初一数学下册第五章相交线与平行线学案(2013年新版)
人教版七年级下册数学第五章《相交线与平行线》导学案
相交线与平行线复习·教学设计一、教学目标1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化, 梳理本章的知识结构.2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形.3.认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性质,能利用平移设计图案.二、重点、难点重点:复习平面内两条直线的相交和平行的位置关系,以及相交平行的综合应用.难点:垂直、平行的性质和判定的综合应用.三、学情分析学生在以前的学习中已经学习过平行四边形等概念,对平行、相交有初步认识,课堂回顾以下知识点:1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .四、教学方法选择与设计自主合作探究式学习:小组讨论、交流、建立合作的课堂氛围。
人教版数学七年级下导学案 第五单元《相交线与平行线》全套导学案
人教版数学七年级下第五章《相交线与平行线》全套导学案5.1.1 相交线【学习目标】1、经历观察、推理、交流等过程,了解邻补角和对顶角的概念,2、掌握邻补角、对顶角的性质;【学习过程】环节一:复习引入1、复习提问:若∠1和∠2互余,则________________若∠1和∠2互补,则________________2、画图:作直线AB、CD相交于点O3、探究新知归纳:有一条公共边,而且另一边互为反向延长线的两个角叫做互为________。
如图中的______和_______如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫做互为_________。
如图中的_________和__________3、想一想:如果改变∠1的大小, ∠1和∠2还是邻补角吗?_______,它们的大小关系是____________。
∠1和∠3还是对顶角吗?_______,它们的大小关系是________结论:从数量上看,邻补角__________,对顶角都_______________环节二:例题例:如图,直线a,b相交,∠1=400,求∠2,∠3,∠4的度数解:∵直线a,b相交∴∠1+∠2=1800(邻补角的定义)∴∠2=__________________ =__________________ =__________ ab1234OD CBAOFE D CB A 34D CBA 1234D CBA 12 ∵直线a ,b 相交 ∴∠3=∠____=________∠4=∠____=_________( ) 环节三:练习 A 组1、如图所示,∠1和∠2是对顶角的图形是( )121212212、如图1,AB 与CD 相交所成的四个角中,∠1的邻补角是______, ∠1的对顶角___.3、如图2所示,直线AB 和CD 相交于点O ,OE 是一条射线. (1)写出∠AOC 的邻补角:________________; (2)写出∠COE 的邻补角:_________________. (3)写出与∠BOC 的邻补角:_______________.4、如图3所示,若∠1=25°,则∠2=_______,理由是____________ ∠3=______,理由是__________________∠4=_______.,理由是_______________5、如图4所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠AOC=_________,∠BOD=•______.6、如图5所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°, 则∠AOD=________∠AOC•= ______________B 组7、下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个8、如图6所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_________, ∠AOC 的邻补角是_________;若∠AOC=50°,则∠BOD=______,∠COB=_______.9、如图6所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于OE D CBA 图4图2图6A B C D 图1图3图5O ED CBAOFE DCBA1 2( • )A.150°B.180°C.210°D.120°10、如图7,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.11、如图8,AB,CD相交于点O,OE平分∠AOD,∠AOC=120°,求∠BOD,∠AOE•的度数.C组13、如图8所示,直线AB,CD相交于点O,已知∠AOC=70°,OE把∠BOD分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________.人教版数学七年级下导学案 5.1.2 垂线OED C B A图8图7图8OD CB A【学习目标】1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
新人教版七年级数学下册第五章《相交线与平行线 》学案
新人教版七年级数学下册第五章《相交线与平行线》学案
单元名称第五章相交线与平行线
集体备课内容个人修订意见
一、单元目标
1、知识与技能
(1)理解对顶角、邻补角的概念,识别同位角、对顶角的性质
(2)理解垂线、垂线段等概念、垂线的性质
(3)理解平行线概念、平行公理及其推论、平行线的判定及性质
(4)过一点会画已知直线的垂线、平行线
(5)了解命题的有关概念,能区分命题的条件与结论会判断命题
的真假,知道证明的意义和必要性
(6)掌握平移的概念和性质并会运用其性质作图
2、过程与方法
通过画一画、量一量、算一算等数学活动,让学生体会相交线、平行线
构造的相关角之间的关系;动态展示图形变化,引导学生总结其中不变
的规律,激发学生的求知欲,培养学生观察、分析、解决问题的能力
3、情感态度价值观
在观察、操作、想象、说理、质疑、验证、论述相互交流的过程中,发
展空间观念,增强合作交流意识,激发学习图形与几何的兴趣,体会数
学在实际生活中的应用
二、单元重难点
重点:垂线的概念、平行线的判定及其性质
难点:学会推理
三、课时分配
5.1相交线 4课时
5.2平行线及其判定 3课时
5.3平行线的性质 4课时
5.4平移 2课时
数学活动 2课时
小结 2课时。
人教版七年级数学下册第五章相交线与平行线(教案)
(3)在解决实际问题时,引导学生运用平行线知识,分析问题,提高解题能力。例如,在建筑设计中,如何运用平行线知识确定建筑物的结构线条。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相交线与平行线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如火车轨道、双杠等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、判定方法、性质及其在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-平行线在实际问题中的应用:运用平行线知识解决实际问题,培养学生的数学应用意识。
举例解释:
(1)重点讲解平行线的定义,通过图形直观展示,使学生深刻理解平行线的概念。
(2)强调平行线的性质,结合具体实例进行讲解,让学生掌握平行线之间的夹角关系。
(3)详细讲解判定平行线的方法,并通过典型题目进行巩固。
2.教学难点
此外,关于学生小组讨论环节,我觉得整体效果还不错,学生们能够积极参与,提出自己的观点。但在引导和启发学生思考方面,我觉得自己还有待提高。在今后的教学中,我将更加关注学生的思维过程,通过提问和引导,激发他们的思考。
七年级数学下册 第5章 相交线与平行线 5.2.1 平行线学
5.2.1 平行线班级姓名【学习目标】了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论. 会用符号语方表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.【学习过程】一、自主探究1.平行定义:同一平面内,___________________ 的两条直线叫做平行线.直线a与b 是平行线,记作a_____b.2.在同一平面内,两条直线只有_____种位置关系:________或_______.二、拓展提升1.用直线和三角尺画平行线.过点B画直线a的平行线.过点C画直线a的平行线.它与(1)中直线平行吗?2. 归纳:经过__________一点,有且只有_______条直线与这条直线平行.3.比较平行公理和垂线的第一条性质.共同点:都是“______________”,这表明与已知直线平行或垂直的直线存在并且是_________的.不同点:平行公理中所过的“一点”要在已知直线_____,而垂线性质中对“一点”没有限制,可在直线上,也可在直线外.4.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也____________.用符号语言表达:如果____________,那么______________.三、达标练习填空1.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一条必__________.2.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________.3.两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个.12判断4.不相交的两条直线叫做平行线.( )5.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )6.过一点有且只有一条直线平行于已知直线.( ) 解答题.读下列语句,并画出图形后判断.(1)点P 是直线AB 外一点,直线CD 经过点P ,且与直线AB 平行.(2)直线AB 、CD 是相交直线,点P 是直线AB,CD 外的一点,直线EF 经过点P 且与直线AB 平行,与直线CD 相交于点E(3)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b.四、拓展练习1.已知:如图,P 是直线l 外一点,两条直线12l l 、都经过点P,且1l ∥l ,那么2l 与l 相交吗?为什么?2.如图,如果AB ∥CD,EF ∥CD,那么AB ∥EF 吗?【学习评价】参考答案:达标练习1.相交 2.平行公理的推论 3.1个、0 4.╳ 5.√ 6. ╳解答题作图(3)略.(1) (2)1l l2l PA B CDEFg ABP C D g E FA B P C g D拓展练习1.相交.假设2l与l平行,那么可得过直线l外一点P有两条直线和已知直线平行,这与平行公理发生了矛盾.所以假设不成立,所以2l与l相交.2.平行.根据平行公理的推理可知.解:∵AB∥CD,EF∥CDA B∴AB∥EF(如果两条直线都与第三条直线平行,E F那么这两条直线也互相平行)C D3。
人教版七年级数学下册 第五章 相交线与平行线 导学案
第五章相交线与平行线5.1 相交线5.1.1 相交线1.了解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角.2.掌握“对顶角相等”,并会简单应用.自学指导:阅读教材第2至3页,完成下列问题.知识探究1.平面上不重合的两条直线之间的位置关系为相交或平行.2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线,性质是对顶角相等.3.一个角是52°,那么这个角的补角是128度,余角是38度.4.如图所示,∠1和∠2是对顶角的图形有(A)A.1个B.2个C.3个D.4个1.邻补角既是邻角又是补角,也就是说这两个角既要在数量上满足和为180°,在位置上还必须满足是相邻的关系.2.对顶角的判断方法是:两个角有公共点;两个角的边互为反向延长线,即只有当两条直线相交时才会出现对顶角.5.如图,直线AB、CD、EF相交于点O,∠BOE的对顶角是∠AOF,∠COF的邻补角是∠DOF或∠COE.若∠AOC∶∠AOE=2∶3,∠EOD=130°,则∠BOC=160°.自学反馈1.下列说法正确的有(B)①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个2.∠A与∠B互补,如果∠A=36°,那么∠B的度数为144度.3.如图,有2对对顶角.活动1幻灯片出示问题找出图中的相交线、平行线.在本次活动中,教师应重点关注:(1)学生从简单的具体实物中抽象出相交线、平行线的能力.(2)学生认识到相交线、平行线在日常生活中有着广泛的应用.(3)学生学习数学的兴趣.活动2幻灯片出示问题(1)看见一把张开的剪刀,你能联想到什么样的几何图形?(2)观察这些角有什么位置关系.(3)下列语句中正确的是(D)A.相等的角是对顶角B.有公共顶点且相等的角是对顶角C.有公共顶点的两个角是对顶角D.角的两边互为反向延长线的两个角是对顶角活动3 跟踪训练1.直线a、b相交,∠1=50°,求∠2、∠3、∠4的度数.解:由邻补角的定义,可得∠2=180°-∠1=180°-50°=130°由对顶角相等,可得∠3=∠1=50°,∠4=∠2=130°.2.见上图,∠1等于90°时,∠2、∠3、∠4等于多少度?解:∠2=∠3=∠4=90°.3.如图是一个对顶角量角器,你能说明它度量角度的原理吗?解:对顶角相等.4.如图,直线AB、CD相交于点O.(1)若∠AOC+∠BOD=100°,求各角的度数;(2)若∠BOC比∠AOC的2倍多33°,求各角的度数.解:(1)由对顶角相等且∠AOC+∠BOD=100°可得∠AOC=∠BOD=50°,由邻补角的定义可得∠AOD=∠BOC=130°;(2)∠BOC比∠AOC的2倍多33°,则∠BOC-2∠AOC=33°且∠BOC+∠AOC=180°.所以分别是∠AOC=∠BOD=49°,∠AOD=∠BOC=131°.5.如图,已知直线AB、CD、EF相交于点O,∠1=15°,∠AOD=90°,求∠2的度数.解:∠2=∠AOD-∠3=90°-15°=75°.5.1.2 垂线1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线.2.掌握点到直线的距离的概念,并会度量点到直线的距离.3.掌握垂线的性质,并会利用所学知识进行简单的推理.自学指导:阅读教材第3至6页,完成下列问题.知识探究1.当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.2.如图,直线AB、CD互相垂直,记作AB⊥CD,垂足为点O.3.经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即性质1 过一点有且只有一条直线与已知直线垂直.4.如图,连接直线l外一点P与直线l上各点O、A、B、C…,其中PO⊥l(我们称PO为点P到直线l的垂线段).比较线段PO、PA、PB、PC…的长短,这些线段中,PO最短.性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.5.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如上图,PO的长度叫做点P到直线l的距离. 自学反馈1.下面四种判断两条直线垂直的方法中正确的有A.(1)两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直.(2)两条直线相交,有一组邻补角相等,则这两条直线互相垂直.(3)两条直线相交,所成的四个角相等,则这两条直线互相垂直.(4)两条直线相交,有一组对顶角互补,则这两条直线互相垂直.A.4个B.3个C.2个D.1个2.若直线m、n相交于点O,∠1=90°,则m⊥n.3.若直线AB、CD相交于点O,且AB⊥CD,那么∠BOD=90°.4.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1∶5,那么∠COA=72°,∠BOC的补角为162°.5.过点P向线段AB所在直线引垂线,正确的是(C)6.已知点A,与点A的距离是5 cm的直线可画(D)A.1条B.2条C.3条D.无数条7.如图,∠ACB=90°,CD⊥AB,线段AC、BC、CD中最短的是(C)A.ACB.BCC.CDD.不能确定活动1 垂线的定义(1)教师利用多媒体演示,学生观察思考:固定木条a,转动木条b,当b的位置变化时,a、b所成的角α是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?当b的位置变化时,∠α从锐角逐渐变为钝角,其中∠α是直角是特殊情况,其特殊之处在于:当∠α是直角时,它的邻补角、对顶角都是直角,即a、b所成的四个角都是直角,都相等.(2)师生共同给出垂直的定义及垂直的表示方法.1.垂直的定义:当两条直线相交所成的四个角中有一个角是直角时,这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.如图,a、b互相垂直,O是垂足,a是b的垂线,b也是a的垂线.从垂直的定义可知,判断两条直线互相垂直的关键:只要找到两条直线相交时四个夹角中的一个角是直角.2.垂直的表示:用“⊥”和直线字母表示垂直.如上图,a、b互相垂直,垂足为点O,则记为a⊥b或b⊥a.若要强调垂足,则记为a⊥b,垂足为点O.活动2 动手操作画垂线例1过B点画已知直线的垂线.解:如图所示.1.过直线上一点,画这条直线的垂线的步骤:(1)把三角尺的一条直角边与已知直线重合;(2)沿直线移动三角尺,使三角尺的直角顶点和直线上的已知点重合;(3)从直角顶点起沿三角尺的另一条直角边画一条直线;(4)拿走三角尺,在垂足处标出垂直符号.2.过直线外一点,画这条直线的垂线的步骤:(1)把三角尺的一条直角边与已知直线重合;(2)沿直线移动三角尺,使三角尺的另一条直角边经过直线外一点;(3)沿三角尺的另一条直角边画一条直线;(4)拿走三角尺,在垂足处标出垂直符号.活动3 小组讨论例2如图,在河岸l的同侧有一村庄A和自来水厂B.现要在河岸l上建立一抽水站D,将河中的水输送到自来水厂后,再送往A村,为了节省资金,所铺设的水管应尽可能的短.问抽水站D应建在何处,应沿怎样的路线来铺设水管?在图中画出来.解:如图所示,过点B画l的垂线,则垂足D为抽水站的位置.连接AB.沿D-B-A的路线铺设水管,可使所用的水管最短.要使水管最短,则抽水站与自来水厂间的路程应最短,自来水厂与A村的路程应最短.需要运用“垂线段最短”和“两点间线段最短”的数学原理.活动4 跟踪训练1.如图,计划把池中的水引到C处,可过点C作CD⊥AB于点D,然后沿CD开渠,可使所开的渠道最短.这种设计的依据是垂线段最短.2.如图,OD⊥BC,垂足为点D,BD=6 cm,OD=8 cm,OB=10 cm,那么点B到OD的距离是6 cm,点O到BC的距离是8 cm,O、B两点之间的距离是10 cm.3.如图1,307国道a上有一出口M,现想在附近公路b旁建一个加油站,欲使通道长最短,应沿怎样的线路施工?由垂线段最短知,可过点M作b的垂线,垂足为N,则MN即为所求.解:如图2,过点M作MN⊥b,垂足为N,则欲使通道最短,应沿线路MN施工.活动5 课堂小结5.1.3 同位角、内错角、同旁内角1.能说出同位角、内错角和同旁内角的意义.2.会识别图形(包括变式图形和比较复杂的图形)中的同位角、内错角和同旁内角.图1自学指导:阅读教材第6至7页,完成下列各题.知识探究如图1,直线AB、CD与EF相交,构成8个角,其中∠1与∠5是同位角,∠3与∠5是内错角,∠4与∠5是同旁内角.自学反馈1.如图2,直线AB、CD被直线AC所截,图2所产生的内错角是∠1与∠4.2.如图2,直线AD、BC被直线DC所截,产生了同旁内角,它们是∠D与∠DCB.3.找出图3中所有的同位角、内错角及同旁内角.活动1 认识同位角例已知,两条直线AB、CD,画出第三条直线EF与它们相交,请把构成的角表示出来,并完成下列问题.问题1:如图,怎样描述直线AB、CD和EF的位置关系?引导学生说出“直线AB、CD和EF相交”或者“两条直线AB、CD被第三条直线EF所截”.问题2:观察∠1与∠2、∠3与∠4与截线、被截直线有哪些位置关系?问题3:具有这种位置关系的角还有哪些?引导学生观察∠1与∠2,得出这两个角分别在直线AB、CD的同一方(上方),并且都在直线EF的同一侧(右侧),这是“同位角”的本质属性.然后,可以用“位置相同”来描述这种位置关系,给出“同位角”的描述性定义.解:(1)两条直线AB、CD与第三条直线EF相交,也可以说被第三条直线EF所截,EF叫做截线,AB、CD叫做被截直线.(2)两条直线被第三条直线所截构成的八个角中,∠1与∠2、∠3与∠4分别是位于截线的同一侧、被截直线的同一方的角,称为同位角.(3)图中∠6与∠5、∠7与∠8都是同位角.变式图形:图4中的∠1与∠2都是同位角.图形特征:在形如字母“F”的图形中有同位角.活动2 认识内错角问题1:观察∠2、∠7与截线、被截直线有哪些位置关系?问题2:具有这种位置关系的角还有哪些?引导学生类比同位角的叙述形式进行回答.解:(1)图中∠2与∠7都在直线AB、CD内侧,并且分别在直线EF两侧(∠2在直线EF右侧,∠7在直线EF左侧),具有这种位置关系的一对角叫做内错角.(2)∠4与∠5是一对内错角.变式图形:图5中的∠1与∠2都是内错角.图形特征:在形如“Z”的图形中有内错角.活动3 认识同旁内角问题1:观察∠2、∠5与截线、被截直线有哪些位置关系?问题2:具有这种位置关系的角还有哪些?解:(1)图中∠2和∠5也在直线AB、CD内侧,但它们都在直线EF的右侧,具有这种位置关系的一对角叫做同旁内角.(2)在图中,具有类似的位置关系的还有∠4与∠7,因此它们也是同旁内角.变式图形:图6中的∠1与∠2都是同旁内角.图形特征:在形如“U”的图形中有同旁内角. 活动4 辨一辨与两条被截直线的位置关系与截线的位置关系同位角(F型) 两直线同旁截线同侧内错角(Z型) 两直线之间截线异侧同旁内角(U型) 两直线之间截线同侧活动5 例题解析例如图,直线DE、BC被直线AB所截.(1)∠1和∠2,∠1和∠3,∠1和∠4各是什么角?(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?解:(1)∠1和∠2是内错角,∠1和∠3是同旁内角,∠1和∠4是同位角.(2)因为∠1=∠4(已知),∠2=∠4(对顶角相等),所以∠1=∠2(等量代换).因为∠3和∠4互补(邻补角的定义),所以∠1和∠3互补(等量代换).活动6 跟踪训练1.如图,(1)∠1和∠4是直线AB与直线CD被直线BD所截形成的内错角;(2)∠2和∠3是直线AD与直线BC被直线BD所截形成的内错角.2.如图,(1)∠1与哪个角是内错角?∠1与哪个角是同旁内角?它们分别是哪两条直线被哪一条直线所截而形成的?(2)∠2与哪个角是内错角?∠2与哪个角是同旁内角?它们分别是哪两条直线被哪一条直线所截而形成的?活动7 课堂小结角的名称位置关系基本图形图形结构特征同位角在两条被截直线同旁,在截线同侧去掉多余的线显现的基本图形形如字母“F”(或倒置)内错角在两条被截直线之内,在截线两侧(交错)去掉多余的线显现的基本图形形如字母“Z”(或反置)同旁内角在两条被截直线之内,在截线同侧去掉多余的线显现的基本图形形如字母“U”(或倒置)5.2 平行线及其判定5.2.1 平行线1.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.2.会用符号语言表示平行公理的推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.自学指导:阅读教材第11至12页,完成下列各题.知识探究1.平面内两条不相交的直线叫平行线,如果直线a与直线b平行可记为a∥b,读作a平行于b.2.经过直线外一点,有且只有一条直线与这条直线平行.3.如果两条直线都和第三条直线平行,那么这两条直线平行;即若a∥b,b∥c,则a∥c.4.在同一平面内,不互相重合的两条直线的位置关系有2种,它们是相交、平行.5.在同一平面内直线l1与l2没有公共点,则直线l1∥l2.6.在同一平面内直线l1和l2有一个公共点,则l1与l2相交.自学反馈一、填空题1.在同一平面内,两条直线的位置关系有相交与平行两种.2.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条必相交.3.在同一平面内,两条相交直线不可能都与第三条直线平行,这是因为过直线外一点有且只有一条直线与已知直线平行.4.两条直线相交,交点的个数是一个;两条直线平行,交点的个数是零个.二、判断题1.不相交的两条直线叫做平行线.(×)2.如果一条直线与两条平行线中的一条直线平行,那么它与另一条直线也平行.(√)3.过一点有且只有一条直线平行于已知直线.(×)活动1 认识平行线欣赏电脑画面,认识平行线.播放的这些图片给你一种什么印象?(不相交、平行)师生共同得出平行线的定义:在同一平面内,不相交的两条直线叫做平行线.活动2 探求新知教师通过演示实物模型,引导学生观察、讨论,通过步步设问,引导学生思考下列问题.(1)在木条转动过程中,有没有直线a与直线b不相交的位置呢?(2)在同一平面内,两条直线的位置关系?(3)过直线AB外一点P,你能画出直线AB的平行线吗?能画出几条?(4)练习:过点P画直线MN的平行线.(5)在木条转动过程中,有几个位置使得a与b平行?过点B画直线a的平行线,能画出几条?类比前面学过的“垂线的性质”,你能得出什么结论?活动3 平行公理例已知直线AB和直线外一点P.(1)过点P画一条直线和已知直线AB平行.(幻灯片演示)(2)经过点P能画出几条直线与直线AB平行?通过作图,进行观察分析,与“垂线的性质”进行类比,得出平行公理.平行公理:平面内经过直线外一点,有且只有一条直线与这条直线平行.活动4 平行公理的推论如图1,三条直线AB、CD、EF.如果AB∥EF,CD∥EF,那么直线AB与CD可能相交吗?如图2,假设AB与CD相交,设AB与CD相交于点P.因为AB∥EF,CD∥EF,于是过点P就有两条直线AB、CD都与EF平行.根据平行公理,这是不可能的.也就是说,AB与CD不能相交,只能平行.平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.几何语言表达:因为a∥c,c∥b(已知),所以a∥b(平行公理的推论).活动5 温故而知新(见幻灯片)活动6 课堂小结5.2.2 平行线的判定1.掌握两直线平行的判定方法.2.了解得到两直线平行的判定方法的证明过程.3.进一步规范几何推理语言.自学指导:阅读教材第12至14页,完成下列各题.自学反馈1.如图1,∠C=57°,当∠ABE=57°时,就能使BE∥CD.2.如图2,∠1=120°,∠2=60°,问a与b的位置关系?3.如图3,直线CD、EF被直线AB所截.(1)量得∠1=80°,∠2=80°,就可以判定CD∥EF,根据同位角相等,两直线平行.(2)量得∠3=100°,∠4=100°,就可以判定CD∥EF,根据内错角相等,两直线平行.4.如图4,量得∠1=∠2=∠3.(1)从∠1=∠2,可以推出a∥b,根据内错角相等,两直线平行;(2)从∠2=∠3,可以推出c∥d,根据同位角相等,两直线平行.活动1 平行线的判定方法1回忆并叙述上节用三角板和直尺过一点P画已知直线AB的平行线的过程,发现这种画法实际上是画一对同位角相等.(让学生观察图形后回答,这两个角是直线AB、CD被EF截得的同位角)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简记为“同位角相等,两直线平行”.结合图形,引导学生用符号语言表述平行线判定公理:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).实际应用:你能说出木工师傅用图中这种叫角尺的工具画平行线的道理吗?解:同位角相等,两直线平行.活动2 平行线的判定方法2先采用探讨问题的方式,启发学生去思考,能不能从内错角之间的关系或同旁内角之间的关系来判定两条直线平行呢?让学生观察图形分析∠1与∠2在什么条件下满足判定方法1,引导学生分析角之间的关系,发现新结论.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么两直线平行.简记为“内错角相等,两直线平行”.结合图形引导学生用符号语言表述上面的推理过程:已知:直线AB、CD被EF所截,∠1=∠2.求证:AB∥CD.证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).∴AB∥CD(同位角相等,两直线平行).活动3 跟踪训练已知:如图,∠1=∠B=∠D.(1)从∠B=∠1,可以判断哪两条直线平行?它的依据是什么?(2)从∠D=∠1,可以判断哪两条直线平行?它的依据是什么?活动4 平行线的判定方法3如图,如果∠1+∠2=180°,能判定a∥b吗?解:能.∵∠1+∠2=180°(已知),∠1+∠3=180°(邻补角定义),∴∠2=∠3(同角的补角相等).∴a∥b(同位角相等,两直线平行).判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行.简记为“同旁内角互补,两直线平行”.活动5 跟踪训练如图,∠A=55°,∠B=125°,AD与BC平行吗?AB与CD平行吗?为什么?解:因为∠A+∠B=55°+125°=180°,所以AD∥BC(同旁内角互补,两直线平行).根据题目中现有的条件,无法判断AB与CD平行.活动6 例题解析例在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?分析:垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?解:这两条直线平行.理由如下:如图所示,∵b⊥a,c⊥a,∴∠1=∠2=90°(垂直的定义).∴b∥c(同位角相等,两直线平行).判定方法4:在同一平面内,两条直线都与第三条直线垂直,则这两条直线平行.简记为“垂直于同一直线的两直线平行”.定理的使用格式:∵a⊥b,a⊥c(已知),∴b∥c(垂直于同一直线的两条直线平行).活动7 课堂小结判定平行线的方法有:1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.4.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.6.平行线的定义.5.3 平行线的性质5.3.1 平行线的性质第1课时平行线的性质1.经历观察、操作、想象、推理、交流等活动,进一步增强空间观念、推理能力和有条理地表达的能力.2.经历探索平行直线的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.自学指导:阅读教材第18至19页,完成下列各题.自学反馈1.如果AD∥BC,根据两直线平行,同位角相等可得∠B=∠1.2.如果AB∥CD,根据两直线平行,内错角相等可得∠D=∠1.3.如果AD∥BC,根据两直线平行,同旁内角互补可得∠C+∠D=180°.活动1 复习导入现在同学们已经掌握了利用同位角相等或者内错角相等或者同旁内角互补,判定两条直线a、b,平行的三种方法.在这一节课里,大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?逆向思维,探求新知.活动2 小组合作探究平行线的性质1.学生画图活动:用直尺和三角尺画出两条直线a、b使a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本图5.3-1).2.学生测量这些角的度数,把结果填入表内.角∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8度数3.学生根据测量所得的数据作出猜想:图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜想.学生活动:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?5.师生归纳平行线的性质.平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补,简称为两直线平行,同旁内角互补.分清平行线的判定与性质,并用几何语言进行表达.活动3 议一议如果我们现在只知道“两直线平行,同位角相等”,你能说明“两直线平行,内错角相等”和“两直线平行,同旁内角互补”成立的理由吗?如图,∵a∥b(已知),∴∠1=∠2(两直线平行,同位角相等).又∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).(“两直线平行,同旁内角互补”成立的理由让学生自己完成)活动4 幻灯片出示平行线的性质和平行线的判定,让学生进行对比活动5 辨一辨1.如果AD∥BC,根据两直线平行,同位角相等可得∠B=∠1.2.如果AB∥CD,根据两直线平行,内错角相等可得∠1=∠D.3.如果∠B+∠BCD=180°,根据同旁内角互补,两直线平行可得AB∥CD.4.如果∠2=∠4,根据内错角相等,两直线平行可得AD∥BC.5.如果∠3=∠5,根据内错角相等,两直线平行,可得AB∥CD.活动6 例题解析例如图是梯形有上底的一部分.已经量得∠A=115°,∠D=100°,梯形另外两个角各是多少度?解:∵AD∥BC(已知),∴∠A+∠B=180°(两直线平行,同旁内角互补),即∠B=180°-∠A=180°-115°=65°.∵AD∥BC(已知),∴∠D+∠C=180°(两直线平行,同旁内角互补),即∠C=180°-∠D=180°-100°=80°.答:梯形的另外两个角分别为65°、80°.活动7 跟踪训练1.如图,在墙面上安装一管道需经两次拐弯,拐弯后的管道与拐弯前的管道平行.若第一个弯道处∠B=142°,那么第二个弯道处∠C为多少度?为什么?2.如图,已知AB∥CD,AD∥BC.填空:(1)∵AB∥CD(已知),∴∠1=∠D(两直线平行,内错角相等).(2)∵AD∥BC(已知),∴∠2=∠ACB(两直线平行,内错角相等).第2课时平行线的性质与判定的综合运用1.平行线判定与性质的综合应用.2.学会添加辅助线解决问题.自学指导:复习教材中平行线的判定与性质,完成下列各题.自学反馈1.如图,BE是AB的延长线,AD∥BC,AB∥CD,若∠D=100°,则∠C=80°,∠A=80°,∠CBE=80°.2.a、b、c为同一平面内的三条直线,下列判断不正确的是(D)A.若a⊥c,b⊥c,则a∥bB.若a∥c,b∥c,则a∥bC.若a∥b,b⊥c,则a⊥cD.若a⊥b,b⊥c,则a⊥c活动1 探求新知如图,a∥c,a⊥b,直线c与b垂直吗?为什么?学生容易判断出直线b与c垂直,鉴于这一点,教师应引导学生思考:(1)要说明b⊥c,根据两条直线互相垂直的意义,需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来的?(2)已知a⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°?(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理.活动2 例题解析例下列各图中,已知AB∥EF,点C任意选取(在AB、EF之间,又在BF的左侧).请测量各图中∠B、∠C、∠F的度数并填入表格.∠B ∠F ∠C ∠B与∠F度数之和图1图2通过上述实践,试猜想∠B、∠F、∠C之间的关系,写出这种关系,并加以说明.教师投影题目:学生依据题意,画出类似图1、图2的图形,测量并填表,猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助?教师视学生情况进一步引导:①虽然AB∥EF,但是∠B与∠F不是同位角,也不是内错角或同旁内角,不能确定它们之间的关系.②∠B与∠C是直线AB、CF被直线BC所截而成的内错角,但是AB与CF不平行.能不能创造条件,应用平行线性质,学生自然想到过点C作CD∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD与EF平行,你能做到这一点吗?以上分析后,学生先推理说明,师生交流,教师给出说理过程.解:作CD∥AB,因为AB∥EF,CD∥AB,所以CD∥EF(两条直线都与第三条直线平行,这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD∥AB,所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF.活动3 跟踪训练如图,AB∥CD,试说明∠B、∠D、∠BED之间的数量关系.过点E作EF∥AB,易证∠B+∠D+∠BED=360°.5.3.2 命题、定理、证明1.认识命题与定理的概念,会区分命题的题设与结论,能准确判断命题的真假,能认识到数学证明的必要性,能有条理地表达说理.。
新人教版七年级下册第五章《相交线与平行线》全章教案(
(此文档为word格式,下载后您可任意编辑修改!)第五章相交线与平行线(总第一课时)5.1.1相交线教学过程设计一、联系生活,导入新知生:欣赏美丽的跨海大桥图片,观察思考两直线的位置关系有哪几种?师:这些直线有些是相交线,有些是平行线.相交线、平行线有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题.【板书】第五章相交线、平行线5.1 相交线、对顶角【设计意图】在欣赏美丽的图画中寻找出数学模型,让学生体会“数学就在我们身边,初步培养学生从实物中抽象出简单的几何图形的能力,激发学生学习兴趣.二、合作探究,形成概念师:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开.生:画出图形,并用几何语言描述所画的图形.师:思考所画的图形中有几个小于平角的角?生:四个.师:为了方便描述,我们用::∠1、∠2、∠3、∠4来表示这四个角,如果把这四个角中任意两个角组成一对,一共可以组成几对呢?生:(互相补充)∠1和∠2,∠1和∠3,∠1和∠4,∠2和∠3,∠2和∠4,∠3和∠4.师:以小组为单位讨论:这六对角按位置特点来分可以分成几类?为什么?生1:一类是相邻的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,一类是相对的∠1和∠3,∠2和∠4.生2:一类是有公共边的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,另一类是无公共边的……师:把这六对角分成两类,一类是有一条公共边,另一边互为反向延长线(∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4);另一类是没有公共边,两边都互为反向延长线(∠1和∠3,∠2和∠4),这就是今天要学的对顶角和邻补角.【板书】:两条直线相交得到的四个角中:有一个公共顶点,两边互为反向延长线的两个角互为对顶角;有一条公共边,另一边互为反向延长线的两个角互为邻补角.师:强调“相交直线”的前提条件.对顶角:有公共顶点无公共边...........邻补角:有公共顶点且有一公共边“互为”两个字的含义是什么?生:互为是针对两个角而言,如∠1是∠3的对顶角,反过来∠3也是∠1的对顶角.【设计意图】引导学生按位置关系进行分类,并针对分类的原因进行探索和交流,让学生经历概念的形成过程,真正理解对顶角和邻补角的概念.在探索过程中,渗透分类思想,培养探究意识和合作交流能力,调动学生参与积极性.三、及时巩固,加深理解1、下列各图中,∠l和∠2是对顶角吗?为什么?(1)(2)(3)(4)【设计意图】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象.2.下列各图中,∠l和∠2是邻补角吗?为什么?(1)(2)(3)师:图(1)中的邻补角可以看成是怎样形成的?邻补角为什么互补?生:一条直线和一条射线相交形成,邻补角构成一个平角.3、请分别画出图中的∠l对顶角和∠2的邻补角.4、如图,三条直线AB、CD、EF相交于点O,∠AOE的对顶角是,∠EOD的邻补角是.【设计意图】通过辨、画、找,及时反馈学生思维上的一些偏差,加深对两个概念的理解,在画邻补角和找邻补角中让学领会分类思想.四、师生互动,再探性质师:在刚才的练习中,我们知道互为邻补角的两个角的和为180度,互为对顶角的两个角有什么样的大小关系呢?(演示相交线模型)生:相等.师:为什么?生:(讨论交流)生1:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换)生2:∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等)师:很好,根据上一章补角的性质“同角的补角相等”说明了对顶角相等这一性质.【板书】:对顶角相等.【设计意图】引导学生观察、猜测、推理,得到本节课的重点——对顶角相等,让学生深刻理解性质,训练学生的说理能力,树立学好几何图形的信心.五、变式训练,提升能力1.已知直线a、b相交,∠l=40°,求∠2、∠3、∠4的度数.2.变式1:把∠l=40°变为∠l=90°,求∠2、∠3、∠4的度数.变式2:把∠l=40°变为∠l=n°,求∠2、∠3、∠4的度数.变式3:把∠l=40°改为∠2是∠l的3倍,求∠1、∠2∠3、∠4的度数.变式4:如图,直线AB、CD相交于O点,OE平分∠AOD,若∠1=20°,那么∠2=______.变式5:如图,直线AB、CD相交于O点,∠AOE=90°,若∠1=20°,那么∠2=____,∠3=____,∠4=____.3.右图是对顶角量角器,你能说出用它测量角的原理吗?4.如图,要测量两堵围墙所形成的角AOB的度数,但人不能进入围墙,如何测量?5.如图,三条直线AB、CD、EF相交于点O,图中共有几对对顶角?变式:图中共有几对邻补角?师:解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:为此,对顶角有2×3=6个,邻补角的对数为4×3=12个.【设计意图】通过变式,由易到难,培养学生举一反三的能力,在利用数学解决实际问题中感受成功,培养学生从现实情境中建立几何模型的能力,思考题能很好地培养学生的化归能力.六:回顾梳理,归纳小结师:这节课你学到什么知识?理解的怎样?你有哪些方面的感悟?还有什么疑惑?生:……七:布置作业,分层发散1.课本:P7-91,2,8,9;2.探究(选做)四条直线相交于一点,共有几对对顶角?几对邻补角?n条直线呢?【教学反思】:(总第二课时)5.1.2垂线(第1课时)计教学过程设(总第三课时)5.1.2垂线(第2课时)教学过程设计(总第四课时)5.1.3同位角、内错角、同旁内角教学过程设计3.如图,∠6和∠2是_________角,∠(总第五课时)5.2.1平行线教学过程设计(总第六课时)5.2.2平行线的判定(一)教学过程设计(总第七课时)5.2.2平行线的判定(二)教学过程设计(总第八课时)5.3.1平行线的性质(第1课时)教学过程设计(总第九课时)5.3.1平行线的性质(第2课时)教学过程设计(总第十课时)5.3.2命题、定理、证明学过程设计教(总第十一课时)5.4平移教学过程设计2.欣赏并说出下列各商标图案哪些是利用平移来设计的?(总第十二课时)第五章小结与复习教学过程设计第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
人教版七年级下册 第五章 相交线和平行线 导学案
121212O121.对顶角、邻补角【学习目标】:1、了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2、理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3、通过辨别对顶角与邻补角,培养识图的能力。
【重点】:邻补角和对顶角的概念及对顶角相等的性质;【难点】在较复杂的图形中准确辨认对顶角和邻补角。
自主学习1.邻补角(1)定义:如图,∠1和∠2有一条公共边,它们的另一条边互为,具有这种关系的两个角,互为邻补角。
图中∠1和也是邻补角。
(2)性质:邻补角的和为2.对顶角(1)定义:如图,∠1和∠3有一个公共顶点,并且∠1的两边分别是∠3的两边的,具有这种位置关系的两个角,互为对顶角。
图中的和∠4也是对顶角。
(2)性质:对顶角练习1、下列各图中,∠l和∠2是对顶角吗?为什么?1 21 212212. 下列各图中,∠l 和∠2是邻补角吗?为什么?(1) (2) (3) 3、请分别画出图中的∠l 对顶角和∠2的邻补角.4、如图,三条直线AB 、CD 、EF 相交于点O , ∠AOE 的对顶角是 ,∠EOD 的邻补角是 .2、垂线【学习目标】1.理解两条直线互相垂直的概念、性质及垂线段的概念,会借助三角尺、方格ABFCDOE纸画垂线,并会应用解决问题。
2.通过经历观察与操作活动探索垂直性质的过程,进一步培养观察、分析、归纳能力,发展空间观念。
3.感受数学语言的整洁美,激发探索知识的热情,把学到的知识应用到生活中去,进一步提高参与意识和合作精神。
【学习重点】垂直的概念和性质。
【学习难点】垂直的概念和性质的理解与应用及垂线的画法。
【学习过程】一、知识链接1.两点间的距离如何测量呢?2.两条直线相交形会成几个角?这些角之间有何数量关系?二、新知预习1.垂直的有关概念:当两条直线相交所成的四个角中有一个角为_____时,这两条直线互相垂直,其中一条直线叫做另一条直线的_____,它们的交点叫做_____。
人教版七年级数学下册第五章 相交线和平行线 5.2 平行线及其判定 导学案
人教版七年级数学下册第五章相交线与平行线5.2平行线及其判定导学案5.2.1平行线教学目标1.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.2.会用符号语言表示平行公理的推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.预习反馈阅读教材第11至12页,完成下列预习内容.1.平面内两条不相交的直线叫做平行线.如果直线a与直线b互相平行,可记为a∥b,读作a平行于b.2.经过直线外一点,有且只有一条直线与这条直线平行.3.如果两条直线都和第三条直线平行,那么这两条直线也互相平行,即若a∥b,b∥c,则a∥c.4.在同一平面内,不重合的两条直线的位置关系有2种,它们是相交、平行.5.在同一平面内,若直线l1与l2没有公共点,则直线l1∥l2.6.在同一平面内,若直线l1和l2有一个公共点,则直线l1与l2相交.例题讲解例如图,已知直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【解答】(1)如图,过点B画直线a的平行线,只能画一条.(2)如图,过点C画直线a的平行线,它与过点B的平行线平行.理由如下:因为b∥a,c∥a, 所以c∥b.【点拨】通过第(1)小题的作图,进行观察分析,与“垂线的性质”进行类比,体会平行公理的含义.通过第(2)小题的作图,体会平行公理的推论.【跟踪训练】下列说法不正确的是(A)A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.过直线外一点只能画一条直线与已知直线平行D.平行于同一直线的两直线平行课后作业巩固训练1.在同一平面内,有三条直线a,b,c,下列说法:①若a与b相交,b与c相交,则a与c相交;②若a∥b,b与c相交(不重合),则a与c相交;③若a∥b,b∥c,则a∥c.其中正确的有(B)A.1个B.2个C.3个D.0个2.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由:经过直线外一点,有且只有一条直线与这条直线平行.3.根据下列要求作图.(1)如图1所示,过点A作MN∥BC;(2)如图2所示,过点P作PE∥OA,交OB于点E,过点P作PH∥OB,交OA于点H.解:如图所示.课堂小结1.通过本节课,我们学会了哪些内容?2.想一想:平行公理与垂线的性质(在同一平面内,过一点有且只有一条直线与已知直线垂直)类比,有哪些相同点和不同点?5.2.2平行线的判定教学目标1.掌握两直线平行的判定方法.2.了解得到两直线平行的判定方法的证明过程.3.进一步规范几何推理语言.预习反馈阅读教材第12至14页,完成下列各题.平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简记为“同位角相等,两直线平行”.结合图形,引导学生用符号语言表述平行线判定公理:∵∠1=∠2,∴a∥b.实际应用:你能说出木工师傅用图中这种叫角尺的工具画平行线的道理吗?解:同位角相等,两直线平行.平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简记为“内错角相等,两直线平行”.结合图形,引导学生用符号语言表述上面的推理过程:已知:如图,直线AB,CD被EF所截,∠1=∠2.求证:AB∥CD.证明:∵∠1=∠2,∠1=∠3,∴∠2=∠3.∴AB∥CD.平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简记为“同旁内角互补,两直线平行”.如图,如果∠1+∠2=180°,能判定a∥b吗?解:能.∵∠1+∠2=180°,∠1+∠3=180°,∴∠2=∠3.∴a∥b.自学反馈1.如图1,∠C=57°,当∠ABE=57°时,就能使BE∥CD.2.如图2,∠1=120°,∠2=60°,则a与b的位置关系为a∥b.3.如图3,直线CD,EF被直线AB所截.(1)量得∠1=80°,∠2=80°,就可以判定CD∥EF,根据同位角相等,两直线平行;(2)量得∠3=100°,∠4=100°,就可以判定CD∥EF,根据内错角相等,两直线平行.4.如图4,量得∠1=∠2=∠3.(1)从∠1=∠2,可以推出a∥b,根据内错角相等,两直线平行;(2)从∠2=∠3,可以推出c∥d,根据同位角相等,两直线平行.例题讲解例1在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?【分析】垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?【解答】这两条直线平行.理由如下:如图所示,∵b⊥a,c⊥a,∴∠1=∠2=90°.∴b∥c.【点拨】在同一平面内,垂直于同一直线的两条直线平行.例2如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【解答】证明:∵BE平分∠ABD,DE平分∠BDC,∴∠ABD =2∠1,∠BDC =2∠2. ∵∠1+∠2=90°,∴∠ABD +∠BDC =2(∠1+∠2)=180°. ∴AB ∥CD(同旁内角互补,两直线平行).【跟踪训练】 完成下面的解题过程,并在括号内填上依据. 如图,∠AHF +∠FMD =180°,GH 平分∠AHF ,MN 平分∠DME.求证:GH ∥MN.证明:∵∠AHF +∠FMD =180°,∠DME +∠FMD =180°, ∴∠AHF =∠DME .∵GH 平分∠AHF ,MN 平分∠DME ,∴∠1=12∠AHF ,∠2=12∠DME(角平分线的定义).∴∠1=∠2(等量代换).∴GH ∥MN(内错角相等,两直线平行). 课后作业巩固训练1.如图是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是(A)A .同位角相等,两直线平行B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,内错角相等2.下列图形中,由∠1=∠2能得到AB ∥CD 的是(A)A BC D3.如图,一个弯形管道ABCD的拐角∠ABC=130°,∠BCD=50°,这时说管道AB∥CD,是根据同旁内角互补,两直线平行.4.如图,若∠3=∠4,则AB∥CD;若∠1=∠2,则AD∥BC.5.如图,能判定AB∥CD的条件有①③④.(填序号)①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.6.如图所示,∠B=∠C,∠DEF=∠A.试问CD与EF平行吗?为什么?解:CD∥EF.理由:∵∠B=∠C,∴AB∥CD.∵∠DEF=∠A,∴EF∥AB.∴CD∥EF.课堂小结判定平行线的方法有:1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.4.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.如果两条直线都与第三条直线垂直,那么这两条直线也互相平行(在同一平面内).6.平行线的定义.。
初一数学下册第五章相交线与平行线学案【DOC范文整理】
初一数学下册第五章相交线与平行线学案第五章相交线与平行线课时:5.1.1相交线【学习目标】了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用.【学习难点】理解对顶角相等的性质.【学习过程】一、学前准备各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,二、探索思考探索一:完成课本P2页的探究,填在课本上.你能归纳出“邻补角”的定义吗?.“对顶角”的定义呢?.练习一:.如图1所示,直线AB和cD相交于点o,oE是一条射线.写出∠Aoc的邻补角:__________;写出∠coE的邻补角:__;写出∠Boc的邻补角:__________;写出∠BoD的对顶角:_____..如图所示,∠1与∠2是对顶角的是探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的性质”:.练习二:.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______.如图直线AB、cD、EF相交于点o,∠BoE的对顶角是______,∠coF的邻补角是____,若∠AoE=30°,那么∠BoE=_______,∠BoF=_______.如图,直线AB、cD相交于点o,∠coE=90°,∠Aoc=30°,∠FoB=90°,则∠EoF=_____.三、当堂反馈.若两个角互为邻补角,则它们的角平分线所夹的角为度..如图所示,直线a,b,c两两相交,∠1=60°,∠2=∠4,•求∠3、∠5的度数..如图所示,有一个破损的扇形零件,•利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么?.探索规律:两条直线交于一点,有对对顶角;三条直线交于一点,有对对顶角;四条直线交于一点,有对对顶角;n条直线交于一点,有对对顶角.四、学习反思本节课你有哪些收获?第二课时:5.1.2垂线【学习目标】1了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用.【学习难点】垂线的画法以及对点到直线的距离的概念的理解.【学习过程】一、学前准备在学习对顶角知识的时候,我们认识了“两线四角”,及两条直线相交于一点,得到四个角,这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线AB 与cD相交于点o”.我们如果把直线cD绕点o旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠BoD的大小都将发生变化.当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图用几何语言表示:方式⑴∵∠Aoc=90°∴AB_____cD,垂足是_____方式⑵∵AB⊥cD于o∴∠Aoc=______二、探索思考探索一:请你认真画一画,看看有什么收获.⑴如图1,利用三角尺或量角器画已知直线的垂线,这样的垂线能画__________条;⑵如图2,经过直线上一点A画的垂线,这样的垂线能画_____条;⑶如图3,经过直线外一点B画的垂线,这样的垂线能画_____条;经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直.练习一:.如图所示,oA⊥oB,oc是一条射线,若∠Aoc=120°,求∠Boc度数.如图所示,直线AB⊥cD于点o,直线EF经过点o,若∠1=26°,求∠2的度数..如图所示,直线AB,cD相交于点o,P是cD上一点.过点P画AB的垂线PE,垂足为E.过点P画cD的垂线,与AB相交于F点.比较线段PE,PF,Po三者的大小关系探索二:仔细观察测量比较上题中点P分别到直线AB 上三点E、F、o的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________ 简单说成:.还有,直线外一点到这条直线的垂线段的叫做点到直线的距离.注意:垂线是,垂线段是一条,点到直线的距离是一个数量,不能说“垂线段”是距离.练习二:.在下列语句中,正确的是.A.在同一平面内,一条直线只有一条垂线B.在同一平面内,过直线上一点的直线只有一条c.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D.在同一平面内,垂线段就是点到直线的距离.如图所示,Ac⊥Bc,cD⊥AB于D,Ac=5c,Bc=12c,AB=13c,则点B到Ac的距离是________,点A到Bc的距离是_______,点c到AB•的距离是_______,•Ac>cD•的依据是_________.三、当堂反馈.如图所示AB,cD相交于点o,Eo⊥AB于o,Fo⊥cD 于o,∠EoD与∠FoB的大小关系是A.∠EoD比∠FoB大B.∠EoD比∠FoB小c.∠EoD与∠FoB相等D.∠EoD与∠FoB大小关系不确定.如图,一辆汽车在直线形的公路AB上由A向B行驶,c,D是分别位于公路AB两侧的加油站.设汽车行驶到公路AB上点的位置时,距离加油站c最近;行驶到点N的位置时,距离加油站D最近,请在图中的公路上分别画出点,N的位置并说明理由..如图,AoB为直线,∠AoD:∠DoB=3:1,oD平分∠coB.求∠Aoc的度数;判断AB与oc的位置关系.四、学习反思本节课你有哪些收获?第三课时:5.1.3同位角、内错角、同旁内角【学习目标】1使学生理解三线八角的意义,并能从复杂图形中识别它们;通过三线八角的特点的分析,培养学生抽象概括问题的能力.【学习重点】三线八角的意义,以及如何在各种变式的图形中找出这三类角.【学习难点】能准确在各种变式的图形中找出这三类角.【学习过程】一、学前准备在前面我们学习了两条直线相交于一点,得到四个角,即“两线四角”,这四个角里面,有对对顶角,有对邻补角.如果是一条直线分别与两条直线相交,结果又会怎样呢?二、探索思考探索:如图,直线c分别与直线a、b相交,得到8个角,通常称为“三线八角”,那么这8个角之间有哪些关系呢?观察填表:表一位置1位置2结论∠1和∠5处于直线c的同侧处于直线a、b的同一方这样位置的一对角就称为同位角∠2和∠8处于直线c的侧这样位置的一对角就称为∠3和∠6处于直线a、b的方这样位置的一对角就称为∠1和∠5这样位置的一对角就称为表二位置1位置2结论∠4和∠8处于直线c的两侧处于直线a、b之间这样位置的一对角就称为内错角∠3和∠5这样位置的一对角就称为表三位置1位置2结论∠3和∠8处于直线c的侧处于直线a、b这样位置的一对角就称为同旁内角∠4和∠5这样位置的一对角就称为练习:.如图1所示,∠1与∠2是___角,∠2与∠4是_角,∠2与∠3是___角.2.如图2所示,∠1与∠2是____角,是直线______和直线_______•被直线_______所截而形成的,∠1与∠3是_____角,是直线________和直线______•被直线________所截而形成的..如图3所示,∠B同旁内角有哪些?三、当堂反馈.如图,直线AD、Bc被直线Ac所截,找出图中由AD、Bc被直线Ac所截而成的内错角是_________和__________ .下列说法中,错误的有.①若a与c相交,b与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、•相交、垂线三种A.3个B.2个c.1个D.0个三、当堂反馈.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________..同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________________..判断题不相交的两条直线叫做平行线.在同一平面内,不相交的两条射线是平行线.如果一条直线与两条平行线中的一条平行,那么它与另一条也互相平行..读下列语句,并画出图形:⑴点P是直线AB外一点,直线cD经过点P,且与直线AB平行,直线EF也经过点P•且与直线AB垂直.⑵直线AB,cD是相交直线,点P是直线AB,cD外一点,直线EF经过点P•且与直线AB平行,与直线cD相交于E.四、学习反思本节课你有哪些收获?第五课时:5.2.2平行线的判定【学习目标】使学生掌握平行线的判定,并能应用这些知识判断两条直线是否平行,培养学生简单的推理能力.【学习重点】平行线的三种判定方法,并运用这三种方法判断两直线平行.【学习难点】运用平行线的判定方法进行简单的推理.【学习过程】一、学前准备还知道“三线八角”吗?请画一画,找出一组同位角、一组内错角、一组同旁内角.二、探索思考探索一:请同学们仔细阅读课本P13页“平行线判定的思考”,你知道在画平行线这一过程中,三角尺所起的作用吗?由此我们可以得到平行线的判定方法,如图,将下列空白补充完整判定方法1几何语言表述为:∵∠___=∠___∴AB∥cD由判定方法1,结合对顶角的性质,我们可以得到:判定方法2几何语言表述为:∵∠___=∠___∴AB∥cD由判定方法1,结合邻补角的性质,我们可以得到:判定方法3几何语言表述为:∵∠___+∠___=180°∴AB∥cD练习一:1.如图1所示,若∠1=∠2,则_____∥______,根据是______.若∠1=∠3,则______∥______,根据是_________..如图2所示,若∠1=62°,∠2=118°,则_____∥_____,根据是________.根据图3完成下列填空∵∠1=∠4∴∥∵∠ABc+∠=180°∴AB∥cD∵∠=∠∴AD∥Bc∵∠5=∠∴AB∥cD探索二:木工师傅用角尺画出工件边缘的两条垂线,就可以再找出两条平行线,如图所示,∥,你能说明是什么道理吗?结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.简记为:在同一平面内,垂直于同一直线的两直线平行.如图,几何语言表述为:∵⊥,⊥∴练习二:.如图所示,AB⊥Bc,Bc⊥cD,BF和cE是射线,并且∠1=∠2,试说明BF∥cE.三、当堂反馈.如图所示,在下列条件中,不能判断L1∥L2的是.A.∠1=∠3B.∠2=∠3c.∠4+∠5=180°D.∠2+∠4=180°.如图所示,已知∠1=120°,∠2=60°.试说明与的关系?.如图所示,已知∠oEB=130°,∠FoD=25°,oF平分∠EoD,试说明AB∥cD.四、学习反思本节课你有哪些收获?第六课时:5.3.1平行线的性质【学习目标】1使学生掌握平行线的三个性质,并能应用它们进行简单的推理论证;使学生经过对比后,理解平行线的性质和判定的区别和联系.【学习重点】平行线的三个性质及其应用.【学习难点】正确理解性质与判定的区别和联系,并正确运用它们去推理证明.【学习过程】一、学前准备通过前面的学习,你知道判定两条直线平行有哪几种方法吗?⑴平行线的定义:⑵平行线的传递性:⑶平行线的判定公理:⑷平行线的判定定理1:⑸平行线的判定定理2:⑹平行线的判定推论:二、探索思考探索一:请同学们仔细阅读课本P19页,完成课本上的探究.根据探究内容,我们可以得到平行线的性质,如图,将下列空白补充完整性质1几何语言表述为:∵AB∥cD∴∠___=∠___由性质1,结合对顶角的性质,我们可以得到:性质2几何语言表述为:∵AB∥cD∴∠___=∠___由性质1,结合邻补角的性质,我们可以得到:性质3几何语言表述为:∵AB∥cD∴∠___+∠___=练习一:根据右图将下列几何语言补充完整∵AD∥∴∠A+∠ABc=180°∵AB∥∴∠4=∠∠ABc=∠如右图所示,BE平分∠ABc,DE∥Bc,图中相等的角共有A.3对B.4对c.5对D.6对如图,AB∥cD,∠1=45°,∠D=∠c,求∠D、∠c、∠B的度数.探索二:用三角尺和直尺画平行线,做成一张5×5个格子的方格纸.观察做出的方格纸的一部分,线段、、…、都与两条平行的横线和垂直吗?它们的长度相等吗?像这样,同时垂直于两条平行直线,并且夹在这两条平行线间的线段的长度相等,叫做这两条平行线间的距离,即平行线间的距离处处相等.练习二:.如图所示,已知直线AB∥cD,且被直线EF所截,若∠1=50°,则∠2=____,•∠3=______.2.如图所示,AB∥cD,AF交cD于E,若∠cEF=60°,则∠A=______..如图所示,已知AB∥cD,Bc∥DE,∠1=120°,则∠2=______.三、当堂反馈.如图所示,如果AB∥cD,那么.A.∠1=∠4,∠2=∠5B.∠2=∠3,∠4=∠5c.∠1=∠4,∠5=∠7D.∠2=∠3,∠6=∠82.如图所示,DE∥Bc,EF∥AB,则图中和∠BFE互补的角有.A.3个B.2个c.5个D.4个.如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.四、学习反思本节课你有哪些收获?第七课时:平行线的判定及性质习题【学习目标】加深对平行线的判定及性质的理解及其应用.【学习重点】平行线的判定及性质的应用.【学习难点】灵活运用平行线的判定及性质去推理证明.【学习过程】一、学前准备通过前面的学习,你知道判定两条直线平行有哪几种方法吗?⑴平行线的定义:⑵平行线的传递性:⑶平行线的判定公理:⑷平行线的判定定理1:⑸平行线的判定定理2:⑹平行线的判定推论:通过前面的学习,你还知道两条直线平行有哪些性质吗?⑴根据平行线的定义:⑵平行线的性质公理:⑶平行线的性质定理1:⑷平行线的性质定理2:⑸平行线间的距离.二、探索思考练习:让我先试试,相信我能行..如图1,若∠1=∠2,那么_____∥______,根据_____.若a∥b,•那么∠3=_____,根据_____..如图2,∵∠1=∠2,∴_______∥_______,根据________.∴∠B=______,根据________..如图3,若AB∥cD,那么________=•_______;•若∠1=•∠2,•那么_____•∥_____;若Bc∥AD,那么_______=_______;若∠A+∠ABc=180°,那么______∥_____.如图4,•一条公路两次拐弯后,•和原来的方向相同,•如果次拐的角是136°,那么第二次拐的角是度,根据___..如右图,修高速公路需要开山洞,为节省时间,要在山两面A,B同时开工,•在A处测得洞的走向是北偏东76°12′,那么在B处应按什么方向开口,才能使山洞准确接通,请说明其中的道理..如右图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射∠1=∠2,∠3=∠4,请你解释为什么开始进入潜望镜的光线和最后离开潜望镜的光线是平行的.三、当堂反馈.已知如图1,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=74°,那么吸管与易拉罐下部夹角∠2=_______..已知如图2,边oA,oB均为平面反光镜,∠AoB=40°,在oB上有一点P,从P点射出一束光线经oA上的Q点反射后,反射光线QR恰好与oB平行,则∠QPB的度数是.A.60°B.80°c.100°D.120°.如图3,已知∠1+∠2=180°,∠3=∠B,试判断∠AED 与∠c的大小关系,并对结论进行说理..如图,直线DE经过点A,DE∥Bc,∠B=44°,∠c=85°.⑴求∠DAB的度数;⑵求∠EAc的度数;⑶求∠BAc的度数;⑷通过这道题你能说明为什么三角形的内角和是180°吗?四、学习反思本节课你有哪些收获?第八课时:5.3.2命题、定理【学习目标】了解命题、定理的概念,能够区分命题的题设和结论.【学习重点】能够区分命题的题设和结论.【学习难点】能够区分命题的题设和结论.【学习过程】一、学前准备歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“独路相逢”,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,边走边大声说道:“我从来不给傻子让路!”而对如此的尴尬的局面,歌德笑容可掏,谦恭的闪在一旁,有礼貌地回答道“呵呵,我可恰相反”,结果故作聪明的批评家,反倒自讨没趣.你知道为什么吗?二、探索思考探索:在日常生活中,我们会遇到许多类似的情况,需要对一些事情作出判断,例如:⑴今天是晴天;⑵对顶角相等;⑶如果两条直线都与第三条直线平行,那么这两条直线也互相平行.像这样,判断一件事情的语句,叫做命题.每个命题都是由_______和______组成.¬每个命题都可以写成¬.“如果……,那么……”的形式,用“如果”开始的部份是,用“那么”开始的部份是.像前面举例中的⑵⑶两个命题,都是正确的,这样的命题叫做真命题,即正确的命题叫做______.例如:“如果一个数能被2整除,那么这个数能被4整除”,很明显是错误的命题,这样的命题叫做假命题,即错误的命题叫做______.我们把从长期的实践活动中总结出来的正确命题叫做公理;通过正确的推理得出的真命题叫做定理.练习:.下列语句是命题的个数为①画∠AoB的平分线;②直角都相等;③同旁内角互补吗?④若│a│=3,则a=3.A.1个B.2个c.3个D.4个.下列5个命题,其中真命题的个数为①两个锐角之和一定是钝角;②直角小于夹角;③同位角相等,两直线平行;•④内错角互补,两直线平行;⑤如果a<b,b<c,那么a<c.A.1个B.2个c.3个D.4个.下列说法正确的是A.互补的两个角是邻补角B.两直线平行,同旁内角相等c.“同旁内角互补”不是命题D.“相等的两个角是对顶角”是假命题.“同一平面内,垂直于同一条直线的两条直线互相平行”是命题,其中,题设是,结论是,.将下列命题改写成“如果……那么……”的形式.直角都相等.末位数是5的整数能被5整除.三角形的内角和是180°.平行于同一条直线的两条直线互相平行.三、当堂反馈.下列语句中不是命题的有⑴两点之间,直线最短;⑵不许大声讲话;⑶连接A、B 两点;⑷花儿在春天开放.A.1个B.2个c.3个D.4个.下列命题中,正确的是A.在同一平面内,垂直于同一条直线的两条直线平行;B.相等的角是对顶角;c.两条直线被第三条直线所截,同位角相等;D.和为180°的两个角叫做邻补角.3.下列命题中的条件是什么?结论是什么?如果两个角相等,那么它们是对顶角;如果两条直线都与第三条直线平行,那么这两条直线也平行;.将下列命题改写成“如果……那么……”的形式,并判断正误.对顶角相等;同位角相等;同角的补角相等.四、学习反思本节课你有哪些收获?第九课时:5.4平移【学习目标】1了解平移的概念,知道生活中常见的平移例子;掌握平移的规律,会利用平移画图.【学习重点】平移的规律,画图.【学习难点】利用平移的特征画图.【学习过程】一、学前准备生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案.观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?请你试一试.二、探索思考探究一:请同学们仔细阅读课本P27~28页,你能发现并归纳平移的特征吗?平移的特征:把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小;新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是;连接各组对应点的线段平行且.即,在平面内,将一个图形沿移动一定的,图形的这种移动,叫做平移变换,简称平移.注意:图形平移的方向,不一定是水平的.图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.练习一:.几何图形经过平移,图形中对应点所连的线段平行且,对应线段且,对应角..平移改变的是图形的.A.位置B.形状c.大小D.位置、形状、大小.下列现象中,不属于平移的是.A.滑雪运动员在的平坦雪地上滑行B.大楼上上下下地迎送来客的电梯c.钟摆的摆动D.火车在笔直的铁轨上飞驰而过.下列各组图形,可经平移变换由一个图形得到另一个图形的是.探究二:你能按要求将图形平移吗?动手试一试.如图所示,把△ABc沿AB方向平移,平移的距离为线段a的长.练习二:.如图所示,经过平移,四边形ABcD的顶点A移到点A′,作出平移后的四边形.三、当堂反馈一个图形先向右平移5个单位,再向左平移7个单位,所得到的图形可以看作是原来位置的图形一次性向_____平移______个单位得到.∠DEF是∠ABc经过平移得到的,∠ABc=60°,则∠DEF= 如图,△ABc平移后得到了△A'B'c',其中点c的对应点是点c',已经标明,请你将点B'、点A'在图中标出来,并画出△A'B'c';若AB边上的中点为,请你再标出点的对应点'.已知△ABc、,过点D作△ABc平移后的图形,其中点D 与点A对应.四、学习反思本节课你有哪些收获?第十课时:相交线与平行线全章复习一、本章知识结构图二、本章知识梳理邻补角的定义:.对顶角的定义:.对顶角的性质:.当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫,它们的交点叫.如图,用几何语言表示:方式⑴∵∠Aoc=90°∴AB_____cD,垂足是_____方式⑵∵AB⊥cD于o∴∠Aoc=______在同一平面内,过一点有且只有_____条直线与已知直线垂直.注意:垂线是,垂线段是一条,是图形.点到直线的距离是的长度,是一个数量,不能说“垂线段”是距离.识别同位角、内错角、同旁内角的关键是要抓住“三线八角”,只有“三线”出现且必须是两线被第三线所截才能出现这三类角;位置1位置2结论∠1和∠5处于直线c的同侧处于直线a、b的同一方这样位置的一对角就称为∠3和∠5这样位置的一对角就称为∠4和∠5这样位置的一对角就称为现在所说的两条直线的位置关系,是两条直线在“”的前提下提出来的,它们的位置关系只有两种:一是,二是.平行线的定义:在同一平面内,的两条直线叫做平行线.平行公理:经过直线外一点,一条直线与这条直线平行.平行线的传递性:平行于同一直线的两直线.两条直线平行的判定方法:⑴平行线的定义,⑵平行线的传递性,⑶平行线的判定公理:⑷平行线的判定定理1:⑸平行线的判定定理2:⑹平行线的判定推论:两条直线平行的性质:⑴根据平行线的定义⑵平行线的性质公理:⑶平行线的性质定理1:⑷平行线的性质定理2:⑸平行线间的距离.命题的定义:判断一件事情的语句,叫做命题.每个命题都是由_______和______组成.¬每个命题都可以写成¬.“如果……,那么……”的形式,用“如果”开始的部份是,用“那么”开始的部份是,正确的命题叫做______,错误的命题叫做______.从长期的实践活动中总结出来的正确命题叫做,通过正确的推理得出的真命题叫做.0.平移的特征:把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小;新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是;连接各组对应的线段.即,在平面内,将一个图形沿移动一定的,图形的这种移动,叫做平移变换,简称.图形平移的方向,不一定是水平的.图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.三、巩固练习如图1,直线a,b相交于点o,若∠1=40°,•则∠2•等于_______.图1图2图3图4如图2,直线a∥b,∠1=123°30′,则∠2=______.如图3,已知a∥b,∠1=70°,∠2=40°,则∠3=_____.如图4,AB∥cD,∠E=40°,∠c=65°,则∠EAB的度数为A.65°B.75°c.105°D.115°图5图6图7如图5,直线L1与L2相交于点o,o⊥L1,若α=44°,则β为A.56°B.46°c.45°D.44°如图6,AB∥cD,直线PQ分别交AB,cD于点E,F,FG•是∠EFD的平分线,交AB于点G,若∠FEG=40°,那么∠FGB 等于A.80°B.100°c.110°D.120°如图7,已知∠1=∠2=∠3=55°,则∠4的度数为A.55°B.75°c.105°D.125°。
【精选】人教版七年级下册数学第五章《相交线与平行线》优秀教案
人教版七年级下册数学第五章《相交线与平行线》优秀教案5.1 相交线5.1.1 相交线【教学目标】1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.2.理解对顶角相等,并能运用它解决一些问题.【重难点】重点邻补角、对顶角的概念,对顶角的性质与应用.难点理解对顶角相等的性质的探索.【教学设计】一、创设情境,引入新课引导语:我们生活的世界中,蕴涵着大量的相交线和平行线.本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.二、尝试活动,探索新知教师出示一块布片和一把剪刀,表演剪刀剪布的过程.教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?学生观察、思考、回答,得出:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.教师提问:我们可以把剪刀抽象成什么简单的图形?学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)学生根据观察和度量完成下表:教师提问:如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?学生思考回答:只会改变数量关系而不会改变位置关系.师生共同定义邻补角、对顶角:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.教师提问:你同意下列说法吗?如果错误,如何订正?1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.3.邻补角是互补的两个角,互补的两个角也是邻补角.学生思考回答:1、2是对的,3是错的.第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.教师把说理过程规范地板书:在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.教师板书对顶角的性质:对顶角相等.强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.。
初一数学下册第五章相交线与平行线学案(2013年新版)
初一数学下册第五章相交线与平行线学案(2013年新版)第五章课题(8):命题、定理【学习目标】:1.掌握命题的概念,并能分清命题的组成部分.【重点难点】:分清命题的组成部分一、回头复习1、平行线的判定1:判定2:判定3:2、平行线的性质1:性质2:性质3:二、学习新课知识点1.命题、定理例1:(1)的语句,叫做命题。
(2)命题都由和两部分组成.(3)命题常可写成“…………”的形式,(4)一般地,称为真命题,称为假命题。
其正确性经过的真命题,叫做定理。
练习:1、判断下列语句是不是命题:①你喜欢数学吗?②熊猫没有翅膀;③任何一个三角形一定有直角;④作线段AB=CD;⑤对顶角相等;2、指出下列命题的题设和结论:①如果两个数互为相反数,这两个数的商为-1;题设:结论:②两直线平行,同旁内角互补;题设:结论:3、请将命题改写成“如果……那么……”的形式①同旁内角互补,两直线平行;②绝对值相等的两个数相等.三、课堂练习【基础训练】1、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。
其中假命题有()A、1个B、2个C、3个D、4个2、分别指出下列各命题的题设和结论。
(1)如果a∥b,b∥c,那么a∥c(2)同旁内角互补,两直线平行。
3、分别把下列命题写成“如果……,那么……”的形式。
(1)对顶角相等;(3)内错角相等。
【拓展训练】4、如图,已知直线a、b被直线c所截,在括号内填上适当的根据:(1)∵a∥b,∴∠1=∠3(_________________);(2)∵∠1=∠3,∴a∥b(_________________);(3)∵a∥b,∴∠1=∠2(__________________);(4) ∵a∥b,∴∠1+∠4=180º (_____________________)(5)∵∠1=∠2,∴a∥b(__________________);(6)∵∠1+∠4=180º,∴a∥b(_______________).第五章课题(9):平移(1)【学习目标】:1.认识平移,理解平移的含义。
新人教版七年级下册数学第五章相交线与平行线导学案
第五章相交线及平行线第一课时:§5.1.1 相交线班级:姓名:学号:小组:[学习目标]1.了解邻补角、对顶角,2. 能找出图形中的一个角的邻补角和对顶角3. ,理解对顶角相等,并能运用它解决一些问题.一、自主学习阅读P1-3课文,回答以下问题:1.探索一:完成课本P2页的探究,填在课本上.2.你能归纳出“邻补角”的定义吗?.3.“对顶角”的呢?.二、合作探究练习一:1.如图1所示,直线AB和CD相交于点O,OE是一条射线.(1)写出∠AOC的邻补角:____ _ ___ __;(2)写出∠COE的邻补角: __;(3)写出∠BOC的邻补角:____ _ ___ __;(4)写出∠BOD的对顶角:____ _.2.如图所示,∠1及∠2是对顶角的是()探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的质”:.练习二:1.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB、CD、EF相交于点O,∠BOE的对顶角是______,∠图1COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______ 3.如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°,则∠EOF=_____.三、课堂小结1.“对顶角的性质”:. 四、当堂检测1.若两个角互为邻补角,则它们的角平分线所夹的角为 度.2.如图所示,直线a ,b ,c 两两相交,∠1=60°,∠2=23∠4,•求∠3、∠5的度数.3.如图所示,有一个破损的扇形零件,•利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么?ba4321第1题FEOD CB A第2题FEODCBA第3题4.探索规律:(1)两条直线交于一点,有 对对顶角; (2)三条直线交于一点,有 对对顶角; (3)四条直线交于一点,有 对对顶角; (4)n 条直线交于一点,有 对对顶角.五、学后反思(本节课你有哪些收获?)第五章 相交线及平行线 第二课时:5.1.2 垂线班级: 姓名: 学号: 小组: [学习目标]1.了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质; 2.会用三角板过一点画已知直线的垂线,并会度量点到直线的距离. 一、自主学习阅读P 课文,回答以下问题:探索一:请你认真画一画,看看有什么收获.⑴如图1,利用三角尺或量角器画已知直线l 的垂线,这样的垂线能画__________条;⑵如图2,经过直线l 上一点A 画l 的垂线,这样的垂线能画_____条; ⑶如图3,经过直线l 外一点B 画l 的垂线,这样的垂线能画_____条;ll AlBlB(图1)(图2)(图3a)(图3b)经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线及已知直线垂直.二、合作探究练习一:1.如图所示,OA⊥OB,OC是一条射线,若∠AOC=120°,求∠BOC度数2.如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,求∠2的度数.3.如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线PE,垂足为E.(2)过点P画CD的垂线,及AB相交于F点.(3)比较线段PE,PF,PO三者的大小关系探索二:仔细观察测量比较上题中点P分别到直线AB上三点E、F、O的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________简单说成:.还有,直线外一点到这条直线的垂线段的叫做点到直线的距离.注意:垂线是,垂线段是一条,点到直线的距离是一个数量,不能说“垂线段”是距离.三、课堂小结1.在同一平面内,过一点有且只有_____条直线及已知直线垂直.2. 点到直线的距离四、当堂检测1.在下列语句中,正确的是().A.在同一平面内,一条直线只有一条垂线B.在同一平面内,过直线上一点的直线只有一条C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D.在同一平面内,垂线段就是点到直线的距离2.如图所示,AC⊥BC,CD⊥AB于D,AC=5cm,BC=12cm,AB=13cm,则点B到AC的距离是________,点A到BC 的距离是_______,点C到AB•的距离是_______,•AC>CD•的依据是_________.4.如图所示AB,CD相交于点O,EO⊥AB于O,FO⊥CD于O,∠EOD及∠FOB的大小关系是()A.∠EOD比∠FOB大 B.∠EOD比∠FOB小C.∠EOD及∠FOB相等 D.∠EOD及∠FOB大小关系不确定5.如图,一辆汽车在直线形的公路AB上由A向B行驶,C,D是分别位于公路AB两侧的加油站.设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中的公路上分别画出点M,N的位置并说明理由.6.如图,AOB为直线,∠AOD:∠DOB=3:1,OD平分∠COB.(1)求∠AOC的度数;(2)判断AB及OC的位置关系.五、学后反思(本节课你有哪些收获?)第五章相交线及平行线第三课时:5.1.3 同位角、内错角、同旁内角班级:姓名:学号:小组:[学习目标]1.使学生理解三线八角的意义,并能从复杂图形中识别它们;2.通过三线八角的特点的分析,培养学生抽象概括问题的能力.一、自主学习阅读P 课文,回答以下问题:探索:如图,直线c分别及直线a、b相交(也可以说两条直线a、b被第三条直线c所截),得到8个角,通常称为“三线八角”,那么这8个角之间有哪些关系呢?观察填表:表一位置1位置2结论∠1和∠5处于直线c的同侧处于直线a、b的同一方这样位置的一对角就称为同位角∠2和∠8处于直线c的()侧这样位置的一对角就称为()∠3和∠6处于直线a、b的()方这样位置的一对角就称为()∠1和∠5这样位置的一对角就称为()位置1位置2结论∠4和∠8处于直线c的两侧处于直线a、b之间这样位置的一对角就称为内错角abc∠3和∠5这样位置的一对角就称为()位置1位置2结论∠3和∠8处于直线c的()侧处于直线a、b()这样位置的一对角就称为同旁内角∠4和∠5这样位置的一对角就称为()二、合作探究1.如图1所示,∠1及∠2是__ _角,∠2及∠4是_ 角,∠2及∠3是__ _角.(图1) (图2) (图3)2.如图2所示,∠1及∠2是___ _角,是直线______和直线_______•被直线_______所截而形成的,∠1及∠3是___ __角,是直线________和直线______•被直线________所截而形成的.3.如图3所示,∠B同旁内角有哪些?三、课堂小结1.同位角、内错角、同旁内角2. 如何在各种变式的图形中找出这三类角.四、当堂检测1.如图,(1)直线AD、BC被直线AC所截,找出图中由AD、BC被直线AC所截而成的内错角是_________和__________(2)∠3和∠4是直线_________和_________被_________所截,构成内错角.2.已知∠1及∠2是同旁内角,且∠1=60°,则∠2为()A. 60°B. 120°C. 60°或120°D.无法确定3.如图,判断正误①∠1和∠4是同位角;()②∠1和∠5是同位角;()③∠2和∠7是内错角;()④∠1和∠4是同旁内角;()4.如图,直线DE、BC被直线AB所截.⑴∠1及∠2、∠1及∠3、∠1及∠4各是什么角?⑵如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?341E2B CDA五、学后反思(本节课你有哪些收获?)第五章相交线及平行线§5.2.1平行线班级:姓名:学号:小组:[学习目标]1.同一平面内两条直线有几种位置关系?什么是平行线?2. 会经过已知直线外一点,能画出几条直线及已知直线平行;3.用符号语言表示“平行于同一条直线的两条直线平行”。
(完整word)新课标人教版七年级下册第五章相交线与平行线导学案
第五章 相交线与平行线第一课时:5.1.1 相交线【学习目标】了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用.【学习难点】理解对顶角相等的性质.一、知识梳理探索一:完成课本P2页的探究,填在课本上.你能归纳出“邻补角”的定义吗? . “对顶角”的定义呢? . 练习一:1.如图1所示,直线AB 和CD 相交于点O ,OE 是一条射线.(1)写出∠AOC 的邻补角:____ _ ___ __;(2)写出∠COE 的邻补角: __;(3)写出∠BOC 的邻补角:____ _ ___ __;(4)写出∠BOD 的对顶角:____ _. 2.如图所示,∠1与∠2是对顶角的是( )请归纳“对顶角的性质”: .二、知识运用1.如图,直线a ,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB 、CD 相交于点O ,∠CO E=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.三、知识提高1.若两个角互为邻补角,则它们的角平分线所夹的角为 度.2.如图所示,直线a ,b ,c 两两相交,∠1=60°,∠2=23∠4,•求∠3、∠5的度数.图1 b a 4321第1题 F E O D C B A 第2题 F E O D C BA 第3题第二课时:5.1.2 垂线【学习目标】1、了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;2、会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用.【学习难点】垂线的画法以及对点到直线的距离的概念的理解.【学习过程】一、知识梳理当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图用几何语言表示:方式⑴∵ ∠AOC=90° ∴ AB_____CD ,垂足是_____方式⑵∵ AB ⊥CD 于O ∴ ∠AOC=______探索一:请你认真画一画,看看有什么收获.⑴如图1,利用三角尺或量角器画已知直线l 的垂线,这样的垂线能画__________条; ⑵如图2,经过直线l 上一点A 画l 的垂线,这样的垂线能画_____条;⑶如图3,经过直线l 外一点B 画l 的垂线,这样的垂线能画_____条;(图1) (图2) (图3a ) (图3b )经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直.二、知识运用1.如图所示,OA ⊥OB ,OC 是一条射线,若∠AOC=120°,求∠BOC 度数2.如图所示,直线AB ,CD 相交于点O ,P 是CD 上一点.(1)过点P 画AB 的垂线PE ,垂足为E .(2)过点P 画CD 的垂线,与AB 相交于F 点.(3)比较线段PE ,PF ,PO 三者的大小关系简单说成: .还有,直线外一点到这条直线的垂线段的 叫做点到直线的距离.注意:垂线是 ,垂线段是一条 ,点到直线的距离是一个数量,不能说“垂线段”是距离.三、知识提高1.在下列语句中,正确的是( ).A .在同一平面内,一条直线只有一条垂线B .在同一平面内,过直线上一点的直线只有一条C .在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D .在同一平面内,垂线段就是点到直线的距离2.如图所示,AC ⊥BC ,CD ⊥AB 于D ,AC=5cm ,BC=12cm ,AB=13cm ,则点B 到AC 的距离是________,点A 到BC 的距离是_______,点C 到AB•的距离是_______,•AC>CD•的依据是_________.l l A l B lB第三课时:5.1.3 同位角、内错角、同旁内角【学习目标】1、使学生理解三线八角的意义,并能从复杂图形中识别它们;2、通过三线八角的特点的分析,培养学生抽象概括问题的能力. 【学习重点】三线八角的意义,以及如何在各种变式的图形中找出这三类角. 【学习难点】能准确在各种变式的图形中找出这三类角.【学习过程】一、知识梳理探索:如图,直线c分别与直线a、b相交(也可以说两条直线a、b被第三条直线c所截),得到8个角,通常称为“三线八角”,那么这8个角之间有哪些关系呢?观察填表:表一位置1 位置2 结论∠1和∠5 处于直线c的同侧处于直线a、b的同一方这样位置的一对角就称为同位角∠2和∠8 处于直线c的()侧这样位置的一对角就称为()∠3和∠6 处于直线a、b的()方这样位置的一对角就称为()∠1和∠5 这样位置的一对角就称为()表二位置1 位置2 结论∠4和∠8 处于直线c的两侧处于直线a、b之间这样位置的一对角就称为内错角∠3和∠5 这样位置的一对角就称为()表三位置1 位置2 结论∠3和∠8 处于直线c的()侧处于直线a、b()这样位置的一对角就称为同旁内角∠4和∠5 这样位置的一对角就称为()二、知识运用1.如图1所示,∠1与∠2是__ _角,∠2与∠4是_ 角,∠2与∠3是__ _角.(图1) (图2) (图3)2.如图2所示,∠1与∠2是___ _角,是直线______和直线_______•被直线_______所截而形成的,∠1与∠3是___ __角,是直线________和直线______•被直线________所截而形成的.三、知识提高.如图,直线DE、BC被直线AB所截.⑴∠1与∠2、∠1与∠3、∠1与∠4各是什么角?⑵如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?abc341E2B CDA第四课时:5.2.1 平行线【学习目标】1、使学生知道平行线的概念,掌握平行公理;2、了解平行线具有传递性,能够画出已知直线的平行线.【学习重点】平行线的概念和平行公理,利用直尺和三角板画已知直线的平行线.一、知识梳理探索一:我们知道,火车行驶的两条笔直的铁轨、人行道上的斑马线等都给我们平行的形象.一般地,在同一平面内,不相交的两条直线叫做平行线.如图,记作“a ∥b ”或“AB ∥CD ”,读作“直线a 平行于直线b ”.练习一:1.下列说法中,正确的是( ).A .两直线不相交则平行B .两直线不平行则相交C .若两线段平行,那么它们不相交D .两条线段不相交,那么它们平行2.在同一平面内,有三条直线,其中只有两条是平行的,那么交点有( ).A .0个B .1个C .2个D .3个探索二:请同学们仔细阅读课本P13页“平行线的讨论”,认真思考.通过观察和画图,可以体验一个基本事实(平行公理):经过直线外一点, 一条直线与这条直线平行. 同样,我们还有(平行线的传递性):如果两条直线都与第三条直线平行,那么这两条直线也互相平行.简单的说就是:平行于同一直线的两直线平行.用几何语言可表示为:如果b ∥a ,c ∥a ,那么 .二、知识运用1.如图1所示,与AB 平行的棱有_______条,与AA ′平行的棱有_____条.2.如图2所示,按要求画平行线.(1)过P 点画AB 的平行线EF ;(2)过P 点画CD 的平行线MN .3.如图3所示,点A ,B 分别在直线1l ,2l 上,(1)过点A 画到2l 的垂线段;(2)过点B 画直线3l ∥1l .(图1) (图2) (图3)三、知识提高 1.下列说法中,错误的有( ).①若a 与c 相交,b 与c 相交,则a 与b 相交;②若a ∥b ,b ∥c ,那么a ∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、•相交、垂线三种A .3个B .2个C .1个D .0个2.判断题(1)不相交的两条直线叫做平行线.( )(2)在同一平面内,不相交的两条射线是平行线.( )(3)如果一条直线与两条平行线中的一条平行, 那么它与另一条也互相平行.( )第五课时:5.2.2 平行线的判定【学习目标】使学生掌握平行线的判定,并能应用这些知识判断两条直线是否平行,培养学生简单的推理能力.【学习重点】平行线的三种判定方法,并运用这三种方法判断两直线平行.【学习难点】运用平行线的判定方法进行简单的推理.一、知识梳理如图,将下列空白补充完整(填1种就可以)判定方法1(判定公理) 几何语言表述为:∵ ∠___=∠___ ∴ AB ∥CD由判定方法1,结合对顶角的性质,我们可以得到: 判定方法2(判定定理)几何语言表述为:∵ ∠___=∠___ ∴ AB ∥CD 由判定方法1,结合邻补角的性质,我们可以得到:判定方法3(判定定理) 几何语言表述为:∵ ∠___+∠___=180° ∴ AB ∥CD二、知识运用(1题) (2题) (3题)1.如图1所示,若∠1=∠2,则_____∥______,根据是__ ____. 若∠1=∠3,则______∥______,根据是_____ ____.2.如图2所示,若∠1=62°,∠2=118°,则_____∥_____,根据是_____ ___3.根据图3完成下列填空(括号内填写定理或公理)(1)∵∠1=∠4(已知)∴ ∥ ( )(2)∵∠ABC +∠ =180°(已知)∴AB ∥CD ( )(3)∵∠ =∠ (已知)∴AD ∥BC ( )(4)∵∠5=∠ (已知)∴AB ∥CD ( ) ( 图3 ) 探索:木工师傅用角尺画出工件边缘的两条垂线,就可以再找出两条平行线,如图所示,a ∥b ,你能说明是什么道理吗?结论(判定推论):在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.简记为:在同一平面内,垂直于同一直线的两直线平行.如图,几何语言表述为:∵a ⊥2l ,b ⊥2l ∴三、知识提高1.如图所示,AB ⊥BC ,BC ⊥CD ,BF 和CE 是射线,并且∠1=∠2,83625147FE D CB AC 12 3 4 5 D AB试说明BF ∥CE .第六课时:5.3.1 平行线的性质【学习目标】1、使学生掌握平行线的三个性质,并能应用它们进行简单的推理论证;2、使学生经过对比后,理解平行线的性质和判定的区别和联系.【学习重点】平行线的三个性质及其应用.一、知识梳理平行线的性质,如图,将下列空白补充完整(填1种就可以)性质1(性质公理)几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___由性质1,结合对顶角的性质,我们可以得到: 性质2(性质定理)几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___ 由性质1,结合邻补角的性质,我们可以得到:性质3(性质定理) 几何语言表述为:∵ AB ∥CD ∴ ∠___+∠___=二、知识运用 1. 根据右图将下列几何语言补充完整 (1)∵AD ∥ (已知)∴∠A+∠ABC=180°( ) (2)∵AB ∥ (已知)∴∠4=∠ ( )∠ABC=∠ ( ) 2. 如右图所示,BE 平分∠ABC ,DE ∥ BC ,图中相等的角共有( )A. 3对B. 4对C. 5对D. 6对 3、如图,AB ∥CD,∠1=45°,∠D=∠C,求∠D 、∠C 、∠B 的度数.探索二:用三角尺和直尺画平行线,做成一张5×5个格子的方格纸.观察做出的方格纸的一部分(如图),线段11C B 、22C B 、…、55C B 都与两条平行的横线51B A 和52C A 垂直吗?它们的长度相等吗?像这样,同时垂直于两条平行直线,并且夹在这两条平行线间的线段的长度相等,叫做这两条平行线间的距离,即平行线间的距离处处相等.三、知识提高1. 如图所示,已知直线AB ∥CD ,且被直线EF 所截,若∠1=50°,则∠2=____,•∠3=______.2.如图所示,AB ∥CD ,AF 交CD 于E ,若∠CEF=60°,则∠A=______.3.如图所示,已知AB ∥CD ,BC ∥DE ,∠1=120°,则∠2=______. 1A B C D83625147E D CB AC 1 2 3 4 5 BA DED C B A 1A 2A 1B 2B 3B 4B 5B 1C 2C 3C 5C 4C(1题) (2题) (3题)第七课时:平行线的判定及性质习题课【学习目标】加深对平行线的判定及性质的理解及其应用.【学习重点】平行线的判定及性质的应用.【学习难点】灵活运用平行线的判定及性质去推理证明.【学习过程】一、知识梳理通过前面的学习,你知道判定两条直线平行有哪几种方法吗?⑴平行线的定义:⑵平行线的传递性:⑶平行线的判定公理:⑷平行线的判定定理1:⑸平行线的判定定理2:⑹平行线的判定推论:通过前面的学习,你还知道两条直线平行有哪些性质吗?⑴根据平行线的定义:⑵平行线的性质公理:⑶平行线的性质定理1:⑷平行线的性质定理2:⑸平行线间的距离.二、知识运用练习:让我先试试,相信我能行.1.如图1,若∠1=∠2,那么_____∥______,根据___ __.若a∥b,•那么∠3=_____,根据___ __.(图1) (图2) (图3) (图4)2.如图2,∵∠1=∠2,∴_______∥_______,根据___ _____.∴∠B=______,根据___ _____.3.如图3,若AB∥CD,那么________=•_______;•若∠1=•∠2,•那么_____•∥_____;若BC∥AD,那么_______=_______;若∠A+∠ABC=180°,那么______∥_____4.如图4,•一条公路两次拐弯后,•和原来的方向相同,•如果第一次拐的角是136°(即∠ABC),那么第二次拐的角(∠BCD)是度,根据___ .5.如右图,修高速公路需要开山洞,为节省时间,要在山两面A,B同时开工,•在A处测得洞的走向是北偏东76°12′,那么在B处应按什么方向开口,才能使山洞准确接通,请说明其中的道理.6.如右图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射∠1=∠2,∠3=∠4,请你解释为什么开始进入潜望镜的光线和最后离开潜望镜的光线是平行的.三、知识提高1.已知如图1,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=74°,那么吸管与易拉罐下部夹角∠2=_______.2.已知如图2,边OA ,OB 均为平面反光镜,∠AOB=40°,在OB 上有一点P ,从P 点射出一束光线经OA 上的Q 点反射后,反射光线QR 恰好与OB 平行,则∠QPB 的度数是( ).A .60°B .80°C .100°D .120°(图1) (图2) (图3)3.如图3,已知∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并对结论进行说理.4.如图,直线DE 经过点A ,DE ∥BC ,∠B=44°,∠C=85°.⑴求∠DAB 的度数;⑵求∠EAC 的度数;⑶求∠BAC 的度数;⑷通过这道题你能说明为什么三角形的内角和是180°吗?5.如图所示,如果AB ∥CD ,那么( ).A .∠1=∠4,∠2=∠5B .∠2=∠3,∠4=∠5C .∠1=∠4,∠5=∠7D .∠2=∠3,∠6=∠8(5题) (6题) (7题)6.如图所示,DE ∥BC ,EF ∥AB ,则图中和∠BFE 互补的角有( ).A .3个B .2个C .5个D .4个7.如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.A D E BC第八课时:5.3.2命题、定理【学习目标】了解命题、定理的概念,能够区分命题的题设和结论.【学习重点】能够区分命题的题设和结论.【学习难点】能够区分命题的题设和结论.一、知识梳理探索:在日常生活中,我们会遇到许多类似的情况,需要对一些事情作出判断,例如:⑴今天是晴天;⑵对顶角相等;⑶如果两条直线都与第三条直线平行,那么这两条直线也互相平行.像这样,判断一件事情的语句,叫做命题.每个命题都是由_______和______组成.每个命题都可以写成.“如果……,那么……”的形式,用“如果”开始的部份是,用“那么”开始的部份是 .像前面举例中的⑵⑶两个命题,都是正确的,这样的命题叫做真命题,即正确的命题叫做______.例如:“如果一个数能被2整除,那么这个数能被4整除”,很明显是错误的命题,这样的命题叫做假命题,即错误的命题叫做______.我们把从长期的实践活动中总结出来的正确命题叫做公理;通过正确的推理得出的真命题叫做定理.二、知识运用1.下列语句是命题的个数为()①画∠AOB的平分线; ②直角都相等; ③同旁内角互补吗?④若│a│=3,则a=3. A.1个 B.2个 C.3个 D.4个2.下列5个命题,其中真命题的个数为()①两个锐角之和一定是钝角; ②直角小于夹角; ③同位角相等,两直线平行; •④内错角互补,两直线平行; ⑤如果a<b,b<c,那么a<c.A.1个 B.2个 C.3个 D.4个3.下列说法正确的是()A.互补的两个角是邻补角 B.两直线平行,同旁内角相等C.“同旁内角互补”不是命题 D.“相等的两个角是对顶角”是假命题4.“同一平面内,垂直于同一条直线的两条直线互相平行”是命题,其中,题设是,结论是,5.将下列命题改写成“如果……那么……”的形式.(1)直角都相等.(2)对顶角相等(3)三角形的内角和是180°.(4)平行于同一条直线的两条直线互相平行.(5)同角的补角相等三、知识提高1.下列命题中,正确的是()A.在同一平面内,垂直于同一条直线的两条直线平行;B.相等的角是对顶角;C.两条直线被第三条直线所截,同位角相等;D.和为180°的两个角叫做邻补角.2.下列命题中的条件(题设)是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;(2)如果两条直线都与第三条直线平行,那么这两条直线也平行;第九课时:5.4平移【学习目标】1、了解平移的概念,知道生活中常见的平移例子;2、掌握平移的规律,会利用平移画图.【学习重点】平移的规律,画图.【学习难点】利用平移的特征画图.一、知识梳理探究一:请同学们仔细阅读课本P27~28页,你能发现并归纳平移的特征吗?平移的特征:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小;(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是;(3)连接各组对应点的线段平行(或在同一条直线上)且.即,在平面内,将一个图形沿移动一定的,图形的这种移动,叫做平移变换,简称平移.注意:图形平移的方向,不一定是水平的.图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.(填“改变”或“不改变”)二、知识运用1.几何图形经过平移,图形中对应点所连的线段平行(或在同一条直线上)且,对应线段且,对应角 .2.平移改变的是图形的().A.位置 B.形状 C.大小 D.位置、形状、大小3.下列现象中,不属于平移的是().A.滑雪运动员在的平坦雪地上滑行 B.大楼上上下下地迎送来客的电梯C.钟摆的摆动 D.火车在笔直的铁轨上飞驰而过4.下列各组图形,可经平移变换由一个图形得到另一个图形的是().探究二:你能按要求将图形平移吗?动手试一试.如图所示,把△ABC沿AB方向平移,平移的距离为线段a的长.三、知识提高1.如图所示,经过平移,四边形ABCD 的顶点A 移到点A ′,作出平移后的四边形.第十课时:相交线与平行线全章复习一、本章知识结构图二、本章知识梳理1.邻补角的定义: . 对顶角的定义: . 对顶角的性质: .2.当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫 ,它们的交点叫 . 如图,用几何语言表示:方式⑴∵ ∠AOC=90° ∴ AB_____CD ,垂足是_____ 方式⑵∵ AB ⊥CD 于O ∴ ∠AOC=______3.在同一平面内,过一点有且只有_____条直线与已知直线垂直.注意:垂线是 ,垂线段是一条 ,是图形.点到直线的距离是 的长度,是一个数量,不能说“垂线段”是距离.4.识别同位角、内错角、同旁内角的关键是要抓住“三线八角”,只有“三线”出现且必须是两线被第三线所截才能出现这三类角;位置1 位置2 结论 ∠1和∠5处于直线c 的同侧 处于直线a 、b 的同一方 这样位置的一对角就称为( ) ∠3和∠5这样位置的一对角就称为( ) ∠4和∠5 这样位置的一对角就称为( )5. 现在所说的两条直线的位置关系,是两条直线在“ ”的前提下提出来的,C D A B O a b c它们的位置关系只有两种:一是(有一个公共点),二是(没有公共点). 6.平行线的定义:在同一平面内,的两条直线叫做平行线.平行公理:经过直线外一点,一条直线与这条直线平行.平行线的传递性:平行于同一直线的两直线 .7.两条直线平行的判定方法:⑴平行线的定义,⑵平行线的传递性,⑶平行线的判定公理:⑷平行线的判定定理1:⑸平行线的判定定理2:⑹平行线的判定推论:8.两条直线平行的性质:⑴根据平行线的定义⑵平行线的性质公理:⑶平行线的性质定理1:⑷平行线的性质定理2:⑸平行线间的距离.9.命题的定义:判断一件事情的语句,叫做命题.每个命题都是由_______和______组成.每个命题都可以写成.“如果……,那么……”的形式,用“如果”开始的部份是,用“那么”开始的部份是,正确的命题叫做______,错误的命题叫做______.从长期的实践活动中总结出来的正确命题叫做,通过正确的推理得出的真命题叫做 .10.平移的特征:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小;(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是;(3)连接各组对应的线段 .即,在平面内,将一个图形沿移动一定的,图形的这种移动,叫做平移变换,简称.图形平移的方向,不一定是水平的.图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.(填“改变”或“不改变”)三、知识运用1.如图1,直线a,b相交于点O,若∠1=40°,•则∠2 等于_______.图1 图2 图3 图42.如图2,直线a∥b,∠1=123°30′,则∠2=______.3.如图3,已知a∥b,∠1=70°,∠2=40°,则∠3=_____.4.如图4,AB∥CD,∠E=40°,∠C=65°,则∠EAB的度数为()A.65° B.75° C.105° D.115°图5 图6 图75.如图5,直线L1与L2相交于点O,OM⊥L1,若α=44°,则β为(• )A.56° B.46° C.45° D.44°6.如图6,AB∥CD,直线PQ分别交AB,CD于点E,F,FG•是∠EFD的平分线,交AB于点G,若∠FEG=40°,那么∠FGB等于()A.80° B.100° C.110° D.120°7.如图7,已知∠1=∠2=∠3=55°,则∠4的度数为()A.55° B.75° C.105° D.125°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学下册第五章相交线与平行线学案(2013年新版)
第五题(8):命题、定理
【学习目标】:
1.掌握命题的概念,并能分清命题的组成部分
【重点难点】:分清命题的组成部分
一、回头复习
1、平行线的判定1:判定2:
判定3:
2、平行线的性质1:性质2:
性质3:
二、学习新
知识点1.命题、定理
例1:(1)的语句,叫做命题。
(2)命题都由和两部分组成
(3)命题常可写成“ …… ……”的形式,
(4)一般地,称为真命题,称为假命题。
其正确性经过的真命题,叫做定理。
练习:
1、判断下列语句是不是命题:
①你喜欢数学吗?②熊猫没有翅膀;
③任何一个三角形一定有直角;
④作线段AB=D;⑤对顶角相等;
2、指出下列命题的题设和结论:
①如果两个数互为相反数,这两个数的商为-1;
题设:结论:
②两直线平行,同旁内角互补;
题设:结论:
3、请将命题改写成“如果……那么……”的形式
①同旁内角互补,两直线平行;
②绝对值相等的两个数相等
三、堂练习
【基础训练】
1、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。
其中假命题有()
A、1个
B、2个、3个D、4个
2、分别指出下列各命题的题设和结论。
(1)如果a∥b,b∥,那么a∥
(2)同旁内角互补,两直线平行。
3、分别把下列命题写成“如果……,那么……”的形式。
(1)对顶角相等;
(3)内错角相等。
【拓展训练】
4、如图,已知直线a、b被直线所截,在括号内填上适当的根据:
(1)∵a∥b,∴∠1=∠3(_________________);
(2)∵∠1=∠3,∴a∥b(_________________);
(3)∵a∥b,∴∠1=∠2(__________________);
(4) ∵a∥b,∴∠1+∠4=180&rd; (_____________________)
()∵∠1=∠2,∴a∥b(__________________);
(6)∵∠1+∠4=180&rd;,∴a∥b(_______________)
第五题(9):平移(1)
【学习目标】:
1.认识平移,理解平移的含义。
2.理解平移的性质。
【重点难点】:理解平移的性质。
一、回头复习
1、画图:已知直线AB,点P在直线AB外,用直尺和三角板画过点P的直线D,使D∥AB
2、在以上的画图过程中,想一想,三角板做了怎样的运动?
二、学习新
知识点1.平移
例1:(1)在平面内,将一个图形整体沿某个方向,得到一个新图形。
新图形改变的是图形的,不改变图形的和。
(2)新图形的每一点,都是由图形中的某一点移动后得到的,这一对点叫做,连接各组对应点的线段
练习:
1、下列哪个图形是由左图平移得到的()
2、如图,△DEF经过平移得△AB,则∠的对应角和ED的对应边分&nt;别是( )
A ∠F,A
B ∠BD,BA; ∠F,BA D ∠BD,A
3、如图,平移△AB得到△DEF,如果∠A=0°,∠=60°,
那么∠E=•____&nt;度,∠EDF=_______度,∠F=______度,
∠DB=_______度
三、堂练习
【基础训练】
1、如图,是正六边形ABDEF的中心,下列图形中可由△B平移得到的是()
A、△D
B、△AB
、△AF D、△EF
2、如图,将梯形ABD的腰AB沿AD平移至DE,则下列说法不正确的是()
A、AB∥DE且AB=DE
B、∠DE=∠B
、AD∥E且AD=E D、B=AD+E
3、把一个△AB沿东南方向平移3,则AB边上的中点P沿方向平移了。
4、如图,△AB平移到△DEF,图中相等的线段有,相等的角有,平行的线段有。
、如右图,△AB是由四个形状大小相同的三角形拼成的,则可以看成是△ADF平移得到的小三角形是。
【拓展训练】
6、将正方形ABD沿对角线A方向平移,且平移后的图形的一个顶点
恰好在A的中点处,则移动前后两个图形的重叠部分的面积是原正方形面积的
7、直角△AB中,A=3,B=4,AB=,将△AB沿B方向平移3,则边AB所经过的平面面积为2。
第五题(10):平移(2)
【学习目标】:
1.能按要求作出简单平面图形平移后的图形;
2.能运用平移简单的图案设计。
【重点难点】:按要求作出简单平面图形平移后的图形;
一、回头复习
1、经过平移所得的图形与原的图形的对应线段,对应角,对应点所连的线段。
2、如图,△AB沿B的方向平移到△DEF的位置,
若∠B=260,∠F=740,则∠1=_______,∠2=______,∠A=_______,∠D=______
若AB=4,A=,B=4,E=3,则平移的距离等于________,DF=_______,F=_________。
二、学习新
知识点1.平移作图
例1:(1)作图,平移图1中的线段AB,使A移到了P点
图1 图2
(2)作图,平移图2中的三角形AB,使A移到了P点
三、堂练习
【基础训练】
1、如图1,△AB在网格中,请根据下列提示作图(1)向上平移2个单
位长度
(2)再向右移3个单位长度
2、如图2,请将图中的“蘑菇”向左平移6个格,再向下平移2个格
3、如图,有一条小船,若把小船平移,使点A平移到点B,请你在图中画出平移后的小船。
4、如图,将△AB平移,得到△DEF,点B的对应点是E,
、如图,将△AB沿正南方向平移3。