苏科版初二数学下册《反比例函数》单元测试卷及答案解析

合集下载

2020—2021年最新苏科版八年级数学下册《反比例函数》单元测试卷及答案解析.doc

2020—2021年最新苏科版八年级数学下册《反比例函数》单元测试卷及答案解析.doc

(新课标)苏科版八年级下册第11单元 反比例函数 综合测试卷(B)一、选择题1.某反比例函数的图像经过点(一1,6),则下列各点中,此函数的图像也经过的点是( )A .(一3,2)B .(3,2)C .(2,3)D .(6,1)2.已知一次函数y kx b =+的图像经过第一、二、四象限,则反比例函数kby x =的图像在( )A .第一、二象限B .第三、四象限C .第一、三象限 D .第二、四象限3.如图关于x 的函数y kx k =-和(0)ky k x =-≠,它们在同一坐标系内的图像大致是 ( )4.如图,反比例函数(0)ky k x =-≠的图像上有一点A ,AB 平行于x轴交y y 轴于点B ,△ABO 的面积是1,则反比例函数的表达式是 ( ) A .12y x=B .1y x=c .2y x =D .14y x =5.如图,点P 、Q 是反比例函数1y x =的图像上在第一象限内的任两点,分别过P 、Q 作x 轴、y 轴的垂线段PA 、PB 、QC 、QD ,垂足分别为A 、B 、C 、D ,又已知线段PA 、QD 相交于点E ,四边形PEDB 、QEAC 的面积分别记为12s s 、时,则 ( ) A .12>s s B .1s <2s C .1s =2s D .1s ·2s 的大小不确定 6.已知点P 12,2)(,2)x x -3(、Q 、R(x ,3)三点都在反比例函数21a y x +=的图像上,则下列关系正确的是 ( )A .123<<x x xB .132<<x x xC .321<<x x xD .231<<x x x 7.如图,反比例函数(>0)ky x x =的图像经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为 ( )A .1B .2C .3D .4 二、填空题 8·已知函数1y x a=-,当2x =时没有意义,则a的值为 .9.若反比例函数ky x =的图像经过(一2,则函数y kx k =-的图像一定过第象限.10.在平面直角坐标系内,从反比例函数(>0)ky k x =的图像上的一点分别作x y 、轴的垂线段,与x y 、轴所围成的矩形面积是12,那么该函数解析式是 .11.若点A(7,1y ),B(5,2y )在反比例函数3y x =-图像上,则12y y 、的大小关系是 . 12.关于x 的反比例函数25(1)k y k x-=-y(k 为常数)的图像在第一、三象限,则k的值为.13.若一次函数y y mx n=+与反比例函数33nyx+=的图像相交于点(1(,2)2,那么该直线与双曲线的另一交点为.14·双曲线3yx=在第象限内,经过点(一1. ) .15.已知反比例函数6yx=在第一象限的图像如图所示,点A在其图像上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则AOBSV= .16.如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y x=上,其中A点的横坐标为l,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线(0)ky kx=≠与△ABC有交点,则k的取值范围是.17.如图,已知函数11y x =(>0)x ,24(>0)y x x =,点P 为函数24y x =的图像上的一点,且PA x ⊥轴于点A ,PB y ⊥,轴于点B ,PA 、PB 分别交函数11y x=的图像于D 、C 两点,则△PCD 的面积为 . 三、解答题(共57分)18.(本题8分)已知反比例函数(k y kx =为常数,k ≠0)的图像经过点A(2,3).(1)求这个函数的表达式;(2)判断点B(一1,6)、C(3,2)是否在这个函数的图像上,并说明理由;(3)当一3<x <一1时,求y 的取值范围.19.(本题8分)如图,已知一次函数11(0)y k x b k =+≠的图像分别与x 轴,y轴交于A 、B两点,且与反比例函数22(0)k y k x =≠的图像在第一象限的交点为C ,过点C 作x 轴的垂线,垂足为D ,若OA=OB=OD=2. (1)求一次函数的解析式; (2)求反比例函数的解析式.20.(本题8分)如图,一次函数y ax b =+的图像与反比例函数ky x=的图像交于A(一2,m ),B(4,-2)两点,与x 轴交于C 点,过A 作AD ⊥x 轴于D . (1)求这两个函数的解析式; (2)求△ADC 的面积.21.(本题9分)一辆汽车匀速通过某段公路,所需时间()t h 与行驶速度υ(km /h)满足函 数表达式kt υ=.其图像为如图所示的一段曲线,且端点为A(40,1)和B(m ,0.5) (1)求k 和m 的值。

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,反比例函数y= (x>0)的图象经过A、B两点,菱形ABCD在第一象限内,边BC于x轴平行.若A、B两点的纵坐标分别为3和1,则菱形ABCD的面积为()A.2B.4C.2D.42、如图,在平面直角坐标系中,▱OABC的对角线OB在y轴正半轴上,点A,C 分别在函数y=(x>0),y=(x<0)的图象上,分别过点A,C作AD⊥x轴于点D,CE⊥x轴于点E,若|k1|:|k2|=9:4,则AD:CE的值为()A.2:3B.3:2C.4:9D.9:43、已知P是反比例函数y=(x>0)图象上一点,点B的坐标为(5,0),A 是y轴正半轴上一点,且AP⊥BP,AP:BP=1:3,那么四边形AOBP的面积为()A.16B.20C.24D.284、如图,反比例函数y1=和正比例函数y2=k2x的图象交于A(-1,-3)、B(1,3)两点.若>k2x,则x的取值范围是( )A.-1<x<0B.-1<x<1C.x<-1或0<x<1D.-1<x<0或x>15、下列说法正确的是()A.圆面积公式S=πr 2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系 C.y= 中,y与x成反比例关系 D.y= 中,y与x成正比例关系6、已知反比例函数(k为常数)的图象位于第一、三象限,则k的取值范围是()A. B. C. D.7、当时,函数的图象在()A.第四象限B.第三象限C.第二象限D.第一象限8、一次函数y=kx﹣k2﹣1与反比例函数y=在同一直角坐标系内的图象大致位置是()A. B. C.D.9、求一元二次方程x2+3x﹣1=0的解,除了课本的方法外,我们也可以采用图象的方法:在平面直角坐标系中,画出直线y=x+3和双曲线y=的图象,则两图象交点的横坐标即该方程的解.类似地,我们可以判断方程x3﹣x﹣1=0的解的个数有()A.0个B.1个C.2个D.3个10、如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2= (c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x <211、如图,直线y=-x+2与x 轴交于C,与y轴交于D,以CD为边作矩形CDAB,点A在x轴上,双曲线y=(k<0)经过点B,则k的值为()A.1B.3C.4D.-612、若mn<0,则正比例函数y=mx与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.13、已知是关于x的反比例函数,则( )A. B. C. D. 为一切实数14、如图,反比例函数y=的图象经过点A(2,1),若y≤1,则x的范围为()A.x≥1B.x≥2C.x<0或0<x≤1D.x<0或x≥215、如图,反比例函数y=的图象经过直角三角形OAB的顶点A,D为斜边OA 的中点,则过点D的反比例函数的解析式是()A.y=B.y=-C.y=D.y=二、填空题(共10题,共计30分)16、如图,点A在双曲线y=(k<0)上,连接OA,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,直线DE交x轴于点B,交y轴于点C(0,3),连接AB.若AB=1,则k的值为________.17、请写一个图象在第二、四象限的反比例函数解析式:________18、如图,在函数y=(x>0)的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P 2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则Sn=________ .(用含n的代数式表示)19、利用函数思想,直接写出不等式x+1>的解集为________.20、如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数(x>0)的图象经过OA的中点C,交AB于点D,连结CD.若△ACD的面积是2,则k的值是________.21、如果函数y=(m﹣1)是反比例函数,那么m的值是________.22、如图,点在函数的图象上,都是等腰直角三角形.斜边都在轴上( 是大于或等于2的正整数),点的坐标是________.23、如图,L1是反比例函数y= 在第一象限内的图像,且过点A(2,1),L2与L1关于x轴对称,那么图像L2的函数解析式为________(x>0).24、反比例函数的比例系数是________.25、双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是________.三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、在平面直角坐标系中画出函数y=的函数图象.28、已知y=y1-y2, y1与x成反比例,y2与x-2成正比例,并且当x=2时,y=5;当x=1时,y=-1.当x=-1时,求y的值.29、已知实数a , b满足a-b=1,a2-ab+2>0,当1≤x≤2时,函数y= (a ≠0)的最大值与最小值之差是1,求a的值30、设函数y= 与y=2x+1的图象的交点坐标为(a,b),求﹣的值.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、C5、B6、D7、A8、C9、B10、C11、D12、B13、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

苏科版八年级数学下册《第11章反比例函数》单元综合检测试卷含答案

苏科版八年级数学下册《第11章反比例函数》单元综合检测试卷含答案

第11章反比例函数一、选择题1.如果反比例函数的图像经过点(-3,-4),那么函数的图像应在()A. 第一、三象限B. 第一、二象限C. 第二、四象限D. 第三、四象限2.已知A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=-的图象上,且x1<x2<0<x3.则y1、y2、y3的大小关系为( )A. y1<y2<y3B. y l>y2>y3C. y2>y3>y lD. y2>y1>y33. 已知点P(﹣1,4)在反比例函数的图象上,则k的值是()A. -B.C. 4D. ﹣44.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为()A. B. C. D.5. 如图,直线y=﹣x+3与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为( )A. y=B. y=﹣C. y=D. y=﹣6.已知反比例函数,当时,随的增大而增大,则关于的方程的根的情况是()A. 有两个正根B. 有两个负根C. 有一个正根一个负根D. 没有实数根7.如图,点N是反比例函数y= (x>0)图象上的一个动点,过点N作MN∥x轴,交直线y=﹣2x+4于点M,则△OMN面积的最小值是()A. 1B. 2C. 3D. 48.如图,反比例函数y= (x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A.B.C.D.9. 如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y= (x<0)图象上一点,AO的延长线交函数y= (x>0,k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x 轴的对称点为C′,交于x轴于点B,连结AB,AA′,A′C′.若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于()A. 8B. 10C. 3D. 410. 一次函数y1=k1x+b和反比例函数y2= (k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A. ﹣2<x<0或x>1B. ﹣2<x<1C. x<﹣2或x>1D. x<﹣2或0<x<111.如图,平面直角坐标系中,平行四边形OABC的顶点C(3,4),边OA落在x正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA交平行四边形各边如图.若反比例函数的图象经过点D,四边形BCFG的面积为8,则k的值为()A. 16B. 20C. 24D. 28二、填空题12.写出一个图象位于二、四象限的反比例函数的表达式,y=________.13.下列函数中是反比例函数的有________ (填序号).①y=-;②y=-;③y=;④;⑤y=x﹣1;⑥;⑦y=(k为常数,k≠0)14. 如图,它是反比例函数y= 图象的一支,根据图象可知常数m的取值范围是________.15.一个y关于x的函数同时满足两个条件:①图象过(2,1)点;②当x>0时,y随x的增大而减小.这个函数解析式为________.(写出一个即可)16.反比例函数y=的图象在每一个象限内,y随x的增大而增大,则n=________ .17.在平面直角坐标系xOy中,直线y1=2x与双曲线y2= 的图象如图所示,小明说:“满足y1<y2的x的取值范围是x<﹣1.”你同意他的观点吗?答:________.理由是________.18.如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y= (x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是________.19. 如图,已知反比例函数y= (k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B.若△AOB的面积为1,则k=________.20.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图像上,则菱形的面积为________.21.如图6,已知函数y=kx与函数y= 的图象交于A、B两点,过点B作BC⊥y轴,垂足为C,连接AC.若△ABC的面积为,则k的值为________三、解答题22.在平面直角坐标系中,反比例函数y=(x>0,k>0)的图象经过点A(m,n),B(2,1),且n>1,过点B作y轴的垂线,垂足为C,若△ABC的面积为2,求点A的坐标.23.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(Ⅰ)求一次函数的解析式;(Ⅱ)根据图象直接写出的x的取值范围;(Ⅲ)求△AOB的面积.24.如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.(1)求反比例函数的解析式;(2)求△OEF的面积;(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b>的解集.25.如图,一次函数y=kx+3的图象与反比例函数y= 的图象交于P、Q两点,PA⊥x轴于点A,一次函数的图象分别交x轴、y轴于点C,点B,其中OA=6,且.(1)求一次函数和反比例函数的表达式;(2)求△APQ的面积;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值.参考答案一、选择题A D D CBC B A BD B二、填空题12.y=﹣x13.②③④⑦14.m>515.如:y= ,y=﹣x+3,y=﹣x2+5等16.-317.不同意;解方程组,解得或,所以直线y1=2x与双曲线y2= 的图象的两个交点坐标为(﹣1,﹣2),(1,2),当x<﹣1或0<x<1时,y1<y218.1<x<419.﹣220.421.三、解答题22.解:∵B(2,1),∴BC=2,∵△ABC的面积为2,∴×2×(n﹣1)=2,解得:n=3,∵B(2,1),∴k=2,反比例函数解析式为:y=,∴n=3时,m=,∴点A的坐标为(,3).23.(Ⅰ)分别把A(m,6),B(3,n)代入(x>0)得6m=6,3n=6,解得m=1,n=2,所以A点坐标为(1,6),B点坐标为(3,2),分别把A(1,6),B(3,2)代入y=kx+b得,解得,所以一次函数解析式为y=-2x+8;(Ⅱ)当0<x<1或x>3时,;(Ⅲ)如图,当x=0时,y=-2x+8=8,则C点坐标为(0,8),当y=0时,-2x+8=0,解得x=4,则D点坐标为(4,0),所以S△AOB=S△COD-S△COA-S△BOD= ×4×8- ×8×1- ×4×2=8.24.解:(1)∵四边形DOBC是矩形,且点C的坐标为(6,4),∴OB=6,OD=4,∵点A为线段OC的中点,∴A点坐标为(3,2),∴k1=3×2=6,∴反比例函数解析式为y=;(2)把x=6代入y=得y=1,则F点的坐标为(6,1);把y=4代入y=得x=,则E点坐标为(,4),△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF=4×6﹣×4×﹣×6×1﹣×(6﹣)×(4﹣1)=;(3)由图象得:不等式不等式k2x+b>的解集为<x<6.25.(1)解:∵OA=6,且,∴OA=3OC=6,∴OC=2,即C(2,0).将C(2,0)代入y=kx+3中,得:0=2k+3,解得:k=﹣,∴一次函数的表达式为y=﹣x+3.令y=﹣x+3中x=6,则y=﹣6,∴P(6,﹣6).∵点P(6,﹣6)在反比例函数y= 的图象上,∴m=6×(﹣6)=﹣36,∴反比例函数的表达式为y=﹣(2)解:联立直线PQ与反比例函数解析式,得:,解得:,或,∴Q(﹣4,9).∴S△APQ= AC•(y Q﹣y P)= ×(6﹣2)×[9﹣(﹣6)]=30(3)解:观察函数图象发现:当﹣4<x<0或x>6时,一次函数图象在反比例函数图象的下方,∴当﹣4<x<0或x>6时,一次函数的值小于反比例函数的值.11。

苏科版八年级数学下册第十一章反比例函数测试卷含答案

苏科版八年级数学下册第十一章反比例函数测试卷含答案

第十一章 反比例函数 测试卷(总分100分 时间40分钟)一、选择题(每小题3分,共24分)1.下列各点中,在反比例函数y =8x图象上的是 ( ) A .(-1,8) B .(-2,4) C .(1,7) D .(2,4) 2.已知点A(2,3)在反比例函数y =1k x +的图象上,则k 的值是 ( ) A .-7 B .7 C .-5 D .53.直角三角形两直角边的长分别为x ,y ,它的面积为3,则y 与x 之间的函数关系用图象表示大致是 ( )4.反比例函数1k y x-=的图象在每个象限内y 随x 的增大而减小,则k 的值可为( ) A .-1 B .0 C .1 D .2 5.函数y =a (x -3)与y =a x 在同一坐标系中的大致图象是 ( )6.已知点A(x 1,y 1),B(x 2,y 2)是反比例函数y 5x=的图象上的两点,若x 1<0<x 2,则有 ( )A . y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<07.如图,A 、C 是函数y =1x的图象上任意两点,过点A 作y 轴的垂线, 垂足为,过点C 作y 轴的垂线,垂足为D ,记Rt △AOB 的面积为S 1,Rt △COD 的面积为S 2,则S 1和S 2的大小关系是 ( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .不能确定8.如图,函数y 1=x -1和函数y 2=2x的图象相交于点M(2,m),N(-1,n),若y 1>y 2,则x 的取值范围是 ( )A .x <-1或0<x <2B .x <-1或x >2C .-1<1<0或0<x <2D .-1<x <0或x >2二、填空题(每小题4分,共32分)9.反比例函数y =1x的图象的对称轴有_______条. 10.反比例函数y =1m x -的图象在第一、三象限,则m 的取值范围是_______. 11.在△ABC 的三个顶点A(2,-3),B (-4,-5),C(-3,2)中,可能在反比例函数y =k x(k>0)的图象上的点是_______. 12.若点A(m ,-2)在反比例函数y =4x 的图象上,则当函数值y ≥-2时,自变量x 的取值范围是_______.13.如图,Rt △ABC 在第一象限,∠BAC =90°,AB =AC =2,点A 在函数y =x 的图象上,其中点A 的横坐标为1,且AB ∥x 轴,AC//y 轴,若反比例函数y =k x (k ≠0)与△ABC 有交点,则k 的取值范围是_______.14.如图,若点A 在反比例函数y =k x(k ≠0)的图象上,AM ⊥x 轴于点M ,△AMO 的面积为3,则k =_______.第13题 第14题 第15题15.如图,A 、B 是曲线y =3x上的点,经过A 、B 两点向x 轴、y 轴作垂线段,若S 阴影=1,则S 1+S 2_______.16.点P 为函数y =2x图象上一点,若P 到原点的距离为2,则符合条件的点P 有____个. 三、解答题(第17~20题各6分,其余各10分,共44分) 17.已知y =(m +2)x3m -是反比例函数,求m 的值.18.如图,在反比例函数y =2x(x >0)的图象上,有点P 1,P 2 ,P 3 ,P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,求S1,S2,S3的和.19.如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=y.(1)求y与x之间的函数关系式及自变量x的取值范围.(2)画出函数图象.20.如图,过y轴上点A的一次函数与反比例函数相交于B、D两点,B(-2,3),过B 作BC⊥x轴于C,四边形OABC面积为4.(1)求反比例函数和一次函数的关系式;(2)求点D的坐标;(3)当x在什么取值范围内,一次函数的值大于反比例函数的值.(直接写出结果)21.用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用水(约10升),小敏每次用半盆水(约5升).如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y 与漂洗次数x 的函数关系式;(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?22.如图,一次函数y =k 1x +b 与反比例函数y =2k x 的图象交于A(1,6),B (b ,3)两点. (1)求k 1、k 2的值,(2)直接写出k 1x +b -2k x>0时x 的取值范围; (3)如图,等腰梯形OBCD 中,BC ∥OD ,OB =CD ,OD 边在x 轴上,过点C 作CE⊥OD 于点E ,CE 和反比例函数的图象交于点P .当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.参考答案1.D 2.D 3.C 4.D 5.D 6.A 7.C 8.D9.2 10.m>1 11.点 B 12.x ≤-2或x >0 13. 1≤k ≤4 14.-6 15. 4 16. 217.m =2. 18.1.5 19.y =48x(6<x <10) (2)图象略 20.(1)y =-x +1 (2)(3,-2)(3)x<-2或0<x<321.(1)小红的函数关系式为y1=1.5x,小敏的函数关系式为y2=2x(x为正整数).(2)小红共用水30升,小敏共用水20升,小敏的方法更值得提倡.22.(1)13 9k b =-⎧⎨=⎩(2)1<x<2.(3)PC=PE。

最新苏科版八年级数学下册第11章《反比例函数》综合测试题含答案

最新苏科版八年级数学下册第11章《反比例函数》综合测试题含答案

第11章《反比例函数》综合测试题 (时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.如果反比例函数ky x=的图象经过点(1,2)-,那么它还一定经过( )A. (2,1)-B. 1(,2)2-C. (2,1)--D. 1(,2)22.如图1,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3(0)y x x=>上的一个动点,当点B 的横坐标逐渐增大时,OAB ∆的面积将( )A.逐渐增大B.不变C.逐渐减小D.先增大,后减小3.如果反比例函数1ky x-=的图象与直线y x =没有交点,那么符合条件的k值为( )A. 1k =B. 1k =-C. 2k =D. 2k =-4.在反比例函数13ky x-=的图象上有两个点1122(,),(,)A x y B x y ,且120x x <<,12y y <,则k 的取值范围是( )A. 13k ≥B. 13k >C. 13k <-D. 13k <5.如图2,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(2,1)A ,若210y y >>,则x 的取值范围在数轴上表示为( )6.如图3,点A 是反比例函数11(0)k y x x=>图象上一点,过点A 作x 轴的平行线,交反比例函数22(0)k y x x=>的图象于点B ,连接,OA OB ,若OAB ∆的面积为2,则21k k -的值为( )A. 2-B. 2C. 4-D. 47.设ABC ∆的一边长为x ,这条边上的高为y ,y 与x 满足的反比例函数关系如图4所示,当ABC ∆为等腰直角三角形时,x y +的值为( ) A. 4 B. 5C. 5或D. 4或8.在数学活动课上,小华借助下列表格中的数据,在平面直角坐标系中经历描点和连线 的步骤,正确绘制了某个反比例函数的图象,则下列关于该函数的描述错误的是( )A.图象在第二、四象限B.图象必经过点1(6,)2-C.图象与坐标轴没有交点D.当4x <-时,y 的取值范围是34y < 9.如图,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点'P ,则在第一象限内,经过点'P 的反比例函数图象的表达式是( )A. 5(0)y x x =->B. 5(0)y x x =>C. 6(0)y x x =->D. 6(0)y x x=>10.如图6,ABC ∆和DEF ∆的各顶点分别在双曲线1y x =,2y x =,3y x=的第一象限的图象上,90C F ∠=∠=︒,////AC DF x 轴,////BC EF y 轴,则A B C D E FS S ∆∆-=( )A.112 B. 16 C. 14 D. 512二、填空题(本大题共10小题,每小题3分,共30分)11.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系式是 (不考虑x 的取值范围).12.如果关于x 的函数11(1)k y k x x+=+-是反比例函数,那么k 的值等于 .13.如图7,点,A B 是双曲线3y x=上的点,分别经过,A B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .14.若反比例函数(0)ky k x=<的函数图象过点(2,),(1,)P m Q n ,则m 与n 的大小关系是m n .(填“>”或“=”“<”)15.如图8,一次函数1y ax b =+的图象与反比例函数23y x=的图象相交于,A B 两点,当12y y >时,10x -<<,或3x >,则一次函数的表达式为 .16.在平面直角坐标系中,点A 的坐标为(5,0),点C 的坐标为(0,4),四边形ABCO 为矩形,点P 为线段BC 上的一个动点,若POA ∆为等腰三角形,且点P 在双曲线ky x=上,则k 的值可以是 .17. 如图9,已知双曲线1214(0),(0)y x y x x x =>=>,点P 为双曲线24y x=上的一点,且PA x ⊥轴于点A ,PB y ⊥轴于点B ,,PA PB 分别交双曲线11y x=于,D C 两点,则PCD ∆的面积是 .18.直线(0)y a xa =≥,与双曲线3y x=交于1122(,),(,)A x y B x y 两点,则122143x y x y -= .19.我们已经学习过反比例函数1y x=的图象和性质,请回顾研究它的过程,对函数21y x =进行探索,下列结论: ①图象在第一、二象限; ②图象在第一、三象限;③图象关于y 轴对称; ④图象关于原点对称;⑤当0x >时,y 随x 增大而增大;当0x <时,y 随x 增大而增大; ⑥当0x >时,y 随x 增大而减小;当0x <时,y 随x 增大而增大.其中是函数21y x=的性质及它的图象特征的是 .(填写所有正确答案的序号)20.如图10,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345,,,,A A A A A ,分别作x 轴的垂线与反比例函数2(0)y x x=≠的图象相交于点12345,,,,P P P P P ,得直角三角形11OPA ,122A P A ,233A P A ,344A P A ,455A P A ,并设其面积分别为12345,,,,S S S S S ,则5S 的值为 ,以此类推n S = (1n ≥的整数).三、解答题(本大题共6小题,共60分)21. ( 8分)已知变量y 与x 成反比例函数,并且当5x =时,3y =. (1)求y 与x 之间的函数关系式.(2)求15x =时,y 的值.22.(10分)函数2y x=的图象如图11所示. (1)在同一平面直角坐标系中,用描点法画下列函数的图象.①21y x =+;②21y x =+.列表:画图象,并注明函数表达式. (2)观察图象,完成填空:①将函数2y x =的图象向 平移 个单位,可得函数21y x=+的图象;②将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象.(3)函数2y x =的图象经过怎样的变化,可得函数20192017x y x +=+的图象?(写出一种即可)23. ( 8分)如图12,已知一次函数1y x m =+(m 为常数)的图象与反比例函数2ky x=(k 为常数,0k ≠)的图象相交于点(1,3)A .(1)求这两个函数的表达式及其图象的另一个交点B 的坐标.(2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.24. (10分)如图13,在平面直角坐标系中,直线(0)y kx b k =+≠与双曲线(0)my m x=≠相交于点(2,3)A -和点(,2)B n . (1)求直线与双曲线的表达式. (2)对于横、纵坐标都是整数的点叫做整点.动点P 是双曲线(0)my m x=≠上的整点,过点P 作垂直于x 轴的直线,交直线AB 于点Q ,当点P 位于点Q 的下方时,请直接写出整点P 的坐标.25. (12分)一辆汽车匀速通过某段公路,所需时间t (h)与行驶速度v (km/h)满足函数关系式kt v=,其图象为如图14所示的一段曲线且端点为(40,1)A 和(,0.5)B m .(1)求k 和m 的值.(2)若行驶速度不得超过60km/h ,则汽车通过该路段最少需要多少时间?26. (12分)“保护生态环境,建设绿色社会”已经从理念变为人们的行动.某化工厂2017年1月的利润为200万元.设2017年1月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2017年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图15 ).(1)分别求该化工厂治污期间及治污改造工程完工后,y与x之间对应的函数关系式.(2)治污改造工程完工后经过几个月,该厂月利润才能达到2017年1月的水平?(3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?参考答案1.A2. C3. C4. D5. D6. D7. D8. D9. D 10. A11.90 yx =12. 1或2-13. 514. >15. 2y x=-16. 10或12或817.98 18. 3- 19. ①③⑥20. 15 1n21. (1)设y 与x 之间的函数关系式为k y x=, 由题意,得35k =, 解得15k = ∴15y x =(2)当15x =时,15115y ==. 22. (1)图略.(2)观察图象,完成填空:①将函数2y x =的图象向上平移1个单位,可得函数21y x =+的图象;②将函数2y x =的图象向左平移1个单位,可得函数21y x =+的图象.(3)函数2y x =的图象向左平移2017个单位,可得函数22017y x =+的图象.再将所得的图象向上平移1个单位,可得函数212017y x =++,即20192017x y x +=+的图象;23.(1)由题意,得31m =+. 解得2m =.∴一次函数的表达式为12y x =+. 由题意,得,31k =. 解得3k =.∴反比例函数的表达式为23y x=. 由题意,得32x x+=. 解得11x =,23x =-. 当23x =-时,121y y ==-, ∴点B 的坐标为(3,1)--.(2)由图象,可知当30x -≤<或1x ≥时,函数值12y y ≥.24. (1)∵双曲线(0)my m x=≠经过点(2,3)A -,如图5, ∴6m =-.∴双曲线的表达式为6y x =-.∵点(,2)B n 在双曲线6y x=-上,∴点B 的坐标为(3,2)-.∵直线y kx b =+经过点(2,3)A -和点B (3,2)-,∴2332k b k b +=-⎧⎨-+=⎩, 解得11k b =-⎧⎨=-⎩,∴直线的表达式为1y x =--.(2)符合条件的点P 的坐标是(1,6)-或(6,1)-.25.(1)将(40,1)代入k t v =, 得140k =, 解得40k =. 所以函数表达式为40t v =. 当0.5t =时,400.5m =. 解得80m =.所以40,80k m ==.(2)令60v =,得402603t ==. 结合函数图象可知,汽车通过该路段最少需要23小时. 26.(1)①当15x ≤≤时,设k y x =,把(1,200)代入, 得200k =, 即200y x= ②当5x =时,40y =,∴当5x >时,4020(5)2060y x x =+-=-.(2)当200y =时,2002060x =-. 解得13x =.所以治污改造工程顺利完工后经过1358-= (个)月后,该厂利润达到2017年1月的水平.(3)对于200y x=,当100y =时,2x =; 对于2060y x =-,当100y =时,8x =, 所以资金紧张的时间为826-=(个)月.。

最新苏科版八年级下册数学《反比例函数》单元测试题及答案解析.docx

最新苏科版八年级下册数学《反比例函数》单元测试题及答案解析.docx

(新课标)苏科版八年级下册第11章反比例函数测试题(时间:90分钟满分:120分)(班级:姓名:得分:)一、选择题(第小题3分,共30分)1.已知直线y=ax(a≠0)与双曲线的一个交点坐标为(2,6),则它们的另一个交点坐标是()A.(﹣2,﹣6)B.(﹣6,﹣2)C.(﹣2,6)D.(6,2)2. 近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数表达式为()A.400yx=B.14yx=C.100yx=D.1400yx=3.如图所示为反比例函数1yx=在第一象限的图像,点A为此图像上的一动点.过点A分别作AB x⊥轴和AC┴y轴,垂足分别为B,C.则四边形OBAC的面积为()A.1B.3C.2D.44. 在反比例函数(0)ky kx=<的图像上有两点(-1,y1),(41-,y2),则y1-y2的值是()第3题图A. 正数B.非正数C.负数D.不能确定第8题图 ADC B yxO 2y x= 3y x =-5. 已知直线y=kx (k >0)与双曲线y=3x 交于A (x 1,y 1),B(x 2,y 2)两点,则x 1y 2-x 2y 1的值为( )A.-6 B .-9 C .0 D .96. 在平面直角坐标系xOy 中,如果有点P (-2,1)与点Q (2,-1),那么下列描述:①点P 与点Q 关于x 轴对称;②点P 与点Q 关于y 轴对称;③点P 与点Q 关于原点对称;④点P 与点Q 都在y=x 2-的图像上.其中正确的是( )A .①②B .②③C .①④D .③④ 7.如图,A ,B 是函数2y x =的图像上关于原点对称的任意两点,BC ∥x轴,AC ∥y 轴,若△ABC 的面积记为S ,则( )A .S=2B .2<S <4C .S=4D .S >4第7题图8. 如图,点A 是反比例函数y=2x (x >0)的图像上任意一点,AB ∥x轴交反比例函数y=-3x 的图像于点B ,以AB 为边作□ABCD ,其中C ,D 在x 轴上,则S □ABCD 为( )A.2B .3C .4D .54y x =的图像,下列说法正确的是( )9. 关于反比例函数A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称10.平面直角坐标系中,已知点O(0,0),A(0,2),B(1,0),点P 是反比xyPQO例函数1y x =-图像上的一个动点,过点P 作PQ ⊥x 轴,垂足为点Q.若以点O ,P ,Q 为顶点的三角形与∆OAB 相似,则相应的点P 共有( )A .4个B .3个C .2个D .1个 第10题图二、填空题(第小题4分,共32分) 11 已知函数216(5042016)a y a x -=-,当a =_____时,它的图像是双曲线.12下列函数:①y=2x ﹣1;②20182015y x =-;③y=x 2+8x ﹣2066;④22015y x =;⑤12016y x=;⑥y=.其中是反比例函数的有 (填“序号”).13. 若点P(a,2)在一次函数y=2x+4的图像上,它关于y 轴的对称点在反比例函数x ky =的图像上,则反比例函数的表达式为 .14.反比例函数)0(≠=k x ky 的图像在二、四象限,图像上有一点A ,过点A作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 . y 1=ax+b (a ≠0)与反15 .如图,一次函数比例函数y 2=()0≠k xk的图像交于A (1,4),B (4,1)两点,若y 1>y 2,则x 的取值范围是第15题图 第16题图 第17题图第18题图16. 如图,点A 是反比例函数6y x =-(x < 0)的图像上的一点,过点A 作平行四边形ABCD ,使点B,C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为 17. 如图,点A 在双曲线y=x 6上,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当OA =4时,则△ABC 的周长为 . 18.如图,双曲线()ky k x =>0与⊙O在第一象限内交于P,Q 两点,分别过P,Q两点向x 轴和y 轴作垂线.已知点P 的坐标为(1,3)则图中阴影部分的面积为 . 三 解答题(共58分)19.(10分)已知y=2y 1-3y 2,y 1与x 成正比例,y 2与x 成反比例,当x=1时,y=1,当x=2时,y=5.(1)请你写出y 与x 之间的函数表达式; (2)当x=-1时,求y 的值.20.(10分)如图,一次函数y=kx+b 的图像与坐标轴分别交于A ,B 两点,与反比例函数my x =的图像在第二象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB=2,OD=4,△AOB 的面积为1,(1)求一次函数与反比例函数的表达式; (2)直接写出当x<0时0m kx b x +->的x 的取值范围.21.(12分)已知反比例函数x k y 1-=图像的两个分支分别位于第一、三象限.y xABO第22题图(1)求k 的取值范围;(2)若一次函数y=2x+k 的图像与该反比例函数的图像有一个交点的纵坐标是4. ①求当x=-6时反比例函数y 的值;当210<<x 时,求一次函数y 的取值范围.②分)如图,一次函数b kx y +=1的图像与反比例函数)0(2>=x x my22.(12的图像交于A (1,6),B (a ,2)两点. (1)求一次函数与反比例函数的表达式; (2)直接写出1y ≥2y 时x 的取值范围.23.(14分)据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段OA 和双曲线在A 点及其右侧的部分).根据图像所示信息,解答下列问题:(1)写出药物燃烧及释放过程中,y 与x 之间的函数解析式及自变量的取值范围.(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始后,哪一时间段内师生不能进入教室?参考答案一、1.A 2..C 3.A 4.C 5.C 6.D 7.C 8. D 9.D 10.A 二、11. -4 12.. ② 13.x y 2=14. y=x 4-. 15. x <0或1<x<4. 16. 6 17. 27 18. 4三、19.解:(1)由题意可设11y k x =,22k y x=,则2132k y k x x=-.∵当x=1时,y=1,当x=2时,y=5,∴12212313452k k k k -=⎧⎪⎨-=⎪⎩解得123223k k ⎧=⎪⎪⎨⎪=⎪⎩∴23y x x =-. (2)当x=-1时,2233(1)1(1)y x x =-=⨯--=--.20.解:(1)∵OB=2,△AOB 的面积为1,∴B (-2,0),OA=1,∴A (0,-1).可得11,2201b k k b b ⎧=-=-⎧⎪∴⎨⎨-+=⎩⎪=-⎩∴一次函数的表达式为112y x =--.∵OD=4,OD ⊥x 轴,∴C (-4,y ).将x= - 4代入112y x =--,得y=1, ∴C(-4,1),∴14m =-,∴m= - 4, ∴反比例函数的表达式为4y x =-.(2) x<-4.21. 解:(1)∵反比例函数x k y 1-=图像的两个分支分别位于第一、三象限,∴01>-k ,∴1>k .(2)①设交点坐标为(a ,4),代入两个函数表达式,得⎪⎩⎪⎨⎧-=+=a kk a 1424 解得⎪⎩⎪⎨⎧==321k a ∴反比例函数的表达式为x y 2=.当x=-6时反比例函数y 的值为3162-=-=y .②由①可知,两图像交点坐标为(21,4),所以一次函数的表达式是y=2x+3,它的图像与y 轴交点坐标是(0,3). 由图像可知,当210<<x 时,y 的取值范围是43<<y .22.解:(1)∵点A (1,6),B (a ,2)在x my =2的图像上,∴61=m,6=m . 2=a m ,326==a .∵点A (1,6),B (3,2)在函数y 1=kx+b 的图像上,∴⎩⎨⎧=+=+.23,6b k b k 解得⎩⎨⎧=-=.8,2b k∴一次函数的表达式为y 1=-2x+8,反比例函数的表达式为x y 62=.(2)1≤x ≤3.23. 解:(1)设反比例函数的解析式为y=x k,将(25,6)代入解析式,得k=25×6=150,则反比例函数的解析式为y=x 150.将y=10代入y=x 150,得x=15,故A (15,10).所以反比例函数自变量的取值范围为x ≥15. 设正比例函数的解析式为y=nx ,将A (15,10)代入,得n=1510=32,则正比例函数的解析式为y=32x (0≤x ≤15).(2)由32x=2,解得x=3;由x 150=2,解得x=75.所以从消毒开始后,从第3分钟开始直至第75分钟内,师生不能进入教室.。

苏科版八年级数学下册《第十一章反比例函数》单元检测卷-带答案

苏科版八年级数学下册《第十一章反比例函数》单元检测卷-带答案

苏科版八年级数学下册《第十一章反比例函数》单元检测卷-带答案一、单选题(共10小题,满分40分) 1.若反比例函数21k y x+=的图象经过第一、三象限,则k 的取值范围是( ) A .12k <-B .12k >-C .12k =-D .0k >2.反比例函数ky x=的图象经过点()21A ,,该反比例函数的表达式为( ) A .2y x=B .12y x =C .2y x=-D .12y x=-3.对于反比例函数2y x=-,下列说法不正确的是( )A .图象分布在第二、四象限B .图象关于原点对称C .图象经过点(1,2-)D .若点()11,A x y ,()22,B x y 都在该函数图象上,且12x x < 则12y y <4.下列反比例函数中,图象位于第二、四象限的是( ) A .2y x=B .0.2y x=C .2y =D .25y x-=5.已知三个点()11,x y ,()22,x y 和()33,x y 在反比例函数12y x=的图象上,其中 1230x x x <<<,则下列结论中正确的是( ).A .2130y y y <<<B .1230y y y <<<C .3210y y y <<<D .3120y y y <<<6.我们常用“y 随x 的增大而增大(或减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A 经过路灯C 的正下方沿直线走到点B ,他与路灯C 的距离y 随他与点A 之间的距离x 的变化而变化.下列函数中y 与x 之间的变化关系,最有可能与上述情境类似的是( )A .y =3xB .y =-x +3C .y =-(x -3)2+3D .y =(x -3)2+37.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在k y x=的图象上,PC x ⊥轴于点C ,交1y x=的图象于点A ,PD y ⊥轴于点D ,交1y x=的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①ODB△与OCA的面积相等;①四边形PAOB的面积不会发生变化;①PA与PB始终相等;①当点A是PC的中点时,点B一定是PD的中点.其中,正确的结论有()个A.1B.2C.3D.48.如图,每个底边为2的等腰三角形顶角的顶点都在反比例函数(x>0)的图像上,第1个等腰三角形顶角的顶点横坐标为1,第2个等腰三角形的顶点横坐标为3,……以此类推,用含n的式子表示第n 个等腰三角形底边上的高为()A.B.C.D.9.如图,矩形AOBC的顶点C在y轴的正半轴上,反比例函数18 (0)y xx=-<的图像经过点A,另一反比例函数2(0) ky xx=>的图像经过点B,若矩形AOBC的面积是10,则k的值为()A .1B .2C .3D .410.如图,矩形OABC 的顶点C 在反比例函数ky x=的图象上,且点A 坐标为(1,3)-,点B 坐标为()7,1-,则k 的值为( )A .3B .7C .12D .21二、填空题(共8小题,满分32分)11.如图,在反比例函数6y (x 0)x=-<的图象上任取一点P ,过P 点分别作x 轴,y 轴的垂线,垂足分别为M ,N ,那么四边形PMON 的面积为 .12.反比例函数12ky x-=,当0x >时,y 随x 的增大而减小,则k 的取值范围是 . 13.如图,点A 、C 为反比例函数(0)ky x x=<图象上的点,过点A 、C 分别作AB x ⊥轴,CD x ⊥轴,垂足分别为B 、D ,连接OA 、AC 、OC ,线段OC 交AB 于点E ,点E 恰好为OC 的中点,当AEC △的面积为32时,k 的值为 .14.如图,正比例函数y x =-与反比例函数y =4x-的图象交于A ,C 两点,过点A 作AB ①x 轴于点B ,过点C 作CD ①x 轴于点D ,则△ABD 的面积为 .15.如图,在平面直角坐标系xOy 中,函数(0)ky x x=>的图象经过Rt OAB 的斜边OA 的中点D ,交AB 于点C .若点B 在x 轴上,点A 的坐标为(12,8),则BOC 的面积为 .16.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点D 在BC 上,且14CD CB =,反比例函数()0ky k x=>的图象经过点D 及矩形OABC 的对称中心M ,顺次连接点D 、O 、M .若DOM △的面积为4,则k 的值为 .17.如图,点A B 、为直线y x =上的两点,过A B 、两点分别作x 轴的平行线交双曲线()10y x x=>于点C D 、,若3AC BD =,则223OD OC -的值为 .18.如图,已知点A 是一次函数()102y x x =≥的图像上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数()0k y x x=>的图像过点B ,C ,若OAB △的面积为14,则ABC 的面积是 .三、解答题(共6小题,每题8分,满分48分) 19.如图,等腰直角①POA 的直角顶点P 在反比例函数4y x=(x >0)的图象上,A 点在x 轴正半轴上,求A 点坐标.20.已知y=y 1-y 2,y 1与x 成正比例,y 2与x+3成反比例,当x="0" 时,y=-2;当x=3时,y=2;求y 与x 的函数关系式.21.甲、乙两地相距300km ,汽车以x km/h 的速度从甲地到达乙地需要yh . (1)写出y 与x 的函数表达式;(2)如果汽车的速度不超过90 km/h ,那么汽车从甲地到乙地至少需要多少时间(精确到0.01h )? 22.某机床加工一批机器零件,如果每小时加工30个,那么12时可以完成. (1)设每小时加工x 个零件,所需时间为y 时,写出y 与x 之间的函数关系式.(2)若要在一个工作日(8时)内完成,每小时比原来多加工多少个?23.如图,一次函数1y kx b =+的图象与x 轴、y 轴分别交于点A ,B ,与反比例函数2(0)my m x=>的图象交于点C (1,2),D (2,n ). (1)分别求出两个函数的表达式;(2)结合图象直接写出当12y y <时,x 的取值范围. (3)连接OD ,求①BOD 的面积.24.如图,点A (155)在双曲线ky x=(x <0)上 (1) 求k 的值(2) 在y 轴上取点B (0,1),问双曲线上是否存在点D ,使得以AB 、AD 为边的平行四边形ABCD 的顶点C 在x 轴的负半轴上?若存在,求出点D 的坐标;若不存在,请说明理由参考答案1.B 2.A 3.D 4.D 5.A 6.D7.C 8.A 9.B 10.C 11.6 12.12k </0.5k < 13.4- 14.4 15.12 16.16317.4 18.719.A 点坐标为(4,0). 20.y=x -63x + 21.(1)()300=0y x x≥ (2)3.33h 22.(1)360y x=(x >0).;(2)每小时比原来多加工15个 23.(1)一次函数解析式为13y x =-+,反比例函数解析式为22y x=;(2)01x <<或2x >;(3)3 24.(1)﹣4;(2)D (455).。

苏科版数学八年级下《第11章反比例函数》单元测试题含答案

苏科版数学八年级下《第11章反比例函数》单元测试题含答案

苏科版数学八年级下《第11章反比例函数》单元测试题含答案(时间:90分钟 满分:120分)(班级: 姓名: 得分: )一、选择题(第小题3分,共30分) 1. 观察下列函数:2015y x =,2016x y =-,20181y x =-,2014y x-=.其中反比例函数有( )A. 1个B. 2个C. 3个D. 4个2. 反比例函数2018y x =,2016y x =-,12019y x=的共同特点是( )A. 图像位于相同的象限内B. 自变量的取值范围是全体实数C. 在第一象限内y 随x 的增大而减小D. 图像都不与坐标轴相交 3. 在反比例函数2015ky x -=图像的每一支曲线上,y 都随x 的增大而增大,则k 的值可以是( ) A .2016 B.0 C.2015 D.2016-4. 已知函数210(2)m y m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是( )A.3B.3-C.3±D.13-5.如图,正比例函数y 1=k 1x 和反比例函数y 2=2kx的图像交于A (-1,2),B (1,-2)两点,若y 1 <y 2,则x 的取值范围是( )A.x <-1或x >1B. x <-1或0<x <1C. -1<x <0或 0<x <1D. -1<x <0或x >16.如果反比例函数=ky x的图像经过点A(-1,-2),则当x >1时,函数值y 的取值范围是( )A.y >1B. 0< y <2C. y >2D.0<y <17. 反比例函数2016y x=图像上的两点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( )A.y 1>y 2B.y 1<y 2C.y 1=y 2D.不能确定 8.当a ≠0时,函数y=ax+1与函数y=xa在同一坐标系中的图像可能是( )9.如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分别交函数x k 1y =(x >0)和xk2y =(x >0)的图像于点P 和Q ,连接OP ,OQ,则下列结论正确的是( )B.21K K QM PM= A.∠POQ 不可能等于900D. △POQ 的面积是)(|k ||k |2121+C.这两个函数的图像一定关于x 轴对称第9题图10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x+6于A,B 两点,若反比例函数ky x=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( )A .2≤k ≤8 B. 2≤k ≤9 C. 2≤k ≤5 D. 5≤k ≤8 二、填空题(第小题4分,共32分) 11.已知函数y=-12016x,当x <0时,y__________0,此时,其图像的相应部分在第__________象限.12. 若正比例函数y=kx 在每一个象限内y 随x 的增大而减小,那么反比例函数ky x=-在每一个象限内y 随x 的增大而_________.13. 在同一坐标系内,正比例函数20182015y x =-与反比例函数2016y x=-图像的交点在第_____象限 . 14. 若A (x 1,y 1),B(x 2,y 2),C (x 3,y 3)都是反比例函数y=-x1的图像上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3由小到大的顺序是__________.15. 点A(2,1)在反比例函数y kx=的图像上,当1﹤x ﹤4时,y 的取值范围是 .16. 设函数2y x =与1y x =-的图像的交点坐标为() , a b ,则11a b -的值为________17. 如图,点A 在双曲线 1y x=上,点B 在双曲线 3y x =上,且AB ∥x 轴,点C 和点D 在x 轴上,若四边形ABCD 为矩形,则矩形ABCD 的面积为 . 18. 如图,直线y=k 1x+b 与双曲线y=2k x交于A,B 两点,其横坐标分别为1和5, 则不等式k 1x <2k x-b 的解集是 .三、解答题(共58分)19.(10分)已知y=y 1-y 2,y 1与x 成反比例,y 2与x-2成正比例, 并且当x=3时,y=5;当x=1时,y=-1. (1)y 与x 的函数表达式; (2)当1x =-时,求y 的值.20.(10分)已知一次函数y =3x+m 与反比例函数y =xm 3-的图像有两个交点.(1)当m为何值时,有一个交点的纵坐标为6?(2)在(1)的条件下,求两个交点的坐标.21.(12分)如图,直线y=k1x+b与双曲线y=2kx相交于A(1,2),B(m,-1)两点.(1)求直线和双曲线的表达式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系;(3)观察图像,请直接写出使不等式k1x+b>2kx成立的x的取值范围.22.(12分)某气球内充满了一定质量的气球,当温度不变时,气球内气球的压强p(千帕)是气球的体积V(米3)的反比例函数,其图像如图所示.(1)写出这个函数的表达式;(2)当气球的体积为0.8米3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少?23.(14分)已知一次函数mxy+=1的图像与反比例函数xy62=的图像交于A,B两点,当1>x时,21yy>;当10<<x时,21yy<.⑴求一次函数的表达式;⑵已知一次函数在第一象限上有一点C到y轴的距离为3,求△ABC的面积.参考答案一、1.B 2. D 3. A 4. B 5. D 6. B 7. D 8. C 9. D 10. B二、11.> 二 12. .减小 13. 二、四 14. .y 2<y 3<y 1 15. 12y <<216. 12- 17. 2 18.0<x <1或x >5三、19.解:(1)设()()112212,2 0k y y k x k k x==-≠,则y=x k 1-k 2(x-2).由题意,得⎪⎩⎪⎨⎧-=+=-.1,532121k k k k 解得⎩⎨⎧-==.4,321k k 所以y 与x 的函数表达式为y=x 3+4(x-2).(2)当1x =-时,()()3342412151y x x =+-=+--=--. 20.解:(1)把y =6分别代入y =3x+m 和y =xm 3-, 得 3x+m =6,xm 3-=6. 解得m =5. (2)由(1)得一次函数为y =3x+5,反比例函数为y =x 2. 解352y x y x =+⎧⎪⎨=⎪⎩得∴两个函数图像的交点为(-2,-1)和(31,6). 21.解:(1)∵双曲线y =2k x 经过点A (1,2),∴k 2=2.∴双曲线的表达式为y =2x. ∵点B(m ,-1)在双曲线y =2x上,∴m =-2,则B (-2,-1).由点A (1,2),B (-2,-1)在直线y =k 1x +b 上,得112,2 1.k b k b +=⎧⎨-+=-⎩解得11,1.k b =⎧⎨=⎩∴直线的表达式为y =x +1. (2)y 2<y 1<y 3.(3)x >1或-2<x <0.22. (1)96P v=(2)当 4.8v =米3时,961204.8P ==20千帕 (3)∵96144P v=≤,∴23v ≥.为了安全起见,气球的体积应不小于23米3.23.解:(1)根据题意知,点A 的坐标为(1,6),代人y 1=x+m , 得m=5.∴ 一次函数的表达式为y 1=x+5.(2)如图,过点B 作直线BD 平行于x 轴,交AC 的延长线于D. ∵点C 到y 轴的距离为3,∴C 点的横坐标为3.又C 在双曲线上,∴y=623=,即C (3,2). 解56y x y x =+⎧⎪⎨=⎪⎩得12126116x x y y =-=⎧⎧⎨⎨=-=⎩⎩,∴B (-6,-1). 设AC 的表达式为y=k 1x+b 1,把点A (1,6),点C (3,2)代入,得⎩⎨⎧=+=+.23,61111b k b k 解得k 1=-2,b 1=8.∴直线AC 的表达式为y=-2x+8. 当y=-1时-1=-2x+8, x=4.5,即点D (4.5,-1) ∴ABC ABD BCD S S S =-△△△=1211217-32222⨯⨯⨯⨯=21.。

反比例函数单元测试卷含答案

反比例函数单元测试卷含答案

反比例函数单元测试卷含答案一、选择题1. 反比例函数的一般形式是:A. y = kxB. y = ax + bC. y = k/xD. y = mx + c答案: C2. 当x为0时,反比例函数的值为:A. 0B. 1C. 无定义D. 任意值答案: C3. 若反比例函数的k值为正数,x趋近于无穷大,y会趋近于:A. 正无穷大B. 负无穷大C. 0D. 不存在极限答案: B4. 反比例函数的图像是一条:A. 直线B. 抛物线C. 余弦曲线D. 双曲线答案: D5. 若反比例函数的x值为正数,y值为负数,那么k值是:A. 正数B. 负数C. 零D. 无法确定答案: B二、计算题1. 已知反比例函数y = 5/x,当x = 2时,求y的值。

答案: 2.52. 已知反比例函数y = 3/x,当y = 6时,求x的值。

答案: 0.5三、简答题1. 什么是反比例函数?答案: 反比例函数是一种函数关系,当自变量x的值增大时,因变量y的值会减小,并且二者之间呈现出一种倒数关系。

它的一般形式为y = k/x,其中k为常数。

2. 反比例函数的图像有什么特点?答案: 反比例函数的图像是一条双曲线。

当x趋近于无穷大或无穷小时,函数的值趋近于零。

两支曲线的对称轴为y轴,并在y 轴上有一个渐近线。

3. 如何确定反比例函数的常数k的值?答案: 可以通过已知点的坐标进行求解。

将已知的x和y的值代入反比例函数的一般形式中,解方程得到k的值。

以上就是反比例函数单元测试卷的答案。

希望能对你的学习有所帮助!。

苏科版八年级数学下册第11章《反比例函数》综合测试题含答案

苏科版八年级数学下册第11章《反比例函数》综合测试题含答案

第11章《反比例函数》综合测试题(一)(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分) 1.如果反比例函数ky x=的图象经过点(1,2)-,那么它还一定经过( ) A. (2,1)- B. 1(,2)2-C. (2,1)--D. 1(,2)22.如图1,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3(0)y x x=>上的一个动点,当点B 的横坐标逐渐增大时,OAB ∆的面积将( )A.逐渐增大B.不变C.逐渐减小D.先增大,后减小3.如果反比例函数1ky x-=的图象与直线y x =没有交点,那么符合条件的k 值为( ) A. 1k = B. 1k =- C. 2k = D. 2k =-4.在反比例函数13ky x-=的图象上有两个点1122(,),(,)A x y B x y ,且120x x <<,12y y <,则k 的取值范围是( )A. 13k ≥B. 13k >C. 13k <-D. 13k < 5.如图2,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(2,1)A ,若210y y >>,则x 的取值范围在数轴上表示为( )6.如图3,点A 是反比例函数11(0)k y x x=>图象上一点,过点A 作x 轴的平行线,交反比例函数22(0)k y x x=>的图象于点B ,连接,OA OB ,若OAB ∆的面积为2,则21k k -的值为( ) A. 2- B. 2 C. 4- D. 47.设ABC ∆的一边长为x ,这条边上的高为y ,y 与x 满足的反比例函数关系如图4所示,当ABC ∆为等腰直角三角形时,x y +的值为( )A. 4B. 5C. 5或32D. 4或328.在数学活动课上,小华借助下列表格中的数据,在平面直角坐标系中经历描点和连线 的步骤,正确绘制了某个反比例函数的图象,则下列关于该函数的描述错误的是( )A.图象在第二、四象限B.图象必经过点1(6,)2- C.图象与坐标轴没有交点D.当4x <-时,y 的取值范围是34y < 9.如图,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点'P ,则在第一象限内,经过点'P 的反比例函数图象的表达式是( )A. 5(0)y x x =-> B. 5(0)y x x => C. 6(0)y x x =-> D. 6(0)y x x=>10.如图6,ABC ∆和DEF ∆的各顶点分别在双曲线1y x =,2y x =,3y x=的第一象限的图象上,90C F ∠=∠=︒,////AC DF x 轴,////BC EF y 轴,则ABC DEF S S ∆∆-=( )A.112 B. 16 C. 14 D. 512二、填空题(本大题共10小题,每小题3分,共30分)11.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系式是 (不考虑x 的取值范围).12.如果关于x 的函数11(1)k y k x x+=+-是反比例函数,那么k 的值等于 . 13.如图7,点,A B 是双曲线3y x=上的点,分别经过,A B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .14.若反比例函数(0)ky k x=<的函数图象过点(2,),(1,)P m Q n ,则m 与n 的大小关系是mn .(填“>”或“=”“<”) 15.如图8,一次函数1y ax b =+的图象与反比例函数23y x=的图象相交于,A B 两点,当12y y >时,10x -<<,或3x >,则一次函数的表达式为 .16.在平面直角坐标系中,点A 的坐标为(5,0),点C 的坐标为(0,4),四边形ABCO 为矩形,点P 为线段BC 上的一个动点,若POA ∆为等腰三角形,且点P 在双曲线ky x=上,则k 的值可以是 . 17. 如图9,已知双曲线1214(0),(0)y x y x x x =>=>,点P 为双曲线24y x=上的一点,且PA x ⊥轴于点A ,PB y ⊥轴于点B ,,PA PB 分别交双曲线11y x=于,D C 两点,则PCD ∆的面积是 .18.直线(0)y ax a =≥,与双曲线3y x =交于1122(,),(,)A x y B x y 两点,则122143x y x y -= . 19.我们已经学习过反比例函数1y x =的图象和性质,请回顾研究它的过程,对函数21y x=进行探索,下列结论:①图象在第一、二象限; ②图象在第一、三象限; ③图象关于y 轴对称; ④图象关于原点对称;⑤当0x >时,y 随x 增大而增大;当0x <时,y 随x 增大而增大; ⑥当0x >时,y 随x 增大而减小;当0x <时,y 随x 增大而增大.其中是函数21y x =的性质及它的图象特征的是 .(填写所有正确答案的序号) 20.如图10,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345,,,,A A A A A ,分别作x 轴的垂线与反比例函数2(0)y x x=≠的图象相交于点12345,,,,P P P P P ,得直角三角形11OPA ,122A P A ,233A P A ,344A P A ,455A P A ,并设其面积分别为12345,,,,S S S S S ,则5S 的值为 ,以此类推n S =(1n ≥的整数).三、解答题(本大题共6小题,共60分)21. ( 8分)已知变量y 与x 成反比例函数,并且当5x =时,3y =. (1)求y 与x 之间的函数关系式.(2)求15x =时,y 的值.22.(10分)函数2y x=的图象如图11所示. (1)在同一平面直角坐标系中,用描点法画下列函数的图象. ①21y x =+;②21y x =+. 列表:画图象,并注明函数表达式.(2)观察图象,完成填空:①将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象; ②将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象.(3)函数2y x =的图象经过怎样的变化,可得函数20192017x y x +=+的图象?(写出一种即可)23. ( 8分)如图12,已知一次函数1y x m =+(m 为常数)的图象与反比例函数2ky x=(k 为常数,0k ≠)的图象相交于点(1,3)A .(1)求这两个函数的表达式及其图象的另一个交点B 的坐标.(2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.24. (10分)如图13,在平面直角坐标系中,直线(0)y kx b k =+≠与双曲线(0)my m x=≠相交于点(2,3)A -和点(,2)B n .(1)求直线与双曲线的表达式.(2)对于横、纵坐标都是整数的点叫做整点.动点P 是双曲线(0)my m x=≠上的整点,过点P 作垂直于x 轴的直线,交直线AB 于点Q ,当点P 位于点Q 的下方时,请直接写出整点P 的坐标.25. (12分)一辆汽车匀速通过某段公路,所需时间t (h)与行驶速度v (km/h)满足函数关系式k t v,其图象为如图14所示的一段曲线且端点为(40,1)A 和(,0.5)B m .(1)求k 和m 的值.(2)若行驶速度不得超过60km/h ,则汽车通过该路段最少需要多少时间?26. (12分)“保护生态环境,建设绿色社会”已经从理念变为人们的行动.某化工厂2017年1月的利润为200万元.设2017年1月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2017年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图15 ).(1)分别求该化工厂治污期间及治污改造工程完工后,y 与x 之间对应的函数关系式. (2)治污改造工程完工后经过几个月,该厂月利润才能达到2017年1月的水平? (3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?参考答案1.A2. C3. C4. D5. D6. D7. D8. D9. D 10. A11.90y x= 12. 1或2- 13. 5 14. >15. 2y x =- 16. 10或12或817. 98 18. 3-19. ①③⑥ 20.15 1n21. (1)设y 与x 之间的函数关系式为ky x=, 由题意,得35k =, 解得15k = ∴15y x=(2)当15x =时,15115y ==. 22. (1)图略.(2)观察图象,完成填空: ①将函数2y x =的图象向上平移1个单位,可得函数21y x =+的图象; ②将函数2y x =的图象向左平移1个单位,可得函数21y x =+的图象.(3)函数2y x =的图象向左平移2017个单位,可得函数22017y x =+的图象.再将所得的图象向上平移1个单位,可得函数212017y x =++,即20192017x y x +=+的图象;23.(1)由题意,得31m =+. 解得2m =.∴一次函数的表达式为12y x =+.由题意,得,31k =. 解得3k =.∴反比例函数的表达式为23y x=. 由题意,得32x x+=. 解得11x =,23x =-. 当23x =-时,121y y ==-, ∴点B 的坐标为(3,1)--.(2)由图象,可知当30x -≤<或1x ≥时,函数值12y y ≥.24. (1)∵双曲线(0)my m x=≠经过点(2,3)A -,如图5, ∴6m =-.∴双曲线的表达式为6y x =-. ∵点(,2)B n 在双曲线6y x=-上,∴点B 的坐标为(3,2)-.∵直线y kx b =+经过点(2,3)A -和点B (3,2)-,∴2332k b k b +=-⎧⎨-+=⎩,解得11k b =-⎧⎨=-⎩,∴直线的表达式为1y x =--.(2)符合条件的点P 的坐标是(1,6)-或(6,1)-. 25.(1)将(40,1)代入k t v=, 得140k =, 解得40k =.所以函数表达式为40t v =. 当0.5t =时,400.5m=.解得80m =.所以40,80k m ==. (2)令60v =,得402603t ==. 结合函数图象可知,汽车通过该路段最少需要23小时. 26.(1)①当15x ≤≤时,设ky x=,把(1,200)代入, 得200k =, 即200y x=②当5x =时,40y =,∴当5x >时,4020(5)2060y x x =+-=-. (2)当200y =时,2002060x =-.解得13x =.所以治污改造工程顺利完工后经过1358-= (个)月后,该厂利润达到2017年1月的水平.(3)对于200y x=,当100y =时,2x =; 对于2060y x =-,当100y =时,8x =, 所以资金紧张的时间为826-=(个)月.。

苏科版八年级数学下册第11章《反比例函数》单元测试题 含答案

苏科版八年级数学下册第11章《反比例函数》单元测试题 含答案

苏科版八年级数学下册第11章《反比例函数》单元测试题满分100分班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.下列函数:①y=x﹣2,②y=,③y=x﹣1,④y=,y是x的反比例函数的个数有()A.0个B.1个C.2个D.3个2.若反比例函数y=(k≠0)的图象经过(2,3),则k的值为()A.5B.﹣5C.6D.﹣63.若函数y=(2m﹣1)x是反比例函数,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.14.已知反比例函数y=2x﹣1,下列结论中,不正确的是()A.点(﹣2,﹣1)在它的图象上B.y随x的增大而减小C.图象在第一、三象限D.若x<0时,y随x的增大而减小5.若点A(﹣2020,y1)、B(2021,y2)都在双曲线上,且y1>y2,则a的取值范围是()A.a<0B.a>0C.D.6.若ab>0,则一次函数y=ax﹣b与反比例函数y=在同一坐标系数中的大致图象是()A.B.C.D.7.如图,已知A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为1,则k的值为()A.2B.﹣2C.4D.﹣48.电路上在电压保持不变的条件下,电流I(A)与电阻R(Ω)成反比例关系,I与R的函数图象如图,I关于R函数解析式是()A.B.C.D.9.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,其中点A 的横坐标为2,则不等式ax<的解集为()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>210.如图,△DEF的三个顶点分别在反比例函数xy=n与xy=m(x>0,m>n>0)的图象上,若DB⊥x轴于B点,FE⊥x轴于C点,若B为OC的中点,△DEF的面积为2,则m,n的关系式是()A.m﹣n=8B.m+n=8C.2m﹣n=8D.2m+n=3二.填空题(共6小题,满分18分)11.若反比例函数y=的图象经过点A(﹣3,4)和点B(2,a)两点,则a=.12.已知点A(2,3)在反比例函数y=(k≠0)的图象上,当x>﹣2时,则y的取值范围是.13.课本上,在画图象之前,通过讨论函数表达式中x,y的符号特征以及取值范围,猜想出的图象在第一、三象限.据此经验,猜想函数的图象在第象限.14.如果正比例函数y=ax(a≠0)与反比例函数y=(b≠0)的图象有两个交点,其中一个交点的坐标为(﹣3,﹣2)那么另一个交点的坐标为.15.如图,在平面直角坐标系中,BA⊥y轴于点A,BC⊥x轴于点C,函数y=(x>0)的图象分别交BA,BC于点D,E,当AD:BD=1:4且△BDE的面积为3.6时,则k 的值是.16.如图,在反比例函数y=(x≥0)的图象上,有点P1,P2,P3,P4,…,P n(n为正整数,且n≥1),它们的横坐标依次为1,2,3,4,…,n(n为正整数,且n≥1).分别过这些点作x轴与y轴的垂线,连接相邻两点,图中所构成的阴影部分(近似看成三角形)的面积从左到右依次为S1,S2,S3,…,S n﹣1(n为正整数,且n≥2),那么S1+S2+S3+S4+S5=.三.解答题(共6小题,满分52分)17.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.18.如图,正比例函数y=2x的图象与反比例函数y=的图象交于A,B两点,过点A作AC垂直x轴于点C,连接BC.若△ABC的面积为2.(1)求k的值;(2)直接写出>2x时,自变量x的取值范围.19.在平面直角坐标系xOy中,函数y=(x>0)的图象与直线l1:y=x+k(k>0)交于点A,与直线l2:x=k交于点B,直线l1与l2交于点C.(1)当点A的横坐标为1时,求此时k的值;(2)横、纵坐标都是整数的点叫做整点.记函数y=(x>0)的图象在点A、B之间的部分与线段AC,线段BC围成的区域(不含边界)为W.①当k=3时,结合函数图象,求区域W内的整点个数;②若区域W内只有1个整点,直接写出k的取值范围.20.如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA 交x轴于点B,且AB=OA.(1)求双曲线的解析式;(2)连接OC,求△AOC的面积.21.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)22.小明根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)如表列出了y与x的几组对应值,请写出m,n的值:m=,n=;x…﹣﹣1﹣023…y…m0﹣1n2…(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,解决问题:①写出该函数的一条性质:.②当函数值+1>时,x的取值范围是:.参考答案一.选择题(共10小题)1.【解答】解:①y=x﹣2,②y=,③y=x﹣1,④y=,y是x的反比例函数的是:②y=,③y=x﹣1,共2个.故选:C.2.【解答】解:∵反比例函数y=(k≠0)的图象经过(2,3),∴k=2×3=6,故选:C.3.【解答】解:依题意得:m2﹣2=﹣1且2m﹣1≠0,解得m=±1.故选:A.4.【解答】解:A、把(﹣2,﹣1)代入y=2x﹣1得:左边=右边,故本选项正确,不符合题意;B、k=2>0,在每个象限内,y随x的增大而减小,故本选项错误,符合题意;C、k=3>0,图象在第一、三象限内,故本选项正确,不符合题意;D、若x<0时,y随x的增大而减小,故本选项正确,不符合题意;不正确的只有选项B,故选:B.5.【解答】解:∵点A(﹣2020,y1),B(2021,y2)两点在双曲线y=上,且y1>y2,∴3+2a<0,∴a<﹣,∴a的取值范围是a<﹣,故选:D.6.【解答】解:A、根据一次函数可判断a>0,b<0,即ab<0,故不符合题意,B、根据一次函数可判断a<0,b>0,即ab<0,故不符合题意,C、根据一次函数可判断a<0,b<0,即ab>0,根据反比例函数可判断ab>0,故符合题意,D、根据反比例函数可判断ab<0,故不符合题意;故选:C.7.【解答】解:∵AB⊥y轴,∴S△OAB=|k|,∵△OAB的面积为1,∴|k|=1,∵k<0,∴k=﹣2.故选:B.8.【解答】解:∵当R=20,I=11时,∴电压=20×11=220,∴.故选:A.9.【解答】解:∵正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,∴A,B两点坐标关于原点对称,∵点A的横坐标为2,∴B点的横坐标为﹣2,∵ax<,∴在第一和第三象限,正比例函数y=ax的图象在反比例函数y=的图象的下方,∴x<﹣2或0<x<2,故选:B.10.【解答】解:设D(a,),则F(2a,),E(2a,),∵S△DEF=S梯形BCFD﹣S梯形BCED,△DEF的面积为2,∴2=(+)•a﹣(+),整理得,m﹣n=8,故选:A.二.填空题(共6小题)11.【解答】解:∵反比例函数y=的图象经过点A(﹣3,4)和点B(2,a)两点,∴﹣3×4=2a,解得:a=﹣6,故答案为:﹣6.12.【解答】解:∵点A(2,3)在反比例函数y=(k≠0)的图象上,∴k=2×3=6,∴y=,∴图象在一三象限,在每个象限内y随x增大而减小,当x=﹣2时,y==﹣3,∴当x>﹣2时,y<﹣3或y>0.故答案为:y<﹣3或y>0.13.【解答】解:x>0时,.此时函数在第一象限.x<0时,.此时函数在第二象限.故函数的图象在第一、二象限.故答案为:一、二.14.【解答】解:由题设知﹣2=a×(﹣3),(﹣3)×(﹣2)=b解得a=,b=6联立方程组得解得,所以另一个交点的坐标为(3,2).或:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).故答案为:(3,2).15.【解答】解:如图,过点D作DF⊥x轴于点F,过点E作EG⊥y轴于点G.设B(5a,b),E(5a,d).∵AD:BD=1:4,∴D(a,b).又∵△BDE的面积为3.6,∴BD=4a,BE=b﹣d,∴×4a(b﹣d)=3.6,∴a(b﹣d)=1.8,即ab﹣ad=1.8,∵D,E都在反比例函数图象上,∴ab=5ad,∴5ad﹣ad=1.8,解得:ad=0.45,∴k=5ad=2.25.故答案为:2.25.16.【解答】解:当x=1时,P1的纵坐标为4,当x=2时,P2的纵坐标为2,当x=3时,P3的纵坐标为,当x=4时,P4的纵坐标为1,当x=5时,P5的纵坐标为…则S1=×1×(4﹣2)=1=2﹣1;S2=×1×(2﹣)==1﹣;S3=×1×(﹣1)==﹣;∴S1+S2+S3=2﹣1+1﹣+﹣=2﹣=;S4=×1×(1﹣)==﹣;…S5=;∴S1+S2+S3+S4+S5=2﹣1+1﹣+﹣+﹣+=2﹣.故答案为.三.解答题(共6小题)17.【解答】解:(1)由平均数,得x=,即y=是反比例函数;(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数;(3)由路程与时间的关系,得t=,即t=是反比例函数.18.【解答】解:(1)设点A的坐标为(m,n).∵点A在直线y=2x上,∴n=2m.根据对称性可得OA=OB,∴S△ABC=2S△ACO=2,∴S△ACO=1,∴m•2m=1,∴m=1(舍负),∴点A的坐标为(1,2),∴k=1×2=2;(2)如图,由点A与点B关于点O成中心对称得点B(﹣1,﹣2).结合图象可得:不等式>2x的解集为x<﹣1或0<x<1.19.【解答】解:(1)当x=1时,y==2,∴A(1,2),把A(1,2)代入y=x+k中,得2=+k,∴;(2)①当k=3时,则直线l1:y=x+3,与直线l2:x=3,当x=3时,y=x+3=4,∴C(3,4),作出图象如图1:∴区域W内的整点个数为3;②如图2,当直线l1:y=x+k过(2,3)点,区域W内只有1个整点,此时,3=+k,则k=,当直线l1:y=x+k过(0,2)点,区域W内没有整点,此时,2=0+k,则k=2,∴当2<k≤时,区域W内只有1个整点,故答案为:2<k≤.20.【解答】解:(1)作AH⊥OB于H,如图,∵AB⊥OA交x轴于点B,且AB=OA.∴△OAB为等腰直角三角形,∴OH=BH=AH,设A(t,t),把A(t,t)代入y=2x﹣2得2t﹣2=t,解得t=2,∴A(2,2),把A(2,2)代入y2=得k=2×2=4,∴双曲线的解析式为y2=;(2)当x=0时,y=2x﹣2=﹣2,则一次函数与y轴的交点坐标为(0,﹣2),解方程得或,则C(﹣1,﹣4),∴△AOC的面积=×(2+1)×2=3.21.【解答】解:(1)设,由题意知,所以k=96,故;(2)当v=1m3时,;(3)当p=140kPa时,.所以为了安全起见,气体的体积应不少于0.69m3.22.【解答】解:(1)由分式的分母不为0得:x﹣1≠0,∴x≠1;故答案为:x≠1.(2)当x=﹣1时,y=+1=,当x=时,y=+1=3,∴m=,n=3,故答案为:,3.(3)如图:(4)①观察函数图象,可知:函数图象经过原点且关于点(1,1)对称,故答案为:函数图象经过原点且关于点(1,1)对称.②观察函数图象,可知:当函数值+1>时,x的取值范围是1<x<3,故答案为:1<x<3.。

2020—2021年最新苏科版八年级数学下册《反比例函数》单元检测题及答案解析.docx

2020—2021年最新苏科版八年级数学下册《反比例函数》单元检测题及答案解析.docx

(新课标)苏科版八年级下册第十一章《反比例函数》单元检测班级姓名一、选择题(每题3分共30分)1、下列函数中,反比例函数是()A、y=x+1B、y=C、=1D、3xy=22、函数y1=kx和y2=的图象如图,自变量x的取值范围相同的是()3、函数与在同一平面直角坐标系中的图像可能是()。

4、反比例函数y=(k≠0)的图象的两个分支分别位于()象限。

A、一、二B、一、三C、二、四D、一、四5、当三角形的面积一定时,三角形的底和底边上的高成()关系。

A、正比例函数B、反比例函数C、一次函数D、二次函数6、若点A(x1,1)、B(x2,2)、C(x3,-3)在双曲线上,则()A、x1>x2>x3B、x1>x3>x2C、x3>x2>x1D、x3>x1>x27、如图1:是三个反比例函数y=,y=,y=在x轴上的图像,由此观察得到k1、k2、k3的大小关系为()A、k1>k2>k3B、k1>k3>k2C、k3>k2>k1D、k3>k1>k28、已知双曲线上有一点P(m,n)且m、n是关于t的一元二次方程t2-3t+k=0的两根,且P点到原点的距离为,则双曲线的表达式为()A、B、C、D、9、如图2,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为()A、1B、C、2D、10、如图3,已知点A是一次函数y=x的图象与反比例函数的图象在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,那么△AOB的面积为()A、2B、C、D、二、填空(每题3分共30分)1、已知y与(2x+1)成反比例且当x=0时,y=2,那么当x=-1时,y=________。

2、如果反比例函数的图象经过点(3,1),那么k=_______。

3、设反比例函数的图象经过点(x1,y1)和(x2,y2)且有y1>y2,则k的取值范围是______。

2020—2021年最新苏科版八年级数学下册《反比例函数》单元练习卷及答案解析.docx

2020—2021年最新苏科版八年级数学下册《反比例函数》单元练习卷及答案解析.docx

(新课标)苏科版八年级下册反比例函数练习卷一、选择题1.下列函数中,y 是x 的一次函数的是( ) ①6y x =-;②2y x=;③8x y =;④7y x =-.A .①②③B .①③④C .①②③④D .②③④2.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0:③b >0;④x <2时,kx+b <x+a 中,正确的个数是( )A .1 B.2 C.3 D.43.如图,一次函数y=ax+b 与x 轴,y 轴交于A ,B 两点,与反比例函数y=相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE ,EF .有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ;④AC=BD .其中正确的结论个数是( ) A .1 B .2 C .3 D .44.如图,直线l 1:x=1,l 2:x=2,l 3:x=3,l 4:x=4,…,与函数y=(x >0)的图象分别交于点A 1、A 2、A 3、A 4、…;与函数y=的图象分别交于点B 1、B 2、B 3、B 4、….如果四边形A 1A 2B 2B 1的面积记为S 1,四边形A 2A 3B 3B 2的面积记为S 2,四边形A 3A 4B 4B 3的面积记为S 3,…,以此类推.则S 10的值是( ) A . B .C .D .5.下图中表示一次函数n mx y +=与正比例函数mnx y =(m ,n 是常数,且mn ≠0)图像的是( ).6.如图6,有一种动画程序,屏幕上正方形ABCD 是黑色区域(含正方形边界),其中(11)(21)(22)(12)A B C D ,,,,,,,,用信号枪沿直线2y x b =-+发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为.A . 3<b<6B .2<b<6C .36b ≤≤D .2<b<5 二、填空题7.如图,已知函数y =21-x+b 和y =21x 的图象交于点P ()2,4--,, 则根据图象可得,关于x y b x y 2121=+-=的二元一次方程组的解是____________.8.如图,菱形OABC 的顶点O 是坐标原点,顶点AxyO01 221 图6在x 轴的正半轴上,顶点B 、C 均在第一象限,OA=2,∠AOC=60°.点D 在边AB 上,将四边形OABC 沿直线0D 翻折,使点B 和点C 分别落在这个坐标平面的点B ′和C ′处,且∠C ′DB ′=60°.若某反比例函数的图象经过点B ′,则这个反比例函数的解析式为 .9.如图,在平面直角坐标系中,直线L 经过原点,且与y 轴正半轴所夹的锐角为600,过点A (0,1)作y 轴的垂线交直线L 于点B,过点B 作直线L 的垂线交y 轴于点A 1,以A 1B 、BA 为邻边作□ABA 1C 1;过点A 1作y 轴的垂线交直线L 于点B 1,过点B 1作直线L 的垂线交y 轴于点A 2,以A 2B 1、B 1A 1为邻边做□A 1B 1A 2C 2,…;按此作法继续下去,则点Cn 的坐标是_______.10.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,边AO 在y 轴上,点B 1,B 2,B 3,…都在直线y=33x 上,则A 2015的坐标是 .11.两个反比例函数xy 3=,xy 6=在第一象限内的图像如图所示,点1P ,2P ,3P ,…,2013P 在函数xy 6=的图像上,它们的横坐标分别是1x ,2x ,3x ,…,2013x ,纵坐标分别是1,3,5,…,共2013个连续奇数,过点1P ,2P ,3P ,…,2013P 分别作y 轴的平行线,与函数xy 3=的图像交点依次是1Q (1x ,1y ),2Q (2x ,2y ),3Q (3x ,3y ),…,2013Q (2013x ,2013y ),则 2013y . 12.如图,在反比例函数位于第一象限内的图象上取一点P 1,连结OP 1,作P 1A 1^x 轴,垂足为A 1,在OA 1的延长线上截取A 1 B 1= OA 1,过B 1作OP 1的平行线,交反比例函数的图象于P 2,过P 2作P 2A 2^x 轴,垂足为A 2,在OA 2的延长线上截取A 2 B 2= B 1A 2,连结P 1 B 1,P 2 B 2,则的值是 . 三、解答题13.如图,在平面直角坐标系中,O 是坐标原点,点A 坐标为(2,0),点B 坐标为(0,b )(b >0),点P 是直线AB 上位于第二象限内的一个动点,过点P 作PC 垂直于x 轴于点C ,记点P 关于y 轴的对称点为Q ,设点P 的横坐标为a .(1)当b=3时:①求直线AB 相应的函数表达式;②当S △QOA =4时,求点P 的坐标;(2)是否同时存在a 、b ,使得△QAC 是等腰直角三角形?若存在,求出所有满足条件的a 、b 的值;若不存在,请说明理由.14.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC 所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数k=yx(0k>)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k= ;(2)连接CA,DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.15.如图,直线y=x+2与x轴交于点A,与y轴交于点B,动点P从点A开始沿折线AB﹣BO以1cm/s的速度运动到点O.设点P运动的时间为t(s),△PAO面积为S(cm2).(坐标轴的单位长度为cm)(1)当点P在线段AB上运动到与点O距离最小时,求S的值;(2)在整个运动过程中,求S与t之间的函数表达式;(3)当点P运动几秒后,△PAO面积为2cm2?16.图1,梯形ABCD中,AD∥BC,AB=AD=DC=5,BC=11.一个动点P从点B出发,以每秒1个单位长度的速度沿线段BC方向运动,过点P作PQ⊥BC,交折线段BA-AD于点Q,以PQ为边向右作正方形PQMN,点N在射线BC上,当Q点到达D 点时,运动结束.设点P的运动时间为t秒(t>0).(1)当正方形PQMN的边MN恰好经过点D时,求运动时间t的值;(2)在整个运动过程中,设正方形PQMN与△BCD的重合部分面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,当点Q在线段AD上运动时,线段PQ与对角线BD交于点E,将△DEQ沿BD翻折,得到△DEF,连接PF.是否存在这样的t,使△PEF是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.参考答案1.B . 2.B . 3.C4.D 5.C 6.C 7.24-=-=y x 8.y=﹣.9.(-4n-13,4n ). 10.(20153,2017).11.5.2012 12.13.(1)①y=-1.5x+3 ②P (32- ,4)(2)⎩⎨⎧=-=22b a 或⎪⎩⎪⎨⎧=-=132b a14.(1)4;(2)DE ∥AC ,理由见试题解析;(3)D (0.96,5). 15.(1)32;(2) S=043()423(44223)t t t t ≤≤+≤+⎧⎪⎨⎪⎩﹣<;(3) 433秒或2+23秒16.(1)t=4;(2)S=22210()9()1128203243447)?1222(12734)8(t t t t t t t t t ≤+≤≤-+≤⎧⎪⎪⎪⎪⎨-+-⎪⎪⎪⎪⎩<<<<;(3)存在,当t=4、4811或4011时,△PEF 是等腰三角形.。

2020—2021年最新苏科版八年级数学下册《反比例函数》单元检测卷及答案解析.docx

2020—2021年最新苏科版八年级数学下册《反比例函数》单元检测卷及答案解析.docx

(新课标)苏科版八年级下册第11章 反比例函数 检测题 (满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1.下列函数是反比例函数的是( )A.y x =B.1y kx -=C.8y x=- D.28y x =2.(福建漳州)若反比例函数8y x=的图象经过点(2,)m -,则m 的值是( )A.14B.14- C.-4 D.43.在同一坐标系中,函数k y x=和3y kx =+的图象大致是( )4.当k >0,x <0时,反比例函数k y x=的图象在( )A.第一象限B.第二象限C.第三象限D.第四象限5.若函数k y x=的图象经过点(3,-7),则它一定还经过点( )A.(3,7)B.(-3,-7)C.(-3,7)D.(2,-7)6.(江苏苏州)如图,菱形OABC 的顶点C 的坐标为(3,4).顶点A 在x 轴的正半轴上,反比例函数(0)k y x x=>的图象经过顶点B ,则k 的值为( )A.12B.20C.24D.32第6题图第7题图7.如图,A 为反比例函数k y x=图象上一点,AB 垂直于x 轴于点B ,若3AOB S =△,则k 的值为( )A.6B.3C.23 D.不能确定8.已知点1(2,)A y -、2(1,)B y -、3(3,)C y 都在反比例函数4y x=的图象上,则1y 、2y 、3y 的大小关系是( )A.123y y y <<B.321y y y <<C.312y y y <<D.213y y y << 9.在反比例函数1k y x-=的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可以 是( )A.-1B.0C.1D.210.(兰州)已知1(1,)A y -,2(2,)B y 两点在双曲线32m y x+=上,且12y y >,则m 的取值范围是( )A.0m <B.0m >C.32m >-D.32m <-二、填空题(每小题3分,共24分)11.已知y 与21x +成反比例,且当1x = 时,2y =,那么当0x =时,y =________.12.(海南)点1(2,)y ,2(3,)y 在函数2y x=-的图象上,则1y2y (填“>”或“<”或“=”).13.已知反比例函数32m y x-=,当m 时,其图象的两个分支在第一、三象限内;当m 时,其图象在每个象限内y 随x 的增大而增大.14.若反比例函数3k y x-=的图象位于第一、三象限内,正比例函数(29)y k x =-的图象经过第二、四象限,则k 的整数值是________.15.(江苏扬州)在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,当V =200时,p =50,则当p =25时,V= .16.点(2,1)A 在反比例函数ky x =的图象上,当14x <<时,y 的取值范围是 .17.已知反比例函数4y x=,当函数值2y -≥时,自变量x 的取值范围是___________.18.在同一直角坐标系中,正比例函数1y k x =的图象与反比例函数2k y x=的图象有公共点,则12k k 0(填“>”“=”或“<”).yxO第19题图三、解答题(共46分)19.(7分)反比例函数21m y x-=的图象如图所示,1(1,)A b -,2(2,)B b -是该图象上的两点.(1)比较1b 与2b 的大小;(2)求m 的取值范围. 20.(7分)(四川攀枝花)如图,直线11(0)y k x b k =+≠与双曲线22(0)y k x k =≠相交于(1,2)A 、(,1)B m -两点.(1)求直线和双曲线的解析式;(2)若111(,)A x y 、222(,)A x y 、333(,)A x y 为双曲线上的三点,且1230x x x <<<,请直接写出1y 、2y 、3y 的大小关系式;(3)观察图象,请直接写出不等式12k x b k x +<的解集.21.(8分)已知一次函数(0)y kx b k =+≠和反比例函数2k y x=的图象交于点(1,1)A .(1)求两个函数的解析式;(2)若点B 是x 轴上一点,且AOB △是直角三角形,求点B 的坐标.22.(8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象 的一支.(1)这个反比例函数图象的另一支在第几象限?常数m 的取值范围 是什么?(2)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过点A 作x 轴的垂线,垂足为B ,当AOB △的面积为4时,求点A 的坐标及反比例函数的解析式.第22题图xyO23.(8分)如图,在平面直角坐标系中,O 为坐标原点.已知反比例函数(0)k y k x=>的图象经过点(2,)A m ,过点A 作AB x ⊥轴于点B ,且AOB △的面积为12.(1)求k 和m 的值;(2)点(,)C x y 在反比例函数ky x=的图象上,求当13x ≤≤时函数值y 的取值范围;(3)过原点O 的直线l 与反比例函数k y x=的图象交于P 、Q 两点,试根据图象直接写出线段PQ 长度的最小值.BO A第23题图24.(8分)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把31 200 m的生活垃圾运走.(1)假如每天能运3 m x,所需时间为y天,写出y与x之间的函数关系式;(2)若每辆拖拉机一天能运312 m,则5辆这样的拖拉机要用多少天才能运完?(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?参考答案1.C 解析:A 项,y x =是正比例函数,故本选项错误; B 项,1y kx -=当0k =时,它不是反比例函数,故本选项错误; C 项,符合反比例函数的定义,故本选项正确; D 项,28y x =的未知数的次数是-2,故本选项错误.故选C .2.C 解析:将点(2,)m -代入反比例函数8y x=,得842m ==--,故选C .3.A 解析:由于不知道k 的符号,此题可以分类讨论.当0k >时,反比例函数k y x=的图象在第一、三象限,一次函数3y kx =+的图象经过第一、二、三象限,可知A 选项符合.同理可讨论当0k <时的情况.4.C 解析:当0k >时,反比例函数k y x=的图象在第一、三象限,当0x <时,函数图象在第三象限,所以选C. 5.C 解析:因为函数k y x=的图象经过点(3,-7),所以21k =-.将各选项分别代入检验可知只有选项C 符合. 6.D 解析:过点C 作CD x ⊥轴,垂足为D , ∵ 点C 的坐标为(3,4), ∴3OD =,4CD =,∴2222345OC OD CD =+=+=,∴5OC BC ==,∴ 点B 坐标为(8,4),∵ 反比例函数(0)k y x x=>的图象经过顶点B ,∴ 32k =,故选D . 第6题图7.A 解析:由题意可得132AOB S k ==△.因为反比例函数位于第一象限,所以k >0.所以k =6.8.D 解析:因为反比例函数4y x=的图象在第一、三象限,且在每个象限内y 随x 的增大而减小,所以12y y >.又因为当0x <时,0y <,当0x >时,0y >,所以30y >,210y y <<,故选D.9.D 解析:由y 随x 的增大而增大,知10k -<,即1k >,故选D. 10.D 解析:将1(1,)A y -,2(2,)B y 两点分别代入双曲线32m y x+=,得123y m =--,2y =322m+.∵ 12y y >,∴ 32232m m +-->,解得32m <-,故选D .11.6 解析:因为y 与21x +成反比例,所以设21ky x =+.将1x =,2y =代入,得6k =,所以621y x =+.再将0x =代入,得6y =.12.< 解析:∵ 函数2y x=-中的-2<0,∴ 函数2y x=-的图象经过第二、四象限,且在每一象限内,y 随x 的增大而增大,∴ 点1(2,)y ,2(3,)y 同属于第四象限.∵ 2<3,∴12y y <.13.>23<23解析:∵ 反比例函数32m y x-=的图象的两个分支在第一、三象限内, ∴320m ->,即23m >. ∵ 其图象在每个象限内y 随x 的增大而增大,∴320m -<,即23m <. 14.4 解析:由反比例函数3k y x-=的图象位于第一、三象限内,得30k ->,即3k >.又正比例函数(29)y k x =-的图象经过第二、四象限,所以290k -<,所以92k <,所以k 的整数值是4.15.400 解析:∵ 在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,∴ 设k p V=.∵ 当V =200时,p =50,∴2005010 000k Vp ==⨯=,∴ 10 000p V=.当p =25时,得10 00040025V ==. 16.122y << 解析:将(2,1)A 代入ky x =,得2k =,所以y 随x 的增大而减小.当1x =时,2y =;当4x =时,12y =,所以y 的取值范围是122y <<.17.x ≤-2或x >0 解析:如图所示:由函数图象可知,当y ≥-2时,x ≤-2或x >0.18.> 解析:∵ 正比例函数1y k x =的图象与反比例函数2k y x=的图象有公共点,∴ 1k 、2k 同号,∴12k k >0. 第17题答图 19.解:(1)由图象知,y 随x 的增大而减小.又12->-,∴12b b <.(2)由210m ->,得12m >.20.解:(1)将(1,2)A 代入双曲线解析式,得22k =,即双曲线解析式为2y x=.将(,1)B m -代入双曲线解析式,得21m-=,即2m =-,(2,1)B --.将A 与B 的坐标代入直线解析式,得112,2 1.k b k b +⎧⎨-+-⎩==解得11k =,1b =,则直线解析式为1y x =+. (2)∵ 1230x x x <<<,且反比例函数在第一象限为减函数,∴2A 与3A 位于第一象限,即230y y >>,1A 位于第三象限,即10y <,则231y y y >>.(3)由(1,2)A 、(2,1)B --,利用函数图象,得不等式21k k x b x+<的解集为2x <-或01x <<.21.解:(1)∵ 点(1,1)A 在反比例函数2ky x=的图象上,∴2k =.∴ 反比例函数的解析式为1y x=. 设一次函数的解析式为2y x b =+.∵ 点(1,1)A 在一次函数2y x b =+的图象上,∴ 1b =-.∴ 一次函数的解析式为21y x =-. (2)∵ 点(1,1)A ,∴o 45AOB ∠=.∵ AOB △是直角三角形 ,∴ 点B 只能在x 轴正半轴上. ①当o 190OB A ∠=,即11B A OB ⊥时, ∵o 145AOB ∠=,∴ 11B A OB =.∴ 1(1,0)B .②当o 290OAB ∠=时,o 2245AOB AB O ∠=∠=, ∴ 1B 是2OB 的中点,∴2(2,0)B .综上可知,点B 的坐标为(1,0)或(2,0). 22.解:(1)这个反比例函数图象的另一支在第三象限. ∵ 这个反比例函数的图象分布在第一、第三象限, ∴50m ->,解得5m >.(2)如图,由第一象限内的点A 在正比例函数2y x =的图象上,设点A 的坐标为000(,2)(0)x x x >,则点B 的坐标为0(,0)x . ∵4OAB S =△,∴001242x x ⨯=,解得02x =(负值舍去). ∴ 点A 的坐标为(2,4).又∵ 点A 在反比例函数5m y x-=的图象上,xyO BAy=2x 第22题答图lQ PBA xy∴542m -=,即58m -=. ∴ 反比例函数的解析式为8y x=. 23.解:(1)由题意知2OB =.所以111•2222AOB S OB AB m ==⨯⨯=△,所以12m =.所以点A 的坐标为12,2⎛⎫ ⎪⎝⎭.把12,2A ⎛⎫ ⎪⎝⎭代入k y x =,得122k=,解得1k =. (2)因为当1x =时,1y =;当3x =时,13y =,大又反比例函数1y x=在0x >时,y 随x 的增而减小,所以当13x ≤≤时,y 的取值范围为113y ≤≤.(3)如图,由图可得线段PQ 长度的最小值为22. 第23题答图24.解:(1)1200y x=;(2)12560x =⨯=,将其代入 1 200y x=,得 1 2002060y ==(天)答:20天运完.(3)运了8天后剩余的垃圾是31 200860720(m )-⨯=. 剩下的任务要在不超过6天的时间完成则每天至少运37206120(m )÷=,则需要的拖拉机数是120÷12=10(辆).故至少需要增加10-5=5(辆)这样的拖拉机才能按时完成任务.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版初二数学下册《反比例函数》单元测试卷及答案解析一、选择题1、反比例函数的图象经过点(-2,3),则k的值为().A.-3 B.3 C.-6 D.62、已知点 A(x1,y1),B(x2,y2 )是反比例函数的图象上的两点,若 x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<03、对于反比例函数y=,下列说法正确的是()A.图像分布在第二、四象限B.图像过点(-6,-2)C.图像与y 轴的交点是(0,3)D.当x<0 时,y 随x 的增大而减小4、如图,反比例函数的图象经过点A(2,1),若y≤1,则x的范围为()A.x≥1 B.x≥2C.x<0或0<x≤1 D.x<0或x≥25、反比例函数的图象在:A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限6、对于反比例函数y=(k≠0),下列说法不正确的是()A.它的图象分布在第一、三象限B.点(k,k)在它的图象上C.它的图象是中心对称图形D.随的增大而增大7、如图,直线与轴交于点A,与双曲线交于点B,若,则的值是()A.4 B.3 C.2 D.18、已知与成反比例函数,且时,,则该函数表达式是()A.B.C.D.9、反比例函数的图像是双曲线,在每一个象限内,y随x的增大而减小,若点A (-3,y1),B(-1,y2),C(2,y3)都在双曲线上,则y1,y2,y3的大小关系为()A.y1﹤y3﹤y2B.y2﹤y1﹤y3C.y1﹤y2﹤y3D.y3﹤y2﹤y1二、填空题10、若反比例函数的图像在二、四象限,其图像上有两点,,则______(填“”或“”或“”).11、已知点在反比例函数的图象上,若点P关于y轴对称的点在反比例函数的图象上,则k的值为______.12、如图,已知点A在反比例函数的图象上,AB⊥x轴于点B,点C(0,1),若△ABC的面积是3,则反比例函数的解析式为________。

13、若点P1(,m),P2(,n)在反比例函数的图象上,则m____n(填“>”“<”或“=”号).14、反比例函数的图象过(-1,-6),(3,m)两点,则m= .15、如果函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而__________.16、某厂有煤吨,求得这些煤能用的天数与每天用煤的吨数之间的函数关系为________________.17、若反比例函数y=-的图象经过点A(m,3),则m的值是________.18、已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为________.19、在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示.点P(4,3)在图象上,则当力达到10N时,物体在力的方向上移动的距离是________m.三、解答题20、面积一定的梯形,其上底长是下底长的,设上底长为cm,高为cm,且当=5cm,=6cm,(1)求与的函数关系式;(2)求当=4cm时,下底长多少?21、已知反比例函数的图象在每个象限内函数值y随自变量x的增大而减小,且k的值还满足 9-2(2k-1)≥2k-1,若k为整数,求反比例函数的解析式。

22、已知一次函数y1=3x-2k的图象与反比例函数的图象相交,其中一个交点的纵坐标为6.(1)求两个函数的解析式;(2)结合图象求出y1<y2时,x的取值范围。

23、如图,反比例函数y=的图象在第二象限内,点A是图象上的任意一点,AM⊥x轴于点M,O是原点.若S△AOM=3,求该反比例函数的解析式,并写出自变量的取值范围.24、如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出不等式kx+b﹣>0的解集;(3)求△AOB的面积;(4)若点P在x轴上、点Q在y轴上,且以P、Q、A、B为顶点的四边形是平行四边形,请直接写出点P、Q的坐标.参考答案1、C2、B3、D4、D5、D6、D7、D8、C9、B10、<11、12、13、<14、215、减小16、17、-218、19、1.220、(1);(2)下底长15cm.21、y=或y=22、(1)y1=3x+10 y2=-;(2)当y1 <y2时,x的取值范围x<-2,x>-23、y=-(x<0).24、(1)一次函数的解析式为y=﹣2x+6;(2)x的取值范围为1<x<2;(3)S△AOB= 3;(4)(1,0),(0,2)或(-1,0),(0,-2).【解析】1、分析:根据待定系数法,把点代入解析式即可求出k的值.详解:∵反比例函数的图象经过点(-2,3)∴k=-6.故选:C.点睛:此题主要考查了反比例函数解析式,关键是利用代入法由k=xy求出系数k的值.2、分析:根据反比例函数的性质判断出的正负情况,然后比较大小即可.详解:∵反比例函数的k=−3<0,∴反比例函数图象位于第二、四象限,∵∴∴故选B.点睛:考查反比例函数的图象与性质,反比例函数当时,图象在第一、三象限.在每个象限,y随着x的增大而减小,当时,图象在第二、四象限.在每个象限,y随着x的增大而增大.3、解:A.因为反比例函数y=的k=3>0,所以它的图象分布在第一、三象限,故本选项错误;B.当x=﹣6时,y=﹣,即反比例函数y=的图象不过点(﹣6,﹣2),故本选项错误;C.反比例函数y=的图象与坐标轴没有交点,故本选项错误;D.因为反比例函数y=的k=3>0,所以在每一象限内,y的值随x的增大而减小,故本选项正确.故选D.4、试题解析:在第一象限纵坐标为1的以及小于1的函数图象所对应的自变量的取值为在第三象限纵坐标为1的以及小于1的函数图象所对应的自变量的取值为故选D.5、试题解析:故图象在第二、四象限.故选D.6、A.对于反比例函数y=(k≠0),系数为k2>0,所以该反比例函数的图象分布在第一、三象限。

故A项不符合题意。

B.当x=k时,,所以点(k,k)在反比例函数的图象上。

故B项不符合题意。

C.反比例函数y=的图象是关于原点对称的双曲线,是中心对称图形。

故C项不符合题意。

D.在每个象限内,随的增大而减小。

故D项符合题意。

故本题正确答案为D。

故选D.点睛:本题主要考查反比例函数的基本概念和反比例函数的图象与性质。

反比例函数的图象是关于原点对称的双曲线。

当反比例函数的系数大于0时,图象在第一、三象限,在每个象限内随的增大而减小;当反比例函数的系数小于0时,图象在第二、四象限,在每个象限内随的增大而增大。

7、因为直线与轴交于点A,所以令y=0,可得:,解得, 则OA=2b,又因为,所以B点纵坐标是:,因为B点在,所以B点坐标为(-2b,),又因为B点在直线上,所以,解得,因为直线与轴交于正半轴,所以,所以,故选D.8、设,把x=2,y=3代入得k=6,所以该函数表达式是.故选:C.9、解:∵反比例函数的图象是双曲线,在每一个象限内,y随x的增大而减小,∴图象在一、三象限,∵﹣3<﹣1,∴0>y1>y2,∵2>0,∴y3>0,∴y2<y1<y3,故选B.点睛:本题考查了反比例函数图象上点的坐标特征,在反比函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.10、分析:根据反比例函数的增减性即可得出答案.详解:∵图像在二、四象限,∴在每一个象限内,y随着x的增大而增大,∵1<2,∴.点睛:本题主要考查的是反比例函数的增减性,属于基础题型.对于反比例函数,当k>0时,在每一个象限内,y随着x的增大而减小;当k<0时,在每一个象限内,y随着x的增大而增大.11、分析:本题需先根据已知条件,求出ab的值,再根据点P关于y轴对称并且点P关于y轴对称的点在反比例函数的图象上即可求出点k的值.详解:∵点P(a,b)在反比例函数的图象上,∴ab=2.∵点P关于y轴对称的点的坐标是(﹣a,b),∴k=﹣ab=﹣2.故答案为:﹣2.点睛:本题主要考查了反比例函数图象上点的坐标的特征,在解题时要能灵活应用反比例函数图象上点的坐标的特征求出k的值是本题的关键.12、设A点坐标为(a,b),反比例函数的解析式为y=,则OB=a,AB=b,∵S△ABC=S梯形ABOC-S△BOC,即(OC+AB)•OB-OC•OB=3,∴•(1+b)•a-•1•a=3,∴ab=6,把A(a,b)代入反比例函数的解析式为y=,得k=ab=6,∴反比例函数的解析式为 y=,故答案为:y=.13、试题解析:在反比例函数的图象上,故答案为:14、把点(-1,-6)代入解得:,∴反比例函数的解析式为:,∵在中,当时,,∴.15、利用反比例函数的性质,由和直线y=2x与y=x+1的图象交点判断出k的正负解答即可.解:∵反比例函数图象与直线y=2x和y=x+1的图象过同一点.可得方程组,解得k=2,∴反比例函数解析式为,∵2>0,根据反比例函数的性质这个反比例函数值y随x的增大而减小.故答案为:减小.16、这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,煤的总吨数为1500,平均每天烧煤的吨数为x,∴这些煤能烧的天数为,故答案为:17、∵反比例函数的图象过点A(m,3),∴,解得.18、设点A(2,n),代入反比例函数y=可得A点纵坐标n=,反比例函数y=的图象既是关于直线y=x的轴对称图形,也是关于原点对称的中心对称图形,矩形也是轴对称和中心对称图形,又因为矩形ABCD的四个顶点在反比例函数图象上,所以可以求得A,B,C,D四点的坐标分别为故依据两点间的距离公式,可以求得矩形的两边长度,即可以求得矩形ABCD的面积为.19、试题解析:设力()与此物体在力的方向上移动的距离()的函数关系式为:把点代入得:所以当时,米.故答案为:点睛:设反比例函数解析式,由待定系数法求出解析式.20、试题分析:本题考查了列反比例函数关系的几何应用.(1)先根据梯形的面积公式得到梯形的面积,进而根据梯形的面积表示出梯形的高即可;(2)把y=4代入(1)得到的式子求出上底,再乘以3即为下底长.(1)∵x=5cm,y=6cm,上底长是下底长的,∴下底长为10cm,∴梯形的面积=×(5+10)×6=45,∴梯形的高=∴;(2)当y=4cm时,x=7.5,∴2x=15.答:下底长15cm.21、试题分析:根据图象的增减性判断2k+1的范围,然后再给合不等式确定k的范围.试题解析:反比例函数y= 的图象在每个象限内函数值y随自变量x的增大而减小,∴2k+1>0,又∵9-2(2k-1)≥2k-1,∴-<k<2且k为整数,∴k=0、1,∴y=或y=.22、试题分析:(1)把y=6代入两个函数解析式,可得到两个关于m,k的方程组,进而求解;(2)让两个函数解析式组成方程组求得求得交点坐标,画出图象,通过观察图象,找出y1<y2时,x的取值范围.试题解析:(1)∵一次函数y1=3x-2k的图象与反比例函数y2=的图象的交点的纵坐标为6,∴3x-2k=6,6x=k-3,∴k=-5,∴y1=3x+10 ,y2=-;(2)图象如图所示:根据图象可知:当y1 <y2时,x的取值范围x<-2,x>-.23、试题分析:要求反比例函数的解析式就是要求比例系数k的值. 观察图形可以发现,△AOM恰好是与比例系数k的几何意义密切相关的一个典型图形,易知S△AOM=. 据此,结合已知条件不难求得k的绝对值,再根据反比例函数图象所在的象限,容易判定k的符号,进而获得k 的值. 根据题目中给出的图象可知,该函数的图象只在第二象限内,故自变量x的取值范围也就确定了.试题解析:根据题目中△AOM的特征以及反比例函数中比例系数k的几何意义可知,S△AOM=.∵S△AOM=3,∴,∴.由图可知,该反比例函数的图象在第二象限内,根据反比例函数的图象与性质可知k<0,故k=-6,即该反比例函数解析式为.由于图中函数的图象只有第二象限内的一支,所以自变量x的取值范围为x<0.因此,该函数的解析式及自变量取值范围应为:(x<0).点睛:本题考查了反比例函数中比例系数k的几何意义. 过双曲线上任意一点作x轴,y轴的垂线,其与坐标轴围成的矩形的面积为;若将该点与原点连接,则连线将上述矩形分割而成的两个三角形的面积均为. 熟练掌握和运用这一几何意义可以简化解题过程,同时这一几何意义也是反比例函数中面积相关问题的基础.24、试题分析:(1)先根据反比例函数解析式求出点A、点B的坐标,然后利用待定系数法即可求出一次函数的解析式;(2)根据函数图象即可得;(3)先求出直线AB与坐标轴的交点M、N的坐标,然后用△MON的面积减△AOM的面积与△BON的面积即可得;(4)过点A作AD⊥y轴,过点B作BD⊥x轴,两垂线交于点D,由A(1,4),B(2,2)可得AD=1,BD=2,再根据点P在x轴上、点Q在y轴上,且以P、Q、A、B为顶点的四边形是平行四边形,得到OP=AD=1,OQ=BD=2,分情况即可得.试题解析:(1)∵点A 、点B在反比例函数y=上,∴=4,=n,解得m=1,n=2,∴点A、点B的坐标为分别为(1,4)、(2,2),又∵点A、B在y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=﹣2x+6;(2)x的取值范围为1<x<2;(3)∵直线y=﹣2x+6与x轴的交点为N,∴点N的坐标为(3,0),S△AOB=S△AON﹣S△BON=×3×4﹣×3×2=3;(4)如图,过点A作AD⊥y轴,过点B作BD⊥x轴,两垂线交于点D,则有AD⊥BD,由A(1,4),B(2,2)可得AD=1,BD=2,若点P在x轴上、点Q在y轴上,且以P、Q、A、B为顶点的四边形是平行四边形,则必有OP=AD=1,OQ=BD=2,所以有:(1,0),(0,2)或(-1,0),(0,-2).。

相关文档
最新文档