线性代数目标测试题
线性代数试题及详细答案
线性代数试题及详细答案线性代数试题及详细答案————————————————————————————————作者:————————————————————————————————日期:线性代数(试卷一)一、填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,=-1230120011A,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分)1. 向量组r ααα,,,21Λ线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A(A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
线性代数单元测试卷(含答案)
线性代数单元测试卷(含答案)一、选择题(每题2分,共20分)1. 在线性代数中,什么是矩阵的秩?A. 矩阵的行数B. 矩阵的列数C. 矩阵的非零行数D. 矩阵的最大线性无关行数正确答案:D2. 下列哪个不是矩阵的运算?A. 矩阵的加法B. 矩阵的减法C. 矩阵的除法D. 矩阵的乘法正确答案:C3. 矩阵的转置满足下列哪个性质?A. (A^T)^T = AB. (AB)^T = B^T * A^TC. (A + B)^T = A^T + B^TD. (AB)^T = A^T + B^T正确答案:B4. 什么是向量的线性组合?A. 向量相加B. 向量相减C. 向量乘以常数后相加D. 向量与常数相乘正确答案:C5. 下列哪组向量线性无关?A. (1, 0)B. (0, 1)C. (1, 1)D. (1, -1)正确答案:C二、填空题(每题3分,共30分)1. 给定矩阵A = [[1, 2], [3, 4]],求A的逆矩阵。
正确答案:[[-2, 1], [1.5, -0.5]]2. 给定矩阵B = [[2, 4], [1, 3]],求B的特征值。
正确答案:[5, 0]3. 给定向量v = (1, 2, 3),求v的范数。
正确答案:sqrt(14)4. 给定矩阵C = [[1, 2, 3], [4, 5, 6]],求C的秩。
正确答案:25. 给定矩阵D = [[1, 2], [3, 4], [5, 6]],求D的转置矩阵。
正确答案:[[1, 3, 5], [2, 4, 6]]三、解答题(每题10分,共40分)1. 什么是线性相关和线性无关?线性相关表示向量之间存在线性组合的系数不全为零的情况,即存在非零向量组合得到零向量。
线性无关表示向量之间不存在这样的关系,即只有全为零的线性组合才能得到零向量。
2. 什么是矩阵的行列式?矩阵的行列式是一个标量,它是一个方阵中各个元素按照一定规律相乘再求和的结果。
行列式可以用来判断方阵的逆是否存在,以及计算方阵的特征值等。
线性代数测试试卷及答案
线性代数A 卷一﹑选择题每小题3分,共15分1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是 A AB BA = B 222()AB A B = C 222()2A B A AB B +=++ D A B B A +=+2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为A nB sC n s -D 以上答案都不正确3.如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于 A 10, 8 B 8, 10 C 10, 8-- D 10, 8--4. 设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么A 2331A ⎛⎫= ⎪-⎝⎭B 2241A ⎛⎫= ⎪-⎝⎭C 2121A ⎛⎫= ⎪-⎝⎭D 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则 A A 的行向量组和列向量组均线性相关 BA 的行向量组线性相关,列向量组线性无关 C A 的行向量组和列向量组均线性无关 DA 的列向量组线性相关,行向量组线性无关 二﹑填空题每小题3分,共30分1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2. 设100210341A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ;3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ;4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ;5. 设A 为正交矩阵,则A = ;6. 设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7. 要使向量组123(1,,1),(1,2,3),(1,0,1)T T T αλαα===线性相关,则λ= ; 8. 三阶可逆矩阵A 的特征值分别为1,2,3---,那么1A -的特征值分别为 ;9. 若二次型222123123121323(,,)52-24f x x x x x x t x x x x x x =++++是正定的,则t 的取值范围为 ;10. 设A 为n 阶方阵,且满足2240A A I +-=,这里I 为n 阶单位矩阵,那么1A -= . 三﹑计算题每小题9分,共27分1. 已知210121012A ⎛⎫⎪= ⎪ ⎪⎝⎭,100100B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求矩阵X 使之满足AX X B =+.2. 求行列式1234234134124123的值.3 求向量组1234(1,0,1,0),(2,1,3,7),(3,1,0,3,),(4,3,1,3,)αααα==--=-=--的一个最大无关组和秩.四﹑10分设有齐次线性方程组123123123(1)0,(1)0,(1)0.x x x x x x x x x λλλ+-+=⎧⎪-++=⎨⎪++-=⎩ 问当λ取何值时, 上述方程组1有唯一的零解﹔2有无穷多个解,并求出这些解. 五﹑12分求一个正交变换X PY =,把下列二次型化成标准形:222123123121323(,,)444f x x x x x x x x x x x x =+++++.六﹑6分已知平面上三条不同直线的方程分别为123: 230,: 230,: 230.l ax by c l bx cy a l cx ay b ++=++=++= 试证:这三条直线交于一点的充分必要条件为0a b c ++=.线性代数A 卷答案一﹑1. D 2. C 3. B 4. A 5. A二﹑1. 0 2. *1()A A -=- 3. 1 4. 3 5. 1或-16. ()()()c a c b b a ---7. 08. 111,,23---9. 405t -<< 10. 1142A I +三﹑1. 解 由AX X B =+得1()X A I B -=-. 2分下面求1()A I --. 由于110111011A I ⎛⎫ ⎪-= ⎪ ⎪⎝⎭4分而1()A I --=011111110-⎛⎫ ⎪- ⎪ ⎪-⎝⎭. 7分所以10111001()11101111100011X A I B --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 9分2. 解1234234134124123=10234103411041210123123413411014121123= 4分 123401131000440004-=-- 8分 160= 9分 .3. 解 由于3112341234011301131301053307330733r r --⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪- ⎪ ⎪-- ⎪ ⎪----⎝⎭⎝⎭324212345011300212700424r r r r -⎛⎫⎪--- ⎪ ⎪+ ⎪--⎝⎭ 43123401132002120000r r -⎛⎫⎪-- ⎪+ ⎪ ⎪⎝⎭6分 故向量组的秩是 3 ,123,,ααα是它的一个最大无关组;9分 四﹑解 方程组的系数行列式111111111A λλλ-=--2(1)(2)λλ=-+- 2分①当2(1)(2)0A λλ=-+-≠,即1λ≠-且2λ≠时,方程组有唯一的零解; 4分 ②当1λ=-时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为12 1 21 1 11 2 A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,它有一个二阶子式123021-=-≠-,因此秩A 2n =<这里3n =,故方程组有无穷多个解.对A 施行初等行变换,可得到方程组的一般解为132333,,,x x x x x x =⎧⎪=⎨⎪=⎩ 其中3x 可取任意数; 7分 ③当2λ=时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为11 1 11 1 11 1 A ⎛⎫⎪= ⎪ ⎪⎝⎭,显然,秩A 1n =<这里3n =,所以方程组也有无穷多个解.对A 施行初等行变换可得方程组的一般解为1232233,,,x x x x x x x =--⎧⎪=⎨⎪=⎩ 其中23,x x 可取任意数. 10分 五﹑ 解 二次型的矩阵为12 2 21 2 22 1 A ⎛⎫⎪= ⎪ ⎪⎝⎭, 2分因为特征多项式为212 221 2 (1)(5)22 1I A λλλλλλ----=---=+----, 所以特征值是1-二重和5. 4分把特征值1λ=-代入齐次线性方程组()0I A X λ-=得1231231232220,2220,2220,x x x x x x x x x ---=⎧⎪---=⎨⎪---=⎩ 解此方程组可得矩阵A 的对应于特征值1λ=-的特征向量为12(1,0,1),(0,1,1)T T αα=-=-.利用施密特正交化方法将12,αα正交化:11(1,0,1)T βα==-, 211(,1,)22T β=--,再将12,ββ单位化得1T η=,2(T η=, 8分 把特征值5λ=代入齐次线性方程组()0I A X λ-=得1231231234220,2420,2240,x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩ 解此方程组可得矩阵A 的对应于特征值5λ=的特征向量为3(1,1,1)T α=.再将3α单位化得3Tη=. 10分 令123(,,)0P ηηη⎛⎫ ⎪ ⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭则P 是一个正交矩阵,且满足1100010005T P AP P AP --⎛⎫ ⎪==- ⎪ ⎪⎝⎭.所以,正交变换X PY =为所求,它把二次型化成标准形222123123(,,)5f x x x y y y =--+. 12分六﹑证明:必要性由123,,l l l 交于一点得方程组230230230ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩有解,可知231()()230()10231a b cb c R A R A bc a a b c c a c a ba b=⇒=⇒++= 2分由于2221211[()()()]01b cca b a c b a c a b=--+-+-≠,所以0a b c ++= 3分充分性:0()a b c b a c ++=⇒=-+2222222()2[()][()]022312366()10231a bac b ac a c a c a c b c a b c a b c b c b c a b c a a b c c a c a b c a b a b ⎫⇒=-=-+=-++-≠⎪⎪⎪⎬⎪==++=⎪⎪⎭又因为()()2R A R A ⇒==, 5分 因此方程组230230230ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩有唯一解,即123,,l l l 交于一点. 6分线性代数习题和答案第一部分选择题共28分一、单项选择题本大题共14小题,每小题2分,共28分在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内;错选或未选均无分;1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于A. m+nB. -m+nC. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A是A的伴随矩阵,则A中位于1,2的元素是A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩A T等于A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1α1+β1+λ2α2+β2+…+λsαs+βs=0C.有不全为0的数λ1,λ2,…,λs使λ1α1-β1+λ2α2-β2+…+λsαs-βs=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有A.秩A<nB.秩A=n-1=0 D.方程组Ax=0只有零解10.设A是一个n≥3阶方阵,下列陈述中正确的是A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使λE-Aα=0,则λ是A的特征值的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是A.|A|2必为1B.|A|必为1=A T的行列向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题共72分二、填空题本大题共10小题,每小题2分,共20分不写解答过程,将正确的答案写在每小题的空格内;错填或不填均无分;15.11135692536=.16.设A=111111--⎛⎝⎫⎭⎪,B=112234--⎛⎝⎫⎭⎪.则A+2B= .17.设A=a ij3×3,|A|=2,A ij表示|A|中元素a ij的代数余子式i,j=1,2,3,则a 11A 21+a 12A 22+a 13A 232+a 21A 21+a 22A 22+a 23A 232+a 31A 21+a 32A 22+a 33A 232= . 18.设向量2,-3,5与向量-4,6,a 线性相关,则a= .19.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为 .20.设A 是m ×n 矩阵,A 的秩为r<n,则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 .21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积α+β,α-β= . 22.设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为 .23.设矩阵A =010********---⎛⎝ ⎫⎭⎪⎪⎪,已知α=212-⎛⎝ ⎫⎭⎪⎪⎪是它的一个特征向量,则α所对应的特征值为 .24.设实二次型fx 1,x 2,x 3,x 4,x 5的秩为4,正惯性指数为3,则其规范形为 .三、计算题本大题共7小题,每小题6分,共42分25.设A =120340121-⎛⎝ ⎫⎭⎪⎪⎪,B =223410--⎛⎝ ⎫⎭⎪.求1AB T ;2|4A |.26.试计算行列式3112513420111533------.27.设矩阵A =423110123-⎛⎝ ⎫⎭⎪⎪⎪,求矩阵B 使其满足矩阵方程AB =A +2B .28.给定向量组α1=-⎛⎝ ⎫⎭⎪⎪⎪⎪2103,α2=1324-⎛⎝ ⎫⎭⎪⎪⎪⎪,α3=3021-⎛⎝ ⎫⎭⎪⎪⎪⎪,α4=0149-⎛⎝ ⎫⎭⎪⎪⎪⎪. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数; 29.设矩阵A =12102242662102333334-----⎛⎝⎫⎭⎪⎪⎪⎪. 求:1秩A ;2A 的列向量组的一个最大线性无关组;30.设矩阵A=022234243----⎛⎝ ⎫⎭⎪⎪⎪的全部特征值为1,1和-8.求正交矩阵T 和对角矩阵D ,使T -1AT =D .31.试用配方法化下列二次型为标准形fx 1,x 2,x 3=x x x x x x x x x 12223212132323444+-+--,并写出所用的满秩线性变换;四、证明题本大题共2小题,每小题5分,共10分32.设方阵A 满足A 3=0,试证明E -A 可逆,且E -A -1=E +A +A 2.33.设η0是非齐次线性方程组Ax=b 的一个特解,ξ1,ξ2是其导出组Ax=0的一个基础解系.试证明 1η1=η0+ξ1,η2=η0+ξ2均是Ax=b 的解; 2η0,η1,η2线性无关;答案:一、单项选择题本大题共14小题,每小题2分,共28分二、填空题本大题共10空,每空2分,共20分 15. 6 16. 337137--⎛⎝⎫⎭⎪17. 4 18. –1019. η1+c η2-η1或η2+c η2-η1,c 为任意常数 20. n -r 21. –5 22. –2 23. 124. z z z z 12223242++-三、计算题本大题共7小题,每小题6分,共42分25.解1AB T =120340*********-⎛⎝ ⎫⎭⎪⎪⎪--⎛⎝ ⎫⎭⎪⎪⎪=861810310⎛⎝ ⎫⎭⎪⎪⎪. 2|4A |=43|A |=64|A |,而|A |=1203401212-=-. 所以|4A |=64·-2=-12826.解 311251342011153351111113100105530------=-----=511 1111 550 ----=5116205506255301040 ---=---=+=.27.解AB=A+2B即A-2EB=A,而A-2E-1=2231101211431531641--⎛⎝⎫⎭⎪⎪⎪=-----⎛⎝⎫⎭⎪⎪⎪-.所以B=A-2E-1A=143153164423110123-----⎛⎝⎫⎭⎪⎪⎪-⎛⎝⎫⎭⎪⎪⎪=386 296 2129-----⎛⎝⎫⎭⎪⎪⎪.28.解一----⎛⎝⎫⎭⎪⎪⎪⎪−→−-----⎛⎝⎫⎭⎪⎪⎪⎪2130130102243419053213010112013112−→−--⎛⎝⎫⎭⎪⎪⎪⎪−→−⎛⎝⎫⎭⎪⎪⎪⎪1035011200880014141035011200110000−→−⎛⎝⎫⎭⎪⎪⎪⎪1002010100110000,所以α4=2α1+α2+α3,组合系数为2,1,1.解二考虑α4=x1α1+x2α2+x3α3,即-++=-=-+=+-=⎧⎨⎪⎪⎩⎪⎪230312243491231223123x x xx xx xx x x.方程组有唯一解2,1,1T,组合系数为2,1,1.29.解对矩阵A施行初等行变换A−→−-----⎛⎝⎫⎭⎪⎪⎪⎪12102 00062 03282 09632−→−-----⎛⎝⎫⎭⎪⎪⎪⎪−→−----⎛⎝⎫⎭⎪⎪⎪⎪12102032830006200021712102032830003100000=B.1秩B=3,所以秩A=秩B=3.2由于A与B的列向量组有相同的线性关系,而B是阶梯形,B的第1、2、4列是B的列向量组的一个最大线性无关组,故A的第1、2、4列是A的列向量组的一个最大线性无关组;A的第1、2、5列或1、3、4列,或1、3、5列也是30.解A的属于特征值λ=1的2个线性无关的特征向量为ξ1=2,-1,0T, ξ2=2,0,1T.经正交标准化,得η1=25555//-⎛⎝⎫⎭⎪⎪⎪,η2=2515451553///⎛⎝⎫⎭⎪⎪⎪.λ=-8的一个特征向量为ξ3=122-⎛⎝⎫⎭⎪⎪⎪,经单位化得η3=132323///.-⎛⎝⎫⎭⎪⎪⎪所求正交矩阵为T=25521515135545152305323////////--⎛⎝⎫⎭⎪⎪⎪.对角矩阵D=100 010 008-⎛⎝⎫⎭⎪⎪⎪.也可取T=25521515130532355451523////////---⎛⎝⎫⎭⎪⎪⎪.31.解fx1,x2,x3=x1+2x2-2x32-2x22+4x2x3-7x32=x1+2x2-2x32-2x2-x32-5x32.设y x x xy x xy x11232233322=+-=-=⎧⎨⎪⎪⎩⎪⎪, 即x y yx y yx y112223332=-=+=⎧⎨⎪⎩⎪,因其系数矩阵C=120011001-⎛⎝⎫⎭⎪⎪⎪可逆,故此线性变换满秩;经此变换即得fx1,x2,x3的标准形y12-2y22-5y32 .四、证明题本大题共2小题,每小题5分,共10分32.证由于E-AE+A+A2=E-A3=E,所以E-A可逆,且E-A-1= E+A+A2 .33.证由假设Aη0=b,Aξ1=0,Aξ2=0.1Aη1=Aη0+ξ1=Aη0+Aξ1=b,同理Aη2= b,所以η1,η2是Ax=b的2个解;2考虑l0η0+l1η1+l2η2=0,即l0+l1+l2η0+l1ξ1+l2ξ2=0.则l0+l1+l2=0,否则η0将是Ax=0的解,矛盾;所以l1ξ1+l2ξ2=0.又由假设,ξ1,ξ2线性无关,所以l1=0,l2=0,从而l0=0 .所以η0,η1,η2线性无关;。
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。
线性代数考试试题
线性代数考试试题一、选择题(每题3分,共30分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 1; 1, 0]2. 向量空间V的一组基具有n个向量,那么V的维数是:A. 0B. nC. 1D. 不确定3. 如果A和B是两个n阶方阵,那么AB和BA的行列式的值:A. 总是相等B. 只有在A和B可交换时相等C. 只有在A和B都是对角矩阵时相等D. 无法确定是否相等4. 对于任意的n维向量x,下列哪个选项是正确的?A. x^T * x是一个标量B. x^T * x是一个矩阵C. x * x^T是一个矩阵D. x + x^T是一个向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在标量λ和非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在标量λ和非零向量v,使得vA=λv,则λ是A的特征值,v是A的特征向量C. 对于矩阵A,如果存在标量λ和非零向量v,使得A^2v=λv,则λ是A的特征值,v是A的特征向量D. 以上都不是6. 下列哪个矩阵是对称矩阵?A. [1, 0; 0, -1]B. [0, 1; 1, 0]C. [1, 2; 2, 1]D. [2, 3; 3, 2]7. 对于矩阵A,其迹(trace)是:A. A的对角线元素之和B. A的行列式C. A的逆矩阵的对角线元素之和D. A的秩8. 如果矩阵A是正交矩阵,那么下列哪个陈述是正确的?A. A的行列式为1B. A的行列式为-1C. A的逆矩阵等于A的转置D. A的逆矩阵等于A本身9. 对于任意矩阵A,下列哪个选项是正确的?A. |A| 是 A 的行列式B. A^T 是 A 的转置C. A^-1 是 A 的逆矩阵D. A^* 是 A 的共轭转置10. 在线性代数中,线性无关的向量集合可以:A. 构成一个向量空间B. 构成一个基C. 确定一个唯一的解D. 以上都是二、填空题(每题4分,共20分)11. 矩阵的秩是指__________________________。
线性代数试题(附参考答案)
《 线性代数 》课程试题(附答案)一、 填空。
(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 22.设⎪⎪⎪⎭⎫⎝⎛=003020100A ,则=-1A3.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A 4.设CB A ,,为n 阶方阵,若0≠A ,且C AB =,则=B 5.矩阵A 可逆的充要条件为6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂ (填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有 个解向量。
二、 计算行列式的值。
(10分)321103221033210=D三、 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求1-A 。
(10分)四、 设矩阵⎪⎪⎭⎫ ⎝⎛=1112A ,求矩阵X ,使E A AX 2+=。
(10分)五、 问K 取什么值时下列向量组线性相关(10分) T k )1,2,(1=α,T k )0,,2(2=α,T )1,1,1(3-=α。
六、 设A ,B 为n 阶矩阵且2B B =,E B A +=,证明A 可逆并求其逆(6分)七、 设矩阵⎪⎪⎪⎭⎫⎝⎛----=979634121121112A ,求矩阵A 的列向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示。
(15分)八、 求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解。
(15分)《线性代数》课程试题参考答案一、 填空。
(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 2482.设⎪⎪⎪⎭⎫ ⎝⎛=003020100A ,则=-1A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛001021031003.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A ⎪⎪⎭⎫ ⎝⎛--1324 4.设C B A ,,为n 阶方阵,若0≠A ,且C AB =,则=B C A 1- 5.矩阵A 可逆的充要条件为0≠A6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为n A r <)(7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂线性无关(填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有r n -个解向量。
线性代数考试题及答案
线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。
答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。
答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。
答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。
线性代数考试题及答案
线性代数考试题及答案**线性代数考试题及答案**一、单项选择题(每题3分,共30分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 可交换D. 不可交换答案:B2. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D3. 向量组α1,α2,…,αs线性无关,则()A. s ≤ nB. s > nC. s ≥ nD. s < n答案:A4. 矩阵A的特征值是()A. 矩阵A的行最简形式B. 矩阵A的列最简形式C. 矩阵A的对角线元素D. 满足|A-λE|=0的λ值答案:D5. 矩阵A和B相等的充要条件是()A. A和B的对应元素相等B. A和B的行向量组相同C. A和B的列向量组相同D. A和B的秩相等答案:A6. 若矩阵A可逆,则下列说法正确的是()A. |A|≠0B. A的秩为nC. A的行列式为1D. A的转置矩阵可逆答案:AA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:C8. 向量组α1,α2,…,αn线性相关,则()A. 存在不全为0的k个向量,使得k个向量线性组合等于0B. 存在不全为0的n个向量,使得n个向量线性组合等于0C. 存在不全为0的n+1个向量,使得n+1个向量线性组合等于0D. 存在不全为0的m个向量,使得m个向量线性组合等于0,其中1≤m≤n答案:DA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:B10. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D二、填空题(每题4分,共20分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|= _ 。
线性代数练习题及答案10套
1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
线性代数试题(完整试题与详细答案)
线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数考试练习题带答案
线性代数试题集与答案解析一、单项选择题(只有一个选项正确,共8道小题)1. 设向量组α1,α2,α3 线性无关,则下列向量组中线性无关的是 ( )。
(A) α 1 −α 2 ,α 2 −α 3 ,α 3 −α 1(B) α 1 ,α 2 ,α 3 + α 1(C) α 1 ,α 2 ,2 α 1 −3 α 2(D) α 2 ,α 3 ,2 α 2 + α 3正确答案:B解答参考:A中的三个向量之和为零,显然A线性相关;B中的向量组与α1,α2,α3等价, 其秩为3,B向量组线性无关;C、D中第三个向量为前两个向量的线性组合,是线性相关向量组。
2.(A) 必有一列元素全为0;(B) 必有两列元素对应成比例;(C) 必有一列向量是其余列向量的线性组合;(D) 任一列向量是其余列向量的线性组合。
你选择的答案:未选择[错误]正确答案:C解答参考:3. 矩阵 ( 0 1 1 −1 2 ,0 1 −1 −1 0 ,0 1 3 −1 4 ,1 1 0 1 −1 ) 的秩为( )。
(A) 1(B) 2(C) 3(D) 4你选择的答案:未选择[错误]正确答案:C解答参考:4. 若矩阵 ( 1 a −1 2, 1 −1 a 2 ,1 0 −1 2 ) 的秩为2,则 a的值为。
(A) 0(B) 0或-1(C) -1(D) -1或1正确答案:B解答参考:5. 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3,则 f的矩阵为。
(A) ( 2 4 0 0 5 −8 0 0 5 )(B) ( 2 4 0 0 5 −4 0 −4 5 )(C) ( 2 2 0 2 5 −4 0 −4 5 )(D) ( 2 4 0 4 5 −4 0 −4 5 )正确答案:C解答参考:6. 设 A、 B为 n阶方阵,且 A与 B等价, | A |=0 ,则 r(B)(A) 小于n(B) 等于n(C) 小于等于n(D) 大于等于n正确答案:A解答参考:7. 若矩阵 [ 1 2 2 −3 ,1 −1 λ−3 ,1 0 2 −3 ] 的秩为2,则λ的取值为(A) 0(B) -1(C) 2(D) -3正确答案:C8. 设α 1 , α 2 , α 3 是齐次方程组 Ax=0 的基础解系,则下列向量组中也可作为 A x=0 的基础解系的是(A) 2(B) -2(C) 1(D) -1正确答案:B解答参考:二、判断题(判断正误,共6道小题)9.设A ,B 是同阶方阵,则AB=BA 。
数学线性代数测试题
数学线性代数测试题题目一:行列式计算1. 计算下列行列式的值:(a)$\begin{vmatrix}2 & -1 & 0 \\3 &4 & 2 \\-1 & 1 & 5\end{vmatrix}$(b)$\begin{vmatrix}1 &2 & 1 & 0 \\3 & 1 &4 & -1 \\-2 & 3 & 0 & 2 \\1 & -1 &2 & 1\end{vmatrix}$2. 判断下列矩阵是否为可逆矩阵,并给出其逆矩阵(若可逆):(a)$\begin{bmatrix}2 & 1 \\3 & 4\end{bmatrix}$(b)$\begin{bmatrix}1 &2 &3 \\2 &3 & 1 \\3 & 2 & 1\end{bmatrix}$题目二:向量空间1. 在三维空间中,考虑向量组 $S = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}$,其中$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad\mathbf{v}_2 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \quad\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$(a) 判断向量组 $S$ 是否线性相关或线性无关。
(b) 若向量组 $S$ 线性相关,找出其中的一个线性相关关系。
(c) 若向量组 $S$ 线性无关,求出向量组 $S$ 的秩,并基于此指出$S$ 所张成的子空间的维度。
2. 给定向量空间 $V = \{ P(x) \mid P(x) = ax^2 + bx + c, a, b, c \in\mathbb{R} \}$,证明其为三维向量空间,并求出其一组基。
线性代数测试题及答案
补充练习三 矩阵一、选择题:(1)设A 和B 均为n 阶方阵,则必有( )。
(A )|A+B|=|A|+|B|; (B )AB=BA (C )|AB|=|BA| (D )(A+B )-1=A -1+B -1 (2)设A 和B 均为n 阶方阵,且满足AB=0,则必有( )。
(A )A=0或B=0 (B )A+B=0 (C )|A|=0或|B|=0 (D )|A|+|B|=0 (3)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=133312321131131211232221a a a a a a a a a a a a B , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100012P ,则必有( )。
(A )AP 1P 2=B ; (B )AP 2P 1=B ; (C )P 1P 2A=B ; (D )P 2P 1A=B (4)设n 维行向量⎪⎭⎫ ⎝⎛=21,0,,0,21α,矩阵ααT E A -=,ααTE B 2+=,其中E 为n 阶单位矩阵,则AB=( )。
(A )0; (B )E ; (C )-E (D )ααTE + (5)设n 阶方阵A 非奇异(n ≥2),A *是A 的伴随矩阵,则( )。
(A )(A *)*=|A|n-1A ; (B )(A *)*=|A|n+1A ; (C )(A *)*=|A|n-2A ; (D )(A *)*=|A|n+2A(6)设n 阶方阵A 、B 、C 满足ABC=E ,其中E 是n 阶单位矩阵,则必有( )。
(A )ACB=E ; (B )CBA=E ; (C )BAC=E ; (D )BCA=E(7)设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44434241343332312423222114131211a a a a a a a a a a a a a a a a A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=41424344313233342122232411121314a a a a a a a a a a a a a a a a B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001010********1P ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10000010010000012P ,其中A 可逆,则B -1等于( )。
线性代数测试题(第三章)
线性代数测试题(第三章)一、填空题(请将正确答案直接填在横线上,每小题3分,共15分): 1. 向量()()12243221αβ==-,,则 2α-3β =__________。
2. 一个含有零向量的向量组必线性 。
3. 设A 是一个n 阶方阵,则A 非奇异的充分必要条件是R (A )=__________。
4. 设12303206A t ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,当t = 时,R (A ) = 2。
5. 已知A 是m × n 矩阵,齐次线性方程组AX = 0的基础解系为12,,,s ηηηL 。
如R (A )= k ,则s =__________;当k =__________时方程只有零解。
二、单项选择题 ( 每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内,每小题3分,共15分):1. 设有4维向量组 α1 , …, α6,则( )。
A R (α1 , …, α6) = 4B R (α1 , …, α6) = 2C α1 , α2 , α3 , α4必然线性无关D α1 , …, α6中至少有2个向量能由其余向量线性表示2. 已知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=4322351521215133A 则R (A )为 A 1 B 2 C 3 D 43. 设s ααα,,,21Λ为n 维向量组, 且秩12(,,,),s R r ααα=L 则( )。
A 该向量组中任意r 个向量线性无关B 该向量组中任意 1+r 个向量线性相关C 该向量组存在唯一极大无关组D 该向量组有若干个极大无关组4. 若1234,,,X X X X 是方程组AX O =的基础解系,则1234X X X X +++ 是AX O =的( )。
A 解向量B 基础解系C 通解D A 的行向量5. 线性方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+=+414343232121a x x a x x a x x a x x 有解的充分必要条件是() A 04321=+++a a a a B 04321=---a a a a C 03214=-+-a a a a D 04321=--+a a a a 三、计算题(每小题8分,共64分):1. 求向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113420112404321αααα,,,的极大线性无关组和秩,并将其余向量表示成极大线性无关组的线性组合。
线性代数练习题答案
线性代数练习题答案一、选择题1. 设矩阵A的秩为2,矩阵B的秩为1,则矩阵AB的秩为:A. 1B. 2C. 0D. 32. 向量组a1, a2, a3线性无关的充分必要条件是:A. 它们互不相同B. 它们不共面C. 它们是单位向量D. 它们是正交向量3. 一个3阶方阵A的特征值之和等于:A. A的迹B. A的行列式C. A的秩D. A的逆矩阵的行列式4. 若矩阵A是可逆的,则下列哪个矩阵也是可逆的:A. A的转置矩阵B. A的伴随矩阵C. A的逆矩阵D. A的行列式二、填空题1. 设矩阵A的行列式为-3,则矩阵A的伴随矩阵的行列式为______。
2. 若向量组{b1, b2, b3}能由向量组{a1, a2}线性表示,且a1=(1,2,-1)^T,a2=(0,1,3)^T,b1=(2,3,-1)^T,b2=(1,1,4)^T,则b3=(3,4,-2)^T可以表示为______。
三、简答题1. 简述矩阵的特征值和特征向量的概念,并说明它们在矩阵理论中的重要性。
2. 解释什么是矩阵的正交化和单位化,并说明它们在解决向量空间问题中的应用。
四、证明题1. 证明:若矩阵A是正定的,则其逆矩阵也是正定的。
2. 证明:若两个向量a和b是正交的,则它们对应的投影矩阵的乘积为零矩阵。
五、计算题1. 计算以下矩阵的行列式:\[ A = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 3 & -1 \\ 2 & -1 & 5 \end{bmatrix} \]2. 设矩阵B为:\[ B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \] 求矩阵B的特征值和特征向量。
3. 已知向量v=(1,1,1)^T,求在向量v方向上的投影矩阵P_v。
六、应用题1. 某公司需要解决一个线性方程组问题,方程组如下:\[ \begin{cases} x_1 + 2x_2 + x_3 = 5 \\ 3x_1 + x_2 + 4x_3 = 8 \\ 2x_1 + x_2 + x_3 = 4 \end{cases} \]请使用高斯消元法求解该方程组。
2022年线性代数试卷及答案6套
线性代数试卷及答案6套.试卷(一): 一. 填空题(每小题4分,共20分)1.已知正交矩阵P 使得⎪⎪⎪⎭⎫ ⎝⎛--=200010001AP P T ,则.________)(2006=+P A E A P T2.设A 为n 阶方阵,n λλ,,1 为A 的n 个特征值,则 ._________)det(2=A 3.设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有无数多个解的充分必要条件是:._________4.若向量组T T T t )3,2,(,)1,3,2(,)2,4,0(===γβα的秩为2,则._____=t5.,27859453251151)(32--=x x x x D 则0)(=x D 的全部根为:_________.二. 选择题 (每小题4分,共20分)1.行列式001010100 ---的值为( ).A. 1B. -1C. 2)1()1(--n n D. 2)1()1(+-n n2. 对矩阵n m A ⨯施行一次行变换相当于( ).A. 左乘一个m 阶初等矩阵B. 右乘一个m 阶初等矩阵C. 左乘一个n 阶初等矩阵D. 右乘一个n 阶初等矩阵 3. 若A 为n m ⨯矩阵,{},,0|,)(n R X AX X M n r A r ∈==<= 则( ). A. M 是m 维向量空间 B. M 是n 维向量空间 C. M 是r m -维向量空间 D. M 是r n -维向量空间 4. 若n 阶方阵A 满足,,02=A 则下列命题哪一个成立 ( ).A. 0)(=A rB. 2)(n A r =C. 2)(n A r ≥D. 2)(nA r ≤5. 若A 是n 阶正交矩阵,则下列命题哪一个不成立( ). A. 矩阵T A 为正交矩阵 B. 矩阵1-A 为正交矩阵 C. 矩阵A 的行列式是1± D. 矩阵A 的特征值是1±三. 解下列各题(每小题6分,共30分)1. 若A 为3阶正交矩阵, *A 为A 的伴随矩阵, 求).det(*A2. 计算行列式.111111111111aa a a 3. 设,,100002020B A AB A -=⎪⎪⎪⎭⎫ ⎝⎛=求矩阵.B4. 求向量组,)2,1,2,1(1T =α,)2,1,0,1(2T =α,)0,0,1,1(3T =αT )4,2,1,1(4=α的一个 最大无关组.5. 求向量T )1,2,1(=ω在基,)1,1,1(T =α,)1,1,0(T =βT )1,1,1(-=γ下的坐标. 四. (12分) 求方程组⎪⎩⎪⎨⎧=+--+=+++-=++-+631052372322543215432154321x x x x x x x x x x x x x x x的通解(用基础解系与特解表示).五.(12分) 用正交变换化下列二次型为标准型, 并写出正交变换矩阵3123222132122),,(x x x x x x x x x f -++= 六. 证明题(6分)设r ξξξβ ,,,021≠是线性方程组β=AX 对应的齐次线性方程组的一个 基础解系,η是线性方程组β=AX 的一个解, 求证ηηξηξηξ,,,,21+++r 线性无关.试卷(二):一.计算下列各题:(每小题6分,共30分)(1),180380162176380162225379162(2)求,3222E A A ++其中⎪⎪⎭⎫⎝⎛-=3112A(3)已知向量组T T T t ),2,1(,)3,3,2(,)3,2,0(321-===ααα线性相关,求.t (4) 求向量T )4,2,1(-=α在基T T T )1,2,1(,)1,1,0(,)1,0,1(321-===ααα下的坐标.(5) 设⎪⎪⎭⎫⎝⎛=5321A , 求A 的特征值.二.(8分) 设⎪⎪⎪⎭⎫ ⎝⎛=200002130A ,且,B A AB T +=求矩阵B.三. (8分) 计算行列式: 100200300321x c b a四. (8分) 设有向量组,)6,0,2,3,3(,)7,2,0,1,1(,)5,2,1,0,1(,)3,2,1,1,0(4321T T T T -=--===αααα 求该向量组的秩以及它的一个最大线性无关组.五. (8分) 求下列方程组的通解以及对应的齐次方程组的一个基础解系.⎪⎩⎪⎨⎧=--+=+-+-=-+-+.18257,432,1042354315432154321x x x x x x x x x x x x x x六. (8分) 求出把二次型323121232221222)(x x x x x x x x x a f -++++=化为标准形的正交变换,并求出使f 为正定时参数a 的取值范围.七. (10分) 设三阶实对称矩阵A 的特征值为3(二重根)、4(一重根),T )2,2,1(1=α是A 的属于特征值4的一个特征向量,求.A 八. (10分) 当b a ,为何值时,方程组⎪⎩⎪⎨⎧=++=++=++,233,1032,4321321321x bx x x bx x x x ax 有惟一解、无穷多解、无解?九.(10分) (每小题5分,共10分) 证明下列各题(1) 设A 是可逆矩阵, ,~B A 证明B 也可逆, 且.~11--B A (2) 设βα,是非零1⨯n 向量,证明α是n n ⨯矩阵T αβ的特征向量.试卷(三):一. 填空题(共20分)1. 设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有唯一解的充分必要条件是:2. 已知E 为单位矩阵, 若可逆矩阵P 使得11223,P AP P A P E --+= 则当E A -可逆时, 3A =3. 若t 为实数, 则向量组α=(0,4,t ),β=(2,3,1),γ=(t ,2,3+t )的秩为:4. 若A 为2009阶正交矩阵,*A 为A 的伴随矩阵, 则*A =5. 设A 为n 阶方阵,12,,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则1ni i i i E A λ=-∑ =二. 选择题(共20分)1. 如果将单位矩阵E 的第i 行乘k 加到第j 行得到的矩阵为)),(,(k i j P 将矩阵n m A ⨯的第i 列乘k 加到第j 列相当于把A :A, 左乘一个));(,(k j i P B ,右乘一个));(,(k j i PC . 左乘一个));(,(k i j PD ,右乘一个)).(,(k i j P2. 若A 为m ×n 矩阵,B 是m 维非零列向量,()min{,}r A r m n =<。
线性代数考试题及答案
线性代数考试题及答案一、选择题(共10小题,每题2分,共20分)1. 在线性空间R^3中,向量的维数是()。
A. 1B. 2C. 3D. 无穷大2. 已知向量组{v1, v2, v3}线性无关,向量v4可以由向量组{v1, v2,v3}线性表示,那么向量组{v1, v2, v3, v4}()。
A. 线性无关B. 线性相关C. 只存在部分线性相关D. 无法确定3. 若A是一个n×n矩阵,且满足A^2 = -I,其中I为n阶单位矩阵,则矩阵A的特征值为()。
A. -1B. 1C. iD. -i4. 设A为n×n矩阵,若A^2=0,则()。
A. A非奇异B. A是零矩阵C. A的特征值全为0D. A的特征向量全为05. 设A为3×3矩阵,若A的秩为2且|A|=0,则()。
A. A的特征值必为0B. A的特征值至少有2个为0C. A的特征值可能全为非零数D. A的特征值全为非零数6. 设A为m×n矩阵,若齐次线性方程组Ax = 0有非零解,则()。
A. A的列向量组线性无关B. A的行向量组线性无关C. A的列向量组线性相关D. A的行向量组线性相关7. 设A、B为m×n矩阵,若AB=0,则()。
A. A=0或B=0B. A和B至少有一方为0C. AB为零矩阵D. AB不一定为零矩阵8. 若二次型f(x) = x^T Ax恒大于等于零,其中x为非零向量且A为n×n对称矩阵,则A()。
A. 不一定是正定矩阵B. 一定是正定矩阵C. 一定是半正定矩阵D. 不一定是半正定矩阵9. 若矩阵A=(a1,a2,a3,...,an)为方阵,并且满足AtA=In,其中In为n阶单位矩阵,则()。
A. A非奇异B. A为对角阵C. A为正交阵D. A为对称阵10. 对于线性方程组Ax = b,若方程组有解,则()。
A. A的行向量数等于b的个数B. A的列向量数等于b的个数C. A的秩等于b的个数D. A的秩小于等于b的个数二、简答题(共4题,每题15分,共60分)1. 请证明:若n×n矩阵A与B的秩相等,即rank(A)=rank(B),则AB与BA的秩也相等。
线性代数试题及答案
线性代数试题及答案一、选择题1. 线性代数是数学的一个分支,主要研究向量空间、线性变换以及它们之间的关系。
以下哪个选项不是向量空间的基本性质?A. 封闭性B. 结合律C. 交换律D. 单位元存在性答案:C2. 设A是一个3级方阵,且det(A) = 2,那么det(2A)等于多少?A. 4B. 6C. 8D. 10答案:C3. 在线性代数中,线性变换可以通过什么来表示?A. 矩阵B. 行列式C. 特征值D. 坐标答案:A4. 特征值和特征向量在描述线性变换时具有重要意义。
一个矩阵的特征值和特征向量分别表示什么?A. 变换后矩阵的行列式,变换前矩阵的行列式B. 变换后矩阵的行列式,变换前向量的方向C. 变换前矩阵的行列式,变换后向量的方向D. 变换前矩阵的行列式,变换后向量的方向答案:B5. 线性代数中的欧几里得空间是一个完备的度量空间,它满足哪些性质?A. 可数性B. 完备性C. 可加性D. 所有上述性质答案:D二、填空题1. 在线性代数中,若一个向量空间的基包含n个向量,则该向空间的维数为______。
2. 设矩阵A = [a_ij],其中i表示行索引,j表示列索引。
如果A的逆矩阵存在,则A的行列式det(A)不等于______。
3. 对于一个n级方阵A,若存在一个非零向量v,使得Av=λv,其中λ为一个标量,则称λ为A的______,v为对应于λ的______。
三、计算题1. 给定矩阵B = [1 2 3; 4 5 6; 7 8 9],求矩阵B的秩。
2. 设线性方程组如下:a_1 + 2a_2 + 3a_3 = 64a_1 + 5a_2 + 6a_3 = 127a_1 + 8a_3 + 9a_3 = 18求该方程组的解。
3. 给定一个3级方阵C,其特征值为1,-2和3,求矩阵C。
四、论述题1. 讨论线性变换在几何上的意义,并给出一个具体的例子来说明其作用。
2. 解释何为线性空间,以及线性空间的同构关系是如何定义的。
线性代数试题
线性代数试题一、选择题1. 线性代数中的“线性”一词主要指的是:A. 向量线性组合的运算性质B. 矩阵的线性变换C. 线性方程组的解的性质D. 所有上述选项2. 设A是一个3阶方阵,且满足A^2 = 2A + I,其中I是3阶单位矩阵。
则A的行列式的值为:A. 0B. 1C. 2D. 不能确定3. 若向量a和向量b不共线,则下列哪个选项是正确的?A. a与b的内积为0B. a与b的叉积为0C. a与b可以作为两个基向量D. a与b的模长之和为定值4. 在线性代数中,特征值和特征向量的定义是:A. 一个数λ和非零向量v,使得Av = λvB. 一个数λ和非零向量v,使得v^2 = λC. 一个数λ和非零向量v,使得v/λ = AD. 一个数λ和非零向量v,使得A/v = λ5. 线性变换可以通过哪种矩阵来表示?A. 行矩阵B. 列矩阵C. 方阵D. 任意形状的矩阵二、填空题1. 在二维空间中,两个向量正交当且仅当它们的________等于0。
2. 一个n阶方阵的迹是指它的对角线元素之________。
3. 矩阵的秩是指矩阵中线性________的行或列的最大数目。
4. 一个向量空间的基是一组________的向量集合,可以通过它们表示该空间中的任意向量。
5. 对于一个给定的线性方程组,若其系数矩阵是对称正定的,则该方程组有唯一解当且仅当该矩阵是________的。
三、简答题1. 请解释何为线性相关和线性无关,并给出两个例子进行说明。
2. 描述矩阵的转置操作,并解释它对矩阵性质的影响。
3. 什么是线性方程组的基本解?请给出一个具体的例子来说明。
4. 解释何为特征值和特征向量,并说明它们在实际问题中的应用。
四、计算题1. 给定矩阵A = [1 2; 3 4],求A的逆矩阵。
2. 设向量a = [1; 2; 3],向量b = [4; 5; 6],求a和b的夹角。
3. 给定一个线性方程组如下:x + 2y - z = 32x - y + 3z = 13x + y + 2z = 4求该方程组的解。
线性代数试题
线性代数试题1. 以下是一些线性代数的试题,供您参考:1.1. 选择题1) 在三维空间中,如果一个平面通过原点,那么它的维数是几?A. 0B. 1C. 2D. 32) 设 A 是一个 3x3 的方阵,满足 A^T = -A,则 A 是什么类型的矩阵?A. 对称矩阵B. 反对称矩阵C. 正交矩阵D. 对角矩阵3) 对于一个 n x n 的方阵,如果它的特征值都是实数,那么它一定是什么类型的矩阵?A. 对称矩阵B. 反对称矩阵C. 正交矩阵D. 对角矩阵1.2. 简答题1) 请解释什么是矩阵的秩(rank)?2) 请解释什么是向量的线性无关?3) 请解释什么是特征值和特征向量?1.3. 计算题1) 已知矩阵 A = [1, 2; -1, 3],求 A 的逆矩阵。
2) 已知向量 v1 = [1, 2, 3] 和向量 v2 = [2, 4, 6],判断它们是否线性相关,并解释理由。
2. 答案解析2.1. 选择题1) 答案:C。
平面通过原点的维数是 2。
2) 答案:B。
满足 A^T = -A 的矩阵是反对称矩阵。
3) 答案:A。
特征值都是实数的方阵一定是对称矩阵。
2.2. 简答题1) 矩阵的秩是指矩阵列向量组(或行向量组)中线性无关的向量的最大个数。
2) 向量 v1, v2, ..., vn 线性无关是指不能有不全为 0 的实数 c1, c2, ..., cn,使得 c1v1 + c2v2 + ... + cnvn = 0。
3) 特征值和特征向量是矩阵运算中的重要概念。
对于一个 n x n 的方阵 A,如果存在实数λ 和非零向量 v,使得Av = λv,则λ 称为 A 的特征值,v 称为对应于特征值λ 的特征向量。
2.3. 计算题1) A 的逆矩阵为 A^-1 = [3/5, -2/5; 1/5, 1/5]。
2) v1 = 2v2,它们线性相关,因为存在不全为 0 的实数 c1 = 2,c2 = -1,使得 c1v1 + c2v2 = 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数目标测试题第1章 行列式一、选择题1.四阶行列式中含有因子32a 的项,共有( )个.(A )4; (B)2; (C)6; (D)8.2.设111212122212nn n n nna a a a a a D a a a =,1,1,11,11,1111,111nn n n n n n n n n n n a a a a a a D a a a ------=,则有( ).(A )1D D =; (B)1D D =-; (C)(1)21(1)n n D D -=-; (D)1(1)n D D =-.3.设,a b 为实数,000101ab ba-=--,则( )(A )0,1a b ==-; (B)0,0a b ==; (C)1,0a b ==; (D)1,1a b ==-.4.设1234234134124123D =,4i A 是D 中元素4(1,2,3,4)i a i =的代数余子式,则14243444234A A A A +++=( )(A )-1; (B)1; (C)D 1; (D)0.5.四阶行列式112233440000000a b a b b a b a 的值等于( ) (A )12341234a a a a b b b b -; (B) 12341234a a a a b b b b +; (C) 12123434()()a a bb a a b b --; (D) 23231414()()a a b b a a bb --. 二、填空题1.设3101121a bc=,则333524_______111a b c ---=.2.设n 阶行列式D a =,且D 的每行元素之和为(0)b b ≠,则行列式D 的第1列元素的代数余子式之和等于_____.3.四阶行列式11101101_____10110111=. 4.设行列式3040222207005322D =--,则D 的第4行元素余子式之和等于_____. 5.五阶行列式10001100___________________01100011011aaa a a aa a a---=------.三、计算题1.计算四阶行列式1111111111111111x x x x ---+---+--.2.计算十阶行列式101010000011000xx x x---.3.计算行列式1231231231231111n n n n na a a a a a a a D a a a a a a a a ++=++.4.计算行列式=n D 111112001030100n5.计算三对角行列式5300025300025000005300025n D =.6.计算行列式n x a a aa xa a D a axa a a a x-=----- .四、证明题1.证明:将n 阶行列式D 的每个元素ij a 乘以(0)i j b b -≠后得到的行列式仍然等于D .2.设343123211211)(------=x x x x x x x f ,证明:存在(0,1) ξ∈,使得()0f ξ'=. 3.设n 阶行列式det()ij D a =的元素满足(,1,2,,)ij ji a a i j n =-= ,试证明:当n 为奇数时,0D =.线性代数目标测试题第2章 矩阵一、选择题1. 已知A B C ,,均为n 阶方阵,且满足ABC E =,则( )() ()() () .A ACB E B CBA E C BAC E D BCA E ====,,,2. 1a b c d -⎛⎫⎪⎝⎭=( )(a d b c ≠)A .d c b a -⎛⎫ ⎪-⎝⎭ B.d b c a -⎛⎫⎪-⎝⎭ C.1d b c a ad bc -⎛⎫ ⎪--⎝⎭ D.1d c b a ad bc -⎛⎫ ⎪--⎝⎭3. 设111213212223212223111213313233311132123313 a a a a a a A a a a B a a a a a a a a a a a a ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭,, 12010100100 010001101P P ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,则必有( ) 12211221() () () ().A APP B B AP P B C PP A B D P PA B ====,,, 4.已知A B ,均为n 阶矩阵,且A O AB O ≠=,,下列结论必然正确的是( )()()()()()()()()22222222-.A B O B A B A B C A B A BA B D A B A B A B =+=++=-++=- , ,,5.设n 阶方阵A B ,等价,则( )() () () 00 () .A AB B A BC A BD A B =≠≠≠=-,,若,则必有,二、填空题1. 设A 为3阶方阵,且3A =,则2A -=-______________2. 当λ=_______________时,矩阵11312050λ-⎛⎫ ⎪- ⎪ ⎪⎝⎭为奇异矩阵.3. 对于方阵A B 、,若AXB C =,则X =______________________4.已知AB B A -=,其中120210002B -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A =_________________.5.设100220345A ⎛⎫⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则 1(*)A -=________________.6.设A 是4⨯3矩阵,()2R A =,而102020103B ⎛⎫⎪= ⎪ ⎪-⎝⎭,则()R B = .三、计算题1. 设矩阵A B ,满足关系式2()AB A B =+,其中301 110014A ⎛⎫⎪= ⎪ ⎪⎝⎭,求矩阵B .2. 设1000000200000010000000000021000053A n n ⎛⎫⎪⎪ ⎪⎪=- ⎪ ⎪⎪⎪ ⎪⎝⎭,求1A -.3. 已知2AX E A X ++=,其中101020101A ⎛⎫ ⎪ ⎪ ⎪-⎝⎭=,求X .4. 已知11111111 11111111A ---⎛⎫⎪---⎪= ⎪--- ⎪---⎝⎭,求n A (n 为正整数). 5. 设AP P =Λ,1214P ⎛⎫⎛⎫=Λ⎪ ⎪⎝⎭⎝⎭10,=02,求()()82A A A A ϕ=-.6.设三阶矩阵a b b A b a b b b a ⎛⎫⎪= ⎪ ⎪⎝⎭问,a b 满足什么条件时,A 的伴随矩阵*A 的秩等于1.四、证明题1.设A B ,为n 阶矩阵,且A 为对称阵,证明TB AB 也是对称矩阵.2.设A 为n 阶非零矩阵,*A 为A 的伴随矩阵,且*TA A =,证明 0A ≠.线性代数目标测试题第3章 向量与向量空间一、选择题 1.若向量组12,,,m ααα 线性无关,则向量组12,,,m βββ 线性无关的充分必要条件是( ).(A )向量组12,,,m ααα 可由向量组12,,,m βββ 线性表示; (B )向量组12,,,m βββ 可由向量组12,,,m ααα 线性表示; (C )向量组12,,,m ααα 与向量组12,,,m βββ 等价; (D )向量组12,,,m ααα 与向量组12,,,m βββ 的秩相等.2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是( ). (A );122331,,αααααα++-;(B )1223123,,2ααααααα++++;(C )1223312,23,3αααααα+++;(D )123123123,2322,355ααααααααα++-++-. 3.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而2β不能由123,,ααα线性表示,则对任意常数k ,必有( ). (A )12312,,,k αααββ+线性无关;(B )12312,,,k αααββ+线性相关; (C )12312,,,k αααββ+线性无关;(C )12312,,,k αααββ+线性相关. 4.设12(1,0,0),(0,0,1)TT αα==,则β=( )时,β可由12,αα线性表示.(A )(2,0,0) (B )(-3,0,4) (C )(1,1,0) (D )(0,-1,0) 5.设123(1,2,1),(0,5,3),(2,14,8)TTTααα===,则向量组123,,ααα的秩是( )(A )0 (B )1 (C )2(D )36.设,,n R αβγ∈,在下列表达式中( )没有意义.(A )[,]αβγ (B )[,]αβγ+ (C )([,]0)[,]λαβαβ≠ (D )[,]αβγ+二、填空题1. 设向量组123(,0,),(,,0),(0,,)T T T a c b c a b ααα===线性无关,则,,a b c 必满足关系式 .2.设三阶矩阵122212304A -⎛⎫ ⎪= ⎪ ⎪⎝⎭,三维向量11a α⎛⎫ ⎪= ⎪ ⎪⎝⎭,若向量A α与α线性相关,则a = .3.已知向量组123(1,2,1,1),(2,0,,0),(0,4,5,2)T T T t ααα=-==--的秩为2,则t = .4.从2R 的基12(1,0),(1,1)T T αα==-到基12(1,1),(1,2)T T ββ==的过渡矩阵为 .5.已知向量(1,1,2)Tα=-与向量(2,2,)Tx β=-正交,则x = . 三、计算题 1.设(2,1,2),(4,2,3),T TTαβγ=-=-=-,求数k 使得2k αβγ+=.2.设向量组123(1,2,0),(1,2,3),(1,2,2)T T T a a b a b ααα==+-=---+与向量(1,3,3)Tβ=-,问,a b 为何值时(1)β不能由123,,ααα线性表示;(2)β能由123,,ααα唯一地线性表示,并写出表示式;(3)β能由123,,ααα线性表示,但表示式不唯一,并写出两个表示式.3.确定a 取何值时,向量组123(1,0,2),(1,1,3),(1,1,2)TT T a ααα===-+与向量组123(1,2,3),(2,1,6),(2,1,4)TT T a a a βββ=+=+=+有下列关系?(1)123,,ααα可由123,,βββ线性表示,但123,,βββ不能由123,,ααα线性表示;(2)123,,ααα不能由123,,βββ线性表示,但123,,βββ能由123,,ααα线性表示;(3)123,,ααα与123,,βββ等价;(4)123,,ααα不能由123,,βββ线性表示,123,,βββ也不能由123,,ααα线性表示.4.设123,,ααα线性无关,问当,h k 满足什么条件时,213213,,h k αααααα---也线性无关.5.设123,,t t t 为互不相等的常数,讨论向量组222111222333(1,,),(1,,),(1,,)T TTt t tt t t ααα===的线性相关性. 四、证明题1.证明,对任意实数a ,向量组123(,,,),(,1,2,3),(,2,3,4)T T T a a a a a a a a a a a a ααα==+++=线性相关.2.设n 维向量组12,,,n ααα 线性无关,若11122n n n k k k αααα+=+++且0(1,2,,)i k i n ≠= ,则121,,,,n n αααα+ 中任意n 个向量都线性无关.线性代数目标测试题第4章 线性方程组一、选择题1.n 元非齐次线性方程组Ax b =与其对应的齐次线性方程组0Ax =满足( ) (A )若0Ax =有唯一解,则Ax b =也有唯一解, (B )若Ax b =有无穷多解,则0Ax =也有无穷多解, (C )若0Ax =有无穷多解,则Ax b =只有零解, (D )若0Ax =有唯一解,则Ax b =无解.2.要使12100 121ξξ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,都是线性方程组0Ax =的解,只要系数矩阵A 为( ) (A )()211- (B )201011-⎛⎫ ⎪⎝⎭ (C )102011-⎛⎫ ⎪-⎝⎭ (D )011422011-⎛⎫⎪- ⎪⎪⎝⎭3.设A 为m n ⨯矩阵,且()1r A n =-,12,αα是0Ax =的两个不同的解向量,k 为任意的常数,则0Ax =的通解为( )(A ) 1k α (B ) 2k α (C) 12()k αα- (D) 12()k αα+4.线性方程组123232321,32, (3)(4)(2).x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解,则λ=( )(A ) 1 (B) 2 (C ) 3 (D ) 45.设n 阶矩阵A 的伴随矩阵*0A ≠,若1234,,,ξξξξ是非齐次线性方程组Ax b =的互不相等的解,则对应的齐次线性方程组0Ax =的基础解系( )(A )不存在, (B) 仅含一个非零解向量, (C )含有两个线性无关的解向量, (D )含有三个线性无关的解向量. 二、填空题1. 设线性方程组 1231231232202020.x x x x x x x x x λ-+=⎧⎪-+=⎨⎪+-=⎩,,的系数矩阵为A ,且存在三阶矩阵0B ≠,使得0AB =,则λ=_________________,2.设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1n -,则线性方程组0Ax =的 通解为__________________,3.设方程组123111111112a x a x a x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭有无穷多解解,则a =_______________,4.设12,,s ηηη 为非齐次线性方程组Ax b =的解,若1122s s k k k ηηη+++ 也是方 程组Ax b =的解,则12s k k k ,,,应满足条件__________________________,5.设A 为4阶方阵,且()2r A =,*A 为A 的伴随矩阵,则方程组*0A x =的基础解系所含解向量个数为_____________________.三、计算题1.求齐次线性方程组1234123412341234502303803970.x x x x x x x x x x x x x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩,,, 的基础解系.2.求非齐次线性方程组1234512451235123453247 26525 411853 32 1.x x x x x x x x x x x x x x x x x x +-++=⎧⎪+++=⎪⎨+++=⎪⎪++++=⎩,,, 的通解.3.设A 是3m ⨯矩阵,且()1r A =,如果非齐次线性方程组Ax b =的三个解向量123,,ηηη满足1223311012 1, 0311ηηηηηη⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+=+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,,求非齐次线性方程组Ax b =的通解.4.确定常数a ,使向量组12311 1 111a a a ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可由向量组 1231221 4a a a a βββ--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,线性表示,但向量组123,,βββ不能由向量组123,,ααα线性表示.5.对于线性方程组12341234123402203(2)(4)4 1.x x x x x x x x x x x x λμλμ+++=⎧⎪+++=⎨⎪+++++=⎩,,已知()1111T--是该方程组的一个解.试求(1)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (2)该方程组满足23x x =的全部解. 四、证明题1.设A 为m n ⨯矩阵,1η,2η为非齐次线性方程组Ax b =的两个不同解,ξ为对应的齐次线性方程组0Ax =的一个非零解,证明:(1)向量组1η,12ηη-线性无关;(2)若()1r A n =-,则向量组ξ,1η,2η线性相关. 2.已知平面上三条不同的直线的方程分别为123:230,:230,:230.l ax by c l bx cy a l cx ay b ++=++=++= 试证:这三条直线交于一点的充分必要条件为 0a b c ++=.线性代数目标测试题第5章 矩阵的特征值与特征向量一、选择题1.矩阵1111111111111111A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭的非零特征值为( ). (A )1; (B)2; (C)3; (D)4.2.设A 为n 阶实对称矩阵,α是A 的属于特征值λ的特征向量,P 为n 阶可逆矩阵,则矩阵1TP A P -的属于特征值λ的特征向量是( ).(A )1P α-; (B)TP α; (C)P α; (D)1()T P α-.3.设2=λ是可逆矩阵A 的一个特征值,则矩阵211()3A -有一个特征值等于( ).(A )43; (B)34; (C)12; (D)14. 4.已知12,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则112,()A ααα+线性无关的充分必要条件是( ).(A )10λ≠; (B)20λ≠; (C)10λ=; (D)20λ=. 5.设,A B 为n 阶矩阵,且A 与B 相似,则( ).(A)E A E B λλ-=-; (B)A 与B 有相同的特征值和特征向量; (C)A 与B 都相似于一个对角矩阵; (D)对任意常数t ,tE A -与tE B -相似.6.设矩阵001010100B ⎛⎫⎪= ⎪ ⎪⎝⎭.已知矩阵A 与B 相似,则秩(2)E A -与秩()E A -之和等于( ).(A )2; (B)3; (C)4; (D)5. 二、填空题1.设560100121A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则A 的特征值为_____.2.设A 为n 阶矩阵,若方程0Ax =有非零解,则A 必有一个特征值为_______. 3.设A 为n 阶可逆矩阵,若λ为A 的一个特征值,则E A +2*)(必有特征值_______. 4.若4阶矩阵A 与B 相似,A 的特征值为1111,,,2345,则行列式1_____B E --=. 5.设A 为3阶实对称矩阵矩阵,0λ为A 的二重特征值,则秩0()E A λ-等于_______. 三、计算题1.设122212221A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭.(1)试求矩阵A 的特征值;(2)利用(1)小题的结果,求矩阵1E A -+的特征值.2.设矩阵21112111A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭可逆,向量11b α⎛⎫⎪= ⎪ ⎪⎝⎭是A 的伴随矩阵A *的一个特征向量,λ是α对应的特征值,试求,a b 和λ的值.3.设向量1212(,,),(,,)T T n n a a a b b b αβ== 都是非零向量,而且0Tαβ=.记n 阶矩阵TA αβ=.求:(1)2A ;(2)矩阵A 的特征值和特征向量.4.已知111ξ⎛⎫ ⎪= ⎪ ⎪-⎝⎭是矩阵2125312A a b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭的一个特征向量. (1)试确定参数,a b 及特征向量ξ所对应的特征值; (2)问A 能否相似于对角阵?说明理由.5.设矩阵A 与B 相似,其中20010022,02031100A x B y --⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.(1)求x 和y 的值;(2)求可逆矩阵P ,使得1P AP B -=.6.设矩阵1114335A xy -⎛⎫⎪= ⎪ ⎪--⎝⎭,已知A 有三个线性无关的特征向量,2λ=是A 的二重特征值.试求可逆矩阵P ,使得1P AP -为对角形矩阵.7.设矩阵3221423A kk -⎛⎫⎪=-- ⎪ ⎪-⎝⎭.问当k 为何值时,存在可逆矩阵P ,使得1P AP -为对角矩阵?并求出P 和相应的对角矩阵.8.设3阶实对称矩阵A 的特征值为6,3,3,与特征值6对应的特征向量为1111p ⎛⎫⎪= ⎪ ⎪⎝⎭,求A .9.设n 阶矩阵111b b b b A b b ⎛⎫ ⎪ ⎪= ⎪ ⎪--⎝⎭,其中0b ≠. (1)求A 的特征值和特征向量;(2)求可逆矩阵P ,使得1P AP -为对角矩阵. 四、证明题1.设A 是奇数阶正交矩阵,且1A =,证明1λ=是A 的特征值.2.已知A 是n 阶矩阵,设存在正整数k ,使kA O =(称这样的矩阵为幂零矩阵).证明:(1)1A E +=;(2)A 能相似对角化的充分必要条件是A O =.3.设n 阶实对称矩阵,A B 的特征值相同,证明:存在n 阶矩阵P 和正交矩阵Q ,使得,A PQ B QP ==.线性代数目标测试题第6章 二次型一、选择题1.对于二次型()T f x x Ax =,其中A 为n 阶实对称矩阵,下列各结论中正确的是( )。