Cooperative Two-Quantum Interaction of Excited System with Bath
一些物理里面名词的中文对照(大部分是材料领域的)
Abelian group 阿贝尔群,又称Abel群ablation 烧蚀abnormal dispersion 反常色散Abrikosov vortex lattice 阿布里科索夫涡旋线格子Abrikocov vortex state 阿布里科索夫涡旋态absorber 吸收体absorption spectroscopy 吸收光谱abundance 丰度acceptor doping 受主掺杂acceptor impurity 受主杂质accumulation layer 累积层achromatic phase matching 消色差相位匹配achromatic wave plate 消色差波片achromatism 消色差[性]ac Josephson effect 交流约瑟夫森效应,又称交流Josephson效应acoustic compliance 声顺acoustic ohm 声欧[姆]acoustic stiffness 声劲[度]acoustic-optic tensor 声光系数张量acousto-optic effect 声光效应acousto-optic Q-switch 声光Q-开关acousto-optic signal processor 声光信号处理器acousto-optical tunable filter 声光可调滤波器actinide element 锕系元素activated tunneling 激活隧穿active device 有源器件active region 激活区addressing electrode 寻址电极adiabatic theorem,绝热定理adiabatic transformation 绝热变换adiabatic transport,绝热输运adiabaton 浸渐子,绝热子advection 平流aerodynamic sound 空气动力声aersol 气溶胶affinity potential 亲和势aggregate 聚集体aggregation 聚集Aharonov-Bohm (AB) effect AB效应,又称Aharonov-Bohm (AB) 效应Aharonov-Bohm (AB) flux AB磁通,又称Aharonov-Bohm (AB)磁通allowed state 容许态alpha decay ( -decay) 衰变alpha particle ( -particle) 粒子Altshular-Aronov-Spivak (AAS) effect AAS效应,又称Altshular-Aronov-Spivak效应amplification without inversion 无反转放大amplitude limiting 限幅amplitude transformer 变幅杆Andreev reflection 安德列也夫反射,又称Andreev反射Andreev mirror 安德列也夫镜[子],又称Andreev镜[子] Andreev scattering 安德列也夫散射,又称Andreev散射angular resolved photoemission spectroscopy 角分辨光电子谱[学] anisotropic confinement 各向异性限域anisotropic scatterer, 各向异性散射体anisotropy energy 各向异性能anomalon 反常子anomalous power laws 反常幂[次]率anomalous proximity effect,反常临近效应anomaly 反常antidot 同quantum antidot 反量子点antidodal point 腹点antigravity 反引力antihyperon 反超子anti-localization, 反局域化antimeson 反介子anti-exclusive principle 反不相容原理antiferromagnetic interaction 反铁磁相互作用antiferromagnetic semiconductor 反铁磁半导体anti-Stokes scattering 反斯托克斯散射anti-time ordered function, 反时序函数anyon 任意子aphelion 近日点, 远核点areal density 面密度armchair nanotube 扶手椅型纳米管arrayed waveguide gratings 阵列波导光栅artificial atom,人[工]构[造]原子artificial barrier 人工势垒artificial elment 人造元素atom laser 原子凝射器atom optics 原子光学atom trapping 原子陷俘,原子捕获atom waveguide 原子波导atomic clock原子钟atomic diffraction 原子衍射atomic fountain 原子喷泉atomic form factor 原子形状因子atomic time 原子时attenuation 衰减attosecond X-ray pulse 阿秒X射线脉冲Auger process 俄歇过程,又称Auger过程avalanche counter 雪崩计数器avalanche effect 雪崩效应avalanche photodiodes,apd 雪崩光电二极管azimuth 方位角back-action evasion 非干扰[测量]background radiation 本底辐射,背景辐射background temperature 本底温度, 背景温度balanced homodyne detection平衡零拍探测ballistic aggregate 弹道聚集体ballistic aggregation 弹道聚集ballistic electron injection 弹道电子注入ballistic transport弹道输运ballistics 弹道学band bending 带弯曲band index 带指标band of rotation-vibration 振转[谱]带band offset 带阶band repulsion 带排斥band theory 能带论bar 巴(压强单位),杆Barkhausen noise 巴克豪森噪声,又称Barkhausen噪声barn 巴恩(截面单位,10-24厘米2)barrier 势垒barrier curvature 势垒曲率barrier height 势垒高度barrier state 势垒态barrier tunneling 势垒隧穿base-centered orthorhombic lattice 底心正交格[子] base line 基线base material 基质base metal 碱金属basis vector 基矢beam 束,梁beam dump 束流捕集器beam focusing 束流聚焦behaviour 行为,性能Bell inequality贝尔不等式,又称Bell不等式bend resistance,弯曲电阻bent crystal 弯晶Berry phase 贝里相位,又称Berry相位βdecay β衰变βradioactivity β放射性βray β射线βspectum β谱βstability line β稳定线bevatron 吉伏质子加速器(高能质子同步稳相加速器)bicritical point 双临界点bicrystal junction 双晶结big bang model 大爆炸模型binary diffractive optical element 二元衍射光学元件bioastrophysics 天体生物物理学biochip 生物芯片bipolar junction transistor 双极[结]晶体管bit rate 比特率blackness 黑度blaze line 闪耀角bleaching effect 漂白效应blob 团迹,链滴Bloch electron 布洛赫电子,又称Bloch电子Bloch frequency,布洛赫频率,又称Bloch频率Bloch oscillation,布洛赫振荡,又称Bloch振荡Bloch theorem 布洛赫定理,又称Bloch定理blockade 阻塞Blonder-Tinkham-Klapwijk [BTK] model BTK模型body-centered cubic lattice 体心立方格[子]body-centered orthorhombic lattice 体心正交格[子]Bogoliubov [-de Gennes] equations 博戈留波夫[-得简斯]方程,又称Bogoliubov [-de Gennes]方程Boltzmann distribution 玻尔兹曼分布Boltzmann transport equation,玻尔兹曼输运方程bond-angle order 键角有序bond-orientational order 键取向有序bond polarizability 键极化性bond valence 键价boojum 布经(超流氦3中的取向织构)bosonization of field operators 场算符的波色化Bragg peak 布拉格峰,又称Bragg峰Bragg plane 布拉格平面,又称Bragg平面Bragg reflection 布拉格反射,又称Bragg 反射Bragg reflectors 布拉格反射器,又称Bragg 反射器Bragg waveguide 布拉格波导,又称Bragg 波导break junction 断裂结breathing mode呼吸模breeder 增殖反应堆breakup reaction 崩裂反应bright state 亮态brittleness 脆性buffer amplifier 缓冲放大器buffer gas 缓冲气体buffer layer, 缓冲层burn-up 燃耗Büttiker formula, 比特克公式,又称Büttiker公式buzzer 蜂鸣器C-15 structure C-15结构C[a]esium clock 铯钟calorie 卡【洛里】candle 烛光candescence 白热,又称白炽canonical commutation relation 正则对易关系canonical variable 正则变量cantact angle 接触角canted spin order倾斜自旋有序cantilever 悬臂(原子力显微镜中的)canthotaxie眼角[式]排列(另文说明)carbon cycle 碳循环(恒星内部的)carbon nanotube 碳纳米管carrier 载流子carrier concentration 载流子浓度carrier diffuse 载流子扩散carrier reservoir 载流子库Cartesian coordinates 笛卡儿坐标Cauchu-Schwarz inequality Cauchu-Schwarz不等式cavity dark state 腔暗态cavity dumping 腔倒空cavity quantum electrodynamics 腔量子电动力学cavity resonator [谐振]腔共振器14C dating 碳14测年celestial X-ray source 宇宙X 射线源center of inversion 反演中心center of moment 矩心central collision中心碰撞center-of-mass energy 质心系能量centrifuge 离心机centrifugal separation 离心分离ceramic 陶瓷chain folding 链折叠chain statistics 链统计学chalcogenide 硫属化物channel waveguide 沟道波导chaos synchronization 混沌同步chaotic communication 混沌通讯chaotic noise 混沌噪声characteristic impedance 特性阻抗characteristic curve 特征曲线charge-separated plasma 电荷分离等离子体(正负电荷在空间不同区域的等离子体) charge imbalance 电荷不平衡charge ordering 电荷有序charge parity effect,电荷宇称效应charge qubit 电荷量子比特(超导量子比特的一种)charge-phase qubit 电荷-相位量子比特(超导量子比特的一种)charge reservoir 电荷库charge stiffness 电荷劲度(衡量外场作用下电荷被自由加速的难易程度)charge-spin coupling电荷自旋耦合(用于自旋电子学)charge stripe phase 电荷条纹相charge-to-mass ratio 荷质比charge transfer insulator 电荷转移绝缘体charge transfer salt 电荷转移盐charge velocity 电荷速度(见于电荷-自旋分离现象)charging energy,充电能chemical shift 化学位移chiral liquid crystal 手征液晶chiral molecule手征分子,又称手性分子chiral symmetry broken 手征对称[性]破缺chirp啁啾chirped Gaussian pulse 啁啾高斯脉冲chirp filter 啁啾滤波器,又称线性调频滤波器,或色散延迟线chopper 斩波器circumlunar orbit 环月轨道circumsolar orbit 环日轨道circumterrestrial orbit 环地轨道cis-lunar space 月地空间clad 覆盖clamping 箝位classical fluid 经典液体clean limit [干]净极限cleaved coupling cavity 解理耦合腔cloning fidelity克隆保真度closed shell 满壳层,又称闭壳层,英文又称closure shellcluster state簇态CNO cycle 碳氮氧循环coalescence 聚合, 并合code 1,[代]码;2,密码;3,符号coding 编码codirectional coupling 同向耦合coefficient of correlation 关联系数coefficient of elasticity 弹性系数coexistence line 共存线(相图中的)coexisting phase 共存相coherence factor 相干因子coherence length,相干长度coherent atomic recoil 相干原子反冲coherent electron tunneling 相干电子隧道coherent peak 相干峰coherent photoassociation 相干光缔合coherent population oscillation相干布居振荡coherent population trapping相干布居囚禁coherent population transfer相干布居迁移coherent structure 拟序结构coherent terahertz waves相干太赫波coherent transient effects 相干暂态效应coherent trap 相干捕获cold finger 冷头cold fusion 冷聚变collective coordinate 集体坐标collective mode 集体模collective motion 集体运动collective pinning model 集体钉扎模型collinear phase matching 共线相位匹配colloid 胶体,胶质colloidal metal 胶体金属colored noise 色噪声colossal magnetoresistance [CMR] 庞磁电阻commensurate lattice 公度格子compact star 致密星compensated impurity 补偿杂质complementary metal oxide semiconductor [CMOS] 互补金属氧化物半导体complex 1,复合体;2,络合物complex analytical signal theory 复解析信号理论complex-conjugate pulses 复共轭脉冲compliance 1,柔度;2,顺度composite Fermion 复合费米子compression of ultrashort pulses 超短脉冲压缩compressor 压缩器,压机concurrence并发纠缠,又称量子并发condensate 凝聚体condensation energy 凝聚能condenser 冷凝器conductance fluctuation, 电导涨落conductance quantization 电导量子化conduction electron 传导电子confinement 1,约束(等离子);2,限域(凝聚态);3,禁闭(高能)congregating effect 聚集效应conjugate variable 共轭变量conservation of angular momentum 角动量守恒conservation of crystal momentum 晶体动量守恒conservative dislocation motion 保守位错运动(位错沿滑移面平行于Burgers矢量运动无净质量流)conservation of energy 能量守恒conservation law of flux 磁通守恒律conservation of momentum 动量守恒conservation of particle number粒子数守恒contact angle 接触角contact potential 接触势contact resistance 接触电阻continuation 延拓continuous group 连续群contour line 等值线contour map 等值线图contradirectional coupling反向耦合conventional unit cell 惯用单胞,简称单胞convergence factor 收敛因子conversion electron 内转换电子coolant moderator 载热减速剂cooperative diffusion 合作扩散Cooperon, 库珀子Cooper pair box 库珀对盒子coplanar waveguide 共面波导copolymer 共聚物core energy 芯能core nucleus 核芯[核]correlated spontaneous emission 关联自发发射correlation exponent 关联指数cosmic aerodynamics 宇宙气体动力学cosmic age 宇宙年龄cosmic constant 宇宙常量cosmic [microwave] background radiation [CMBR] 宇宙[微波]背景辐射cosmic microwave background 宇宙微波背景cosmic string 宇宙弦cosmochemistry 宇宙化学,天体化学cosmological nucleosynthesis 宇宙核合成cosmos 宇宙co-tunneling 共隧穿Couette flow 库埃特流Coulomb blockade 库仑阻塞Coulomb gap 库仑隙Coulomb interaction 库仑[相互]作用Coulomb island 库仑岛,又称单电子岛(single electron island)Coulomb potential 库仑势Coulomb repulsion 库仑斥力Coulomb staircase 库仑台阶counter telescope 计数器望远镜coupled-channels model 耦合道模型coupled mode theory 耦合模理论coupled waveguides,耦合波导coupled wells耦合阱coupling energy 耦合能coupling strength 耦合强度covalent bond 共价键creep wave蠕波,又称爬波critical assembly [核反应堆]临界装置critical density 临界密度critical dimension 临界维度cross-phase-modulation 交叉相位调制cross field 交叉场cross junction, 十字结crosstalk attenuation 串扰衰减crystal-field splitting 晶[体]场劈裂crystalline anisotropy晶态各向异性crystal symmetry class 晶体对称类cubic lattice 立方格子cuprate 铜氧化物curie 居里(非国际制放射性活度单位)current bias 电流偏置current operator 电流算符cutoff energy,截止能量cyclone 气旋cyclotron effective mass 回旋有效质量D/A converter 等于digital to analog converter 数模转换器damping radiation 阻尼辐射dark current 暗电流dark energy 暗能量dark state 暗态dark-state polariton 暗态光极化子date line 日界线dc Josephson effect 直流约瑟夫森效应,直流Josephson效应dc SQUID (superconducting quantum interference device) 直流超导量子干涉器Debye wave vector 德拜波矢decay heat 衰变热decay time,衰减时间deceleration 减速度decibel 分贝decoherence 退相干,又称消相干decoherence-free 无退相干,又称无消相干decontamination factor 去污因子decoupling epoch 退耦期decoy state 诱骗态deformation potential,形变势degeneracy collapse 简并塌缩degenerate pressure 简并压degenerate star 简并星de Gennes-Taupin length de Gennes-Taupin长度degree of order 有序度de Haas-Shubnikov effect de Haas-Shubnikov效应delay time,延迟时间demultiplexer 解复用器dendrite 1,枝晶;2,枝蔓;3,枝蔓体dense coding 密集编码dense wavelength division multiplexing 密集波分复用density correlation function,密度关联函数density distribution 密度分布density wave 密度波depairing 拆对dephasing length,退相位长度depinning 脱钉[扎]depleted Uranium 贫化铀deplation force 排空力(胶体物理用语)depletion layer 耗尽层descreening 去屏蔽deterministic equation 确定(论)的方程deuterium 氘, 即重氢deuterium oxide 重水dextrorotation 右旋diabatic approach 非绝热近似diagnostics 诊断学diagonal element 对角元diagonal matrix 对角矩阵diagonalization 对角化diamond structure 金刚石结构diblock copolymer 双嵌段共聚物dielectric response function 介电响应函数dielectric function,介电函数dielectric microcavity 介电[质]微腔dielectric reflector 介[电]质反射器differential conductance 微分电导differential input 差分输入differential rotation 较差自转(天文学用语)differential scanning calorimetry 差分扫描量热术diffraction-free beam 消衍射光束diffractive binary optics 衍射二元光学diffuseness [parameter] 弥散参数diffusion constant,扩散常数diffusion current 扩散电流diffusion region 扩散区diffusive transport,扩散输运digit 数字digital circuit 数字电路digital cross connect 数字交叉连接digit[al] to analog converter (DAC) 数模转换器digital micromirror device 数字微镜器件dilation 膨胀dilute phase 稀相dilation symmetry 伸缩对称dimensionless conductance 无量纲电导dimer 二聚体dimerization 二聚化dipole interaction 偶极相互作用dipole giant resonance 偶极巨共振Dirac braket 狄拉克括号Dirac picture 狄拉克绘景, 即相互作用绘景directed diffusion 定向扩散directional bond 定向键directional coupler 定向耦合器directional ordering 取向有序directional quantization 方向量子化direction of magnetization 磁化方向direct lattice 正格子,又称正点阵direct transition 直接跃迁dirty limit 脏极限dirty-metal regime,脏金属区discontinuity 1,不连续[性];2,突变[性] dislocation network 位错网络disordered alloy 无序合金disordered system 无序系统dispersion compensation 色散补偿dispersion-managed solitons 调控色散孤子dissipationless flow 无耗散流dissociation energy 离解能distillable entanglement 可萃取纠缠distinguishable states可区分态distributed Bragg reflector 分布布拉格反射器domain 1,畴;2,[定义]域;3,区域donor level 施主能级dopant 掺杂物doping 掺杂dosimetry 剂量学double-barrier tunneling,双势垒隧穿double exchange interaction 双交换相互作用double heterostructure DH 双异质结doublet state 双重态dressed atom 着衣原子,又称缀饰原子droplet model 小液滴模型Drude model,德鲁德模型duty ratio 占空比d-wave pairing d波配对dyad 并矢dynamical mass 动力学质量(08.02dynamic random access memory [DRAM] 动态随机存储器dynamic screening,动态屏蔽dynamically induced coherence 动态诱导相干dynamo theory 发动机理论dyne 达因early universe 早期宇宙eccentricity 偏心率eclipse 1,食;2,交食edge channel,边缘通道edge dislocation 刃[型]位错edge state,边缘态effective field theory 有效场理论effective Hamiltonian 有效哈密顿量effective mass approximation,有效质量近似Einstein-Podolsky-Rosen thought experiment EPR思想实验Einstein-Podolsky-Rosen effect EPR效应Einstein-Podolsky-Rosen pair EPR对Einstein-Podolsky-Rosen paradox EPR佯谬elastic compliance 弹性顺度elastic deformation 弹性形变electrical isolation 电绝缘electric breakdown 电击穿electric capacity 电容electric resistance 电阻electrical quadrupole moment 电四极矩electrochemical potential 电化学势electromagnetic absorption 电磁吸收electromagnetically induced absorption 电磁感生吸收electromagnetically induced transparency 电磁感生透明electromagnetic-environment effect,电磁环境效应electron backscattering pattern 电子背散射图样electron-beam lithography 电子束刻蚀electron configuration 电子组态electron density 电子密度electron-doped high temperature superconductor 电子掺杂的高温超导体electronegativity 电负性electron-electron interaction,电子-电子相互作用electron-hole pair 电子空穴对electron-hole recombination 电子-空穴复合electron hologram 电子全息术electron transition 电子跃迁electron pair 电子对electron pair tunneling 电子对隧穿electron-phonon coupling 电子声子耦合electron temperature,电子温度electron tunneling 电子隧穿electron waveguide,电子波导electron volt (eV) 电子伏electrorheological effect 电流变效应electrorheological fluid 电流变液Eliashberg equations Eliashberg方程Eliashberg theory of strong coupling Eliashberg强耦合理论elliptical orbit 椭圆轨道elliptic flow 椭圆流emittance 发射度empirical pseudopotential method 经验赝势方法empty lattice approximation 空晶格近似endohedral fullerene 内嵌原子富勒烯end-butt coupling 端面对接耦合energy relaxation length,能量弛豫长度energy transport velocity 能量传输速度ensemble average,系综平均entangled state 纠缠态entanglement 1,纠缠;2,纠缠度entanglement concentration 纠缠浓缩entanglement measure 纠缠度量entanglement monotone 单调纠缠量entanglement of formation 生成纠缠entanglement purification 纠缠纯化entanglement witness 纠缠见证entropy force 熵力envelope function,包络函数epithermal neutron 超热中子epoxy 环氧树脂erbium-doped fiber amplifier 掺饵光纤放大器error correction 纠错Esaki diode 江崎二极管evanescent state,衰逝态even-odd nucleus 偶奇核even parity 偶宇称evolution of inflation 暴涨演化Ewald construction Ewald作图法Ewald sphere Ewald球excess current 过剩电流excess neutron 过剩中子exchange-correlation hole 交换关联空穴exchange-correlation functional 交换关联泛函exchange hole 交换空穴exchange integral 交换积分excitation spectrum 激发谱excluded volume 排除体积exclusion of flux 磁通排斥exclusion principle 不相容原理exotic nucleus 奇特核expanding universe 膨胀宇宙extended [Brillouin] zone scheme 扩展[布里渊]区图式extraterrestrial life 地外生命extravehicular activity(EV A) [太空]舱外活动f-sum rule f求和规则face-centered orthorhombic lattice 面心正交格[子] face-on 正向facsimile 传真,英文简写为faxfacula 光斑Fahrenheit thermometer 华氏温度计faint object 暗天体fan diagram 扇形图F-center F中心Feno lineshape Feno线型Feno resonance Feno共振fan spin order 扇状自旋有序farad (F) 法拉(电容单位)Faraday depolarization 法拉第退偏振Faraday law of electrolysis 法拉第电解定律far-from-equilibrium system,远离平衡态系统far-side 背面(far-side of the moon, 月球背面)far-ultraviolet (FUV) 远紫外fast fission 快裂变fatigue crack 疲劳裂纹fatigue fracture 疲劳断裂fatigue strength 疲劳强度feed [source] 馈源feeder 馈线femto (f) 飞(=10-15)(01)femtosecond pulse shaping 飞秒脉冲成形Fermi age 费米[中子]年龄Fermi age-diffusion equation 费米年龄扩散方程Fermi arc 费米弧Fermi coupling constant 费米耦合常数Fermi energy 费米能量Fermi gas 费米气体Fermi golden rule 费米黄金定则Fermi liquid 费米液体Fermi liquid parameter 费米液体参数Fermi loop 费米环Fermi point 费米点Fermi transition费米跃迁Fermi vacuum 费米真空Fermi velocity 费米速度Fermi wavelength 费米波长Fermi wave vector,费米波矢Fermi’s golden rule费米黄金规则ferrielectric crystal 亚铁电晶体ferrimagnet 亚铁磁体ferroelectric 铁电体ferroelectric crystal 铁电晶体ferromagnet 铁磁体few-cycle pulse少周[期]脉冲few nucleon transfer 少[数]核子转移Feynman path,费曼路径Feynman path integral,费曼路径积分fiber cross connect 光纤交叉连接fiber grating 光纤光栅Fibonacci sequence 斐波那契序列fiducial confidence bar 置信棒fiducial point 基准点field intensity 场强field quantization 场量子化field quantum 场量子field strength 场强figure of merit,又称qualityfactor 品质因数filament 1,丝;2,丝极finite-amplitude wave 有限振幅波,又称大振幅波finite-difference method 有限差分方法finite element method 有限元法finite size effect 有限尺寸效应finite-size scaling 有限尺寸标度first approximation 一级近似first Brillouin zone 第一布里渊区first point of Aries 春分点,英文又称:vernal equinoxfirst point of Cancer 夏至点,英文又称:summer solsticefirst point of Capricornus 冬至点,英文又称:winter solsticefirst point of Libra 秋分点,英文又称:autumnal equinoxFiske steps 费斯克台阶,又称自感应台阶fissility 易裂变性fission 1,裂变;2,分裂fission isomer 裂变同质异能素fission nuclide 裂变核素fission reactor 裂变反应堆fission-spectrum neutron 裂变谱中子fission track dating 裂变径迹年代测定fitting curve 拟合曲线five-fold symmetry 5重对称fixed-range hopping 定程跳跃flash memory 闪速存储器,简称闪存flat spectrum 平谱flattening factor 扁率floating probe 浮置电极,又称浮置探针floating phase 浮置相Floquest theorem 弗洛开定理flow resistance 流阻fluctuating wall 涨落壁fluctuation 涨落(统计物理〕,又称起伏(声学〕fluence 注量fluorescence probe 荧光探剂flux,通量flux 1通量,又称流量;2,注量率;3,焊料;4 助熔剂flux bundle 磁通束flux flow amplifier (FFA) 磁通流放大器flux flow oscillator (FFO) 磁通流振荡器flux flow transistor(FFT)磁通流三极管,又称涡旋流三极管(vortex flow transistor) flux-line lattice 磁通线格子flux line 磁通线flux tube 磁流管flux quantum 磁通量子flux quantization 磁通量子化foam 泡沫focal point 焦点focal ratio 焦比focus 1,焦点;2,震源folding Brillouin zone 折叠布里渊区forbidden beta decay 禁戒b衰变forecast 预报forward bias 正向偏压four-Josephson junction logic (4JL) 四约瑟夫森结逻辑门Fourier analysis 傅里叶分析Fourier transform 傅里叶变换Fourier [transform] nuclear magnetic resonance 傅里叶[变换]核磁共振Fourier [transform] Raman spectroscopy 傅立叶[变换]拉曼谱学four probe method 四探针法four-terminal resistance,4端电阻fractional chain yield 相对链产额fractional cumulative yield 分积累产额fractional distillation 分馏fractional independent yield 分独立产额fractional statistics 分数统计法fragment 1,碎片;2,片段Franck-Condon principle弗兰克-康登原理free electron approximation 自由电子近似free electron gas 自由电子气体free energy 自由能free –free transition 自由-自由跃迁,又称自由态间跃迁freely falling body 自由落体free radical 自由基free spectral range 自由光谱范围freezing point 凝固点Frenkel exciton 弗仑克尔激子frequency conversion 频率转换Frequency division multiplexing 频分复用frequency jitter 频率抖动frequency multiplication 倍频friction 摩擦Friedel oscillation,Friedel振荡Friedel sum rule Friedel求和规则Frohlich interaction Frohlich相互作用front velocity波前速度frustrated magnet 窘组磁体fuel cell 燃料电池Fulde-Ferrell state Fulde-Ferrell态fullerene 富勒烯full moon 满月function 函数functional (1)泛函(2)功能(的)fundamental interaction 基本相互作用fundamental space-filling mode 基本空间填充模fuse (1)熔解(2)保险丝fused silica熔融石英fusion reactor 聚变[核反应]堆fuzzy information 模糊信息fussy mathematics 模糊数学gain-clamping 增益箝位gain efficiency 增益效率Galton plate 伽尔顿板-陈gamma(γ)伽马(地磁场强单位γ=nT)gamma rayγ射线gap 1,隙;2,能隙gap anisotropy 能隙各向异性gap parameter 能隙参数gaseous state 气态gate1,门;2,栅(极)gate voltage 门电压gauge symmetry 规范对称性gauss (G) 高斯(磁感应强度单位G=10-4T)Gaussian fluctuation 高斯涨落Gauss law 高斯定理Gauss surface 高斯面generalized Balmer formula 广义巴尔末公式generalized work 广义功general refractive index 广义折射率(量子信息)geomagnetic declination 地磁偏角geomagnetic inclination 地磁倾角geometrical structure factor 几何结构因子geometrization of gravitation 引力几何化German silver 德银g-factor g因子g-factor of electrons 电子的g因子g shift g移位ghost imaging 鬼成像giant magnetoresistance (GMR) 巨磁电阻Giaever tunneling 盖沃尔隧穿(单电(粒)子隧穿)Gibbs ensemble 吉布斯系综gilbert 吉尔(磁通势单位)Ginzburg-Landau coherence length 金兹堡-朗道(GL)相干长度Ginzburg-Landau equation 金兹堡-朗道(GL)方程Ginzburg-Landau-Abrikosov Go’rkov theory(GLAG)金兹堡-朗道-阿布里科索夫-高里科夫理论Glan-Thompson prism 格兰-汤普森棱镜Glan-Taylor prism 格兰-泰勒棱镜glass phase 玻璃相glassy ceramics 微晶玻璃glassy metal 玻璃态金属Glauber state Glauber态glide axis 滑移轴glide line 滑移线global phase 整体相位(量子信息)goniometer 测角器graded bandgap layer 缓变带隙层Gorter-Casimir two-fluid model 高特-卡西米尔二流体模型Graded index lens (GRIN) 梯度折射率透镜gradient of electric potential 电势梯度gram-molecule 克分子,摩尔(mole)grand free energy 巨自由能granular matter 颗粒物质granular superconductor 颗粒超导体granule 颗粒granularity 颗粒性granular metal 颗粒金属graphite 石墨graphite structure 石墨结构graph [线]图graph state 图态(量子信息)gravitational deflection of light 光线的引力偏折gravity acceleration 重力加速度Gray code 格雷码grazing angle 1,掠射角;2,擦边角greenhouse effect 温室效应group index of refraction 群折射率group theory 群论group velocity dispersion 群速度色散growth 生长growth model 生长模型guest host liquid crystal 宾主型液晶guided wave optics 导波光学gyroscopic effect 回转效应half metal 半金属half metallic magnet 半金属磁体half wave filter 半波滤波器half wave oscillator 半波振子half- wave zone method 半波带法half-wave voltage 半波电压Hall angle 霍尔角Hall coefficient 霍尔系数Hall field 霍尔电场[强度]Hall plateau 霍尔平台Hall resistance 霍尔电阻Hall voltage 霍尔电压halo nucleus 晕核halogen 卤素Hamiltonian matrix哈密顿[量]矩阵hard sphere 硬球hard sphere approximation 硬球近似harmonic generation 谐波产生Hartree-Fock electron 哈特里-福克电子H-center H心health physics 保健物理heat conductivity 1,导热性;2,热导率heat flow vector 热流矢量heat flux 热通量heat switch 热开关heavy electron 重电子heavy element 重元素heavy fermion superconductor 重费米子超导体heavy [fission] fragment 重【裂变】碎片heavy hole 重空穴heavy wall 重壁heavy water 重水hedgehog 猬缺陷height of potential barrier 势垒高度Heisenberg Hamiltonian 海森伯哈密顿量Heisenberg operators 海森伯算符Heisenberg uncertainty principle 海森伯不确定【性】原理Heitler-London theory 海特勒-伦敦理论Helfrich spontaneous curvature model 黑弗里希自发曲率模型helical spin order螺旋自旋有序helium liquefier 氦液化器heptahgedron 七面体Hermite polynomial 厄米多项式Hermitian matrix 厄米矩阵hertz (Hz) 赫兹, 频率单位heterotic superstring theory 杂化超弦理论Heusler alloy 霍伊斯勒合金hexadecapole 十六极hexahedron 六面体hexatic phase 六角相high coherence model 高相干模型high electron mobility transistor 高电子迁移率晶体管(简写:HEMT)high energy particle 高能粒子high-field domain 强场畴high-order dispersion 高阶色散high-order harmonic generation 高阶谐波产生high pass filter 高通滤波器high temperature reservoir 高温热源high temperature superconductor(HTS)高温超导体high vacuum 高真空high voltage electron microscopy 高压电子显微术Hohenberg-Kohn energy functional 霍恩伯格-科恩能量泛函hole-electron recombination 空穴-电子复合hole surface 空穴面(k空间中未占据态区的表面)hole-type high temperature superconductor 空穴型高温超导体holey fiber 多孔光纤hollow core optical fibers 空心光纤holon 空穴子homodyne零拍homodyne detection 零拍探测homolog[ue] 同系物homopolymer 单聚合物honeycomb photonic band gap fiber 蜂窝型光子带隙光纤hopping conductance 跳跃电导hopping energy,跳跃能hopping probability 跳跃概率hopping transport 跳跃输运host 基质host crystal 基质晶体,又称主晶hot carrier 热载流子h/e oscillation h/e振荡h/2e oscillation h/2e振荡Huang equations 黄[昆]方程组Huang-Rhys factor 黄昆-里斯因子Hubbard Hamiltonian 哈勃德哈密顿量Hubbard model 哈勃德模型Hubble time 哈勃时间hybrid bond 杂化键hybrid field effect 混合场效应hydrodynamics 流体[动]力学hydrodynamic mode 流体[动]力学模hydromagnetic disturbance 磁流体扰动hydromagnetic instability 磁流体不稳定性hydrophilic force 亲水力hydrophobic association 疏水缔合hydrophobic force 疏水力hyperbolic point 双曲点hypernucleus 超核hyper-Rayleigh scattering 超瑞利散射hyperspherical coordinate 超球座标hysteresis loop 1,滞后回线;2,磁滞回线hysteresis loss 1,滞后损失;2,磁滞损耗。
一些物理里面名词的中文对照(大部分是材料领域的)
Abelian group 阿贝尔群,又称Abel群ablation 烧蚀abnormal dispersion 反常色散Abrikosov vortex lattice 阿布里科索夫涡旋线格子Abrikocov vortex state 阿布里科索夫涡旋态absorber 吸收体absorption spectroscopy 吸收光谱abundance 丰度acceptor doping 受主掺杂acceptor impurity 受主杂质accumulation layer 累积层achromatic phase matching 消色差相位匹配achromatic wave plate 消色差波片achromatism 消色差[性]ac Josephson effect 交流约瑟夫森效应,又称交流Josephson效应acoustic compliance 声顺acoustic ohm 声欧[姆]acoustic stiffness 声劲[度]acoustic-optic tensor 声光系数张量acousto-optic effect 声光效应acousto-optic Q-switch 声光Q-开关acousto-optic signal processor 声光信号处理器acousto-optical tunable filter 声光可调滤波器actinide element 锕系元素activated tunneling 激活隧穿active device 有源器件active region 激活区addressing electrode 寻址电极adiabatic theorem,绝热定理adiabatic transformation 绝热变换adiabatic transport,绝热输运adiabaton 浸渐子,绝热子advection 平流aerodynamic sound 空气动力声aersol 气溶胶affinity potential 亲和势aggregate 聚集体aggregation 聚集Aharonov-Bohm (AB) effect AB效应,又称Aharonov-Bohm (AB) 效应Aharonov-Bohm (AB) flux AB磁通,又称Aharonov-Bohm (AB)磁通allowed state 容许态alpha decay ( -decay) 衰变alpha particle ( -particle) 粒子Altshular-Aronov-Spivak (AAS) effect AAS效应,又称Altshular-Aronov-Spivak效应amplification without inversion 无反转放大amplitude limiting 限幅amplitude transformer 变幅杆Andreev reflection 安德列也夫反射,又称Andreev反射Andreev mirror 安德列也夫镜[子],又称Andreev镜[子] Andreev scattering 安德列也夫散射,又称Andreev散射angular resolved photoemission spectroscopy 角分辨光电子谱[学] anisotropic confinement 各向异性限域anisotropic scatterer, 各向异性散射体anisotropy energy 各向异性能anomalon 反常子anomalous power laws 反常幂[次]率anomalous proximity effect,反常临近效应anomaly 反常antidot 同quantum antidot 反量子点antidodal point 腹点antigravity 反引力antihyperon 反超子anti-localization, 反局域化antimeson 反介子anti-exclusive principle 反不相容原理antiferromagnetic interaction 反铁磁相互作用antiferromagnetic semiconductor 反铁磁半导体anti-Stokes scattering 反斯托克斯散射anti-time ordered function, 反时序函数anyon 任意子aphelion 近日点, 远核点areal density 面密度armchair nanotube 扶手椅型纳米管arrayed waveguide gratings 阵列波导光栅artificial atom,人[工]构[造]原子artificial barrier 人工势垒artificial elment 人造元素atom laser 原子凝射器atom optics 原子光学atom trapping 原子陷俘,原子捕获atom waveguide 原子波导atomic clock原子钟atomic diffraction 原子衍射atomic fountain 原子喷泉atomic form factor 原子形状因子atomic time 原子时attenuation 衰减attosecond X-ray pulse 阿秒X射线脉冲Auger process 俄歇过程,又称Auger过程avalanche counter 雪崩计数器avalanche effect 雪崩效应avalanche photodiodes,apd 雪崩光电二极管azimuth 方位角back-action evasion 非干扰[测量]background radiation 本底辐射,背景辐射background temperature 本底温度, 背景温度balanced homodyne detection平衡零拍探测ballistic aggregate 弹道聚集体ballistic aggregation 弹道聚集ballistic electron injection 弹道电子注入ballistic transport弹道输运ballistics 弹道学band bending 带弯曲band index 带指标band of rotation-vibration 振转[谱]带band offset 带阶band repulsion 带排斥band theory 能带论bar 巴(压强单位),杆Barkhausen noise 巴克豪森噪声,又称Barkhausen噪声barn 巴恩(截面单位,10-24厘米2)barrier 势垒barrier curvature 势垒曲率barrier height 势垒高度barrier state 势垒态barrier tunneling 势垒隧穿base-centered orthorhombic lattice 底心正交格[子] base line 基线base material 基质base metal 碱金属basis vector 基矢beam 束,梁beam dump 束流捕集器beam focusing 束流聚焦behaviour 行为,性能Bell inequality贝尔不等式,又称Bell不等式bend resistance,弯曲电阻bent crystal 弯晶Berry phase 贝里相位,又称Berry相位βdecay β衰变βradioactivity β放射性βray β射线βspectum β谱βstability line β稳定线bevatron 吉伏质子加速器(高能质子同步稳相加速器)bicritical point 双临界点bicrystal junction 双晶结big bang model 大爆炸模型binary diffractive optical element 二元衍射光学元件bioastrophysics 天体生物物理学biochip 生物芯片bipolar junction transistor 双极[结]晶体管bit rate 比特率blackness 黑度blaze line 闪耀角bleaching effect 漂白效应blob 团迹,链滴Bloch electron 布洛赫电子,又称Bloch电子Bloch frequency,布洛赫频率,又称Bloch频率Bloch oscillation,布洛赫振荡,又称Bloch振荡Bloch theorem 布洛赫定理,又称Bloch定理blockade 阻塞Blonder-Tinkham-Klapwijk [BTK] model BTK模型body-centered cubic lattice 体心立方格[子]body-centered orthorhombic lattice 体心正交格[子]Bogoliubov [-de Gennes] equations 博戈留波夫[-得简斯]方程,又称Bogoliubov [-de Gennes]方程Boltzmann distribution 玻尔兹曼分布Boltzmann transport equation,玻尔兹曼输运方程bond-angle order 键角有序bond-orientational order 键取向有序bond polarizability 键极化性bond valence 键价boojum 布经(超流氦3中的取向织构)bosonization of field operators 场算符的波色化Bragg peak 布拉格峰,又称Bragg峰Bragg plane 布拉格平面,又称Bragg平面Bragg reflection 布拉格反射,又称Bragg 反射Bragg reflectors 布拉格反射器,又称Bragg 反射器Bragg waveguide 布拉格波导,又称Bragg 波导break junction 断裂结breathing mode呼吸模breeder 增殖反应堆breakup reaction 崩裂反应bright state 亮态brittleness 脆性buffer amplifier 缓冲放大器buffer gas 缓冲气体buffer layer, 缓冲层burn-up 燃耗Büttiker formula, 比特克公式,又称Büttiker公式buzzer 蜂鸣器C-15 structure C-15结构C[a]esium clock 铯钟calorie 卡【洛里】candle 烛光candescence 白热,又称白炽canonical commutation relation 正则对易关系canonical variable 正则变量cantact angle 接触角canted spin order倾斜自旋有序cantilever 悬臂(原子力显微镜中的)canthotaxie眼角[式]排列(另文说明)carbon cycle 碳循环(恒星内部的)carbon nanotube 碳纳米管carrier 载流子carrier concentration 载流子浓度carrier diffuse 载流子扩散carrier reservoir 载流子库Cartesian coordinates 笛卡儿坐标Cauchu-Schwarz inequality Cauchu-Schwarz不等式cavity dark state 腔暗态cavity dumping 腔倒空cavity quantum electrodynamics 腔量子电动力学cavity resonator [谐振]腔共振器14C dating 碳14测年celestial X-ray source 宇宙X 射线源center of inversion 反演中心center of moment 矩心central collision中心碰撞center-of-mass energy 质心系能量centrifuge 离心机centrifugal separation 离心分离ceramic 陶瓷chain folding 链折叠chain statistics 链统计学chalcogenide 硫属化物channel waveguide 沟道波导chaos synchronization 混沌同步chaotic communication 混沌通讯chaotic noise 混沌噪声characteristic impedance 特性阻抗characteristic curve 特征曲线charge-separated plasma 电荷分离等离子体(正负电荷在空间不同区域的等离子体) charge imbalance 电荷不平衡charge ordering 电荷有序charge parity effect,电荷宇称效应charge qubit 电荷量子比特(超导量子比特的一种)charge-phase qubit 电荷-相位量子比特(超导量子比特的一种)charge reservoir 电荷库charge stiffness 电荷劲度(衡量外场作用下电荷被自由加速的难易程度)charge-spin coupling电荷自旋耦合(用于自旋电子学)charge stripe phase 电荷条纹相charge-to-mass ratio 荷质比charge transfer insulator 电荷转移绝缘体charge transfer salt 电荷转移盐charge velocity 电荷速度(见于电荷-自旋分离现象)charging energy,充电能chemical shift 化学位移chiral liquid crystal 手征液晶chiral molecule手征分子,又称手性分子chiral symmetry broken 手征对称[性]破缺chirp啁啾chirped Gaussian pulse 啁啾高斯脉冲chirp filter 啁啾滤波器,又称线性调频滤波器,或色散延迟线chopper 斩波器circumlunar orbit 环月轨道circumsolar orbit 环日轨道circumterrestrial orbit 环地轨道cis-lunar space 月地空间clad 覆盖clamping 箝位classical fluid 经典液体clean limit [干]净极限cleaved coupling cavity 解理耦合腔cloning fidelity克隆保真度closed shell 满壳层,又称闭壳层,英文又称closure shellcluster state簇态CNO cycle 碳氮氧循环coalescence 聚合, 并合code 1,[代]码;2,密码;3,符号coding 编码codirectional coupling 同向耦合coefficient of correlation 关联系数coefficient of elasticity 弹性系数coexistence line 共存线(相图中的)coexisting phase 共存相coherence factor 相干因子coherence length,相干长度coherent atomic recoil 相干原子反冲coherent electron tunneling 相干电子隧道coherent peak 相干峰coherent photoassociation 相干光缔合coherent population oscillation相干布居振荡coherent population trapping相干布居囚禁coherent population transfer相干布居迁移coherent structure 拟序结构coherent terahertz waves相干太赫波coherent transient effects 相干暂态效应coherent trap 相干捕获cold finger 冷头cold fusion 冷聚变collective coordinate 集体坐标collective mode 集体模collective motion 集体运动collective pinning model 集体钉扎模型collinear phase matching 共线相位匹配colloid 胶体,胶质colloidal metal 胶体金属colored noise 色噪声colossal magnetoresistance [CMR] 庞磁电阻commensurate lattice 公度格子compact star 致密星compensated impurity 补偿杂质complementary metal oxide semiconductor [CMOS] 互补金属氧化物半导体complex 1,复合体;2,络合物complex analytical signal theory 复解析信号理论complex-conjugate pulses 复共轭脉冲compliance 1,柔度;2,顺度composite Fermion 复合费米子compression of ultrashort pulses 超短脉冲压缩compressor 压缩器,压机concurrence并发纠缠,又称量子并发condensate 凝聚体condensation energy 凝聚能condenser 冷凝器conductance fluctuation, 电导涨落conductance quantization 电导量子化conduction electron 传导电子confinement 1,约束(等离子);2,限域(凝聚态);3,禁闭(高能)congregating effect 聚集效应conjugate variable 共轭变量conservation of angular momentum 角动量守恒conservation of crystal momentum 晶体动量守恒conservative dislocation motion 保守位错运动(位错沿滑移面平行于Burgers矢量运动无净质量流)conservation of energy 能量守恒conservation law of flux 磁通守恒律conservation of momentum 动量守恒conservation of particle number粒子数守恒contact angle 接触角contact potential 接触势contact resistance 接触电阻continuation 延拓continuous group 连续群contour line 等值线contour map 等值线图contradirectional coupling反向耦合conventional unit cell 惯用单胞,简称单胞convergence factor 收敛因子conversion electron 内转换电子coolant moderator 载热减速剂cooperative diffusion 合作扩散Cooperon, 库珀子Cooper pair box 库珀对盒子coplanar waveguide 共面波导copolymer 共聚物core energy 芯能core nucleus 核芯[核]correlated spontaneous emission 关联自发发射correlation exponent 关联指数cosmic aerodynamics 宇宙气体动力学cosmic age 宇宙年龄cosmic constant 宇宙常量cosmic [microwave] background radiation [CMBR] 宇宙[微波]背景辐射cosmic microwave background 宇宙微波背景cosmic string 宇宙弦cosmochemistry 宇宙化学,天体化学cosmological nucleosynthesis 宇宙核合成cosmos 宇宙co-tunneling 共隧穿Couette flow 库埃特流Coulomb blockade 库仑阻塞Coulomb gap 库仑隙Coulomb interaction 库仑[相互]作用Coulomb island 库仑岛,又称单电子岛(single electron island)Coulomb potential 库仑势Coulomb repulsion 库仑斥力Coulomb staircase 库仑台阶counter telescope 计数器望远镜coupled-channels model 耦合道模型coupled mode theory 耦合模理论coupled waveguides,耦合波导coupled wells耦合阱coupling energy 耦合能coupling strength 耦合强度covalent bond 共价键creep wave蠕波,又称爬波critical assembly [核反应堆]临界装置critical density 临界密度critical dimension 临界维度cross-phase-modulation 交叉相位调制cross field 交叉场cross junction, 十字结crosstalk attenuation 串扰衰减crystal-field splitting 晶[体]场劈裂crystalline anisotropy晶态各向异性crystal symmetry class 晶体对称类cubic lattice 立方格子cuprate 铜氧化物curie 居里(非国际制放射性活度单位)current bias 电流偏置current operator 电流算符cutoff energy,截止能量cyclone 气旋cyclotron effective mass 回旋有效质量D/A converter 等于digital to analog converter 数模转换器damping radiation 阻尼辐射dark current 暗电流dark energy 暗能量dark state 暗态dark-state polariton 暗态光极化子date line 日界线dc Josephson effect 直流约瑟夫森效应,直流Josephson效应dc SQUID (superconducting quantum interference device) 直流超导量子干涉器Debye wave vector 德拜波矢decay heat 衰变热decay time,衰减时间deceleration 减速度decibel 分贝decoherence 退相干,又称消相干decoherence-free 无退相干,又称无消相干decontamination factor 去污因子decoupling epoch 退耦期decoy state 诱骗态deformation potential,形变势degeneracy collapse 简并塌缩degenerate pressure 简并压degenerate star 简并星de Gennes-Taupin length de Gennes-Taupin长度degree of order 有序度de Haas-Shubnikov effect de Haas-Shubnikov效应delay time,延迟时间demultiplexer 解复用器dendrite 1,枝晶;2,枝蔓;3,枝蔓体dense coding 密集编码dense wavelength division multiplexing 密集波分复用density correlation function,密度关联函数density distribution 密度分布density wave 密度波depairing 拆对dephasing length,退相位长度depinning 脱钉[扎]depleted Uranium 贫化铀deplation force 排空力(胶体物理用语)depletion layer 耗尽层descreening 去屏蔽deterministic equation 确定(论)的方程deuterium 氘, 即重氢deuterium oxide 重水dextrorotation 右旋diabatic approach 非绝热近似diagnostics 诊断学diagonal element 对角元diagonal matrix 对角矩阵diagonalization 对角化diamond structure 金刚石结构diblock copolymer 双嵌段共聚物dielectric response function 介电响应函数dielectric function,介电函数dielectric microcavity 介电[质]微腔dielectric reflector 介[电]质反射器differential conductance 微分电导differential input 差分输入differential rotation 较差自转(天文学用语)differential scanning calorimetry 差分扫描量热术diffraction-free beam 消衍射光束diffractive binary optics 衍射二元光学diffuseness [parameter] 弥散参数diffusion constant,扩散常数diffusion current 扩散电流diffusion region 扩散区diffusive transport,扩散输运digit 数字digital circuit 数字电路digital cross connect 数字交叉连接digit[al] to analog converter (DAC) 数模转换器digital micromirror device 数字微镜器件dilation 膨胀dilute phase 稀相dilation symmetry 伸缩对称dimensionless conductance 无量纲电导dimer 二聚体dimerization 二聚化dipole interaction 偶极相互作用dipole giant resonance 偶极巨共振Dirac braket 狄拉克括号Dirac picture 狄拉克绘景, 即相互作用绘景directed diffusion 定向扩散directional bond 定向键directional coupler 定向耦合器directional ordering 取向有序directional quantization 方向量子化direction of magnetization 磁化方向direct lattice 正格子,又称正点阵direct transition 直接跃迁dirty limit 脏极限dirty-metal regime,脏金属区discontinuity 1,不连续[性];2,突变[性] dislocation network 位错网络disordered alloy 无序合金disordered system 无序系统dispersion compensation 色散补偿dispersion-managed solitons 调控色散孤子dissipationless flow 无耗散流dissociation energy 离解能distillable entanglement 可萃取纠缠distinguishable states可区分态distributed Bragg reflector 分布布拉格反射器domain 1,畴;2,[定义]域;3,区域donor level 施主能级dopant 掺杂物doping 掺杂dosimetry 剂量学double-barrier tunneling,双势垒隧穿double exchange interaction 双交换相互作用double heterostructure DH 双异质结doublet state 双重态dressed atom 着衣原子,又称缀饰原子droplet model 小液滴模型Drude model,德鲁德模型duty ratio 占空比d-wave pairing d波配对dyad 并矢dynamical mass 动力学质量(08.02dynamic random access memory [DRAM] 动态随机存储器dynamic screening,动态屏蔽dynamically induced coherence 动态诱导相干dynamo theory 发动机理论dyne 达因early universe 早期宇宙eccentricity 偏心率eclipse 1,食;2,交食edge channel,边缘通道edge dislocation 刃[型]位错edge state,边缘态effective field theory 有效场理论effective Hamiltonian 有效哈密顿量effective mass approximation,有效质量近似Einstein-Podolsky-Rosen thought experiment EPR思想实验Einstein-Podolsky-Rosen effect EPR效应Einstein-Podolsky-Rosen pair EPR对Einstein-Podolsky-Rosen paradox EPR佯谬elastic compliance 弹性顺度elastic deformation 弹性形变electrical isolation 电绝缘electric breakdown 电击穿electric capacity 电容electric resistance 电阻electrical quadrupole moment 电四极矩electrochemical potential 电化学势electromagnetic absorption 电磁吸收electromagnetically induced absorption 电磁感生吸收electromagnetically induced transparency 电磁感生透明electromagnetic-environment effect,电磁环境效应electron backscattering pattern 电子背散射图样electron-beam lithography 电子束刻蚀electron configuration 电子组态electron density 电子密度electron-doped high temperature superconductor 电子掺杂的高温超导体electronegativity 电负性electron-electron interaction,电子-电子相互作用electron-hole pair 电子空穴对electron-hole recombination 电子-空穴复合electron hologram 电子全息术electron transition 电子跃迁electron pair 电子对electron pair tunneling 电子对隧穿electron-phonon coupling 电子声子耦合electron temperature,电子温度electron tunneling 电子隧穿electron waveguide,电子波导electron volt (eV) 电子伏electrorheological effect 电流变效应electrorheological fluid 电流变液Eliashberg equations Eliashberg方程Eliashberg theory of strong coupling Eliashberg强耦合理论elliptical orbit 椭圆轨道elliptic flow 椭圆流emittance 发射度empirical pseudopotential method 经验赝势方法empty lattice approximation 空晶格近似endohedral fullerene 内嵌原子富勒烯end-butt coupling 端面对接耦合energy relaxation length,能量弛豫长度energy transport velocity 能量传输速度ensemble average,系综平均entangled state 纠缠态entanglement 1,纠缠;2,纠缠度entanglement concentration 纠缠浓缩entanglement measure 纠缠度量entanglement monotone 单调纠缠量entanglement of formation 生成纠缠entanglement purification 纠缠纯化entanglement witness 纠缠见证entropy force 熵力envelope function,包络函数epithermal neutron 超热中子epoxy 环氧树脂erbium-doped fiber amplifier 掺饵光纤放大器error correction 纠错Esaki diode 江崎二极管evanescent state,衰逝态even-odd nucleus 偶奇核even parity 偶宇称evolution of inflation 暴涨演化Ewald construction Ewald作图法Ewald sphere Ewald球excess current 过剩电流excess neutron 过剩中子exchange-correlation hole 交换关联空穴exchange-correlation functional 交换关联泛函exchange hole 交换空穴exchange integral 交换积分excitation spectrum 激发谱excluded volume 排除体积exclusion of flux 磁通排斥exclusion principle 不相容原理exotic nucleus 奇特核expanding universe 膨胀宇宙extended [Brillouin] zone scheme 扩展[布里渊]区图式extraterrestrial life 地外生命extravehicular activity(EV A) [太空]舱外活动f-sum rule f求和规则face-centered orthorhombic lattice 面心正交格[子] face-on 正向facsimile 传真,英文简写为faxfacula 光斑Fahrenheit thermometer 华氏温度计faint object 暗天体fan diagram 扇形图F-center F中心Feno lineshape Feno线型Feno resonance Feno共振fan spin order 扇状自旋有序farad (F) 法拉(电容单位)Faraday depolarization 法拉第退偏振Faraday law of electrolysis 法拉第电解定律far-from-equilibrium system,远离平衡态系统far-side 背面(far-side of the moon, 月球背面)far-ultraviolet (FUV) 远紫外fast fission 快裂变fatigue crack 疲劳裂纹fatigue fracture 疲劳断裂fatigue strength 疲劳强度feed [source] 馈源feeder 馈线femto (f) 飞(=10-15)(01)femtosecond pulse shaping 飞秒脉冲成形Fermi age 费米[中子]年龄Fermi age-diffusion equation 费米年龄扩散方程Fermi arc 费米弧Fermi coupling constant 费米耦合常数Fermi energy 费米能量Fermi gas 费米气体Fermi golden rule 费米黄金定则Fermi liquid 费米液体Fermi liquid parameter 费米液体参数Fermi loop 费米环Fermi point 费米点Fermi transition费米跃迁Fermi vacuum 费米真空Fermi velocity 费米速度Fermi wavelength 费米波长Fermi wave vector,费米波矢Fermi’s golden rule费米黄金规则ferrielectric crystal 亚铁电晶体ferrimagnet 亚铁磁体ferroelectric 铁电体ferroelectric crystal 铁电晶体ferromagnet 铁磁体few-cycle pulse少周[期]脉冲few nucleon transfer 少[数]核子转移Feynman path,费曼路径Feynman path integral,费曼路径积分fiber cross connect 光纤交叉连接fiber grating 光纤光栅Fibonacci sequence 斐波那契序列fiducial confidence bar 置信棒fiducial point 基准点field intensity 场强field quantization 场量子化field quantum 场量子field strength 场强figure of merit,又称qualityfactor 品质因数filament 1,丝;2,丝极finite-amplitude wave 有限振幅波,又称大振幅波finite-difference method 有限差分方法finite element method 有限元法finite size effect 有限尺寸效应finite-size scaling 有限尺寸标度first approximation 一级近似first Brillouin zone 第一布里渊区first point of Aries 春分点,英文又称:vernal equinoxfirst point of Cancer 夏至点,英文又称:summer solsticefirst point of Capricornus 冬至点,英文又称:winter solsticefirst point of Libra 秋分点,英文又称:autumnal equinoxFiske steps 费斯克台阶,又称自感应台阶fissility 易裂变性fission 1,裂变;2,分裂fission isomer 裂变同质异能素fission nuclide 裂变核素fission reactor 裂变反应堆fission-spectrum neutron 裂变谱中子fission track dating 裂变径迹年代测定fitting curve 拟合曲线five-fold symmetry 5重对称fixed-range hopping 定程跳跃flash memory 闪速存储器,简称闪存flat spectrum 平谱flattening factor 扁率floating probe 浮置电极,又称浮置探针floating phase 浮置相Floquest theorem 弗洛开定理flow resistance 流阻fluctuating wall 涨落壁fluctuation 涨落(统计物理〕,又称起伏(声学〕fluence 注量fluorescence probe 荧光探剂flux,通量flux 1通量,又称流量;2,注量率;3,焊料;4 助熔剂flux bundle 磁通束flux flow amplifier (FFA) 磁通流放大器flux flow oscillator (FFO) 磁通流振荡器flux flow transistor(FFT)磁通流三极管,又称涡旋流三极管(vortex flow transistor) flux-line lattice 磁通线格子flux line 磁通线flux tube 磁流管flux quantum 磁通量子flux quantization 磁通量子化foam 泡沫focal point 焦点focal ratio 焦比focus 1,焦点;2,震源folding Brillouin zone 折叠布里渊区forbidden beta decay 禁戒b衰变forecast 预报forward bias 正向偏压four-Josephson junction logic (4JL) 四约瑟夫森结逻辑门Fourier analysis 傅里叶分析Fourier transform 傅里叶变换Fourier [transform] nuclear magnetic resonance 傅里叶[变换]核磁共振Fourier [transform] Raman spectroscopy 傅立叶[变换]拉曼谱学four probe method 四探针法four-terminal resistance,4端电阻fractional chain yield 相对链产额fractional cumulative yield 分积累产额fractional distillation 分馏fractional independent yield 分独立产额fractional statistics 分数统计法fragment 1,碎片;2,片段Franck-Condon principle弗兰克-康登原理free electron approximation 自由电子近似free electron gas 自由电子气体free energy 自由能free –free transition 自由-自由跃迁,又称自由态间跃迁freely falling body 自由落体free radical 自由基free spectral range 自由光谱范围freezing point 凝固点Frenkel exciton 弗仑克尔激子frequency conversion 频率转换Frequency division multiplexing 频分复用frequency jitter 频率抖动frequency multiplication 倍频friction 摩擦Friedel oscillation,Friedel振荡Friedel sum rule Friedel求和规则Frohlich interaction Frohlich相互作用front velocity波前速度frustrated magnet 窘组磁体fuel cell 燃料电池Fulde-Ferrell state Fulde-Ferrell态fullerene 富勒烯full moon 满月function 函数functional (1)泛函(2)功能(的)fundamental interaction 基本相互作用fundamental space-filling mode 基本空间填充模fuse (1)熔解(2)保险丝fused silica熔融石英fusion reactor 聚变[核反应]堆fuzzy information 模糊信息fussy mathematics 模糊数学gain-clamping 增益箝位gain efficiency 增益效率Galton plate 伽尔顿板-陈gamma(γ)伽马(地磁场强单位γ=nT)gamma rayγ射线gap 1,隙;2,能隙gap anisotropy 能隙各向异性gap parameter 能隙参数gaseous state 气态gate1,门;2,栅(极)gate voltage 门电压gauge symmetry 规范对称性gauss (G) 高斯(磁感应强度单位G=10-4T)Gaussian fluctuation 高斯涨落Gauss law 高斯定理Gauss surface 高斯面generalized Balmer formula 广义巴尔末公式generalized work 广义功general refractive index 广义折射率(量子信息)geomagnetic declination 地磁偏角geomagnetic inclination 地磁倾角geometrical structure factor 几何结构因子geometrization of gravitation 引力几何化German silver 德银g-factor g因子g-factor of electrons 电子的g因子g shift g移位ghost imaging 鬼成像giant magnetoresistance (GMR) 巨磁电阻Giaever tunneling 盖沃尔隧穿(单电(粒)子隧穿)Gibbs ensemble 吉布斯系综gilbert 吉尔(磁通势单位)Ginzburg-Landau coherence length 金兹堡-朗道(GL)相干长度Ginzburg-Landau equation 金兹堡-朗道(GL)方程Ginzburg-Landau-Abrikosov Go’rkov theory(GLAG)金兹堡-朗道-阿布里科索夫-高里科夫理论Glan-Thompson prism 格兰-汤普森棱镜Glan-Taylor prism 格兰-泰勒棱镜glass phase 玻璃相glassy ceramics 微晶玻璃glassy metal 玻璃态金属Glauber state Glauber态glide axis 滑移轴glide line 滑移线global phase 整体相位(量子信息)goniometer 测角器graded bandgap layer 缓变带隙层Gorter-Casimir two-fluid model 高特-卡西米尔二流体模型Graded index lens (GRIN) 梯度折射率透镜gradient of electric potential 电势梯度gram-molecule 克分子,摩尔(mole)grand free energy 巨自由能granular matter 颗粒物质granular superconductor 颗粒超导体granule 颗粒granularity 颗粒性granular metal 颗粒金属graphite 石墨graphite structure 石墨结构graph [线]图graph state 图态(量子信息)gravitational deflection of light 光线的引力偏折gravity acceleration 重力加速度Gray code 格雷码grazing angle 1,掠射角;2,擦边角greenhouse effect 温室效应group index of refraction 群折射率group theory 群论group velocity dispersion 群速度色散growth 生长growth model 生长模型guest host liquid crystal 宾主型液晶guided wave optics 导波光学gyroscopic effect 回转效应half metal 半金属half metallic magnet 半金属磁体half wave filter 半波滤波器half wave oscillator 半波振子half- wave zone method 半波带法half-wave voltage 半波电压Hall angle 霍尔角Hall coefficient 霍尔系数Hall field 霍尔电场[强度]Hall plateau 霍尔平台Hall resistance 霍尔电阻Hall voltage 霍尔电压halo nucleus 晕核halogen 卤素Hamiltonian matrix哈密顿[量]矩阵hard sphere 硬球hard sphere approximation 硬球近似harmonic generation 谐波产生Hartree-Fock electron 哈特里-福克电子H-center H心health physics 保健物理heat conductivity 1,导热性;2,热导率heat flow vector 热流矢量heat flux 热通量heat switch 热开关heavy electron 重电子heavy element 重元素heavy fermion superconductor 重费米子超导体heavy [fission] fragment 重【裂变】碎片heavy hole 重空穴heavy wall 重壁heavy water 重水hedgehog 猬缺陷height of potential barrier 势垒高度Heisenberg Hamiltonian 海森伯哈密顿量Heisenberg operators 海森伯算符Heisenberg uncertainty principle 海森伯不确定【性】原理Heitler-London theory 海特勒-伦敦理论Helfrich spontaneous curvature model 黑弗里希自发曲率模型helical spin order螺旋自旋有序helium liquefier 氦液化器heptahgedron 七面体Hermite polynomial 厄米多项式Hermitian matrix 厄米矩阵hertz (Hz) 赫兹, 频率单位heterotic superstring theory 杂化超弦理论Heusler alloy 霍伊斯勒合金hexadecapole 十六极hexahedron 六面体hexatic phase 六角相high coherence model 高相干模型high electron mobility transistor 高电子迁移率晶体管(简写:HEMT)high energy particle 高能粒子high-field domain 强场畴high-order dispersion 高阶色散high-order harmonic generation 高阶谐波产生high pass filter 高通滤波器high temperature reservoir 高温热源high temperature superconductor(HTS)高温超导体high vacuum 高真空high voltage electron microscopy 高压电子显微术Hohenberg-Kohn energy functional 霍恩伯格-科恩能量泛函hole-electron recombination 空穴-电子复合hole surface 空穴面(k空间中未占据态区的表面)hole-type high temperature superconductor 空穴型高温超导体holey fiber 多孔光纤hollow core optical fibers 空心光纤holon 空穴子homodyne零拍homodyne detection 零拍探测homolog[ue] 同系物homopolymer 单聚合物honeycomb photonic band gap fiber 蜂窝型光子带隙光纤hopping conductance 跳跃电导hopping energy,跳跃能hopping probability 跳跃概率hopping transport 跳跃输运host 基质host crystal 基质晶体,又称主晶hot carrier 热载流子h/e oscillation h/e振荡h/2e oscillation h/2e振荡Huang equations 黄[昆]方程组Huang-Rhys factor 黄昆-里斯因子Hubbard Hamiltonian 哈勃德哈密顿量Hubbard model 哈勃德模型Hubble time 哈勃时间hybrid bond 杂化键hybrid field effect 混合场效应hydrodynamics 流体[动]力学hydrodynamic mode 流体[动]力学模hydromagnetic disturbance 磁流体扰动hydromagnetic instability 磁流体不稳定性hydrophilic force 亲水力hydrophobic association 疏水缔合hydrophobic force 疏水力hyperbolic point 双曲点hypernucleus 超核hyper-Rayleigh scattering 超瑞利散射hyperspherical coordinate 超球座标hysteresis loop 1,滞后回线;2,磁滞回线hysteresis loss 1,滞后损失;2,磁滞损耗。
角转移矩阵重整化群方法及其应用
角转移矩阵重整化群方法及其应用何春山【摘要】Renormalization group ( RG) theory is a very important theory to research phase transition and critical phenomenon. With the development of the computing technology, numerical simulation methods based on the RG are used to compute the physical parameters. The corner transfer matrix renormalization group (CTMRG) method can get high precision results even if the physical system is in the critical status. CTMRG method is used to find the critical point of the two-dimensional Ising model. The numerical critical coupling constant is consistent with the exact result with good precision ( 10-5 ).%相变和临界现象在自然界普遍存在,研究的主要手段是重整化群理论.随着计算机技术的发展,基于重整化群思想的数值模拟也得到了广泛的应用,它能够精确地计算系统处于临界状态时的物理参数.该文采用角转移矩阵重化群方法计算了无外场二维伊辛模型的临界耦合常数,得到了准确度为10-5的数值计算结果.【期刊名称】《中山大学学报(自然科学版)》【年(卷),期】2011(050)006【总页数】5页(P30-34)【关键词】角转移矩阵重整化群;二维伊辛模型;临界点【作者】何春山【作者单位】中山大学物理科学与工程技术学院,广东广州 510275【正文语种】中文【中图分类】O414.21重整化群理论的出现,翻开了现代临界现象研究新的一页。
Quantum Computing for Computer Scientists
More informationQuantum Computing for Computer ScientistsThe multidisciplinaryfield of quantum computing strives to exploit someof the uncanny aspects of quantum mechanics to expand our computa-tional horizons.Quantum Computing for Computer Scientists takes read-ers on a tour of this fascinating area of cutting-edge research.Writtenin an accessible yet rigorous fashion,this book employs ideas and tech-niques familiar to every student of computer science.The reader is notexpected to have any advanced mathematics or physics background.Af-ter presenting the necessary prerequisites,the material is organized tolook at different aspects of quantum computing from the specific stand-point of computer science.There are chapters on computer architecture,algorithms,programming languages,theoretical computer science,cryp-tography,information theory,and hardware.The text has step-by-stepexamples,more than two hundred exercises with solutions,and program-ming drills that bring the ideas of quantum computing alive for today’scomputer science students and researchers.Noson S.Yanofsky,PhD,is an Associate Professor in the Departmentof Computer and Information Science at Brooklyn College,City Univer-sity of New York and at the PhD Program in Computer Science at TheGraduate Center of CUNY.Mirco A.Mannucci,PhD,is the founder and CEO of HoloMathics,LLC,a research and development company with a focus on innovative mathe-matical modeling.He also serves as Adjunct Professor of Computer Sci-ence at George Mason University and the University of Maryland.QUANTUM COMPUTING FORCOMPUTER SCIENTISTSNoson S.YanofskyBrooklyn College,City University of New YorkandMirco A.MannucciHoloMathics,LLCMore informationMore informationcambridge university pressCambridge,New York,Melbourne,Madrid,Cape Town,Singapore,S˜ao Paulo,DelhiCambridge University Press32Avenue of the Americas,New York,NY10013-2473,USAInformation on this title:/9780521879965C Noson S.Yanofsky and Mirco A.Mannucci2008This publication is in copyright.Subject to statutory exceptionand to the provisions of relevant collective licensing agreements,no reproduction of any part may take place withoutthe written permission of Cambridge University Press.First published2008Printed in the United States of AmericaA catalog record for this publication is available from the British Library.Library of Congress Cataloging in Publication dataYanofsky,Noson S.,1967–Quantum computing for computer scientists/Noson S.Yanofsky andMirco A.Mannucci.p.cm.Includes bibliographical references and index.ISBN978-0-521-87996-5(hardback)1.Quantum computers.I.Mannucci,Mirco A.,1960–II.Title.QA76.889.Y352008004.1–dc222008020507ISBN978-0-521-879965hardbackCambridge University Press has no responsibility forthe persistence or accuracy of URLs for external orthird-party Internet Web sites referred to in this publicationand does not guarantee that any content on suchWeb sites is,or will remain,accurate or appropriate.More informationDedicated toMoishe and Sharon Yanofskyandto the memory ofLuigi and Antonietta MannucciWisdom is one thing:to know the tho u ght by which all things are directed thro u gh allthings.˜Heraclitu s of Ephe s u s(535–475B C E)a s quoted in Dio g ene s Laertiu s’sLives and Opinions of Eminent PhilosophersBook IX,1. More informationMore informationContentsPreface xi1Complex Numbers71.1Basic Definitions81.2The Algebra of Complex Numbers101.3The Geometry of Complex Numbers152Complex Vector Spaces292.1C n as the Primary Example302.2Definitions,Properties,and Examples342.3Basis and Dimension452.4Inner Products and Hilbert Spaces532.5Eigenvalues and Eigenvectors602.6Hermitian and Unitary Matrices622.7Tensor Product of Vector Spaces663The Leap from Classical to Quantum743.1Classical Deterministic Systems743.2Probabilistic Systems793.3Quantum Systems883.4Assembling Systems974Basic Quantum Theory1034.1Quantum States1034.2Observables1154.3Measuring1264.4Dynamics1294.5Assembling Quantum Systems1325Architecture1385.1Bits and Qubits138viiMore informationviii Contents5.2Classical Gates1445.3Reversible Gates1515.4Quantum Gates1586Algorithms1706.1Deutsch’s Algorithm1716.2The Deutsch–Jozsa Algorithm1796.3Simon’s Periodicity Algorithm1876.4Grover’s Search Algorithm1956.5Shor’s Factoring Algorithm2047Programming Languages2207.1Programming in a Quantum World2207.2Quantum Assembly Programming2217.3Toward Higher-Level Quantum Programming2307.4Quantum Computation Before Quantum Computers2378Theoretical Computer Science2398.1Deterministic and Nondeterministic Computations2398.2Probabilistic Computations2468.3Quantum Computations2519Cryptography2629.1Classical Cryptography2629.2Quantum Key Exchange I:The BB84Protocol2689.3Quantum Key Exchange II:The B92Protocol2739.4Quantum Key Exchange III:The EPR Protocol2759.5Quantum Teleportation27710Information Theory28410.1Classical Information and Shannon Entropy28410.2Quantum Information and von Neumann Entropy28810.3Classical and Quantum Data Compression29510.4Error-Correcting Codes30211Hardware30511.1Quantum Hardware:Goals and Challenges30611.2Implementing a Quantum Computer I:Ion Traps31111.3Implementing a Quantum Computer II:Linear Optics31311.4Implementing a Quantum Computer III:NMRand Superconductors31511.5Future of Quantum Ware316Appendix A Historical Bibliography of Quantum Computing319 by Jill CirasellaA.1Reading Scientific Articles319A.2Models of Computation320More informationContents ixA.3Quantum Gates321A.4Quantum Algorithms and Implementations321A.5Quantum Cryptography323A.6Quantum Information323A.7More Milestones?324Appendix B Answers to Selected Exercises325Appendix C Quantum Computing Experiments with MATLAB351C.1Playing with Matlab351C.2Complex Numbers and Matrices351C.3Quantum Computations354Appendix D Keeping Abreast of Quantum News:QuantumComputing on the Web and in the Literature357by Jill CirasellaD.1Keeping Abreast of Popular News357D.2Keeping Abreast of Scientific Literature358D.3The Best Way to Stay Abreast?359Appendix E Selected Topics for Student Presentations360E.1Complex Numbers361E.2Complex Vector Spaces362E.3The Leap from Classical to Quantum363E.4Basic Quantum Theory364E.5Architecture365E.6Algorithms366E.7Programming Languages368E.8Theoretical Computer Science369E.9Cryptography370E.10Information Theory370E.11Hardware371Bibliography373Index381More informationPrefaceQuantum computing is a fascinating newfield at the intersection of computer sci-ence,mathematics,and physics,which strives to harness some of the uncanny as-pects of quantum mechanics to broaden our computational horizons.This bookpresents some of the most exciting and interesting topics in quantum computing.Along the way,there will be some amazing facts about the universe in which we liveand about the very notions of information and computation.The text you hold in your hands has a distinctflavor from most of the other cur-rently available books on quantum computing.First and foremost,we do not assumethat our reader has much of a mathematics or physics background.This book shouldbe readable by anyone who is in or beyond their second year in a computer scienceprogram.We have written this book specifically with computer scientists in mind,and tailored it accordingly:we assume a bare minimum of mathematical sophistica-tion,afirst course in discrete structures,and a healthy level of curiosity.Because thistext was written specifically for computer people,in addition to the many exercisesthroughout the text,we added many programming drills.These are a hands-on,funway of learning the material presented and getting a real feel for the subject.The calculus-phobic reader will be happy to learn that derivatives and integrals are virtually absent from our text.Quite simply,we avoid differentiation,integra-tion,and all higher mathematics by carefully selecting only those topics that arecritical to a basic introduction to quantum computing.Because we are focusing onthe fundamentals of quantum computing,we can restrict ourselves to thefinite-dimensional mathematics that is required.This turns out to be not much more thanmanipulating vectors and matrices with complex entries.Surprisingly enough,thelion’s share of quantum computing can be done without the intricacies of advancedmathematics.Nevertheless,we hasten to stress that this is a technical textbook.We are not writing a popular science book,nor do we substitute hand waving for rigor or math-ematical precision.Most other texts in thefield present a primer on quantum mechanics in all its glory.Many assume some knowledge of classical mechanics.We do not make theseassumptions.We only discuss what is needed for a basic understanding of quantumxiMore informationxii Prefacecomputing as afield of research in its own right,although we cite sources for learningmore about advanced topics.There are some who consider quantum computing to be solely within the do-main of physics.Others think of the subject as purely mathematical.We stress thecomputer science aspect of quantum computing.It is not our intention for this book to be the definitive treatment of quantum computing.There are a few topics that we do not even touch,and there are severalothers that we approach briefly,not exhaustively.As of this writing,the bible ofquantum computing is Nielsen and Chuang’s magnificent Quantum Computing andQuantum Information(2000).Their book contains almost everything known aboutquantum computing at the time of its publication.We would like to think of ourbook as a usefulfirst step that can prepare the reader for that text.FEATURESThis book is almost entirely self-contained.We do not demand that the reader comearmed with a large toolbox of skills.Even the subject of complex numbers,which istaught in high school,is given a fairly comprehensive review.The book contains many solved problems and easy-to-understand descriptions.We do not merely present the theory;rather,we explain it and go through severalexamples.The book also contains many exercises,which we strongly recommendthe serious reader should attempt to solve.There is no substitute for rolling up one’ssleeves and doing some work!We have also incorporated plenty of programming drills throughout our text.These are hands-on exercises that can be carried out on your laptop to gain a betterunderstanding of the concepts presented here(they are also a great way of hav-ing fun).We hasten to point out that we are entirely language-agnostic.The stu-dent should write the programs in the language that feels most comfortable.Weare also paradigm-agnostic.If declarative programming is your favorite method,gofor it.If object-oriented programming is your game,use that.The programmingdrills build on one another.Functions created in one programming drill will be usedand modified in later drills.Furthermore,in Appendix C,we show how to makelittle quantum computing emulators with MATLAB or how to use a ready-madeone.(Our choice of MATLAB was dictated by the fact that it makes very easy-to-build,quick-and-dirty prototypes,thanks to its vast amount of built-in mathematicaltools.)This text appears to be thefirst to handle quantum programming languages in a significant way.Until now,there have been only research papers and a few surveyson the topic.Chapter7describes the basics of this expandingfield:perhaps some ofour readers will be inspired to contribute to quantum programming!This book also contains several appendices that are important for further study:Appendix A takes readers on a tour of major papers in quantum computing.This bibliographical essay was written by Jill Cirasella,Computational SciencesSpecialist at the Brooklyn College Library.In addition to having a master’s de-gree in library and information science,Jill has a master’s degree in logic,forwhich she wrote a thesis on classical and quantum graph algorithms.This dualbackground uniquely qualifies her to suggest and describe further readings.More informationPreface xiii Appendix B contains the answers to some of the exercises in the text.Othersolutions will also be found on the book’s Web page.We strongly urge studentsto do the exercises on their own and then check their answers against ours.Appendix C uses MATLAB,the popular mathematical environment and an es-tablished industry standard,to show how to carry out most of the mathematicaloperations described in this book.MATLAB has scores of routines for manip-ulating complex matrices:we briefly review the most useful ones and show howthe reader can quickly perform a few quantum computing experiments with al-most no effort,using the freely available MATLAB quantum emulator Quack.Appendix D,also by Jill Cirasella,describes how to use online resources to keepup with developments in quantum computing.Quantum computing is a fast-movingfield,and this appendix offers guidelines and tips forfinding relevantarticles and announcements.Appendix E is a list of possible topics for student presentations.We give briefdescriptions of different topics that a student might present before a class of hispeers.We also provide some hints about where to start looking for materials topresent.ORGANIZATIONThe book begins with two chapters of mathematical preliminaries.Chapter1con-tains the basics of complex numbers,and Chapter2deals with complex vectorspaces.Although much of Chapter1is currently taught in high school,we feel thata review is in order.Much of Chapter2will be known by students who have had acourse in linear algebra.We deliberately did not relegate these chapters to an ap-pendix at the end of the book because the mathematics is necessary to understandwhat is really going on.A reader who knows the material can safely skip thefirsttwo chapters.She might want to skim over these chapters and then return to themas a reference,using the index and the table of contents tofind specific topics.Chapter3is a gentle introduction to some of the ideas that will be encountered throughout the rest of the ing simple models and simple matrix multipli-cation,we demonstrate some of the fundamental concepts of quantum mechanics,which are then formally developed in Chapter4.From there,Chapter5presentssome of the basic architecture of quantum computing.Here one willfind the notionsof a qubit(a quantum generalization of a bit)and the quantum analog of logic gates.Once Chapter5is understood,readers can safely proceed to their choice of Chapters6through11.Each chapter takes its title from a typical course offered in acomputer science department.The chapters look at that subfield of quantum com-puting from the perspective of the given course.These chapters are almost totallyindependent of one another.We urge the readers to study the particular chapterthat corresponds to their favorite course.Learn topics that you likefirst.From thereproceed to other chapters.Figure0.1summarizes the dependencies of the chapters.One of the hardest topics tackled in this text is that of considering two quan-tum systems and combining them,or“entangled”quantum systems.This is donemathematically in Section2.7.It is further motivated in Section3.4and formallypresented in Section4.5.The reader might want to look at these sections together.xivPrefaceFigure 0.1.Chapter dependencies.There are many ways this book can be used as a text for a course.We urge instructors to find their own way.May we humbly suggest the following three plans of action:(1)A class that provides some depth might involve the following:Go through Chapters 1,2,3,4,and 5.Armed with that background,study the entirety of Chapter 6(“Algorithms”)in depth.One can spend at least a third of a semester on that chapter.After wrestling a bit with quantum algorithms,the student will get a good feel for the entire enterprise.(2)If breadth is preferred,pick and choose one or two sections from each of the advanced chapters.Such a course might look like this:(1),2,3,4.1,4.4,5,6.1,7.1,9.1,10.1,10.2,and 11.This will permit the student to see the broad outline of quantum computing and then pursue his or her own path.(3)For a more advanced class (a class in which linear algebra and some mathe-matical sophistication is assumed),we recommend that students be told to read Chapters 1,2,and 3on their own.A nice course can then commence with Chapter 4and plow through most of the remainder of the book.If this is being used as a text in a classroom setting,we strongly recommend that the students make presentations.There are selected topics mentioned in Appendix E.There is no substitute for student participation!Although we have tried to include many topics in this text,inevitably some oth-ers had to be left out.Here are a few that we omitted because of space considera-tions:many of the more complicated proofs in Chapter 8,results about oracle computation,the details of the (quantum)Fourier transforms,and the latest hardware implementations.We give references for further study on these,as well as other subjects,throughout the text.More informationMore informationPreface xvANCILLARIESWe are going to maintain a Web page for the text at/∼noson/qctext.html/The Web page will containperiodic updates to the book,links to interesting books and articles on quantum computing,some answers to certain exercises not solved in Appendix B,anderrata.The reader is encouraged to send any and all corrections tonoson@Help us make this textbook better!ACKNOLWEDGMENTSBoth of us had the great privilege of writing our doctoral theses under the gentleguidance of the recently deceased Alex Heller.Professor Heller wrote the follow-ing1about his teacher Samuel“Sammy”Eilenberg and Sammy’s mathematics:As I perceived it,then,Sammy considered that the highest value in mathematicswas to be found,not in specious depth nor in the overcoming of overwhelmingdifficulty,but rather in providing the definitive clarity that would illuminate itsunderlying order.This never-ending struggle to bring out the underlying order of mathematical structures was always Professor Heller’s everlasting goal,and he did his best to passit on to his students.We have gained greatly from his clarity of vision and his viewof mathematics,but we also saw,embodied in a man,the classical and sober ideal ofcontemplative life at its very best.We both remain eternally grateful to him.While at the City University of New York,we also had the privilege of inter-acting with one of the world’s foremost logicians,Professor Rohit Parikh,a manwhose seminal contributions to thefield are only matched by his enduring com-mitment to promote younger researchers’work.Besides opening fascinating vis-tas to us,Professor Parikh encouraged us more than once to follow new directionsof thought.His continued professional and personal guidance are greatly appre-ciated.We both received our Ph.D.’s from the Department of Mathematics in The Graduate Center of the City University of New York.We thank them for providingus with a warm and friendly environment in which to study and learn real mathemat-ics.Thefirst author also thanks the entire Brooklyn College family and,in partic-ular,the Computer and Information Science Department for being supportive andvery helpful in this endeavor.1See page1349of Bass et al.(1998).More informationxvi PrefaceSeveral faculty members of Brooklyn College and The Graduate Center were kind enough to read and comment on parts of this book:Michael Anshel,DavidArnow,Jill Cirasella,Dayton Clark,Eva Cogan,Jim Cox,Scott Dexter,EdgarFeldman,Fred Gardiner,Murray Gross,Chaya Gurwitz,Keith Harrow,JunHu,Yedidyah Langsam,Peter Lesser,Philipp Rothmaler,Chris Steinsvold,AlexSverdlov,Aaron Tenenbaum,Micha Tomkiewicz,Al Vasquez,Gerald Weiss,andPaula Whitlock.Their comments have made this a better text.Thank you all!We were fortunate to have had many students of Brooklyn College and The Graduate Center read and comment on earlier drafts:Shira Abraham,RachelAdler,Ali Assarpour,Aleksander Barkan,Sayeef Bazli,Cheuk Man Chan,WeiChen,Evgenia Dandurova,Phillip Dreizen,C.S.Fahie,Miriam Gutherc,RaveHarpaz,David Herzog,Alex Hoffnung,Matthew P.Johnson,Joel Kammet,SerdarKara,Karen Kletter,Janusz Kusyk,Tiziana Ligorio,Matt Meyer,James Ng,SeverinNgnosse,Eric Pacuit,Jason Schanker,Roman Shenderovsky,Aleksandr Shnayder-man,Rose B.Sigler,Shai Silver,Justin Stallard,Justin Tojeira,John Ma Sang Tsang,Sadia Zahoor,Mark Zelcer,and Xiaowen Zhang.We are indebted to them.Many other people looked over parts or all of the text:Scott Aaronson,Ste-fano Bettelli,Adam Brandenburger,Juan B.Climent,Anita Colvard,Leon Ehren-preis,Michael Greenebaum,Miriam Klein,Eli Kravits,Raphael Magarik,JohnMaiorana,Domenico Napoletani,Vaughan Pratt,Suri Raber,Peter Selinger,EvanSiegel,Thomas Tradler,and Jennifer Whitehead.Their criticism and helpful ideasare deeply appreciated.Thanks to Peter Rohde for creating and making available to everyone his MAT-LAB q-emulator Quack and also for letting us use it in our appendix.We had a gooddeal of fun playing with it,and we hope our readers will too.Besides writing two wonderful appendices,our friendly neighborhood librar-ian,Jill Cirasella,was always just an e-mail away with helpful advice and support.Thanks,Jill!A very special thanks goes to our editor at Cambridge University Press,HeatherBergman,for believing in our project right from the start,for guiding us through thisbook,and for providing endless support in all matters.This book would not existwithout her.Thanks,Heather!We had the good fortune to have a truly stellar editor check much of the text many times.Karen Kletter is a great friend and did a magnificent job.We also ap-preciate that she refrained from killing us every time we handed her altered draftsthat she had previously edited.But,of course,all errors are our own!This book could not have been written without the help of my daughter,Hadas-sah.She added meaning,purpose,and joy.N.S.Y.My dear wife,Rose,and our two wondrous and tireless cats,Ursula and Buster, contributed in no small measure to melting my stress away during the long andpainful hours of writing and editing:to them my gratitude and love.(Ursula is ascientist cat and will read this book.Buster will just shred it with his powerful claws.)M.A.M.。
光子阻塞效应
学号:201105774题目名称: 强耦合下的光子阻塞效应研究题目类型: 研究论文学生姓名: 董昌瑞院(系): 物理与光电工程学院专业班级: 物理11102班指导教师: 邹金花辅导教师: 邹金花时间: 2015年1月至2015年6月目录毕业论文任务书` (I)指导教师评审意见 (VIII)评阅教师评语 (IX)答辩记录及成绩评定 (X)中文摘要 (XI)外文摘要 (XII)1引言 (1)2 基础理论知识 (1)2.1 光力振子系统 (1)2.2二能级原子与光场相互作用的全量子理论 (2)2.3光场关联函数 (5)2.4 光子计数统计 (8)3 模型方程与结果分析 (10)3.1模型方程 (10)3.2 方程分析 (12)4总结与展望 (14)参考文献 (14)致谢 (16)毕业论文任务书`院(系)物理与光电工程学院专业物理班级物理11102 学生姓名董昌瑞指导教师/职称邹金花/副教授1.毕业论文(设计)题目:强耦合下的光子阻塞效应研究2.毕业论文(设计)起止时间: 2015 年1月1 日~2015 年 6月10 日3.毕业论文(设计)所需资料及原始数据(指导教师选定部分)[1] A Ridolfo, M Leib, S Savasta, M J Hartmann. Photon Blockade in the Ultrastrong CouplingRegime [J]. Phys. Rev. Lett., 2012, 109: 193602-1~193602-5[2] Jieqiao Liao, C K Law. Cooling of a mirror in cavity optomechanics with a chirped pulse [J]. Phys. Rev. A, 2011, 84: 053838-1~053838-6[3] P Komar, S D Bennett, K Stannigel, S J M Habraken, P Rabl, P Zoller, M D Lukin. Single-photon nonlinearities in two-mode optomechanics [J]. Phys. Rev. A, 2013, 87: 013839-1~013839-10[4] T Ramos, V Sudhir, K Stannigel, P Zoller, T Kippenbrg. Nonlinear quantum optomechanics viaindividual intrinsic two-level defects [J]. Phys. Rev. Lett., 2013, 110: 193602-1~193602-5 [5] G Anetsberger, O Arcizet, Q P Unterreithmeier, R Riviere, A Schliesser, E M Weig, J P Kotthaus,T Kippenberg. Near-field cavity optomechanics with nanomechanical oscillators [J]. Nat. Phys., 2009, 5: 909~914[6] S J M Habraken, W Lechner, P Zoller. Resonances in dissipative optomechanics withnanoparticles: Sorting, speed rectification, and transverse coolings [J]. Phys. Rev. A, 2013, 87: 053808-1~053808-8[7] K Qu, G S Agarwal. Fano resonances and their control in optomechanics [J]. Phys. Rev. A, 2013,87: 063813-1~063813-7[8] A Nunnenkamp, K Borkje, S M Girvin. Cooling in the single-photon strong-coupling regime ofcavity optomechanics [J]. Phys. Rev. A, 2012, 85: 051803-1~051803-4[9] Y C Liu, Y F Xiao, X S Luan, C W Wong. Dynamic Dissipative Cooling of a MechanicalResonator in Strong Coupling Optomechanics [J]. Phys. Rev. A, 2013, 110: 153606-1~153606-5[10] A Nunnekamp, K Borkie, S M Girvin. Single-photon optomechanics [J]. Phys. Rev. Lett., 2011,107: 063602-1~063602-5[11] J M Dobrindt, I Wilson-Rae, T J Kippenbeg. Parametric Normal-Mode Splitting in CavityOptomechanics [J]. Phys. Rev. Lett., 2008, 101: 263602-1~263602-4[12]樊菲菲. 光力振子与原子间量子纠缠和振子压缩的研究[D]. 华中师范大学,2014[13] 张文慧. 光机械腔系统的动力学行为[D]. 华中师范大学,2014[14]詹孝贵. 腔光机械系统中电磁诱导透明及其相关现象的理论研究[D]. 华中科技大学,20134.毕业论文(设计)应完成的主要内容在阅读大量文献的基础上,完成开题报告,并通过开题答辩。
英语介绍科学家
-
THANKS !
theories of special relativity and general relativity, and he is also
known for his equation E=mc². Einstein received the Nobel Prize in Physics in 1921 for his work on
quantum theory
第2节
Galileo Galilei
Galileo Galilei
Galileo Galilei was an Italian astronomer, physicist, and mathematician who is credited with making important contributions to the Scientific Revolution. He is known for his work in suppor
of tools and their ability to exhibit empathy. Dr. Goodall's work has led to a greater understanding of chimpanzees and their conservation status. She founded the Jane Goodall Institute in 1977 to promote conservation and animal welfare
第5节
Richard Feynman
Richard Feynman
Richard Feynman was an American theoretical physicist who made numerous contributions to quantum electrodynamics and particle physics. His Nobel Prize-winning work on weak nuclear interactions and quantum chromodynamics helped revolutionize our understanding of these fields. Fe ynman's gift for explaining complex scientific concepts in a clear and concise manner made him a popular lecturer and author. His books "The Feynman Lectures on Physics" and "QED: The Strange Theory of Light and Matter" are considered classics in the field of physics education 以上这些科学家为人类科学事业做出了杰出的贡献,他们的发现和理论不仅改变了我们对 世界的认识,也推动了人类社会的发展
【国家自然科学基金】_双光子相互作用_基金支持热词逐年推荐_【万方软件创新助手】_20140731
2009年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
科研热词 黏附 高能重离子碰撞 血管内皮细胞 细胞膜流动性 直接光子 椭圆流 星型八极矩分子 平均自由程 小檗碱 双光子吸收 不对称因子 zindo-sos方法 pg细胞 2,1,3-苯并噻二唑 1,3,4-嘑二唑
推荐指数 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
科研热词 量子干涉 量子光学 腔场谱 二项式光场 转让 超导量子干涉仪 腔量子电动力学 结合方式 纠缠度 纠缠原子 突然死亡 真空场诱导相干 相互作用 电磁诱导透明 概率克隆机 梯形四能级原子系统 双阳离子咔唑衍生物 双光子细胞核荧光探针 双光子 参数范围 动力学 共振 偶极相互作用 t-c模型 s模型 kerr效应
2012年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
科研热词 推荐指数 相对论重离子碰撞 2 双轻子产生 2 双光子相互作用 2 钙成像 1 血液动力学 1 脑成像 1 纠缠态 1 系统药理学 1 相互作用 1 激光诱导 1 激光激发 1 定态 1 双光子跃迁 1 双光子显微镜 1 动力学演化 1 制备 1 共振相互作用 1 光操纵 1 two-photon interaction relativistic 1 heavy ion col two-mode entanglement, atomic 1 coherence, resonant rydberg原子 1 rabi频率 1 dilepton production 1
量子力学第二版周世勋1PDF
1 Quantum mechanism Quantum mechanism 宝鸡文理学院物理与信息技术系1.《量子力学教程》曾谨言著 科学出版社2003年第一版 普通高等教育十五国家级规划教材 2.《量子力学导论》曾谨言著 北京大学出版社 1998年第二版 3.《量子力学导论》熊钰庆主编 广东高等教育出版社 2000年第一版 《量子力学教程》周世勋编 高等教育出版社参考书及学习网站4.《量子力学基础》关洪 高等教育出版社 1999年第一版 5.《量子力学》汪德新 湖北科学技术出版社出版 2000年第一版 6.《量子力学教程习题剖析》孙婷雅编 科学出版社出版 2004年第一版 7. 宝鸡文理学院陕西省精品课程《量子力学》http://218.195.112.45/jpkc/liangzi/kc_web/ Content Content 第一章绪论Ch1. The basic concepts of quantum mechanism 第二章波函数和薛定谔方程Ch2. The wave function and Schr??dinger’s equation 第三章量子力学中的力学量Ch3. The Dynamical variable in Quantum Mechanism 第四章态和力学量的表象Ch4. The representation of the states and operators 第五章微扰理论Ch5. Perturbation theory第六章散射Ch6. The general theory of scattering 第七章自旋与全同粒子Ch7. Spin and identity of particles The birth of quantum mechanismThe birth of quantum mechanism Chap.1.绪论The birth of quantum mechanism Chap.1.绪论The birth of quantum mechanism 6 1.1 经典物理学的困难The difficult in classical physics 1.2 光的波粒二象性The duality of light between wave and particle 1.3 微粒的波粒二象性The duality of small particles between wave and particle Chap.1.绪论The birth of quantum mechanism Chap.1.绪论The birth of quantum mechanism 7 近几十年来 在不同领域相继发现了宏观量子效应 如超导现象 超流现象 乃至一些天体现象表明宏观世界的物质运动也遵循量子力学规律 人们所熟知的经典力学规律只是量子力学规律在特定条件下的一个近似。
巧刷高考题型——阅读理解(3)主旨大意和猜词题精讲——学生
巧刷高考题——阅读理解3主旨大意和猜词题目录阅读理解1 (2)阅读理解2 ( 2022 全国乙卷C篇) (3)阅读理解3——2022北京高考D篇 (5)主旨大意和词语理解——确立最佳标题 (5)阅读理解4 2022全国甲卷C篇 (7)主旨大意和词语理解——概括中心大意 (7)阅读理解5 (2022全国甲卷D篇) (8)主旨大意——概括段落大意 (8)阅读理解7 2022新高考Ⅰ卷D篇 (9)主旨大意——概括段落大意 (9)阅读理解——词义猜词 (10)巧刷高考题——阅读理解解题技巧(3)主旨大意和猜词题阅读理解1——主旨大意和猜词题Stan Lee, co-founder of the Marvel Universe(漫威宇宙) and co-creator of many of its most popular superheroes, died at the age of 95.Lee was born Stanley Martin Lieber in New York in 1992.As a son of working-class Jewish immigrants from Romania, times were hard and he lived with his family in a shabby single-bedroom apartment. After graduating from high school at 16, Lieber landed a job as an assistant at Timely Comics. By the early 1940s, he was a temporary editor for the company. It was at this time that he began using his pen name--Stan Lee. In 1947, two years after returning from serving for the U.S. Army, Lee married his wife, Joan. The two began their 70-year marriage and had two children.In the late 1950s, DC Comics breathed new life into its classic superhero and experienced a significant success with its updated version of the Flash, and later with super-team the Justice League(正义联盟) of America.To compete against DC Comics, Lee was given the task of creating their own group of superheroes. In 1961, Timely Comics changed its name into Marvel Comics after Atlas Comics, and that November saw the debut(首次亮相) of the Fantastic Four. Lee’s later famous and lasting creations of comic-book superheroes included Spider-Man, the Hulk, Thor, Iron Man and the X-men.Over the course of his career, Lee was an icon of Marvel Comics. As a writer and editor and, at various points, both the publisher and vice president of Marvel Comics, Lee not only introduced interesting characters to the industry, but changed the way that comic books came together. He also created a cooperative workflow between writers and artists, which became known as the “Marvel Method”. Lee received a National Medal of Arts in 2008 for his innovations that revolutionized (=completely changed) American comic books.1.What do we know about Lee from paragraph 2?A. He served for the U.S. Army for two years.B. He suffered from an unfortunate marriage.C. He had a tough and struggling childhood.D. He adopted his pen name at the age of 16.2.What was the company called when Spider-Man was created?A. Timely Comics.B. Marvel Comics.C. Atlas Comics.D. DC Comics.3.What does the underlined word “icon” mean in the last paragraph?A. Theme.B. Character.C. Assistant.D. Symbol.4.What can be the best title for the text?A. Stan Lee, the Godfather of Marvel Comics.B. The Development of Marvel Comics.C. Stan Lee, a Superhero in Comic Books.D. The Popular Superheroes of Marvel Comics.答案:1.C; 2.B; 3.D; 4.A解析:1.C推理判断题。
高水平期刊、一类权威期刊和二类权威期刊认定表-
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
INFORMATION & MANAGEMENT Information Fusion INFORMATION SCIENCES International Journal of Innovative Computing Information and Control INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS JOURNAL OF CRYPTOLOGY JOURNAL OF DATABASE MANAGEMENT JOURNAL OF MACHINE LEARNING RESEARCH JOURNAL OF MANAGEMENT INFORMATION SYSTEMS MATHEMATICAL PROGRAMMING NEURAL COMPUTATION NEURAL NETWORKS QUANTUM INFORMATION & COMPUTATION SYSTEMS & CONTROL LETTERS CHAOS NONLINEAR DYNAMICS IEEE ROBOTICS & AUTOMATION MAGAZINE ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS ADVANCED ENGINEERING INFORMATICS Advances in Mathematics of Communications APPLIED SOFT COMPUTING ARTIFICIAL INTELLIGENCE IN MEDICINE ARTIFICIAL LIFE AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS AUTONOMOUS ROBOTS Cognitive Systems Research DISCRETE DYNAMICS IN NATURE AND SOCIETY COMPUTATIONAL COMPLEXITY COMPUTER COMPUTER AIDED GEOMETRIC DESIGN COMPUTER GRAPHICS FORUM COMPUTER VISION AND IMAGE UNDERSTANDING COMPUTER-AIDED DESIGN CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE CONNECTION SCIENCE DATA & KNOWLEDGE ENGINEERING DECISION SUPPORT SYSTEMS DISPLAYS
氟氧化物纳米相玻璃陶瓷Tb(0.7)Yb(5)∶FOV的合作下转换发光
氟氧化物纳米相玻璃陶瓷Tb(0.7)Yb(5)∶FOV的合作下转换发光陈晓波;杨国建;丁卉芬;于春雷;胡丽丽;王水锋;李崧【摘要】报道了氟氧化物纳米相玻璃陶瓷Tb(0.7)Yb(5)∶FOV的红外量子剪裁研究,测量了从可见到红外的荧光发光光谱、激发谱、和荧光寿命,分析了{1([5 D4→7 F6](Tb3+),2([2 F7/2→2 F5/2] (Yb3+)}的红外量子剪裁现象,发现了487.0nm光激发5 D4能级和378.0nm光激发(5 D3,5 G6)能级的理论量子剪裁效率ηx%Yb 依次分别为121.35%和136.27%.首次发现了一种新颖的合作(共协)下转换发光现象{2([(5 D3,5 G6)→5 D4](Tb3+),1([2 F7/2→2 F/2](Yb+)},即首次发现施主Tb3+离子释放两个小能量光子[(5 D3,5 G6)→5 D4]的能量,导致出现一个受主Yb3+的[2 F5/2→2 F7/2]的中等能量的光子.%The present article reports the infrared quantum cutting study of the nanophase oxyfluoride vitroceramics Tb(0.7)Yb (5. 0) : FOV. The visible to infrared fluorescence emission spectra, excitation spectra and fluorescence lifetime were measured carefully. The infrared quantum cutting phenomenon {l([5D4 →7F6](Tb3+), 2([zF7/2→2F5/2](Yb3+)} was analyzed based on the above experiments. It was found that the' theoretical quantum cutting efficiency is about 121. 35% when 5D4 level is excited by 487. Onm light, and about 136. 27% when (5D3, 5G6) levels are excited by 378. 0 run light respectively. Meanwhile, it is first time for the present paper to find a cooperative downconversion phenomenon {2([(5 D3, 5 G6) →5 D4 ] (Tb3+ ), 1 ( [2F7/2 → 2F5/2](Yb3+ )}. That is, the authors found for the first time that the donor Tb3+ ionreleases two pieces of energy [(5D3, 5G6) →5D4] of small energy photon to produce a middle energy photon [2F5/2 →2F7/2] of acceptor Yb3+ ion.【期刊名称】《光谱学与光谱分析》【年(卷),期】2011(031)011【总页数】5页(P2914-2918)【关键词】红外量子剪裁;太阳能电池;氟氧化物纳米相玻璃陶瓷Tb(0.7)Yb(5)∶FOV【作者】陈晓波;杨国建;丁卉芬;于春雷;胡丽丽;王水锋;李崧【作者单位】北京师范大学,应用光学北京重点实验室,北京100875;北京师范大学,应用光学北京重点实验室,北京100875;北京大学化学与分子工程学院,北京100871;中国科学院上海光学精密机械研究所,上海201800;中国科学院上海光学精密机械研究所,上海201800;北京师范大学,应用光学北京重点实验室,北京100875;北京师范大学,应用光学北京重点实验室,北京100875【正文语种】中文【中图分类】O482.3太阳能新能源是当前的国际热点研究领域,它是一种高效、国家亟需的、用途广、没污染、廉价、健康、取之不尽用之不竭的新能源[1-7]。
Quantum Cellular Neural Networks
(1)
The cell dynamics are determined by a CNN state equation giving the rate of change of state variables as the nonlinear function of the state of the cell itself, the synaptic input from neighboring cells, and the external inputs.
Published in Superlattices and Microstructure, Vol. 20, No. 4, 473(1996)
Quantum Cellular Neural Networks
Geza Toth, Craig S. Lent, P. Douglas Tougaw, Yuriy Brazhnik, Weiwen Weng, Wolfgang Porod Ruey-Wen Liu, Yih-Fang Huang Department of Electrical Engineering University of Notre Dame Notre Dame, Indiana Abstract We have previously proposed a way of using coupled quantum dots to construct digital computing elements - quantum-dot cellular automata (QCA). Here we consider a different approach to using coupled quantum-dot cells in an architecture which, rather that reproducing Boolean logic, uses a physical near-neighbor connectivity to construct an analog Cellular Neural Network (CNN).
Two-dimensional Quantum Field Theory, examples and applications
Abstract The main principles of two-dimensional quantum field theories, in particular two-dimensional QCD and gravity are reviewed. We study non-perturbative aspects of these theories which make them particularly valuable for testing ideas of four-dimensional quantum field theory. The dynamics of confinement and theta vacuum are explained by using the non-perturbative methods developed in two dimensions. We describe in detail how the effective action of string theory in non-critical dimensions can be represented by Liouville gravity. By comparing the helicity amplitudes in four-dimensional QCD to those of integrable self-dual Yang-Mills theory, we extract a four dimensional version of two dimensional integrability.
2 48 49 52 54 56
5 Four-dimensional analogies and consequences 6 Conclusions and Final Remarks
与激光有关的英文文献
与激光有关的英文文献Revised at 16:25 am on June 10, 2019L a s e r t e c h n o l o g y R. E. Slusher Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974 Laser technology during the 20th century is reviewed emphasizing the laser’s evolution from science to technology and subsequent contributions of laser technology to science. As the century draws to a close, lasers are making strong contributions to communications, materials processing, data storage, image recording, medicine, and defense. Examples from these areas demonstrate the stunning impact of laser light on our society. Laser advances are helping to generate new science as illustrated by several examples in physics and biology. Free-electron lasers used for materials processing and laser accelerators are described as developing laser technologies for the next century.S0034-68619902802-01. INTRODUCTIONLight has always played a central role in the study of physics, chemistry, and biology. Light is key to both the evolution of the universe and to the evolution of life on earth. This century a new form of light, laser light, has been discovered on our small planet and is already facilitating a global information transformation as well as providing important contributions to medicine, industrial material processing, data storage, printing, and defense. This review will trace the developments in science and technology that led to the invention of the laser and give a few examples of how lasers are contributing to both technological applications and progress in basic science. There are many other excellent sources that cover various aspects of the lasers and laser technology including articles from the 25th anniversary of the laser Ausubell and Langford, 1987 and textbooks ., Siegman, 1986; Agrawal and Dutta, 1993; and Ready, 1997.Light amplification by stimulated emission of radiation LASER is achieved by exciting the electronic, vibrational, rotational, or cooperative modes of a material into a nonequilibrium state so that photons propagating through the system are amplified coherently by stimulated emission. Excitation of this optical gain medium can be accomplished by using optical radiation, electrical current and discharges, or chemical reactions. The amplifying medium is placed in an optical resonator structure, for example between two high reflectivity mirrors in a Fabry-Perot interferometer configuration. When the gain in photon number for an optical mode of the cavity resonator exceeds the cavity loss, as well as loss from nonradiative and absorption processes, the coherent state amplitude of the mode increases to a levelwhere the mean photon number in the mode is larger than one. At pump levels above this threshold condition,the system is lasing and stimulated emission dominates spontaneous emission. A laser beam is typically coupled out of the resonator by a partially transmitting mirror. The wonderfully useful properties of laser radiation include spatial coherence, narrow spectral emission, high power, and well-defined spatial modes so that the beam can be focused to a diffraction-limited spot size in order to achieve very high intensity. The high efficiency of laser light generation is important in many applications that require low power input and a minimum of heat generation.When a coherent state laser beam is detected using photon-counting techniques, the photon count distribution in time is Poissonian. For example, an audio output from a high efficiency photomultiplier detecting a laser field sounds like rain in a steady downpour. This laser noise can be modified in special cases, ., by constant current pumping of a diode laser toobtain a squeezed number state where the detected photons sound more like a machine gun than rain. An optical amplifier is achieved if the gain medium is not in a resonant cavity. Optical amplifiers can achievevery high gain and low noise. In fact they presently have noise figures within a few dB of the 3 dB quantum noise limit for a phase-insensitive linear amplifier, ., they add little more than a factor of two to the noise power of an input signal. Optical parametric amplifiers OPAs, where signal gain is achieved by nonlinear coupling of a pump field with signal modes, can be configured to add less than 3 dB of noise to an input signal. In an OPA the noise added to the input signal can be dominated by pump noise and the noise contributed by a laser pump beam can be negligibly small compared to the large amplitude of the pump field.2. HISTORYEinstein 1917 provided the first essential idea for the laser, stimulated emission. Why wasn’t the laser invented earlier in the century Much of the early work on stimulated emission concentrates on systems near equilibrium, and the laser is a highly nonequilibrium system. In retrospect the laser could easily have been conceived and demonstrated using a gas discharge during the period of intense spectroscopic studies from 1925 to 1940. However, it took the microwave technology developed during World War II to create the atmosphere for thelaser concept. Charles Townes and his group at Columbia conceived the maser microwave amplification by stimulated emission of radiation idea, based on their background in microwave technology and their interest in high-resolution microwave spectroscopy. Similar maser ideas evolved in Moscow Basov and Prokhorov, 1954 and at the University of Maryland Weber, 1953. The first experimentally demonstrated maser at Columbia University Gordon et al., 1954, 1955 was based on an ammonia molecular beam. Bloembergen’s ideas for gain in three level systems resulted in the first practical maser amplifiers in the ruby system. These devices have noise figures very close to the quantum limit and were used by Penzias and Wilson in the discovery of the cosmic background radiation.Townes was confident that the maser concept could be extended to the optical region Townes, 1995. The laser idea was born Schawlow and Townes, 1958 when he discussed the idea with Arthur Schawlow, who understood that the resonator modes of a Fabry-Perot interferometer could reduce the number of modes interacting with the gain material in order to achieve high gain for an individual mode. The first laser was demonstrated in a flash lamp pumped ruby crystal by Ted Maiman at Hughes Research Laboratories Maiman, 1960. Shortly after the demonstration of pulsed crystal lasers, a continuouswave CW He:Ne gas discharge laser was demonstrated at Bell Laboratories Javan et al., 1961, first at mm and later at the red nm wavelength lasing transition. An excellent article on the birth of the laser is published in a special issue of Physics Today Bromberg, 1988.The maser and laser initiated the field of quantum electronics that spans the disciplines of physics and electrical engineering. For physicists who thought primarilyin terms of photons, some laser concepts were difficult to understand without the coherent wave concepts familiar in the electrical engineering community. For example, the laser linewidth can be much narrower than the limit that one might think to be imposed by the laser transition spontaneous lifetime. Charles Townes won a bottle of scotch over this point from a colleague at Columbia. The laser and maser also beautifully demonstrate the interchange of ideas and impetus between industry, government, and university research.Initially, during the period from 1961 to 1975 there were few applications for the laser. It was a solution looking for a problem. Since the mid-1970s there has been an explosive growth of laser technology for industrial applications. As a result of this technology growth, a new generation of lasers including semiconductor diode lasers, dye lasers, ultrafast mode-locked Ti:sapphire lasers, optical parameter oscillators, and parametric amplifiers is presently facilitating new research breakthroughs in physics, chemistry, and biology.3. LASERS AT THE TURN OF THE CENTURYSchawlow’s ‘‘law’’ states that everything lases if pumped hard enough. Indeed thousands of materials have been demonstrated as lasers and optical amplifiers resulting in a large range of laser sizes, wavelengths, pulse lengths, and powers. Laser wavelengths range from the far infrared to the x-ray region. Laser light pulses as short as a few femtoseconds are available for research on materials dynamics. Peak powers in the petawatt range are now being achieved by amplification of femtosecond pulses. When these power levels are focused into a diffraction-limited spot, the intensities approach 1023 W/cm2. Electrons in these intense fields are accelerated into the relativistic range during a single optical cycle, and interesting quantum electrodynamic effects can be studied. The physics of ultrashort laser pulses is reviewed is this centennial series Bloembergen, 1999.A recent example of a large, powerful laser is the chemical laser based on an iodine transition at a wavelength of mm that is envisioned as a defensive weapon Forden, 1997. It could be mounted in a Boeing 747 aircraft and would produce average powers of 3 megawatts, equivalent to 30 acetylene torches. New advances in high quality dielectric mirrors and deformable mirrors allow this intense beam to be focused reliably on a small missile carrying biological or chemical agents and destroy it from distances of up to 100 km. This ‘‘star wars’’ attack can be accomplished during the launch phase of the target missile so that portions of the destroyed missile would fall back on its launcher, quite a good deterrent for these evil weapons. Captain Kirk and the starship Enterprise may be using this one on the Klingons At the opposite end of the laser size range are microlasers so small that only a few optical modes are contained in a resonator with a volume in the femtoliter range. These resonators can take the form of rings or disks only a few microns in diameter that use total internal reflection instead of conventional dielectric stack mirrors in order to obtain high reflectivity. Fabry-Perot cavities only a fraction of a micron in length are used for VCSELs vertical cavity surface emitting lasers that generate high quality optical beams that can be efficiently coupled to optical fibers Choquette and Hou, 1997. VCSELs may find widespread application in optical data links.4. MATERIALS PROCESSING AND LITHOGRAPHYHigh power CO2 and Nd:YAG lasers are used for a wide variety of engraving, cutting, welding, soldering, and 3D prototyping applications. rf-excited, sealed off CO2 lasers are commercially available that have output powers in the 10 to 600 W range and have lifetimes of over 10 000 hours. Laser cutting applications include sailclothes, parachutes, textiles, airbags, and lace. The cutting is very quick, accurate, there is no edge discoloration, and a clean fused edge is obtained that eliminatesfraying of the material. Complex designs are engraved in wood, glass, acrylic, rubber stamps, printing plates, plexiglass, signs, gaskets, and paper. Threedimensional models are quickly made from plastic or wood using a CAD computer-aided design computer file.Fiber lasers Rossi, 1997 are a recent addition to the materials processing field. The first fiber lasers were demonstrated at Bell Laboratories using crystal fibers in an effort to develop lasers for undersea lightwave communications. Doped fused silica fiber lasers were soon developed. During the late 1980s researchers at Polaroid Corp. and at the University of Southampton invented cladding-pumped fiber lasers. The glass surrounding the guiding core in these lasers serves both to guide the light in the single mode core and as a multimode conduit for pump light whose propagation is confined to the inner cladding by a low-refractive index outer polymer cladding. Typical operation schemes at present use a multimode 20 W diode laser bar that couples efficiently into the large diameter inner cladding region and is absorbed by the doped core region over its entire length typically 50 m. The dopants in the core of the fiber that provide the gain can be erbium for the mm wavelength region or ytterbium for the mm region. High quality cavity mirrors are deposited directly on the ends of the fiber. These fiber lasers are extremely efficient, with overall efficiencies as high as 60%. The beam quality and delivery efficiency is excellent since the output is formed as the single mode output of the fiber. These lasers now have output powers in the 10 to 40 W range and lifetimes of nearly 5000 hours. Current applications of these lasers include annealing micromechanical components, cutting of 25 to 50 mm thick stainless steel parts, selective soldering and welding of intricate mechanical parts, marking plastic and metal components, and printing applications.Excimer lasers are beginning to play a key role in photolithography used to fabricate VLSI very large scale integrated circuit chips. As the IC integrated circuit design rules decrease from mm 1995 to mm 2002, the wavelength of the light source used for photolithographic patterning must correspondingly decrease from 400 nm to below 200 nm. During the early 1990s mercury arc radiation produced enough power at sufficiently short wavelengths of 436 nm and 365 nm for high production rates of IC devices patterned to mm and mm design rules respectively. As the century closes excimer laser sources with average output powers in the 200 W range are replacing the mercury arcs. The excimer laser linewidths are broad enough to prevent speckle pattern formation, yet narrow enough, less than 2 nm wavelength width, to avoid major problems with dispersion in optical imaging. The krypton fluoride KF excimer laser radiation at 248 nm wavelength supports mm design rules and the ArF laser transition at 193nm will probably be used beginning with mm design rules. At even smaller design rules, down to mm by 2008, the F2 excimer laser wavelength at 157 nm is a possible candidate, although there are no photoresists developed for this wavelength at present. Higher harmonics of solid-state lasers are also possibilities as high power UV sources. At even shorter wavelengths it is very difficult for optical elements and photoresists to meet the requirementsin the lithographic systems. Electron beams, x-rays and synchrotron radiation are still being considered for the 70 nm design rules anticipated for 2010 and beyond.5. LASERS IN PHYSICSLaser technology has stimulated a renaissance in spectroscopies throughout the electromagnetic spectrum. The narrow laser linewidth, large powers, short pulses, and broad range of wavelengths has allowed new dynamic and spectral studies of gases, plasmas, glasses, crystals, and liquids. For example, Raman scattering studies of phonons, magnons, plasmons, rotons, and excitations in 2D electron gases have flourished since the invention of the laser. Nonlinear laser spectroscopies have resulted in great increases in precision measurement as described in an article in this volume Ha¨nsch and Walther 1999.Frequency-stabilized dye lasers and diode lasers precisely tuned to atomic transitions have resulted in ultracold atoms and Bose-Einstein condensates, also described in this volume Wieman et al., 1999. Atomicstate control and measurements of atomic parity nonconservation have reached a precision that allows tests of the standard model in particle physics as well as crucial searches for new physics beyond the standard model. In recent parity nonconservation experiments Wood et al., 1997 Ce atoms are prepared in specific electronic states as they pass through two red diode laser beams. These prepared atoms then enter an optical cavity resonator where the atoms are excited to a higher energy level by high-intensity green light injected into the cavity from a frequency-stabilized dye laser. Applied electric and magnetic fields in this excitation region can be reversed to create a mirrored environment for the atoms. After the atom exits the excitation region, the atom excitation rate is measured by a third red diode laser. Very small changes in this excitation rate with a mirroring of the applied electric and magnetic fields indicate parity nonconservation. The accuracy of the parity nonconservation measurement has evolved over several decades to a level of %. This measurement accuracy corresponds to the first definitive isolation of nuclear-spin-dependent atomic parity violation.。
量子力学教程《一维量子力学》
Lecture2Quantum mechanics in one dimensionQuantum mechanics in1d:Outline1Unbound statesFree particlePotential stepPotential barrierRectangular potential well2Bound statesRectangular potential well(continued)δ-function potential3Beyond local potentialsKronig-Penney model of a crystalAnderson localizationi ∂tΨ(x,t)=− 2∂2x2mΨ(x,t)For V=0Schr¨o dinger equation describes travelling waves.Ψ(x,t)=A e i(kx−ωt),E(k)= ω(k)= 2k2 2mwhere k=2πλwithλthe wavelength;momentum p= k=hλ.Spectrum is continuous,semi-infinite and,apart from k=0,has two-fold degeneracy(right and left moving particles).i ∂tΨ(x,t)=− 2∂2x2mΨ(x,t)Ψ(x,t)=A e i(kx−ωt)For infinite system,it makes no sense tofix wave function amplitude,A,by normalization of total probability.Instead,fix particleflux:j=−2m(iΨ∗∂xΨ+c.c.)j=|A|2 km=|A|2pmNote that definition of j follows from continuity relation,∂t|Ψ|2=−∇·jThe Fourier transform of a normalized Gaussian wave packet,ψ(x)= 12πα 1/4e ik0x e−x24α.(moving at velocity v= k0/m)is also a Gaussian,ψ(k)= 2απ 1/4e−α(k−k0)2,Although we can localize a wave packet to a region of space,this has been at the expense of having some width in k.For the Gaussian wave packet,∆x = [x − x ]2 1/2≡ x 2 − x 2 1/2=√α,∆k =1√4αi.e.∆x ∆k =12,constant.In fact,as we will see in the next lecture,the Gaussian wavepacket has minimum uncertainty ,∆p ∆x = 2Stationary form of Schr¨o dinger equation,Ψ(x,t)=e−iEt/ ψ(x):− 2∂2x2m+V(x) ψ(x)=Eψ(x)As a linear second order differential equation,we must specify boundary conditions on bothψand its derivative,∂xψ. As|ψ(x)|2represents a probablility density,it must be everywherefinite⇒ψ(x)is alsofinite. Sinceψ(x)isfinite,and E and V(x)are presumedfinite,so∂2xψ(x)must befinite.⇒bothψ(x)and∂xψ(x)are continuous functions of xFor E >V 0,both k <and k >=2m (E −V 0)are real,and j i = k <m,j r =|r |2 k <m,j t =|t |2 k >mDefining reflectivity,R ,and transmittivity,T ,R =reflected flux incident flux,T =transmitted flux incident flux R =|r |2=k <−k >k <+k >2,T =|t |2k >k <=4k <k >(k <+k >)2,R +T =1For E <V 0, k >=2m (E −V 0)becomes pure imaginary,wavefunction,ψ>(x ) te −|k >|x ,decays evanescently,andj i = k <m,j r =|r |2 k <m,j t =0Beam is completely reflected from barrier,R =|r |2= k <−k >k <+k >2=1,T =0,R +T =1Transmission across a potential barrier–prototype for generic quantum scattering problem dealt with later in the course. Problem provides platform to explore a phenomenon peculiar to quantum mechanics–quantum tunneling.Wavefunction parameterization:ψ1(x)=e ik1x+r e−ik1x x≤0ψ2(x)=A e ik2x+B e−ik2x0≤x≤aψ3(x)=t e ik1x a≤xwhere k1=√2mE and k2= 2m(E−V0).Continuity conditions onψand∂xψat x=0and x=a,1+r=A+BAe ik2a+Be−ik2a=te ik1a, k1(1−r)=k2(A−B)k2(Ae ik2a−Be−ik2a)=k1te ik1aSolving for transmission amplitude,t=2k1k2e−ik1a2k1k2cos(k2a)−i(k21+k22)sin(k2a)which translates to a transmissivity ofT=|t|2=11+14 k1k2−k2k1 2sin2(k2a) and reflectivity,R=1−T(particle conservation).but penetrates,barrier region–quantumUnbound particles:tunnelingAlthough tunneling is a robust,if uniquely quantum,phenomenon,it is often difficult to discriminate from thermal activation.Experimental realization provided by Scanning TunnelingMicroscope(STM)Quantum mechanical scattering in three-dimensions In three dimensions,plane wave can be decomposed intosuperposition of incoming and outgoing spherical waves: If V(r)short-ranged,scattering wavefunction takes asymptotic form,e i k·r=i2k∞ =0i (2 +1) e−i(kr− π/2)r−S (k)e i(kr− π/2)r P (cosθ)Quantum mechanics in1d:bound states1Rectangular potential well(continued)2δ-function potentialFor a potential well,we seek bound state solutions with energies lying in the range−V0<E<0.Symmetry of potential⇒states separate into those symmetric and those antisymmetric under parity transformation,x→−x. Outside well,(bound state)solutions have form√−2mE>0ψ1(x)=Ceκx for x>a, κ=In central well region,general solution of the formψ2(x)=A cos(kx)or B sin(kx), k= 2m(E+V0)>0Uncertainty relation,∆p∆x>h,shows that confinement by potential well is balance between narrowing spatial extent ofψwhile keeping momenta low enough not to allow escape.In fact,one may show(exercise!)that,in one dimension,arbitrarily weak binding always leads to development of at least one bound state.In higher dimension,potential has to reach critical strength to bind a particle.Forδ-function potential V(x)=−aV0δ(x),− 2∂2x2m−aV0δ(x) ψ(x)=Eψ(x)(Once again)symmetry of potential shows that stationary solutions of Schr¨o dinger equation are eigenstates of parity,x→−x.States with odd parity haveψ(0)=0,i.e.insensitive to potential.Quantum mechanics in1d:beyond local potentials1Kronig-Penney model of a crystal2Anderson localizationKronig-Penney model provides caricature of(one-dimensional) crystal lattice potential,∞ n=−∞δ(x−na)V(x)=aV0Since potential is repulsive,all states have energy E>0. Symmetry:translation by lattice spacing a,V(x+a)=V(x). Probability density must exhibit same translational symmetry, |ψ(x+a)|2=|ψ(x)|2,i.e.ψ(x+a)=e iφψ(x).In region(n−1)a<x<na,general solution of Schr¨o dinger equation is plane wave like,ψn(x)=A n sin[k(x−na)]+B n cos[k(x−na)]√2mEwith k=Imposing boundary conditions onψn(x)and∂xψn(x)and requiring ψ(x+a)=e iφψ(x),we can derive a constraint on allowed k values (and therefore E)similar to quantized energies for bound states.Rearranging equations(1)and(2),and using the relations A n+1=e iφA n and B n+1=e iφB n,we obtaincosφ=cos(ka)+maV02k sin(ka)Since cosφcan only take on values between−1and1,there are2k2Example:Naturally occuring photonic crystals “Band gap”phenomena apply to any wave-like motion in a periodicsystem including light traversing dielectric media,e.g.photonic crystal structures in beetles and butterflies!Band-gaps lead to perfect reflection of certain frequencies.Anderson localizationWe have seen that even a weak potential can lead to the formationof a bound state.However,for such a confining potential,we expect high energystates to remain unbound.Curiously,and counter-intuitively,in1d a weak extended disorderpotential always leads to the exponential localization of allquantum states,no matter how high the energy!First theoretical insight into the mechanism of localization wasachieved by Neville Mott!。
湖北省量子科技产业三年行动计划
湖北省量子科技产业三年行动计划1.我们将加大对量子科技研发的资金支持。
We will increase funding for research and development in quantum technology.2.加强与高校和科研院所的合作,共同推动量子科技产业发展。
We will strengthen cooperation with universities and research institutions to promote the development of the quantum technology industry.3.开展量子通信和量子计算领域的人才培养计划。
We will launch talent training programs in the field of quantum communication and quantum computing.4.支持和鼓励企业加大对量子科技领域的投入。
We will support and encourage enterprises to increase investment in quantum technology.5.加强知识产权保护,确保量子科技成果得到充分的回报。
We will strengthen intellectual property protection to ensure that quantum technology achievements receive full returns.6.促进量子技术与传统产业的深度融合,推动传统产业转型升级。
We will promote the deep integration of quantumtechnology and traditional industries to promote the transformation and upgrading of traditional industries.7.组织举办国际性的量子科技产业合作交流会议。
协同量子粒子群
协同量子粒子群协同量子粒子群(Cooperative Quantum Particle Swarm Optimization,Co-QPSO)是一种基于粒子群算法(PSO)和量子计算的协同优化算法。
该算法利用群体智能和量子力学的特性,对多维复杂问题进行优化。
粒子群算法是一种基于群体智能的优化算法,其核心思想是通过模拟群体中粒子的行为,来寻找问题的最优解。
每个粒子都代表一个解,根据当前的位置和速度,不断更新解的位置并逐步接近最优解。
然而,传统的PSO算法存在着陷入局部最优的风险。
量子计算是一种新的计算范式,其基于量子力学的特性来进行计算,可以在某些情况下将传统计算机无法处理的问题进行快速解决。
量子计算的特点之一是量子态的叠加和纠缠,这使得量子计算具有高度的并行性和计算效率。
协同量子粒子群算法将粒子群算法和量子计算相结合,采用了两个量子门(量子 NOT 门和量子 CNOT 门)来模拟量子行为。
采用量子进化算法(Quantum-inspired Evolutionary Algorithm,QEA)来进行优化,同时引入思维领袖群体(Cognitive Leadership),并将所有位置精度转换成二进制代码表示。
协同量子粒子群算法的主要步骤如下:1. 群体初始化。
随机生成一组个体,并将其位置转换成二进制表示。
2. 适应值评估。
利用适应度函数来评估每个个体的适应度。
3. 量子门应用。
采用两个量子门来模拟量子行为,并将其应用于二进制编码的位置和速度。
4. 群体协同。
利用思维领袖群体来进行更新,并保留历史最优位置。
5. 约束处理。
对每个个体的位置进行处理,确保其满足约束条件。
6. 终止条件检验。
如果达到了终止条件,则输出历史最优解,否则转到步骤2。
协同量子粒子群算法具有很好的全局搜索能力和收敛速度,尤其在求解高维、多目标、非线性等问题方面具有一定优势。
但由于其涉及到量子计算的复杂性,需要更多的计算资源和专业知识支持,因此在实际应用上的局限性和难度也相对较高。
免疫集体噪声的量子密钥协商协议
免疫集体噪声的量子密钥协商协议何业锋【期刊名称】《计算机工程与应用》【年(卷),期】2018(054)010【摘要】In order to solve the problem that the quantum key agreement protocols immune to collective noise have low qubit efficiency,two new quantum key agreement protocols are proposed based on logical Bell states.They immune to the collective-dephasing noise and the collective-rotation noise,respectively.Two participants in the protocols can fairly establish a shared secret key by using unitary operations and the delayed measurement technique.The security analysis shows that the two protocols can resist against participant attacks and the corresponding outsider attacks.Finally,the com-parison with the quantum key agreement protocols immune to collective noise show that the new protocols have higher qubit efficiency.%针对目前免疫集体噪声的量子密钥协商协议的量子比特效率偏低问题,基于逻辑Bell态提出了两个新的量子密钥协商协议,它们分别免疫集体退相位噪声和集体旋转噪声.两个协议利用幺正变换和延迟测量技术,确保了协议双方能公平地建立一个共享密钥.安全性分析证明了这两个协议能抵抗参与者攻击和相关外部攻击.与已有免疫集体噪声的量子密钥协商协议比较,发现新协议有较高的量子比特效率.【总页数】6页(P26-30,38)【作者】何业锋【作者单位】西安邮电大学通信与信息工程学院,西安710121【正文语种】中文【中图分类】TN918【相关文献】1.集体噪声信道下容错的量子密钥分配协议 [J], 高昊;陈晓光;钱松荣2.集体噪声信道下容错的量子密钥分配协议 [J], 高昊;陈晓光;钱松荣;3.可认证的三方量子密钥协商协议 [J], 吴怡婷4.一种无证书的跨域量子密钥协商协议 [J], 马骁;施运梅;宋莹;孟坤5.基于极化码的连续变量量子密钥分发多维逆向协商协议 [J], 周文婷;王鑫;卞宇翔;乔涵;冯宝因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(
(
)
[
)
]
(
)
(2.1)
2Γ
(2ω k − ω 21 )2 + 4Γ 2
. The parameter χ describes the cooperative atom-atom interaction
through cavity EMF vacuum; γ is a spontaneous emission rate of single atom in the cavity. This parameter is expressed through the detuning δ = ω 21 − 2ω k and damping factor of micro- cavity
dρ = i ω 21 + 2n 2 χ [ρ , R z ] + i (1 + 2n) χ ρ , R + R − − (1 + n) 2 γ ρR + R − − 2 R − ρR + + R + R − ρ dt − n 2 γ ρR − R + − 2 R + ρR − + R − R + ρ . ω 21 − 2ω k A(k ) Here we have the following parameters: χ = 4 , h (2ω k − ω 21 )2 + 4Γ 2 γ = A(k ) h
b
Department of Engineering and Computer Sciences, Free International University of Moldova, Vlaicu Parcalab str.52, Chisinau MD-2012, MoThe problem of the two-photon coherent generation of entanglement photon pairs in quantum optics has been intensively studied for the last years. It is important to note that the two-quantum cooperative effects play a main role in other fields of physics as well. The collective processes in condense matter have many analogical proprieties with cooperative radiation effects in quantum optics1, 2. Recently the two-quantum generation of entanglement photons and its applications in information technology and communication has been intensively studied3,4. The new cooperative emission phenomenon for dipole-forbidden transitions of inverted system of radiators can be observed in the processes of the two-photon spontaneous emission 5, 6. It is interesting from the physical point of view to study the cooperative phenomena in Statistical physics in more large aspects. In proposed paper it is studied the cooperative phasetransition in the system of radiators that interact with the thermostat through the two-quantum processes. Thus, this is possible when the one-photon interaction with the thermostat is forbidden. The temperature dependence of the super-radiant order parameter in this situation is investigated. As the exchange integral between the radiators strongly depends on the temperature at first stage we observe an enhancement of the order parameter as temperature function. Achieving the maximal value, the order parameter decreases till zero value in the similar way as in usual temperature dependence of the order parameter in one-photon superradiance. The master equation and the stationary solution, which describes the two-photon exchange of radiators with thermal bath, are obtained. The possible diagram of the two-photon exchange between the radiators and thermostat is briefly analyzed. One other example is superconductivity, where the Cooper-pairs are created due to the simultaneous two-phonon exchange between electrons. It occurs when the one-phonon exchange integral between the band electrons is smaller than the two-phonon exchange. This is possible in many-band superconducting materials, in which the two-phonon exchange integral arises through the virtual bands of material. Some estimates of the two-phonon superconductivity have already been proposed. In many cases this effect was studied decomposing the interaction Hamiltonian on constant of the electron-phonon interaction7. A more realistic model that takes into account the specificities of the many-band aspects of superconductor materials will be proposed in this paper. In two-phonon processes, a more complicated temperature dependence of the order parameter is expected. In a rigorous study of this anomalous temperature dependence of the order parameter of superconductors is presented. In the proposed model one expects that the two-phonon exchange effects may amplify the superconductivity in a way similar to that the thermal field amplifies the two-photon superradiance in a micro-cavity. In this paper it is studied the two-photon super-radiance in microcavity and two-phonon superconductivity in many-band materials.
COOPERATIVE TWO-QUANTUM INTERACTION OF EXCITED SYSTEM WITH BATH Nicolae A. Enakia and Vitalie Eremeeva,b
a
Institute of Applied Physics, Academy of Sciences of Moldova, Academiei str.5, Chisinau MD-2028, Moldova E-mail: enache@as.md
Γ.
In Eq.(2.1) is introduced the following quasi-spin operators R ± = ∑ R ± j , R z = ∑ R zj obeying
N
N
the commutation relations: R , R = 2 R z , R z , R = ± R . It is observed that for large values of δ = ω 21 − 2ω k the value of γ decreases, while the absolute value of χ increases. In this case we observe that the part of Hamiltonian, which describes the two-photon atom-atom interaction, increases. This effective Hamiltonian has the following form (2.2) H eff = hω 0 R z + hχ (1 + 2n) R + R − , 2 where ω 0 = ω 21 + 2n χ and hχ (1 + 2n) is the energetic exchange integral between the radiators. In comparison with one-photon super-radiance phase transition in this case the exchange integral depends on temperature through the mean number of photons n = 1 /[exp(hω k / κ B T ) − 1] , where κ B is Boltzmann constant. 2 R Using the conservation of Bloch-vector at low temperature R 2 = R z − z + R + R − , (where R is a constant), we can express Hamiltonian (2.2) through the operator Rz H eff = h{ω 0 + χ (1 + 2n)}R z + hχ (1 + 2n)(R + R z )(R − R z ) (2.3) From the condition of the minimum value of the Hamiltonian it is obtained the mean value of Rz