2017-2018学年安徽省滁州市全椒县城东中学高二上学期期中数学试卷与解析(文科)

合集下载

安徽省滁州市高二上学期期中数学试卷(理科)

安徽省滁州市高二上学期期中数学试卷(理科)

安徽省滁州市高二上学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)抛物线y2=﹣4x的焦点坐标是()A . (﹣2,0)B . (﹣1,0)C . (0,﹣1)D . (0,﹣2)2. (2分) (2016高三上·成都期中) 已知f(x)=3sinx﹣πx,命题p:∀x∈(0,),f(x)<0,则()A . p是假命题,¬p:∀x∈(0,),f(x)≥0B . p是假命题,¬p:∃x0∈(0,),f(x0)≥0C . p是真命题,¬p:∀x∈(0,),f(x)>0D . p是真命题,¬p:∃x0∈(0,),f(x0)≥03. (2分)(2017·广安模拟) 椭圆的一个焦点为F,该椭圆上有一点A,满足△OAF是等边三角形(O为坐标原点),则椭圆的离心率是()A .B .C .D .4. (2分)焦点为(0,6),且与双曲线有相同的渐近线的双曲线方程是()A .B .C .D .5. (2分)(2017·葫芦岛模拟) 已知在椭圆方程 + =1中,参数a,b都通过随机程序在区间(0,t)上随机选取,其中t>0,则椭圆的离心率在(,1)之内的概率为()A .B .C .D .6. (2分)已知点A(0,1,2),B(2,3,4),|AB|=()A . 2B . 3C .D . 127. (2分)已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()A . (﹣3,﹣1,4)B . (﹣3,﹣1,﹣4)C . (3,1,4)D . (3,﹣1,﹣4)8. (2分)已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率为()A .B .C .D .9. (2分)(2020·沈阳模拟) 已知双曲线的两条渐近线分别为直线与,若点A,B为直线上关于原点对称的不同两点,点M为直线上一点,且,则双曲线C的离心率为()A . 1B .C . 2D .10. (2分)己知正四棱锥S﹣ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成角的余弦值为()A .B .C .D .11. (2分)若命题“使得”为假命题,则实数的取值范围是()A .B .C .D .12. (2分) (2015高三上·安庆期末) 已知0为坐标原点,抛物线y2=8x,直线l经过抛物线的焦点F,且与抛物线交于A、B两点(点A在第一象限),满足,则△A0B的面积为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2018高二上·嘉兴期末) 已知空间向量,,若,则________.14. (1分) (2017高二上·南京期末) 在平面直角坐标系xOy中,抛物线C:y2=4x的焦点为F,P为抛物线C上一点,且PF=5,则点P的横坐标是________.15. (1分) (2018高二上·榆林期末) 已知分别是双曲线的左、右焦点,若关于渐近线的对称点恰落在以为圆心,为半径的圆上,则双曲线的离心率为________.16. (1分)在圆锥内部嵌入Dandelin双球,一个位于平面π的上方,一个位于平面π的下方,并且与平面π和圆锥面均相切,则两个切点是所得圆锥曲线的________。

安徽省滁州市高二上学期数学期中考试试卷

安徽省滁州市高二上学期数学期中考试试卷

安徽省滁州市高二上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高二上·石河子月考) 设为,且 ,则下列不等式正确的是()A .B .C .D .2. (2分) (2018高二上·马山期中) 已知等差数列中,若,则它的前项和为()A .B .C .D .3. (2分)一船自西向东匀速航行上午10时到达一座灯塔P的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船航行的速度为()A . 海里/小时B . 海里/小时C . 海里/小时D . 海里/小时4. (2分) (2018高二上·淮北月考) 设满足约束条件,若目标函数()的最大值为2,则的最小值为()A . 2B .C . 4D .5. (2分)已知等差数列的公差为2,若成等比数列, 则()A .B .C .D .6. (2分)一个等比数列的前4项之和为前2项之和的2倍,则这个数列的公比是()A . 或﹣B . 1C . 1或﹣1D . 2或﹣27. (2分)已知数列的前项和,第项满足,则k=()A . 9B . 8C . 7D . 68. (2分)(2018·成都模拟) 已知直线和平面,若,则“ ”是“ ”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件9. (2分) (2017高一下·西安期末) 在R上定义运算⊙:x⊙y=x(1﹣y).若不等式(x﹣a)⊙(x+a)<1对任意实数x成立,则()A . ﹣1<a<1B . 0<a<2C .D .10. (2分) (2020高一下·济南月考) 在中, , , ,过作交于,则()A .B .C .D .11. (2分) (2018高一下·宜宾期末) 如图,在四边形中,已知,,则的最小值为()A . 1B . 2C . 3D . 412. (2分) (2017高一上·绍兴期末) 已知函数f(x)=|x2+bx|(b∈R),当x∈[0,1]时,f(x)的最大值为M(b),则M(b)的最小值是()A . 3﹣2B . 4﹣2C . 1D . 5﹣2二、填空题 (共4题;共4分)13. (1分) (2018高一下·通辽期末) 在中,,则此三角形的最大边的长为________.14. (1分) (2016高一上·武清期中) 一批材料可以建成100m长的围墙,现用这些材料在一边靠墙的地方围成一块封闭的矩形场地,中间隔成3个面积相等的小矩形(如图),则围成的矩形场地的最大总面积为(围墙厚度忽略不计)________ m2 .15. (1分) (2019高二上·城关期中) ax2+2x+1=0只有负实根的充要条件是________.16. (1分)(2019·上饶模拟) 已知点Q(x0 , 1),若上存在点,使得∠OQP=60°,则的取值范围是________.三、解答题 (共6题;共60分)17. (5分)(2020·淮南模拟) 已知等差数列的首项为1,公差为1,等差数列满足.(1)求数列和数列的通项公式;(2)若,求数列的前项和.18. (10分)(2013·四川理) 在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2 cosB﹣sin (A﹣B)sinB+cos(A+C)=﹣.(1)求cosA的值;(2)若a=4 ,b=5,求向量在方向上的投影.19. (10分) (2018高一下·黑龙江期末) 在等差数列中, .(1)求数列的通项;(2)若,求数列的前项和.20. (10分) (2017高三上·涪城开学考) 已知p:|1﹣|≤2,q:x2﹣2x+1﹣m2≤0(m>0),若¬p 是¬q的充分而不必要条件,求实数m的取值范围.21. (10分) (2015高二下·三门峡期中) 某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2﹣10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)﹣f(x).(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值﹣成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大?(3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?22. (15分) (2016高二下·江门期中) 已知等差数列{an}的公差为d(d≠0),等比数列{bn}的公比为q,a1=b1=1,a2=b2 , a5=b3 .(1)求数列{an}与{bn}的通项公式;(2)若cn=an•bn,求数列{cn}的前n项和Sn.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、。

2017-2018学年高二(上)期中数学试卷带答案精讲

2017-2018学年高二(上)期中数学试卷带答案精讲

2017-2018学年高二(上)期中数学试卷一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目的要求的.请将答案填涂在答题卡上对应题号后的框内,答在试卷上无效)1.(5分)用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.512.(5分)以下赋值语句书写正确的是()A.2=a B.a=a+1 C.a*b=2 D.a+1=a3.(5分)某学校高中部组织赴美游学活动,其中高一240人,高二260人,高三300人,现需按年级抽样分配参加名额40人,高二参加人数为()A.12 B.13 C.14 D.154.(5分)有下面的程序,运行该程序,要使输出的结果是30,在处应添加的条件是()A.i>12 B.i>10 C.i=14 D.i=105.(5分)在样本方差的计算公式s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2]中,数字10和20分别表示样本的()A.样本容量,方差 B.平均数,样本容量C.标准差,平均数 D.样本容量,平均数6.(5分)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为()A.B.C.D.7.(5分)将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用x表示,则x的值为()A.0 B.4 C.5 D.78.(5分)在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为()A.B.C.D.9.(5分)从有2个红球和2个黒球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球B.至少有一个红球与都是红球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球10.(5分)下表提供了某厂节能降耗技术改造后在生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:若根据上表提供的数据用最小二乘法可求得y对x的回归直线方程是=0.7x+0.35,则表中m的值为()A.4 B.4.5 C.3 D.3.511.(5分)学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次是[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数和平均成绩分别是()A.45,67 B.50,68 C.55,69 D.60,7012.(5分)用秦九韶算法计算多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6在x=﹣4时的值时,V3的值为()A.﹣845 B.220 C.﹣57 D.34二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题卡对应题号的位置上,答错位置、书写不清,模棱两可均不得分)13.(5分)假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.14.(5分)将二进制数101101(2)化为十进制数,结果为;再将结果化为8进制数,结果为.15.(5分)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于.16.(5分)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填,输出的s=.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.请将答案填在答题卡上对应题号的指定区域内)17.(10分)如图,在Rt△ABC中,AB=4,BC=3,点P在边BC上沿B→C运动,求△ABP的面积小于4的概率.18.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.19.(12分)甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.20.(12分)某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.(Ⅰ)求图中a的值,并估计日需求量的众数;(Ⅱ)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.(ⅰ)将S表示为x的函数;(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.21.(12分)运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x +a ,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:b=,a=﹣b .参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目的要求的.请将答案填涂在答题卡上对应题号后的框内,答在试卷上无效)1.(5分)用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.51【分析】用459除以357,得到商是1,余数是102,用357除以102,得到商是3,余数是51,用102除以51得到商是2,没有余数,得到两个数字的最大公约数是51.【解答】解:∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,故选D.【点评】本题考查辗转相除计算最大公约数,本题是一个基础题,是在算法案例中出现的一个案例,近几年在新课标中出现,学生掌握的比较好,若出现一定会得分.2.(5分)以下赋值语句书写正确的是()A.2=a B.a=a+1 C.a*b=2 D.a+1=a【分析】根据赋值语句的格式,逐一进行分析,即可得到答案.【解答】解:由赋值语句的格式我们可知,赋值语句的赋值号左边必须是一个变量,而右边的运算符号与平常书写的运算符号有所不同.A中左侧是常数,不是变量,格式不对;B中满足赋值语句的格式与要求,正确;C与D中左侧是运算式,不对;故选:B.【点评】本题考查赋值语句,通过对赋值语句定义和格式的把握直接进行判断即可,属于基础题.3.(5分)某学校高中部组织赴美游学活动,其中高一240人,高二260人,高三300人,现需按年级抽样分配参加名额40人,高二参加人数为()A.12 B.13 C.14 D.15【分析】根据分层抽样的定义,即可得到结论.【解答】解:∵高一240人,高二260人,高三300人,∴按年级抽样分配参加名额40人,高二参加人数为×40=13,故选:B.【点评】本题考查了分层抽样的定义和应用问题,是基础题.4.(5分)有下面的程序,运行该程序,要使输出的结果是30,在处应添加的条件是()A.i>12 B.i>10 C.i=14 D.i=10【分析】先根据输出的结果推出循环体执行的次数,再根据s=2+4+6+…+10=30得到程序中UNTIL后面的“条件”.【解答】解:因为输出的结果是30,即s=2+4+6+…+10,需执行5次,则程序中UNTIL后面的“条件”应为i>10.故选B.【点评】本题主要考查了直到型循环语句,语句的识别问题是一个逆向性思维,一般认为学习是从算法步骤(自然语言)至程序框图,再到算法语言(程序).如果将程序摆在我们的面前时,从识别逐个语句,整体把握,概括程序的功能.5.(5分)在样本方差的计算公式s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2]中,数字10和20分别表示样本的()A.样本容量,方差 B.平均数,样本容量C.标准差,平均数 D.样本容量,平均数【分析】方差计算公式:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],n表示样本容量,为平均数,根据此公式即可得到答案.【解答】解:由于S2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2],所以样本容量是10,平均数是20.故选:D.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.(5分)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为()A.B.C.D.【分析】根据题意,在图中的四个方格中填入数字的方法种数共有43种,对于A、B两个方格,由于其大小有序,则可以在l、2、3、4中的任选2个,大的放进A 方格,小的放进B方格,由组合数公式计算可得其填法数目,对于另外两个方格,每个方格有4种情况,由分步计数原理可得其填法数目,最后由分步计数原理,计算可得填入A方格的数字大于B方格的数字的填法种数,利用古典概型的概率计算公式求概率.【解答】解:根据题意,在图中的四个方格中填入数字的方法种数共有44=256种,对于A、B两个方格,可在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,有C42=6种情况,对于另外两个方格,每个方格有4种情况,则共有4×4=16种情况,则填入A方格的数字大于B方格的数字的不同的填法共有16×6=96种,则填入A方格的数字大于B方格的数字的概率为p=.故选D.【点评】本题考查古典概型及其概率计算公式,考查排列、组合的运用,注意题意中数字可以重复的条件,这是易错点,此题是基础题,也是易错题.7.(5分)将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用x表示,则x的值为()A.0 B.4 C.5 D.7【分析】根据茎叶图提供的数据,去掉1个最高分和1个最低分后,利用公式求平均数可得x的值.【解答】解:选手的7个得分中去掉1个最高分96,去掉1个最低分86,剩余5个得分为88,93,90,94,(90+x);它们的平均分为=91,∴x=0;故选:A.【点评】本题考查了利用茎叶图求平均数的问题,是基础题.8.(5分)在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为()A.B.C.D.【分析】使2x∈[2,4]的区间为[1,2],由此能求出使得2x∈[2,4]的概率.【解答】解:∵2=2¹,4=22∴使2x∈[2,4]的区间为[1,2],∵x∈[1,6],且[1,6]长为5,[1,2]长为1∴使得2x∈[2,4]的概率p=.故选:B.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意几何概型的合理运用.9.(5分)从有2个红球和2个黒球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球B.至少有一个红球与都是红球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球【分析】利用互斥事件和对立事件的概念求解.【解答】解:在A中,至少有一个黒球与都是黒球能同时发生,两个事件不是互斥事件;在B中,至少有一个红球与都是红球能同时发生,两个事件不是互斥事件;在C中,至少有一个黒球与至少有1个红球能同时发生,两个事件不是互斥事件;在D中,恰有1个黒球与恰有2个黒球不能同时发生,可以同时不发生,两个事件是互斥而不对立事件.故选:D.【点评】本题考查互斥而不对立的两个事件的判断,是基础题,解题时要认真审题,注意互斥事件和对立事件的概念的合理运用.10.(5分)下表提供了某厂节能降耗技术改造后在生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:若根据上表提供的数据用最小二乘法可求得y对x的回归直线方程是=0.7x+0.35,则表中m的值为()A.4 B.4.5 C.3 D.3.5【分析】先求样本中心点,再代入回归直线方程,即可求得m的值.【解答】解:由题意,,∵y对x的回归直线方程是=0.7x+0.35,∴2.5+0.25m=3.15+0.35,∴m=4.故选A.【点评】本题考查回归直线方程,解题的关键是利用回归直线方程恒过样本中心点,属于基础题.11.(5分)学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次是[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数和平均成绩分别是()A.45,67 B.50,68 C.55,69 D.60,70【分析】根据频率分布直方图,利用频率、频数与样本容量的关系,求出该班的学生数,再计算平均成绩.【解答】解:根据频率分布直方图,得;低于60分的频率是(0.005+0.01)×20=0.3,所以该班的学生人数为=50,;所以,该班的平均成绩为:30×0.005×20+50×0.01×20+70×0.02×20+90×0.015×20=68.故选:B.【点评】本题考查了频率分布直方图的应用问题,也考查了频率=的应用问题,考查了求平均数的计算问题,是基础题目.12.(5分)用秦九韶算法计算多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6在x=﹣4时的值时,V3的值为()A.﹣845 B.220 C.﹣57 D.34【分析】由于多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6=(((((3x+5)x+6)x+79)x﹣8)x+35)x+12,可得当x=﹣4时,v0=3,v1=3×(﹣4)+5=﹣7,v2,v3即可得出.【解答】解:∵多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6=(((((3x+5)x+6)x+79)x﹣8)x+35)x+12,当x=﹣4时,∴v0=3,v1=3×(﹣4)+5=﹣7,v2=﹣7×(﹣4)+6=34,v3=34×(﹣4)+79=﹣57.故选:C.【点评】本题考查了秦九韶算法计算多项式的值,考查了计算能力,属于基础题.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题卡对应题号的位置上,答错位置、书写不清,模棱两可均不得分)13.(5分)假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号785,667,199,507,175(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.【分析】找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.【解答】解:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916它大于800要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.故答案为:785、667、199、507、175【点评】抽样方法,随机数表的使用,考生不要忽略.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.14.(5分)将二进制数101101(2)化为十进制数,结果为45;再将结果化为8进制数,结果为55(8).【分析】根据二进制转化为十进制的方法,分别用每位数字乘以权重,累加后即可得到结果;根据“除8取余法”的方法转化为对应的八进制数即可得到结果.【解答】解:101101(2)=1×20+0×21+1×22+1×23+0×24+1×25=1+4+8+32=45..又45=8×5+5,∴45=55(8)故答案为:45,55.(8)【点评】本题以进位制的转换为背景考查算法的多样性,解题的关键是熟练掌握进位制的转化规则,属于基础题.15.(5分)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于60.【分析】根据比例关系设出各组的频率,在频率分布表中,频数的和等于样本容量,频率的和等于1,求出前三组的频率,再频数和建立等量关系即可.【解答】解:设第一组至第六组数据的频率分别为2x,3x,4x,6x,4x,x,则2x+3x+4x+6x+4x+x=1,解得,所以前三组数据的频率分别是,故前三组数据的频数之和等于=27,解得n=60.故答案为60.【点评】本小题考查频率分布直方图的基础知识,熟练基本公式是解答好本题的关键,属于基础题.16.(5分)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填i<7(或i≤6),输出的s=51.【分析】由题意该程序框图实际上是求该6名队员在最近三场比赛中投进三分球总数,故循环次数为6,由于第一次进行循环时,循环变量的初值为1,步长为1,故最后一次进入循环的终值应为6,故不难得到判断框中的条件及输出结果.【解答】解:由题意该程序框图实际上是求该6名队员在最近三场比赛中投进三分球总数,故判断框应填i≤6或i<7,输出s的值为:9+13+11+7+5+6=51.故答案为:i<7(或i≤6),51.【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.请将答案填在答题卡上对应题号的指定区域内)17.(10分)如图,在Rt△ABC中,AB=4,BC=3,点P在边BC上沿B→C运动,求△ABP的面积小于4的概率.【分析】利用线段的长度与面积的关系,直接利用几何概型求解即可.【解答】解:点P在BC边上沿B→C运动,落在BC上的任何一点都是等可能的.全部基本事件可用BC表示.…(2分)设事件M 为“△ABC面积小于4”,则事件M包含的基本事件可用长度为2的线段BP 表示,…(4分)由几何概型可知:即所求事件的概率为.…(10分)【点评】本题主要考查了几何概型.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关解.18.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【分析】(Ⅰ)先判断出这是一个古典概型,所以求出基本事件总数,“至少参加一个社团”事件包含的基本事件个数,从而根据古典概型的概率计算公式计算即可;(Ⅱ)先求基本事件总数,即从这5名男同学和3名女同学中各随机选1人,有多少中选法,这个可利用分步计数原理求解,再求出“A1被选中,而B1未被选中”事件包含的基本事件个数,这个容易求解,然后根据古典概型的概率公式计算即可.【解答】解:(Ⅰ)设“至少参加一个社团”为事件A;从45名同学中任选一名有45种选法,∴基本事件数为45;通过列表可知事件A的基本事件数为8+2+5=15;这是一个古典概型,∴P(A)=;(Ⅱ)从5名男同学中任选一个有5种选法,从3名女同学中任选一名有3种选法;∴从这5名男同学和3名女同学中各随机选1人的选法有5×3=15,即基本事件总数为15;设“A1被选中,而B1未被选中”为事件B,显然事件B包含的基本事件数为2;这是一个古典概型,∴.【点评】考查古典概型的概念,以及古典概型的概率的求法,分步计数原理的应用.19.(12分)甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.【分析】由题意知本题是一个几何概型,试验发生包含的所有事件对应的集合是Ω={(x,y)|0<x<60,0<y<60}做出集合对应的面积是边长为60的正方形的面积,写出满足条件的事件A═{(x,y)|0<x<60,0<y<60,|x﹣y|≤15}对应的集合和面积,根据面积之比得到概率.【解答】解:由题意知本题是一个几何概型,∵试验发生包含的所有事件对应的集合是Ω={(x,y)|0<x<60,0<y<60}集合对应的面积是边长为60的正方形的面积SΩ=60×60,而满足条件的事件对应的集合是A={(x,y)|0<x<60,0<y<60,|x﹣y|≤15}得到S A=60×60﹣(60﹣15)×(60﹣15)∴两人能够会面的概率P==,∴两人能够会面的概率是.【点评】本题的难点是把时间分别用x,y坐标来表示,从而把时间长度这样的一维问题转化为平面图形的二维面积问题,转化成面积型的几何概型问题.20.(12分)某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.(Ⅰ)求图中a的值,并估计日需求量的众数;(Ⅱ)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.(ⅰ)将S表示为x的函数;(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.【分析】(I)根据所有小矩形的面积之和为1,求得第四组的频率,再根据小矩形的高=求a的值;(II)利用分段函数写出S关于x的函数;根据S≥3400得x的范围,利用频率分布直方图求数据在范围内的频率及可得概率.【解答】解:(Ⅰ)由直方图可知:(0.013+0.015+0.017+a+0.030)×10=1,∴a=0.025,∵,∴估计日需求量的众数为125件;(Ⅱ)(ⅰ)当100≤x<130时,S=30x﹣20(130﹣x)=50x﹣2600,当130≤x≤150时,S=30×130=3900,∴;(ⅱ)若S≥3400由50x﹣2600≥3400得x≥120,∵100≤x≤150,∴120≤x≤150,∴由直方图可知当120≤x≤150时的频率是(0.030+0.025+0.015)×10=0.7,∴可估计当天纯利润S不少于3400元的概率是0.7.【点评】本题考查了由频率分布直方图求频率与众数,考查了分段函数的值域与定义域,在频率分布直方图中小矩形的高=,所有小矩形的面积之和为1.21.(12分)运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.【分析】(I)算法的功能是求f(x)=的值,根据输入实数x 的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7求得a 、b ;(II )分别在不同的段上求得函数的值域,再求并集.【解答】解:(Ⅰ)由程序框图知:算法的功能是求f (x )=的值,∵输入x=﹣1<0,输出f (﹣1)=﹣b=2,∴b=﹣2.∵输入x=3>0,输出f (3)=a 3﹣1=7,∴a=2. ∴. (Ⅱ)由(Ⅰ)知:①当x <0时,f (x )=﹣2x >1,∴; ②当x ≥0时,f (x )=2x ﹣1>1,∴x >1.综上满足不等式f (x )>1的x 的取值范围为或x >1}.【点评】本题借助考查选择结构程序框图,考查了分段函数求值域,解题的关键是利用程序框图求得分段函数的解析式.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x +a ,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:b=,a=﹣b .【分析】(1)利用题目条件直接画出散点图即可.(2)利用条件求解回归直线方程的参数,即可.(3)利用回归直线方程求解推出结果即可.【解答】解:(1)散点图如图所示,…(3分)(2)由表中数据得:=52.5,=3.5,=3.5;=54,∴===0.7,,==3.5﹣0.7×3.5=1.05,∴=0.7x+1.05 …(8分)(3)将x=10代入回归直线方程,得=0.7×10+1.05=8.05(小时)预测加工10个零件需要8.05小时.…(12分)【点评】本题考查回归直线方程的求法,散点图的画法,考查计算能力.。

2017-2018年安徽省滁州市全椒县城东中学高二上学期期中数学试卷及参考答案(文科)

2017-2018年安徽省滁州市全椒县城东中学高二上学期期中数学试卷及参考答案(文科)

2017-2018学年安徽省滁州市全椒县城东中学高二(上)期中数学试卷(文科)一、选择题(每小题5分,共60分)1.(5分)一组数据的方差为s2,将这组数据中的每一个数据都乘以2,所得到的一组新数据的方差是()A.s2B.2s2C.4s2D.s22.(5分)给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使x2<0”是不可能事件③“明天全椒要下雨”是必然事件④“从100个灯泡(6个是次品)中取出5个,5个都是次品”是随机事件.其中正确命题的个数是()A.0 B.1 C.2 D.33.(5分)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.10 B.12 C.13 D.144.(5分)某中学从已编号(1~60)的60个班级中,随机抽取6个班级进行卫生检查,用每部分选取的号码间隔一样的系统抽样方法确定所选的6个班级的编号可能是()A.6,16,26,36,46,56 B.3,10,17,24,31,38C.4,11,18,25,32,39 D.5,14,23,32,41,505.(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.B.C.D.6.(5分)甲、乙两名篮球运动员近几场比赛得分统计成茎叶图如图,甲,乙两人得分的平均数与中位数分别相等,则x:y为()A.3:1或5:3 B.3:2或7:5 C.3:2 D.2:37.(5分)总体编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481.A.08 B.07 C.02 D.018.(5分)一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高在145.83cm左右B.身高在145.83cm以上C.身高在145.83cm以下D.身高一定是145.83cm9.(5分)如图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是()A.i<10?B.i<20?C.i>10?D.i>20?10.(5分)某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛.在下列选项中,互斥而不对立的两个事件是()A.“至少有1名女生”与“都是女生”B.“至少有1名女生”与“至多1名女生”C.“恰有1名女生”与“恰有2名女生”D.“至少有1名男生”与“都是女生”11.(5分)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()A.B.C.D.12.(5分)在区间[0,4]上随机取两个实数x,y,使得x+2y≤8的概率为()A.B.C.D.二、填空题(每小题5分,共20分)13.(5分)如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为.14.(5分)如果执行的程序框图如图所示,那么输出的S=.15.(5分)从某市参加高中数学建模竞赛的1008份试卷中随机抽取一个容量为54的样本,考查竞赛的成绩分布,将样本分成6组,绘成频率分布直方图如图所示,从左到右各小组的小矩形的高的比为1:1:4:6:4:2.据此估计该市在这次竞赛中,成绩高于80分的学生总人数为人.16.(5分)数学与文学有许多奇妙的联系,如诗中有回文诗:“儿忆父兮妻忆夫”,既可以顺读也可以逆读,数学中有回文数,如343,12521等,两位数的回文数有11、22、33、…99共9个,则三位数的回文数中,偶数的概率是.三、解答题(共6大题70分)17.(10分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:(1)计算甲、乙两位射击运动员成绩平均数和方差;(2)比较两个人的成绩,分析谁的成绩较稳定?18.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如图资料:设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于x的线性回归方程=x;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?19.(12分)某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.20.(12分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.21.(12分)已知一元二次方程x2+ax+b2=0,(1)若a是从区间[0,3]任取的一个整数,b是从区间[0,2]任取的一个整数,求上述方程有实数根的概率.(2)若a是从区间[0,3]任取的一个实数,b是从区间[0,2]任取的一个实数,求上述方程有实数根的概率.22.(12分)我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x 的值,并说明理由;(Ⅲ)已知平价收费标准为4元/吨,议价收费标准为8元/吨.当x=3时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)2017-2018学年安徽省滁州市全椒县城东中学高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分)1.(5分)一组数据的方差为s2,将这组数据中的每一个数据都乘以2,所得到的一组新数据的方差是()A.s2B.2s2C.4s2D.s2【解答】解:由题意知,原来的平均数为,新数据的平均数变为a,(a=2)原来的方差S2=[(x1﹣)2+(x2﹣)2+(x3﹣)2],现在的方差S′2=[(ax1﹣a)2+(ax2﹣a)2+(ax3﹣a)2]=[a2(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=a2s2,∴求得新数据的方差为4s2.故选:C.2.(5分)给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使x2<0”是不可能事件③“明天全椒要下雨”是必然事件④“从100个灯泡(6个是次品)中取出5个,5个都是次品”是随机事件.其中正确命题的个数是()A.0 B.1 C.2 D.3【解答】解:对于①,三个球分为两组,有两种情况,1+2和3+0,所以①是正确的命题;对于②,一实数x都有x2≥0,所以②是正确的命题;对于③,“明天全椒要下雨”是偶然事件,所以③是错误的命题;对于④,“从100个灯泡中取出5个,5个都是次品”,发生与否是随机的,所以④是正确的命题.故选:D.3.(5分)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.10 B.12 C.13 D.14【解答】解:∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,丙车间生产产品所占的比例,因为样本中丙车间生产产品有3件,占总产品的,所以样本容量n=3÷=13;故选:C.4.(5分)某中学从已编号(1~60)的60个班级中,随机抽取6个班级进行卫生检查,用每部分选取的号码间隔一样的系统抽样方法确定所选的6个班级的编号可能是()A.6,16,26,36,46,56 B.3,10,17,24,31,38C.4,11,18,25,32,39 D.5,14,23,32,41,50【解答】解:从60枚某型导弹中随机抽取6枚,采用系统抽样间隔应为=10,只有B答案中导弹的编号间隔为10,故选:A.5.(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.B.C.D.【解答】解:∵红灯持续时间为40秒,至少需要等待15秒才出现绿灯,∴一名行人前25秒来到该路口遇到红灯,∴至少需要等待15秒才出现绿灯的概率为=.故选:B.6.(5分)甲、乙两名篮球运动员近几场比赛得分统计成茎叶图如图,甲,乙两人得分的平均数与中位数分别相等,则x:y为()A.3:1或5:3 B.3:2或7:5 C.3:2 D.2:3【解答】解:∵甲乙两人的平均数相等,∴=,又∵甲乙两人的中位数相等,∴=y,(1≤x≤5,y≤3)或=y,(x>5,y≤3)或=3,(1≤x≤5,y>3)或=3,(x>5,y>3)解得:x=3,y=2,或x=7,y=5,故x:y=3:2,或x:y=7:5,故选:B.7.(5分)总体编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481.A.08 B.07 C.02 D.01【解答】解:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,01,.其中第二个和第四个都是02,重复.可知对应的数值为08,02,14,07,01,则第5个个体的编号为01.故选:D.8.(5分)一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高在145.83cm左右B.身高在145.83cm以上C.身高在145.83cm以下D.身高一定是145.83cm【解答】解:估计回归直线方程y=7.19x+73.93,计算x=10时,y=7.19×10+73.93=145.83,由此预测这个孩子10岁时的身高在145.83cm左右.故选:A.9.(5分)如图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是()A.i<10?B.i<20?C.i>10?D.i>20?【解答】解:框图首先给变量s,n,i赋值s=0,n=3,i=1.判断条件不满足,执行s=0+,n=3+2=5,i=1+1=2;判断条件不满足,执行s=+,n=5+2=7,i=2+1=3;判断条件不满足,执行s=++,n=7+2=9,i=3+1=4;…,由此看出,当执行s=+++…+时,执行n=21+2=23,i=10+1=11.在判断时判断框中的条件应满足,所以判断框中的条件应是i>10?.故选:C.10.(5分)某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛.在下列选项中,互斥而不对立的两个事件是()A.“至少有1名女生”与“都是女生”B.“至少有1名女生”与“至多1名女生”C.“恰有1名女生”与“恰有2名女生”D.“至少有1名男生”与“都是女生”【解答】解:A中的两个事件是包含关系,故不符合要求.B中的两个事件之间有都包含一名女的可能性,故不互斥;C中的两个事件符合要求,它们是互斥且不对立的两个事件;D中的两个事件是对立事件,故不符合要求故选:C.11.(5分)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()A.B.C.D.【解答】解:正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件.4组邻边和对角线中两条直线相互垂直的情况有5种包括10个基本事件,所以概率P==,故选:C.12.(5分)在区间[0,4]上随机取两个实数x,y,使得x+2y≤8的概率为()A.B.C.D.【解答】解:由题意,在区间[0,4]上随机取两个实数x,y,对应的区域的面积为16.在区间[0,4]内随机取两个实数x,y,则x+2y≤8对应的面积为=12,所以事件x+2y≤8的概率为=.故选:D.二、填空题(每小题5分,共20分)13.(5分)如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为0.18.【解答】解:正方形的面积S=1,设阴影部分的面积为S,∵随机撒1000粒豆子,有180粒落到阴影部分,∴几何槪型的概率公式进行估计得,即S=0.18,故答案为:0.18.14.(5分)如果执行的程序框图如图所示,那么输出的S=2550.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=0+2+4+6+ (100)∵S=0+2+4+6+…+100=2550.故答案为:2550.15.(5分)从某市参加高中数学建模竞赛的1008份试卷中随机抽取一个容量为54的样本,考查竞赛的成绩分布,将样本分成6组,绘成频率分布直方图如图所示,从左到右各小组的小矩形的高的比为1:1:4:6:4:2.据此估计该市在这次竞赛中,成绩高于80分的学生总人数为336人.【解答】解:从左到右各小组的小矩形的高的比为1:1:4:6:4:2,故[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]各组的频率为,,,,,;则成绩高于80分的学生频率约为+=所以成绩高于80分的学生总人数为约1008×=336.故答案为:336.16.(5分)数学与文学有许多奇妙的联系,如诗中有回文诗:“儿忆父兮妻忆夫”,既可以顺读也可以逆读,数学中有回文数,如343,12521等,两位数的回文数有11、22、33、…99共9个,则三位数的回文数中,偶数的概率是.【解答】解:三位数的回文数为ABA,A共有1到9共9种可能,即1B1、2B2、3B3…B共有0到9共10种可能,即A0A、A1A、A2A、A3A、…共有9×10=90个,其中偶数为A是偶数,共4种可能,即2B2,4B4,6B6,8B8,B共有0到9共10种可能,即A0A、A1A、A2A、A3A、…其有4×10=40个,∴三位数的回文数中,偶数的概率p=.故答案为:.三、解答题(共6大题70分)17.(10分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:(1)计算甲、乙两位射击运动员成绩平均数和方差;(2)比较两个人的成绩,分析谁的成绩较稳定?【解答】(10分)=90.解:(1)=90,乙则=[(87﹣90)2+(91﹣90)2+(90﹣90)2+(89﹣90)2+(93﹣90)2]=4.=[(89﹣90)2+(90﹣90)2+(91﹣90)2+(88﹣90)2+(92﹣90)2]=2…(8分)(2)∵<乙的成绩更稳定(10分)18.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如图资料:设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于x的线性回归方程=x;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?【解答】解:(1)由题意,计算=×(11+13+12)=12,=×(25+30+26)=27,,,,,由公式求得,;所以y关于x的线性回归方程为;…(8分)(2)当x=10时,,计算|22﹣23|<2,同样,当x=8时,,计算|17﹣16|<2,所以,该研究所得到的线性回归方程是可靠的.…(12分)19.(12分)某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.【解答】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,∴全班人数为.(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;频率分布直方图中[80,90)间的矩形的高为.(Ⅲ)将[80,90)之间的3个分数编号为a1,a2,a3,[90,100)之间的2个分数编号为b1,b2,在[80,100)之间的试卷中任取两份的基本事件为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10个,其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是.20.(12分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.【解答】解:(1)根据题意,甲、乙、丙三个乒乓球协会一共有27+9+18=54人,从中抽取6人,则甲乒乓球协会应当抽取27×=3人,乙乒乓球协会应当抽取9×=1人,丙乒乓球协会应当抽取18×=2人,则应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2;(2)根据题意,将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种;②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.因此,事件A发生的概率P(A)==.21.(12分)已知一元二次方程x2+ax+b2=0,(1)若a是从区间[0,3]任取的一个整数,b是从区间[0,2]任取的一个整数,求上述方程有实数根的概率.(2)若a是从区间[0,3]任取的一个实数,b是从区间[0,2]任取的一个实数,求上述方程有实数根的概率.【解答】解:记事件A为“方程x2+ax+b2=0有实根”,当a≥0,b≥0时,方程x2+ax+b2=0有实根的充要条件为a≥2b.(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含6个基本事件,事件A发生的概率为P(A)=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},面积为6.构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥2b},面积为所以所求的概率为P(A)=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)22.(12分)我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x 的值,并说明理由;(Ⅲ)已知平价收费标准为4元/吨,议价收费标准为8元/吨.当x=3时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)【解答】解:(Ⅰ)由频率分布直方图,得:(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1,解得:a=0.30;(Ⅱ)∵前6组的频率之和是(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85,而前5组的频率之和为(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85,∴2.5≤x<3,由0.3×(x﹣2.5)=0.85﹣0.73,解得:x=2.9,因此,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准;(Ⅲ)设居民月用水量为t吨,相应的水费为y元,则y=,即y=,由题设条件及月均用水量的频率分布直方图,得居民每月的水费数据分组与频率分布表如下:根据题意,该市民的月平均水费估计为:1×0.04+3×0.08+5×0.15+7×0.20+9×0.26+11×0.15+14×0.06+18×0.04+22×0.02=8.42(元).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)(解析版)

2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)(解析版)

2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若函数f(x)=x+cos x,则f(x)的导数f'(x)=()A.1﹣cos x B.1+cos x C.1﹣sin x D.1+sin x2.(5分)高二(2)班男生36人,女生18人,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n等于()A.16B.18C.20D.223.(5分)双曲线的焦点到渐近线的距离为()A.B.3C.2D.4.(5分)下列函数是偶函数的是()A.y=x+cos x B.y=x+sin2x C.y=x2+cos x D.y=x2+sin2x 5.(5分)若正方形ABCD的边长为1,则在正方形ABCD内任取一点,该点到点A的距离小于1的概率为()A.B.C.D.6.(5分)“函数f(x)=(x+2a)(x﹣a+1)是偶函数”是“a=﹣1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)曲线f(x)=(x+1)e x在点(0,f(0))处的切线方程为()A.y=x+1B.y=2x+1C.y=x+1D.y=x+1 8.(5分)执行如图所示的程序框图,则输出的结果为()A.2B.3C.4D.59.(5分)设命题p:∃x∈R,x2﹣x+2=0;命题q:若m>1,则方程+=1表示焦点在x轴上的椭圆.那么,下列命题为真命题的是()A.p∨(¬q)B.(¬p)∨(¬q)C.p∧q D.p∧(¬q)10.(5分)若P为抛物线C:y2=4x上一点,F是抛物线的焦点,点A的坐标(3,0),则当|P A|最小时,直线PF的方程为()A.x﹣2y﹣3=0B.x﹣2y﹣1=0C.x=3D.x=111.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(3﹣cos A)=3a cos C+a cos B,则sin A=()A.B.C.D.12.(5分)已知函数f(x)是定义在R上的偶函数,当x>0时,xf'(x)>f(x),若f(2)=0,则不等式>0的解集为()A.{x|﹣2<x<0或0<x<2}B.{x|x<﹣2或x>2}C.{x|﹣2<x<0或x>2}D.{x|x<﹣2或0<x<2}二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知向量=(﹣1,3),=(3,t),若⊥,则|2+|=.14.(5分)已知一个算法的程序框图如图所示,当输入的x=﹣1与x=1时,则输出的两个y值的和为.15.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,点E,F分别为CD,DD1的中点,点G在棱AA1上,若CG∥平面AEF,则四棱锥G﹣ABCD的外接球的体积为.16.(5分)已知双曲线C:﹣(a>0,b>0)的左顶点为M,右焦点为F,过左顶点且斜率为1的直线l与双曲线C的右支交于点N,若△MNF的面积为b2,则双曲线C的离心率为.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(10分)甲乙两人同时生产内径为25.41 mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出5件(单位:mm),甲:25.44,25.43,25.41,25.39,25.38乙:25.41,25.42,25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.18.(12分)已知抛物线C:y2=2x,过点P(1,0)的直线l与抛物线相交于A,B两点,若|AB|=2,求直线l的方程.19.(12分)某高校进行社会实践,对[25,55]岁的人群随机抽取1000人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在(30,35]岁,[35,40)岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.(1)求[30,35)岁与[35,40)岁年龄段“时尚族”的人数;(2)从[30,45)岁和[45,50)岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在[30,45)岁内的概率.20.(12分)已知S n为等差数列{a n}的前n项和,已知S2=2,S3=﹣6.(1)求数列{a n}的通项公式和前项和S n;(2)是否存在n,使S n,S n+2+2n,S n+3成等差数列,若存在,求出n,若不存在,说明理由.21.(12分)已知椭圆C:+=1(a>b>0)的离心率e=,且过点(,).(1)求椭圆C的方程;(2)设过点P(1,1)的直线与椭圆C交于A,B两点,当P是AB中点时,求直线AB 方程.22.(12分)已知函数f(x)=x2﹣2x+alnx(a∈R).(1)当a=﹣4时,求函数f(x)的单调区间;(2)若函数f(x)有两个极值点x1,x2(x1<x2),不等式f(x1)≥mx2恒成立,求实数m的取值范围.2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:f′(x)=1﹣sin x,故选:C.2.【解答】解:性别比为2:1,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n==18,故选:B.3.【解答】解:双曲线的焦点坐标为(4,0)或(﹣4,0),渐近线方程为y=±x,则焦点到渐近线的距离d==2,故选:C.4.【解答】解:根据题意,依次分析选项:对于A,f(x)=x+cos x,f(﹣x)=(﹣x)+cos(﹣x)=﹣x+cos x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;对于B,f(x)=x+sin2x,f(﹣x)=(﹣x)+sin(﹣2x)=﹣(x+sin2x)=﹣f(x),f(x)为奇函数,不符合题意;对于C,f(x)=x2+cos x,f(﹣x)=(﹣x)2+cos(﹣x)=x2+cos x=f(x),则f(x)是偶函数,符合题意;对于D,f(x)=x2+sin2x,f(﹣x)=(﹣x)2+sin(﹣2x)=x2﹣sin2x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;故选:C.5.【解答】解:如图:满足动点P到定点A的距离|P A|<1的平面区域如图中阴影所示:则正方形的面积S正方形=1,阴影部分的面积S=,故动点P到定点A的距离|P A|<1的概率P=,故选:A.6.【解答】解:∵“函数f(x)=(x+2a)(x﹣a+1)是偶函数”,f(x)=(x+2a)(x﹣a+1)=x2+(a+1)x﹣2a2+2a,∴a+1=0,解得a=﹣1,即“函数f(x)=(x+2a)(x﹣a+1)是偶函数”⇒“a=﹣1”;当a=﹣1时,f(x)=(x+2a)(x﹣a+1)=(x﹣2)(x+2)=x2﹣4是偶函数,即“a=﹣1”⇒“函数f(x)=(x+2a)(x﹣a+1)是偶函数”,∴“函数f(x)=(x+2a)(x﹣a+1)是偶函数”是“a=﹣1”的充分必要条件.故选:C.7.【解答】解:∵f(x)=e x(x+1),∴f′(x)=e x(x+1)+e x=e x(x+2),∴f′(0)=e0•(0+2)=2,又f(0)=1,∴曲线曲线y=f(x)在点(0,f(0))处的切线方程为:y﹣1=2(x﹣0),即2x﹣y+1=0;故选:B.8.【解答】解:第一次进行循环,S=20,i=2,不满足退出循环的条件;第二次进行循环,S=10,i=3,不满足退出循环的条件;第三次进行循环,S=,i=4,不满足退出循环的条件;第四次进行循环,S=,i=5,满足退出循环的条件;故输出的i值为5,故选:D.9.【解答】解:由x2﹣x+2=0,∵△=12﹣8=﹣7<0,即此方程无解,即命题p:∃x∈R,x2﹣x+2=0;为假命题,即¬p为真命题,当m>1时,2m﹣1>m>0,即方程+=1表示焦点在x轴上的椭圆.即命题q为真命题,¬q为假命题,即(¬p)∨(¬q)为真命题,故选:B.10.【解答】解:设P(x,y),抛物线C:y2=4x,F是抛物线的焦点(1,0),点A的坐标(3,0),|P A|===,当x=1时,|P A|最小,此时P(1,±2),所以直线PF的方程为:x=1.故选:D.11.【解答】解:∵b(3﹣cos A)=3a cos C+a cos B,∴由正弦定理可得:3sin B=3sin A cos C+sin A cos B+sin B cos A,可得:3sin B=3sin A cos C+sin C,∴由正弦定理可得:3b=3a cos C+c,∴3b=3a•+c,可得:3b2+3c2﹣3a2=2bc,∴cos A==,∴sin A=.故选:A.12.【解答】解:∵f(x)是定义在R上的偶函数,当x>0时,>0,∴为增函数,f(x)为偶函数,为奇函数,∴在(﹣∞,0)上为增函数,∵f(﹣2)=f(2)=0,若x>0,=0,所以x>2;若x<0,=0,在(﹣∞,0)上为增函数,可得﹣2<x<0,综上得,不等式>0的解集是(﹣2,0)∪(2,+∞)故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.【解答】解:∵向量=(﹣1,3),=(3,t),⊥,∴=﹣3+3t=0,解得t=1,∴=(3,1),2=(1,7),|2+|==5.故答案为:.14.【解答】解:由程序框图知:算法的功能是求y=的值,输入的x=﹣1时,y=,输入的x=1时,y=1,则输出的两个y值的和为.故答案为:.15.【解答】解:如图,取AB中点H,连接CH,HG,则CH∥AE,CH∥平面AEF,又CG∥平面AEF,∴平面CGH∥平面AEF,可得EF∥GH,则G为AA1的中点,∴AG=1,则四棱锥G﹣ABCD的外接球的直径为以AB,AD,AH为棱的长方体的对角线,长为,半径为,则四棱锥G﹣ABCD的外接球的体积为.故答案为:.16.【解答】解:双曲线C:﹣(a>0,b>0)的左顶点为M(﹣a,0),右焦点为F (c,0),过左顶点且斜率为1的直线l:y=x+a,直线l与双曲线C的右支交于点N,,可得:(b2﹣a2)y2﹣2ab2y=0,解得N的纵坐标为:﹣.又因为△MNF的面积为b2,所以:﹣=,﹣4ac=3a2﹣3(c2﹣a2)所以3e2﹣2e﹣8=0,e>1解得e=2,故答案为:2.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.【解答】解:甲的平均数.乙的平均数.甲的方差,乙的方差.∵甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.18.【解答】解:设直线l的方程为:my=x﹣1,整为:x=my+1,代入方程y2=2x整理为:y2﹣2my﹣2=0,故有y1+y2=2m,y1y2=﹣2,.故有.整理为m4+3m2﹣4=0,解得m=±1.故直线l的方程为:x+y﹣1=0或x﹣y﹣1=0.19.【解答】解:(1)[30,35)岁年龄段“时尚族”的人数为1000×0.06×5×80%=240.[35,40)岁年龄段“时尚族”的人数为1000×0.04×5×60%=120.(2)由(1)知[30,35)岁中抽4人,记为a、b、c、d,[35,40)岁中抽2人,记为x、y,则领队两人是:ab、ac、ad、ax、ay、bc、bd、bx、by、cd、cx、cy、dx、dy、xy共l5种可能,其中两人都在[30,35)岁内的有6种,所以领队的两人年龄都在[30,45)岁内的概率为P=.20.【解答】解:(1)设等差数列{a n}的公差为d,∵S2=2,S3=﹣6.∴2a1+d=2,3a1+3d=﹣6,联立解得a1=4,d=﹣6.∴a n=4﹣6(n﹣1)=10﹣6n.S n==7n﹣3n2.(2)假设存在n,使S n,S n+2+2n,S n+3成等差数列,则2(S n+2+2n)=S n+S n+3,∴2[7(n+2)﹣3(n+2)2+2n]=7n﹣3n2+7(n+3)﹣3(n+3)2,化为:n=5.因此存在n=5,使S n,S n+2+2n,S n+3成等差数列.21.【解答】解:(1)设椭圆的焦距为2c,则∴∴椭圆C的方程为:.(2)设A(x1,y1),B(x2,y2).则,,∴又x1+x2=y1+y2=2,∴.∴直线AB方程为.3x+4y﹣7=0.22.【解答】解:(1)a=﹣4时,f(x)=x2﹣2x﹣4lnx,定义域为(0,+∞),.∴0<x<2时:f'(x)<0,x>2时,f'(x)>0,∴f(x)的单调增区间为[2,+∞),单调减区间为[0,2](2)函数f(x)在(0,+∞)上有两个极值点,.由f'(x)=0.得2x2﹣2x+a=0,当△=4﹣8a>0,时,x1+x2=1,,,则x1>0,∴a>0.由,可得,,,令,则,因为.,,又2lnx<0.所以h'(x)<0,即时,h(x)单调递减,所以,即,故实数m的取值范围是.。

安徽省滁州市2017-2018学年高二上学期期末考试数学(理)试题 (word版含答案)

安徽省滁州市2017-2018学年高二上学期期末考试数学(理)试题 (word版含答案)

滁州市2017-2018学年第一学期高二期末考试数 学 试 卷(理科)(试题卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的.1.高二(2)班男生36人,女生18 人,现用分层抽样方法从中抽出n 人,若抽出的男生人数为12,则n 等于( )A . 16B . 18C .20D .22 2. 命题“x R ∀∈,ln x x >”的否定为( )A .x R ∀∈,ln x x ≤B . x R ∀∈,ln x x <C .0x R ∃∈,00ln x x ≤D .0x R ∃∈,00ln x x >3. 双曲线221124x y -=的焦点到渐近线的距离为( )A . 2 D . 3 4. 下列函数是偶函数的是( )A .cos y x x =+B .sin 2y x x =+C .2+cos y x x =D .2sin 2y x x =+5. 若正方形ABCD 的边长为1,则在正方形ABCD 内任取一点,该点到点A 的距离小于1的概率为( ) A .4π B .6π C. 1π D .2π6.“函数()2()311f x ax a x =--+在区间[)1+∞,上是增函数”是“01a ≤≤”的( ) A .充分不必要条件 B .必要不充分条件 C. 充分必要条件 D .既不充分也不必要条件 7. 执行如图所示的 程序框图,因输出的结果为( ) A . 2 B .3 C. 4 D .58. 设命题:p x R ∃∈,220x x -+=;命题q :若1m >,则方程22121x y m m+=-表示焦点在x 轴上的椭圆.那么,下列命题为真命题的是( )A .()p q ∨⌝B . ()()p q ⌝∨⌝ C. p q ∧ D .()p q ∧⌝ 9. 将曲线cos 23y x π⎛⎫=+ ⎪⎝⎭向左平移6π个单位后,得曲线()y f x =,则函数()f x 的单调增区间为( ) A .(),36k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .(),63k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦ C.()2,63k k k z ππππ⎡⎤++∈⎢⎥⎣⎦ D .()5,36k k k z ππππ⎡⎤++∈⎢⎥⎣⎦10. 已知长方体1111ABCD A BC D -,12AD AA ==,3AB =,E 是线段AB 上一点,且13AE AB =,F 是BC 中点,则1D C 与平面1D EF 所成的角的正弦值为( )A ..411.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()3cos 3cos cos b A a a B -=+,则sin A =( )A .3 B .13 C.3 D .312.已知双曲线2222:1x y C a b-=(0a >,0b >)的左顶点为M ,右焦点为F ,过左顶点且斜率为l 的直线l 与双曲线C 的右支交于点N ,若MNF ∆的面积为232b ,双曲线C 的离心率为( )A . 3B .2 C.53 D .43第Ⅱ卷(非选择题 共 90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量()1,3a =-,()3,b t =,若a b ⊥,则2a b += .14. 已知一个算法的程序框图如图所示,当输入的1x =-与1x = 时,则 输 出的两个y 值的和 为 .15. 如图,直四棱柱1111ABCD A BC D -的底面是边长为1的正方形,侧棱长1AA ,则异面直线11A B 与1BD 的夹角大小等于 .14.直线1y kx =+与圆22(2)1x y -+=有交点,则实数k 的取值范围是 .15.在长方体1111ABCD A BC D -中,1AB BC ==,12AA =,点E ,F 分别为CD ,1DD 的中点 ,点G 在棱1AA 上,若CG 平面AEF ,则四棱锥G ABCD -的外接球的体积为 .16.已知椭圆22143x y +=的右焦点为F ,点M 是椭圆上第一象限内的点,MF 的延长线依次交y 轴,椭圆于点P ,N ,若MF PN =,则直线MN 的斜率为 . 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 甲乙两人同时生产内径为25.41mm 的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:m m ) , 甲:25.44,25.43, 25.41,25.39,25.38 乙:25.41,25.42, 25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.18. 已知直线2y x p =-与 抛物线()220y px p =>相交于A ,B 两点,O 是坐标原点.(1)求证:OA OB ⊥;(2)若F 是抛物线的焦点 ,求ABF ∆的面积.19. 某高校进行社会实践,对[]2555,岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在(]3035,岁,[)3540,岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.(1)求[)3035,岁与[)3540,岁年龄段“时尚族”的人数; (2)从[)3045,岁和[)4550,岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在[)3045,岁内的概率。

安徽省全椒中学2017-2018学年高二上学期第三次周测数学试题含答案

安徽省全椒中学2017-2018学年高二上学期第三次周测数学试题含答案

全椒中学2017—2018学年度第一学期高二年级周末测试(三)数学试题命题人:项 华 审题人:陆宗明 时间7:00—9:00一、单项选择题(本大题共12小题,每小题5分,共60分)1.“sin α=cos α”是“cos 2α=0”的 ( )A.充分不必要条件 B 。

必要不充分条件C 。

充分必要条件 D.既不充分也不必要条件2.设,,a b c 是非零向量,已知命题:p 若0,0a b b c ⋅=⋅=则0a c ⋅=;命题:q 若,a b b c ||||则.a c ||则下列命题中真命题是( )()()()()()()()A p q B p q C p q D p q ∨∧⌝∧⌝∨⌝3。

已知x ,y 的取值如下表所示: x2 3 4 y 6 4 5如果y 与x 线性相关,且线性回归方程为=x+,则= ( )A. B.— C 。

D 。

14.如果数据x 1,x 2,…,x n 的平均数为,方差为s 2,则5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为 ( )A.,s 2B.5+2,s 2C.5+2,25s 2D.,25s 2 5。

执行如图所示的程序框图,则输出s 的值为( ) A. 34 B. 56 C. 1112 D 。

2524 6。

已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为 ( )A 。

0。

4 B.0。

6 C.0。

8 D.17.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x 确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A.81 B 。

41 C. 43D.87 8.已知a>b ,椭圆C 1的方程为+=1,双曲线C 2的方程为—=1,C 1与C 2的离心率之积为,则C 2的渐近线方程为 ( )A 。

x ±y=0B 。

高二第一学期期中考试理科数学试卷含参考答案(共3套,word版)

高二第一学期期中考试理科数学试卷含参考答案(共3套,word版)

设 ABC 的内角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,且满足 2c b
cosB .
a cos A
( 1)求角 A 的大小; [ 来源 : 学科网ZXXK]
( 2)若 a 2 5 ,求 ABC 面积的最大值.
18. (本小题满分 12 分)如图,在
中, 边上的中线 长为 ,且

( 1)求
15. 某几何体的三视图如右图所示,则其体积为 ___________.
2
16. 对于数列 ,定义
为 的“优值”, 现在已知某数列 的“优
值”
,记数列
的前 项和为 ,若
对任意的 恒成立,则实数 的最大

为 ___________。
三. 解答题:解答应写出文字说明,证明过程或演算步骤。 17.(本小题满分 10 分)
F
A
B
(II )求三 棱锥 C GBF 的体积.
E
4
22.(本小题满分 12 分)
在平面直角坐标系 xOy 中,已知圆
和圆

( 1)若直线 l 过点 A(﹣ 1,0),且与圆 C1 相切,求直线 l 的方程;
( 2)设 P 为直线 x
3 上的点,满足:过点 P 的无穷多对互相垂直的直线 l 1 和 l 2,它们分别
∴三角形的面积 S
1 bc sin A
5 3 . ,,,,
.[
4 2, ]
C . [0,6]
D . [ 2,6]
3
3
2.在三角形 ABC中,根据下列条件解三角形,其中有一个解的是(

A. b=7 , c=3,C=300 B. b=5 , c= ,B=450
C. a=6 , b= ,B=600 D. a=20 ,b=30,A=300

安徽省滁州市高二上学期期中数学试卷

安徽省滁州市高二上学期期中数学试卷

安徽省滁州市高二上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)圆心是(4,-1),且过点(5,2)的圆的标准方程是()A . (x-4)2+(y+1)2=10B . (x+4)2+(y-1)2=10C . (x-4)2+(y+1)2=100D . (x+4)2+(y-1)2=102. (2分)有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示,如果记3的对面的数字为m,4的对面的数字为n,那么m+n的值为()A . 3B . 7C . 8D . 113. (2分)直线l:x+y+3=0的倾斜角α为()A . 30°B . 60°C . 120°D . 150°4. (2分)(2017·虹口模拟) 在空间,α表示平面,m,n表示二条直线,则下列命题中错误的是()A . 若m∥α,m、n不平行,则n与α不平行B . 若m∥α,m、n不垂直,则n与α不垂直C . 若m⊥α,m、n不平行,则n与α不垂直D . 若m⊥α,m、n不垂直,则n与α不平行5. (2分)已知圆C:x2+y2=1,过第一象限内一点P(a,b)作圆C的两条切线,且点分别为A、B,若∠APB=60°,O为坐标原点,则OP的长为()A . 1B . 2C . 3D . 46. (2分)已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为()A .B .C .D .7. (2分)“a=-1”是“直线与直线互相垂直”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件8. (2分) (2015高一上·银川期末) 已知一个几何体的三视图如图所示,则该几何体的体积为()A . 12πB . 8πC .D .9. (2分)已知圆M过定点(2,0)且圆心M在抛物线y2=4x上运动,若y轴截圆M所得的弦长为AB,则弦长|AB|等于()A . 4B . 3C . 2D . 与点M位置有关的值10. (2分)设m,n是两条不同的直线,α,β是两个不同的平面,则()A . 若m∥α,m∥β,则α∥βB . 若m∥α,m∥n,则n∥αC . 若m⊥α,m∥β,则α⊥βD . 若m∥α,n⊂α,则m∥n11. (2分) (2016高二上·中江期中) 直线y=kx+1与圆x2+y2+kx﹣y=0的两个交点恰好关于y轴对称,则k 等于()A . 0B . 1C . 2D . 312. (2分)已知平面区域由以、、为顶点的三角形内部和边界组成.若在区域上有无穷多个点可使目标函数取得最小值,则()A .B .C . 1D . 4二、填空题 (共4题;共4分)13. (1分) (2017高一下·黄石期末) 已知m是给定的一个常数,若直线x﹣3y+m=0上存在两点A,B,使得点P(m,0)满足|PA|=|PB|,则线段AB的中点坐标是________.14. (1分) (2016高二上·江北期中) 已知点P(x,y)在圆x2+y2=1上运动,则的最大值为________.15. (1分) (2018高一下·黑龙江期末) 已知直三棱柱中,,,,,则该三棱柱内切球的表面积与外接球的表面积的和为________ .16. (1分)已知点A(1,2,1),B(﹣2,, 4),D(1,1,1),若=2,则||的值是________ .三、解答题 (共6题;共55分)17. (10分) (2017高一下·鹤岗期末) 已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点.(1)求证:BC1∥平面CA1D;(2)求证:平面CA1D⊥平面AA1B1B;18. (10分) (2016高一上·东莞期末) 已知两条直线l1:2x+y﹣2=0与l2:2x﹣my+4=0.(1)若直线l1⊥l2,求直线l1与l2交点P的坐标;(2)若l1,l2以及x轴围成三角形的面积为1,求实数m的值.19. (10分) (2019高二上·怀仁期中) 已知圆过点,且圆心在直线上.(1)求圆的方程;(2)点为圆上任意一点,求的最值.20. (10分)(2017·长沙模拟) 如图,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G为线段AD上的任意一点.(1)若M是线段EF的中点,证明:平面AMG⊥平面BDF;(2)若N为线段EF上任意一点,设直线AN与平面ABF,平面BDF所成角分别是α,β,求的取值范围.21. (10分) (2016高三上·绍兴期末) 如图所示的几何体中,四边形ABCD为梯形,AD∥BC,AB⊥平面BEC,EC⊥CB,已知BC=2AD=2AB=2.(1)证明:BD⊥平面DEC;(2)若二面角A﹣ED﹣B的大小为30°,求EC的长度.22. (5分) (2018高二上·长寿月考) 已知:圆心为(3,1)的圆,此圆在y=x上截得的弦长为,求此圆的方程。

化学---安徽省滁州全椒县城东中学2017-2018学年高二上学期期中考试试题

化学---安徽省滁州全椒县城东中学2017-2018学年高二上学期期中考试试题

安徽省滁州全椒县城东中学2017-2018学年高二上学期期中考试试题本试卷分选择题和非选择题两部分:选择题共45分、非选择题共55分 可能用到的原子量:C —12 H —1 O —16 N —14 S —32第一部分 选择题(共45分)一.选择题(本题包括15小题,每小题3分,共45分,每小题只有一个选项符合题意) 1.下列说法正确的是( )A .物质发生化学变化都伴随着能量变化B .任何反应中的能量变化都表现为热量变化C .伴有能量变化的物质变化都是化学变化D .即使没有物质的变化,也可能有能量的变化 2、在2A+B3C+4D 反应中,表示该反应速率最快的是( )A .v(A)=0.5mol/(L·s)B .v(B)=0.3mol/(L·s)C .v(C)=12mol/(L·min)D .v(D)=6mol/(L·min) 3.下列反应中生成物总能量高于反应物总能量的是( ) A .碳酸钙受热分解B .乙醇燃烧C .铝粉与氧化铁粉末反应D .氧化钙溶于水4.下列条件一定能使反应速率加快的是( )①增加反应物的物质的量②升高温度③增大压强④加入生成物 ⑤加入MnO 2A .全部B .①②C .②D .②③5.已知:4 NH 3 + 5 O 2 = 4 NO + 6 H 2O ,若反应速率分别用v (NH 3)、v (O 2)、v (NO )、v (H 2O )(mol/(L•s ))表示,则正确的关系是( )A .()3NH V 54= v (O 2)B .65v (O 2)= v (H 2O )C .32v (NH 3)= v (H 2O )D .54v (O 2)= v (NO )6.下列说法可以证明反应N 2(g)+3H 2(g)2NH 3(g)已达到平衡状态的是( )A.1个N≡N 键断裂的同时,有3个H —H 键形成B.1个N≡N 键断裂的同时,有3个H —H 键断裂C.N 2、H 2、NH 3的分子数之比为1∶3∶2D.1个N≡N 键断裂的同时,有6个H —N 键形成 7.一定条件下,发生如下反应:2A(g)+2B(g)3C(g)+D(g)在容积不变的密闭容器中进行,达到化学平衡状态的标志是( )A.单位时间内生成n mol B,同时消耗3n mol CB.容器内压强不随时间而变化C.混合气体的密度不随时间变化D.单位时间内生成2n mol A,同时生成n mol D 8.下列各组热化学方程式中,△H 1>△H 2的是( )①C(s)+O 2(g)===CO 2(g) △H 1 C(s)+12O 2(g)===CO(g) △H 2②S(s)+O 2(g)===SO 2(g) △H 1 S(g)+O 2(g)===SO 2(g) △H 2 ③H 2(g)+12O 2(g)===H 2O(l) △H 1 2H 2(g)+O 2(g)===2H 2O(l) △H 2④CaCO 3(s)===CaO(s)+CO 2(g) △H 1 CaO(s)+H 2O(l)===Ca(OH)2(s) △H 2 A .①B .④C .②③④D .①②③9.对于密闭容器中进行的反应:N 2+O 2 == 2NO ,下列条件中哪些能加快该反应速率的(假 定改变下列条件时温度不变)( ) A .体积不变充入N 2使压强增大 B .减少NO 浓度 C .体积不变充入He 气使压强增大D .减小压强使体积增大10.将等物质的量的X 2和Y 2置于一密闭容器中,在一定条件下发生反应mX 2(g)+nY 2(g) === pZ(g),在某一时刻,测得容器中C (X 2)=0.9mol·L -1 ,C (Y 2)=0.1mol·L -1 ,C (Z )=0.8mol·L -1 ,则Z 的化学式可能是( )A .X 2Y 3B .XY 3C .X 2Y 2D .X 3Y 211.某温度时,反应SO 2(g)+O 2(g)SO 3(g)的平衡常数K =50,在同一温度下,反应2SO 3(g)2SO 2(g)+O 2(g)的平衡常数K'应为( ) A.2 500B.100C.4×10-4D.2×10-212.高温下,某反应达平衡,平衡常数K =CO+H 2O/ CO 2+H 2。

安徽省滁州市高二上学期期中数学试卷

安徽省滁州市高二上学期期中数学试卷

安徽省滁州市高二上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017高一上·淄博期末) 设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A . 若l⊥α,l∥m,则m⊥αB . 若l⊥m,m⊂α,则l⊥αC . 若l∥α,m⊂α,则l∥mD . 若l∥α,m∥α,则l∥m2. (2分)在斜二测画法,圆的直观图是椭圆,则这个椭圆的离心率为()A .B .C .D .3. (2分)已知点A(0,0,0),B(1,0,1),C(0,1,1),则平面ABC的一个法向量是()A . (1,1,1)B . (1,1,﹣1)C . (﹣1,1,1)D . (1,﹣1,1)4. (2分) (2016高一上·清远期末) 设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β下面命题正确的是()A . 若l∥β,则α∥βB . 若α⊥β,则l⊥mC . 若l⊥β,则α⊥βD . 若α∥β,则l∥m5. (2分) (2017·晋中模拟) 若圆C1(x﹣m)2+(y﹣2n)2=m2+4n2+10(mn>0)始终平分圆C2:(x+1)2+(y+1)2=2的周长,则 + 的最小值为()A .B . 9C . 6D . 36. (2分)(2017·鄂尔多斯模拟) 设有两条直线m,n和三个平面α,β,γ,给出下面四个命题:①α∩β=m,n∥m⇒n∥α,n∥β;②α⊥β,m⊥β,m⊄α⇒m∥α;③α∥β,m⊂α⇒m∥β;④α⊥β,α⊥γ⇒β∥γ其中正确命题的个数是()A . 1B . 2C . 3D . 47. (2分)若,且,则下列不等式中,恒成立的是A .B .C .D .8. (2分)(2018·茂名模拟) 《九章算术》中记载了我国古代数学家祖暅在计算球的体积中使用的一个原理:“幂势既同,则积不异”,此即祖暅原理,其含义为:两个同高的几何体,如在等高处的截面的面积恒相等,则它们的体积相等.如图,设满足不等式组的点组成的图形(图(1)中的阴影部分)绕轴旋转,所得几何体的体积为;满足不等式组的点组成的图形(图(2)中的阴影部分)绕轴旋转,所得几何体的体积为 .利用祖暅原理,可得()A .B .C .D .二、填空题 (共7题;共7分)9. (1分) (2015高二上·金台期末) 已知,则在上的投影是________.10. (1分)空间一线段AB,若其主视图、左视图、俯视图的长度均为,则线段AB的长度为________11. (1分)(2017·湖南模拟) 设a+b=2,b>0,则的最小值为________.12. (1分)若圆锥的侧面积与过轴的截面面积之比为2,则其母线与轴的夹角的大小为________ .13. (1分) (2017高一下·定州期末) 如果曲线2|x|﹣y﹣4=0与曲线x2+λy2=4(λ<0)恰好有两个不同的公共点,则实数λ的取值范围是________.14. (1分)已知圆O:x2+y2=8,点A(2,0),动点M在圆上,则∠O MA的最大值为________15. (1分) AB是☉O的直径,点C是☉O上的动点(点C不与A,B重合),过动点C的直线VC垂直于☉O所在的平面,D,E分别是VA,VC的中点,则下列结论中正确的是________(填写正确结论的序号).⑴直线DE∥平面ABC.⑵直线DE⊥平面VBC.⑶DE⊥VB.⑷DE⊥AB.三、解答题 (共5题;共35分)16. (5分) (2019高二上·青冈月考) 已知,,若q成立的一个充分不必要条件是p,求实数的取值范围.17. (5分)(2017·嘉兴模拟) 如图,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.(Ⅰ)求证:AC⊥平面ABB1A1;(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.18. (10分) (2017高二上·南阳月考) 已知动圆过定点,且在定圆的内部与其相内切.(1)求动圆圆心的轨迹方程;(2)直线与交于两点,与圆交于两点,求的值.19. (10分) (2018高二下·齐齐哈尔月考) 如图,三棱柱中,侧面底面, ,且 ,O为中点.(1)证明:平面;(2)直线与平面所成角的正弦值.20. (5分) (2016高二上·绵阳期中) 圆C的圆心在直线y=3x上,且圆C与x轴相切,若圆C截直线y=x 得弦长为2 ,求圆C的标准方程.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共7题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共5题;共35分) 16-1、17-1、18-1、18-2、19-1、19-2、20-1、。

安徽省滁州市高二上学期期中数学试卷

安徽省滁州市高二上学期期中数学试卷

安徽省滁州市高二上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共12题;共12分)1. (1分)在平面直角坐标系xOy中,将直线l沿x轴正方向平移3个单位,沿y轴正方向平移5个单位,得到直线l1 .再将直线l1沿x轴正方向平移1个单位,沿y轴负方向平移2个单位,又与直线l重合.若直线l与直线l1关于点(2,3)对称,则直线l的方程是________2. (1分) (2018高二上·太原期中) 已知直线.若,则实数m =________.3. (1分) (2019高二上·上海月考) 数列满足,则其通项公式 ________4. (1分) (2019·晋城模拟) 记正项数列的前项和为,且当时, .若,则 ________.5. (1分)(2019·永州模拟) 从圆外一点向这个圆作两条切线,切点分别为,则 ________.6. (1分)课本介绍过平面向量数量积运算的几何意义:等于的长度||与在方向上的投影||cos<,>的乘积.运用几何意义,有时能得到更巧妙的解题思路.例如:边长为1的正六边形ABCDEF中,点P是正六边形内的一点(含边界),则的取值范围是________7. (1分) (2017高一下·静海期末) 设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{ }的前10项的和为________.8. (1分) (2017高一下·保定期末) 已知数列{an}满足a1=3,an﹣1anan+1=3(n≥2),Tn=a1a2…an ,则log3T2017=________.9. (1分)数列的通项公式是,则该数列的前80项之和为________.10. (1分) (2019高二下·嘉兴期中) 双曲线与直线交于两点, 且线段中点为 , 为坐标原点,则直线的斜率是________.11. (1分) (2020高一下·杭州月考) 已知向量满足且,则________,12. (1分) (2015高二上·西宁期末) 过圆x2+y2=1外一点P(1,2)且与圆相切的切线方程为________.二、选择题 (共4题;共8分)13. (2分)如图所示,A,B,C是圆O上的三个点,CO的延长线与线段AB交于圆内一点D,若=x+y,则()A . 0<x+y<1B . x+y>1C . x+y<﹣1D . ﹣1<x+y<014. (2分)(2017·甘肃模拟) 若圆x2+y2+4x﹣2y﹣a2=0截直线x+y+5=0所得弦的长度为2,则实数a=()A . ±2B . ﹣2C . ±4D . 415. (2分) (2020高三上·天津期末) 已知数列中,,,记的前项和为,则()A .B .C .D .16. (2分) (2017高三上·襄阳开学考) 若M、N为两个定点且|MN|=6,动点P满足• =0,则P 点的轨迹是()A . 圆B . 椭圆C . 双曲线D . 抛物线三、解答题 (共4题;共35分)17. (10分)(2018·张家口期中) 设向量a=(,sinx),b=(cosx,sinx),x∈[0, ].(1)若|a|=|b|,求x的值;(2)设函数f(x)=a•b,求f(x)的最大值与最小值.18. (10分)为数列的前项和,已知,.(1)求的通项公式;(2)设,求数列的前项和.19. (10分) (2019高二上·温州期中) 已知圆经过两点,,且圆心在直线上,直线的方程.(1)求圆的方程;(2)求直线被圆截得的弦长最短时的方程.20. (5分) (2016高一下·惠阳期中) 设{an}是等差数列,数列{an}的前n项和为Sn , {bn}是各项都为正数的等比数列,且a1=b1=1,a3+b2=7,S2+b2=6(Ⅰ)求{an},{bn}的通项公式;(Ⅱ)求数列{an•bn}的前n项和Sn .参考答案一、填空题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、选择题 (共4题;共8分)13-1、14-1、15-1、16-1、三、解答题 (共4题;共35分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、。

安徽省全椒中学2017_2018学年高一数学上学期期中试题(含解析)

安徽省全椒中学2017_2018学年高一数学上学期期中试题(含解析)

全椒中学2017-2018学年度第一学期期中考试高一数学试卷一、选择题:(每题5分,共60分,每题有且只有一个答案)1. 三条直线两两相交,可确定的平面个数是( )A. 1B. 1或3C. 1或2D. 3【答案】B【解析】空间两两相交的三条直线,如果交于一点,可以确定的平面个数是1个或3个,如果交于不共线的三点,可以确定的平面个数是1个.∴空间两两相交的三条直线,可以确定的平面个数是1或3.故选:B .2. 已知直线和圆相切,则三条边长分别为|a|,|b|,|c|的三角形( )A. 是锐角三角形B. 是直角三角形C. 是钝角三角形D. 不存在【答案】B【解析】试题分析:直线()与圆相切,则圆心到直线的距离等于圆的半径,即,,所以三角形为直角三角形.考点:圆的切线;3. 点M(x0,y0)是圆x2+y2=a2 (a>0)内不为圆心的一点,则直线x0x+y0y=a2与该圆的位置关系是()A. 相切B. 相交C. 相离D. 相切或相交【答案】C【解析】试题分析:圆心到直线的距离,即圆心到直线的距离大于圆的半径,故可知直线与圆的位置关系是相离.故选C.考点:点到直线的距离.4. 命题:(1)夹在两平行平面间的两个几何体,被一个平行于这两个平面的平面所截,若截面积相等,则这两个几何体的体积相等;(2)直棱柱和圆柱侧面展开图都是矩形;(3)斜棱柱的体积等于与它的一条侧棱垂直的截面面积乘以它的任一条侧棱;(4)平行六面体的对角线交于一点,且互相平分;其中正确的个数是( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】对于(1),根据祖暅原理:“夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等”,正确;对于(2),直棱柱和圆柱的侧面展开图都是矩形,正确;对于(3),斜棱柱的体积等于与它的一条侧棱垂直的截面面积乘以它的一条侧棱,正确;对于(4),平行六面体的任意两条对角线所在的四边形是平行四边形,所以这两条对角线交于一点,且互相平分,正确;综上,正确命题是(1)(2)(3)(4),共4个.故选:A.5. 在△ABC中,若则 ( )A. B. C. D.【答案】B【解析】, , ,,则,选B .6. 与直线2x+y-1=0关于点(1,0)对称的直线方程是()A. 2x+y-3=0B. 2x+y+3=0C. x+2y+3=0D. x+2y-3=0【答案】A【解析】在所求直线上取点(x,y),关于点(1,0)对称的点的坐标为(a,b),则...............7. 设地球半径为R,在北纬30°圈上有甲、乙两地,它们的经度差为120°,那么这两地间的纬线之长为()A. πRB. πRC. πRD. 2πR【答案】A【解析】如图所示,设球心为O,北纬30°圈所在的小圆圆心为Q,甲、乙两地分别对应A、B两点,连接QO、QA、QB、OA、OB,则OQ⊥平面QAB,∠OAQ=30°,∠AQB=120°=在Rt△OAQ中,OA=R,可得AQ=OAcos∠OAQ=Rcos30°=R在圆Q中,A、B的经度差为120°,∴弧AB的长为×R=πR故选A8. 圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为的点共有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】方程化为圆心为,半径为;圆心到直线的距离为。

安徽省滁州全椒县城东中学2017-2018学年高一上学期期

安徽省滁州全椒县城东中学2017-2018学年高一上学期期

城东中学2017~2018年度第一学期期中考试高一数学试题卷一、选择题:本题共12题,每小题5分,共计60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1} 2. 下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A .y =1xB .y =3x +1C .y =-x 2+1 D .y =|x |3. 下列哪组中的两个函数是同一函数( )A.2y =与y x =B. 3y =与y x =C.y =2y = D.y 2x y x=4. 设函数f (x )=21,1,2,1,x x x x⎧+≤⎪⎨>⎪⎩则f (f (3))=( )A.15B .3 C.23D.1395.若函数()f x 满足(32)98f x x +=+,则()f x 的解析式是( ) A.()32f x x =+ B. ()98f x x =+C.()34f x x =--D.()32f x x =+ 或()34f x x =-- 6.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1)B. 11,2⎛⎫-- ⎪⎝⎭C .(-1,0)D. 1,12⎛⎫⎪⎝⎭7. 已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()23xf x x k =-+(k 为常数),则(1)f -的值为( )9.函数(0,1)xy a a a a =->≠的图象可能 ( )A BC D10.已知函数 f(x)是定义在[0,+∞)上的增函数,则满足1(21)()3f x f -<实数 x 的取值范围是( )A .12(,)33B .12[,)33C .12(,)23D .12[,)2311. 设函数()f x 是定义在R 上的奇函数,且对任意x R ∈都有()(4)f x f x=+,当(2,0)x ∈-时,()2xf x =,则(2015)(2013)f f -的值为( ) A .12-B .12C .1D .2- 12. 已知函数⎩⎨⎧>+-≤-=0,)1(0,)(x k x k x k e x f x 是R 上的增函数,则实数k 的取值范围为( )A. (1,)+∞B. 1[,1)3C. (,1)-∞D. 1[,1)2二、填空题:本题共4题,每小题5分,共计20分. 13. 若函数1222)1()(----=m m xm m x f 幂函数,则实数m 的值为 ;14. 从集合A 到集合B 的映射2:1f x x →+,若{2,1,0,1,2}A =--,则B 中至少有 个元素;15.设0x 是函数()2xf x x =+的零点,且()0,1x k k ∈+,k Z ∈,则k= ___;16. 已知函数()3|log |,034,3x x f x x x <≤⎧=⎨-+>⎩,若a<b<c 且()()()f a f b f c ==,则()2cab +的取值范围是 .三. 解答题,共6小题,共计70分,解答应写出必要的证明过程或演算步骤. 17.(本小题满分10分)计算:(1)20.50231103(5)2(2)2()16274---⨯-⨯÷;(2)222lg 5lg8lg 5lg 20(lg 2)3++∙+.18.(本小题满分12分).设2{40}A x x x =+=, 22{2(1)10}B x x a x a =+++-=,如果A B B ⋂=,求实 数a 的取值范围.19.(本小题满分12分)某投资公司计划投资A ,B 两种金融产品,根据市场调查与预测,A 产品的利润与投资量成正比,其关系如图1,B 产品的利润与投资量的算术平方根成正比例,其关系如图2,(注:利润与投资量单位:万元)(1)分别将A ,B 两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A ,B 两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?20. (本小题满分12分)已知函数f (x )=2ax +1x(a ∈R ). (1)当12a =时,试判断f (x )在]1,0(上的单调性并用定义证明你的结论; (2)对于任意的(0,1]x ∈,使得f (x )≥6恒成立,求实数a 的取值范围.21. (本小题满分12分)已知函数()4log f x x =,1,416x ⎡⎤∈⎢⎥⎣⎦的值域是集合A ,关于x 的不等式3122x ax +⎛⎫ ⎪⎝⎭>()a R ∈的解集为B ,集合51x C x x ⎧-⎫=⎨⎬+⎩⎭≥0,集合{}()1210D x m x m m =+≤<->. (1)若A B B =U ,求实数a 的取值范围; (2)若D C ⊆,求实数m 的取值范围.22.(本小题满分12分)对于函数)(1x f 、)(2x f 、)(x h ,如果存在实数b a ,使得)()()(21x f b x f a x h ⋅+⋅=,那么称)(x h 为)(1x f 、)(2x f 的和谐函数.(1)已知函数1()1f x x =-,2()31f x x =+,()22h x x =+,试判断)(x h 是否为)(1x f 、)(2x f 的和谐函数?并说明理由;(2)已知)(x h 为函数13()log f x x =,213()log f x x =的和谐函数,其中1,2==b a ,若方程(9)(3)0h x t h x +⋅=在[3,9]x ∈上有解,求实数t 的取值范围. 城东中学2017~2018年度第一学期期中考试高一数学答题卷一、选择题(每题5分,共60分)二、填空题(每空5分,共20分)13、 14、 15、 16、 三、解答题(写出必要的解题过程,共70分) 17(10分)、(1)原式=(2)原式=班级 _____________ 姓名 ______________ 得分 _____________………………………………装……………………………………订………………………………………18(12分) 19(12分)、。

安徽省全椒中学2017-2018学年高二上学期期中考试数学理试题含答案

安徽省全椒中学2017-2018学年高二上学期期中考试数学理试题含答案

全椒中学2017-2018学年度第一学期期中考试高二数学(理)试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若2x A Z |∈={x },1{}2y B y Z +=|∈,则A ∩B 等于……………………………【 】.A B.B A.C φ.D Z2.设复数(,)a bi a b R +∈满足2()34a bi i +=+,则复数a bi +在复平面对应的点位于…【 】.A 第一、二象限.B 第一、三象限 .C 第一、四象限.D 第二、四象限 3.设命题:p a 、b 、c 是三个非零向量;命题q :{a 、b 、c }为空间的一组基向量,则命题p是q的…………………………………………………………………………………………【 】.A 充分不必要条件.B 必要不充分条件 .C 充要条件 .D 既非充分又非必要条件4.关于直线m 、n 与平面αβ与,有下列四个命题:若m n αβ∥,∥且αβ∥则m n ∥;若,m n αβ⊥⊥且αβ⊥则m n ⊥;若m α⊥, n β∥且αβ∥,则m n⊥若m α∥,n β⊥且αβ⊥,则m n ∥.其中真命题的序号是…………………………【 】 .A .B .C.D5.如右图,矩形长为6,宽为4数得落入椭圆外的黄豆数位96密 封 线 内 不 要 答 题椭圆的面积…………………………………………【 】 .A 7.68 .B 16.32 .C 17.32 .D 8.686.用若干块大小相同,棱长为1的正方体摆成一个立体模型,其三视图如下图所示,则此立体模型体积为………………………………………………………………………………【 】正( 主)视图 侧(左)视图俯视图.A 4.B 5.C 6.D 77.设有一个回归方程为2 1.5y xΛ=-当变量x增加一个单位时………………………【 】.A y平均增加 1.5个单位 .B y 平均增加 2个单位.C y 平均减少 1.5个单位 .D y 平均减少2个单位 8.已知各项均为正数的等比数列{}na 中,3813lg()6a a a ⋅⋅=则115a a ⋅的值为………【 】.A 100.B 1000.C 10000.D 10 9.果10.不等式2log (23)1a x x -+≤-在x R∈上恒成立,则a的取值范围为……………【 】.A [2,)+∞ .B (1,2].C 1(0,]2.D 1[,1)211.已知双曲线22221x y a b-=与直线2y x =有交点,则双曲线离心率的取值范围是…【 】.A.B∪)+∞ .C )+∞.D )+∞12.对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,这个函数叫做高斯函数。

2017-2018学年高二上学期期中数学试卷 Word版含解析

2017-2018学年高二上学期期中数学试卷 Word版含解析

2017-2018学年高二上学期期中数学试卷一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.103.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=04.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=16.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.2017-2018学年高二上学期期中数学试卷参考答案与试题解析一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α考点:空间中直线与平面之间的位置关系.专题:阅读型.分析:根据空间中直线与平面的位置关系可得答案.解答:解:根据空间中直线与平面的位置关系可得:b可能与平面α相交,也可能b与平面相交α,故选D.点评:解决此类问题的关键是熟练掌握空间中点、直线以及平面之间的位置关系.2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.10考点:斜率的计算公式.专题:计算题.分析:因为过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,所以,两直线的斜率相等.解答:解:∵直线2x+y﹣1=0的斜率等于﹣2,∴过点A(﹣2, m)和B(m,4)的直线的斜率K也是﹣2,∴=﹣2,解得,故选 B.点评:本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.3.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=0考点:圆的切线方程.专题:直线与圆.分析:首先讨论斜率不存在的情况,直线方程为x=﹣1满足条件.当斜率存在时,设直线方程为:y﹣5=k (x+1).利用圆心到直线的距离等于半径解得k的值,从而确定圆的切线方程.解答:解:①斜率不存在时,过点M(﹣1,5)的直线方程为x=﹣1.此时,圆心(1,2)到直线x=﹣1的距离d=2=r.∴x=﹣1是圆的切线方程.②斜率存在时,设直线斜率为k,则直线方程为:y﹣5=k(x+1).即kx﹣y+k+5=0.∵直线与圆相切,∴圆心到直线的距离.解得,.∴直线方程为5x+12y﹣55=0.∴过点M(﹣1,5)且与圆相切的直线方程为x=﹣1或5x+12y﹣55=0.故选:C.点评:本题考查直线与圆相切的性质,点到直线的距离公式等知识的运用.做题时容易忽略斜率不存在的情况.属于中档题.4.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用线面平行和线面垂直的性质和判定定理对四个选项逐一解答.A选项用垂直于同一条直线的两个平面平行判断即可;B选项用两个平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;C选项用线面垂直的性质定理判断即可;D选项由线面平行的性质定理判断即可.解答:解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.点评:本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=1考点:轨迹方程.专题:直线与圆.分析:设圆上任意一点为(x1,y1),中点为(x,y),则,由此能够轨迹方程.解答:解:设圆上任意一点为(x1,y1),中点为(x,y),则代入x2+y2=4得(2x﹣4)2+(2y+2)2=4,化简得(x﹣2)2+(y+1)2=1.故选A.点评:本题考查点的轨迹方程,解题时要仔细审题,注意公式的灵活运用.6.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:使△ABC绕直线BC旋转一周,则所形成的几何体是一个底面半径为4,高为3的一个圆锥,代入圆锥体积公式,可得答案.解答:解:将△ABC绕直线BC旋转一周,得到一个底面半径为4,高为3的一个圆锥,故所形成的几何体的体积V=×π×42×3=16π,故选:D点评:本题考查的知识点是旋转体,其中分析出旋转得到的几何体形状及底面半径,高等几何量是解答的关键.7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:利用三视图的数据,直接求解三棱柱的表面积.解答:解:因为正三棱柱的三视图,其中正(主)视图是边长为2的正方形,棱柱的侧棱长为2,底面三角形的边长为2,所以表面积为:2×+2×3×2=12+2.故选C.点评:本题考查几何体的三视图的应用,几何体的表面积的求法,考查计算能力.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1考点:抛物线的应用.专题:函数的性质及应用.分析:本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个跟),从而得到点C的个数.解答:解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故应选:A点评:本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为x2+(y﹣1)2=1.考点:圆的标准方程.专题:直线与圆.分析:利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.解答:解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.点评:本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为11cm.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:利用面积之比是相似比的平方,求出截取棱锥的高,然后求出截面与底面的距离.解答:解:设截取棱锥的高为:h,则,∴h=5,所以截面与底面的距离:16﹣5=11cm故答案为:11cm点评:本题是基础题,考查面积之比是选上比的平方,考查计算能力,空间想象能力.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为12π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.解答:解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球O的表面积为4π×3=12π.故答案为:12π.点评:本题考查球的表面积的求法,考查空间想象能力、计算能力.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.考点:平面与平面垂直的性质.专题:计算题;空间位置关系与距离.分析:由题意,两个矩形的对角线长分别为5,=2,利用余弦函数,即可求出cosα:cosβ.解答:解:由题意,两个矩形的对角线长分别为5,=2,∴cosα==,cosβ=,∴cosα:cosβ=,故答案为:.点评:本题考查平面与平面垂直的性质,考查学生的计算能力,比较基础.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=±.考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.解答:解:圆心C(2,2),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d==,解得a=±,故答案为:±.点评:本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.考点:圆的标准方程;直线与圆的位置关系.专题:计算题;直线与圆.分析:(I)设圆E的方程为x2+y2+Dx+Ey+F=0,将A、B、C的坐标代入,建立关于D、E、F的方程组,解之即可得到△ABC的外接圆E的方程;(II)化圆E为标准方程,得圆心为E(1,2),半径r=1.设直线l方程为y=kx,由点到直线的距离公式和垂径定理建立关于k的方程,解之得到k=1或7,由此即可得到直线l的方程.解答:解:(I)设圆E的方程为x2+y2+Dx+Ey+F=0∵A(2,2)、B(1,3)、C(1,1)都在圆E上∴,解之得因此,圆E的方程为x2+y2﹣2x﹣4y+4=0;(II)将圆E化成标准方程,可得(x﹣1)2+(y﹣2)2=1∴圆心为E(1,2),半径r=1设直线l方程为y=kx,则圆心E到直线l的距离为d=∵直线l与圆E相交所得弦的长为,∴由垂径定理,得d2+()2=r2=1可得d2=,即=,解之得k=1或7∴直线l的方程是y=x或y=7x.点评:本题给出三角形ABC三个顶点,求它的外接圆E的方程,并求截圆所得弦长为的直线方程.着重考查了直线的方程、圆的方程和直线与圆的位置关系等知识,属于中档题.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.考点:直线与平面垂直的性质;直线与平面平行的判定.专题:计算题;证明题;空间位置关系与距离.分析:(I)根据三角形中位线定理,证出DE∥BC,再由线面平行判定定理即可证出DE∥面PBC;(II)连结PD,由等腰三角形“三线合一”,证出PD⊥AB,结合DE⊥AB证出AB⊥平面PDE,由此可得AB ⊥PE;(III)由面面垂直性质定理,证出PD⊥平面ABC,得PD是三棱锥P﹣BEC的高.结合题中数据算出PD=且S△BEC=,利用锥体体积公式求出三棱锥P﹣BEC的体积,即得三棱锥B﹣PEC的体积.解答:解:(I)∵△ABC中,D、E分别为AB、AC中点,∴DE∥BC∵DE⊄面PBC且BC⊂面PBC,∴DE∥面PBC;(II)连结PD∵PA=PB,D为AB中点,∴PD⊥AB∵DE∥BC,BC⊥AB,∴DE⊥AB,又∵PD、DE是平面PDE内的相交直线,∴AB⊥平面PDE∵PE⊂平面PDE,∴AB⊥PE;(III)∵PD⊥AB,平面PAB⊥平面ABC,平面PAB∩平面ABC=AB∴PD⊥平面ABC,可得PD是三棱锥P﹣BEC的高又∵PD=,S△BEC=S△ABC=∴三棱锥B﹣PEC的体积V=V P﹣BEC=S△BEC×PD=点评:本题在三棱锥中求证线面平行、线线垂直,并求锥体的体积.着重考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.考点:直线与平面平行的判定;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离.分析:(Ⅰ)先根据线面垂直的性质证明出BB1⊥A1C1.进而根据菱形的性质证明出A1C1⊥B1D1.最后根据线面垂直的判定定理证明出A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.先证明OC1∥AE和OC1=AE,推断出AOC1E为平行四边形,进而推断AO∥C1E,最后利用线面平行的判定定理证明出AO∥平面BC1D.(Ⅲ)先由E为BD中点,推断出BD⊥C1E,进而根据C1D=C1B,推断出ME⊥BD,进而根据OM⊥BD,推断出BD∥B1D1.直角三角形OC1E中利用射影定理求得OM.解答:解:(Ⅰ)依题意,因为四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,所以BB1⊥底面A1B1C1D1.又A1C1⊂底面A1B1C1D1,所以BB1⊥A1C1.因为A1B1C1D1为菱形,所以A1C1⊥B1D1.而BB1∩B1D1=B1,所以A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.依题意,AA1∥CC1,且AA1=CC1,AA1⊥AC,所以A1ACC1为矩形.所以OC1∥AE.又,,A1C1=AC,所以OC1=AE,所以AOC1E为平行四边形,则AO∥C1E.又AO⊄平面BC1D,C1E⊂平面BC1D,所以AO∥平面BC1D.(Ⅲ)在△BC1D内,满足OM⊥B1D1的点M的轨迹是线段C1E,包括端点.分析如下:连接OE,则BD⊥OE.由于BD∥B1D1,故欲使OM⊥B1D1,只需OM⊥BD,从而需ME⊥BD.又在△BC1D中,C1D=C1B,又E为BD中点,所以BD⊥C1E.故M点一定在线段C1E上.当OM⊥C1E时,OM取最小值.在直角三角形OC1E中,OE=1,,,所以.点评:本题主要考查了线面平行和线面垂直的判定定理的应用.考查了学生基础知识的综合运用.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是1.考点:二项式系数的性质.专题:计算题;二项式定理.分析:在展开式的通项公式,令x的指数为3,利用(ax+1)5的展开式中x3的系数是10,即可实数a的值.解答:解:(ax+1)5的展开式的通项公式为T r+1=,则∵(ax+1)5的展开式中x3的系数是10,∴=10,∴a=1.故答案为:1.点评:二项展开式的通项公式解决二项展开式的特定项问题的重要方法.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为4.考点:棱锥的结构特征.专题:空间位置关系与距离.分析:根据侧面展开图求解得出,再利用直角三角形求解.解答:解:∵正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,∴侧面展开为下图连接AA得:RT△中,长度为4,∴△AEF的周长的最小值为4,故答案为:4,点评:本题考查了空间几何体中的最小距离问题,属于中档题.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是(0,].考点:棱锥的结构特征.专题:空间位置关系与距离.分析:运用图形得||=||,再根据向量求解.解答:解:0为BD中点,∵AB=BC=CD=DA=BD=1,∴|OA|=|OB|=,||=||==,θ∈(0°,180°]∴AC的取值范围是(0,]故答案为:(0,]点评:本题考查了向量的运用求解距离,属于中档题.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:根据直线和圆的位置关系,利用数形结合即可得到结论.解答:解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是5.考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5点评:本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.考点:直线与平面垂直的判定.专题:空间位置关系与距离.分析:(I)由线面垂直得A1A⊥AB,再由AB⊥AC,能证明AB⊥面A1CC1.(II)由AB∥DE,在△ABC中,E是棱BC的中点,推导出D是线段AC的中点.(III)由已知条件推导出A1C⊥AC1,AB⊥A1C,从而得到A1C⊥面ABC1,由此能证明EF⊥AC1.解答:(I)证明:∵AA1⊥底面ABC,∴A1A⊥AB,(2分)∵AB⊥AC,A1A∩AC=A,∴AB⊥面A1CC1.(4分)(II)解:∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=AB,∴AB∥DE,(7分)∵在△ABC中,E是棱BC的中点,∴D是线段AC的中点.(8分)(III)证明:∵三棱柱ABC﹣A1B1C1中,A1A=AC,∴侧面A1ACC1是菱形,∴A1C⊥AC1,(9分)由(Ⅰ)得AB⊥A1C,∵AB∩AC1=A,∴A1C⊥面ABC1,(11分)∴A1C⊥BC1.(12分)又∵E,F分别为棱BC,CC1的中点,∴EF∥BC1,(13分)∴EF⊥AC1.(14分)点评:本题考查直线与平面垂直的证明,考查点的位置的确定,考查异面直线垂直的证明,解题时要认真审题,注意空间思维能力的培养.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.考点:直线与圆的位置关系.专题:综合题.分析:(Ⅰ)分两种情况:当直线l的斜率存在时,设出直线l的斜率为k,由P的坐标和设出的k写出直线l的方程,利用点到直线的距离公式表示出P到直线l的距离d,让d等于1列出关于k的方程,求出方程的解即可得到k的值,利用求出的k和P写出直线l的方程即可;当直线l的斜率不存在时,得到在线l的方程,经过验证符合题意;(Ⅱ)由利用两点间的距离公式求出圆心C到P的距离,再根据弦长|MN|的一半及半径,利用勾股定理求出弦心距d,发现|CP|与d相等,所以得到P为MN的中点,所以以MN为直径的圆的圆心坐标即为P的坐标,半径为|MN|的一半,根据圆心和半径写出圆的方程即可;(Ⅲ)把已知直线的方程代入到圆的方程中消去y得到关于x的一元二次方程,因为直线与圆有两个交点,所以得到△>0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围,利用反证法证明:假设符合条件的a存在,由直线l2垂直平分弦AB得到圆心必在直线l2上,根据P与C的坐标即可求出l2的斜率,然后根据两直线垂直时斜率的乘积为﹣1,即可求出直线ax﹣y+1=0的斜率,进而求出a的值,经过判断求出a的值不在求出的范围中,所以假设错误,故这样的a不存在.解答:解:(Ⅰ)设直线l的斜率为k(k存在)则方程为y﹣0=k(x﹣2).又圆C的圆心为(3,﹣2),半径r=3,由,解得.所以直线方程为,即3x+4y﹣6=0;当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件;(Ⅱ)由于,而弦心距,所以d=,所以P为MN的中点,所以所求圆的圆心坐标为(2,0),半径为|MN|=2,故以MN为直径的圆Q的方程为(x﹣2)2+y2=4;(Ⅲ)把直线ax﹣y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a﹣1)x+9=0.由于直线ax﹣y+1=0交圆C于A,B两点,故△=36(a﹣1)2﹣36(a2+1)>0,即﹣2a>0,解得a<0.则实数a的取值范围是(﹣∞,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,﹣2)必在l2上.所以l2的斜率k PC=﹣2,而,所以.由于,故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.点评:此题考查学生掌握直线与圆的位置关系,灵活运用点到直线的距离公式及两点间的距离公式化简求值,考查了分类讨论的数学思想,以及会利用反证法进行证明,是一道综合题.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(Ⅰ)由圆的方程找出圆心坐标,设出圆心关于直线l的对称点的坐标,由直线l的斜率,根据两直线垂直时斜率的乘积为﹣1求出直线C1C2的斜率,由圆心及对称点的坐标表示出斜率,等于求出的斜率列出一个关系式,然后利用中点坐标公式,求出两圆心的中点坐标,代入直线l的方程,得到另一个关系式,两关系式联立即可用m表示出a与b,把表示出的a与b代入圆C2的方程即可;(Ⅱ)由表示出的a与b消去m,得到a与b的关系式,进而得到圆C2的圆心在定直线上;分公切线的斜率不存在和存在两种情况考虑,当公切线斜率不存在时,容易得到公切线方程为x=0;当公切线斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,根据点到直线的距离公式表示出圆心(a,b)到直线y=kx+b的距离d,当d等于圆的半径2|m|,化简后根据多项式为0时各项的系数为0,即可求出k与b的值,从而确定出C2所表示的一系列圆的公切线方程,这样得到所有C2所表示的一系列圆的公切线方程.解答:解:(Ⅰ)∵圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,∴圆心为(2,3m),设它关于直线l:y=x+m﹣1的对称点为(a,b),则,解得a=2m+1,b=m+1,∴圆C2的圆心为(2m+1,m+1),∴圆C2的方程为:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2,∴C1关于l对称的圆C2的方程:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2.(Ⅱ)根据(Ⅰ)得圆C2的圆心为(2m+1,m+1),令,消去m得x﹣2y+1=0,它表示一条直线,故C2的圆心在一条定直线上,①当公切线的斜率不存在时,易求公切线的方程为x=0;②当公切线的斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,∴=2|m|,即:(1﹣4k)m2+2(2k﹣1)(k+b﹣1)m+(k+b﹣1)2=0∵直线y=kx+b与圆系中的所有圆都相切,所以上述方程对所有的m值都成立,∴所以有:,解得,∴C2所表示的一系列圆的公切线方程为:y=,∴故所求圆的公切线为x=0或y=.点评:此题考查了直线与圆的位置关系,以及关于点与直线对称的圆的方程.此题的综合性比较强,要求学生审清题意,综合运用方程与函数的关系,掌握直线与圆相切时圆心到直线的距离等于半径,在作(Ⅱ)时先用消去参数的方法求定直线的方程,然后采用分类讨论的数学思想分别求出C2所表示的一系列圆的公切线方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年安徽省滁州市全椒县城东中学高二(上)期中数学试卷(文科)一、选择题(每小题5分,共60分)1.(5分)一组数据的方差为s2,将这组数据中的每一个数据都乘以2,所得到的一组新数据的方差是()A.s2B.2s2C.4s2D.s22.(5分)给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使x2<0”是不可能事件③“明天全椒要下雨”是必然事件④“从100个灯泡(6个是次品)中取出5个,5个都是次品”是随机事件.其中正确命题的个数是()A.0 B.1 C.2 D.33.(5分)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.10 B.12 C.13 D.144.(5分)某中学从已编号(1~60)的60个班级中,随机抽取6个班级进行卫生检查,用每部分选取的号码间隔一样的系统抽样方法确定所选的6个班级的编号可能是()A.6,16,26,36,46,56 B.3,10,17,24,31,38C.4,11,18,25,32,39 D.5,14,23,32,41,505.(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.B.C.D.6.(5分)甲、乙两名篮球运动员近几场比赛得分统计成茎叶图如图,甲,乙两人得分的平均数与中位数分别相等,则x:y为()A.3:1或5:3 B.3:2或7:5 C.3:2 D.2:37.(5分)总体编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481.A.08 B.07 C.02 D.018.(5分)一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高在145.83cm左右B.身高在145.83cm以上C.身高在145.83cm以下D.身高一定是145.83cm9.(5分)如图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是()A.i<10?B.i<20?C.i>10?D.i>20?10.(5分)某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛.在下列选项中,互斥而不对立的两个事件是()A.“至少有1名女生”与“都是女生”B.“至少有1名女生”与“至多1名女生”C.“恰有1名女生”与“恰有2名女生”D.“至少有1名男生”与“都是女生”11.(5分)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()A.B.C.D.12.(5分)在区间[0,4]上随机取两个实数x,y,使得x+2y≤8的概率为()A.B.C.D.二、填空题(每小题5分,共20分)13.(5分)如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为.14.(5分)如果执行的程序框图如图所示,那么输出的S=.15.(5分)从某市参加高中数学建模竞赛的1008份试卷中随机抽取一个容量为54的样本,考查竞赛的成绩分布,将样本分成6组,绘成频率分布直方图如图所示,从左到右各小组的小矩形的高的比为1:1:4:6:4:2.据此估计该市在这次竞赛中,成绩高于80分的学生总人数为人.16.(5分)数学与文学有许多奇妙的联系,如诗中有回文诗:“儿忆父兮妻忆夫”,既可以顺读也可以逆读,数学中有回文数,如343,12521等,两位数的回文数有11、22、33、…99共9个,则三位数的回文数中,偶数的概率是.三、解答题(共6大题70分)17.(10分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:(1)计算甲、乙两位射击运动员成绩平均数和方差;(2)比较两个人的成绩,分析谁的成绩较稳定?18.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如图资料:设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于x的线性回归方程=x;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?19.(12分)某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.20.(12分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.21.(12分)已知一元二次方程x2+ax+b2=0,(1)若a是从区间[0,3]任取的一个整数,b是从区间[0,2]任取的一个整数,求上述方程有实数根的概率.(2)若a是从区间[0,3]任取的一个实数,b是从区间[0,2]任取的一个实数,求上述方程有实数根的概率.22.(12分)我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x 的值,并说明理由;(Ⅲ)已知平价收费标准为4元/吨,议价收费标准为8元/吨.当x=3时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)2017-2018学年安徽省滁州市全椒县城东中学高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分)1.(5分)一组数据的方差为s2,将这组数据中的每一个数据都乘以2,所得到的一组新数据的方差是()A.s2B.2s2C.4s2D.s2【解答】解:由题意知,原来的平均数为,新数据的平均数变为a,(a=2)原来的方差S2=[(x1﹣)2+(x2﹣)2+(x3﹣)2],现在的方差S′2=[(ax1﹣a)2+(ax2﹣a)2+(ax3﹣a)2]=[a2(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=a2s2,∴求得新数据的方差为4s2.故选:C.2.(5分)给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使x2<0”是不可能事件③“明天全椒要下雨”是必然事件④“从100个灯泡(6个是次品)中取出5个,5个都是次品”是随机事件.其中正确命题的个数是()A.0 B.1 C.2 D.3【解答】解:对于①,三个球分为两组,有两种情况,1+2和3+0,所以①是正确的命题;对于②,一实数x都有x2≥0,所以②是正确的命题;对于③,“明天全椒要下雨”是偶然事件,所以③是错误的命题;对于④,“从100个灯泡中取出5个,5个都是次品”,发生与否是随机的,所以④是正确的命题.故选:D.3.(5分)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.10 B.12 C.13 D.14【解答】解:∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,丙车间生产产品所占的比例,因为样本中丙车间生产产品有3件,占总产品的,所以样本容量n=3÷=13;故选:C.4.(5分)某中学从已编号(1~60)的60个班级中,随机抽取6个班级进行卫生检查,用每部分选取的号码间隔一样的系统抽样方法确定所选的6个班级的编号可能是()A.6,16,26,36,46,56 B.3,10,17,24,31,38C.4,11,18,25,32,39 D.5,14,23,32,41,50【解答】解:从60枚某型导弹中随机抽取6枚,采用系统抽样间隔应为=10,只有B答案中导弹的编号间隔为10,故选:A.5.(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.B.C.D.【解答】解:∵红灯持续时间为40秒,至少需要等待15秒才出现绿灯,∴一名行人前25秒来到该路口遇到红灯,∴至少需要等待15秒才出现绿灯的概率为=.故选:B.6.(5分)甲、乙两名篮球运动员近几场比赛得分统计成茎叶图如图,甲,乙两人得分的平均数与中位数分别相等,则x:y为()A.3:1或5:3 B.3:2或7:5 C.3:2 D.2:3【解答】解:∵甲乙两人的平均数相等,∴=,又∵甲乙两人的中位数相等,∴=y,(1≤x≤5,y≤3)或=y,(x>5,y≤3)或=3,(1≤x≤5,y>3)或=3,(x>5,y>3)解得:x=3,y=2,或x=7,y=5,故x:y=3:2,或x:y=7:5,故选:B.7.(5分)总体编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481.A.08 B.07 C.02 D.01【解答】解:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,01,.其中第二个和第四个都是02,重复.可知对应的数值为08,02,14,07,01,则第5个个体的编号为01.故选:D.8.(5分)一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高在145.83cm左右B.身高在145.83cm以上C.身高在145.83cm以下D.身高一定是145.83cm【解答】解:估计回归直线方程y=7.19x+73.93,计算x=10时,y=7.19×10+73.93=145.83,由此预测这个孩子10岁时的身高在145.83cm左右.故选:A.9.(5分)如图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是()A.i<10?B.i<20?C.i>10?D.i>20?【解答】解:框图首先给变量s,n,i赋值s=0,n=3,i=1.判断条件不满足,执行s=0+,n=3+2=5,i=1+1=2;判断条件不满足,执行s=+,n=5+2=7,i=2+1=3;判断条件不满足,执行s=++,n=7+2=9,i=3+1=4;…,由此看出,当执行s=+++…+时,执行n=21+2=23,i=10+1=11.在判断时判断框中的条件应满足,所以判断框中的条件应是i>10?.故选:C.10.(5分)某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛.在下列选项中,互斥而不对立的两个事件是()A.“至少有1名女生”与“都是女生”B.“至少有1名女生”与“至多1名女生”C.“恰有1名女生”与“恰有2名女生”D.“至少有1名男生”与“都是女生”【解答】解:A中的两个事件是包含关系,故不符合要求.B中的两个事件之间有都包含一名女的可能性,故不互斥;C中的两个事件符合要求,它们是互斥且不对立的两个事件;D中的两个事件是对立事件,故不符合要求故选:C.11.(5分)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()A.B.C.D.【解答】解:正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件.4组邻边和对角线中两条直线相互垂直的情况有5种包括10个基本事件,所以概率P==,故选:C.12.(5分)在区间[0,4]上随机取两个实数x,y,使得x+2y≤8的概率为()A.B.C.D.【解答】解:由题意,在区间[0,4]上随机取两个实数x,y,对应的区域的面积为16.在区间[0,4]内随机取两个实数x,y,则x+2y≤8对应的面积为=12,所以事件x+2y≤8的概率为=.故选:D.二、填空题(每小题5分,共20分)13.(5分)如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为0.18.【解答】解:正方形的面积S=1,设阴影部分的面积为S,∵随机撒1000粒豆子,有180粒落到阴影部分,∴几何槪型的概率公式进行估计得,即S=0.18,故答案为:0.18.14.(5分)如果执行的程序框图如图所示,那么输出的S=2550.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=0+2+4+6+ (100)∵S=0+2+4+6+…+100=2550.故答案为:2550.15.(5分)从某市参加高中数学建模竞赛的1008份试卷中随机抽取一个容量为54的样本,考查竞赛的成绩分布,将样本分成6组,绘成频率分布直方图如图所示,从左到右各小组的小矩形的高的比为1:1:4:6:4:2.据此估计该市在这次竞赛中,成绩高于80分的学生总人数为336人.【解答】解:从左到右各小组的小矩形的高的比为1:1:4:6:4:2,故[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]各组的频率为,,,,,;则成绩高于80分的学生频率约为+=所以成绩高于80分的学生总人数为约1008×=336.故答案为:336.16.(5分)数学与文学有许多奇妙的联系,如诗中有回文诗:“儿忆父兮妻忆夫”,既可以顺读也可以逆读,数学中有回文数,如343,12521等,两位数的回文数有11、22、33、…99共9个,则三位数的回文数中,偶数的概率是.【解答】解:三位数的回文数为ABA,A共有1到9共9种可能,即1B1、2B2、3B3…B共有0到9共10种可能,即A0A、A1A、A2A、A3A、…共有9×10=90个,其中偶数为A是偶数,共4种可能,即2B2,4B4,6B6,8B8,B共有0到9共10种可能,即A0A、A1A、A2A、A3A、…其有4×10=40个,∴三位数的回文数中,偶数的概率p=.故答案为:.三、解答题(共6大题70分)17.(10分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:(1)计算甲、乙两位射击运动员成绩平均数和方差;(2)比较两个人的成绩,分析谁的成绩较稳定?【解答】(10分)=90.解:(1)=90,乙则=[(87﹣90)2+(91﹣90)2+(90﹣90)2+(89﹣90)2+(93﹣90)2]=4.=[(89﹣90)2+(90﹣90)2+(91﹣90)2+(88﹣90)2+(92﹣90)2]=2…(8分)(2)∵<乙的成绩更稳定(10分)18.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如图资料:设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于x的线性回归方程=x;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?【解答】解:(1)由题意,计算=×(11+13+12)=12,=×(25+30+26)=27,,,,,由公式求得,;所以y关于x的线性回归方程为;…(8分)(2)当x=10时,,计算|22﹣23|<2,同样,当x=8时,,计算|17﹣16|<2,所以,该研究所得到的线性回归方程是可靠的.…(12分)19.(12分)某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.【解答】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,∴全班人数为.(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;频率分布直方图中[80,90)间的矩形的高为.(Ⅲ)将[80,90)之间的3个分数编号为a1,a2,a3,[90,100)之间的2个分数编号为b1,b2,在[80,100)之间的试卷中任取两份的基本事件为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10个,其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是.20.(12分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.【解答】解:(1)根据题意,甲、乙、丙三个乒乓球协会一共有27+9+18=54人,从中抽取6人,则甲乒乓球协会应当抽取27×=3人,乙乒乓球协会应当抽取9×=1人,丙乒乓球协会应当抽取18×=2人,则应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2;(2)根据题意,将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种;②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.因此,事件A发生的概率P(A)==.21.(12分)已知一元二次方程x2+ax+b2=0,(1)若a是从区间[0,3]任取的一个整数,b是从区间[0,2]任取的一个整数,求上述方程有实数根的概率.(2)若a是从区间[0,3]任取的一个实数,b是从区间[0,2]任取的一个实数,求上述方程有实数根的概率.【解答】解:记事件A为“方程x2+ax+b2=0有实根”,当a≥0,b≥0时,方程x2+ax+b2=0有实根的充要条件为a≥2b.(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含6个基本事件,事件A发生的概率为P(A)=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},面积为6.构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥2b},面积为所以所求的概率为P(A)=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)22.(12分)我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x 的值,并说明理由;(Ⅲ)已知平价收费标准为4元/吨,议价收费标准为8元/吨.当x=3时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)【解答】解:(Ⅰ)由频率分布直方图,得:(0.08+0.16+a +0.40+0.52+a +0.12+0.08+0.04)×0.5=1, 解得:a=0.30;(Ⅱ)∵前6组的频率之和是(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85, 而前5组的频率之和为(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85, ∴2.5≤x <3,由0.3×(x ﹣2.5)=0.85﹣0.73,解得:x=2.9, 因此,估计月用水量标准为2.9吨时, 85%的居民每月的用水量不超过标准;(Ⅲ)设居民月用水量为t 吨,相应的水费为y 元, 则y=,即y=,由题设条件及月均用水量的频率分布直方图, 得居民每月的水费数据分组与频率分布表如下:根据题意,该市民的月平均水费估计为:1×0.04+3×0.08+5×0.15+7×0.20+9×0.26+11×0.15+14×0.06+18×0.04+22×0.02=8.42(元).。

相关文档
最新文档