河南省郑州市2016届高三数学下册第一次质量预测试题1
河南省2016届高三数学下学期第一次联考试卷理含解析
河南省2016届高三数学下学期第一次联考试卷(理含解析)中原名校2015-2016学年下期高三第一联考数学(理)试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合,则()A.B.C.D.2、函数的最小正周期为()A.B.C.D.3、已知复数满足为虚数单位),则的共轭复数是()A.B.C.D.4、“”是“点到直线的距离为3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5、已知为等差数列的前n项和,若,则()A.47B.73C.37D.746、过双曲线的右焦点与对称轴垂直的直线与渐近线交于两点,若的面积为,则双曲线的离心率为()A.B.C.D.7、某市中心购物商场在“双11”开展的“买三免一”促销活动异常火爆,对当日8时至22时的销售额进行统计,以组距为2小时的频率分布直方图如图所示,已知时至时的销售额为90万元,则10时至12时销售为()A.120万元B.100万元C.80万元D.60万元8、如图,在直角梯形中,为BC边上一点,为中点,则()A.B.C.D.9、运行如图所示的程序,若输入的值为256,则输出的值是()A.3B.-3C.D.10、已知的展开式中含与的项的系数的绝对值之比为,则的最小值为()A.6B.9C.12D.1811、如图,是边长为1的正方体,是高为1的正四棱锥,若点在同一球面上,则该球的表面积为()A.B.C.D.12、在数列中,,则()A.数列单调递减B.数列单调递增C.数列先递减后递增D.数列先递增后递减第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
.13、已知函数为偶函数,则实数的值为14、已知直线与圆:相切且与抛物线交于不同的两点,则实数的取值范围是15、设满足不等式,若,则的最小值为16、已知函数在区间内恰有9个零点,则实数的值为三、解答题:(第17-21题为必考题,每个试题考生都必须作答,第22-24为选做题,考生根据要求作答,)本大题共70分,解答应写出文字说明、证明过程或演算步骤17、(本小题满分12分)在中,已知分别是角的对边,且满足。
河南省郑州市2016届高三第一次模拟考试数学理资料
a的通项公式;
1n
nba,求数列nb的前n项和nT.
(本小题满分12分)
.由于下雨会影响药材品质,基地收益如下表所示:
无雨 无雨 有雨 有雨
无雨 有雨 无雨 有雨
20万元 15万元 10万元 7.5万元
.无雨时收益为20万元;有雨时,收益为10万元.额外聘请
a万元.
20万元的概率为0.36.
,)m
(0,)m.----4分
解:令21
)()()(1)ln,0
Fxfxgxxmxmxx,问题等价于求函数()Fx的零点个数,
分
0m时,21
),0
Fxxxx,有唯一零点;当0m时,(1)()()xxmFxx,
1m时,()0Fx,函数()Fx为减函数,注意到3
0
F,(4)ln40F,所以()Fx有唯一零点;
.
C的直角坐标方程;
C上的动点M到曲线1C的距离的最大值.
(本小题满分10分)选修4-5:不等式选讲
21fxxx
1fx;
0x时,函数21
axxgxa
的最小值总大于函数fx,试求实数a的取值范围.
ABEFCD
2016年高三第一次模拟考试
参考答案
BDA AA DD
; 14.;
EAD与EBC所成锐二面角的大小为60….12分
⑴解:设曲线E上任意一点坐标为(,)xy,
2222
1)3(1)xyxy
-----2分
22
10xyx
22(2)3xy,为所求.-----4分
2ll ,且两条直线均恒过点(1,0)N,
E的圆心为E,则(2,0)E,线段CD的中点为P,则直线EP:2yx,设直线CD:yxt,
河南省2016届高三下数学第一次联考试题文带解析
河南省2016届高三下数学第一次联考试题(文带解析)河南省九校2016届高三下学期第一次联考数学(文科)(考试时间:120分钟试卷满分:150分)第I卷选择题(共60分)一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合A={x|一1≤x1},B={y|y=x+1,x∈A},则AB=()A.[一1,)B.[一1,)C.[1,]D.[,1]2.函数f(x)=1sin2x+tancos2x的最小正周期为() A.B.C.2D.43.已知z为纯虚数,且(2+i)z=1+ai3(i为虚数单位),则|a+z|=()A.1B.C.2D.4.“a=5”是“点(2,1)到直线x=a的距离为3”的() A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.某程序框图如右图所示,若输入p=2,则输出的结果是()A.2B.3C.4D.56.某几何体的三视图如图所示,其中俯视图下半部分是半径为1的半圆,则该几何体的表面积是()A.20+2B.20+C.20-2D.20-7.如图,在矩形ABCD中,AB=2AD,E,F分别为BC,CD 的中点,G为EF中点,则=()A.B.C.D.8.函数f(x)=Asin(的图象如图所示,若,则函数f(x)的解析式为()A.f(x)=2sin(3x一)B.f(x)=2sin(3x+)C.f(x)=2sin(2x+)D.f(x)=2sin(2x一)9.已知函数f(x)=,若函数f(x)在R上有三个不同零点,则a的取值范围是()A.[-3,+∞)B.(-∞,9)C.[3,+∞)D.[9,+∞)10.如图ABCD-A1B1C1D1是边长为1的正方体,S-ABCD是高为l的正四棱锥,若点S,A1,B1,Cl,D1在同一个球面上,则该球的表面积为()A.B.C.D.11.已知F为双曲线=1(a0,b0)的左焦点,定点G(0,c),若双曲线上存在一点P满足|PF|=|PG|,则双曲线的离心率的取值范围是A.(,+∞)B.(1,)C.[,+∞)D.(1,)12.设A,B是函数f(x)定义域集合的两个子集,如果对任意xl∈A,都存在x2∈B,使得f(x1)f(x2)=l,则称函数f(x)为定义在集合A,B上的“倒函数”,若函数f(x)=x2一ax3(a0),x∈R为定义在A=(2,+∞),B=(1,+∞)两个集合上的“倒函数”,则实数a值范围是()A.(,+∞)B.(0,]C.[,+∞)D.[,]第Ⅱ卷非选择题(共90分)二、填空题(每小题5分,共20分)13.若函数f(x)=x++l为奇函数,则a=.14.设x,y满足约束条件,则目标函数z=-x+2y的最小值是.15.已知直线l:y=kx+t与圆x2+(y+l)2=1相切且与抛物线C:x2=4y交于不同的两点M.N,则实数t的取值范围是.16.如图,在Rt△ABC中,∠A=90°,D,E分别是AC,BC 上一点,满足∠ADB=∠CDE=30°,BE=4CE.若CD=,则△BDE的面积为。
河南省郑州市高中毕业年级第一次质量预测--数学(理科) 含参考答案
高中毕业年级第一次质量预测数学(理科) 参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.D3.A4.C5.B6.B7.A8.C9.D 10.C 11.A 12.B.二、填空题:本大题共4题,每小题5分,共20,把答案填在答题卷的横线上13. 2-- 14. 13;- 16.4033. 三、解答题(本大题共6分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)解: 2分所以3a =sin A ,sin 3b B =……6分(Ⅱ)8分 由余弦定理得2222cos c a b ab C =+-,即2224()3a b ab a b ab =+-=+-,又a b ab +=,所以2()340ab ab --=,解得4ab =或1ab =-(舍去).……10分所以11sin 422ABC S ab C ∆==⨯=12分 18. 解:(Ⅰ)证明:在BCA ∆中,由于∴222AB AC BC +=,故AB AC ⊥.……………2分 又SAB ABCD ⊥平面平面,SAB ABCD AB =平面平面,AC ABCD ⊂平面,SAB AC ∴⊥平面,……………4分 又AC SAC ⊂平面,故平面SAC ⊥平面SAB ……………6分(2)如图建立A xyz -空间直角坐标系,()0,0,0A ,()2,0,0,B0)(143)(24CS BC =-=-,,,,,, ()0,4,0,AC ……………8分 设平面SBC 的法向量()111,,n x y z =,00n BC n CS ⎧⋅=⎪⇒⎨⋅=⎪⎩令1111,2,3y x z ===则, n ⎛∴= ⎝⎭.…10分 设平面SCA 的法向量()222,,m x y z =,200m AC m CS ⎧⋅=⎪⇒⎨⋅=⎪⎪⎩⎩2x = (3,0,1∴=-m 219cos ,n mn m n m ⋅==⋅∴二面角--B SC A 的余弦值为……………12分 19. 解:(Ⅰ)由频率分布直方图可知,在抽取的100人中,“围棋迷”有25人,…1分 从而列联表如下:……………3分因为,所以没有理由认为“围棋迷”与性别有关. ……………6分(Ⅱ)由频率分布直方图知抽到“围棋迷”的频率为0. 25,将频率视为概率,即从观众中抽取一名“围棋迷”的概率为.由题意,从而的分布列为……………10分. ……………12分22⨯113,3X B ⎛⎫ ⎪⎝⎭X ()13==3=44E X np ⨯20.(Ⅰ)设动点),(y x N ,),,(00y x A 因为x AB ⊥轴于B ,所以)0,(0x B ,……1分 设圆M 的方程为222:,+=M x y r由题意得2r ==,所以圆M 的程为22:4M x y +=.……………3分由题意, 2AB NB =,所以00(0,)2(,)y x x y -=--,所以,即00,2,=⎧⎨=⎩x x y y 将(,2)A x y 代入圆22:4M x y +=,得动点N 的轨迹方程2214x y += ,……………5分 (Ⅱ)由题意设直线0,++=y m 设直线l 与椭圆交于221,4+=x y 1122(,),(,)P x y Q x y,联立方程22,44,⎧=-⎪⎨+=⎪⎩y m x y得2213440x m ++-=, 222192413(44)16(13)0m m m ∆=-⨯-=-+>,解得213m <,1,213x -±==, 又因为点O 到直线l 的距离2md =,122213PQ x x =-= (10)分1122OPQ m S ∆=⋅⋅=≤. OPQ ∆面积的最大值为1.……………12分21. (Ⅰ)令()()(1)ln(1)F x f x x mx x x =-=-+-,(0,1)x ∈,2分时,由于(0,1)x ∈,有 于是'()F x 在(0,1)x ∈上单调递增,从而'()'(0)0F x F >=,因此()F x 在(0,1)x ∈上单调递增,即()0F x >;……………3分 ②当0m ≥时,由于(0,1)x ∈,有 于是'()F x 在(0,1)x ∈上单调递减,从而'()'(0)0F x F <=, 因此()F x 在(0,1)x ∈上单调递减,即()(0)0F x F <=不符;……………4分,当0(0,]x x ∈时, ,于是'()F x 在0(0,]x x ∈上单调递减, 从而'()'(0)0F x F <=,因此()F x 在0(0,]x x ∈上单调递减, 即()(0)0F x F <=而且仅有(0)0F =不符. 综上可知,所求实数m 的取值范围是……………6分(Ⅱ)对要证明的不等式等价变形如下:对于任意的正整数n ,不等式251(1)n e n ++<恒成立,等价变形211(1)ln(1)0n ++-<相当于(28分 上单调递减,即()(0)0F x F <=;……………10分 211(1)ln(1)05n n n++-<成立; 令得证. ……………12分 22. (本小题满分10分)选修4—4,坐标系与参数方程解:(Ⅰ)消去参数ϕ可得1C 曲线2C 的圆心的直角坐标为)3,0(,∴2C 的直角坐标方程为1)3(22=-+y x .………………4分)2(设),sin ,cos 2(ϕϕM 则222)3(sin )cos 2(||-+=ϕϕMC 9sin 6sin cos 422+-+=ϕϕϕ 13sin 6sin 32+--=ϕϕ16)1(sin 32++-=ϕ.1sin 1≤≤-ϕ,∴,2||min 2=MC ,4||max 2=MC .根据题意可得,112||min =-=MN ,,514||max =+=MN即||MN 的取值范围是[]1,5..………………10分23. (本小题满分10分)选修4-5:不等式选讲解:(Ⅰ)因为,b a b a b x a x +=--≥-++, 所以()f x a b ≥+,当且仅当0))((<-+b x a x 时,等号成立,又0,0a b >>, 所以||a b a b +=+,所以()f x 的最小值为a b +,所以4a b +=..………………5分 (Ⅱ)由(1)知4,4a b b a +==-,分。
河南省豫南2016届高三数学下册第一次联考试题
河南省九校2016届高三下学期第一次联考数学(文科)(考试时间:120分钟试卷满分:150分)第I 卷选择题(共60分)一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.已知集合A={x|一1≤x<1}, B={y|y=12x+1,x∈A},则A I B=( ) A . D . 2.函数f(x)=121sin 2x+12tan 3πcos2x 的最小正周期为( ) A .2πB. π C .2π D. 4π 3.已知z 为纯虚数,且(2+i)z= 1+ ai 3(i 为虚数单位),则 |a+z|=( )A .1B 4.“a=5”是“点(2,1)到直线x=a 的距离为3”的( ) A.充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 5.某程序框图如右图所示,若输入p=2,则输出的结果是( )A.2B.3C.4D.56.某几何体的三视图如 图所示,其中俯视 图下半部分是半径为1的半圆,则该几何 体的表面积是( ) A. 20+2π B .20+π C .20 - 2π D .20-π7.如图,在矩形ABCD 中,AB=2AD ,E ,F 分别为BC ,CD 的中点,G 为EF 中点,则AG uuu r=( )A . 2133AB AD +uu u r uuu r B .1233AB AD +uuu r uuu rC .3344AB AD +uu u r uuu r D .2233AB AD +uuu r uuu r8.函数f(x)= Asin ()(0,)22x ππωϕωϕ+>-<<的图象如图所示,若288PQ QS π⋅=-uu u r uu r ,则函数f(x)的解析式为( ) A .f(x)= 2sin(3x 一4π) B .f(x)= 2sin(3x+4π) C. f(x)= 2sin(2x+3π) D.f(x)= 2sin(2x 一3π) 9.已知函数f(x)= 23ln ||3x a x x x ⎧- ≥⎨ <⎩,若函数f (x)在R 上有三个不同零点,则a 的取值范围是( ) A . C .第Ⅱ卷非选择题(共90分)二、填空题(每小题5分,共20分) 13.若函数f(x)=x+(21)1a x x+++l 为奇函数,则a= .14.设x ,y 满足约束条件2311x x y y x ≤-⎧⎪+≤-⎨⎪≥-+⎩,则目标函数z=-x+2y 的最小值是 .15.已知直线l :y=kx+t 与圆x 2+(y+l)2=1相切且与抛物线C :x 2=4y 交于不同的两点M.N,则实数t的取值范围是 .16.如图,在Rt△ABC中,∠A= 90°,D,E分别是AC,BC上一点,满足∠ADB= ∠CDE= 30°,BE= 4CE.若的面积为。
河南省2016届高三下数学第一次联考试题理有解析
河南省2016届高三下数学第一次联考试题(理有解析)河南省九校2016届高三下学期第一次联考数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卷上;2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卷上对应的题目标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卷上,写在本试卷上无效;4.考试结束后,将本试卷和答题卷一并交回。
第Ⅰ卷选择题(共60分)一、选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上。
)1.已知集合A={x|≥16},B={m},若A∪B=A,则实数m的取值范围是A.(-∞,-4)B.[4,+∞)C.[-4,4]D.(-∞,-4]∪[4,+∞)2.已知复数Z的共轭复数=,则复数Z的虚部是A.B.iC.-D.-i3.若f(x)=,则f(f())=A.-2B.-3C.9D.4.若{}为等差数列,是其前n项和,且S11=,{}为等比数列,=,则tan(+)的值为A.B.C.D.5.执行如右图所示的程序框图,则输出的结果是A.B.C.D.6.已知点P是抛物线=4y上的动点,点P在x轴上的射影是Q,点A的坐标是(8,7),则|PA|+|PQ|的最小值为A.7B.8C.9D.107.已知表示的平面区域为D,若∈D,2x+y≤a为真命题,则实数a的取值范围是A.[5,+∞)B.[2,+∞)C.[1,+∞)D.[0,+∞)8.如右图是一个空间几何体的三视图,则该几何体的侧面积是A.3++B.C.2++D.5+9.已知双曲线M:(a>0,b>0)的一个焦点到一条渐近线的距离为(c为双曲线的半焦距长),则双曲线的离心率e为A.B.C.D.10.四面体的一条棱长为x,其余棱长为3,当该四面体体积最大时,经过这个四面体所有顶点的球的表面积为A.B.C.D.15π11.设x,y∈R,则+的最小值为A.4B.16C.5D.2512.当|a|≤1,|x|≤1时,关于x的不等式|-ax -|≤m恒成立,则实数m的取值范围是A.[,+∞)B.[,+∞)C.[,+∞)D.[,+∞)第Ⅱ卷非选择题(共90分)二、填空题(本大题共4个小题,每小题5分,共计20分。
河南省郑州市高三数学第一次质量检测试题文
2016年高中毕业年级第一次质量预测文科数学 参考答案一、选择题ACCCC BCBAC DD二、填空题13.{}|0;≥x x 14. ;24π15. 1; 16. 13.2三、解答题(共70分)17.解:⑴由已知条件: 21415,43428,2=+=⎧⎪⎨⨯=+⨯=⎪⎩a a d S a d ………………………2分 11,4.=⎧∴⎨=⎩a d ………………………4分 ()114 3.n a a n d n ∴=+-⨯=-………………………6分⑵由⑴可得()(1)(1)43n n n n b a n =-=--………………………8分()21591317......8344.n T n n n =-+-+-++-=⨯=………………………12分18.解:⑴设“当罚金定为10元时,闯红灯的市民改正行为”为事件A ,……2分则()401.2005p A ==………………………4分 ∴当罚金定为10元时,比不制定处罚,行人闯红灯的概率会降低15.……………6分 ⑵由题可知A 类市民和B 类市民各有40人,故分别从A 类市民和B 类市民各抽出两人,设从A 类市民抽出的两人分别为1A 、2A ,设从B 类市民抽出的两人分别为1B 、2B .设从“A 类与B 类市民按分层抽样的方法抽取4人依次进行深度问卷”为事件M ,………………………8分则事件M 中首先抽出1A 的事件有:()1212,,,A A B B ,()1221,,,A A B B ,()1122,,,,A B A B()1122,,,A B B A ,()1221,,,A B A B ,()1212,,,A B B A 共6种.同理首先抽出2A 、1B 、2B 的事件也各有6种.故事件M 共有4624⨯=种.………………………10分设从“抽取4人中前两位均为B 类市民”为事件N ,则事件N 有()1212,,,B B A A ,()1221,,,B B A A ,()2112,,,B B A A ,()2121,,,B B A A .()41.246P N ∴==∴抽取4人中前两位均为B 类市民的概率是16.………………………12分19. ⑴证明:设EC 与DF 交于点N ,连结MN ,在矩形CDEF 中,点N 为EC 中点,因为M 为EA 中点,所以MN ∥AC ,又因为AC ⊄平面MDF ,MN ⊂平面MDF ,所以AC ∥平面MDF . ……………………4分⑵解:取CD 中点为G ,连结,BG EG , 平面CDEF ⊥平面ABCD ,平面CDEF 平面ABCD CD =,AD ⊂平面ABCD ,AD CD ⊥,所以AD ⊥平面CDEF ,同理ED ⊥平面ABCD ,……………………7分所以,ED 的长即为四棱锥E ABCD -的高,……………………8分在梯形ABCD 中1,//2AB CD DG AB DG ==,所以四边形ABGD 是平行四边形,//BG AD ,所以BG ⊥平面CDEF ,又因为DF ⊂平面CDEF ,所以BG DF ⊥,又BE DF ⊥,BE BG B = , 所以DF ⊥平面BEG ,DF EG ⊥.……………………10分注意到Rt DEG Rt EFD ∆∆ ,所以28DE DG EF =⋅=,22DE =, 所以1423E ABCD ABCD V S ED -=⋅= . ……………………12分20. ⑴解:设曲线E 上任意一点坐标为(,)x y ,由题意,2222(1)3(1)x y x y ++=-+, ……………………2分整理得22410x y x +-+=,即22(2)3x y -+=为所求.……………………4分⑵解:由题知12l l ⊥ ,且两条直线均恒过点(1,0)N ,……………………6分 设曲线E 的圆心为E ,则(2,0)E ,线段CD 的中点为P ,则直线EP :2y x =-,设直线CD :y x t =-+,由2,y x y x t =-⎧⎨=-+⎩ ,解得点22(,)22t t P +-, ……………………8分 由圆的几何性质,221||||||||2NP CD ED EP ==-, ……………………9分 而22222||(1)()22t t NP +-=-+,2||3ED =,22|2|||()2t EP -=,解之得0t =,或3t =, ……………………10分所以直线CD 的方程为y x =-,或3y x =-+. ……………………12分21. ⑴解:函数()f x 的定义域为(0,)+∞,()()()x m x m f x x +-'=,…………2分当0x m <<时,()0f x '<,函数()f x 的单调递减,当x m >时,()0f x '>,函数()f x 的单调递增.综上:函数()f x 的单调增区间是(,)m +∞,减区间是(0,)m .……………………5分 ⑵解:令21()()()(1)ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,……………………6分 (1)()()x x m F x x --'=-,当1m =时,()0F x '≤,函数()F x 为减函数, 注意到3(1)02F =>,(4)ln 40F =-<,所以()F x 有唯一零点;………………8分当1m >时,01x <<或x m >时()0F x '<,1x m <<时()0F x '>, 所以函数()F x 在(0,1)和(,)m +∞单调递减,在(1,)m 单调递增, 注意到1(1)02F m =+>,(22)ln(22)0F m m m +=-+<,所以()F x 有唯一零点; ……………………11分综上,函数()F x 有唯一零点,即两函数图象总有一个交点. ……………12分22. ⑴证明:因为ECF CAE CEA CAE CBA ∠=∠+∠=∠+∠,EFC CDA BAE CBA ∠=∠=∠+∠, AE 平分BAC ∠, 所以ECF EFC ∠=∠,所以EC EF =. ……………………4分⑵解:因为ECD BAE EAC ∠=∠=∠,CEA DEC ∠=∠,所以CEA DEC ∆∆ , ……………………6分 即2,CE DE EC EA EA CE DE ==, 由⑴知,3EC EF ==,所以92EA =, …………8分 所以45()4AC AF AD AE AE DE AE ⋅=⋅=-⋅=. ……………………10分23.解:(Ⅰ)()π22cos 2cos sin 4ρθθθ⎛⎫=-=+ ⎪⎝⎭,……………………………2分 即()22cos sin ρρθρθ=+,可得22220x y x y +--=, 故2C 的直角坐标方程为()()22112x y -+-=.…………………………………………5分 (Ⅱ)1C 的直角坐标方程为320x y ++=, 由(Ⅰ)知曲线2C 是以(1,1)为圆心的圆,且圆心到直线1C 的距离()2213233213d +++==+, ………………………8分 所以动点M 到曲线1C 的距离的最大值为33222++.………………………10分24.解:(Ⅰ)①当2x >时,原不等式可化为211x x --->,此时不成立;②当12x -≤≤时,原不等式可化为211x x --->,即10x -≤<,③当1x <-时,原不等式可化为211x x -++>,即1x <-, ……3分 ∴原不等式的解集是{}|0x x <. ………………………5分 (Ⅱ)因为1()121g x ax a x =+-≥-,当且仅当ax a =时“=”成立,所以min ()21g x a =-,-----7分12,02,()3,2x x f x x -<≤⎧=⎨->⎩ ,所以()[3,1)f x ∈-,-----9分∴211a -≥,即1a ≥为所求. -----10分。
河南省郑州市高三第一次模拟考试.docx
河南省郑州市2016年高三第一次模拟考试理科数学(时间120分钟 满分150分)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分. 1.设全集{}*N 4U x x =∈≤,集合{}1,4A =,{}2,4B =,则()U A B =ð( )A.{}1,2,3B. {}1,2,4C. {}1,4,3D. {}2,4,32. 设1z i =+(i 是虚数单位),则2z z-=( )A. iB. 2i -C. 1i -D.03.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若sin 3cos b aA B=,则cos B =( ) A. 12-B.12C. 32-D.324.函数()cos x f x e x =在点()()0,0f 处的切线方程为( ) A.10x y ++=B. 10x y +-=C. 10x y -+=D. 10x y --=5.已知函数()1cos 2xf x x ⎛⎫=- ⎪⎝⎭,则()f x 在[]0,2π上的零点的个数为( )A.1B.2C.3D.46. 按如下的程序框图,若输出结果为273,则判断框?处应补充的条件为( )开始结束是否1i =0S =3iS S =+2i i =+?S 输出A.7i >B. 7i ≥C. 9i >D. 9i ≥7. 设双曲线22221x y a b -=的一条渐近线为2y x =-,且一个焦点与抛物线214y x =的焦点相同,则此双曲线的方程为( ) A.225514x y -= B. 225514y x -= C. 225514x y -=D.225514y x -= 8. 正项等比数列{}n a 中的14031,a a 是函数()3214633f x x x x =-+-的极值点,则20166loga =( ) A.1B.2C.2D. 1-9. 右图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图的虚线是三角形的中线,则该四面体的体积为() A.23B.43C.83D. 210.已知函数()4f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,[]22,3x ∃∈使得()()12f x g x ≥,则实数a 的取值范围是( )A.1a ≤B. 1a ≥C. 2a ≤D. 2a ≥11.已知椭圆()222210x y a b a b +=>>的左右焦点分别为1F 、2F ,过点2F 的直线与椭圆交于,A B 两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( ) A.22B. 23-C. 52-D. 63-12.已知函数()222,02,0x x x f x x x x ⎧-+≥=⎨-<⎩,若关于x 的不等式()()220f x af x b +-<⎡⎤⎣⎦恰有1个整数解,则实数a 的最大值是( ) A.2 B.3C.5D.8第Ⅱ卷(非选择题 共90分)本卷包含必考题和选考题两部分,第13-第21题为必考题,每个题目考生都必须作答.第22-24题为选考题,考生根据要求作答.二、填空题:本大题共4个小题,每小题5分,共20分. 13.二项式66x x ⎛⎫- ⎪⎝⎭的展开式中,2x 的系数是_______.14.若不等式222x y +≤所表示的平面区域为M ,不等式组0026x y x y y x -≥⎧⎪+≥⎨⎪≥-⎩表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为________.15.ABC ∆的三个内角为,,A B C ,若3cos sin 7tan 123sin cos A AA A π+⎛⎫=- ⎪-⎝⎭,则2cos sin 2B C +的最大值为________.16.已知点()0,1A -,()3,0B ,()1,2C ,平面区域P 是由所有满足AM AB λ=+AC μ(2,m λ<≤ 2)n μ<≤的点M 组成的区域,若区域P 的面积为16,则m n +的最小值为________.三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明及演算步骤. 17.(本小题满分12分)已知数列{}n a 的首项为11a =,前n 项和n S ,且数列n S n ⎧⎫⎨⎬⎩⎭是公差为2的等差数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若()1nn n b a =-,求数列{}n b 的前n 项和n T .18.(本小题满分12分)某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘.由于下雨会影响药材品质,基地收益如下表所示:周一 无雨 无雨 有雨 有雨 周二无雨有雨无雨有雨收益 20万元 15万元 10万元 7.5万元若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益为20万元;有雨时,收益为10万元.额外聘请工人的成本为a 万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.(Ⅰ)若不额外聘请工人,写出基地收益X 的分布列及基地的预期收益; (Ⅱ)该基地是否应该外聘工人,请说明理由.19.(本小题满分12分) 如图,矩形C D E F 和梯形ABCD 所在的平面互相垂直,90BAD ADC ∠=∠=,12AB AD CD ==,BE DF ⊥.(Ⅰ)若M 为EA 中点,求证:AC ∥平面MDF ; (Ⅱ)求平面EAD 与平面EBC 所成二面角的大小.EF D C A BM20.(本小题满分12分)已知点()1,0M -,()1,0N ,曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍. (Ⅰ)求曲线E 的方程;(Ⅱ)已知0m ≠,设直线1:10l x my --=交曲线E 于,A C 两点,直线2:0l mx y m +-=交曲线E 于,B D 两点,,C D 两点均在x 轴下方.当CD 的斜率为1-时,求线段AB 的长.21.(本小题满分12分)设函数()21ln 2f x x m x =-,()()21g x x m x =-+.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当0m ≥时,讨论函数()f x 与()g x 图象的交点个数.请考生在22-24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目的题号涂黑.把答案填在答题卡上. 22.(本小题满分10分)选修4-1:几何证明选讲如图,BAC ∠的平分线与BC 和ABC ∆的外接圆分别相交于D 和E ,延长AC 交过,,D E C 的三点的圆于点F .(Ⅰ)求证:EC EF =;(Ⅱ)若2ED =,3EF =,求AC AF ⋅的值.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线1C 的参数方程为32212x t y t⎧=--⎪⎪⎨⎪=⎪⎩,曲线2C 的极坐标方程为22cos 4πρθ⎛⎫=- ⎪⎝⎭.以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系.(Ⅰ)求曲线2C 的直角坐标方程;(Ⅱ)求曲线2C 上的动点M 到曲线1C 的距离的最大值.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()21f x x x =--+ (Ⅰ)解不等式()1f x >;(Ⅱ)当0x >时,函数()()210ax x g x a x-+=>的最小值总大于函数()f x ,试求实数a 的取值范围.ABEFCD河南省郑州市2016年高三第一次模拟考试理科数学 参考答案一、选择题ADBCC BDA AA DD 二、填空题 13.60; 14.;24π 15. 3;216.42 2.+ 三、解答题(共70分) 17.⑴解:由已知条件:1(1)221,nS n n n=+-⨯=-22n S n n ∴=------2分 当2n ≥时,()()221=22114 3.-⎡⎤=------=-⎣⎦n n n a S S n n n n n当1n =时,111,a S ==而4131⨯-=,43n a n ∴=-,------6分 ⑵解:由⑴可得()(1)(1)43,=-=--n n n n b a n -----7分 当n 为偶数时,()1591317......4342,2n nT n n =-+-+-++-=⨯= ---9分 当n 为奇数时,1n +为偶数112(1)(41)2 1.n n n T T b n n n ++=-=+-+=-+ ---11分综上,2,(2,),21,(21,).N N **⎧=∈⎪=⎨-+=-∈⎪⎩n n n k k T n n k k --------12分18.⑴解:设下周一有雨的概率为p ,由题意,20.36,0.6p p ==, -------2分 基地收益X 的可能取值为20,15,10,7.5,则(20)0.36,(15)0.24,(10)0.24,(7.5)0.16,P X P X P X P X ======== 所以基地收益X 的分布列为:-------6分基地的预期收益()200.36150.24100.247.50.1614.4E X =⨯+⨯+⨯+⨯=,所以,基地的预期收益为14.4万元.---------8分 ⑵设基地额外聘请工人时的收益为Y 万元,则其预期收益()200.6100.416E Y a a =⨯+⨯-=-(万元),--------10分X20 15 10 7.5 p 0.360.240.240.16()() 1.6E Y E X a -=-,综上,当额外聘请工人的成本高于1.6万元时,不外聘工人;成本低于1.6万元时,外聘工人;成本恰为1.6万元时,是否外聘工人均可以.------12分19.⑴证明:设EC 与DF 交于点N ,连结MN ,在矩形CDEF 中,点N 为EC 中点, 因为M 为EA 中点,所以MN ∥AC ,又因为AC ⊄平面MDF ,MN ⊂平面MDF ,所以AC ∥平面MDF .-----4分⑵解:因为平面CDEF ⊥平面ABCD ,平面CDEF 平面ABCD CD =,DE ⊂平面CDEF ,DE CD ⊥,所以DE ⊥平面ABCD ,------6分以D 为坐标原点,建立如图空间直角坐标系,设,DA a DE b ==,(,,0),(0,0,),(0,2,0),(0,2,)B a a E b C a F a b ,(,,),(0,2,),(,,0)BE a a b DF a b BC a a =--==-,因为BE DF ⊥,所以22(,,)(0,2,)20BE DF a a b a b b a ⋅==--⋅=-=,2b a =,--8分设平面EBC 的法向量(,,)m x y z =, 由20,m BE ax ay az m BC ax ay⎧⋅=--+=⎪⎨⋅=-+⎪⎩ 得到m 的一个解为(1,1,2)m =,注意到平面EAD 的法向量(0,1,0)n =,--10分 而1cos ,,2||||⋅<>==⋅m n m n m n 所以,平面EAD 与EBC 所成锐二面角的大小为60.12分20.⑴解:设曲线E 上任意一点坐标为(,)x y ,由题意,2222(1)3(1)x y x y ++=-+, -----2分 整理得22410x y x +-+=,即22(2)3x y -+=,为所求.-----4分⑵解:由题知12l l ⊥ ,且两条直线均恒过点(1,0)N ,设曲线E 的圆心为E ,则(2,0)E ,线段CD 的中点为P ,则直线EP :2y x =-,设直线CD :y x t =-+,由2,y x y x t =-⎧⎨=-+⎩,解得点22(,)22t t P +-,-----6分由圆的几何性质,221||||||||2NP CD ED EP ==-,而22222||(1)()22t t NP +-=-+,2||3ED =,22|2|||()2t EP -=,解之得0t =或3t =,又,C D 两点均在x 轴下方,直线CD :y x =-.由22410,,⎧+-+=⎨=-⎩x y x y x 解得21,2212x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 或21,22 1.2⎧=+⎪⎪⎨⎪=--⎪⎩x y 不失一般性,设2222(1,1),(1,1)2222C D --+--, --9分 由22410,(1)x y x y u x ⎧+-+=⎨=-⎩消y 得:2222(1)2(2)10u x u x u +-+++=,⑴ 方程⑴的两根之积为1,所以点A 的横坐标22A x =+, 又因为点22(1,1)22C --在直线1:10l x my --=上,解得21m =+, 直线1:(21)(1)l y x =--,所以(22,1)A +,--11分同理可得,(22,1)B -,所以线段AB 的长为22. --12分21.⑴解:函数()f x 的定义域为(0,)+∞,2()x mf x x-'=,当0m ≤时,()0f x '≥,所以函数()f x 的单调增区间是(0,)+∞,无减区间;--2分当0m >时,()()()x m x m f x x+-'=;当0x m <<时,()0f x '<,函数()f x 的单调递减;当x m >时,()0f x '>,函数()f x 的单调递增.综上:当0m ≤时,函数()f x 的单调增区间是(0,)+∞,无减区间;当0m >时,函数()f x 的单调增区间是(,)m +∞,减区间是(0,)m .----4分 ⑵解:令21()()()(1)ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数, ----5分当0m =时,21(),02F x x x x =-+>,有唯一零点;当0m ≠时,(1)()()x x m F x x--'=-, 当1m =时,()0F x '≤,函数()F x 为减函数,注意到3(1)02F =>,(4)ln 40F =-<,所以()F x 有唯一零点;--7分当1m >时,01x <<或x m >时()0F x '<,1x m <<时()0F x '>,所以函数()F x 在(0,1)和(,)m +∞单调递减,在(1,)m 单调递增,注意到1(1)02F m =+>, (22)ln(22)0F m m m +=-+<,所以()F x 有唯一零点; ----9分当01m <<时,0x m <<或1x >时()0F x '<,1m x <<时()0F x '>, 所以函数()F x 在(0,)m 和(1,)+∞单调递减,在(,1)m 单调递增,意到ln 0m <, 所以()(22ln )02mF m m m =+->,而(22)ln(22)0F m m m +=-+<,所以()F x 有唯一零点. ---11分综上,函数()F x 有唯一零点,即两函数图象总有一个交点. ---12分22.⑴证明:因为ECF CAE CEA CAE CBA ∠=∠+∠=∠+∠,∠=∠=EFC CDA ∠+∠BAE CBA ,AE 平分BAC ∠,所以ECF EFC ∠=∠,所以EC EF =.---4分 ⑵解:因为ECD BAE EAC ∠=∠=∠,CEA DEC ∠=∠,所以CEA DEC ∆∆, 即2,CE DE EC EA EA CE DE==,---6分 由⑴知,3EC EF ==,所以92EA =, ---8分 所以45()4AC AF AD AE AE DE AE ⋅=⋅=-⋅=. ---10分23.⑴解:()π22cos 2cos sin 4ρθθθ⎛⎫=-=+ ⎪⎝⎭,----------2分 即()22cos sin ρρθρθ=+,可得22220x y x y +--=,故2C 的直角坐标方程为()()22112x y -+-=.----------5分⑵解:1C 的直角坐标方程为320x y ++=,由⑴知曲线2C 是以(1,1)为圆心的圆,且圆心到直线1C 的距离()2213233213d +++==+, ----------8分 所以动点M 到曲线1C 的距离的最大值为33222++.----------10分—————————— 新学期 新成绩 新目标 新方向 ——————————桑水 24.⑴解:当2x >时,原不等式可化为211x x --->,此时不成立; 当12x -≤≤时,原不等式可化为211x x --->,即10x -≤<, 当1x <-时,原不等式可化为211x x -++>,即1x <-,-----3分 综上,原不等式的解集是{}|0x x <.-----5分 ⑵解:因为1()121g x ax a x=+-≥-,当且仅当a x a =时“=”成立, 所以min ()21g x a =-,-----7分12,02,()3,2x x f x x -<≤⎧=⎨->⎩,所以()[3,1)f x ∈-,∴211a -≥,即1a ≥为所求.---10分。
高考数学-下学期高三年级一模考试.docx
2015-2016学年度下学期高三年级一模考试理数试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设命题甲:2210ax ax ++>的解集是实数集R ;命题乙:01a <<,则命题甲是命题乙成立的( ) A .充分不必要条件 B .充要条件 C .必要不充分条件 D .既不充分也不必要条件 2.设,a b R ∈且0b ≠,若复数()3a bi +(i 为虚数单位)是实数,则( ) A .223b a = B .223a b = C .229b a = D .229a b = 3.等差数列{}n a 中,2nna a 是一个与n 无关的常数,则该常数的可能值的集合为( ) A .{}1 B .11,2⎧⎫⎨⎬⎩⎭C .12⎧⎫⎨⎬⎩⎭D .10,1,2⎧⎫⎨⎬⎩⎭4.ABC ∆中三边上的高依次为111,,13511,则ABC ∆为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不存在这样的三角形6.已知F 是椭圆22:1204x y C +=的右焦点,P 是C 上一点,()2,1A -,当APF ∆周长最小时,其面积为( ) A .4 B .8 C .3 D .227.已知等式()()()()432432123412341111x a x a x a x a x b x b x b x b ++++=++++++++,定义映射()()12341234:,,,,,,f a a a a b b b b →,则()4,3,2,1f =( )A .()1,2,3,4B .()0,3,4,0C . ()0,3,4,1--D .()1,0,2,2--8.如图所示是一几何体的三视图,正视图是一等腰直角三角形,且斜边BD 长为2,侧视图是一直角三角形,俯视图为一直角梯形,且1AB BC ==,则异面直线PB 与CD 所成角的正切值是( ) A .1 B .2 C .22D .129.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀.有多少把握认为学生的学生成绩与物理成绩有关系( )A .99.9%B . 99.5%C .97.5%D .95% 参考数据公式:①独立性检验临界值表②独立性检验随机变量2K 的值的计算公式:()()()()()22n ad bc K a b c d a c b d -=++++10.在一个棱长为4的正方体内,你认为最多放入的直径为1的球的个数为( ) A .64 B .65 C .66 D .6711.定义:分子为1且分母为正整数的分数成为单位分数,我们可以把1分拆为若干个不同的单位分数之和.如:1111111111111,1,1236246122561220=++=+++=++++,依次类推可得:11111111111111++++++26123042567290110132156m n =++++++,其中,,m n m n N +≤∈.设1,1x m y n ≤≤≤≤,则21x y x +++的最小值为( ) A .232 B .52 C .87 D .34312.已知,a b R ∈,直线2y ax b π=++与函数()tan f x x =的图像在4x π=-处相切,设()2x g x e bx a =++,若在区间[]1,2上,不等式()22m g x m ≤≤-恒成立,则实数m ( )A .有最小值e -B .有最小值eC .有最大值eD .有最大值1e +第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()2f x x ax =-的图像在点()()1,1A f 处的切线与直线320x y ++=垂直,执行如图所示的程序框图,输出的k 值是 .14.在直角坐标系xOy 中,已知点()0,1A 和点()3,4B -,若点C 在AOB ∠的平分线上,且2OC =u u u r,则OC =u u u r.15.如图,将平面直角坐标系中的纵轴绕原点O 顺时针旋转30︒后,构成一个斜坐标平面xOy .在此斜坐标平面xOy 中,点(),P x y 的坐标定义如下:过点P 作两坐标轴的平分线,分别交两轴于,M N 两点,则M 在Ox 轴上表示的数为x ,N 在Oy 轴上表示的数为y .那么以原点O 为圆心的单位圆在此斜坐标系下的方程为 .16.已知ABC ∆的面积为S ,内角,,A B C 所对的边分别为,,a b c ,且2sin ,sin ,cos C B A 成等比数列,2213,218322b a c ac =≤+≤,则()2419216c S a++的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)设等比数列{}n a 的前n 项和为n S ,已知,12a =,且1234,3,2S S S 成等差数列. (1)求数列{}n a 的通项公式;(2)设25n n b n a =-⋅,求数列{}n b 的前n 项和n T .18(本小题满分12分)如图,四边形PCBM 是直角梯形,90,,1,2PCB PM BC PM BC ∠=︒==P ,又1,120,AC ACB AB PC =∠=︒⊥,直线AM 与直线PC 所成的角为60︒.(1)求证:PC AC ⊥;(2)求二面角M AC B --的余弦值; (3)求点B 到平面MAC 的距离.19.(本小题满分12分)电子商务在我国发展迅猛,网上购物成为很多人的选择.某购物网站组织了一次促销活动,在网页的界面上打出广告:高级口香糖,10元钱三瓶,有8种口味供你选择(其中有一种为草莓口味).小王点击进入网页一看,只见有很多包装完全相同的瓶装口香糖排在一起,看不见具体口味,由购买者随机点击进行选择(各种口味的高级口香糖均超过3瓶,且各种口味的瓶数相同,每点击选择一瓶后,网页自动补充相应的口香糖).(1)小王花10元钱买三瓶,请问小王共有多少种不同组合选择方式?(2)小王花10元钱买三瓶,由小王随机点击三瓶,请列出有小王喜欢的草莓味口香糖瓶数ξ的分布列,并计算其数学期望和方差.20.(本小题满分12分)已知椭圆()22122:10x y C a b a b +=>>的离心率为22,其短轴的下端点在抛物线24x y =的准线上.(1)求椭圆1C 的方程;(2)设O 为坐标原点,M 是直线:2l x =上的动点,F 为椭圆的右焦点,过点F 作OM 的垂线与以OM 为直径的圆2C 相交于,P Q 两点,与椭圆1C 相交于,A B 两点,如图所示. ①若6PQ =,求圆2C 的方程;②设2C 与四边形OAMB 的面积分别为12,S S ,若12S S λ=,求λ的取值范围.21.(本小题满分12分)设a 为实数,函数()()211xf x x e a x -=--.(1)当1a =时,求()f x 在3,24⎛⎫⎪⎝⎭上的最大值; (2)设函数()()()11,xg x f x a x e-=+--当()g x 有两个极值点()1212,x x x x <时,总有()()'211x g x f x λ≤,求实数λ的值(()'f x 为()f x 的导函数).请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,ABC ∆内接于直径为BC 的圆O ,过点A 作圆O 的切线交CB 的延长线于点,P BAC ∠的平分线分别交BC 和圆O 于点,D E ,若210PA PB ==. (1)求证:2AC AB =; (2)求AD DE ⋅的值.23.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线14cos :3sin x t C y t =-+⎧⎨=+⎩(t 为参数),28cos :3sin x C y θθ=⎧⎨=⎩(θ为参数).(1)化12,C C 的方程为普通方程,并说明他们分别表示什么曲线; (2)若1C 上的点P 对应的参数为,2t Q π=为2C 上的动点,求PQ 的中点M 到直线332:2x tC y t=+⎧⎨=-+⎩(t 为参数)距离的最小值.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()()21f x x a x a R =---∈. (1)当3a =时,求函数()f x 的最大值; (2)解关于x 的不等式()0f x ≥.参考答案及解析一、选择题1-5 CABCC 6-10 ACCBC 11-12 CD 二、填空题 13. 6 14. 10310,55⎛⎫-⎪ ⎪⎝⎭15.2210x y xy ++-= 16.34(2)Q 当1,2n =时,250n -<,当3n ≥时,()34101232252n n T n =+⨯+⨯++-⨯L()4512201232252n n T n +=+⨯+⨯++-⨯L ,两式相减,得 ()()()()43451121210822222522225212n nn n n T n n -++--=-+++++--⨯=-+⨯--⨯-L()134722n n +=-+-⨯ ()134272n n T n +∴=+-⨯ ()16,110,234272,3n n n T n n n +⎧=⎪∴==⎨⎪+-⨯≥⎩18.(1),,PC BC PC AB AB BC B ⊥⊥⋂=QPC ∴⊥平面ABC ,AC ⊆Q 平面ABC ,PC AC ∴⊥(2)在平面ABC 内,过点C 作BC 的垂线,并建立空间直角坐标系,如图所示设()()()31330,0,0,0,,0,1,,,0,,2222P z CP z AM z z ⎛⎫⎛⎫∴==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r u u u u r22cos 60cos 3AM CP z AM CP AM CP z z ⋅︒=〈⋅==⋅+⋅u u u u r u u u ru u u u r u u u r Q u u u u r u u u r ,且0z > 21331,,12223zz AM z ⎛⎫∴=∴=∴=- ⎪ ⎪+⎝⎭u u u u r设平面MAC 的一个法向量为(),,1n x y =r则由3310302230311022x y n AM x n CA y x y ⎧⎧-++=⎪⎧⋅==-⎪⎪⎪⇒∴⎨⎨⎨⋅=⎪⎪⎪⎩=--=⎩⎪⎩r u u u u r r u u u r ,3,1,13n ⎛⎫∴=-- ⎪ ⎪⎝⎭r ∴平面ABC 的一个法向量为()0,0,1CP =u u u r21cos ,7n CP n CP n CP⋅〈〉==⋅r u u u rr u u u r r u u u r 显然,二面角M AC B --为锐二面角, 所以二面角M AC B --的余弦值为217(3)点B 到平面MAC 的距离2217CB n d n⋅==u u u r rr .19.(1)若三瓶口味均不一样,有3856C =若其中两瓶口味不一样,,有118756C C =,若三瓶口味一样,有8种,所以小王共有56+56+8=120种选择方式 (2)ξ可能的取值为0,1,2,3由于各种口味的高级口香糖均不超过3瓶,且各种口味的瓶数相同,有8种不同口味 所以小王随机点击一次获得草莓味口香糖的概率为18故随机变量ξ服从二项分布,即13,8B ξ⎛⎫ ⎪⎝⎭:()0303113430188512P C ξ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭,()1213111471188512P C ξ⎛⎫⎛⎫==-=⎪ ⎪⎝⎭⎝⎭ ()212311212188512P C ξ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭,()3331113188512P C ξ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭所以ξ的分布列为ξ 0 1 2 3P343512 147512 21512 1512期数学期望()13388E np ξ==⨯=方差()()1721138864D np p ξ=-=⨯⨯=20.(1)Q 椭圆短轴下端点在抛物线24x y =的准线上,1b ∴=22222c a b e a a -===Q ,2a ∴= 所以椭圆1C 的方程为2212x y += (2)①由(1),知()1,0F ,设()2,M t ,则2C 的圆心坐标为1,2t ⎛⎫⎪⎝⎭2C 的方程为()2221124t t x y ⎛⎫-+-=+ ⎪⎝⎭,当0t =时,PQ 所在直线方程为1x =,此时2PQ =,与题意不符,不成立,0t ∴≠.∴可设直线PQ 所在直线方程为()()210y x t t=--≠,即()2200x ty t +-=≠又圆2C 的半径2211442t r t =+=+由2222PQ d r ⎛⎫+= ⎪⎝⎭,得()2222261142444t t t ⎛⎫⎛⎫+⨯=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭解得242t t =⇒=±∴圆2C 的方程为()()22112x y -+-=或()()22112x y -++=②当0t ≠,由①,知PQ 的方程为220x ty +-=由2212220x y x ty ⎧+=⎪⎨⎪+-=⎩消去y ,得()222816820t x x t +-+-= 则()()()()22242164882840tt tt ∆=--+-=+>21212221682,88t x x x x t t -∴+==++()()()()222222212122222164882244142288t t t t AB x x x x t t t t -+-⎡⎤++⎛⎫⎡⎤∴=+-+-=⨯=⨯⎢⎥ ⎪⎣⎦+⎝⎭⎢⎥+⎣⎦()22222222441144222288t t t S OM AB t t t +++∴=⨯⨯=⨯+⨯⨯=++ ()221124,4S r t S S ππλ==+=Q()()222122222242824224448882244448t S t t S t t t t t πππππλ+⎛⎫+===⨯=++≥⨯= ⎪++++⎝⎭+ 当且仅当22444t t +=+,即0t =时取等号又20,2t λπ≠∴>Q ,当0t =时,直线PQ 的方程为1x = 2,2AB OM ==,2122S OM AB ∴=⨯=2112S OM ππ⎛⎫∴== ⎪⎝⎭,12222S S πλπ∴=== 综上,22λπ≥ 所以实数λ的取值范围为2,2π⎡⎫+∞⎪⎢⎪⎣⎭. 21.(1)当1a =时,()()211x f x x e x -=--则()()21'211221x x x x x e f x x xe e -----=--=,令()212x h x x x e -=--,则()'122x h x x e -=-- 显然()'h x 在区间3,24⎛⎫ ⎪⎝⎭内是减函数,又'4311042h e ⎛⎫=-< ⎪⎝⎭Q ,在区间3,24⎛⎫ ⎪⎝⎭内,总有()'0h x < ()h x ∴在区间3,24⎛⎫ ⎪⎝⎭内是减函数,又()10h =∴Q 当3,14x ⎛⎫∈ ⎪⎝⎭时,()0h x >, ()'0f x ∴>,此时()f x 单调递增;当()1,2x ∈时,()0h x <()'0f x ∴<,此时()f x 单调递减;()f x ∴在区间3,24⎛⎫ ⎪⎝⎭内的极大值也即最大值是()11f = (2)由题意,知()()21x g x x a e -=-,则()()()'212122x x g x x x a e x x a e --=-+=-++ 根据题意,方程220x x a -++=有两个不同的实根()1212,x x x x < 440a ∴∆=+>,即1a >-,且122x x +=121211,2x x x x x <∴<=-Q 且,由()()'211x g x f x λ≤其中()()'212x f x x x e a -=--,得()()()()1111222111111222x x x x a e x x e x x λ--⎡⎤--≤-+-⎣⎦ 21120x x a -++=Q所以上式化为()()()()1111221111112222x x x x e x x e x x λ--⎡⎤-≤-+-⎣⎦又120x ->Q ,所以不等式可化为11111210x x x e e λ--⎡⎤-+≤⎣⎦,对任意的()1,1x ∈-∞恒成立.①当10x =,11111210x x x e e λ--⎡⎤-+≤⎣⎦不等式恒成立,R λ∈;②当()10,1x ∈时,1111210x x e e λ---+≤恒成立,111121x x e e λ--≥+ 令函数()11111122211x x x e k x e e ---==-++ 显然()k x 是R 内的减函数,当()0,1x ∈,()()22011e e k x k e e λ<=∴≥++ ③()1,0x ∈-∞时,1111210x x e e λ---+≥恒成立,即111121x x e e λ--≤+ 由②,当(),0x ∈-∞,()()201e k x k e >=+,即21e e λ≤+ 综上所述,21e e λ=+. 22.(1)PA Q 是圆O 的切线,PAB ACB ∴∠=∠,又P ∠是公共角,ABP CAP ∴∆∆: 22CA AP AC AB AB BP∴==∴=; (2)由切割线定理,得2,20PA PB PC PC =⋅∴=,又5,15PB BC ==又AD Q 是BAC ∠的平分线,2AC CD AB DB∴== 由相交弦定理,得50AD DE CD DB ⋅=⋅=.23.(1)()()222212:431,:1649x y C x y C ++-=+= 1C 为圆心是()4,3-,半径是1的圆,2C 为中心是坐标原点,焦点在x 轴,长半轴长是8,短半轴长是3的椭圆.(2)当2t π=时,()()4,4,8cos ,3sin P Q θθ-,故324cos ,2sin 2M θθ⎛⎫-++ ⎪⎝⎭3C 的普通方程为270x y --=,M 到3C 的距离54cos 3sin 135d θθ=-- 所以当43cos ,sin 55θθ==-时,d 取得最小值855.24.(1)当3a =时,()()()()1,332135,131,1x x f x x x x x x x --≥⎧⎪=---=-+<<⎨⎪+≤⎩所以当1x =,函数()f x 取得最大值2.(2)由()0f x ≥,得21x a x -≥- 两边平方,得()()2241x a x -≥-即()2232440x a x a +-+-≤得()()2320x a x a ---+≤⎡⎤⎡⎤⎣⎦⎣⎦, 所以当1a >时,不等式的解集为22,3a a +⎡⎤-⎢⎥⎣⎦当1a =时,不等式的解集为{}|1x x = 当1a <,不等式的解集为2,23aa +⎡⎤-⎢⎥⎣⎦.。
高考数学-下学期高三年级一模考试.docx
高中数学学习材料马鸣风萧萧*整理制作2015-2016学年度下学期高三年级一模考试理数试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设命题甲:2210ax ax ++>的解集是实数集R ;命题乙:01a <<,则命题甲是命题乙成立的( ) A .充分不必要条件 B .充要条件 C .必要不充分条件 D .既不充分也不必要条件 2.设,a b R ∈且0b ≠,若复数()3a bi +(i 为虚数单位)是实数,则( ) A .223b a = B .223a b = C .229b a = D .229a b = 3.等差数列{}n a 中,2nna a 是一个与n 无关的常数,则该常数的可能值的集合为( ) A .{}1 B .11,2⎧⎫⎨⎬⎩⎭C .12⎧⎫⎨⎬⎩⎭D .10,1,2⎧⎫⎨⎬⎩⎭4.ABC ∆中三边上的高依次为111,,13511,则ABC ∆为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不存在这样的三角形6.已知F 是椭圆22:1204x y C +=的右焦点,P 是C 上一点,()2,1A -,当APF ∆周长最小时,其面积为( ) A .4 B .8 C .3 D .227.已知等式()()()()432432123412341111x a x a x a x a x b x b x b x b ++++=++++++++,定义映射()()12341234:,,,,,,f a a a a b b b b →,则()4,3,2,1f =( )A .()1,2,3,4B .()0,3,4,0C . ()0,3,4,1--D .()1,0,2,2--8.如图所示是一几何体的三视图,正视图是一等腰直角三角形,且斜边BD 长为2,侧视图是一直角三角形,俯视图为一直角梯形,且1AB BC ==,则异面直线PB 与CD 所成角的正切值是( ) A .1 B .2 C .22D .129.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀.有多少把握认为学生的学生成绩与物理成绩有关系( )A .99.9%B . 99.5%C .97.5%D .95% 参考数据公式:①独立性检验临界值表②独立性检验随机变量2K 的值的计算公式:()()()()()22n ad bc K a b c d a c b d -=++++10.在一个棱长为4的正方体内,你认为最多放入的直径为1的球的个数为( ) A .64 B .65 C .66 D .6711.定义:分子为1且分母为正整数的分数成为单位分数,我们可以把1分拆为若干个不同的单位分数之和.如:1111111111111,1,1236246122561220=++=+++=++++,依次类推可得:11111111111111++++++26123042567290110132156m n =++++++,其中,,m n m n N +≤∈.设1,1x m y n ≤≤≤≤,则21x y x +++的最小值为( ) A .232 B .52 C .87 D .34312.已知,a b R ∈,直线2y ax b π=++与函数()tan f x x =的图像在4x π=-处相切,设()2x g x e bx a =++,若在区间[]1,2上,不等式()22m g x m ≤≤-恒成立,则实数m ( )A .有最小值e -B .有最小值eC .有最大值eD .有最大值1e +第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()2f x x ax =-的图像在点()()1,1A f 处的切线与直线320x y ++=垂直,执行如图所示的程序框图,输出的k 值是 .14.在直角坐标系xOy 中,已知点()0,1A 和点()3,4B -,若点C 在AOB ∠的平分线上,且2OC =,则OC = .15.如图,将平面直角坐标系中的纵轴绕原点O 顺时针旋转30︒后,构成一个斜坐标平面xOy .在此斜坐标平面xOy 中,点(),P x y 的坐标定义如下:过点P 作两坐标轴的平分线,分别交两轴于,M N 两点,则M 在Ox 轴上表示的数为x ,N 在Oy 轴上表示的数为y .那么以原点O 为圆心的单位圆在此斜坐标系下的方程为 .16.已知ABC ∆的面积为S ,内角,,A B C 所对的边分别为,,a b c ,且2sin ,sin ,cos C B A 成等比数列,2213,218322b a c ac =≤+≤,则()2419216c S a++的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)设等比数列{}n a 的前n 项和为n S ,已知,12a =,且1234,3,2S S S 成等差数列. (1)求数列{}n a 的通项公式;(2)设25n n b n a =-⋅,求数列{}n b 的前n 项和n T .18(本小题满分12分)如图,四边形PCBM 是直角梯形,90,,1,2PCB PMBC PM BC ∠=︒==,又1,120,AC ACB AB PC =∠=︒⊥,直线AM 与直线PC 所成的角为60︒.(1)求证:PC AC ⊥;(2)求二面角M AC B --的余弦值; (3)求点B 到平面MAC 的距离.19.(本小题满分12分)电子商务在我国发展迅猛,网上购物成为很多人的选择.某购物网站组织了一次促销活动,在网页的界面上打出广告:高级口香糖,10元钱三瓶,有8种口味供你选择(其中有一种为草莓口味).小王点击进入网页一看,只见有很多包装完全相同的瓶装口香糖排在一起,看不见具体口味,由购买者随机点击进行选择(各种口味的高级口香糖均超过3瓶,且各种口味的瓶数相同,每点击选择一瓶后,网页自动补充相应的口香糖).(1)小王花10元钱买三瓶,请问小王共有多少种不同组合选择方式?(2)小王花10元钱买三瓶,由小王随机点击三瓶,请列出有小王喜欢的草莓味口香糖瓶数ξ的分布列,并计算其数学期望和方差.20.(本小题满分12分)已知椭圆()22122:10x y C a b a b +=>>的离心率为22,其短轴的下端点在抛物线24x y =的准线上.(1)求椭圆1C 的方程;(2)设O 为坐标原点,M 是直线:2l x =上的动点,F 为椭圆的右焦点,过点F 作OM 的垂线与以OM 为直径的圆2C 相交于,P Q 两点,与椭圆1C 相交于,A B 两点,如图所示. ①若6PQ =,求圆2C 的方程;②设2C 与四边形OAMB 的面积分别为12,S S ,若12S S λ=,求λ的取值范围.21.(本小题满分12分)设a 为实数,函数()()211xf x x e a x -=--.(1)当1a =时,求()f x 在3,24⎛⎫⎪⎝⎭上的最大值; (2)设函数()()()11,xg x f x a x e-=+--当()g x 有两个极值点()1212,x x x x <时,总有()()'211x g x f x λ≤,求实数λ的值(()'f x 为()f x 的导函数).请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,ABC ∆内接于直径为BC 的圆O ,过点A 作圆O 的切线交CB 的延长线于点,P BAC ∠的平分线分别交BC 和圆O 于点,D E ,若210PA PB ==. (1)求证:2AC AB =; (2)求AD DE ⋅的值.23.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线14cos :3sin x t C y t =-+⎧⎨=+⎩(t 为参数),28cos :3sin x C y θθ=⎧⎨=⎩(θ为参数).(1)化12,C C 的方程为普通方程,并说明他们分别表示什么曲线; (2)若1C 上的点P 对应的参数为,2t Q π=为2C 上的动点,求PQ 的中点M 到直线332:2x tC y t=+⎧⎨=-+⎩(t 为参数)距离的最小值.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()()21f x x a x a R =---∈. (1)当3a =时,求函数()f x 的最大值; (2)解关于x 的不等式()0f x ≥.参考答案及解析一、选择题1-5 CABCC 6-10 ACCBC 11-12 CD 二、填空题 13. 6 14. 10310,55⎛⎫-⎪ ⎪⎝⎭15.2210x y xy ++-= 16.34(2)当1,2n =时,250n -<,当3n ≥时,()34101232252n n T n =+⨯+⨯++-⨯()4512201232252n n T n +=+⨯+⨯++-⨯,两式相减,得 ()()()()43451121210822222522225212n nn n n T n n -++--=-+++++--⨯=-+⨯--⨯-()134722n n +=-+-⨯ ()134272n n T n +∴=+-⨯ ()16,110,234272,3n n n T n n n +⎧=⎪∴==⎨⎪+-⨯≥⎩18.(1),,PC BC PC AB AB BC B ⊥⊥⋂=PC ∴⊥平面ABC ,AC ⊆平面ABC ,PC AC ∴⊥(2)在平面ABC 内,过点C 作BC 的垂线,并建立空间直角坐标系,如图所示设()()()31330,0,0,0,,0,1,,,0,,2222P z CP z AM z z ⎛⎫⎛⎫∴==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22cos 60cos 3AM CP z AM CP AM CPz z⋅︒=〈⋅==⋅+⋅,且0z >21331,,12223zz AM z ⎛⎫∴=∴=∴=- ⎪ ⎪+⎝⎭设平面MAC 的一个法向量为(),,1n x y =则由3310302230311022x y n AM x n CA y x y ⎧⎧-++=⎪⎧⋅==-⎪⎪⎪⇒∴⎨⎨⎨⋅=⎪⎪⎪⎩=--=⎩⎪⎩,3,1,13n ⎛⎫∴=-- ⎪ ⎪⎝⎭ ∴平面ABC 的一个法向量为()0,0,1CP =21cos ,7n CP n CP n CP⋅〈〉==⋅ 显然,二面角M AC B --为锐二面角, 所以二面角M AC B --的余弦值为217(3)点B 到平面MAC 的距离2217CB n d n⋅==. 19.(1)若三瓶口味均不一样,有3856C =若其中两瓶口味不一样,,有118756C C =,若三瓶口味一样,有8种,所以小王共有56+56+8=120种选择方式 (2)ξ可能的取值为0,1,2,3由于各种口味的高级口香糖均不超过3瓶,且各种口味的瓶数相同,有8种不同口味 所以小王随机点击一次获得草莓味口香糖的概率为18故随机变量ξ服从二项分布,即13,8B ξ⎛⎫ ⎪⎝⎭()0303113430188512P C ξ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭,()1213111471188512P C ξ⎛⎫⎛⎫==-=⎪ ⎪⎝⎭⎝⎭ ()212311212188512P C ξ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭,()3331113188512P C ξ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭所以ξ的分布列为ξ 0 1 2 3P343512 147512 21512 1512期数学期望()13388E np ξ==⨯=方差()()1721138864D np p ξ=-=⨯⨯=20.(1)椭圆短轴下端点在抛物线24x y =的准线上,1b ∴=22222c a b e a a -===,2a ∴= 所以椭圆1C 的方程为2212x y += (2)①由(1),知()1,0F ,设()2,M t ,则2C 的圆心坐标为1,2t ⎛⎫⎪⎝⎭2C 的方程为()2221124t t x y ⎛⎫-+-=+ ⎪⎝⎭,当0t =时,PQ 所在直线方程为1x =,此时2PQ =,与题意不符,不成立,0t ∴≠.∴可设直线PQ 所在直线方程为()()210y x t t=--≠,即()2200x ty t +-=≠又圆2C 的半径2211442t r t =+=+由2222PQ d r ⎛⎫+= ⎪⎝⎭,得()2222261142444t t t ⎛⎫⎛⎫+⨯=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭解得242t t =⇒=±∴圆2C 的方程为()()22112x y -+-=或()()22112x y -++=②当0t ≠,由①,知PQ 的方程为220x ty +-=由2212220x y x ty ⎧+=⎪⎨⎪+-=⎩消去y ,得()222816820t x x t +-+-= 则()()()()22242164882840tt tt ∆=--+-=+>21212221682,88t x x x x t t -∴+==++()()()()222222212122222164882244142288t t t t AB x x x x t t t t -+-⎡⎤++⎛⎫⎡⎤∴=+-+-=⨯=⨯⎢⎥ ⎪⎣⎦+⎝⎭⎢⎥+⎣⎦()22222222441144222288t t t S OM AB t t t +++∴=⨯⨯=⨯+⨯⨯=++ ()221124,4S r t S S ππλ==+=()()222122222242824224448882244448t S t t S t t t t t πππππλ+⎛⎫+===⨯=++≥⨯= ⎪++++⎝⎭+ 当且仅当22444t t +=+,即0t =时取等号又20,2t λπ≠∴>,当0t =时,直线PQ 的方程为1x = 2,2AB OM ==,2122S OM AB ∴=⨯=2112S OM ππ⎛⎫∴== ⎪⎝⎭,12222S S πλπ∴=== 综上,22λπ≥ 所以实数λ的取值范围为2,2π⎡⎫+∞⎪⎢⎪⎣⎭. 21.(1)当1a =时,()()211x f x x e x -=--则()()21'211221x x x x x e f x x xe e -----=--=,令()212x h x x x e -=--,则()'122x h x x e -=-- 显然()'h x 在区间3,24⎛⎫ ⎪⎝⎭内是减函数,又'4311042h e ⎛⎫=-< ⎪⎝⎭,在区间3,24⎛⎫ ⎪⎝⎭内,总有()'0h x < ()h x ∴在区间3,24⎛⎫ ⎪⎝⎭内是减函数,又()10h =∴当3,14x ⎛⎫∈ ⎪⎝⎭时,()0h x >, ()'0f x ∴>,此时()f x 单调递增;当()1,2x ∈时,()0h x <()'0f x ∴<,此时()f x 单调递减;()f x ∴在区间3,24⎛⎫ ⎪⎝⎭内的极大值也即最大值是()11f = (2)由题意,知()()21x g x x a e -=-,则()()()'212122x x g x x x a e x x a e --=-+=-++ 根据题意,方程220x x a -++=有两个不同的实根()1212,x x x x < 440a ∴∆=+>,即1a >-,且122x x += 121211,2x x x x x <∴<=-且,由()()'211x g x f x λ≤其中()()'212x f x x x e a -=--,得()()()()1111222111111222x x x x a e x x e x x λ--⎡⎤--≤-+-⎣⎦ 21120x x a -++=所以上式化为()()()()1111221111112222x x x x ex x e x x λ--⎡⎤-≤-+-⎣⎦ 又120x ->,所以不等式可化为11111210x x x e e λ--⎡⎤-+≤⎣⎦,对任意的()1,1x ∈-∞恒成立.①当10x =,11111210x x x e e λ--⎡⎤-+≤⎣⎦不等式恒成立,R λ∈;②当()10,1x ∈时,1111210x x e e λ---+≤恒成立,111121x x e e λ--≥+ 令函数()11111122211x x x e k x e e ---==-++ 显然()k x 是R 内的减函数,当()0,1x ∈,()()22011e e k x k e e λ<=∴≥++ ③()1,0x ∈-∞时,1111210x x e e λ---+≥恒成立,即111121x x e e λ--≤+ 由②,当(),0x ∈-∞,()()201e k x k e >=+,即21e e λ≤+ 综上所述,21e e λ=+. 22.(1)PA 是圆O 的切线,PAB ACB ∴∠=∠,又P ∠是公共角,ABP CAP ∴∆∆ 22CA AP AC AB AB BP∴==∴=; (2)由切割线定理,得2,20PA PB PC PC =⋅∴=,又5,15PB BC ==又AD 是BAC ∠的平分线,2AC CD AB DB∴== 由相交弦定理,得50AD DE CD DB ⋅=⋅=.23.(1)()()222212:431,:1649x y C x y C ++-=+= 1C 为圆心是()4,3-,半径是1的圆,2C 为中心是坐标原点,焦点在x 轴,长半轴长是8,短半轴长是3的椭圆.(2)当2t π=时,()()4,4,8cos ,3sin P Q θθ-,故324cos ,2sin 2M θθ⎛⎫-++ ⎪⎝⎭3C 的普通方程为270x y --=,M 到3C 的距离54cos 3sin 135d θθ=-- 所以当43cos ,sin 55θθ==-时,d 取得最小值855.24.(1)当3a =时,()()()()1,332135,131,1x x f x x x x x x x --≥⎧⎪=---=-+<<⎨⎪+≤⎩所以当1x =,函数()f x 取得最大值2.(2)由()0f x ≥,得21x a x -≥- 两边平方,得()()2241x a x -≥- 即()2232440x a x a +-+-≤ 得()()2320x a x a ---+≤⎡⎤⎡⎤⎣⎦⎣⎦, 所以当1a >时,不等式的解集为22,3a a +⎡⎤-⎢⎥⎣⎦ 当1a =时,不等式的解集为{}|1x x = 当1a <,不等式的解集为2,23a a +⎡⎤-⎢⎥⎣⎦.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识改变命运河南省郑州市2016年高三第一次质量预测考试理科数学(时间120分钟 满分150分)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分. 1.(2016郑州一测)设全集*U {N 4}x x =∈≤,集合{1,4}A =,{2,4}B =,则()U A B =ð( ) A .{1,2,3}B .{1,2,4}C .{1,3,4}D .{2,3,4}【答案】A【解析】注意全集U 是小于或等于4的正整数,∵{4}AB =,∴(){1,2,3}U AB =ð. 2.(2016郑州一测) 设1i z =+(i 是虚数单位),则2z=( )A .iB .2i -C .1i -D .0【答案】C【解析】直接代入运算:221i 1iz ==-+. 3.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,s i n a A=,则co s B =( )A .12-B .12C .D .【答案】Bsin a A =sin sin AA=.∴tan B =,0B π<<,∴3B π=,1cos 2B =.4.(2016郑州一测)函数()cos x f x e x =在点(0,(0))f 处的切线斜率为( ) A .0B .1-C . 1D .【答案】C【解析】()cos sin xxf x e x e x '=-, ∴0(0)(cos0sin0)1k f e '==-=.知识改变命运5.(2016郑州一测)已知函数1()()cos 2x f x x =-,则()f x 在[0,2]π上的零点的个数为( ) A .1B .2C .3D .4【答案】C【解析】画出1()2xy =和cos y x =的图象便知两图象有3个交点,∴()f x 在[0,2]π上有3个零点.6.(2016郑州一测)按如下的程序框图,若输出结果为273,则判断框?处应补充的条件为( )A .7i >B .7i ≥C .9i >D .9i ≥【答案】B【解析】135333273++=.7.(2016郑州一测)设双曲线22221x y a b-=的一条渐近线为2y x =-,且一个焦点与抛物线24y x =的焦点相同,则此双曲线的方程为( ) A .225514x y -= B .225514y x -= C .225514x y -= D .225514y x -=【答案】C【解析】∵抛物线的焦点为(1,0).∴22212c b ac a b=⎧⎪⎪=⎨⎪⎪=+⎩解得221545a b ⎧=⎪⎪⎨⎪=⎪⎩.8. 正项等比数列{}n a 中的14031,a a 是函数321()4633f x x x x =-+-的极值点,则2016=()A .1B .2C .D . 1-【答案】A【解析】∵()86f x x x '=-+,∴140318a a ⋅=,∴220166a =,知识改变命运∵20160a >,∴2016a =20161a =.9.(2016郑州一测) 如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图的虚线是三角形的中线,则该四面体的体积为( ) A .23B .43C .83D .2【答案】A【解析】四面体的直观图如图, ∴112(12)2323V =⨯⨯⨯⨯=.10.(2016郑州一测)已知函数4()f x x x=+,()2x g x a =+,若11[,3]2x ∀∈,2[2,3]x ∃∈使得12()()f x g x ≥,则实数a 的取值范围是( )A .1a ≤B .1a ≥C .0a ≤D .0a ≥【答案】C【解析】∵1[,3]2x ∈,()4f x ≥, 当且仅当2x =时,min ()4f x =.[2,3]x ∈时,∴2min ()24g x a a =+=+. 依题意min min ()()f x g x ≥,∴0a ≤.11.(2016郑州一测)已知椭圆()222210x y a b a b+=>>的左右焦点分别为1F 、2F ,过点2F 的直线与椭圆交于,A B 两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( ) A .B .2 C .2D .【答案】D【解析】设1212,F F c AF m ==,若1F AB ∆是以A 为直角顶点的等腰直角三角形, ∴1AB AF m ==,1BF =.知识改变命运由椭圆的定义可知1F AB ∆的周长为4a ,∴42a m =+,2(2m a =.∴222)AF a m a =-=. ∵2221212AF AF F F +=,∴222224(21)4a a c +=,∴29e =-e =.12.(2016郑州一测)已知函数222,0()2,0x x x f x x x x ⎧-+≥⎪=⎨- <⎪⎩,若关于x 的不等式2[()]()0f x af x +<恰有1个整数解,则实数a 的最大值是( ) A .2B .3C .5D .8【答案】D【解析】∵不等式2[()]()0f x af x +<恰有1当()0f x >时,则0a <,不合题意; 当()0f x <时,则2x >.依题意22[(3)](3)0[(4)](4)0f af f af ⎧+<⎪⎨+≥⎪⎩, ∴9306480a a -<⎧⎨-≥⎩,∴38a <≤,故选D .二、填空题:本大题共4个小题,每小题5分,共20分. 13.二项式62()x x-的展开式中,2x 的系数是_______.知识改变命运【答案】60【解析】662166(2)(2)r r r r r r rr T C x x C x ---+=-=-,令622r -=,解得2r =,∴2x 的系数为226(2)60C -=.14.若不等式222x y +≤所表示的平面区域为M ,不等式组0026x y x y y x -≥⎧⎪+≥⎨⎪≥-⎩表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M内的概率为________.【答案】24π【解析】21142124382OAB P S πππ∆⨯===⨯⨯.15.ABC ∆的三个内角为,,A B C ,若7t a n ()12π=-,则2c o s s i n 2B C +的最大值为________.【答案】32【解析】tantan743tan()tan()1243tan tan 143πππππππ+-=-+==-7tan()12π=-=, ∴sin cos A A =,∴4A π=.332cos sin 22cos sin 2()2cos sin(2)42B C B B B B ππ+=+-=+- 22cos cos 22cos 12cos B B B B =-=+-知识改变命运1332(cos )222B =--+≤.16.已知点(0,1)A -,(3,0)B ,(1,2)C ,平面区域P 是由所有满足AM AB ACλμ=+(2,m λ<≤ 2)n μ<≤的点M 组成的区域,若区域P 的面积为16,则m n +的最小值为________.【答案】4+【解析】设(,)M x y ,(3,1),(1,3)AB AC ==, ∵AM AB AC λμ=+,∴(,1)(3,1)(1,3)(3,3)x y λμλμλμ+=+=++.∴313x y λμλμ=+⎧⎨+=+⎩,∴318338x y x y λμ--⎧=⎪⎪⎨-++⎪=⎪⎩, ∵2,2m n λμ<≤<≤,∴31283328x y m x y n --⎧<≤⎪⎪⎨-++⎪<≤⎪⎩,即1738113383x y m x y n <-≤+⎧⎨<-+≤-⎩∴1738113383x y m x y n <-≤+⎧⎨<-+≤-⎩表示的可行域为平行四边形,如图: 由317313x y x y -=⎧⎨-+=⎩,得(8,7)A ,知识改变命运由381313x y m x y -=+⎧⎨-+=⎩,得(32,2)B m m ++,∴(2)AB m ==- ∵(8,7)A 到直线383x y n -+=-的距离d =,∴(2)16AB d m ⋅=-=, ∴(2)(2)2m n -⋅-=, ∴2222(2)(2)()2m n m n -+-=-⋅-≤, ∴2(4)8m n +-≥,4m n +≥+知识改变命运三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明及演算步骤. 17.(本小题满分12分)已知数列{}n a 的首项为11a =,前n 项和n S ,且数列n S n ⎧⎫⎨⎬⎩⎭是公差为2的等差数列.(1)求数列{}n a 的通项公式;(2)若(1)n n n b a =-,求数列{}n b 的前n 项和n T . 【解析】(1)由已知得1(1)221nS n n n=+-⨯=-, ∴22n S n n =-.当2n ≥时,2212[2(1)(1)]43n n n a S S n n n n n -=-=-----=-.11413a S ==⨯-,∴43n a n =-,*n ∈N .(2)由⑴可得(1)(1)(43)n n n n b a n =-=--. 当n 为偶数时,(15)(913)[(45)(43)]422n nT n n n =-++-++⋅⋅⋅+--+-=⨯=, 当n 为奇数时,1n +为偶数112(1)(41)21n n n T T b n n n ++=-=+-+=-+,综上,2,2,,21,21,.n n n k k T n n k k **⎧ =∈⎪=⎨-+=-∈⎪⎩N N18.(本小题满分12分)某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘.由于下雨会影响药材品质,基地收益如下表所示:若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益知识改变命运知识改变命运为20万元;有雨时,收益为10万元.额外聘请工人的成本为a 万元. 已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.(1)若不额外聘请工人,写出基地收益X 的分布列及基地的预期收益;(2)该基地是否应该外聘工人,请说明理由. 【解析】(1)设下周一有雨的概率为p , 由题意,20.36,0.6p p ==,基地收益X 的可能取值为20,15,10,7.5,则(20)0.36P X ==,(15)0.24P X ==, (10)0.24P X ==,(7.5)0.16P X ==∴基地收益X 的分布列为:()200.36150.24100.247.50.1614.4E X =⨯+⨯+⨯+⨯=,∴基地的预期收益为14.4万元.(2)设基地额外聘请工人时的收益为Y 万元,则其预期收益()200.6100.416E Y a a =⨯+⨯-=-(万元),()() 1.6E Y E X a -=-,综上,当额外聘请工人的成本高于1.6万元时,不外聘工人; 成本低于1.6万元时,外聘工人;成本恰为1.6万元时,是否外聘工人均可以.19.(本小题满分12分)如图,矩形C D E F 和梯形ABCD 所在的平面互相垂直,90BAD ADC ∠=∠=,12AB AD CD ==,BE DF ⊥.(1)若M 为EA 中点,求证:AC ∥平面MDF ; (2)求平面EAD 与平面EBC 所成二面角的大小. 【解析】(1)证明:设EC 与DF 交于点N ,连接MN ,在矩形CDEF 中,点N 为EC 中点, ∵M 为EA 中点,∴MN ∥AC ,又∵AC ⊄平面MDF ,MN ⊂平面MDF , ∴AC ∥平面MDF . (2)∵平面CDEF ⊥平面ABCD ,平面CDEF平面ABCD CD =,DE ⊂平面CDEF ,DE CD ⊥,∴DE ⊥平面ABCD .以D 为坐标原点,建立如图空间直角坐标系, 设DA a =,DE b =,(,,0),(0,0,),(0,2,0),(0,2,)B a a E b C a F a b ,FD MAC BE知识改变命运(,,),(0,2,),(,,0)BE a a b DF a b BC a a =--==-,∵BE DF ⊥,∴22(,,)(0,2,)20BE DF a a b a b b a ⋅=--⋅=-=,b =.设平面EBC 的法向量(,,)x y z =m ,则00BE BC ⎧⋅=⎪⎨⋅=⎪⎩m m,即00ax ay ax ay ⎧--+=⎪⎨-+=⎪⎩,取1x =,则(1,1=m ,注意到平面EAD 的法向量(0,1,0)=n ,--10分而1cos ,||||2⋅<>==⋅m n m n m n ,∴平面EAD 与EBC 所成锐二面角的大小为60.20.(本小题满分12分)已知点(1,0)M -,(1,0)N ,曲线E 上任意一点到点M 的距离均是到点N(1)求曲线E 的方程; (2)已知0m ≠,设直线1:10l x m y --=交曲线E于,A C两点,直线2:0l mx y m +-=交曲线E 于,B D 两点,,C D 两点均在x 轴下方.当CD 的斜率为1-时,求线段AB 的长.【解析】(1)设曲线E 上任意一点坐标为(,)x y ,=,整理得22410x y x +-+=,即22(2)3x y -+=为所求. (2)由题知12l l ⊥ ,且两条直线均恒过点(1,0)N , 设曲线E 的圆心为E ,则(2,0)E ,线段CD 的中点为P ,则直线EP :2y x =-, 设直线CD :y x t =-+,知识改变命运由2y x y x t=-⎧⎨=-+⎩ ,得22(,)22t t P +-,由圆的几何性质,1||||2NP CD ==而22222||(1)()22t t NP +-=-+,2||3ED =,22||EP =, 解之得0t =或3t =,又,C D 两点均在x 轴下方,直线CD :y x =-.由22410,,⎧+-+=⎨=-⎩x y x y x解得121x y ⎧=-⎪⎪⎨⎪=⎪⎩或12 1.⎧=+⎪⎪⎨⎪=-⎪⎩x y不失一般性,设(11),(11)2222C D --+--,由22410(1)x y x y u x ⎧+-+=⎨=-⎩, 得2222(1)2(2)10u x u x u +-+++=,⑴方程⑴的两根之积为1,∴点A的横坐标2A x =∵点(11)C 在直线1:10l x my --=上,解得1m =,直线1:1)(1)l y x =-,∴(2A .同理可得,(2B ,∴线段AB 的长为21.(2016郑州一测)设函数21()ln 2f x x m x =-,2()(1)g x x m x =-+,0m >. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数. 【解析】(1)函数()f x 的定义域为(0,)+∞,知识改变命运(()x x f x x'=,当0x <<()0f x '<,函数()f x 的单调递减,当x >()0f x '>,函数()f x 的单调递增. 综上,函数()f x的单调增区间是)+∞,减区间是. (2)令21()()()(1)ln ,02F x f x g x x m x m x x =-=-++->, 问题等价于求函数()F x 的零点个数,(1)()()x x m F x x--'=-, 当1m =时,()0F x '≤,函数()F x 为减函数,注意到3(1)02F =>,(4)ln 40F =-<,∴()F x 有唯一零点.当1m >时,01x <<或x m >时,()0F x '<,1x m <<时,()0F x '>,∴函数()F x 在(0,1)和(,)m +∞单调递减,在(1,)m 单调递增, 注意到1(1)02F m =+>,(22)ln(22)0F m m m +=-+<, ∴()F x 有唯一零点.综上,函数()F x 有唯一零点,即两函数图象总有一个交点.知识改变命运请考生在22-24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目的题号涂黑.把答案填在答题卡上.22.(2016郑州一测)如图,BAC ∠的平分线与BC 和ABC ∆的外接圆分别相交于D 和E ,延长AC 交过,,D E C的三点的圆于点F .(1)求证:EC EF =;(2)若2ED =,3EF =,求AC AF ⋅的值.【解析】(1)证明:∵ECF CAE CEA CAE CBA ∠=∠+∠=∠+∠, EFC CDA BAE CBA ∠=∠=∠+∠, AE 平分BAC ∠, ∴ECF EFC ∠=∠,∴EC EF =.(2)∵ECD BAE EAC ∠=∠=∠,CEA DEC ∠=∠,∴CEA ∆∽DEC ∆,即2,CE DE EC EA EA CE DE==, 由(1)知,3EC EF ==,∴92EA =, ∴45()4AC AF AD AE AE DE AE ⋅=⋅=-⋅=. 23.(2016郑州一测)已知曲线1C 的参数方程为2212x y t ⎧=--⎪⎪⎨⎪=⎪⎩,曲线2C 的极坐标方程为)4πρθ=-.以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系.(1)求曲线2C 的直角坐标方程;(2)求曲线2C 上的动点M 到曲线1C 的距离的最大值.ABEFCD知识改变命运(2)1C 的直角坐标方程为 由(1)知曲线2C 是以(1,1)为圆心的圆, 且圆心到直线1C 的距离 ∴动点M 到曲线1C 的距离的最大值为24.(2016郑州一测)已知函数()21f x x x =--+ (1)解不等式()1f x >;(2)当0x >时,函数21()(0)ax x g x a x-+=>的最小值总大于函数()f x ,试求实数a 的取值范围.【解析】∵211x x --+>,∴131x <-⎧⎨>⎩,或12121x x -≤<⎧⎨->⎩,或231x ≥⎧⎨->⎩,解得0x <,∴原不等式的解集为(,0)-∞.(2)∵1()11g x ax x =+-≥,当且仅当x =时“=”成立, ∴min ()1g x =,12,02,()3, 2.x x f x x -<≤⎧=⎨- >⎩∴()[3,1)f x ∈-, ∴11≥,即1a ≥为所求.知识改变命运沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。