Canonical Distribution )1.正则系综(Canonical Ensemble ) 2.正则分布, a 量子;b 经典1.正则系综:和外界无粒子交换,仅有能量交换的系统为封闭系,由封闭系组成的统计系综称为正则系综。
2.正则分布:系统+源=孤立系(只有确定的T ,V ,N ) 复合系const E E E r s O =+=)( 且s r E E >>a .量子,先考虑无能级简并的封闭系:当系统处于能量为s E 的s 态时,热源(Reservoir)可处于能量为s o E E -)(的可能态中的任一个,设热源此时的微观态数为)()(s O r E E W -,则复合系统的微观态数为)()(1)()(s O r s O r E E W E E W -=-⋅若复合系统总微观态数为)(O W ,处于任一态的几率为)(/1O W =ρ,亦可认为源处于r W 中的任一态时,系统处于s 态。
∴系统处于s 态的几率)()()()()(O s O r s O r s WE E W E E W -=-⋅=ρρ 在)(O E 附近对r E 展开:)()ln ()(ln )(ln )()(O r EE r rs O r s O r E W E E W E E W =∂∂-=-s O r E E W β-=)(ln )(s E s c βρ-=∴e由归一化条件得s E s Zβρ-=e 1, 其中∑-=sE s Z βe ,分别为正则分布和系统的配分函数。
易知,kT1=β,T 为热源温度。
s E β-e 称为Boltzmann 因子。
通常将1-Z 写成ψ-e ,即Z ln =ψ。
正则分布为 s E s βψρ--=e 。
当能级有简并时:设l E 能级的简并度为l W则系统处于 能级的几率为 E W Zβρ-=e 1∑-=E W Z βe 为系统的配分函数(对能级求和)。
《热力学与统计物理》第三章 单元系的相变
三.化学势分析
Vm
O K
范氏方程的平衡曲线
B T, p A T, p
J
J
K O
G
B G+L
D
N
L
A
M
R
p
D NR BA M
p
d SmdT Vmdp
p
dT 0 O pO Vmdp
NDJ段:Gm 最大, 不稳定 OKBAMR段:Gm 最小, 稳定
BN段: 亚稳 过饱和蒸气
JA段:
过热液体
两相平衡曲线:两相平衡共存,温 度和压强只有一个独立。
三相点:三相平衡共存,温度和压 强完全确定。
临界点:汽化线终点,温度高于此 点,无液相。由于临界点的存在, 从两相中任意一相的某一个状态出 发,可以经绕过临界点的任意路径 连续进行气—液的过渡而无需经过 相分离(或两相共存)的状态。
固 三相点 •
RT ln pr p
将上式代入*,以及p 2 ,得 :
r
2 v ln pr
r 107 m, pr r 108 m, pr r 109 m, pr
RTr
p
可见,液滴的平衡蒸汽压与液滴的半径有关
p 1.011; p 1.115; p 2.966;
三.中肯半径与过饱和蒸气
S U pV ,
T
S0
U0
p0V0
T0
2.稳定性条件
2S0 2S
系统的平衡条件
2S 2S 0
TdS
dU
pdV
S U
V
1 T
,
S V
U
p T
以 T,V 为自变量,有:
1 T
T
1 T
V
T
热力学与统计物理第三章
2020/4/4
17
由开系的基本热力学方程知: dU TdS pdV dn
S
U
p V
T
n
S
U
p V
T
n
由熵的广延性质: S S S
δS
1 T
1 T
δU
p T
p T
δV
T
T
δn
利用熵判据,平衡时总熵应有极大值,所以: δS 0
2020/4/4
18
T T 热平衡条件
独立变化。
• 相平衡曲线 在单元两相系中,由相平衡
条件所得到的T—p之间的关系p = p( T ),在T—p图上所描述的曲线
称为相平衡曲线。
AC—汽化线,分开气相区和液相区; AB—熔解线,分开液相区和固相区; 0A—升华线,分开气相区和固相区。
2020/4/4
24
单元两相平衡共存时,必须满足下面三个平衡条件:
第三章 单元系的相变
单元系:化学上纯的物质系统。 相:被一定边界包围,性质均匀的部分。
2020/4/4
1
§3.1 热动平衡判据
一、熵判据
• 虚变动
为了对系统的平衡态作出判断,必须考虑系统在平衡态 附近的一切可能的变动,这里面就有趋向平衡态的变动和 离开平衡态的变动。在热力学范围内,不考虑涨落现象, 系统一旦达到平衡态以后,其性质就不再发生变化了。因 此,在平衡态附近的一切可能的变动就是理论上虚拟的, 并不代表系统真实的物理过程,引进它的目的完全是为了 从数学上方便地导出系统的平衡条件。这类似于理论力学 中的“虚位移”概念。并以δ表示之。
它对各种平衡态系统包括化学平衡系统均成立。
2020/4/4
22
统计热力学基础
量子力学中把能级可能有的微观状态数称为
该能级的简并度,用符号gi 表示。简并度亦称为
退化度或统计权重。
简并度(degeneration)
例如,气体分子平动能的公式为:
N!
Hale Waihona Puke g Ni iN! i
i Ni !
非定位体系的最概然分布
同样采用最概然分布的概念,用Stiring公式
和Lagrange乘因子法求条件极值,得到微态数为
极大值时的分布方式
N
*(非定位)为:
i
N(i* 非定位) N
g ei / kT i g ei / kT i
i
由此可见,定位体系与非定位体系,最概然
的分布公式是相同的。
Boltzmann公式的其它形式
(1)将i能级和j能级上粒子数进行比较,用最 概然分布公式相比,消去相同项,得:
Ni*
N
* j
g ei / kT i
g e j / kT j
Boltzmann公式的其它形式
(2)在经典力学中不考虑简并度,则上式成为
Ni*
N
* j
i / kT
ee j / kT
(U,V , N)
N!
g Ni i
i
i Ni !
求和的限制条件仍为:
Ni N
Nii U
i
i
有简并度时定位体系的微态数
再采用最概然分布概念, i max ,用
Stiring公式和Lagrange乘因子法求条件极值,得
到微态数为极大值时的分布方式 Ni* 为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ln t ln g iN i ln( N i !) N i ln g i N i ln N i N i
N ln N i g ln t ln g i ln N i i 1 ln g i l ln N V ln i N i N i Ni
1 R 2
S 2R 2 2RL 2R 2
2 1 ( R 2 L 1 RL ) R R
极值时:
2 dS 4R 2 0 dR R
1 L R 2 1 2 3 ) 4
2
4R 3 2 0
2 2( ) 3 4
1
R3
2 4
R (
式相同
ln t m ln g iN i ln N i N V ln g i N i ln N i N i N i ln
N i ln( N
gi N ( N i N ) Ni
gi gie
i
kT
) N N i ln
i
(1) (2) (3)
由(2) 2R R 2 0
R 2
R(2 R) 0
(4)
(4)代入(1) , 4R 2L 2R (2) 0 , 6R 2L 0
L 2R
S 2R 2 2RL 2R 2 4R 2 6R 2 0.554(dm 2 )
N
* i
g i e i N , e g i e i N ,
i
i kT
ge ge N gi e e N i i N i i N i* , gVe gie kT N
* i
gie
i
i
kT
g e
i
kT
与定位体系的玻兹曼分布公
由V0 R 2 L R 2 (2 R) 2R 3 1
R 3
1 0.542 2
7.试用配分函数表示出单原子理想气体的吉布斯自由能 G 和焓 H。
答:理想气体为非定位体系:对单元子分子,只有电子核和平动配分函数。
F kT ln
P (
qN qN N kT ln t kT ln q eN kT ln q n , G U PV TS F PV , N! N!
(2)实际排出 6 种花样是正确的,因为 Stirling 是一个近似公式适用于 N 很大时才误差较小。而在 N 为 4 时,用 W 2 4 来计算就会产生较大误差。
2. (1)设有三个穿绿色、两个穿灰色和一个穿蓝色制服得军人一起列队,试问有多少种对型?现设穿
绿色制服得可有三种肩章并任取其中一种佩带, 穿灰色制服的可有两种肩章, 而穿蓝色的可有两种肩章, 试 列出求算队型数目的公式。 (2)试证明含有 N 个粒子的定位体系,某种分布- t x 的微观状态数为 t x N ! 度)
*
N ln N N i* ln(
gi ) N ln N N i* ln( * Ni N
gi gie
i
i
kT
)
i
kT
g e
N ln N N
N ln g i e
* i
* i
g e ln
i
i
kT
Ne
i
N ln N N ln g i e
种。
g iN i 1 , (3.25)和(3.26) 。 4.已知对非定位体系 (U ,V , N ) N! N ! 试证明式(3.24) N! Ni N i N i i U
g iN i 解:对定位体系: t i (N ! ) (第二题的结果) Ni!
N
v
kT
( g i e kT ) N U U kT N ln( g i e ) ln N ! ln N! kT kT
i
i
S 非 k ln k ln t m k ln
( g v e
i
kT
)N
N!
U T
F 非 U TS U kT ln
6!33 2 2 41 60 27 4 4 25920 3!2!1!
g iN i t x N ! Ni!
N1 (2)在 N 个不同粒子中取出 N1 个粒子放在 1 中,其放法为 C N 种。在 1 能级上有 g1 个不同状态,
N1 N2 N2 故在 1 上总共有 g1N1 C N 种放法,同理在从(N-N1)中取出 N2 个粒子放在 2 上的放法为 g 2 CN N1 种
g iN i (玻兹曼统计是指经典统计认为粒子是可区别的, Ni!
取自然对数: ln t ln N ! ln g iN i ln N i ! 对最概然分布:
ln t m ln N ! ln g iN i ln N i* !N ln N N i* ln g i N i* ln N i*
( g iN i )
g Ni N! N ! i Ni! N i
3.在公园的猴舍中陈列着三个金丝猴和两种长臂猿,金丝猴有红、绿两种帽子,仍戴一种,而长臂猿
可在黄、灰和黑中选戴一种,试问陈列时间可出现几种不同的情况,并列出求算公式。 解: 设 N1=3,N2=2, 而 g1=2,g2=3 则W 种, 因为每一种动物必须戴:三个金丝猴: (红、红、红) (绿、绿、绿) (红、红、绿) (绿、绿、红)共
( N 1 g1 1)! ( N 2 g 2 1)! (3 2 1)! (2 3 1)! 24 3!(2 1)! 2!(3 1)! N 1!( g 1 1)! N 2 !( g 2 1)!
4 种。 两种长臂猿: (黑、 黑) (灰、 灰) (黄、 黄) (黑、 灰) (黄、 灰) (黑、 黄) 。 共 6 种。 总共为 4 6 24
放法。所以这种分布的微观状态数:
N3 N3 N1 N 2 N2 t g1N1 C N g2 CN N1 g 3 C N N1 N 2
g1N1
( N N 1 )! ( N N 1 N 2 )! N! N2 g2 g 3N 3 N 1!( N N 1 )! N 2 !( N N 1 N 2 )! N 3 !( N N 1 N 2 N 3 )!
第三章 统计热力学 复习题及参考答案
1.混合晶体是由晶格点阵中随机放置 NC 个 C 分子和 D 分子组成的。 (1) 证明分子能够占据格点的花样为 W
( N C N D )! 1 ,若 N C N D N ,利用斯特林公式证明 NC !N D! 2
W 2N
(2) 若 N C N D 2,利用上式计算得W 2 4 =16,但实际上只能排出 6 种花样,究竟何者正确?为 什么? 解: (1)证明:取 ( N C N D ) 的全排列,则总共排列的花样数为 ( N C N D )!种,现 N C 个相同的 C 和
g iN i (gI 为相应的简并 Ni!
.答: (1)取 6 个不同的全排列,应有 6!种花样,但其中 3 种完全相同互换位置不能导致新花样另两
种完全相同 (同样这 2 种相同物种的全排列为 2! 种) 故排列花样数为: W 种,t i
6! 6 5 4 3 2 60 3!2!1! 3 2 1 2 1
( g v e
i
kT
)N
N!
U kT ln
N U kT
( g v e
i
kT
)N
N!
5.试证明玻兹曼分布的微观状态数公式为 ln t ln(q e ) 式中 q g i exp(
i
i
kT
) ,U N i i
证:利用定位体系任意分配方式公式:t N ! 即定位体系)
N! 另一种只有一种这 3 种的全排列为 3!种,取 6 个不同的全排列总共有 6!种花样,而 T! N i !
。就有 33 种花样。穿灰色 穿绿色制服 3 个人有 3 种肩章,任取一种佩带,相当于有简并度为 5( g iN ) 的有两种肩章相当于简并度为 2, 就有 22 种而穿蓝色的有 4 种肩章相当于简并度为 g iN 4 就有 41 种, 但其中有 3 个穿绿色制服的戴相同肩章,总共有 3!种花样,2 个穿灰色的戴相同肩章有 2!种
用拉格朗日乘因子法,求得: (书中 189 页)
ln t i 0 N i* e N , g i e i
i
,即 ln
gV i 0 , N i*
gV e i * Ni
, N i* g i e i
对非定位体系: t i 摘取最大项原理: t m N !
g iN i g iN i 1 N ( ! ) N! N! Ni! i g iN i (定位体系) Ni!
g iN i g iN i 1 tm N ! N! Ni! Ni! g iN i 对非定位体系: t m Ni!
* i
i
kT
N ln N N ln e
* i * i
i
kT
kT
i
kT
N
* i U kT
i
kT
N ln g i e
i
kT
U U U N ln q ln q N kT kT kT
ln q N ln e
U kT
ln(q N e )
kT
g e