高二数学分类计数原理与分步计数原理教案
高中数学《分类计数原理与分步计数原理》说课稿教案模板
高中数学《分类计数原理与分步计数原理》说课稿教案模板一、本节内容的地位与重要性“分类计数原理与分步计数原理”是《高中数学》一节独特内容。
这一节课与排列、组合的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备,起到奠基的重要作用。
二、关于教学目标的确定根据两个基本原理的地位和作用,我认为本节课的教学目标是:(1)使学生正确理解两个基本原理的概念;(2)使学生能够正确运用两个基本原理分析、解决一些简单问题;(3)提高分析、解决问题的能力(4)使学生树立“由个别到一般,由一般到个别”的认识事物的辩证唯物主义哲学思想观点。
三、关于教学重点、难点的选择和处理中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点内容。
正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件.而原理中提到的分步和分类,学生不是一下子就能理解深刻的,面对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。
必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生接受概念并对如何运用这两个基本原理有正确清楚的认识。
教学中两个基本问题的引用及引伸,就是为突破难点做准备。
四、关于教学方法和教学手段的选用根据本节课的内容及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。
启发引导式作为一种启发式教学方法,体现了认知心理学的基本理论。
符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则,教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。
9.1两个计数原理教案
1. 书架上层有不同的数学书 15 本, 中层有不同的语文书 18 本, 下层有 不同的物理书 7 本,现从中任取一本书,问有多少种不同的取法?
2. 某班同学分成甲、乙、丙、丁 4 个小组,甲组 9 人,乙组 11 人,丙 组 10 人,丁组 9 人,现要求该班派一人去参加某项活动,问有多少 种不同的选法?
例 3.甲班有三好学生 8 人,乙班有三好学生 6 人,丙班有三好学生 9 人: (1) 由这 3 个班中任选 1 名三好学生,出席三好学生表彰会吗,有 多少种不同的选法? (2) 这 3 个班中各选 1 名三好学生,出席三好学生表彰会吗,有多 少种不同的选法?
1. 一个口袋内有 5 个小球,另一个口袋内有 4 个小球,所有这些小球 的颜色互不相同, (1)从两个口袋内任取一个小球,有多少种不同的取法? (2)从两个口袋内各取一个小球,有多少种不同的取法?
教师课时授课计划
授课班级 授课日期 星 节 期 次
课
题
9.解分类计数原理和分步计数原理; 2、会运用分类和分步计数原理解决问题。
课
型
新授课 重点
教学时数 理解分类计数原理和分步计数原理 运用分类和分步计数原理解决问题
2
教材分析
难点 教具
教学方法
新课
板书设计
知识点回顾
例题分析
1. 要从甲、乙、丙 3 名工人中选出 2 名分别上日班和晚班,有多少种不 同的选法?
2. 为了确定 A、B、C、D、E 五个小麦品种在甲、乙、丙三种类型土地上 的适应情况,问共需安排多少个试验小区?
3. 4 封不同的信,要投到 3 个不同的信箱中,问共有多少种不同的投寄 方法?
4. 由数字 1,2,3,4,5 可以组成多少个三位数?(各位上数字可以重复)
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。
2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。
公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。
公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。
分步乘法计数原理的概念和公式。
2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。
2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。
五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。
2. 讲解分类加法计数原理的公式和应用示例。
3. 讲解分步乘法计数原理的公式和应用示例。
4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。
六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。
2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。
3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。
七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。
人教版高中数学 选修2-3 1.1分类计数原理与分步计数原理教案
例1是两个计数原理的简单应用,设置两小问的目的在于让学生严格区分两个原理的使用背景。
例2是引例中的问题,呼应课题,贴近生活,用数学解决现实问题,服务于社会生活。
例3是展现两个原理的综合应用,让学生综合运用两个原理分析和解决问题。促进学生运算素养的发展。力争使素材的趣味性闪耀光彩,吸引学生的学习兴奋点,力争使学生的学习热情搞到本节课高潮,让学生形成良好的情感体验。
论:应该分步骤选择,分3步才能完成。共有 种不同方法。
教师引导学生根据以上两个事实,归纳出分步计数原理。教师板书分步计数原理和关键词:分步,乘法,步步相连。
让学生充分讨论:两个原理的共同点是什么?不同点是什么?
通过现实生活中的两个简单计数问题的体验,明白和理解加法原理的产生背景,针对的分类计数问题,特别强调每类办法中的各种方法都能独立完成这件事情。即类类独立。
归
纳
小
结
提出总结的要点:
(1)在什么时侯用分类计数原理?在什么时侯用分步计数原理?
(2)综合使用这两个原理时,应怎样把握分类与分步的先后顺序?
(3)在两个原理的学习中,体验到了哪些数学思想方法?
(4)在本节课的学习中,在数学情感方面有哪些体验?
总结:
(1)解决分类有关问题时用分类计数原理;解决分步有关问题时用分步计数原理。
课题
1.1分类计数原理与分步计数原理
课时
1
授课
时间
主备人:
教学
目标
知识与技能:掌握两个基本原理及其简单应用;在归纳原理的过程中,培养学生的数学抽象素养;在解答计数问题的过程中,培养学生的数学运算素养。
分类计数原理与分步计数原理教学设计
分类计数原理与分步计数原理课题:分类计数原理与分步计数原理教材分析:《分类计数原理与分步计数原理》,是高中数学第十章排列、组合的第一节课,是排列、组合的基础,学生对这两个原理的理解、掌握和运用,是学好本章的一个关键。
教学目标:知识与技能目标:准确理解两个原理,弄清它们的区别,培养学生分析问题、理解问题、归纳问题的能力过程与方法目标:通过例题让学生理解两个计数原理,并能够将两个技术原理应用到实际问题中去。
情感、态度与价值观目标:培养学生勇于探索、勇于创新的精神,面对现实生活中复杂的事物和现象,能够作出正确的分析,准确的判断,进而拿出完善的处理方案,提高实际的应变能力。
教学重点:分类计数原理和分步计数原理内容及两者的区别教学难点:对较为复杂事件的分类和分步教学方法:启发引导式教学教具准备:作图工具课型:新授课教学过程:问题引入一问题1从芜湖到合肥,可以乘火车,也可以乘汽车,还可以乘轮船。
假若一天中,火车有4班, 汽车有20班,轮船有3班。
那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析:从甲地到乙地有3类方法,第一类方法, 乘火车,有4种方法;第二类方法, 乘汽车,有20种方法;第三类方法, 乘轮船, 有3种方法;所以从甲地到乙地共有4+20+3=27种方法。
问题 2在全班同学中选出一名同学做班长,有多少种选择?新知探究一分类计数原理:如果计数的对象可以分成若干类,使得每两类没有公共元素,那么分别对每一类里的元素计数,然后把各类的元素数目相加,便得出所要计数的对象的总数。
说明:(1)各类办法之间相互独立,都能独立的完成这件事,要计算方法种数,只需将各类方法数相加,因此分类计数原理又称加法原理。
(2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数。
例1在填写高考志愿表时,一名高中毕业生了解到A大学有5个自己感兴趣的强项专业,B大学有4个自己感兴趣的强项专业,如果这名同学只能选一个专业,那么他共有多少种选择呢?解:根据分类计数原理:这名同学可能的专业选择共有5+4=9种。
【公开课教案】分类加法计数原理与分步乘法计数原理教学设计
自选课题:分类加法计数原理与分步乘法计数原理一、教学设计1.教学内容解析“分类加法计数原理和分步乘法计数原理”(以下简称“两个计数原理”)是人教A版高中数学课标教材选修2-3“第一章计数原理”第1.1节的内容,教学需要安排4个课时,本节课为第1课时.计数就是数数.原理是在大量观察、实践的基础上,经过抽象、归纳、概括而得出具有普遍意义的基本规律.两个计数原理不仅是继续学习排列、组合和二项式定理的理论依据,更是处理计数问题的两种基本思想方法,在本章中是奠基性的知识.从认知基础的角度看,两个计数原理实际上是学生从小学就开始学习的加法运算与乘法运算的拓展应用,是体现加法与乘法运算相互转化的典型例证.从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂的计数问题分解为若干“类别”,再分类解决;运用分步乘法计数原理解决问题则是将一个复杂的计数问题分解为若干“步骤”,先对每个步骤分类处理,再分步完成.综合运用两个计数原理就是将综合问题分解为多个单一问题,再对每个单一问题各个击破.也就是说,两个计数原理的灵魂是划归与转化的思想、分类与整合的思想和特殊与一般的思想的具体化身.从数学本质的角度看,以退为进,以简驭繁,化难为易,化繁为简,是理解和掌握两个计数原理的关键,运用两个计数原理是知识转化为能力的催化剂.因此,本课的主要任务是如何依托学生已有的认知基础总结得出两个计数原理,并能初步领会应用原理简捷地解决计数问题的要领.根据以上分析,本节课的教学重点确定为:教学重点:归纳出两个计数原理,并能初步用其解决一些简单的实际问题.2.学生学情分析计数问题学生并不陌生,在不同的学段都有相应的接触,特别是在高中数学《必修2》中学习“古典概型”时,学生又学会了用列举法解决最简单的计数问题;同时在学习和生活中,学生已经不自觉地会使用“分类”和“分步”的方法来思考和解决问题,这些都是学生学习两个计数原理的认知基础.两个计数原理虽简单朴素,易学好懂,但如何让学生借助已有的数学活动经验,抽象概括出两个计数原理,并领悟其中重要的数学思想方法,实现认知的飞跃,则是本课必须要突破的难点所在.为此,抓住以下两个要点尤为重要:一是要通过典型丰富的实例来帮助学生完成归纳提炼的过程,加强学生应用两个计数原理解决问题的意识——这是有效提升学生抽象概括能力的契机;二是要在解决问题的过程中,始终突出两个计数原理的核心要素,即弄清“完成一件事”的含义和区分“分步”与“分类”的特征——这是如何选择两个计数原理的关键.根据以上分析,本节课的教学难点确定为:教学难点:根据实际问题的具体特征,正确理解“完成一件事”的含义;准确区分“分类”和“分步”.3.教学目标设置(1)通过给出的具体实例,学生经历两个计数原理的抽象概括的发现过程,能归纳出两个计数原理,并能说出两个计数原理的联系与区别,体会从特殊到一般的思维过程;(2)根据具体的问题情境,学生能描述“完成一件事”的具体含义,说出“分类”与“分步”的区别,总结出应用两个计数原理的基本步骤;(3)通过变式练习、引例探究和列举实例,学生会正确选择和应用两个计数原理解决一些简单的实际问题,领悟运用两个计数原理所包含的划归与转化、分类与整合和特殊与一般的思想方法,以及以退为进的思维策略.4.教学策略分析本节课是概念原理课的教学典范.拟定采取以退为进的教学策略,采用“情景引入—问题诱导—实例探究—抽象概括—原理应用—归纳总结—拓展铺垫”的探究发现式教学方法,紧紧围绕如何抽象、怎样概括、如何归纳和怎么应用等问题展开,通过典型丰富的实例引导学生归纳出两个计数原理,并能学会初步应用.具体教学策略分成如下五个环节:第一环节:创设情境,提出问题.从“神十的身份证号码”出发,引出“人造天体的编号问题”,通过问题设疑,引导学生在不断思考中获取两个计数原理的发现过程;第二环节:实例探究,归纳原理.从以退为进的实例出发,通过先“两类”后“多类”,先“分类”后“分步”,先“加法”后“乘法”的逐步过渡,引导学生在加法与乘法相互转化的过程中提炼归纳两个计数原理;第三环节:演练反馈,巩固提升.从选择两个原理解决计数问题的关键出发,通过“各取”“任取”等关键词的辨别,引导学生真正弄清“完成一件事”的具体含义,领会准确区分“分步”和“分类”的操作要领;第四环节:归纳小结,认知升华.从放手让学生自主小结出发,通过提纲挈领的表格式小结,引导学生进一步加深对两个计数原理本质的认识;第五环节:课后检测,拓展铺垫.从引发学生进一步思考出发,通过设置有关高考科目改革的热点思考题,为后继学习排列组合做好铺垫,激发学生进一步学习的欲望.其教学流程如下:二、课堂实录1.创设情境,提出问题开场白:中国梦,航天梦.近年来,我国科技发展突飞猛进,“神十”的发射更是让世人瞩目,下面我们就一起来回顾这令人激动的时刻.视频:“神十”升天,飞入太空.画外音:“神十”升天,国人欢呼,世界瞩目.你知道他的“身份证号码”吗?它的国际编号为2013-029A.人造天体的编号规则:①发射年份+四位编码;②四位编码前三位为阿拉伯数字,第四位为英文字母;③前三位数字不能同时为0;④英文字母不得选用I,O(I易与1混淆,O易与0混淆).按照这样的编号规则,2013年的人造天体所有可能的编码有多少种?师:欣赏完激动人心的视频,我们来看看这个问题的设问方式,“按照这样的编号规则,2013年的人造天体所有可能的编码有多少种?”这就是一个典型的计数问题.所谓计数就是数数.其实类似的问题有很多:幼儿园时我们数有多少个鸭子?我们班有多少同学?甚至我们穿校服上衣和裤子有多少种不同的搭配种数等等,我们将这种方法数的计算问题都称之为计数问题.师:小时候,我们是怎么数的呀?生:一个一个的数.师:刚才这个问题“一个一个的去数”可以吗?比较复杂.看来我们有必要探究更有效的计数方法.这个问题研究四位编码比较复杂,怎么办?我们不妨先退回来研究一位、两位的情形,从中探索出规律,从而解决四位的情形.【评析】以学生关心的知识背景切入本节课,以视频演示烘托气氛,提高了学生主动参与学习的积极性,同时点题:如何有效的计数.2.实例探究,归纳原理(1)师生共同探究,得出分类加法计数原理问题1:如果用一个大写的英文字母或一个阿拉伯数字给卫星编号,那么总共能够编出多少种不同的号码?生:26+10=36种师:对的.这就是加法运算.问题2:从甲地到乙地,可以乘火车,也可以乘汽车.一天中,火车有26班,汽车有10班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?生:一共有26+10=36种不同的走法.师:对,那这两个计数问题有什么共同特点呢?生:这两个问题告诉我们,计数是可以分类的:问题1按英文字母和阿拉伯数字分成两类,问题2按交通工具分成两类.将每类的方法数相加就得到了问题的答案.师:梳理同学们的总结,我们列成表格,将共性总结成一个命题,即如果完成一件事有两类不同方案,在第一类方案中有种不同的方法,在第二类方案中有种不同的方法,那么完成这件事共有N m n=+种不同的方法.根据特点给它起个名字,就叫分类加法计数原理.原理是在大量观察的基础上经过归纳、概括而得出的基本规律.同学们还要特别注意:这里的关键词是完成一件事,分类,加法,每类中的任一种方法都能独立完成这件事.【评析】让学生体会知识获得的过程,通过独立思考、自主探究、合作交流归纳出原理.师:同学们试一试,能用自己得到的原理解决具体的问题吗?例1 在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?生:这名同学可以选择A,B两所大学中的一所,而且只能选择一个专业,又由于A大学有5种不同的选择,B大学有4种不同的选择,所以共有5+4=9种不同的选择.师:对.如果还有C大学呢?变式:在填写高考志愿时,一名高中毕业生了解到,A,B,C三所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学 C大学生物学数学新闻学化学会计学金融学医学信息技术学人力资源学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?生:5+4+3=12.师:看来加法原理不仅对完成一件事有两类不同方案适用,也对分三类方案适用,对分n类同样适用.生:一般地,如果完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类中有2m 种不同的方法…,在第n 类中有n m 种不同的方法,那么完成这件事共有种12n N m m m =+++不同方法.【评析】例题及变式训练由易到难,循序渐进,而且为学生自主生成加法原理的一般形式做好了铺垫.师:下面,我们看大家能否用这个原理解决更复杂的问题!(2)类比转化探究,得出分步乘法计数原理问题3:如果用前六个大写英文字母中的一个和1~9九个阿拉伯数字中的一个,组成编码形如A 1,B 2的方式给卫星编号,那么总共能编出多少个不同的号码?【评析】承上启下,既巩固加法原理,又为乘法原理做铺垫,然后落脚在“分步,乘法”这两个特征上,有利于原理的主动生成.生:6×9=54.师:请谈谈你的具体想法.生:完成编号这件事我先确定数字,再确定字母.数字有9种选择,字母有6种选择.因而共有96=54(种).师:那你是着眼于完成这件事的过程,先确定数字,再确定字母,需分步,用乘法解决.那交换两个步骤可以吗?显然可以.那54对不对呢?哪位同学能用分类加法计数原理帮他检验一下.生:按照题意,按字母分类:以A 开头有9个,以B 开头有9个,如此类推,以F 开头有9个,所以共有9+9+9+9+9+9=96=54种不同的号码.师:那你是着眼于完成这件事结果,根据首字母不同,分六类,用加法原理解决.看来54是此题的答案确定无疑!师:从此题中我们感觉到“分步相乘”,那类似问题都能这样吗?下面看一个新问题.问题4:从甲地到丙地,要从甲地先乘火车到乙地,再于次日从乙地乘汽车到丙地.一天中,火车有3班,汽车有2班,那么两天中,从甲地到丙地共有多少种不同的走法?生:从甲地到丙地需 2 步完成,第一步,由甲地去乙地有 3 种方法;第二步,由乙地去丙地有 2 种方法,所以从甲地到丙地共有3 ×2 = 6种不同的方法.【评析】从加法原理过渡到乘法原理,让学生检验分步相乘的合理性与简洁性.师:类比加法计数原理,归纳问题3和问题4的共同特点,我们可以得到什么结论?生:如果完成一件事需要两个步骤,做第一步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N m n=⨯种不同的方法.师:我们称它分步乘法计数原理.同学们还要特别注意:这里的关键词是完成一件事,分步,乘法,每步中的任一种方法都不能独立的完成这件事,只有各个步骤都完成才算做完这件事情.【评析】让学生从感性体验上升到理性认识,通过独立思考、自主探究、合作交流归纳出原理.师:请用你们得到的原理解决下面的问题.例2 某班有男生30名,女生24名,现要从中选出男、女生各一名代表班级参加公益活动,共有多少种不同的选法?师:你把选代表这件事分成两步,你是先确定男生人选,再确定女生人选,所以分两步用乘法原理.那先确定女生人选,再确定男生人选是否可以呢?生:都可以,只要能达到完成这件事的目的就行.变式:某班有男生30名,女生24名,任课老师10名,现要从中选出男、女生各一名代表班级参加公益活动,还要从中选派1名老师作领队,组成代表队,共有多少种不同选法?生:再乘以10.师:由此你们又可以得到什么结论呢?生:一般地,如果完成一件事要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法…,做第n 步有n m 种不同的方法,那么完成这件事共有种12n N m m m =⨯⨯⨯不同方法.【评析】例题及变式训练由易到难,循序渐进,而且为学生自主生成乘法原理的一般形式做好了铺垫.师:我们已经归纳了两个计数原理,他们的共性是:为了计数.区别是:因为问题特征不同,有时需要分类,有时需要分步.希望以后用原理解决问题时,要清楚的用原理表达完成一件什么事,怎么完成,是分步还是分类呢?下面我们来做几个练习.3.演练反馈,巩固提升练1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架的第1,2,3层各取一本书,有多少种不同取法?(2)从书架中任取1本书,有多少种不同的取法?变式:从书架中取2本不同种类的书,有多少种不同的取法?【评析】设问循序渐进,突出强调解题时,弄清完成一件事的要求至关重要,只有这样才能正确区分“分类”和“分步”(区分的关键是对“完成一件事”的理解).师:还记得人造天体编号的问题吗?请同学们试一试,我们现在能解决了吗?练2 【引例回放】“神十”的国际编号为2013-029A.人造天体的编号规则:①发射年份+四位编码;②四位编码前三位为阿拉伯数字,第四位为英文字母;③前三位数字不能同时为0;④英文字母不得选用I,O(I易与1混淆,O易与0混淆).这样的编号规则,2013年的人造天体所有可能的编码有多少种?生:(1010101)2423976.⨯⨯-⨯=师:同学们很好的解决了这个问题.随着科技的发展,以后人造天体更多了,超过了23976,怎么解决呢?生:可增加位数.生:还可以增加每一位的选择.师:非常棒.【评析】呼应引例,开放探究,巩固两个计数原理.师:计数原理有广泛的应用,在生活中需要计数,在科学实践中也需要计数,那么大家想一想:你在生活中学习中遇到哪些分类计数问题和分步计数问题呢?练3 【应用访谈】你能举出生活中或其它学科中的运用两个原理的计数问题吗?生:武汉市的汽车牌照以鄂A开头,后面有五位.我分5步,第一步确定第一位,第二步确定第二位,…,第五步确定第五位,又因为每一步既可以选择字母,又可以选择数字,由加法原理有26+10=36种选择,再由乘法原理共有5363636363636⨯⨯⨯⨯=种不同的选择.生:身份证后4位是随机数,就可以分成4步完成,第1,2,4位上有0~9十种选择,第3位上有5种选择,所以共有⨯⨯⨯=种不同的选择.10105105000生:开运动会时,有5个同学要报四个体育项目,每位同学只能报其中一种,每位同学有4种选法,所以共有5⨯⨯⨯⨯=种不同的444444选法.生:氢元素有3种同位素,氯元素有2种同位素,所以HCl的分子质量共有3×2=6种.生:…师:大家举得例子漂亮极了.看来数学来自生活,又应用于生活,数学是有用的!同学们,生活丰富多彩,世界奥秘无穷,在知识的天空里,让我们借助数学的力量,像“神十”一样展翅飞翔吧!师:这节课同学们举出了很多实例,老师也给出了一些实例,根据以上的计数实例,我们收获了什么?4.归纳小结,认知升华生:在计数问题中,有的是用分类加法计数原理,有的是用分步乘法计数原理,而有的是既用分类加法计数原理,又用分步乘法计数原理.生:当我们遇到复杂问题时,先把复杂的问题化为一些简单的问题,然后通过一系列的简单问题得到一些规律,然后用规律解决复杂问题.生:经过小组讨论,我们总结了两点.第一是今天学到了计数问题的解决办法:列举法和两个计数原理.在应用这两个计数原理的时要小心审题,正确选择原理.第二是我们不仅学到知识本身,还学到了研究问题的方法,我们先是从实际问题中归纳出原理,然后再运用于实际之中,让我们感受生活中处处有数学.生:…师:我们今天探讨了一个问题就是如何计数?得出了计数方法的两个原理.这两个计数原理是怎么来的?是我们从实际生活中归纳出来的.那么应用这两个计数原理的关键是什么?就是关注它们的应用场合:有的要分类,有的要分步,有的既要分类又要分步.这两个计数原理的不同点是:分类加法原理中每类中的任一种方法都能独立的完成这件事.分步乘法计数原理中,每步中的任一种方法都不能独立的完成这件事,只有各个步骤都完成才算做完这件事情.它们的异同点如下表:【评析】学生在谈收获的同时,就是学生主动建构知识的过程,加深了对本章知识的理解和思想方法的掌握.5.课后检测,拓展铺垫附:板书设计1.1 分类加法计数原理与分步乘法计数原理⎧⎪⎧⎨⎨⎪⎩⎩列举法计数问题分类加法计数原理两个计数原理分步乘法计数原理三、课后反思1.可取之处(1)情境线、知识线、数学思想线三线交融,构建有效课堂.通过创设情境,引导学生探究知识,并在探究的过程中,促进学生数学思维的养成和发展.我感悟到:只有发挥数学的内在力量,教给学生数学的思想,才能为学生谋取长远利益.(2)好实例,好导引,好舞台三好合一,促进学生自主发展.教师精选实例,精心设计变式,通过问题引导,给学生展示思想的舞台.特别值得一提的是,深挖问题三的功能,让学生在发现、验证、探究、升华的过程中快乐学习,进而实现教学的自然衔接与自然生成.我感悟出:经典的实例,巧妙的设问是促进学生自主发展的有效方法.(3)从数学、生活、学科三个角度看两个原理,拓展了学生的科学视野.开放探究的过程,极大的调动了学生的积极性.我感悟出:生活、学科中的数学问题,能将学生的思维引入更广阔的空间.课堂的生成、学生的参与意识、应用意识超过我的想象.2.改进之处遗憾的是对学生的回答和交流,有些地方的定评不是很到位;受课堂45分钟的时间限制,很多同学还想发言交流,意犹未尽,怎么利用它?这将是我要进一步探索的.。
高二数学教案《10.1分类计数原理与分步计数原理》
教学设计(主备人:许倩)教研组长审查签名:高中课程标准 数学必修第二册(下B)教案执行时间:10.1分类计数原理与分步计数原理教学设计一、内容及解析:1.内容:两个基本原理是排列、组合的开头课,学习它所需的先行知识跟学生已熟知的数学知识联系很少,排列、组合的计算公式都是以乘法原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以在教学目标中特别提出要使学生学会准确地应用两个基本原理分析和解决一些简单的问题对于学生陌生的知识,在开头课中首先作一个大概的介绍,使学生有一个大致的了解是十分必要的基于这一想法,在引入新课时,首先是把这一章将要学习的内容,以及与其它科目的关系做了介绍,同时也引入了课题2.解析:正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类和分步教学中给出的练习均在课本例题的基础上稍加改动过的,目的就在于帮助学生对这一知识的理解与应用。
二、目标及解析:1.目标(1)了解学习本章的意义,激发学生的兴趣.(2)理解分类计数原理与分步计数原理,培养学生的归纳概括能力.(3)会利用两个原理分析和解决一些简单的应用问题.2.解析:两个原理是教与学重点,又具有相当难度.加法和乘法在小学就会,那么,在中学再学它与以往有什么不同?不同在于小学阶段重在运算结果的追求,而忽视了其过程中包含的深层次思想;两个原理恰恰深刻反映了人类计数最基本的“大事化小”,即“分解”的思想.更具体地说就是把事物分成类或分成步去数.“分类”、“分步”,看似简单,不难理解,却是全章的理论依据和基本方法,贯穿始终,所以,是举足轻重的重点.两个原理,要能在各种场合灵活应用并非易事,所以,着实有其难用之处。
三、数学问题诊断分析对具体的应用问题分不清应该用分步计数原理还是用分类计数原理来解决,还是应该两者结合应用解决。
【公开课教案】分类乘法计数原理与分步加法计数原理教学设计
【公开课教案】分类乘法计数原理与分步加法计数原理教学设计公开课教案:分类乘法计数原理与分步加法计数原理教学设计教学目标本课程旨在教授分类乘法计数原理和分步加法计数原理的基本概念和应用,在学生中培养数学思维和解决问题的能力。
教学内容1. 分类乘法计数原理- 介绍分类乘法计数原理的概念和基本原则- 演示如何使用分类乘法计数原理解决实际问题- 练题目和例题演练2. 分步加法计数原理- 介绍分步加法计数原理的概念和应用场景- 演示如何使用分步加法计数原理解决实际问题- 练题目和例题演练教学方法1. 讲授:通过简明的讲解,介绍分类乘法计数原理和分步加法计数原理的基本概念和应用方法。
2. 示范:通过具体的例题演示,展示如何运用计数原理解决实际问题,引导学生理解和掌握相关知识。
3. 练:提供一系列与课程内容相关的练题,供学生课后巩固和加深理解。
教学评估1. 课堂互动:通过学生参与课堂讨论的方式,评估学生对分类乘法计数原理和分步加法计数原理的理解程度。
2. 练成绩:通过批改学生的练作业,评估学生对所学内容掌握的情况。
教学资源1. 教材:选择适合教学内容的教材,提供给学生参考。
2. 课件:准备包含相关知识点和例题的课件,便于学生理解和记忆。
时间安排本课程计划共3小时,具体时间安排如下:- 分类乘法计数原理:1.5小时- 分步加法计数原理:1.5小时教学反思本课程通过简明的讲解、具体的示范和练习等方法,帮助学生理解和掌握分类乘法计数原理和分步加法计数原理。
在教学过程中,要注重激发学生的兴趣和培养数学思维能力,同时给予学生足够的练习和实践机会。
根据学生的反馈和课堂表现,不断优化和改进教学方法,提高学生的学习效果和成绩。
高中数学《分类计数原理与分步计数原理》说课稿教案模板
新修订高中阶段原创精品配套教材高中数学《分类计数原理与分步计数原理》说课稿教案模板教材定制 / 提高课堂效率 /内容可修改High School Mathematics "Classification and Counting Principle and Step-by-Step Counting Principle" Theory Textbook Template教师:风老师风顺第二中学编订:FoonShion教育高中数学《分类计数原理与分步计数原理》说课稿教案模板一、本节内容的地位与重要性“分类计数原理与分步计数原理”是《高中数学》一节独特内容。
这一节课与排列、组合的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备,起到奠基的重要作用。
二、关于教学目标的确定根据两个基本原理的地位和作用,我认为本节课的教学目标是:(1)使学生正确理解两个基本原理的概念;(2)使学生能够正确运用两个基本原理分析、解决一些简单问题;(3)提高分析、解决问题的能力(4)使学生树立“由个别到一般,由一般到个别”的认识事物的辩证唯物主义哲学思想观点。
三、关于教学重点、难点的选择和处理中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点内容。
正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件.而原理中提到的分步和分类,学生不是一下子就能理解深刻的,面对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。
必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生接受概念并对如何运用这两个基本原理有正确清楚的认识。
高中数学必修3教案:分类计数原理与分步计数原理
分类计数原理与分步计数原理实例引入1. 从甲地到乙地,可以乘火车,也可以乘汽车.一天里火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?共有3+2=5种不同的走法.分类计数原理完成一件事,有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法……在第n 类办法中有m n 种不同的方法.那么完成这件事共有N =m 1+m 2+…+m n 种不同的办法.对于分类计数原理,注意以下几点:⑴从分类计数原理中可以看出,各类之间相互独立,都能完成这件事,且各类方法数相加,所以分类计数原理又称加法原理;⑵分类时,首先要根据问题的特点确定一个分类的标准,然后在确定的分类标准下进行分类;⑶完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法.2. 从甲地到乙地,先乘火车到丙地,再乘汽车到乙地.一天中从甲地到丙地火车有3班,从丙地到乙地汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?共有3×2=6种不同的走法.分步计数原理完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法……做第n 步有m n 种不同的方法.那么完成这件事共有N =m 1×m 2×…×m n 种不同的办法.对于分步计数原理,注意以下几点:⑴分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤完成了,这件事才算完成;分步计数原理又叫乘法原理.⑵分步时首先要根据问题的特点确定一个分步的标准;⑶分步时还要注意满足完成一件事必须并且只需连续完成 n 个步骤后这件事才算完成.两个原理的相同之处:⑴目的相同:都要“做一件事并完成它”⑵所问相同:即问“共有几种不同方法”两个原理的不同之处:分类计数用于分类,各类间独立、互斥.各类中任何一种方法都能够独立完成这件事.分步计数原理用于分步,步步相扣,缺一不可,只有各个步骤都完成了,才算完成这件事.火车汽车1火车2火车31汽车2乙地甲地乙地甲地火车1火车2火车3汽车1汽车2丙地例1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第三层放有2本不同的体育书.⑴从书架上任取1本书,有多少种不同的取法?⑵从书架的第1、2、3层各取1本书,有多少种不同的取法?解:⑴N=m1+m2+m3=4+3+2=9.(分类计数原理)⑵N=m1×m2×m3=4×3×2=24.(分步计数原理)课堂练习1.填空:⑴一件工作可以用2种方法完成,有5人会用第1种方法完成,另有4人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是有9种.(分类计数原理) 5+4=9⑵从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同走法的种数是6种.(分步计数原理) 3×2=62.现有高中一年级的学生3名,高中二年级的学生5名,高中三年级的学生4名.⑴从中任选1人参加接待外宾的活动,有多少种不同的选法?⑵从三个年级的学生中各选1人参加外宾的活动,有多少种不同的选法?(1) 3+5+4=12 (分类计数原理)⑵3×5×4=60 (分步计数原理)例2 一种号码锁有4个拨号盘,每个拨号盘上有从0到9这10个数字,这4个拨号盘可以组成多少个四位数字号码?3.一城市的某电话局管辖范围内的电话号码由八位数字组成,其中前四位数字是统一的,后四位数字都是0到9之间的一个数字,那么不同的电话号码最多有多少个?例3 要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?4.从5位同学中产生1名组长、1名副组长,有多少种不同的选法?课堂小结1. 分类计数原理;2. 分步计数原理.课后作业《习案》三十六.。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。
3. 引导学生通过观察、分析、归纳和推理,形成数学概念。
二、教学内容1. 分类加法计数原理:通过实例让学生理解分类加法计数原理,即在计数时,将事物按照某种特征进行分类,将各类别的事物数量相加。
2. 分步乘法计数原理:通过实例让学生理解分步乘法计数原理,即在计数时,将一个复杂的问题分解成几个简单的步骤,将每一步的数量相乘。
三、教学重点与难点1. 教学重点:让学生掌握分类加法计数原理和分步乘法计数原理的概念及应用。
2. 教学难点:引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析、归纳和推理,形成数学概念。
2. 利用实例讲解,让学生在实际问题中体验和理解分类加法计数原理和分步乘法计数原理。
3. 设计练习题,让学生巩固所学知识,提高解决问题的能力。
五、教学准备1. 教学课件:制作课件,展示实例及练习题。
2. 教学素材:准备相关实例,如水果、动物等分类计数问题,以及需要分步解决的问题,如制作午餐、完成作业等。
3. 练习题:设计分类加法计数原理和分步乘法计数原理的练习题。
六、教学过程1. 导入新课:通过一个简单的实例,如计数教室里的学生,引出分类加法计数原理和分步乘法计数原理。
2. 讲解分类加法计数原理:展示实例,让学生观察并分析,引导学生归纳出分类加法计数原理。
3. 讲解分步乘法计数原理:展示实例,让学生观察并分析,引导学生归纳出分步乘法计数原理。
5. 总结:对本节课的内容进行总结,强调分类加法计数原理和分步乘法计数原理的应用。
七、课堂练习a) 班级里有男生20人,女生15人,一共有多少人?b) 水果店里有苹果、香蕉和橙子,苹果有10个,香蕉有5个,橙子有8个,一共有多少个水果?a) 小明做作业,一共需要完成3个任务,每个任务需要1小时,一共需要多少小时?b) 小华准备午餐,需要炒菜、煮饭和洗碗,炒菜需要10分钟,煮饭需要30分钟,洗碗需要15分钟,一共需要多少分钟?八、课后作业a) 学校里有小学生、初中生和高中生,小学生有180人,初中生有200人,高中生有150人,一共有多少人?b) 动物园里有鸟类、哺乳动物和爬行动物,鸟类有100只,哺乳动物有200只,爬行动物有50只,一共有多少只动物?a) 小红要做家务,需要打扫卫生、洗衣服和整理房间,打扫卫生需要30分钟,洗衣服需要1小时,整理房间需要45分钟,一共需要多少分钟?b) 小刚准备参加篮球比赛,一共需要进行3场比赛,每场比赛需要40分钟,一共需要多少分钟?九、教学反思1. 反思本节课的教学内容,是否清晰易懂,学生是否掌握分类加法计数原理和分步乘法计数原理。
高二数学 分类计数原理与分步计算原理同步教案 新人教A版
高二数学同步辅导教材(第32讲)一、本讲进度第十章排列、组合和概率10.1 分类计数原理与分步计算原理二、主要内容1、理解分类计数原理及分步计数原理2、能用两个基本原理解题三、学习指导1、分类计数原理。
一件事,完成它可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,…,在第n类办法中有m n种方法,那么完成这件事共有 N=m1+m2+…+m n种方法利用分类计数原理的关键是根据完成事情方法的独立性进行分类。
对事物进行适当的分类是人们研究复杂事物常用用的方法,分类的基本要求是既不重复也不遗留,即每个研究对象当且仅当属于其中一类,在每一次分类中,标准要统一,更为复杂的问题,往往要分级讨论。
使用分类计数原理时,就要恰当地分类,分类的标准是每一类的每一种方法都能独立完成某件事,这些方法之间相互没有影响。
分类计数原理又称为加法原理。
2、分步计数原理。
一件事,完成它需要n个步骤,做第一步有m1种方法,做第二步有m2种方法,做第n步有m n种方法,那么完成这件事共有N=m1×m2×…×m n种使用分步计数原理的关键是根据完成事情的要求,确定所必须经过的步骤。
这n个步骤缺不可,当且仅当这n个步骤连续完成之后,这件事情才算完成。
3、两个原理的比较共同点:两个原理都是计算完成某项工作的方法种数,最后的目的都必须完成某件事。
不同点:分类计数原理的特点是完成一件事的各种方法是互相独立,互不影响的,其中任何一种方法都能完成这件事。
分步计数原理的特点是完成一件事必须分成若干步骤,缺少其中一步都不能完成这件事。
归纳起来,分类计数原理针对的是“分类问题”,任何一种方法都能独立的、一次性完成一件事。
从集合的角度看,若每一类作为一子集,则所有分类子集的并集应为全集,任两个分类子集的交集为空集。
分步计数原理针对的是“分步问题”,一件事必须连续地、多次地完成。
4、如何运用两个基本原理(1)审清题意,首先要弄清是完成怎样的事件;其次分析完成这件事可以采用什么方法;再适当分类,在每一类中看需要是否适当分步。
江苏省高二数学下册 第一单元《计数原理》全套教案
1.1 两个基本计数原理1.分类计数原理完成一件事,有n 类方式,在第1类方式中有m 1种不同的方法,在第2类方式中有m 2种不同的方法,……,在第n 类方式中有m n 种不同的方法,那么完成这件事共有N =m 1+m 2+…+m n 种不同的方法.分类计数原理又称为加法原理.预习交流1应用分类计数原理的原则是什么?提示:做一件事有n 类方式,每一类方式中的每一种方法均完成了这件事. 2.分步计数原理完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事共有N =m 1×m 2×…×m n 种不同的方法.分步计数原理又称为乘法原理.预习交流2应用分步计数原理的原则是什么?提示:做一件事要分n 个步骤完成,只有所有步骤完成时,才完成这件事,也就是说,每一步骤中每种方法均不能完成这件事.一、分类计数原理问题从甲地到乙地每天有火车3班,汽车8班,飞机2班,轮船2班,问一天内乘坐班次不同的运输工具由甲地到乙地,有多少种不同的走法?思路分析:由于每班火车、汽车、飞机、轮船均能实现从甲地到乙地,因此利用分类计数原理.解:根据运输工具可分四类:第1类是乘坐火车,有3种不同的走法;第2类是乘坐汽车,有8种不同的走法;第3类是乘坐飞机,有2种不同的走法;第4类是乘坐轮船,有2种不同的走法;根据分类计数原理,共有不同的走法的种数是N=3+8+2+2=15.设有5幅不同的油画,2幅不同的国画,7幅不同的水彩画.从这些画中只选一幅布置房间,有__________种不同的选法.答案:14解析:根据分类计数原理,不同的选法有N=5+2+7=14种.如果完成一件事有n类方式,每类方式彼此之间是相互独立的,无论哪一种方式的每种方法都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理(加法原理).二、分步计数原理问题有三个盒子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个,现从盒子里任取红、白、黄小球各1个,有多少种不同的取法?思路分析:要从盒子里取到红、白、黄小球各1个,应分三个步骤,并且这三个步骤均完成时,才完成这件事,故应用分步计数原理.解:分三步完成:第1步是取红球,有6种不同的取法;第2步是取白球,有5种不同的取法;第3步是取黄球,有4种不同的取法;根据分步计数原理,不同取法的种数为N=6×5×4=120.现有高一学生9人,高二学生12人,高三学生7人自发组织参加数学课外活动小组,为便于管理,每年级各选一名组长,有__________种不同的选法.答案:756解析:根据分步计数原理有N=9×12×7=756种不同的选法.如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有步骤才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数就用分步计数原理(乘法原理).1.两个书橱,一个书橱内有7本不同的小说,另一个书橱内有5本不同的教科书.现从两个书橱任取一本书的取法有__________种.答案:12解析:根据分类计数原理,不同的取法有N=7+5=12种.2.教学大楼有5层,每层均有2个楼梯,由1楼到5楼的走法有__________种.答案:16解析:根据分步计数原理,不同的走法有N=2×2×2×2=16种.3.现有高一学生9人,高二学生12人,高三学生7人,从中推选两名来自不同年级的学生做一次活动的主持人,共有__________种不同的选法.答案:255解析:分三类:第1类是从高一和高二各取1人,有9×12=108种选法;第2类是从高一和高三各取1人,有9×7=63种选法;第3类是从高二和高三各取1人,有12×7=84种选法;由分类计数原理,不同的选法有N=108+63+84=255种.4.某体育彩票规定,从01~36共36个号中抽出7个号为一注,每注2元,某人想选定吉利号18,然后从01~17中选3个连续的号,从19~29中选2个连续的号,从30~36中选1个号组成一注,若这个人要把这种号全买下来至少要花多少钱?解:分三步选号:第1步从01~17中选3个连续的号共有15种选法;第2步从19~29中选2个连续的号共有10种选法;第3步从30~36中选1个号共有7种选法;因此由分步计数原理知共有N=15×10×7=1 050(注),故要花1 050×2=2 100(元).5.有四位同学参加三项不同的竞赛.(1)每位同学必须只参加一项比赛,有多少种竞赛方案?(2)每项竞赛只允许一位同学参加,有多少种竞赛方案?解:(1)同学可以选择竞赛项目,而竞赛项目对于同学无条件限制,所以每位同学均有3个不同的机会,要完成这件事必须是每位同学参加竞赛的项目全确定下来.因此分四步,所以根据分步计数原理,共有N=3×3×3×3=34=81种不同的方案.(2)竞赛项目可挑选同学,而同学无选择项目的机会,每一个项目可挑选4个不同的同学中的一个,要完成这件事须每项竞赛所参加的同学全部确定下来才行.因此需分三步,根据分步计数原理,共有M=4×4×4=64种不同的方案.1.2 排列1.排列的概念一般地,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.预习交流1如何判断一个问题是否是排列问题?提示:排列问题与元素的排列顺序有关,是按一定的顺序排成一列,如果交换元素的位置,其结果发生了变化,叫它是排列问题,否则,不是排列问题.2.排列数的概念一般地,从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.根据分步计数原理,我们得到排列数公式A m n=n(n-1)(n-2)…(n-m+1),其中n,m∈N*,且m≤n.n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.在排列数公式中,当m=n时,即有A m n=n(n-1)(n-2)·…·3·2·1,A n n称为n的阶乘(factorial),通常用n!表示,即A n n=n!.我们规定0!=1,排列数公式还可以写成A m n=! ()!nn m.预习交流2如何理解和记忆排列数公式?提示:A m n是m个连续自然数的积,最大一个是n,依次递减,最后一个是(n-m+1).一、排列问题下列三个问题中,是排列问题的是__________.①在各国举行的足球联赛中,一般采取“主客场制”,若共有12支球队参赛,求比赛场数;②在“世界杯”足球赛中,采用“分组循环淘汰制”,共有32支球队参赛,分为八组,每组4支球队进行循环,问在小组循环赛中,共需进行多少场比赛?③在乒乓球单打比赛中,由于参赛选手较多,故常采用“抽签捉对淘汰制”决出冠军.若共有100名选手参赛,待冠军产生时,共需举行多少场比赛?思路分析:交换元素的顺序,有影响的是排列问题,否则,不是.答案:①解析:对于①,同样是甲、乙两队比赛,甲作为主队和乙作为主队是两场不同的比赛,故与顺序有关,是排列问题;对于②,由于是组内循环,故一组内的甲、乙只需进行一场比赛,与顺序无关,故不是排列问题;对于③,由于两名选手一旦比赛后就淘汰其中一位,故也与顺序无关,故不是排列问题.下列问题是排列问题吗?并说明理由.①从1,2,3,4四个数字中,任选两个做加法,其结果有多少种不同的可能?②从1,2,3,4四个数字中,任选两个做除法,其结果有多少种不同的可能?解:①不是排列问题;②是排列问题.理由:由于加法运算满足交换律,所以选出的两个元素做加法时,与两个元素的位置无关,但做除法时,两个元素谁是除数,谁是被除数不一样,此时与位置有关,故做加法不是排列问题,做除法是排列问题.判断排列问题的原则:①与顺序有关;②元素互不相同;③一次性抽取. 二、排列数问题解方程:3A 3x =2A 2x +1+6A 2x .思路分析:先把式中的排列数转化为关于x 的表达式,并注意A mn 中m ≤n ,且m ,n 为正整数这些限制条件,再求解关于x 的方程.解:由3A 3x =2A 2x +1+6A 2x ,得3x (x -1)(x -2)=2(x +1)x +6x (x -1).∵x ≥3,∴3(x -1)(x -2)=2(x +1)+6(x -1),即3x 2-17x +10=0.解得x =5或x =23(舍),故x =5.解不等式:A x 9>6A x -26.解:由排列数公式,原不等式可化为:9!-x !>6×6!-x +!,∴9×8×79-x>6,解得x >-75.又⎩⎪⎨⎪⎧x -2≥0,x ≤9,6≥x -2,∴2≤x ≤8.又∵x 为整数,∴原不等式的解集为{2,3,4,5,6,7,8}. 有关以排列数公式形式给出的方程、不等式,应根据有关公式转化为一般方程、不等式,再求解,但应注意其中的字母都是满足一定条件的自然数.三、数字排列问题用1,2,3,4,5,6,7这7个数字组成没有重复数字的四位数,如果组成的四位数必须是偶数,那么这样的四位数有多少个?思路分析:先排个位数,再排千、百、十位数,再由分步计数原理求得适合条件的四位数的个数.解:第一步排个位上的数,因为组成的四位数必须是偶数,个位数字只能是2,4,6之一,所以有A 13种排法,第二步排千、百、十这三个数位上的数,有A 36种排法.根据分步计数原理,适合条件的四位数的个数为N =A 13A 36=360,所以这样的四位数有360个.由0,1,2,3,4,5这六个数字组成没有重复数字的六位数,其中小于50万,又不是5的倍数的数有多少个?解:法一:因为0和5不能排在首位和个位,先将它们排在中间4个数位上有A 24种排法,再排其他4个数位有A 44种排法,由分步计数原理得,共有A 24·A 44=12×24=288个数符合要求.法二:六个数位的全排列共有A 66个,其中0排在首位或个位有2A 55个,还有5排在首位或个位上的也有2A 55个,这两种情况都包含0和5分别在首位或个位上的排法有2A 44种,所以符合条件的数字个数有A 66-4A 55+2A 44=288个.关于数字问题要注意首位数字不能为0,其次注意特殊位置或特殊数字,再考虑其他位置或其他数.也可用全排列数减去不合要求的排列数.1.已知A 2n =7A 2n -4,则n =__________. 答案:7解析:由排列数公式得,n (n -1)=7(n -4)(n -5),∴3n 2-31n +70=0,解得n =7或n =103(舍).∴n =7. 2.将五辆车停在5个车位上,其中A 车不停在1号车位上的停车方案有__________种. 答案:96解析:因为A 车不停在1号车位上,所以可先将A 车停在其他四个车位上,有A 14种停法;然后将另外四辆车在剩余的四个车位上进行全排列,有A 44种停法,由分步计数原理得,共有N =A 14·A 44=4×24=96种不同的停车方案.3.用1,2,3,4,5这5个数字,组成没有重复数字的三位数,其中奇数有__________个. 答案:36解析:当个位数字分别为1,3,5时,百位、十位上数字的排列总数均为A 24=12个.由分类计数原理知,没有重复数字的三位奇数共有12+12+12=36个.4.从甲、乙、丙、丁4种蔬菜品种中选出3种,分别种在不同土质的三块试验田上进行试验,其中甲品种必须入选,则不同的种植方法有多少种?解:本题相当于从4个元素中取出3个元素的排列,其中甲元素必取,优先考虑甲元素,先排甲,有A 13种方法,再从乙、丙、丁三个元素中选出两个元素的排列数为A 23.则由分步计数原理得,满足条件的排列有A 13·A 23=18种不同的种植方法.5.从7名运动员中选出4人参加4×100米接力赛,求满足下列条件的方案种数. (1)甲、乙二人都不跑中间两棒; (2)甲、乙二人不都跑中间两棒.解:(1)从甲、乙之外的5人中选2人安排在中间两棒,有A 25种方法,再从余下的5人中安排首末两棒,有A 25种方法,由分步计数原理知共有A 25·A 25=400种不同的安排方案.(2)从7人中选4人安排接力赛有A 47种方法,而甲、乙都跑中间两棒有A 25A 22种方法,因此符合条件的方案有A 47-A 25A 22=800种.1.3 组合1.组合的概念一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.预习交流 1如何区分排列问题和组合问题?提示:区分某一问题是排列问题还是组合问题,关键看选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题;而交换任意两个元素的位置对结果没有影响,则是组合问题.2.组合数从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C m n 表示.C mn =A mn A m m =n n -n -n -m +m !=n !m !n -m !.预习交流2如何理解和记忆组合数公式?提示:同排列数公式相类比,在排列数公式的基础上,分母再乘以m !. 3.组合数的性质性质1:C m n =C n -m n ,性质2:C m n +1=C m n +C m -1n . 预习交流3如何理解和记忆组合数的性质?提示:从n 个元素中取m 个元素,就剩余(n -m )个元素,故C m n =C n -mn .从n +1个元素中取m 个元素记作C m n +1,可认为分作两类:第一类为含有某元素a 的取法为C m -1n ;第二类不含有此元素a ,则为C m n ,由分类计数原理知:Cm n +1=C m n +C m -1n .一、组合问题判断下列问题是组合问题,还是排列问题.①设集合A ={a ,b ,c ,d },则集合A 的含3个元素的子集有多少个? ②一个班中有52人,任两个人握一次手,共握多少次手?③4人去干5种不同的工作,每人干一种,有多少种分工方法?思路分析:交换两个元素的顺序,看结果是否有影响,如无影响则是组合问题. 解:①因为集合中取出的元素具有“无序性”,故这是组合问题; ②因为两人握手是相互的,没有顺序之分,故这是组合问题; ③因为5种工作是不同的,一种分工方法就是从5种不同的工作中选出4种,按一定的顺序分配给4个人,它与顺序有关,故这是排列问题.下列问题中,是组合问题的有__________.①从a ,b ,c ,d 四名学生中选2名学生完成一件工作,有多少种不同的选法;②从a ,b ,c ,d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法; ③a ,b ,c ,d 四支足球队进行单循环赛,共需多少场比赛; ④a ,b ,c ,d 四支足球队争夺冠亚军,有多少种不同的结果. 答案:①③解析:①2名学生完成的是同一件工作,没有顺序,是组合问题; ②2名学生完成两件不同的工作,有顺序,是排列问题;③单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题; ④冠亚军是有顺序的,是排列问题.组合问题与顺序无关,而排列问题与顺序有关. 二、组合数公式及组合数的性质(1)计算C 98100+C 199200;(2)已知C 3n +618=C 4n -218,求n ;(3)化简C 45+C 46+C 47+C 48+1.思路分析:先把组合数利用性质化简或利用组合数性质直接求解.解:(1)C 98100+C 199200=C 2100+C 1200=100×992+200=5 150.(2)由C 3n +618=C 4n -218,知3n +6=4n -2或3n +6+(4n -2)=18,解得n =8或2.而3n +6≤18且4n -2≤18,即n ≤4且n ∈N *,∴n =2.(3)C 45+C 46+C 47+C 48+1=1+C 45+C 46+C 47+C 48=C 55+C 45+C 46+C 47+C 48=C 56+C 46+C 47+C 48=C 57+C 47+C 48=C 58+C 48=C 59=C 49=9×8×7×64×3×2×1=126.(1)C 34+C 35+C 36+…+C 310=__________;(2)(C 98100+C 97100)÷A 3101=__________.答案:(1)329 (2)16解析:(1)原式=C 44+C 34+C 35+…+C 310-C 44=C 45+C 35+…+C 310-1=…=C 410+C 310-1=C 411-1=329.(2)原式=C 98101÷A 3101=C 3101÷A 3101=A 31013!÷A 3101=16.利用组合数的性质解题时,要抓住公式的结构特征,应用时,可结合题目的特点,灵活运用公式变形,达到解题的目的.三、组合知识的实际应用现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?思路分析:由于选出的教师不需要考虑顺序,因此是组合问题.第(1)小题选2名教师不考虑男女,实质上是从10个不同的元素中取出2个的组合问题,可用直接法求解.第(2)小题必须选男、女教师各2名,才算完成所做的事,因此需要分两步进行,先从6名男教师中选2名,再从4名女教师中选2名.解:(1)从10名教师中选2名参加会议的选法数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45种.(2)从6名男教师中选2名的选法有C 26,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,因此共有不同的选法C 26·C 24=6×52×1·4×32×1=90种.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的不同选法有多少种?解:方法一:(直接法)至少1名女生当选可分为两类:第一类:1名女生1名男生当选代表,有C 13·C 17种方法,第二类:2名女生当选代表,有C 23种方法.由分类加法计数原理,至少有1名女生当选的不同选法有C 13·C 17+C 23=21+3=24种.方法二:(间接法)10名学生中选2名代表有C 210种选法,若2名代表全是男生有C 27种选法,所以至少有1名女生当选代表的选法有C 210-C 27=24种.利用组合知识解决实际问题要注意:①将已知条件中的元素的特征搞清,是用直接法还是间接法; ②要使用分类方法,要做到不重不漏;③当问题的反面比较简单时,常用间接法解决.1.给出下面几个问题,其中是组合问题的有__________. ①某班选10名学生参加拔河比赛;②由1,2,3,4选出两个数,构成平面向量a 的坐标; ③由1,2,3,4选出两个数分别作为双曲线的实轴和虚轴,焦点在x 轴上的双曲线方程数; ④从正方体8个顶点中任取两个点构成的线段条数是多少? 答案:①④ 解析:由组合的概念知①④是组合问题,与顺序无关,而②③是排列问题,与顺序有关.2.C 9798+2C 9698+C 9598=__________. 答案:161 700解析:原式=C 9798+C 9698+C 9698+C 9598=C 9799+C 9699=C 97100=C 3100=161 700.3.平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这几个点中的每三个点作圆,共可作__________个圆.答案:220解析:由题意知,可作C 312=12×11×103×2×1=220个不同的圆.4.解方程:C x 17-C x 16=C 2x +216.解:∵C x 17=C x 16+C x -116,∴C x 17-C x 16=C x -116,∴C x -116=C 2x +216.由组合数的性质得x -1=2x +2或x -1+2x +2=16,解得x =-3(舍)或x =5.∴x =5.5.平面内有10个点,其中任何3点不共线,以其中任意2点为端点,试求:(1)线段有多少条?(2)有向线段有多少条?解:(1)所求线段的条数,即为从10个元素中任取2个元素的组合,共有C 210=10×92×1=45条不同的线段.(2)所求有向线段的条数,即为从10个元素中任取2个元素的排列,共有A210=10×9=90条不同的有向线段.1.4 计数应用题1.简单计数问题的处理原则解简单计数问题,应遵循三大原则:先特殊后一般的原则;先选后排原则;先分类后分步的原则.分类计数原理和分步计数原理是解决计数应用题的两个基本原理.预习交流1你对“特殊”“一般”有怎样的理解?试谈谈先特殊后一般的原则.提示:“特殊”指元素特殊或场所特殊或特殊条件限制;先特殊后一般原则是先考虑“特殊元素”“特殊位置”,再考虑一般元素或一般位置.2.简单的常见计数问题的解题策略剔除:对有限制条件的问题,先以总体考虑,再把不符合条件的所有情况剔除.捆绑:把相邻的若干特殊元素“捆绑”为一个“大元素”,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列.插空:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好的元素之间.预习交流2剔除、捆绑、插空主要是为了解决何种计数问题?提示:剔除主要用在有限制条件的计数问题上,或问题的正面情况较多,而反面情况较少的计数问题上;捆绑主要用在相邻问题上;插空用在不相邻问题上.一、剔除问题四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点,不同取法有__________种.思路分析:在这10个点中,不共面的不易寻求,而共面的容易找,由10个点中取出4个点的组合数C410减去4个点共面的个数即为所求.答案:141解析:如图,从10个点中任取4个点有C410种不同的取法,其中4个点共面的情形可分三类:第一类:4个点在四面体的同一个面内,有4C46种;第二类:4个点位于相对的棱上,即一条棱上三点与对棱的中点共面,有6种;第三类:从6条棱的中点中取4个点时有3种共面.综上所述可知:不同的取法共有:C410-(4C46+6+3)=141种.从正方体的6个面中选取3个面,其中2个面不相邻的选法共有多少种?解:联想一空间模型,注意到“有两个面不相邻”即可从相对平行的平面入手正面构造,即有C16·C12=12种不同的选法,也可从反面入手剔除8个角上3个相邻平面,即有C36-C18=12种不同的选法.利用剔除法要把不满足条件的情况剔除干净或把问题的全部情况考虑清楚,做到不重不漏.二、捆绑问题(相邻问题)从单词“equation”中选取5个不同的字母排成一列,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有__________种.思路分析:先将“qu”捆绑成一个元素,再从剩余的6个元素中取3个,再进行全排列.答案:480解析:先将“qu”捆绑成一个元素,再从剩余的6个元素中取3个元素,共有C36种不同的取法,然后对取出的4个元素进行全排列,有A44种方法,由于“qu”顺序不变,根据分步计数原理共有C36·A44=480种不同排列.停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有多少种?解:将4个空车位视为一个元素,与8辆车共9个元素进行排列,共有A99=362 880种不同的停车方法.对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”起来看作一个元素与其他元素排列,然后再对相邻元素之间进行排列.三、插空问题(不相邻问题)7人站成一行,如果甲、乙两人不相邻,则不同的排法种数是__________.思路分析:先将除甲、乙两人之外的5人排成一行,再对5个人之间的六个间隙插入甲、乙两人.答案:3 600解析:先让甲、乙之外的5人排成一行,有A55种排法,再让甲、乙两人在每两人之间及两端的六个间隙中插入甲、乙两人,有A26种方法,故共有A55·A26=3 600种不同的排法.晚会上有8个唱歌节目和3个舞蹈节目,若3个舞蹈节目在节目单中都不相邻,求不同的节目单的种数.解:先排8个唱歌节目共有A88种不同方法,然后从唱歌节目之间及两端共有9个间隙中选3个,将3个舞蹈节目插入,有A39种方法,由分步计数原理知,不同的节目单的种数为A88·A39=20 321 280.解决不相邻问题常用插空法,要先把不相邻的元素抽出来,剩余的元素进行全排列,然后把抽出来的元素插入全排列时元素之间及两端形成的空隙中,注意两端也是“空隙”.1.记者要为5名志愿者和他们帮助过的2位老人拍照,要求排成一排,2位老人相邻但不在两端的排法有__________种.答案:960解析:5名志愿者先全排有A55种,2位老人作为一个元素插空,并且两位老人左右有别,故共有A55·C14·A22=960种不同的排法.2.由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数有__________个.答案:108解析:插空法,先排2,4,6共有A33种方法;若1,3,5都不相邻,则有A33种方法,若1,3相邻,则有A22A33种方法;∴共有A33(A33+A22A33)=108种不同的排法.3.某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的排法有__________种.答案:1 008解析:若丙排在10月1日,共有A55·A22=240种不同的排法,若丁排在10月7日,共有A55·A22=240种不同的排法,若丙排在1日且丁排在7日,共有A44A22=48种不同的排法,若不考虑丙丁的条件限制,共有A66·A22=1 440种不同的排法,∴符合题意的排法的种数为1 440-240-240+48=1 008.4.有11名外语翻译人员,其中5名是英语译员,4名是日语译员,另外两名英、日都精通,从中找出8人,使他们可以组成两个翻译小组,其中4人翻译英语,另外4人翻译日语,这两个小组能同时工作,问这样的8人名单可开出几张?解:按英、日语都会的翻译人员的参与情况,分成三类:第1类,“英、日都会的翻译人员”不参加,有C45C44种;第2类,“英、日都会的翻译人员”有一人参加,该人可参加英语,也可参加日语,因而有(C12C35C44+C12C45C34)种;第3类,“英、日都会的翻译人员”均参加,这时又分三种情况:两人都译英语,两人都译日语,一人译英、一人译日,因而有(C25C44+C45C24+C12C35C34)种.由分类计数原理知,可开出名单共有C45C44+C12C35C44+C12C45C34+C25C44+C45C24+C12C35C34=185种.5.7位同学站成一排合影留念,(1)其中甲不站排头,乙不站排尾的排法有多少种?(2)甲、乙和丙三位同学必须相邻的排法共有多少种?(3)甲、乙和丙三位同学都不能相邻的排法共有多少种?解:(1)用剔除法:总排有A77种,不符合条件的甲在排头和乙在排尾的排法均为A66,但这两种情况均包含了甲在排头同时乙在排尾的情况共有A55种.∴甲不站排头,乙不站排尾的排法有A77-2A66+A55=3 720种.(2)用捆绑法:第一步,将甲、乙和丙三人“捆绑”成一个大元素与另外4人的排列为A55种,第二步,“释放”大元素,即甲、乙和丙在捆绑成的大元素内的排法有A33种,∴甲、乙和丙三位同学必须相邻的排法共有A55·A33=720种.(3)用插空法:第一步,先排除甲、乙和丙之外的4人的全排列有A44种排法,第二步,把甲、乙和丙三人插入前4人中间及两端形成的5个空隙中,共有A35种排法.∴甲、乙和丙三位同学都不能相邻的排法共有A44·A35=1 440种.1.5 二项式定理。
高二数学10.1分类计数原理与分步计数原理(一)教案人教版
10.1分类计数原理与分步计数原理(一)一.知识点:1.分类计数原理2.分步计数原理二.讲解范例:例1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?例2.一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数号码?例3.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?例4.甲厂生产的收音机外壳形状有3种,颜色有4种,乙厂生产的收音机外壳形状有4种,颜色有5种,这两厂生产的收音机仅从外壳的形状和颜色看,共有所少种不同的品种?三.课堂练习:1 . 书架上层放有6本不同的数学书,下层放有5本不同的语文书(1) 从中任取一本,有多少种不同的取法?(2)从中任取数学书与语文书各一本,有多少种不同的取法?2. 某班级有男学生5人,女学生4人(1)从中任选一人去领奖, 有多少种不同的选法?(2) 从中任选男、女学生各一人去参加座谈会,有多少种不同的选法?3. 满足A∪B={1,2}的集合A、B共有多少组?4.从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通, 从丁地到丙地有2条路可通从甲地到丙地共有多少种不同的走法?5.学校的一幢5层教学楼共有2处楼梯,问从1楼到5楼共有多少种不同的走法?四、课后作业:1. 一件工作可以用两种方法完成,有5人会用第1种方法,另有4人会用第2种方法完成,从中选出1人来完成这件工作,不同的选法种数是()A. 9 种B. 18种C. 20种D. 36种2.乘积()()+++展开后共有()a b c m nA. 9项B. 8项C. 4项D. 6项3.新华书店有语文、数学、英语练习册各10本,买其中一本有种方法,买两本且要求书不同种的有种方法4. 由A村去B村的道路有3条,由B村去C 村的道路有2条,从A村经B村去C村,共有多少种不同的走法?5.现有高中一年级的学生3名,高中二年级的学生5名,高中三年级的学生4名.(1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?6.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有多少项?7.一城市的某电话局管辖范围内的电话号码由八位数字组成,其中前四位数字是统一的,后四位数字都是0到9之间的一个数字,那么不同的电话号码最多有多少个?8.从5位同学中产生1名组长、1名副组长,有多少种不同的选法?参考答案学案:例1.解:(1)根据分类计数原理,不同取法的种数是4+3+2=9种(2)根据分步计数原理,从书架的第1、2、3层各取1本书,不同取法的种数是43224⨯⨯=种例2.解:根据分步计数原理,4个拨号盘上各取1个数字组成的四位数字号码的个数是1010101010000N=⨯⨯⨯=,例3.解根据分步计数原理,不同的选法数是326N=⨯=种,6种选法可以表示如下:日班晚班甲乙甲丙乙甲乙丙丙甲丙乙例4.解:收音机的品种可分两类:第一类:甲厂收音机的种类,分两步:形状有3种,颜色有4种,共3412⨯=种;第二类:乙厂收音机的种类,分两步:形状有4种,颜色有5种,共4520⨯=种所以,共有122032+=个品课堂练习:1 .解:(1)根据加法原理可得共有 5+6=11 种不同的取法(2)根据乘法原理可得共有5×6=30种不同取法2. 解:(1)根据加法原理, 得到不同选法种数共有 N = 5 + 4 = 9 种(2) 根据乘法原理, 得到不同选法种数共有N = 5 × 4 = 20 种3. 分析一:A、B均是{1,2}的子集:φ,{1},{2},{1,2},但不是随便两个子集搭配都行,本题尤如含A、B两元素的不定方程,其全部解分为四类:1)当A=φ时,只有B={1,2},得1组解;2)当A={1}时,B={2}或B={1,2},得2组解;3)当A={2}时,B={1}或B={1,2},得2组解;4)当A={1,2}时,B=φ或{1}或{2}或{1,2},得4组解.根据分类计数原理,共有1+2+2+4=9组解.分析二: 设A、B为两个“口袋”,需将两种元素(1与2)装入,任一元素至少装入一个袋中,分两步可办好此事:第1步装“1”,可装入A不装入B,也可装入B不装入A,还可以既装入A又装入B,有3种装法;第2步装2,同样有3种装法.根据分步计数原理共有3×3=9种装法,即原题共有9组解.4. 答案:2×3+4×2=14;5.2×2×2×2=16。
高三数学 第67课时 分类计数原理、分步计数原理教案 教案
课题:分类计数原理、分步计数原理教学目标:1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.2.分类计数原理与分步计数原理是计数问题的基本原理,体现了解决问题时将其分解的两种常用方法,即把问题分类解决和分步解决.教学重点:分类计数原理与分步计数原理是计数问题的基本原理,它贯穿于全章学习的始终,体现了解决问题时将其分解的两种常用方法,即把问题分类解决和分步解决,是本章学习的重点.(一) 主要知识及主要方法:1.分类计数原理(加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++ 种不同的方法.2.分步计数原理(乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有:12n N m m m =⨯⨯⨯ 种不同的方法.3.()1正确区分和使用两个原理是学好本章的关键.区分“分类与分步”的依据在于能否“一次性”完成. 若能“一次性”完成,则不需“分步”,只需分类;否则就分步处理.()2有些较复杂的问题,既要“分类”,又要“分步”,应明确按什么标准“分类”,“分步”,不同的标准,可以有不同的解法,解题时应择优而行.()3在应用计数原理时,要仔细审题,分清是允许重复,还是不允许重复.(二) 典例分析:问题1.()1在所有的两位数中,个位数字大于十位数字的两位数共有多少个?()2三人传球,由甲开始发球,并作第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有 .A 6种 .B 8种 .C 10种 .D 12种问题2.()1(05某某综合测试)某文艺团下基层进行宣传演出,原准备的节目表有6个节目,如果保持这些节目的相对顺序不变,在它们之间再插入2个小品节目,并且这2个小品节目在节目表中既不排头,也不排尾,那么不同的插入方法有.A 20种 .B 30种 .C 42种 .D 56种()2用n 种不同颜色为下列两块广告牌着色(如图),要求在①、②、③、④四个区域中相邻(有公共边界)的区域不用同一种颜色.(Ⅰ)若6n =,为甲着色时共有多少种不同等方法?(Ⅱ)若为乙着色时共有120种不同方法,求n .()3正整数2520的正约数有 个.问题3.某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?甲广告牌 ① ② ③ ④ 乙广告牌 ① ② ③ ④(三)课后作业:1.有一项活动,需在3名老师、8名男生和5名女生中选人参加.()1若只需1人参加,有多少种不同的选法?()2若需老师、男生、女生各1人参加,有多少种不同的选法?()3若需1名老师、1名学生参加,有多少种不同的选法?2.三边长均为正整数,且最大边长为11的三角形的个数为.A 25.B 26.C 36.D 373.若()y f x =是定义域为{1A x =≤x ≤7,*}x N ∈,值域为{}0,1B =的函数,则这样的函数共有 .A 128个 .B 126个 .C 14个 .D 12个4.()13名高中毕业生报考其中的5所重点院校,每人只报一所院校,则有多少种不同的报名方法?()23名高中毕业生报考其中的5所重点院校,每人只报一所院校,每个院校仅允许报一名,有多少种不同的报名方法?5.从1,2,3,…,9九个正整数中任取两个不同的数字分别作为对数和真数,共可以得到多少个不同的对数值?6.从{}3,2,1,0,1,2,3---中任取3个不同的数作为抛物线方程2y ax bx c=++(0a ≠) 的系数,如果抛物线过原点,且顶点在第一象限,则这样的抛物线共有多少条?7.将5封信投入3个邮筒,不同的投法共有.A 35种 .B 53种 .C 3种 .D 15种8.3个学生在4本不同的参考书中各挑选一本,不同选法种数是.A 34C .B 34A .C 43.D 34(四)走向高考:9.(05某某文)把一同排6X 座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1X ,至多分2X ,且这两X 票具有连续的编号,那么不同的分法种数是.A 168.B 96.C 72.D 14410.(05某某)从集合{}1,2,3,,11⋅⋅⋅中任选两个元素作为椭圆方程22221x y m n+=中的m 、n , 则能组成落在矩形区域(){,11B x y x =<,且9}y <内的椭圆个数为.A 43.B 72.C 86.D 9011.(07全国Ⅰ文)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有.A36种.B48种.C96种.D192种12.(07全国Ⅱ文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有.A10种.B20种.C25种.D32种。
高二数学 分类计数原理与分步计算原理同步教案 新人教A版1
《分类加法计数原理和分步乘法计数原理》教案李应钊2009212042一、教学目标知识与技能:理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的实际问题。
过程与方法:通过诱导,探索得出结论,培养学生的理解能力和抽象概括能力;通过知识应用培养学生的分析和解决问题的能力。
情感、态度与价值观:通过实例引入体会数学来源生活,并为生活服务,激发学生学习本章的兴趣;通过探索与发现的过程,使学生体会数学研究的成功与快乐,学会提出问题、分析问题、解决问题,激发学生勇于探索,敢于创新的精神,优化学生的思维品质。
二、重点与难点重点:理解分类加法原理与分步乘法计数原理;并能根据具体问题的特征,选择分类加法原理与分步乘法计数原理解决一些简单的实际问题。
难点:正确理解“完成一件事情”的具体含义,能根据具体问题的特征,正确选择分类加法计数原理与分步乘法计数原理解决计数问题。
关键:使学生从实例分析和例题学习中,正确认识分类和分步的特征。
三、教学方法:本节课采用问题式教学为主线,辅以启发式、探究式、自主式、讨论式的教学方式。
教学辅助手段:多媒体辅助教学。
四、教学过程1.创设情境,激发兴趣。
2011年10月16日,第七届城市运动会在南昌开幕,其中乒乓球比赛项目17日至24日在“乒乓球市”新余举行,共有25支代表队参加比赛。
问:(1)在男单比赛中,若采用小组单循环赛,已知第一小组有A、B、C、D、四人,那么第一小组共有多少场比赛,你能一一列举出来吗?(2)比赛分循环赛、淘汰赛、交叉赛,总共有多少场比赛?2、实例分析,归纳概念问题1、从天津到大连,有四种交通工具供选择:汽车、火车、飞机、轮船。
已知每天汽车有1班,火车有4班,飞机有2班,轮船有2班。
问共有多少种走法?设问1:从天津到大连按交通工具可分____类方法?第一类方法, 乘汽车,有___ 种方法;第二类方法, 乘火车,有___ 种方法;第三类方法,乘飞机,有___ 种方法;第四类方法,乘轮船,有___ 种方法;∴ 从甲地到乙地共有__________ 种方法设问2:如果完成一件事有四类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,在第4类方案中有4m 种不同的方法,那么完成这件事共有多少种不同的方法?设问3:如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有12=+++n N m m m …种不同的方法.称为分类加法计数原理,简称加法原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学分类计数原理与分步计数原理教案教学目标:掌握分类计数原理与分步计数原理,并能用这两个原理分析和解决一些简单问题.教具准备:投影胶片(两个原理).教学过程:[设置情境]先看下面的问题:2002年夏季在韩国与日本举行的第17届世界杯足球赛共有32个队参赛.它们先分成8个小组进行循环赛,决出16强,这16个队按确定的程序进行淘汰赛后,最后决出冠亚军,此外还决出了第三、第四名.问一共安排了多少场比赛?要回答上述问题,就要用到排列、组合的知识.排列、组合是一个重要的数学方法,粗略地说,排列、组合方法就是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类计数原理与分步计数原理,下面我们举一些例子来说明这两个原理.[探索研究]引导学生看下面的问题.(出示投影)从甲地到乙地,可以乘火车,也可以乘汽车,一天中,火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有3+2=5种不同的走法,如图所示.一般地,有如下原理:(出示投影)类办法中有种不同分类计数原理完成一件事,有类办法,在第1的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.再看下面的问题.(出示投影)从甲地到乙地,要从甲地选乘火车到丙地,再于次日从丙地乘汽车到乙地.一天中,火车有3班,汽车有2班.那么两天中,从甲地到乙地共有多少种不同的走法(如图)?这个问题与前一个问题不同.在前一个问题中,采用乘火车或汽车中的任何一种方式,都可以从甲地到乙地;而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到乙地.这里,因为乘火车有3种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,共有3×2=6种不同的走法.(让学生具体列出6种不同的走法)于是得到如下原理:(出示投影)分步计数原理完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第种不同的方法.教师提出问题:分类计数原理与分步计数原理有什么不同?学生回答后,教师出示投影:分类计数原理与分步计数原理都是涉及完成一件事的不同方法的种数的问题,它们的区别在于:分类计数原理与“分类”有关,各种方法相互独立,用其中任何一种方法都可以完成这件事;分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.(出示投影)例1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(解答略)教师点评:注意区别“分类”与“分步”.例2 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字的号码?(解答略)例3 要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?(解答略)[演练反馈]1.有不同的中文书9本,不同的英文书7本,不同的日文书5本.从其中取出不是同一国文字的书2本,问有多少种不同的取法?(由一名学生板演后,教师讲评)2.集合,.从、中各取1个元素作为点的坐标.(1)可以得到多少个不同的点?(2)这些点中,位于第一象限的有几个?(由一名学生板演后,教师讲评)3.某中学的一幢5层教学楼共有3处楼梯,问从1楼到5楼共有多少种不同的走法?4.某艺术组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?[参考答案]1.解:取出不是同一国文字的书2本,可以分为三类:中英、中日、英日,而每一类中又都可分两步来取,因此有种不同的取法.注意:有些较复杂的问题往往不是单纯的“分类”“分步”可以解决的,而要将“分类”“分步”结合起来运用.一般是先“分类”,然后再在每一类中“分步”,综合应用分类计数原理和分步计数原理.2.解:(1)一个点的坐标有、两个元素决定,它们中有一个不同则表示不同的点.可以分为两类:中的元素为,中的元素为或中的元素为,中的元素为,共得到3×4+4×3=24个不同的点.(2)第一象限内的点,即、均为正数,所以只能取、中的正数,共有2×2+2×2=8个不同的点.3.解:由于1、2、3、4层每一层到上一层都有3处楼梯,根据分步计数原理4.解:由题意可知,在艺术组9人中,有且仅有一人既会钢琴又会小号(把该人称为“多面手”),只会钢琴的有6人,只会小号的有2人,把会钢琴、小号各1人的选法分为两类:第一类:多面手入选,另一人只需从其他8人中任选一个,故这类选法共有8种.第二类:多面手不入选,则会钢琴者只能从6个只会钢琴的人中选出,会小号的1人也只能从只会小号的 2人中选出,放这类选法共有6×2=12种,因此有种.故共有20种不同的选法.注意:像本题中的“多面手”可称为特殊“对象”,本题解法中按特殊“对象”进行“两分法分类”是常用的方法.[总结提炼]分类计数原理与分步计数原理体现了解决问题时将其分解的两种常用方法,即分步解决或分类解决,它不仅是推导排列数与组合数计算公式的依据,而且其基本思想贯穿于解决本章应用问题的始终.要注意“类”间互相独立,“步”间互相联系.布置作业:课本P87习题10.1 2,3,4,5板书设计:10.1 分类计数原理与分步计数原理(一)图10-1 图10-2两个原理(二)例题分析例1例2例3(三)练习(四)小结典型例题例1在所有的两位数中,个位数字比十位数字大的两位数有多少个?分析与解:分析个位数字,可分以下几类.个位是9,则十位可以是1,2,3…,8中的一个,故有8个;个位是8,则十位可以是1,2,3…,7中的一个,故有7个;与上同样:个位是7的有6个;个位是6的有5个;……个位是2的只有1个.由分类计数原理知,满足条件的两位数有(个).说明:本题是用分类计数原理解答的,结合本题可加深对“做一件事,完成之可以有n类办法”的理解,所谓“做一件事,完成它可以有n类办法”,这里是指对完成这件事情的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次分类时要注意满足一个基本要求:完成这件事的任何一种方法必须属于某一类,并且分别属于不同两类的两种方法是不同的方法,只有满足这些条件,才可以用分类计数原理.例2在由电键组A与B所组成的并联电路中,如图,要接通电源,使电灯发光的方法有多少种?解:因为只要合上图中的任一电键,电灯即发光,由于在电键组A中有2个电键,电键组B中有3个电键,应用分类计数原理,所以共有:2+3=5种接通电源使灯发亮的方法。
例3二年级一班有学生56人,其中男生38人,从中选取一名男生和一名女生作代表,参加学校组织的调查团,问选取代表的方法有几种.分析与解:男生38人,女生18人,由分步计数原理共有(种)答:选取代表的方法有684种.说明:本题是用分步计数原理解答的,结合本题可以加深对“做一件事,完成之需要分成n个步骤”的理解,所谓“做一件事,完成它需要分成n个步骤”,分析时,首先要根据问题的特点,确定一个分步的可行标准;其次,分步时还要注意满足完成这件事情必须并且只需连续完成这对个步骤后,这件事情才算圆满完成,这时,才能使用来法原理.例4 在电键组A、B组成的串联电路中,如图,要接通电源使灯发光的方法有几种?解:只要在合上A组中两个电键之后,再合上B组中3个电键中的任意一个,才能使电灯的电源接通,电灯才能发光,根据分步计数原理共有:2×3=6种不同的方法接通电源,使电灯发光。
例5有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同类的书,有多少种不同取法?分析:任取两本不同类的书,有三类:一、取数学、语文各一本;二、取语文、英语各一本;三、取数学、英语各一本.然后求出每类取法,利用分类计数原理即可得解.解:取出两本书中,一本数学一本语文有种不同取法,一本语文一本英语有种不同取法,一本数学,一本英语有种不同取法.由分类计数原理知:共有种不同取法.说明:本例是一个综合应用分步计数原理和分类计数原理的题目,在处理这类问题时,一定要搞清哪里是分类,哪里是分步,以确定利用加法或分步计数原理.例6(1993年全国高考题)同室4人各写1张贺年卡,先集中起来,然后每人从中各拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有()A.6种 B.9种 C.11种 D.23种分析:本题完成的具体事情是四个人,每人抽取一张贺卡,问题是按照一定要求,抽取结果有多少种不同情况.我们可以把抽卡片的过程分成四步,先是第一人抽,然后第二人,以此类推,但存在的问题是,我们把四个人记为、、、,他们的卡片依次记为、、、,如果第一步抽取,接着可抽、、,有三种方法,而抽或,仅有两种抽法,这样两步之间产生影响,这样必须就抽的结果进行分类.解法1:设四人A,B,C,D写的贺年卡分别是a,b,c,d,当A拿贺年卡b,则B可拿a,c,d中的任何一个,即B拿a,C拿d,D拿c或B拿c,D拿a,C拿d或B拿d,C拿a,D拿c,所以A拿b时有三种不同分配方法.同理,A拿c,d时也各有三种不同的分配方式.由分类计数原理,四张贺年卡共有3+3+3=9种分配方式.解法2:让四人A,B,C,D依次拿一张别人送出的贺年卡.如果A先拿有3种,此时写被A拿走的那张贺年卡的人也有3种不同的取法.接下来,剩下的两个人都各只有一种取法.由分步计数原理,四张贺年卡不同的分配方式有种.∴ 应选B.注意:(1)本题从不同的角度去思考,从而得到不同的解答方法,解法1是用分类计数原理解答的,解法2是用分步计数原理解答的.在此有必要再进一步对两个原理加以理解:如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.(2)分类计数原理、来法原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.(3)如果把四个人依次抽取的结果用一个图表体现出来,就显得更加清楚.共有9种不同结果.这个图表我们称之为“树形图”,在解决此类问题往往很有效,通过它可以把各种不同结果直观地表现出来.习题精选一、选择题1.将5封信投入3个邮筒,不同的投法共有().A.种B.种C.种D.种2.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有().A.种B.种C.18种D.36种3.已知集合,,从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是().A.18 B.10 C.16 D.144.用1,2,3,4四个数字在任取数(不重复取)作和,则取出这些数的不同的和共有().A.8个B.9个C.10个D.5个二、填空题1.由数字2,3,4,5可组成________个三位数,_________个四位数,________个五位数.2.用1,2,3…,9九个数字,可组成__________个四位数,_________个六位数.3.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有_______种不同的选法.要买上衣、裤子各一件,共有_________种不同的选法.4.大小不等的两个正方体玩具,分别在各面上标有数字1,2,3,4,5,6,则向上的面标着的两个数字之积不小于20的情形有_______种.三、解答题1.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,能得到多少个不同的对数值?2.在连结正八边形的三个顶点组成的三角形中,与正八边形有公共边的有多少个?参考答案:一、选择题:1.B 2.D 3.D 4.A二、填空题:1.2.;3.33;270 4. 5三、解答题:1.注意到1不能为底数,1的对数为0,以2,3,4,7,9中任取两个不同数为真数、底数,可有个值,但,,,,所以对数值共有(个).2.与正八边形有两个公共边的有8个,有一个公共边的有个,所以共有40个.。