高中数学-直线、圆与方程压轴题(培优、提高)

合集下载

高二数学直线和圆的方程综合测试题(1)

高二数学直线和圆的方程综合测试题(1)

高二数学《直线和圆的方程》综合测试题 一、 选择题:1.如果直线l 将圆:04222=--+y x y x 平分,且不通过第四象限,那么l 的斜率取值范围是( )A .]2,0[B .)2,0(C .),2()0,(+∞-∞D .),2[]0,(+∞-∞ 2.直线083=-+y x 的倾斜角是( ) A.6π B. 3πC. 32πD. 65π3. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直, 则a 的值为( )A .3-B .1C .0或23-D .1或3- 4. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( )A.053=--y xB. 073=-+y xC. 053=-+y xD. 053=+-y x 5.过点)1,2(-P 且方向向量为)3,2(-=n 的直线方程为( )A.0823=-+y xB. 0423=++y xC. 0132=++y xD. 0732=-+y x 6.圆1)1(22=+-y x 的圆心到直线x y 33=的距离是( ) A.21B. 23C.1D. 37.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x8.过点)1,2(且与两坐标轴都相切的圆的方程为( ) A .1)1()1(22=-+-y x B .25)5()5(22=-++y x C .1)1()1(22=-+-y x 或25)5()5(22=-+-y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x9. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( )A .3[,0]4-B .[]33-C .[D .2[,0]3-10. 下列命题中,正确的是( ) A .方程11=-y x表示的是斜率为1,在y 轴上的截距为2的直线; B .到x 轴距离为5的点的轨迹方程是5=y ;C .已知ABC ∆三个顶点)0,3(),0,2(),1,0(-C B A ,则 高AO 的方程是0=x ;D .曲线023222=+--m x y x 经过原点的充要条件是0=m .11.已知圆0:22=++++F Ey Dx y x C ,则0==E F 且0<D 是圆C 与y 轴相切 于坐标原点的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.若直线m x y += 与曲线21y x -= 只有一个公共点,则实数m 的取值范围 是( )A.2±=mB.2≥m 或2-≤mC. 22<<-mD. 11≤<-m 或2-=m 二.填空题:13.已知直线06=+-y kx 被圆2522=+y x 截得的弦长为8,则k 的值为:_____14.过点)5,2(-,且与圆012222=+-++y x y x 相切的直线方程为:__________;15. 若y x ,满足约束条件:⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤+≤+1211013623242y x y x y x ,则y x Z 32+=的最大值为______.16.已知实数y x ,满足3)2(22=+-y x ,则xy的取值范围是:_______________.三.解答题:17.求与x 轴切于点)0,5(,并且在y 轴上截得弦长为10的圆的方程.18.已知一个圆C 和y 轴相切,圆心在直线03:1=-y x l 上,且在直线0:2=-y x l 上截得的弦长为72,求圆C 的方程.19.已知ABC ∆的顶点A 是定点,边BC 在定直线l 上滑动,4||=BC , BC 边上的 高为3,求ABC ∆的外心M 的轨迹方程.20.求满足下列条件的曲线方程:(1) 曲线4)1()2(:221=++-y x C ,沿向量)1,2(-=n 平移所得的曲线为2C ,求2C 的方程;(2) 曲线212:x y C =沿向量)3,2(=n 平移所得的曲线为2C ,求2C的方程;21.已知圆0622=+-++m y x y x 和直线032=-+y x 相交于Q P ,两点,O 为原点,且OQ OP ⊥,求实数m 的取值.22.已知圆4)4()3(:22=-+-y x C 和直线034:=+--k y kx l (1)求证:不论k 取什么值,直线和圆总相交;(2)求k 取何值时,圆被直线截得的弦最短,并求最短弦的长.高二数学《直线和圆的方程》综合测试题参考答案一.选择题: ADDAB ABCBD AD二.填空题: 13. 3± 14. 2010815-==-+x ,y x 或15. 39 16. ]3,3[-三.解答题:17.答案:50)25()5(22=±+-y x .18.解:∵圆心在直线03:1=-y x l 上,∴设圆心C 的坐标为),3(t t ∵圆C 与y 轴相切, ∴圆的半径为|3|t r = 设圆心到2l 的距离为d ,则t t t d 22|3|=-=又∵圆C 被直线2l 上截得的弦长为72,∴由圆的几何性质得:222|)|2()7(|3|t t +=,解得1±=t ∴圆心为)1,3(或3),1,3(=--t ,∴圆C 的方程为:9)1()3(,9)1()3(2222=+++=-+-y x y x 或19.解:因为A 为定点, l 为定直线,所以以l 为x 轴,过A 且垂直于l 的直线为y 轴,建立直角坐标系(如图),则)3,0(A轴,垂足为N ,则)0,(x N 且N 平分BC , 又因为4||=BC ,),0,2(),0,2(+-∴x B x CM 是ABC ∆的外心,|||MB =∴∴2222)3()0()2(-+=-+-+y x y x x ,化简得, M 的轨迹方程为: 0562=+-x x20.解:(1)设点),(y x M 为曲线2C 上的任意一点,点),(000y x M 是平移前在曲 线1C 上与之对应的点,则有),1,2(),()1,2(000-=--⇒-==y y x x n M M∴⎩⎨⎧-=+=1200y y x x ,又∵点),(000y x M 在曲线1C 上,∴4)1()2(2020=++-y x ,从而4]1)1[()]22[(22=-++-+y x ,化简得, 422=+y x 为所求.(2) 设点),(y x M 为曲线2C 上的任意一点,点),(000y x M 是平移前在曲线1C 上与之对应的点,则有),3,2(),()3,2(000=--⇒==y y x x n M M∴⎩⎨⎧-=-=3200y y x x ,又∵点),(000y x M 在曲线1C 上,∴2002x y =,从而2)2(2)3(-=-x y ,化简得, 11822+-=x x y 为所求.21. 解: 设点Q P ,的坐标分别为),(),,(2211y x y x . 一方面,由OQ OP ⊥,得1-=⋅OQ OP k k ,即,12211-=⋅x y x y 从而,①y y x x 02121=+另一方面, ),(),,(2211y x y x 是方程组⎩⎨⎧=+-++=-+0603222m y x y x y x ,的实数解, 即21,x x 是方程02741052=-++m x x …… ②的两个实数根,∴221-=+x x , 527421-=⋅m x x ………… ③又Q P ,在直线032=-+y x , ∴])(39[41)3(21)3(2121212121x x x x x x y y ++-=-⋅-=⋅将③式代入,得 51221+=⋅m y y ………… ④ 又将③,④式代入①,解得3=m ,代入方程②,检验0>∆成立。

【高考数学二轮复习压轴题微专题】第13讲 巧用直线系、圆系方程解题-原卷版

【高考数学二轮复习压轴题微专题】第13讲 巧用直线系、圆系方程解题-原卷版

第13讲 巧用直线系、圆系方程解题曲线系也叫曲线族或曲线束,是指具有某种性质的曲线的集合,曲线系方程是指含有参数的二元方程,当参数在其取值范围内变化时分别对应的所有这些曲线,其中最简单的是具有某种性质的直线方程和圆系方程,介绍如下.1直线系方程(1)与直线:0l Ax By C ++=平行的直线系方程为0(Ax By λλ++=为参数).(2)与直线:0l Ax By C ++=垂直的直线系方程为0(Bx Ay λλ-+=为参数).(3)过直线1111:0l A x B y C ++=与2222:0l A x B y C ++=的交点的直线系方程为 ()()1112220A x B y C A x B y C λ+++++=(不含2,l λ为参数).2圆系方程(1)过圆22:0O x y Dx Ey F ++++=与直线:0l Ax By C ++=交点的圆系方程为()220(x y Dx Ey F Ax By C λλ+++++++=为参数).(2)过圆221111:0O x y D x E y F ++++=与圆222222:0O x y D x E y F ++++=的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(不包括圆2,O λ为参数.当1λ=一时,为一条直线(根轴,即过两圆交点的直线).(3)若()00,x y 表示圆22:0C x y Dx Ey F ++++=上任意一点,则曲线系方程:()()()2222000(x y Dx Ey F x x y y λλ⎡⎤+++++-+-=⎣⎦为参数)表示与C 相切于点()00,x y 的所有圆.巧用直线系、圆系方程解题的关键是由题设条件确定参数的值,从而求出需求的结果.典型例题【例1】(1)经过点()3,2的一条动直线分别交x 轴、y 轴于M N 、两点,设Q 为MN 的中点,联结OQ 并延长到P ,使2OP OQ =,求点P 的轨迹方程;(2)求过直线1:5230l x y +-=和2:3580l x y --=的交点P ,且与直线470x y +-=垂直的直线l 的方程.【例2】(1)求过直线240x y ++=和圆222410x y x y ++-+=的交点,且面积最小的圆的方程;(2)求过两圆与22640x y x ++-=与226280x y y ++-=的交点的直线方程和圆心在直线40x y --=上的圆的方程;(3)求圆心在直线0x y +=上,且过两圆2222210240,2280x y x y x y x y +-+-=+++-=交点的圆的方程;(4)求与圆2248150x y x y +--+=切于点()3,6A ,且过点()5,6B 的圆的方程.【例3】(1)判断方程()22241010200(x y kx k y k k ++++++=为参数,1k ≠-表示何种曲线?找出通过定点的坐标;(2)直线系():3cos sin 2A x y αα-+=,直线系A 中能组成正三角形的面积等于 .强化训练1.(1)求经过两直线231,322x y x y -=+=的交点,且平行于直线30y x +=的直线方程;(2)求经过两圆2220x y x y +-+-=与225x y +=的交点,且圆心在直线3410x y +-=上的圆的方程.2.(1)在四边形ABCD 中,对角线AC 平分BAD ∠,在CD 上取一点,E BE 与AC 相交于F ,延长DF 交BC 于G .求证:GAC EAC ∠∠=;(2)已知圆22:2440C x y x y +-+-=,问:是否存在斜率为1的直线l ,使直线l 被圆C 截得的弦AB 为直径的圆经过原点?若存在,写出直线l 的方程;若不存在,说明理由.。

直线、圆、圆锥曲线提升训练答案

直线、圆、圆锥曲线提升训练答案

1.直线210x y -+=关于直线1x =对称的直线方程是( )A .210x y +-=B .210x y +-=C .230x y +-=D .230x y +-= 【答案】D 【解析】试题分析:直线210x y -+=和直线1x =的交点为()1,1,直线210x y -+=关于直线1x =对称的直线方程的斜率为12k =-,故所求直线方程为()1112y x -=--,化简可得230x y +-=,故选D .考点:与直线关于点、直线对称的直线方程 2.已知点A (2,3),B (-3,-2),若直线l 过点P (1,1)且与线段AB 相交,则直线l 的斜率k 的取值范围是( ) A .324k k ≥≤或 B .324k ≤≤ C .34k ≥D .2k ≤ 【答案】A 【解析】试题分析:用数形结合,建立坐标系直线PA 的斜率31221-=-k=,直线PB 的斜率213314--'=--k =,结合图象可得直线l 的斜率取值范围是324k k ≥≤或;考点:1.数形结合思想;2.直线的斜率公式;3.过点()2,3P 且在两坐标轴上截距相等的直线方程为( ) A .230x y -= B .50x y +-=C .320x y -=或50x y +-=D .230x y -=或50x y +-=【答案】C 【解析】试题分析:当截距都为0时,过点()0,0时直线为320x y -=,当截距不为零时,设直线为1x ya a+=,代入点()2,3P 得550a x y =∴+-= 考点:直线方程4.直线l 经过点(2,),(3,A y B ,且倾斜角范围是2[,]33ππ,则y 的范围是( )A 、[-B 、(,0])-∞⋃+∞C 、(,[0,)-∞-⋃+∞D 、 【答案】C 【解析】 试题分析:)2[,]tan 33k πθπθ∈∴=∈+∞(,-∞([),0,k y =∈-∞-+∞ 考点:直线倾斜角与斜率的关系5.对于直线x sin α+y+1=0,其斜率的取值范围是( )A .-,-1][1,+)∞⋃∞( B .[1,1]- C .[-,]44ππD .[-,]22ππ【答案】B【解析】试题分析:直线的斜率为αsin -=k ,因此斜率的取值范围是[-1,1],答案选B . 考点:直线的一般方程与斜率6.若直线ax+2y+6=0与直线x+a(a+1)y+a 2-1=0垂直,则实数a 的值为( ) A .-32 B .0 C .1 D .0或-32【答案】D . 【解析】试题分析:根据一般式直线方程中,两直线垂直的等价条件,则有2(1)0a a a ++=,即2230a a +=,解得a=0或a=-32,故选D .考点:直线的一般式方程中,两直线垂直的等价参数关系.7.平行线0943=-+y x 和620x my ++=的距离是( ) A .58 B .2 C .511 D .57 【答案】B 【解析】试题分析:根据两直线平行,可以断定8m =,所以直线方程可化为3410x y ++=,由公式可得两直线之间的距离1925d +==,故选B . 考点:平行线间的距离公式.8.直线30x y -+=被圆()()22222x y ++-=截得的弦长等于( )A .2. 【答案】D 【解析】试题分析:圆心为()2,2-,半径r =圆心到直线的距离为d ==,所以弦长l 满足2222l d r l ⎛⎫+=∴= ⎪⎝⎭考点:直线与圆相交问题9.圆221:(2)(3)1C x y -+-=,圆222:(3)(4)9C x y -+-=,M 、N 分别是圆1C ,2C 上的动点,P 为x 轴上的动点,则||||PM PN +的最小值A .4B 1C .6-【答案】A 【解析】试题分析:作2C 关于x 轴的对称点)4,3(-A ,连接1AC 得1AC 所在直线方程0177=-+y x ,与x 轴的交点为)0,717(P ,此时21PC PC +最小,连接1PC 、2PC 分别交圆于N M 、,则PNPM +最小,PN PM +==--+3121PC PC 425-考点:1.圆与最值问题;10.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A .2B .21+C .221+D .221+【答案】B 【解析】试题分析:先将圆012222=+--+y x y x 配方得1)1()1(22=-+-y x ,知此圆的圆心坐标为),1,1( 半径r=1,再求出圆心到已知直线的距离:12)1(121122>=-+--=d ,画出草图可知:所求最大值应为1+2,故选B .考点:直线与圆的位置关系.11.设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,且,PA l A ⊥为垂足,如果直线AF 的斜率为1-,则PF 等于( )A .2B .4C . 8D .12 【答案】B 【解析】试题分析:∵抛物线方程为28y x =,∴焦点20F (,),准线方l 程为2x =-,∵直线AF 的斜率为1-,直线AF 的方程为2y x =--(),当2x =-时,4y =,由可得A 点坐标为()2,4A -,PA l A ⊥ 为垂足,∴P 点纵坐标为4,代入抛物线方程,得点P 坐标为()2,4P , 224PF PA ∴==--=(). 考点:抛物线的定义12.已知双曲线22221(0,0)x y a b a b-=>>与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,若5PF =,则双曲线的离心率为( )A 、5B 、2C 、332 D 、3 【答案】B 【解析】试题分析:()02,F ,4=p ,所以422=+b a ,根据抛物线的焦半径公式,522=+=+=x px PF ,解得3=x ,代入抛物线有242=y ,因为点P 是交点,所以代入双曲线,有124922=-b a ,解得:3,122==b a ,所以离心率2==a c e .考点:1.抛物线的几何性质;2.双曲线的方程;3.抛物线的方程.13.已知点()0,2A ,抛物线C:2(0)y ax a =>(0a >)的焦点为F ,射线FA 与抛物线C 相交于点M,与其准线相交:KM MN =于点N ,若则a 的值等于( ) A .41 B .21C .1D .4【答案】D 【解析】 试题分析:(,0),:1:54a F M F M K M M N =∴ ,42421:2:=∴=∴=a a KM KN . 考点:抛物线的性质.14.已知双曲线)0,0(12222>>=-b a bx a y 的离心率为3,则双曲线的渐近线方程为( )A .xy 22±= B .x y 2±= C .x y 2±= D .x y 21±= 【答案】A【解析】试题分析:根据题意,焦点在y 轴上的双曲线的标准方程,则a b ====则所求双曲线的渐近线方程为xy 22±=,所以答案为A .考点:1.双曲线的标准方程;2,双曲线的渐近线方程.15.抛物线2x y =上一点到直线042=--y x 的距离最短的点的坐标是 ( ) A .(1,1) B .(41,21) C .)49,23( D .(2,4)【答案】A 【解析】试题分析:设抛物线上的点为()200,x x点到直线的距离为d =,当01x =时取得最小值,所以点的坐标为(1,1)考点:1.点到直线的距离;2.函数求最值16.已知抛物线的方程为x y 42=,过其焦点F 的直线l 与抛物线交于B A ,两点,若BOF AOF S S ∆∆=(O 为坐标原点),则=AB ( ) A .316 B .38 C .34D .4 【答案】D 【解析】试题分析:设B A ,的纵坐标为21,y y ,则由BOF AOF S S ∆∆=,得212121y OF y OF =,即021=+y y ;即x AB ⊥轴,即()1,1y A ,则21=y ,所以4=AB . 考点:直线与抛物线的位置关系.17.已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1、F 2F 2的直线l 交C 与A 、B 两点,若△AF 1B的周长为C 的方程为( )A .22132x y += B .2213x y += C .221128x y += D .221124x y += 【答案】A【解析】试题分析:由椭圆的定义可知三角形的周长为344)(221111==+++=++a BF AF BF AF AB BF AF ,解得3=a ,又离心率33=a c ,所以1=c ,由222c b a +=得2=b ,所以椭圆的方程为12322=+y x ,答案选A .考点:椭圆的方程与几何性质18.已知F 是抛物线24y x =的焦点,A B , 是抛物线上的两点,12AF BF +=,则线段AB 的中点到y 轴的距离为( ) A. 4 B. 5 C. 6 D. 11 【答案】B 【解析】试题分析:∵212A B AF BF x x +=++=,∴10A B x x +=,∴52A Bx x +=,∴线段AB 的中点到y 轴的距离为5,故选B. 考点:直线与抛物线的位置关系.19.已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且321π=∠PF F ,椭圆的离心率为1e ,双曲线的离心率2e ,则=+222131e e . 【答案】4【解析】试题分析:设11ce a =,22ce a =,则221222212313a a e e c ++=,又2221212122cos3PF PF PF PF F F π+-=,所以22121212()3PF PF PF PF F F +-=,22121212()PF PF PF PF F F -+=,即22112434a PF PF c -=,2221244a PF PF c +=,因此222222121241216,34,a a c a a c +=+=2212134.e e +=考点:椭圆及双曲线定义20.将一个半径为2的半圆面围成一个圆锥,所得圆锥的轴截面面积等于 .【解析】试题分析:半径为2的半圆面的半周长是π2,那么围成圆锥的半径为r ,ππ22=r ,1=r ,所以轴截面是以2为边长的等边三角形,面积是3432==a S . 考点:圆锥的基本计算21.椭圆221259x y +=上的点M 到左焦点1F 的距离为2,N 是1MF 中点,则||ON = .【答案】4 【解析】试题分析:根据椭圆的定义:1021=+MF MF ,所以82=MF ,N 是1MF 中点,O 是21F F 的中点,所以4212==MF ON . 考点:1.椭圆的定义;2.椭圆的几何意义.22.已知抛物线24x y =的焦点F 和点(1,8)A -,P 为抛物线上一点,则PA PF +的最小值是______________ 【答案】9 【解析】试题分析:根据题意,过P 作抛物线的准线的垂线垂足为P ' ,根据抛物线的定义PF PP '=,所以PA PF PA PP '+=+的最小值即为抛物线上一个动点P 到一个定点()1,8A -的距离与到定直线1y =-的距离之和的最小值,显然,最小值即为点A 到直线1y =-的距离为()819--=.考点:1.抛物线的定义;2.距离的最小值.23.已知椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B ,点M 为线段AB 的靠近点B 的三等分点,∠MOA=45°,则椭圆的离心率为 .【解析】试题分析:A (a,0),B (0,b ),M 的靠近点B 的三等分点,所以M (2,33a b ),又因为∠MOA=45°,所以2233a b a b =∴=,222222223344a c a b e e a a a -====∴=考点:本题考查椭圆的离心率点评:通过M 是三等分点,相似三角形求得M 点坐标,再利用∠MOA=45°,可得M 的横纵坐标相等,找到a,b 的关系24.设抛物线22y x =的焦点为F ,过F 的直线交该抛物线于A ,B 两点,则4AF BF +的最小值为_____________. 【答案】4.5 【解析】试题分析:根据题意抛物线的焦点坐标为:()1,0F ,过焦点的直线与抛物线22y x =交于两点,直线斜率一定存在,设过焦点()1,0F 与抛物线交于()()1122,,,A x y B x y 的直线方程为:()1y k x =-带入22y x =中,化简为:()22221204k x k x k -++=,根据韦达定理得:1214x x =,根据抛物线的定义知:4AF BF +121211555944222222x x x x ⎛⎫=+++=++≥== ⎪⎝⎭(当且仅当“1241x x ==”时取“=”),所以4AF BF +的最小值为4.5. 考点:1.抛物线的定义;2.基本不等式求最值.25.已知P 是双曲线1366422=-y x 上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________. 【答案】33 【解析】试题分析:根据双曲线定义知;1216PF PF -==,所以2116161733PF PF =+=+=或21PF =(舍去),故答案为33. 考点:1.双曲线定义;2.计算.26.在平面直角坐标系中,已知两点(3,0)A -及(3,0)B ,动点Q 到点A 的距离为10,线段BQ 的垂直平分线交AQ 于点P . (Ⅰ)求||||PA PB +的值;(Ⅱ)求点P 的轨迹方程【答案】(Ⅰ)10;(Ⅱ)2212516x y += 【解析】试题分析:(Ⅰ)由线段的垂直平分线的性质及抛物线的定义易得||||PA PB +=||PA +||PQ =||AQ =10(Ⅱ)由(Ⅰ)及椭圆的定义可知点P 的轨迹是中心在原点,以,A B 为焦点,长轴在x 轴上的椭圆,则椭圆方程可求试题解析:(Ⅰ)因为线段BQ 的垂直平分线交AQ 于点P ,∴||PB =||PQ , ∴||||PA PB +=||PA +||PQ =||AQ =10;(Ⅱ)由(Ⅰ)知||||PA PB +=10(常数),又||||PA PB +=10>6=||AB ,∴点P 的轨迹是中心在原点,以,A B 为焦点,长轴在x 轴上的椭圆,其中210,26a c ==,所以椭圆的轨迹方程为2212516x y +=. 考点:椭圆、抛物线的定义。

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。

高中数学圆与方程专题(压轴题训练)

高中数学圆与方程专题(压轴题训练)

圆与方程【知识梳理】 1、确定圆的要素 2、圆的标准方程和一般方程 3、直线和圆、圆与圆的位置关系 4、用解析方法解决几何问题 【重难点问题】 1、求圆的方程 2、位置关系 3、求最值、范围 4、求轨迹 5、存在性问题 6、定切线,定圆,定点【典题讲练】 【例1】以(2 1)A -,,(1 5)B ,为半径两端点的圆的方程是_______________. 【变】圆心在直线20x y +=上,并且经过点(1 3)A ,和(4 2)B ,的圆的方程为_______________.【拓】求过A (0,0)、B (1,1)、C (4,2)三点的圆的方程,并求这个圆的半径长和圆心坐标.【例2】过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为______________. 【变】已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为_____________. 【拓1】已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的标准方程为_______________.【拓2】在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -by +2b +1=0相切的所有圆中,半径最大的圆的标准方程为_______________.【例3】过点P ﹣1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是___________.【变】(1)过点P (2,1)的直线l 被圆x 2+y 2=10截得的弦长为___________.(2)已知直线0x y a -+=与圆心为C 的圆222440x y x y ++--=相交于A 、B 两点,且AC BC ⊥,则实数a 的值为__________. 【拓】(1)圆x 2+y 2+2x =0和x 2+y 2﹣4y =0的公共弦所在直线方程为___________.(2)过点(3,1)作圆(x ﹣1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为___________.【例4】若直线y =k (x ﹣4)与曲线y 有公共点,则k 的取值范围为___________.【练】若过定点M (﹣1,0)且斜率为k 的直线与圆x 2+y 2+4x ﹣5=0在第一象限内的部分有交点,则k 的取值范围是___________.【变】(1)若关于x 的方程3x b +=只有一个解,则实数b 的取值范围是____________.(2)曲线1x 与直线45y kx k =-+有两个不同的交点时,实数k 的取值范围是____________. A .53(,]124B .78(,]243C .8[,)3+∞D .72(,)(,)243-∞+∞ (3)若曲线221:20C x y x +-=与曲线2:()0C y y mx m --=有四个不同的交点,则实数m 的取值范围是( )A .(B .(,0)(0⋃C .[D .(-∞,⋃,)+∞【例5】已知实数x ,y 满足方程22410x y x +-+=,求下列各式的最大值与最小值. (1)yx; (2)14y x --; (3)736xy +; (4)y x -;(5)23x y +;(6)22x y +;(7)221014x x y y -+-.【练】已知实数x ,y 满足方程22410x y x +-+=,求下列各式的最大值与最小值. (1)14y x --; (2)23x y +; (3)221014x x y y -+-. (4)若对任意的x ,y 有20x y m ++≥,求m 的取值范围.【变】(1)已知实数x ,y 满足(x -2)2+y 2=4,则3x 2+4y 2的最大值为________.(2)设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则P A →·PB →的最大值为________.【拓】(1)已知实数x ,y 满足方程22220x y x y ++-=,则||||x y +的最大值为( )A .2B .4C .D .2+(2)已知实数x ,y 满足221x y +≤,340x y +≤,则32x x y ---的取值范围是( )A .[1,4]B .19[17,4]C .[1,11]3D .19[17,11]3(3)设点(,)P x y 是圆22:2230C x x y y ++--=上任意一点,若|2|||x y x y a --+-+为定值,则a 的值可能为( ) A .4- B .0C .3D .6【例6】设P 为直线0x y -=上的一动点,过P 点做圆22(4)2x y -+=的两条切线,切点分别为A ,B ,则APB ∠的最大值_______________.【练】(1)在平面直角坐标系xOy 中,过圆221:()(4)1C x k y k -++-=上任一点P 作圆222:1C x y +=的一条切线,切点为Q ,则当线段PQ 长最小时,k =_______________.(2)已知点P 为直线1y x =+上的一点,M ,N 分别为圆221:(4)(1)4C x y -+-=与圆222:(2)1C x y +-=上的点,则||||PM PN -的最大值为( ) A .4 B .5C .6D .7【变】(1)已知两点A (0,-3),B (4,0),若点P 是圆C :x 2+y 2-2y =0上的动点,则△ABP 的面积的最小值为____________.(2)过点(2,0)作直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.(3)已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,当△OPQ 的面积最大时,直线l 的方程为____________.(4)已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2﹣2x ﹣2y +1=0的两条切线,A ,B 是切点,C 是圆心,那么四边形P ACB 面积的最小值为___________.(5)在平面直角坐标系xOy 中,已知点(1,1)A ,(1,1)B -,点P 为圆22(4)4x y -+=上任意一点,记OAP ∆和OBP ∆ 的面积分别为1S 和2S ,则12S S 的最小值是____________.【例7】(1)已知|M 1M 2|=2,点M 与两定点M 1,M 2距离的比值是一个正数m .试建立适当坐标系,求点M 的轨迹方程,并说明其轨迹是什么图形.(直接翻译)(2)已知点P 在圆221x y +=运动,点M 的坐标为(2,0)M ,Q 为线段PM 的中点,则点Q 的轨迹方程为_______________.(设坐标转移)(3)由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为_______________.(几何法)(4)已知过原点的动直线l 与圆C 1:x 2+y 2﹣6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程.(消参法)【练】(1)自圆C :(x -3)2+(y +4)2=4外一点P (x ,y )引该圆的一条切线,切点为Q ,PQ 的长度等于点P 到原点O 的距离,则点P 的轨迹方程为____________.(2)已知3AB =,动点P 满足2PA PB =,那么PAB ∆的面积的最大值为_______________.(3)在圆228x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,线段PD 的中点M 的轨迹方程是_______________.(4)已知动圆P 与圆M :(x +1)2+y 2=16相切,且经过M 内的定点N (1,0).试求动圆的圆心P 的轨迹C 的方程.【拓】(1)过定点(3,2)P 任作一直线与圆2242110x y x y +---=相交于A 、B 两点,A 和B 两点处的切线相交于M ,求点M 的轨迹方程.(2)已知圆224x y +=,(1,1)B 为圆内一点,P ,Q 为圆上动点,若90PBQ ∠=︒,则线段PQ 中点的轨迹方程为____________________.(3)已知直线:l y x b =+与圆22:(1)1C x y ++=相交于A ,B 两点,点P 在l 上,且||||2PA PB ⋅=.当b 变化时,求点P 的轨迹方程.【例8】在平面直角坐标系xOy 中,点A (0,-3),若圆C :(x -a )2+(y -a +2)2=1上存在一点M 满足|MA |=2|MO |,则实数a 的取值范围是_______________.【练】在平面直角坐标系xOy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上,若圆C 上存 在点M ,使||2||MA MO =,则圆心C 的横坐标的取值范围为( ) A .12[0,]5B .[0,1]C .12[1,]5D .12(0,)5【变】(1)在平面直角坐标系xOy 中,已知直线:30l x y +-=和圆22:()8M x y m +-=,若圆M 上存在点P ,使得P 到直线l的距离为,则实数m 的取值范围是_______________.(2)已知圆22:(3)(4)1C x y -+-=和两点(,0)A m -、(B m ,0)(0)m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的取值范围是( ) A .[3,7] B .[4,6]C .[3,6]D .[4,7](3)已知圆22:1O x y +=,圆.若圆上存在点,过点作圆的两条切线,切点为,,使得,则实数的取值范围为_______________.(4)在平面直角坐标系xOy 中,若圆22:(3)()4C x y a -+-=上存在两点A 、B 满足:60AOB ∠=︒,则实数a 的最大值是( ) A .5B .3CD.(5)已知(2,0)A -,(2,0)B ,点P 在圆222(3)(4)(0)x y r r -+-=>上,满足2240PA PB +=,若这样的点P 有两个,则r 的取值范围是_______________.22:()(4)1M x a y a -+-+=M P P O A B 60APB ∠=︒a【例9】已知当a R ∈且1a ≠时,圆2222(2)20x y ax a y +-+-+=总与直线l 相切,则直线l 的方程是___________.【练】已知:正数m 取不同的数值时,方程222(42)24410x y m x my m m +-+-+++=表示不同的圆,求:这些圆的公切线(即与这些圆都相切的直线)的方程.【变1】(1)已知直线2:2(1)440l mx m y m +---=,若对任意m R ∈,直线l 与一定圆相切,则该定圆方程为_______________.(2)当实数m 变化时,不在任何直线2mx +(1-m 2)y -4m -4=0上的所有点(x ,y )形成的图形的面积为_______________.【变2】无论a 如何变化直线sin cos 10x y αα++=总和一个定圆相切,则该定圆方程为_______________.【例10】已知圆22:4C x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线PA 、PB ,A 、B 为切点,则直线AB 经过定点( )A .48(,)99B .24(,)99C .(2,0)D .(9,0)【变1】已知圆M (M 为圆心)的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线 l 上,过P 点作圆M 的切线P A 、PB ,切点为A 、B . (1)若∠APB =60°,试求点P 的坐标;(2)求证:经过A 、P 、M 三点的圆必过定点,并求出所有定点的坐标.【变2】已知圆O 过点A (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称. (1)求圆O 的方程;(2)若EF 、GH 为圆O 的两条相互垂直的弦,垂足为N (1,22),求四边形EGFH 的面积的最大值; (3)已知直线l :y =12x -2,P 是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,试探究直线CD 是否过定点,若过定点,求出定点;若不过定点,请说明理由.【变3】已知圆O 的方程为x 2+y 2=1,直线l 1过点A (3,0),且与圆O 相切. (1)求直线l 1的方程;(2)设圆O 与x 轴相交于P ,Q 两点,M 是圆O 上异于P ,Q 的任意一点,过点A 且与x 轴垂直的直线为l 2,直线PM 交直线l 2于点P ′,直线QM 交直线l 2于点Q ′.求证:以P ′Q ′为直径的圆C 总经过定点,并求出定 点坐标.【家庭作业】1、过点(3,4)P -作圆22(1)2x y -+=的切线,切点分别为A 、B ,则直线AB 的方程为( ) A .220x y +-=B .210x y --=C .220x y --=D .220x y ++=2、圆C 的方程为221x y +=,(,2)P x .过P 作圆C 的切线,切点分别为A ,B 两点.则APB ∠最大为( ) A .30︒B .45︒C .60︒D .90︒3、已知直线1:360l x y +-=与圆心为(0,1)M ,半径为的圆相交于A ,B 两点,另一直线2:22330l kx y k +--=与圆M 交于C ,D 两点,则四边形ACBD 面积的最大值为( )A .B .C .1)D .1)4、在平面直角坐标系xOy 中,若圆22:(3)()4C x y a -+-=上存在两点A 、B 满足:60AOB ∠=︒,则实数a 的最大值是( )A .5B .3CD .5、已知关于x 2ax =-有且只有一个解,则实数a 的取值范围为_______________.6、已知实数x ,y 满足22430x x y -++=,则21x y x ++-的取值范围是_______________. 7、设圆22:(1)1C x y -+=,过点(1,0)-作圆的任意弦,求所作弦的中点的轨迹方程.8、在平面直角坐标系xOy 中,直线:420l kx y k ---=,k R ∈,点(2,0)A -,(1,0)B ,若直线l 上存在点P 满足条件2PA PB =,求实数k 的取值范围.9、设实数x 、y 满足方程:2286210x y x y +--+=. (1)当3x ≠时,求12y P x +==-的取值范围; (2)求2S x y =-的最大值与最小值;(3)求2210226T x y x y =+-++的最大值与最小值.10、已知点(0,4)A ,点P 在直线20x y -=上运动.以线段AP 为直径作一个圆,求该圆恒过的定点坐标.11、已知圆22:4C x y +=,点P 为直线280x y --=上的一个动点,过点P 向圆C 引两条切线PA 、PB 、A 、B 为切点,求证直线AB 恒过点.。

2023-2024学年高二数学单元速记——直线与圆的方程(压轴题专练)(解析版)

2023-2024学年高二数学单元速记——直线与圆的方程(压轴题专练)(解析版)

第二章直线与圆的方程(压轴题专练)一、选择题1.已知m ∈R ,若过定点A 的动直线1l :20x my m -+-=和过定点B 的动直线2l :240mx y m ++-=交于点P (P 与A ,B 不重合),则以下说法错误的是()A .A 点的坐标为()2,1B .PA PB ⊥C .2225PA PB +=D .2PA PB +的最大值为5【答案】D【分析】根据定点判断方法、直线垂直关系、勾股定理、三角函数辅助角求最值即可得解.【详解】因为1:20l x my m -+-=可以转化为(1)20m y x -+-=,故直线恒过定点A ()2,1,故A 选项正确;又因为2l :240mx y m ++-=即()42y m x -=-+恒过定点B ()2,4-,由1:20l x my m -+-=和2:420l mx y m +-+=,满足()110m m ⨯+-⨯=,所以12l l ⊥,可得PA PB ⊥,故B 选项正确;所以()()22222221425PA PB AB +==++-=,故C 选项正确;因为PA PB ⊥,设,PAB ∠θθ=为锐角,则5cos ,5sin PA PB θθ==,所以()()252cos sin 5PA PB θθθϕ+=+=+,所以当()sin 1θϕ+=时,2PA PB +取最大值,故选项D 错误.故选:D.2.设m R ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(),P x y ,则PA PB +的最大值()A .B .C .3D .6【答案】D【分析】根据动直线方程求出定点,A B 的坐标,并判断两动直线互相垂直,进而可得22||||18PA PB +=,最后由基本不等式222||||||||22PA PB PA PB ++⎛⎫≥ ⎪⎝⎭即可求解.【详解】解:由题意,动直线10x my ++=过定点(1,0)A -,直线230mx y m --+=可化为(2)30x m y -+-=,令2030x y -=⎧⎨-=⎩,可得()2,3B ,又1(1)0m m ⨯+⨯-=,所以两动直线互相垂直,且交点为P ,所以()()22222||||||120318PA PB AB +==--+-=,因为222||||||||22PA PB PA PB ++⎛⎫≥ ⎪⎝⎭,所以6P A PB +≤,当且仅当||||3PA PB ==时取等号.故选:D.3.在平面直角坐标系内,设()11,M x y ,()22,N x y 为不同的两点,直线l 的方程为0ax by c ++=,1122ax by c ax by c δ++=++,下面四个命题中的假命题为()A .存在唯一的实数δ,使点N 在直线l 上B .若1δ=,则过M ,N 两点的直线与直线l 平行C .若1δ=-,则直线经过线段M ,N 的中点;D .若1δ>,则点M ,N 在直线l 的同侧,且直线l 与线段M ,N 的延长线相交;【答案】A【分析】根据题意对δ一一分析,逐一验证.【详解】解:对于A ,1122ax by c ax by cδ++=++化为:112222()0(0)ax by c ax by c ax by c δ++-++=++≠,即点2(N x ,2)y 不在直线l 上,因此A 不正确.对于B ,1δ=,则1212()()0a x x b y y -+-=,即过M ,N 两点的直线与直线l 的斜率相等,又点2(N x ,2)y 不在直线l 上,因此两条直线平行,故B 正确;对于C ,1δ=-,则1122()0ax by c ax by c +++++=,化为1212022x x y y a b c ++++=,因此直线l 经过线段MN 的中点,故C 正确;对于D ,1δ>,则2112222()()()0ax by c ax by c ax by c δ++⨯++=++>,则点M ,N 在直线l 的同侧,故D 正确;故选A【点睛】本题考查了直线系方程的应用、平行直线的判定、点与直线的位置关系,考查了推理能力与计算能力,属于难题.4.我国著名数学家华罗庚曾说“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休.”事转化为点(),x y 与点(),a b 之间的距离的几何问题.已知点()11,M x y 在直线1:2l y x =+,点()22,N x y 在直线2:l y x =上,且1MN l ⊥)A .2B .2C D .5【答案】D【分析】根据两点距离公式将目标函数转化为点()11,M x y 到点()0,4A 的距离与点()22,N x y 到点()5,0B 的距离和,过点A 作1AC l ⊥,垂足为C ,证明AM CN =,由CN NB CB +≥求目标函数最小值.表示点()11,M x y 到点()0,4A 的距离,表示点()22,N x y 到点()5,0B 的距离,MA NB +=+,过点A 作1AC l ⊥,垂足为C ,因为直线1l 的方程为20x y -+=,()0,4A ,所以AC ==又直线1:2l y x =+与直线2:l y x =平行,1MN l ⊥,所以MN =所以//,MN AC MN AC =,所以四边形AMNC 为平行四边形,所以AM CN =,CN NB +=+,又CN NB CB +≥,当且仅当,,C N B 三点共线时等号成立,所以当点N 为线段CB 与直线2l 的交点时,CB ,因为过点()0,4A 与直线1l 垂直的直线的方程为4y x =-+,联立42y x y x =-+⎧⎨=+⎩,可得13x y =⎧⎨=⎩,所以点C 的坐标为()1,3,所以CB =,5,故选:D.将问题转化为两点之间的距离问题.5.已知圆C 是以点(2,M 和点(6,N -为直径的圆,点P 为圆C 上的动点,若点()2,0A ,点()1,1B ,则2PA PB -的最大值为()A B .4C .8+D【答案】A【分析】由题设可知圆C :22(4)16x y -+=,在坐标系中找到(4,0)D -,应用三角线相似将2PA 转化到||PD ,再利用三角形的三边关系确定目标式的最大值即可.【详解】由题设,知:(4,0)C 且||8MN ==,即圆C 的半径为4,∴圆C :22(4)16x y -+=,如上图,坐标系中(4,0)D -则24OD AC CP OC ====,∴12AC PC CP DC ==,即△APC △PCD ,故12PA PD =,∴2||||PA PB PD PB -=-,在△PBD 中||||||PD PB BD -<,∴要使||||PD PB -最大,,,P B D 共线且最大值为||BD 的长度.∴||BD ==故选:A【点睛】关键点点睛:首先求出圆C 方程,找到定点D 使AC PC CP DC =,进而将2PA 转化到其它线段,结合三角形三边关系求目标式的最值.6.过点()8,4A -作抛物线28y x =的两条切线1l ,2l ,设1l ,2l 与y 轴分别交于点B ,C ,则ABC ∆的外接圆方程为()A .2264160x y x y ++--=B .226160x y x ++-=C .2256120x y x y ++--=D .224160x y y +--=【答案】A【解析】设切线方程为l :()84x t y +=-,与抛物线联立,表示线段AB 的中垂线方程,可求解圆心坐标和半径,表示圆的方程即可.【详解】设过点()8,4A -的抛物线2:8E y x =的切线方程为l :()84x t y +=-,即84x ty t =--(*),代入28y x =得288(48)0y ty t -++=,由0∆=得2240t t --=,(1)所以方程(1)有两个不相等的实数根1t ,2t ,且122t t +=,124t t =-,在(*)中令0x =得180,4B t ⎛⎫+ ⎪⎝⎭,280,4C t ⎛⎫+ ⎪⎝⎭,设ABC ∆的外接圆圆心为点()100,O x y ,则()0122B C y y y =+=,下求0x :线段AB 中点横标04x '=-,纵标0144y t '=+,线段AB 的中垂线方程为1144(4)y t x t --=-+,令2y =得211021424t t x t -++=,由(1)知21124t t +=,故03x =-,设ABC ∆的外接圆半径为R ,则229R =,所以ABC ∆的外接圆方程为22(3)(2)29x y ++-=,即2264160x y x y ++--=.故选:A【点睛】本题考查了直线和抛物线的位置关系,圆的方程,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.7.已知平面内两个定点A ,B 及动点P ,若PBPA λ=(0λ>且1λ≠),则点P 的轨迹是圆.后世把这种圆称为阿波罗尼斯圆.已知()0,0O,0,2Q ⎛ ⎝⎭,直线1:230l kx y k -++=,直线2:320l x ky k +++=,若P 为1l ,2l 的交点,则32PO PQ +的最小值为()A .B.6-C.9-D.3【答案】A【分析】由直线方程可得12l l ⊥,则点P 的轨迹是以CD 为直径的圆,除去D 点,得到P 的轨迹方程为()()22293x y y ++=≠-,即()22453x y x y ++=≠-,可得)332PQ y =+≠-,取5,02A ⎛⎫ ⎪⎝⎭,则32PQ PA =,结合AQ =()3222PO PQ PA PQ AQ +=+≥,进而求解.【详解】由已知1:230l kx y k -++=过定点()2,3C -,2:320l x ky k +++=过定点()2,3D --,因为1l k k =,21l k k=-,所以121l l k k ⋅=-,即12l l ⊥,所以点P 的轨迹是以CD 为直径的圆,除去D 点,故圆心为()2,0-,半径为3,则P 的轨迹方程为()()22293x y y ++=≠-,即()22453x y x y ++=≠-,易知O 、Q 在该圆内,又32PO =即)332PO y ==≠-,取5,02A ⎛⎫ ⎪⎝⎭,则32PO PA =,又2AQ =,所以()3322222PO PQ PO PQ PA PQ AQ ⎛⎫+=+=+≥= ⎪⎝⎭所以32PO PQ +的最小值为故选:A.8.已知点P 为直线l :20x y +-=上的动点,过点P 作圆C :2220x x y ++=的切线PA ,PB ,切点为,A B ,当PC AB ⋅最小时,直线AB 的方程为()A .3310x y ++=B .3310x y +-=C .2210x y ++=D .2210x y +-=【答案】A【分析】先利用圆切线的性质推得,,,A P B C 四点共圆,AB CP ⊥,从而将PC AB ⋅转化为2PA ,进而确定PC l ⊥时PC AB ⋅取得最小值,再求得以PC 为直径的圆的方程,由此利用两圆相交弦方程的求法即可得解.【详解】因为圆C :2220x x y ++=可化为()2211x y ++=,所以圆心()1,0C -,半径为1r =,因为PA ,PB 是圆C 的两条切线,则,PA AC PB BC ⊥⊥,由圆的知识可知,,,,A P B C 四点共圆,且AB CP ⊥,PA PB =,所以14422PAC PC AB S PA AC PA ⋅==⨯⨯⨯= ,又PA =所以当PC 最小,即PC l ⊥时,PC AB ⋅取得最小值,此时PC 的方程为1y x =+,联立120y x x y =+⎧⎨+-=⎩,解得13,22x y ==,即13,22P ⎛⎫ ⎪⎝⎭,故以PC 为直径的圆的方程为13(1)022x x y y ⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭,即,221031222x x y y +-+=-,又圆22:20C x x y ++=,两圆的方程相减即为直线AB 的方程:3310x y ++=.故选:A.【点睛】关键点睛:本题解决的关键是将PC AB ⋅转化为2PA ,从而确定PC AB ⋅最小时P 的坐标,从而利用两圆相减可得相交弦方程的技巧得解.9.(多选)已知O 为坐标原点,()3,1A ,P 为x 轴上一动点,Q 为直线l :y x =上一动点,则()A .APQ △周长的最小值为B .AP AQ +的最小值为1C .AP PQ +的最小值为D OP +的最小值为4【答案】BCD【分析】设A 关于直线l :y x =的对称点为()11,3A ,A 关于x 轴的对称点为()23,1A -,对于A :根据对称性可得1212PQ QA PA PQ QA PA A A ++=++≥,进而可得结果;对于B :根据点到直线的距离分析判断;对于C :因为2AP PQ A P PQ +=+,结合点到直线的距离分析判断;对于D :根据题意分析可得)2OP A P CP+=+,结合点到直线的距离分析判断.【详解】设()3,1A关于直线l:y x=的对称点为()11,3A,()3,1A关于x轴的对称点为()23,1A-,可知12,QA QA PA PA==,对于选项A:可得APQ△周长1212PQ QA PA PQ QA PA A A++=++≥=当且仅当12,,,A P Q A四点共线时,等号成立,所以APQ△周长的最小值为A错误;对于选项B:设()3,1A到x轴,直线l:0x y-=的距离分别为12,d d,则121,d d==,可得121AP AQ d d+≥+=,所以AP AQ+的最小值为1B正确;对于选项C:因为2AP PQ A P PQ+=+,设()23,1A-到直线l:0x y-=的距离为3d=可得23A P PQ d +≥=所以AP PQ +的最小值为C 正确;对于选项D :作PC l ⊥,垂足为C ,因为直线l 的斜率1k =,则45COP ∠=︒,可得CP =,则23AP CP A P CP d +=+≥=,)2234OP A P OP A P CP d ⎫++=⎪⎪⎭,OP +的最小值为4,故D 正确;故选:BCD.二、填空题10.设R m ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值.【答案】9【分析】根据直线方程求出定点,然后根据直线垂直,结合基本不等式求解即可;【详解】由题意,动直线10x my ++=过定点(1,0)A -,直线230mx y m --+=可化为(2)30x m y -+-=,令2030x y -=⎧⎨-=⎩,可得()2,3B ,又1(1)0m m ⨯+⨯-=,所以两动直线互相垂直,且交点为P ,所以22222||||||(12)(03)18PA PB AB +==--+-=,因为2218||2PA PB PA PB =+≥⋅,所以9PA PB ⋅≤,当且仅当||||3PA PB ==时取等号.【点睛】根据直线方程求定点,判断直线垂直,将问题转化为基本不等式是本题的难点和突破点.11.若恰有三组不全为0的实数对(a ,)b满足关系式|1||431|a b a b t ++=-+=t 的所有可能的值为.【答案】52或75t ==,然后对t 进行分类讨论即可求解.【详解】由已知得0t >t ==,看成有且仅有三条直线满足(1,1)A 和(4,3)B -到直线:10l ax by ++=(不过原点)的距离t 相等,又5AB ==,(1)当||522AB t ==,此时易得符合题意的直线l 为线段AB 的垂直平分线68230x y --=以及与直线AB 平行的两条直线86110x y ++=和86390x y +-=;(2)当||522AB t <=时,有4条直线l 会使得点(1,1)A 和(4,3)B -到它们的距离相等,注意到l 不过原点,所以当其中一条直线过原点时,会作为增根被舍去.设点A 到l 的距离为d ,①作为增根被舍去的直线l ,过原点和A ,B 的中点5(,1)2M -,其方程为250x y +=,此时52t d ==,符合;②作为增根被舍去的直线l ,过原点且与AB 平行,其方程为430x y +=,此时7552t d ==<,符合;综上,满足题意的实数t 为52或75故答案为:52或75t ==,将问题转化为有且仅有三条直线满足(1,1)A 和(4,3)B -到直线:10l ax by ++=(不过原点)的距离t 相等,然后分类讨论即得.12.已知P 、Q 分别在直线1:10l x y -+=与直线2:10l x y --=上,且1PQ l ⊥,点()4,4A -,()4,0B ,则AP PQ QB ++的最小值为.【分析】利用线段的等量关系进行转化,找到AP QB +最小值即为所求.【详解】由直线1l 与2l PQ =()4,0B 作直线l 垂直于1:10l x y -+=,如图,则直线l 的方程为:4y x =-+,将()4,0B 沿着直线l B '点,有()3,1B ',连接AB '交直线1l 于点P ,过P 作2⊥PQ l 于Q ,连接BQ ,有//,||||BB PQ BB PQ ''=,即四边形BB PQ '为平行四边形,则||||PB BQ '=,即有||AP QB AP PB AB ''+=+=,显然AB '是直线1l 上的点与点,A B '距离和的最小值,因此AP QB +的最小值,即AP PB '+的最小值AB ',而AB '==,所以AP PQ QB ++的最小值为AB PQ '+【点睛】思路点睛:(1)合理的利用假设可以探究取值的范围,严谨的思维是验证的必要过程.(2)转化与划归思想是解决距离最值问题中一种有效的途径.(3)数形结合使得问题更加具体和形象,从而使得方法清晰与明朗.13.在平面直角坐标互中,给定()()1,2,3,4M N 两点,点P 在x 轴的正半轴上移动,当MPN ∠最大值时,点P 的横坐标为【答案】3【分析】根据条件结合圆的性质,转化为求圆的半径最小,利用数形结合,即可求解.【详解】过点,,M N P 三点的圆的圆心在线段MN 的中垂线5y x =-上,其中MPN ∠为弦MN 所对的圆周角,所以当圆的半径最小时,MPN ∠最大,设圆心坐标为(,5)E a a -,又由点P 在x 轴上移动,当圆和x 轴相切时,MPN ∠取得最大值,设切点为(,0)P a ,圆的半径为5a -,所以圆的方程为222()(5)(5)x a y a a -++-=-,代入点(1,2)M 代入圆的方程,可得222(1)(25)(5)a a a -++-=-,整理得2250a a +-=,解得3a =或5a =-(舍去),所以点P 的横坐标的为3.故答案为:3.14.在平面直角坐标系xOy 中,已知圆()()221:2C x a y a -+-+=,点(0,2)A ,若圆C 上的点M 均满足2210MA MO +>,则实数a 的取值范围是.【答案】a<0或3a >【分析】将条件2210MA MO +>坐标化,先转化为22(1)4x y +->恒成立,即圆C 上所有动点到定点(0,1)B 距离的最小值大于2,再转化为(0,1)B 与圆心C 距离的不等关系求解可得.【详解】设(,)M x y ,由点(0,2)A ,2210MA MO +> 222222(2)2(22)10x y x y x y y ∴+-++=+-+>即点M 满足22(1)4x y +->2,设点(0,1)B ,即2MB >恒成立则min 2MB >,圆上所有点到定点(0,1)B 最小值大于2,又圆(,2)C a a -,半径为1,圆上所有点到定点(0,1)B 最小值即为:1BC -.12BC ∴->.即3BC =,化简得230a a ->,解得a<0或3a >.故答案为:a<0或3a >.15.已知P 为直线60x y ++=上一动点,过点P 作圆22:66140C x y x y +--+=的切线,切点分别为A ,B ,则当四边形PACB 面积最小时,直线AB 的方程为.【答案】6=0x y +【分析】求得四边形PACB 面积最小时P 点的坐标,再根据圆与圆的位置关系求得直线AB 的方程.【详解】圆22:66140C x y x y +--+=,即()()22233=2x y -+-,所以圆心为()3,3C ,半径2r =,1=2=22PACB S PA r PA ⎛⎫⨯⨯ ⎪⎝⎭所以当CP 最小,也即CP 垂直60x y ++=时,四边形PACB 面积最小,直线60x y ++=的斜率为1-,则此时直线CP 的斜率为1,则直线CP 的方程为y x =,由60y xx y =⎧⎪⎨++=⎪⎩,解得3x y ==-即(3P --,对应PC ,=PA PB以P 为圆心,半径为((2233=12x y -++-+,即()()226622x y x y ++++-,由()()2222661406622x y x yx y x y ⎧+--+=⎪⎨++++-⎪⎩,两式相减并化简得26=0x y ++-,也即直线AB 的方程为26=0x y ++-.故答案为:26=0x y ++-【点睛】研究直线和圆的位置关系问题,主要思路是数形结合的数学思想方法,直线和圆有关的相切问题,连接圆心和切点的直线,与切线相互垂直.与四边形面积的最值有关问题,可先求得面积的表达式,再根据表达式来求最值.16.设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线l 在两坐标轴上的截距相等,则直线l 的方程为;(2)若a >-1,直线l 与x 、y 轴分别交于M 、N 两点,O 为坐标原点,则△OMN 的面积取最小值时,直线l 对应的方程为.【答案】x -y =0或x +y -2=0x +y -2=0【详解】(1)①当直线l 经过坐标原点时,可得a +2=0,解得a =-2.所以直线l 的方程为-x +y =0,即x -y =0;②当直线l 不经过坐标原点,即a ≠-2且a ≠-1时,由条件得221a a a +=++,解得a =0,所以直线l 的方程为x +y -2=0.综上可得直线l 的方程为x -y =0或x +y -2=0.(2)在(a +1)x +y -2-a =0(a >-1)中,令0x =,得2y a =+;令0y =,得21a x a +=+.所以2(,0),(0,2)1a M N a a +++.由于1a >-,得210a a +>+>.所以22121(2)1(1)2(1)1(2)212121OMNa a a a S a a a a ∆++++++=⋅⋅+=⋅=⋅+++111[(1)2][22]2212a a =+++≥=+.当且仅当111a a +=+,即a =0时等号成立.此时直线l 的方程为x +y -2=0.答案:(1)x -y =0或x +y -2=0(2)x +y -2=0【点睛】用基本不等式求最值时,首先要判断是否满足了使用基本不等式的条件,若满足则可直接利用基本不等式求出最值;若不满足,则需要对代数式进行适当的变形,此时要特别注意“拆”、“拼”、“凑”等变形的技巧,通过变形使得代数式满足基本不等式中“正”、“定”、“等”的条件.三、解答题17.现有一组互不相同且从小到大排列的数据:012345,,,,,a a a a a a ,其中00a =.为提取反映数据间差异程度的某种指标,今对其进行如下加工:记()015011,,5n n n n T a a a x y a a a T=+++==+++ ,作函数()y f x =,使其图像为逐点依次连接点(),(0,1,2,,5)n n n P x y n = 的折线.(1)求(0)f 和(1)f 的值;(2)设1n n P P -的斜率为(1,2,3,4,5)n k n =,判断12345,,,,k k k k k 的大小关系;(3)证明:当(0,1)x ∈时,()f x x <;(4)求由函数y x =与()y f x =的图像所围成图形的面积.(用12345,,,,a a a a a 表示)【答案】(1)(0)0f =,(1)1f =(2)12345k k k k k <<<<(3)见解析(4)124512345225()a a a a a a a a a --++++++【分析】(1)运用代入法进行求解即可;(2)根据斜率公式,结合已知进行判断即可;(3)要证明()f x x <,(0,1)x ∈,只需要证明(),(1,2,3,4)n n f x x n <=,根据已知定义,结合放缩法进行证明即可.(4)设1S 为[]0,1上折线()f x 与x 轴及直线1x =所围成图形的面积,求出1S ,再由112S S =-求解即可.【详解】(1)0015(0)0a f a a a ==+++ ,015015(1)1a a a f a a a +++==+++ ;(2)[]01011111()()5155n n n n n n n n a a a a a a y y T k a n n x x T ---+++-+++-===--- (1,2,,5)n = ,因为12345a a a a a <<<<,所以12345k k k k k <<<<;(3)由于()f x 的图像是连接各点(),(0,1,2,,5)n n n P x y n = 的折线要证明()f x x <,(0,1)x ∈,只需要证明(),(1,2,3,4)n n f x x n <=事实上,当1(,)n n x x x -∈时,1111()()()()()n n n n n n f x f x f x x x f x x x -----=-+-11111111()()n n n n n n n n n n n n n n n n x x x x x x x x f x f x x x xx x x x x x x x ------------=+<+=----下面证明(),(1,2,3,4)n n f x x n <=对任何n (1,2,3,4)n =,15()n a a ++ 1[(5)]()n n n a a =+-++ 11()(5)()n n n a a n a a =+++-++ 1()(5)n n n a a n na ≤+++- []1()(5)n n n a a n a =+++-< 115()n n n a a a a nT++++++= 所以1()5n n n a a nf x x T ++=<= ,综上,(),(1,2,3,4)n n f x x n <=(4)设1S 为[]0,1上折线()f x 与x 轴及直线1x =所围成图形的面积则1011012212332111()()()()()()222S y y x x y y x x y y x x =+-++-++-3443455411()()()()22y y x x y y x x ++-++-123451(2222)10y y y y y =++++[]112123123411()()()510a a a a a a a a a a T =++++++++++123411(432)105a a a a T=++++直线y x =与()y f x =的图像所围成图形的面积为1245112345221.25()a a a a S S a a a a a --++=-=++++【点睛】关键点睛:在证明()f x x <,(0,1)x ∈时,关键在于将其转化为证明(),(1,2,3,4)n n f x x n <=,结合题设定义进行证明.18.已知曲线():,0T F x y =,对坐标平面上任意一点(),P x y ,定义[](),=F P F x y ,若两点P ,Q ,满足[][]0F P F Q ⋅>,称点P ,Q 在曲线T 同侧;[][]0F P F Q ⋅<,称点P ,Q 在曲线T 两侧.(1)直线l 过原点,线段AB 上所有点都在直线l 同侧,其中()1,1A -,()2,3B ,求直线l 的倾斜角的取值范围;(2)已知曲线()(,3450F x y x y =+-=,O 为坐标原点,求点集[][]{}0S P F P F O =⋅>的面积;(3)记到点()0,1与到x 轴距离和为5的点的轨迹为曲线C ,曲线()22:,0=+--=T F x y x y y a ,若曲线C 上总存在两点M ,N 在曲线T 两侧,求曲线C 的方程与实数a 的取值范围.【答案】(1)33[0,arctan (,)24ππ ;(2)83S π=(3)()()222480:24120y x x C y x x ⎧=-≥⎪⎨=+<⎪⎩,52⎡⎢⎣⎦.【分析】(1)由题意设出直线方程为y kx =,通过新定义,得到[][](1)(23)0⋅=--->F A F B k k ,求出斜率范围,进而可求出倾斜角范围;(2)先由题意得到点集S 为圆224x y +=在直线3450x y +-=下方内部,设直线与圆的交点为A B 、,求出23AOB π∠=,进而可求出结果;(3)先设曲线C 上的动点为(,)x y5=y ,化简整理,即可得出轨迹方程;再由新定义,将[][]0⋅<F M F N 化为(6)(24)0--<a a ,进而可得出结果.【详解】(1)由题意,显然直线l 斜率存在,设方程为y kx =,则(),0=-=F x y kx y ,因为()1,1A -,()2,3B ,线段AB 上所有点都在直线l 同侧,则[][](1)(23)0⋅=--->F A F B k k ,解得312-<<k ;故倾斜角的范围是33[0,arctan (,)24ππ ;(2)因为[]0<F O ,所以[](345)0=+-F P x y ,故2234504x y x y +-<⎧⎨+<⎩,点集S 为圆224x y +=在直线3450x y +-=下方内部,设直线与圆的交点为A B 、,则O 到AB 的距离为1,故23AOB π∠=,因此,所求面积为:2214182223223ππ=⋅⋅+⋅=S(3)设曲线C 上的动点为(,)x y 5=y ,化简得曲线C 的方程为:228(3),0312(2),20x y y x y y ⎧=-≤≤⎨=+-≤≤⎩,其轨迹为两段抛物线弧;当03≤≤y 时,[]2(,)9246,24=-+-∈--F x y y y a a a ;当20-≤≤y 时,[]2(,)11246,24=++-∈--F x y y y a a a ,故若有[][]0⋅<F M F N ,则(6)(24)0--<a a ,解得624<<a .【点睛】本题主要考查新定义下直线与圆的综合,熟记直线与圆位置关系,以及直线斜率与倾斜角的概念等即可,属于常考题型.19.如图,已知A ,(0,0)B,(12,0)C ,直线:(20l k x y k --=.(1)证明直线l 经过某一定点,并求此定点坐标;(2)若直线l 等分ABC 的面积,求直线l 的一般式方程;(3)若P ,李老师站在点P 用激光笔照出一束光线,依次由BC (反射点为K )、AC (反射点为I )反射后,光斑落在P 点,求入射光线PK 的直线方程.【答案】(1)证明见解析,定点坐标为(2,;170y +-=;(3)2100x +-=.【分析】(1)整理得到(2))0k x y -+-=,从而得到方程组,求出定点坐标;(2)求出定点P 在直线AB 上,且||8AM =,由12AMD ABC S S = 得到3||||94AD AC ==,设出00(,)D x y ,由向量比例关系得到D(3)作出辅助线,确定P 关于BC 和AC 的对称点1,P 2P ,得到123P P k =,由对称性得3PK k =-,写成直线方程.【详解】(1)直线:(20l k x y k --=可化为(2))0k x y -+-=,令200xy -=⎧⎪-=,解得2x y =⎧⎪⎨=⎪⎩l 经过的定点坐标为(2,;(2)因为A ,(0,0)B ,(12,0)C ,所以||||||12AB AC BC ===,由题意得直线AB 方程为y =,故直线l 经过的定点M 在直线AB 上,所以||8AM =,设直线l 与AC 交于点D ,所以12AMD ABC S S =,即111||||sin ||||sin 222AM AD A AB AC A =⨯⨯,所以3||||94AD AC ==,设00(,)D x y ,所以34AD AC =,即003(6,(6,4x y --=-,所以0212x =,0y =21(2D ,将D 点坐标代入直线l的方程,解得k =所以直线l170y +-=;(3)设P 关于BC的对称点1(2,P -,关于AC 的对称点2(,)P m n ,直线AC12612x -=-,即)12y x =-,直线AC的方程为12)y x =-,所以(1221222n m n m ⎧-⋅=-⎪-⎪⎨++⎫⎪=-⎪⎪⎭⎩,解得14,m n ==2P ,由题意得12,,,P K I P四点共线,123P P k =,由对称性得3PK k =-,所以入射光线PK的直线方程为2)y x ---,即2100x -=.20.在平面直角坐标系xOy 中,已知圆M 过坐标原点O 且圆心在曲线y x =上.(1)设直线l :43y x =+与圆M 交于C ,D 两点,且OC OD =,求圆M 的方程;(2)设直线y =与(1)中所求圆M 交于E ,F 两点,点P 为直线5x =上的动点,直线PE ,PF 与圆M 的另一个交点分别为G ,H ,且G ,H 在直线EF 两侧,求证:直线GH 过定点,并求出定点坐标.【答案】(1)22(1)(4x y -+=(2)证明见解析【分析】(1)由||||OC OD =,知OM l ⊥,运用两直线垂直的条件:斜率之积为1-,解方程可得t ,讨论t 的取值,求得圆心到直线的距离,即可得到所求圆的方程;(2)设0(5,)P y ,11(,)G x y ,22(,)H x y ,求得E ,F 的坐标,PE 和PF 的方程,联立圆的方程,运用韦达定理,3PE PF k k =.设PE k m =,则3PF k m =.设直线GH 的方程为y kx b =+,代入圆的方程,运用韦达定理,可得k ,b 的关系,即可得到所求定点.(1)圆M 过坐标原点O 且圆心在曲线y x =上,设M t ⎛ ⎝⎭由||||OC OD =,知OM l ⊥.所以2OM k t =1t =±.当1t =时,圆心M 到直线:4l y =+的距离1)d =小于半径,符合题意;当1t =-时,圆心(1,M -到直线:4l y =+的距离1)d =大于半径,不符合题意.所以,所求圆M 的方程为22(1)(4x y -+-=.(2)设0(5,)P y ,11(,)G x y ,22(,)H x y ,又知(E -,F ,所以06PE y k =,02PF y k =.显然3PE PF k k =,设PE k m =,则3PF k m =.从而直线PE 方程为:(1)y m x +,与圆M 的方程22(1)(4x y -+=联立,消去y ,可得:2222(1)(22)30m x m x m ++-+-=,所以212311m x m --⨯=+,即21231m x m -=+;同理直线PF 方程为:3(3)y m x -,与圆M 的方程22(1)(4x y -+=联立,消去y ,可得:2222(19)(542)8130m x m x m +-++-=,所以222813319m x m -⨯=+,即22227119m x m -=+.所以22212224232713221199101m m m x x m m m m --+=+=+++++;222122242327111231199101m m m x x m m m m --=⋅=-+++⋅++.消去参数m 整理得121227()200x x x x -++=.①设直线GH 的方程为y kx b =+,代入22(1)(4x y -+=,整理得222(1)(22)0k x kb x b ++--+-=.所以122221kb x x k --+=-+,21221b x x k -⋅=+.代入①式,并整理得22(71030b k b k +-+-+=,即(250b k b k ++-=,解得2b k =或5b k -.当2b k =时,直线GH 的方程为(2)y k x =-;当5b k =时,直线GH 的方程为(5)y k x =-,过定点第二种情况不合题意(因为G ,H 在直径EF 的异侧),舍去.所以,直线GH 过定点.21.如图所示,已知圆222:()0O x y r r +=>上点(1,)a 处切线的斜率为圆O 与y 轴的交点分别为A B 、,与x 轴正半轴的交点为D ,P 为圆O 的第一象限内的任意一点,直线BD 与AP 相交于点M ,直线DP 与y 轴相交于点N .(1)求圆O 的方程;(2)试问:直线MN 是否经过定点?若经过定点,求出此定点坐标;若不经过,请说明理由.【答案】(1)224x y +=;(2)(2,2).【分析】(1)根据切线斜率得切点与圆心连线斜率,解得a,再代入圆方程得r,即得结果,(2)先设直线AP 方程,分别解得P 坐标,M 坐标,以及N 坐标,再求出直线MN 方程,最后根据方程求定点.【详解】(1)由题意得2211413a a r ⋅=-∴==+=∴22:4O x y += (2)设:2(10)AP y kx k =+-<<()222221404y kx k x kx x y =+⎧⇒++=⎨+=⎩222422,11k k P k k ⎛⎫-+⇒- ⎪++⎝⎭()()0,2,2,0B D - ∴直线:2BD y x =-2422,211y x k M y kx k k =-⎧---⎛⎫⇒⎨ ⎪=+--⎝⎭⎩由,,D P N 三点共线得:2222222002222140221121N N k y k k k y k k k k k -+---+-++=⇒==--+++-+∴21MN kk k =+直线MN 为:22211k k y x k k -+=+++即:()()2220y x k y -++-=由2022202y x y x y -==⎧⎧⇒⎨⎨-+==⎩⎩∴直线MN 过定点()2,2.【点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.22.已知圆C 经过()0,1A ,()()4,0B a a >两点.(1)如果AB 是圆C 的直径,证明:无论a 取何正实数,圆C 恒经过除A 外的另一个定点,求出这个定点坐标.(2)已知点A 关于直线3y x =-的对称点A '也在圆C 上,且过点B 的直线l 与两坐标轴分别交于不同两点M 和N ,当圆C 的面积最小时,试求BM BN ⋅的最小值.【答案】(1)证明见解析,定点为()4,1(2)min 8BM BN ⋅=【分析】(1)设点(),P x y 是圆C 上任意一点,由AB 是圆C 的直径,得0AP BP ⋅= ,从而可求出圆C 的方程,即可得出结论;(2)根据题意可得点C 在直线3y x =-上,要使圆C 的面积最小,则圆C 是以AA '为直径的圆,从而可求出圆C 的方程,进而可求得B 点的坐标,设出直线l 的方程,分别求出,M N 的坐标,再根据两点间距离公式结合基本不等式即可得解.【详解】(1)设点(),P x y 是圆C 上任意一点,因为AB 是圆C 的直径,所以0AP BP ⋅= ,即()()()()(),14,410x y x y a x x y y a -⋅--=-+--=,所以圆C 的方程为:()()()410x x y y a -+--=,则4x =,1y =时等式恒成立,故定点为()4,1,所以无论a 取何正实数,圆C 恒经过除A 外的另一个定点,定点坐标为()4,1;(2)因点A 关于直线3y x =-的对称点A '也在圆C 上,所以点C 在直线3y x =-上,又圆C 的面积最小,所以圆C 是以AA '直径的圆,设过点A 与直线3y x =-垂直的直线方程为1y x =-+,由方程组31y x y x =-⎧⎨=-+⎩得()2,1C -,则AC =所以圆C 的方程为()()22218x y -++=,当4x =时,1a =或3a =-,又0a >,所以1a =,即()4,1B ,由题意知直线l 斜率存在且不为零,设直线l 的方程为()14y k x -=-,当0x =时14y k =-,当0y =,时14x k =-,所以||||448BM BN ⋅=,(当且仅当221k k =,即1k =±时取等号)则当1k =±时,min 8BM BN ⋅=。

高三数学解析几何压轴题训练——直线与圆

高三数学解析几何压轴题训练——直线与圆

高三数学解析几何压轴题训练——直线与圆一、选择题1.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( )A .(x +2)2+(y -2)2=2B .(x -2)2+(y +2)2=2C .(x +2)2+(y +2)2=2D .(x -2)2+(y -2)2=2解析:选D 由题意知,曲线方程为(x -6)2+(y -6)2=18,过圆心(6,6)作直线x +y -2=0的垂线,垂线所在直线方程为y =x ,则所求的最小圆的圆心必在直线y =x 上.又(6,6)到直线x +y -2=0的距离d =|6+6-2|2=52,故最小圆的半径为2,圆心坐标为(2,2),所以半径最小的圆的标准方程为(x -2)2+(y -2)2=2.2.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解析:选C 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为C (2,1),半径r =2,因此2+a -1=0,a =-1,即A (-4,-1),|AB |=|AC |2-r 2=(2+4)2+(1+1)2-4=6.3.若曲线y =1+4-x 2与直线kx -y -2k +4=0有两个不同的交点,则实数k 的取值范围是( )A.⎝⎛⎭⎫0,512 B.⎝⎛⎦⎤13,34 C.⎝⎛⎦⎤512,34D.⎝⎛⎭⎫512,+∞ 解析:选C 注意到y ≥1,曲线y =1+4-x 2是圆x 2+(y -1)2=4在直线y =1的上方部分的半圆.又直线kx -y -2k +4=0⇒y -4=k (x -2)知恒过定点A (2,4).如图,由B (-2,1),知k AB =4-12-(-2)=34,当直线与圆相切时,|-1-2k +4|k 2+(-1)2=2,解得k =512,故实数k 的取值范围是⎝⎛⎦⎤512,34.4.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6D .2解析:选B 根据约束条件画出可行域如图中阴影部分所示.设点P 到圆心的距离为d ,求|AB |的最小值等价于求d 的最大值,易知d max =12+32=10,所以|AB |min =214-10=4.5.已知P 是过三点O (0,0),A (1,1),B (4,2)的圆M 上一点,圆M 与x 轴、y 轴的交点(非原点)分别为S ,T ,则|PS |·|PT |的最大值为( )A .25B .50C .75D .100解析:选B 设圆M 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 则⎩⎪⎨⎪⎧F =0,D +E +F +2=0,4D +2E +F +20=0,解得D =-8,E =6,F =0.所以圆M 的方程为x 2+y 2-8x +6y =0, 即(x -4)2+(y +3)2=25.令y=0,得x2-8x=0,解得x=0或x=8.令x=0,得y2+6y=0,解得y=0或y=-6.所以S(8,0),T(0,-6).而圆心(4,-3)在直线ST上,所以PS⊥PT.即|PS|2+|PT|2=(2r)2=100.所以|PS|·|PT|≤12(|PS|2+|PT|2)=50.所以(|PS|·|PT|)max=50.6.设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3)与圆C交于A,B两点,若|AB|=23,则直线l的方程为()A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=0或x=0D.3x-4y+12=0或4x+3y+9=0解析:选B当直线l的斜率不存在时,直线l的方程为x=0,计算出弦长为23,符合题意;当直线l的斜率存在时,可设直线l的方程为y=kx+3,由弦长为23可知,圆心到该直线的距离为1,从而有|k+2|k2+1=1,解得k=-34,所以直线l的方程为3x+4y-12=0.综上,直线l的方程为x=0或3x+4y-12=0.7.若过点P(2,1)的直线l与圆C:x2+y2+2x-4y-7=0相交于两点A,B,且∠ACB =60°(其中C为圆心),则直线l的方程是()A.4x-3y-5=0 B.x=2或4x-3y-5=0C.4x-3y+5=0 D.x=2或4x-3y+5=0解析:选B由题意可得,圆C的圆心为C(-1,2),半径为23,因为∠ACB=60°,所以△ABC为正三角形,边长为23,所以圆心C到直线l的距离为3.若直线l的斜率不存在,则直线l的方程为x=2,与圆相交且圆心C到直线l的距离为3,满足条件;若直线l的斜率存在,不妨设l:y-1=k(x-2),则圆心C到直线l的距离d=|3k+1|k2+1=3,解得k=43,所以此时直线l 的方程为4x -3y -5=0. 8.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ―→+OB ―→|≥33|AB ―→|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)解析:选C 当|OA ―→+OB ―→|=33|AB ―→|时,O ,A ,B 三点为等腰三角形的三个顶点,其中OA =OB ,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,此时k =2.当k >2时,|OA ―→+OB ―→|>33|AB ―→|.又直线与圆x 2+y 2=4有两个不同的交点,故k <22,综上,k 的取值范围为[2,22).9.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]解析:选A 设直线4x -3y +m =0与直线4x -3y -2=0间距等于1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y -7=0的距离等于4,因此所求的圆的半径的取值范围是(4,6).10.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13解析:选C 法一:(排除法)由圆心在x 轴上,可排除A 、B ,又圆过(0,1)点,故圆的半径大于1,排除D ,选C.法二:(待定系数法)设圆的方程为(x -a )2+y 2=r 2,圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |,所以a =|OC |=33,即圆心坐标为⎝⎛⎭⎫±33,0,r 2=|AC |2=12+⎝⎛⎭⎫332=43.所以圆的方程为⎝⎛⎭⎫x ±332+y 2=43.11.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =60°,则实数a 的取值范围为________.解析:如图,圆O 的半径为1,圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则∠APO =30°,在Rt △PAO 中,|PO |=2,又圆M 的半径等于1,圆心坐标M (a ,a -4), ∴|PO |min =|MO |-1,|PO |max =|MO |+1, ∵|MO |=a 2+(a -4)2,∴由a 2+(a -4)2-1≤2≤a 2+(a -4)2+1,解得2-22≤a ≤2+22. 答案:⎣⎡⎦⎤2-22,2+22 12.已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,则当△OPQ 的面积最大时,直线l 的方程为( )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0解析:选D 当直线l 的斜率不存在时,则l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),所以S △OPQ =12×2×25=2 5.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝⎛⎭⎫k ≠12,则圆心到直线PQ 的距离d =|1-2k |1+k 2,又|PQ |=29-d 2,所以S △OPQ =12×|PQ |×d =12×29-d 2×d =(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92,当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92.因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0.二、填空题13.在平面直角坐标系xOy 中,若圆(x -2)2+(y -2)2=1上存在点M ,使得点M 关于x 轴的对称点N 在直线kx +y +3=0上,则实数k 的最小值为________.解析:法一:由题意,设M (2+cos θ,2+sin θ),则N (2+cos θ,-2-sin θ),将N 的坐标代入kx +y +3=0,可得sin θ-k cos θ=2k +1.因为sin θ-k cos θ=k 2+1sin(θ-φ),其中tan φ=k ,所以|2k +1|≤k 2+1,即3k 2+4k ≤0,解得-43≤k ≤0,故k 的最小值为-43. 法二:圆(x -2)2+(y -2)2=1关于x 轴对称的圆的方程为(x -2)2+(y +2)2=1. 问题转化为直线kx +y +3=0与圆(x -2)2+(y +2)2=1有公共点N . 所以|2k -2+3|k 2+1≤1,即|2k +1|≤k 2+1,解得-43≤k ≤0,故k 的最小值为-43.答案:-4314.已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析:如图所示,∵直线AB 的方程为x -3y +6=0, ∴k AB =33,∴∠BPD =30°, 从而∠BDP =60°. 在Rt △BOD 中, ∵|OB |=23,∴|OD |=2.取AB 的中点H ,连接OH ,则OH ⊥AB , ∴OH 为直角梯形ABDC 的中位线, ∴|OC |=|OD |,∴|CD |=2|OD |=2×2=4. 答案:415.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上不同的两点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△PAB 面积的最大值是________.解析:由题意知圆心⎝⎛⎭⎫-k 2,0在直线x -y -1=0上,所以-k2-1=0,解得k =-2,得圆心的坐标为(1,0),半径为1.又知直线AB 的方程为x -y +2=0,所以圆心(1,0)到直线AB 的距离为322,所以△PAB 面积的最大值为12×22×⎝⎛⎭⎫1+322=3+ 2.答案:3+ 216.两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两条平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两条平行直线和圆有一个,两个或三个不同的公共点,则称两条平行线和圆“相切”,已知直线l 1:2x -y +a =0,l 2:2x -y +a 2+1=0和圆x 2+y 2+2x -4=0相切,则a 的取值范围是________.解析:圆的标准方程为(x +1)2+y 2=5, 圆心(-1,0),r =5,两直线分别与圆相切时对应的a 的边界值为:|-2+a 2+1|5=5时,a =±6; |a -2|5=5时,a =-3或a =7, 所以a 的边界值分别为-3,7,±6.由题意可知,两平行直线中必有一条与圆相切,另一条与圆相离,相切,相交三种情况都满足题意,故a ∈[]-3,-6∪[]6,7.答案:[]-3,-6∪[]6,7。

第二章 直线和圆的方程【压轴题专项训练】(解析版)

第二章 直线和圆的方程【压轴题专项训练】(解析版)

第二章直线和圆的方程【压轴题专项训练】一、单选题1.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP△面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【答案】A 【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB =点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离1d ==故点P 到直线x y 20++=的距离2d 的范围为则[]2212,62ABPSAB d ==∈故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.2.已知点()()2,3,3,2A B ---,直线:10l mx y m +--=与线段AB 相交,则直线l 的斜率k 的取值范围是()A .34k ≥或4k ≤-B .344k -≤≤C .15k <-D .344k -≤≤【答案】A 【详解】()()110m x y -+-=,所以直线l 过定点()1,1P ,所以34PB k =,4PA k =-,直线在PB 到PA 之间,所以34k ≥或4k ≤-,故选A .3.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若,a R b R ∈∈且0ab ≠,则2211a b +的最小值为A .1B .3C .19D .49【答案】A 【详解】试题分析:由题意得两圆22()4x a y ++=与22(2)1x y b y +-=相外切,即222149a b =+⇒+=,所以22222222221111(4)141()[5][5]1999a b a b a b a b b a ++=+=++≥+=,当且仅当22224=a b b a 时取等号,所以选A.考点:两圆位置关系,基本不等式求最值【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.4.过圆22:1O x y +=内一点11,42⎛⎫⎪⎝⎭作直线交圆O 于A ,B 两点,过A ,B 分别作圆的切线交于点P ,则点P 的坐标满足方程()A .240x y +-=B .240x y -+=C .240x y --=D .240x y ++=【答案】A 【分析】设出P 点坐标,求解出以OP 为直径的圆M 的方程,将圆M 的方程与圆O 的方程作差可得公共弦AB 的方程,结合点11,42⎛⎫⎪⎝⎭在AB 上可得点P 的坐标满足的方程.【详解】设()00,P x y ,则以OP 为直径的圆()()00:0M x x x y y y -+-=,即22000x y x x y y +--=①因为,PA PB 是圆O 的切线,所以,OA PA OB PB ⊥⊥,所以A ,B 在圆M 上,所以AB 是圆O 与圆M 的公共弦,又因为圆22:1O x y +=②,所以由①-②得直线AB 的方程为:0010x x y y +-=,又点11,42⎛⎫⎪⎝⎭满足直线AB 方程,所以00111042x y +-=,即240x y +-=.故选:A.5.在平面直角坐标系中,已知点(),P a b 满足1a b +=,记d 为点P 到直线20x my --=的距离.当,,a b m 变化时,d 的最大值为()A .1B .2C .3D .4【答案】C 【分析】根据直线:20l x my --=过定点A 确定出对于给定的一点P ,d 取最大值时PA l ⊥且max d PA =,然后根据点P 为正方形上任意一点求解出max PA ,由此可知max d .【详解】直线:20l x my --=过定点()2,0A ,对于任意确定的点P ,当PA l ⊥时,此时d PA =,当PA 不垂直l 时,过点P 作PB l ⊥,此时d PB =,如图所示:因为PB AB ⊥,所以PA PB >,所以max d PA =,由上可知:当P 确定时,max d 即为PA ,且此时PA l ⊥;又因为P 在如图所示的正方形上运动,所以max max d PA =,当PA 取最大值时,P 点与()1,0M -重合,此时()213PA =--=,所以max 3d =,故选:C.【点睛】关键点点睛:解答本题的关键在于利用图像分析d 取最大值时PA 与直线l 的位置关系,通过位置关系的分析可将问题转化为点到点的距离问题,根据图像可直观求解.6.若实数,x y 满足x -=x 最大值是()A .4B .18C .20D .24【答案】C 【分析】当0x =时,解得0y =;当0x >,令t =22x t -+=,设()22x f t t =-+,()g t =()f t 和()g t 有公共点,观察图形可求解.【详解】当0x =时,解得0y =,符合题意;当0x >时,令t =0t ≥,又0x y -≥,则t ≤,即t ⎡∈⎣,则原方程可化为22xt -+=,设()22xf t t =-+,()g t =t ⎡∈⎣,则()f t 表示斜率为2-的直线,()g t则问题等价于()f t 和()g t有公共点,观察图形可知,=20x =,当直线过点(时,2x=4x =,因此,要使直线与圆有公共点,[]4,20x ∈,综上,[]{}4,200x ∈⋃,故x 的最大值为20.故选:C.【点睛】关键点睛:解题得关键是令t =()22xf t t =-+与圆有公共点.7.已知圆222:()(21)2C x m y m m -+-+=,有下列四个命题:①一定存在与所有圆都相切的直线;②有无数条直线与所有的圆都相交;③存在与所有圆都没有公共点的直线;④所有的圆都不过原点.其中正确的命题个数是A .1B .2C .3D .4【答案】C 【分析】①可先设出切线方程,利用圆心到直线距离等于半径建立等式求解.②③根据直线与两条切线的相对位置,可找出与圆相交和相离的直线④假设过原点,有解【详解】由圆222:()(21)2C x m y m m -+-+=知圆心坐标为(),21m m -,半径|r m =,圆心在直线21y x =-上,①假设存在直线与所有圆均相切,设为y kx b =+则(),21m m -到y kx b =+的距离为|r m =可得|r m ==直线与所有圆均相切,故切线应与m 无关,可取1b =-=解得2k =-±即(21y x -±=-所以,存在与所有圆均相切的直线,故①正确;过点()0,1-介于两相切直线之间的直线,均与所有圆相交,故②正确;过点()0,1-在两相切直线之外部区域的直线,与所有圆均没有交点,故③正确;假设过原点,则222()(21)2m m m -+-+=,得1m =或13m =,故④错误.故选:C 【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.8.已知,x y R ∈)AB .3C.D .6【答案】C 【分析】将问题转化为“点()0,y 到点()2,1的距离加上点(),0x 到点()2,1的距离加上点(),0x 到点()0,y 的距离之和的最小值”,采用分类讨论的方法并画出辅助图示求解出最小值.【详解】()0,y 到点()2,1(),0x 到点()2,1的距离,表示点(),0x 到点()0,y 的距离,设()()()2,1,,0,0,A B x C y ,表示AB BC AC ++的长度和,显然当点(),0x 与点()0,y 在,x y 轴的非负半轴上,对应原式的结果更小,当()(),0,0,x y 均不在坐标原点,如下图所示:考虑到求解最小值,所以2,1x y ≤≤,设,B A 关于原点的对称点为,B A '',所以AB BC AC AC B C A B AB A B AA '''''''++=++≥+>==当()(),0,0,x y 其中一个在坐标原点,如下图所示:此时分别有2AC BC AB AC AC AC ++>+==2AC BC AB AB AB AB ++>+==,所以AC BC AB ++>当()(),0,0,x y 都在坐标原点时,AB AC BC ++==的最小值为故选:C.【点睛】(1)先将问题转化为点到点的距离之和问题;(2)画出图示,必要时借助点关于直线的对称点知识进行分析;(3)根据距离之和的最小值得到原式的最小值.二、多选题9.下列说法正确的是()A .直线21y ax a =-+必过定点(2,1)B .直线3240x y -+=在y 轴上的截距为-2C10y ++=的倾斜角为120°D .若直线l 沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后,回到原来的位置,则该直线l 的斜率为23-【答案】ACD 【分析】代入点的坐标判断A ,求出纵截距判断B ,求出斜率得倾斜角,判断C ,写出平移直线后的方程,与原方程一致,由此求得ba-,判断D .【详解】2211z a -+=,所以点(2,1)在直线上,A 正确;对3240x y -+=,令0x =,得2y =,直线3240x y -+=在y 轴上截距为2,B 错误;10y ++=的斜率为120︒,C 正确;设直线l 方程为0ax by c ++=,沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后得(3)(2)0a x b y c ++-+=,即320ax by c a b +++-=它就是0ax by c ++=,所以320a b -=,所以23a kb =-=-,D 正确.故选:ACD .【点睛】关键点点睛:本题考查直线方程,利用直线方程研究直线的性质是解析几何的基本方法.掌握直线的概念与特征是解题关键.10.已知点P 是直线3450x y -+=上的动点,定点()1,1Q ,则下列说法正确的是()A .线段PQ 的长度的最小值为45B .当PQ 最短时,直线PQ 的方程是3470x y +-=C .当PQ 最短时P 的坐标为1341,2525⎛⎫⎪⎝⎭D .线段PQ 的长度可能是23【答案】AC 【分析】当PQ 垂直直线3450x y -+=时,PQ 最短,即可判断A 、D ,设出P 坐标,根据最短使PQ 与直线垂直求解P 坐标,即可判断C ,由两点式求出直线方程,即可判断B .【详解】解:当PQ 垂直直线3450x y -+=时,PQ 最短,Q 到直线的距离为223454534-+=+,故A 正确;故PQ 的长度范围为4,5⎡⎫+∞⎪⎢⎣⎭,2435<,故D 错误;设35,4m P m +⎛⎫ ⎪⎝⎭,则3514413PQ m k m +-==--,解得1325m =,故P 为1341,2525⎛⎫⎪⎝⎭,故C 正确;此时直线PQ 的方程是114113112525y x --=--,即4370x y +-=,故B 错误,故选:AC .11.(2021•佛山模拟)已知圆2221:C x y r +=,圆2222:()()C x a y b r -+-=,(0r >,且a ,b 不同时为0)交于不同的两点1(A x ,1)y ,2(B x ,2)y ,下列结论正确的是A .221122ax by a b +=+B .1212()()0a x x b y y -+-=C .12x x a +=,12y y b+=D .M ,N 为圆2C 上的两动点,且||3MN r =,则||OM ON +的最大值为22a b r ++【答案】ABC【解析】根据题意,圆2221:C x y r +=和圆2222:(?)(?)(0)C x a y b r r +=>交于不同的两点A ,B ,∴两圆方程相减可得直线AB 的方程为:22220a b ax by +--=,即22220ax by a b +--=,分别把点1(A x ,1)y ,2(B x ,2)y 两点坐标代入22220ax by a b +--=得:221122??0ax by a b +=,222222??0ax by a b +=,所以选项A 正确,上面两式相减得:12122()2()0a x x b y y -+-=,即1212()()0a x x b y y -+-=,所以选项B 正确,两圆的半径相等,∴由圆的性质可知,线段AB 与线段12C C 互相平分,则有120222x x a a++==,12022y y bb ++==,变形可得12x x a +=,12y y b +=,C 正确;M ,N 为圆2C 上的两动点,且||3MN r =,设MN 的中点为D ,则2C D MN ⊥,所以22231()22C D r r r =-=,所以MN 的中点D 的轨迹为以2(,)C a b 为圆心,12r 为半径的圆,所以MN 的中点D 的轨迹方程为2221()()4x a y b r -+-=,又||2||OM ON OD +=,所以||OM ON +的最大值为222212()22a b r a b r +=+,故D 错误.故选ABC .三、填空题12.已知C 为圆:()2211x y -+=上一动点,点B 坐标为(3,点A 坐标为()4,0,则3AC BC +的最小值为_________.【答案】27【分析】设圆心为M ,由圆的方程得到圆心和半径,取4,03D ⎛⎫⎪⎝⎭,可证得CMDAMC ,得到3AC CD =,可知()333AC BC CD BC BD +=+≥,利用两点间距离公式可求得最小值.【详解】设圆:()2211x y -+=的圆心为M ,则()1,0M ,半径1MC =,取4,03D ⎛⎫ ⎪⎝⎭,13MD MC MCMA==,CMD CMA ∠=∠,CMD AMC ∴,3AC CD ∴=,()333AC BC CD BC BD ∴+=+≥(当且仅当,,B C D 三点共线且C 在线段BD 上时取等号),BD =,3AC BC ∴+≥即3AC BC +的最小值为故答案为:【点睛】关键点点睛:本题考查圆部分的最值问题的求解,解题关键是能够利用三角形相似将问题转化为三角形两边之和大于第三边的问题,由此确定三点共线时取得最小值.13.已知函数()f x ax b =--,其中a ,b R ∈,()f x 的最大值为(,)M a b ,则(,)M a b 的最小值为___________.【答案】12【分析】数形结合分析可知(,)M a b 的最小值为()[]0,1g x x =∈与()h x ax b x =+=-纵向距离,从而可以求出结果.【详解】函数()(),f x ax b M a b =-≤,即四分之一圆[]0,1y x =∈上的点到直线1x y +=上的最大距离为12-,此时圆上的点记为P ,如图:只有过PN 的中点且平行于直线1x y +=的直线才满足条件,所以当211,2a b =-=时,(,)M a b 的最小值为()[]0,1g x x =∈与()212h x ax b x +=+=-的纵向距离,即(,)M a b 的最小值为1⎛- ⎝⎭故答案为:212.【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.14.已知直线()()()11410a x a y a -++-+=(其中a 为实数)过定点P ,点Q 在函数1y x x=+的图像上,则PQ 连线的斜率的取值范围是___________.【答案】[3)-+∞,【分析】把直线方程整理成a 的多项式,根据恒等式的知识求出定点P 的坐标,【详解】由()()()11410a x a y a -++-+=得(4)40x y a x y -+-++-=∴4040x y x y -+-=⎧⎨+-=⎩,解得0,4x y =⎧⎨=⎩,∴(0,4)P 。

江苏)高考数学 压轴大题突破练 直线与圆

江苏)高考数学 压轴大题突破练 直线与圆

中档大题规范练——直线与圆1.已知圆O:x2+y2=4和点M(1,a).(1)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程.(2)若a=2,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值.解(1)由条件知点M在圆O上,所以1+a2=4,则a=± 3.当a=3时,点M为(1,3),kOM=3,k切=-33,此时切线方程为y-3=-33(x-1).即x+3y-4=0,当a=-3时,点M为(1,-3),kOM=-3,k切=3 3.此时切线方程为y+3=33(x-1).即x-3y-4=0.所以所求的切线方程为x+3y-4=0或x-3y-4=0.(2)设O到直线AC,BD的距离分别为d1,d2(d1,d2≥0),则d21+d22=OM2=3.又有AC=24-d21,BD=24-d22,所以AC+BD=24-d21+24-d22.则(AC+BD)2=4×(4-d21+4-d22+24-d21·4-d22)=4×[5+216-4?d21+d22?+d21d22]=4×(5+24+d21d22).因为2d1d2≤d 21+d22=3,所以d21d22≤94, 当且仅当d1=d2=62时取等号,所以4+d21d22≤52, 所以(AC +BD)2≤4×(5+2×52)=40. 所以AC +BD≤210,即AC +BD 的最大值为210.2.已知圆C :(x +1)2+y2=8.(1)设点Q(x ,y)是圆C 上一点,求x +y 的取值范围;(2)在直线x +y -7=0上找一点P(m ,n),使得过该点所作圆C 的切线段最短.解 (1)设x +y =t ,因为Q(x ,y)是圆上的任意一点,所以该直线与圆相交或相切, 即|-1+0-t|2≤22,解得-5≤t≤3, 即x +y 的取值范围是[-5,3].(2)因为圆心C 到直线x +y -7=0的距离d =|-1+0-7|2=42>22=r , 所以直线与圆相离,因为切线、圆心与切点的连线、切线上的点与圆心的连线,组成一直角三角形且半径为定值;所以只有当过圆心向直线x +y -7=0作垂线,过其垂足作的切线段最短,其垂足即为所求.设过圆心作直线x +y -7=0的垂线为x -y +c =0.又因为该线过圆心(-1,0),所以-1-0+c =0,即c =1,而x +y -7=0与x -y +1=0的交点为(3,4),即点P 坐标为(3,4).3.已知点P(0,5)及圆C :x2+y2+4x -12y +24=0.(1)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程;(2)求过P 点的圆C 的弦的中点的轨迹方程.解 (1)如图所示,AB =43,将圆C 方程化为标准方程为(x +2)2+(y -6)2=16,∴圆C 的圆心坐标为(-2,6),半径r =4,设D 是线段AB 的中点,则CD ⊥AB ,又AD =23,AC =4.在Rt △ACD 中,可得CD =2.设所求直线l 的斜率为k ,则直线l 的方程为y -5=kx ,即kx -y +5=0.由点C 到直线l 的距离公式:|-2k -6+5|k2+?-1?2=2, 得k =34. 故直线l 的方程为3x -4y +20=0.又直线l 的斜率不存在时,也满足题意,此时方程为x =0. ∴所求直线l 的方程为x =0或3x -4y +20=0.(2)设过P 点的圆C 的弦的中点为D(x ,y),则CD ⊥PD ,即CD →·PD→=0, ∴(x +2,y -6)·(x,y -5)=0,化简得所求轨迹方程为x2+y2+2x -11y +30=0.4.a 为何值时,(1)直线l1:x +2ay -1=0与直线l2:(3a -1)x -ay -1=0平行?(2)直线l3:2x +ay =2与直线l4:ax +2y =1垂直?解 (1)①当a =0时,两直线的斜率不存在,直线l1:x -1=0,直线l2:x +1=0,此时,l1∥l2.②当a≠0时,l1:y =-12a x +12a ,l2:y =3a -1a x -1a ,直线l1的斜率为k1=-12a ,直线l2的斜率为k2=3a -1a ,要使两直线平行,必须⎩⎪⎨⎪⎧ -12a =3a -1a ,12a ≠-1a ,解得a =16.综合①②可得当a =0或a =16时,两直线平行.(2)方法一 ①当a =0时,直线l3的斜率不存在,直线l3:x -1=0,直线l4:y -12=0,此时,l3⊥l4. ②当a≠0时,直线l3:y =-2a x +2a 与直线l4:y =-a 2x +12,直线l3的斜率为k3=-2a ,直线l4的斜率为k4=-a 2,要使两直线垂直,必须k3·k4=-1,即-2a ·⎝ ⎛⎭⎪⎫-a 2=-1,不存在实数a 使得方程成立. 综合①②可得当a =0时,两直线垂直.方法二 要使直线l3:2x +ay =2和直线l4:ax +2y =1垂直,根据两直线垂直的充要条件,必须A1A2+B1B2=0,即2a +2a =0,解得a =0,所以,当a =0时,两直线垂直.5.已知圆C 的方程为x2+y2+ax +2y +a2=0,一定点为A(1,2),且过定点A(1,2)作圆的切线有两条,求a 的取值范围.解 将圆C 的方程配方有(x +a 2)2+(y +1)2=4-3a24, ∴4-3a24>0,① ∴圆心C 的坐标为(-a 2,-1),半径r =4-3a22. 当点A 在圆外时,过点A 可作圆的两条切线,∴AC>r ,即 ?1+a 2?2+?2+1?2>4-3a22, 化简得a2+a +9>0.②由①②得-233<a<233, ∴a 的取值范围是-233<a<233. 6.已知以点C(t ,2t)(t ∈R ,t≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程;(3)在(2)的条件下,设P 、Q 分别是直线l :x +y +2=0和圆C 上的动点,求PB +PQ 的最小值及此时点P 的坐标.(1)证明 由题设知,圆C 的方程为(x -t)2+(y -2t )2=t2+4t2, 化简得x2-2tx +y2-4ty =0, 当y =0时,x =0或2t ,则A(2t,0);当x =0时,y =0或4t ,则B(0,4t), 所以S △AOB =12OA·OB =12|2t|·|4t|=4为定值. 即△AOB 的面积为定值.(2)解 ∵OM =ON ,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t2=12,∴t =2或t =-2. ∴圆心为C(2,1)或C(-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5.由于当圆方程为(x +2)2+(y +1)2=5时,圆心到直线2x +y -4=0的距离d>r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.(3)解 点B(0,2)关于直线x +y +2=0的对称点B′(-4,-2), 则PB +PQ =PB′+PQ≥B′Q,又B′到圆上点Q 的最短距离为B′C-r =?-6?2+?-3?2- 5=35-5=2 5.所以PB +PQ 的最小值为25,直线B′C 的方程为y =12x ,则直线B′C 与直线x +y +2=0的交点P 的坐标为(-43,-23).。

第12讲 直线与圆压轴题精选(原卷版)

第12讲 直线与圆压轴题精选(原卷版)

第12讲 直线与圆压轴题精选题型一:单选题【例1】(2022·全国·模拟预测(文))已知过点作圆的两条切线()()4,0P m m ≠22:40C x y y +-=PA,,切点分别为,,则直线必过定点( )PB A B AB A . B . C . D .()1,2()2,1()1,111,2⎛⎫⎪⎝⎭【例2】(2022·北京·高三专题练习)在平面直角坐标系中,直线与轴和()0y kx m k =+≠x y轴分别交于,两点,,若,则当,变化时,点到点A B AB =CA CB ⊥k m C ()1,1的距离的最大值为( )A .B .C .D 【例3】(2022·全国·高三专题练习(理))已知是圆上一个动点,且直线M 22:1C x y +=与直线相交于点P ,则1:30l mx ny m n --+=222:30(,R,0)l nx my m n m n m n +--=∈+≠PM的取值范围是( )A .B .C .D .1,1]+1]1]1]【例4】(2022·广东汕头·高二期末)已知平面向量,且,向量满足,a b ||||2,2a b a b ==⋅= c ,则的最小值为( )1||||2--=- c a b a b ||()c λb λR -∈A B C D 111【例5】(2022·江西抚州·高二期末(理))已知直线l 与圆交于A ,B 两点,点22:9O x y +=()4,0P 满足,若AB 的中点为M ,则的最大值为( )PA PB ⊥OMA .B .C .D .2+23232【例6】(2022·山东·烟台二中模拟预测)已知过点的动直线l 与圆C :(2216xy +=交于A ,B 两点,过A ,B 分别作C 的切线,两切线交于点N .若动点,则()()cos ,sin 02M θθθπ≤<的最小值为( )MNA .6B .7C .8D .9【例7】(2022·全国·高三专题练习)已知平面直角坐标系内一动点P ,满足圆()22:41C x y -+=上存在一点Q 使得,则所有满足条件的点P 构成图形的面积为( )45CPQ ∠=︒A .B .C .D .34ππ32π2π【例8】(2022·浙江·高三专题练习)已知圆,圆()()221:111C x y -++=()()222:459C x y -+-=,点M 、N 分别是圆、圆上的动点,点P 为x 轴上的动点,则的最大值是( )1C 2C PN PM-A .B .9C .7D .42+【题型专练】1.(2021·黑龙江·哈尔滨三中高三阶段练习(理))已知圆,点是直线22:(2)1C x y -+=P :0l x y +=上一动点,过点作圆的切线切点分别是和,下列说法正确的为( )P C ,PA PB A B A .圆上恰有一个点到直线的距离为C l 12B .切线长的最小PAC .四边形面积的最小值为2ACBP D .直线恒过定点AB 31,22⎛⎫- ⎪⎝⎭2.(2022·江苏省滨海中学模拟预测)AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为⊙C 上一动点,则的取值范围是( )PA PB ⋅ A .[0,100]B .[-12,48]C .[-9,64]D .[-8,72]3.(2021·江苏·高二专题练习)已知是半径为1的动圆上一点,为圆()3,4M C P 22:1O x y +=上一动点,过点作圆的切线,切点分别为,,则当取最大值时,△P C A B ABPAB的外接圆的方程为( )A .B .223460x y x y +---=223460x y x y +--+=C .D .22340x y x y +--=22430x y x y +--=4.(2021·浙江·高二期中)设点,若在圆上存在点,使得,则()0,1M x 22:+1O x y =N 45OMN ∠=︒0x 的取值范围是( )A .B .C .D.⎡⎢⎣(][),11,-∞-+∞ ⎡⎣[]1,1-5.(2022·全国·高三专题练习(理))已知直线:40l x y -+=与x 轴相交于点A ,过直线l 上的动点P 作圆的两条切线,切点分别为C ,D 两点,记M 是224x y +=的中点,则的最小值为( )CD AMA .B .CD .36.(2021·江苏·高二专题练习)已知A 、B 是圆O :上两个动点,点P 的坐标为,若224x y +=(2,1),则线段长度的最大值为( )PAPB ⊥AB A .B .C.D32+7.(2021·辽宁营口·高三期末)已知圆的半径为3,是圆的一条直径,C AB C ,M N为圆上动点,且,点在线段上,则的最小值为( )4MN =E MN AE BE ⋅A .B .C .D .3-4-5-6-8.(2021·江苏·高二专题练习)直线 ,动直线 ,动直线:220l x y -+=1:0l ax y -=.设直线与两坐标轴分别交于两点,动直线l 1与l 2交于点P ,则2:240l x ay a ++-=l ,A B PAB△的面积最大值( )A .BC .D .11121129.(2020·安徽·安庆一中高二期中)已知点P (1,0)及圆C :222x y +=,点M ,N 在圆C 上,若PM ⊥PN ,则的取值范围为MNA .B .1⎤⎦22⎡+⎣C .D .21,2⎡-+⎣21,2⎡⎣10.(2021·江苏·高二专题练习)已知直线:与直线:1l 310mx y m --+=2l 310x my m +--=相交于点P ,线段是圆C :的一条动弦,且D 是线段AB ()()22114x y +++=AB =AB的中点.则的最大值为( )PDA .B .C .D .1题型一: 多选题【例1】(2022·全国·高二课时练习)已知点为圆()1,2M 228x y +=内一点,直线m 是以M 为中点的弦所在的直线,直线l 的方程为,则( )280x y ++=A .B .C .l 与圆相交D .l 与圆相离l m⊥//l m【例2】(2021新高考1卷多选)已知点在圆上,点、P ()()225516x y -+-=()4,0A ()0,2B ,则( )A. 点到直线的距离小于B. 点到直线的距离大于P AB 10P AB 2C. 当最小时,当最大时,PBA ∠PB =PBA ∠PB =【例3】(2022·重庆·二模)已知点,过直线上一点作圆()()0,0,4,4O A OA B 22:(4)4C x y -+=的切线,切点分别为,则( ),P Q A .以线段为直径的圆必过圆心PQ CB .以线段为直径的圆的面积的最小值为PQ 2πC .四边形的面积的最小值为4BPCQ D .直线在轴上的截距的绝对值之和的最小值为4PQ ,x y 【例4】(2022·福建福州·高二期中)在平面直角坐标系xOy 中,,,点P 满足()1,0A ()2,0B -,设点P 的轨迹为C ,则( )12PA PB =A .C 的周长为B .OP 平分∠APB4πC .面积的最大值为6D .当时,直线BP 与圆C 相切ABP △AP AB ⊥【例5】(2021·福建宁德·高二期中)(多选)下列命题正确的有( )A .直线 恒过定点()()34330R m x y m m ++-+=∈()33-,B .已知圆与圆相交于两点,则直线的方程为2214C x y +=:2222210C x y x y +--+=:A B ,AB .2250x y ++=C .圆与圆 恰有三条公切线,则()2211x y ++=()()222420x y m-+-=-4m =D .已知点分别为圆与直线上的动点,则的最小值为3.P Q ,()()22121x y -++=3450x y +-=PQ 【例6】(2022·全国·高二课时练习)已知直线l 与圆22:240C x y x y a ++-+=相交于A ,B 两点,弦AB 的中点为.下列结论中正确的是( )()0,1M A .实数a 的取值范围为B .实数a 的取值范围为3a <5a <C .直线l 的方程为D .直线l 的方程为10x y +-=10x y -+=【例7】(2022·湖北·荆门市龙泉中学高二期中)圆C :,直线224630x y x y ++--=,点P 在圆C 上,点Q 在直线l 上,则下列结论正确的是( ):3470l x y --=A .直线l 与圆C 相交B .的最小值是1||PQ C .若P 到直线l 的距离为2,则点P 有2个D .从Q 点向圆C 引切线,则切线段的最小值是3【例8】(2022·湖北·二模)设动直线交圆:230()l mx y m m R --+=∈22:(4)(5)12C x y -+-=于A ,B 两点(点C 为圆心),则下列说法正确的有( )A .直线l 过定点(2,3)B .当取得最小值时,||AB 1m =C .当最小时,其余弦值为ACB ∠14D .的最大值为24AC AB ⋅【题型专练】1.(2022·山东·青岛二中高三期末)点P 在圆M :()()225516x y -+-=上,点A (4,0),点B (0,2),下列结论正确的是( )A .过点A 可以作出圆的两条切线B .圆M 关于直线AB 对称的圆的方程为22131655x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭C .点P 到直线AB 4D .当∠PBA 最大时,PB =2.(2022·辽宁锦州·一模)关于直线与圆:l y kx m =+22:4C x y +=,下列说法正确的是( )A .若直线l 与圆C 相切,则为定值B .若,则直线l 被圆C 截得的弦长为定值224m k -221m k -=C .若,则直线l 与圆C 相离D .1k m =+22m -<<是直线l 与圆C 有公共点的充分不必要条件3.(2021·辽宁大连·高二期中)点在圆上,点在圆P 221:1C x y +=Q 222:68240C x y x y +-++=上,则( )A .的最小值为3B .的最大值为7PQPQC .两个圆心所在的直线斜率为D .两个圆相交43-4.(2022·浙江浙江·高二期中)已知圆,直线22:60C x y x +-=:440()l mx y m m R +-+=∈,则下列结论正确的有( )A .圆C 的圆心坐标为,半径为9(3,0)B .对于任意实数m 直线l 恒过定点(1,1)-C .若直线l 交圆C 于A ,B 两点,则弦长的最小值为4ABD .当时,直线l 交圆C 于A ,B 两点,D 是圆C 上的动点,则面积的最大值为3m =ABD △5.(2022·湖南·长郡中学高三阶段练习)已知点在圆上,点,P 22:4O x y +=()3,0A ()0,4B ,则( )A .点到直线的距离最大值为P AB 225B .满足的点有2个AP BP ⊥P C .过点作圆的两切线,切点分别为、,则直线的方程为B O M N MN 1y =D .的最小值是2PA PB+6.(2021·重庆市两江中学校高二阶段练习)以下四个命题表述正确的是( )A .若点在圆外,则实数m 的取值范围为(1,2)222(1)20x y x m y m +++--+=(7,)-+∞B .圆上有且仅有3个点到直线222x y +=:10l x y -+=C .圆和圆外切221:2440C x y x y +---=222:2220C x y x y +++-=D .实数满足,则的取值范围是,x y 2220x y x ++=1yx -[7.(2021·湖北·黄石市有色第一中学高二阶段练习)以下四个命题表述错误的是( )A .直线恒过定点(1)(21)3()-+-=-∈R m x m y m m (5,2)--B .圆上有且仅有个点到直线222x y +=3:10l x y -+=C .曲线与恰有四条公切线,则实数的取值范围为22120C :x y x ++=222480C :x y x y m +--+=m 4m >D .已知圆,为直线上一动点,过点向圆引条切线,其中22:2C x y +=P 0x y ++=P C PA A为切点,则PA题型二: 解答题【例1】(2021·浙江高二期末)已知圆C 经过(4,2),(1,3)A B -两点,且在两坐标轴上的四个截距之和为2,(1)求圆C 的方程;(2)求过点且与圆C 相切的直线方程.P 【例2】(2022·全国·高二课时练习)已知圆,直线22:(1)(2)25C x y -+-=.:(21)(1)740()l m x m y m m R +++--=∈(1)证明:不论m 取什么实数,直线 l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最小时 l 的方程.【例3】(2022·全国·高二课时练习)已知圆与直线2260x y x y m ++-+=230x y +-=交于M ,N 两点,且(O 为坐标原点),求m 的值.OM ON ⊥【例4】(2020·西安市·陕西师大附中)在平面直角坐标系中,设二次函数xoy 的图象与两坐标轴有三个交点,经过这三个交点的圆记为.2()2()f x x x b x R =++∈C (Ⅰ)若,求圆的方程;1b =-C (Ⅱ)当取所允许的不同的实数值时(,且),圆是否经过某定点(其坐标与b 1b <0b ≠C b 无关)?请证明你的结论.【例5】(2020·嘉祥县第一中学高二期中)古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数(且k 0k >1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知平面直角系中的点xOy,则满足的动点的轨迹记为圆.E F ||||PF PE =P E (1)求圆的方程;E (2)若点,当在上运动时,记(2,2),(2,6),(4,2)A B C ---P E 222||||||PA PB PC ++的最大值和最小值分别为和,求的值.M m M m +(3)过点向圆作切线,切点分别是,求直线的方程.(3,3)Q E ,QS QT ,S T ST 【例6】(2022·全国·高二课时练习)已知以点()2,,0C t t R t t ⎛⎫∈≠ ⎪⎝⎭为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O 、B ,其中O 为坐标原点.(1)试写出圆C 的标准方程;(2)求证:的面积为定值;OAB (3)设直线与圆C 交于M ,N 两点,若,求圆C 的标准方程.24y x =-+=OM ON【题型专练】1.(2022·浙江浙江·高一期中)已知圆的方程:.C 22240x y x y m +---=(1)求实数的取值范围;m(2)若圆与直线交于,,求的值.C :230l x y +-=M N m 2.(2021·重庆市石柱中学校高二阶段练习)已知圆经过坐标原点,且与直线C 20x y -+=相切,切点为.()2,4P (1)求圆的标准方程;C (2)过圆内点的最长弦和最短弦分别为和求四边形的面积.C ()3,1E AF BD ABFD .3.(2021·山西·长治市上党区第一中学校高二阶段练习)设圆C 的圆心在x 轴的正半轴上,与y轴相交于点,且直线被圆C 截得的弦长为(A y x =(1)求圆C 的标准方程;(2)设直线y x m=-+与圆C 交于M ,N 两点,那么以MN 为直径的圆能否经过原点,若能,请求出直线MN 的方程;若不能,请说明理由.4.(2022·浙江·海宁一中高二期中)已知圆,点222212:(1)(2)1,:(3)(4)3C x y C x y -+-=-+-=分别在轴和圆上.,,P A B x 12,C C (1)判断两圆的位置关系;(2)求的最小值.PA PB +5.(2022·全国·高二课时练习)若圆与圆相外切.221:C x y m +=222:68160C x y x y +--+=(1)求m 的值;(2)若圆与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,P 为第三象限内一点且在圆1C 1C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.。

高中数学-直线、圆与方程压轴题(培优、提高)汇编

高中数学-直线、圆与方程压轴题(培优、提高)汇编

高二数学 第3讲 直线与圆综合1.已知圆C :x 2+y 2+2x -3=0.(1)求圆的圆心C 的坐标和半径长;(2)直线l 经过坐标原点且不与y 轴重合,l 与圆C 相交于A (x 1,y 1)、B (x 2,y 2)两点,求证:2111x x 为定值;(3)斜率为1的直线m 与圆C 相交于D 、E 两点,求直线m 的方程,使△CDE 的面积最大.2.已知点G (5,4),圆C 1:(x -1)2+(x -4)2=25,过点G 的动直线l 与圆C 1相交于E 、F 两点,线段EF 的中点为C .(1)求点C 的轨迹C 2的方程;(2)若过点A (1,0)的直线l 1与C 2相交于P 、Q 两点,线段PQ 的中点为M ;又l 1与l 2:x +2y +2=0的交点为N ,求证|AM|•|AN|为定值.3.已知点C (1,0),点A ,B 是⊙O :x2+y2=9上任意两个不同的点,且满足0=⋅BC AC ,设M 为弦AB 的中点.求点M 的轨迹T 的方程;4.已知平面直角坐标系上一动点(,)P x y 到点(2,0)A -的距离是点P 到点(1,0)B 的距离的2倍。

(1)求点P 的轨迹方程;(2)若点P 与点Q 关于点(2,1)对称,点(3,0)C ,求22||||QA QC +的最大值和最小值;(3)过点A 的直线l 与点P 的轨迹C 相交于,E F 两点,点(2,0)M ,则是否存在直线l ,使EFM S △取得最大值,若存在,求出此时l 的方程,若不存在,请说明理由。

5.已知圆22:4O x y +=和点(1,)M a .(1)若过点M 有且只有一条直线与圆O 相切,求正数a 的值,并求出切线方程;(2)若a =M 的圆的两条弦AC ,BD 互相垂直.①求四边形ABCD 面积的最大值;②求||||AC BD +的最大值.6.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.7.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M、N两点,Q是MN的中点,直线l与l1相交于点P.(I)求圆A的方程;2时,求直线l的方程;(Ⅱ)当MN=19(Ⅲ)BPBQ 是否为定值,如果是,求出定值;如果不是,请说明理由.8.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方(1)求圆C的方程;(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.9.平面直角坐标系xoy中,直线x-y+1=0截以原点O为圆心的圆所得的弦长为6.(1)求圆O的方程;(2)若直线l与圆O切于第一象限,且与坐标轴交于D,E,当DE长最小时,求直线l的方程;(3)设M,P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交于x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由.10.已知圆M:x2+(y-4)2=4,点P是直线l:x-2y=0上的一动点,过点P作圆M的切线PA、PB,切点为A、B.(Ⅰ)当切线PA的长度为23时,求点P的坐标;(Ⅱ)若△PAM的外接圆为圆N,试问:当P运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(Ⅲ)求线段AB长度的最小值.11.已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;(2)过点N(1,0)任意作相互垂直的两条直线l1,l2,分别交曲线C于不同的两点A,B和不同的两点D,E.设线段AB,DE的中点分别为P,Q.①求证:直线PQ过定点R,并求出定点R的坐标;②求|PQ|的最小值.。

直线与圆的位置关系压轴题八种模型全攻略(解析版)

直线与圆的位置关系压轴题八种模型全攻略(解析版)

直线与圆的位置关系压轴题八种模型全攻略【考点导航】目录【典型例题】【考点一判断直线和圆的位置关系】【考点二已知直线和圆的位置关系求半径的取值】【考点三已知直线和圆的位置关系求圆心到直线的距离】【考点四判断或补全使直线为切线的条件】【考点五证明某直线是圆的切线】【考点六切线的性质定理】【考点七切线的性质与判定的综合应用】【考点八直角三角形周长、面积与内切圆半径的关系】【过关检测】【典型例题】【考点一判断直线和圆的位置关系】1(2023春·广东惠州·九年级校考开学考试)如图,∠O=30°,P为OA上一点,且OP=6,以点P为圆心,半径为3的圆与OB的位置关系是( )A.相离B.相交C.相切D.以上三种情况均有可能【答案】C【分析】过点P作PC⊥OB于点C,根据直角三角形的性质,可得PC=12OP=3,再由直线与圆的位置,即可求解.【详解】解:如图,过点P作PC⊥OB于点C,∵∠O=30°,OP=6,∴PC=12OP=3,∵以点P为圆心的圆的半径为3,∴以点P为圆心,半径为3的圆与OB的位置关系是相切.故选:C【点睛】本题主要考查了直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键.【变式训练】1.(2023春·广东梅州·九年级校考开学考试)Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,以AC长为半径作⊙C,则AB与⊙C的位置关系是()A.相离B.相切C.相交D.无法确定【答案】C【分析】此题首先应求得圆心到直线的距离,根据直角三角形的面积公式即可求得;再进一步根据这些和圆的位置关系与数量之间的联系进行判断.【详解】解:根据勾股定理求得BC=5.∵AC=3,BC=4,∴AB=32+42=5,S△ABC=12AC×BC=12×3×4=6,∴AB上的高为:6×2÷5=2.4,即圆心到直线的距离是2.4.∵2.4<3,∴直线和圆相交.故选:C.【点睛】此题主要考查了直线与圆的位置关系,关键是根据三角形的面积求出斜边上的高的长度.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2022秋·九年级单元测试)已知⊙O的半径是3,点P在⊙O上,如果点P到直线l的距离是6,那么⊙O与直线l的位置关系是()A.相交B.相离C.相切或相交D.相切或相离【答案】D【分析】根据圆心到直线的距离d与圆的半径r之间的大小关系解答.【详解】如图,当点P与P1重合时,⊙O与直线l相切;当点P与P1不重合时,⊙O与直线l相离,∴⊙O与直线l的位置关系是相切或相离.故选:D.【点睛】此题考查直线与圆的位置关系,掌握数形结合是解题的关键.【考点二已知直线和圆的位置关系求半径的取值】1(2022秋·江苏连云港·九年级统考期中)直线l与⊙O相离,且⊙O的半径等于3,圆心O到直线l的距离为d,则d的取值范围是.【答案】d>3【分析】根据直线与圆的位置关系判断即可.【详解】解:∵直线l与⊙O相离,且⊙O的半径等于3,圆心O到直线l的距离为d,∴d的取值范围是d>3;故答案为:d>3.【点睛】本题考查了直线与圆的位置关系,设⊙O的半径等于r,圆心O到直线l的距离为d,则当d>r 时,直线与圆相离,当d=r时,直线与圆相切,当d<r时,直线与圆相交;反之也成立.【变式训练】1.(2023·全国·九年级专题练习)已知直线l与半径长为R的⊙O相离,且点O到直线l的距离为5,那么R的取值范围是.【答案】0<R<5【分析】若直线和圆相离,则应满足d>r即可.【详解】解:∵直线和圆相离,且点O到直线l的距离为5,∴0<R<5,故答案为:0<R<5.【点睛】本题考查了直线和圆的位置关系,掌握直线和圆的位置关系与数量之间的等价关系.直线和圆相离,则应满足d>R是解题的关键.2.(2023·湖南常德·统考模拟预测)如图,已知∠ACB=30°,CM=2,AM=5,以M为圆心,r为半径作⊙M,⊙M与线段AC有交点时,则r的取值范围是.【答案】1≤r≤5【分析】过M作MH⊥AC于H,根据直角三角形的性质得到HM=12CM=1,然后根据直线与圆的位置关系即可得到结论.【详解】解:过M作MH⊥AC于H,如图所示:∵CM=2,∠ACB=30°,∴HM=12CM=1,∵AM=5,⊙M与线段AC有交点,∴r的取值范围是1≤r≤5,故答案为:1≤r ≤5.【点睛】本题考查了直线和圆的位置关系:设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,若直线l 和⊙O 相交⇔d <r ;直线l 和⊙O 相切⇔d =r ;直线l 和⊙O 相离⇔d >r .【考点三已知直线和圆的位置关系求圆心到直线的距离】1(2022秋·九年级单元测试)设⊙O 的半径为R ,圆心O 到直线l 的距离为d ,若d 、R 是方程x 2-6x+m =0的两根,则直线l 与⊙O 相切时,m 的值为.【答案】9【分析】先根据直线与圆的位置关系得出方程有两个相等的根,再根据Δ=0即可求出m 的值.【详解】解:∵d 、R 是方程x 2-6x +m =0的两个根,且直线l 与⊙O 相切,∴d =R ,∴方程有两个相等的实根,∴Δ=b 2-4ac =-6 2-4m =36-4m =0,解得,m =9,故答案为:9.【点睛】本题考查的是直线与圆的位置关系及一元二次方程根的判别式,熟知以上知识是解答此题的关键.【变式训练】1.(2022春·九年级课时练习)在直角坐标系中,⊙M 的圆心坐标为m ,0 ,半径是2.如果⊙M 与y 轴相切,那么m =;如果⊙M 与y 轴相交,那么m 的取值范围是;如果⊙M 与y 轴相离,那么m 的取值范围是.【答案】±2-2<m <2m <-2或m >2【分析】根据y 轴与圆的位置关系,推出圆心到y 轴的距离和半径之间的关系即可得解.【详解】解:∵⊙M 与y 轴相切,∴|m |=r =2;即m =±2;∴如果⊙M 与y 轴相交,那么m 的取值范围是-2<m <2;如果⊙M 与y 轴相离,那么m 的取值范围是m <-2或m >2.故答案为:±2;-2<m <2;m <-2或m >2.【点睛】本题考查直线与圆的位置关系,熟练掌握圆心到直线的距离与圆的半径的大小关系与直线与圆的位置关系之间的联系,是解题的关键.2.(2023·陕西·模拟预测)如图,在直角梯形ABCD 中,AD ∥BC ,∠A =90°,E 是AD 上一定点,AB =3,BC =6,AD =8,AE =2.点P 是BC 上一个动点,以P 为圆心,PC 为半径作⊙P .若⊙P 与以E 为圆心,1为半径的⊙E 有公共点,且⊙P 与线段AD 只有一个交点,则PC 长度的取值范围是.【答案】154<PC ≤4或PC =3【分析】根据题意可得PC 的最小值为圆P 与AD 相切,切点为M ;PC 最大值为圆P 与圆E 内切,切点为Q ,由直线与圆的位置关系,圆与圆的位置关系即可解决问题.【详解】解:根据题意可知:PC 的最小值为圆P 与AD 相切,切点为M ,如图所示:∴PM ⊥AD ,在直角梯形ABCD 中,∵AD ∥BC ,∴∠ABC =∠A =90°,∴四边形ABPM 是矩形,∴PM =AB =PC =3,PC 最大值为圆P 与圆E 内切,切点为Q ,∴P ′C =P ′Q =P ′E +EQ =3+1=4,当PC =PA 时,此时圆P 与线段AD 开始有2个交点,不符合题意,设PC =PA =x ,则BP =BC -PC =6-x ,AB =3,∴6-x 2+9=x 2,∴x =154,则PC 长度的取值范围是154<PC ≤4或PC =3.故答案为:154<PC ≤4或PC =3.【点睛】本题考查了直线与圆的位置关系,圆与圆的位置关系,直角梯形,解决本题的关键是掌握直线与圆的位置关系,圆与圆的位置关系.【考点四判断或补全使直线为切线的条件】1(2023·江苏·九年级假期作业)如图,已知∠AOB =30°,M 为OB 边上任意一点,以M 为圆心,2cm为半径作⊙M ,当OM =cm 时,⊙M 与OA 相切.【答案】4【分析】过M 作MN ⊥OA 于点N ,此时以MN 为半径的圆⊙M 与OA 相切,根据30°角所对直角边为斜边的一半可得OM 的长.【详解】解:如图,过M 作MN ⊥OA 于点N ,∵MN=2cm,∠AOB=30°,∴OM=4cm,则当OM=4cm时,⊙M与OA相切.故答案为4.【点睛】本题主要考查切线判定,直角三角形中30°角所对直角边为斜边的一半,解此题的关键在于熟练掌握其知识点.【变式训练】1.(2022春·九年级课时练习)如图,AB为⊙O的直径,AB=1cm,BC=2cm,当AC=cm时,直线AC与⊙O相切.【答案】1【分析】直线AC与⊙O相切时,∠BAC=90°,根据勾股定理即可求出AC.【详解】解:当∠BAC=90°时,直线AC与⊙O相切,∴AC=BC2+AB2=(2)2+12=1(cm),故答案为:1.【点睛】本题考查了切线的判定,掌握切线的判定和性质是解题关键.2.(2022春·九年级课时练习)如图,A、B是⊙O上的两点,AC是过A点的一条直线,如果∠AOB=120°,那么当∠CAB的度数等于度时,AC才能成为⊙O的切线.【答案】60【分析】由已知可求得∠OAB的度数,因为OA⊥AC,AC才能成为⊙O的切线,从而可求得∠CAB的度数.【详解】解:∵△AOB中,OA=OB,∠AOB=120°,∴∠OAB=∠OBA=12180°-∠AOB=30°,∵当OA⊥AC即∠OAC=90°时,AC才能成为⊙O的切线,∴当∠CAB的度数等于60°,即OA⊥AC时,AC才能成为⊙O的切线.故答案为:60.【点睛】本题考查了切线的判定,三角形内角和定理,等腰三角形的性质,掌握切线的判定定理是解答此题的关键.【考点五证明某直线是圆的切线】1(2023秋·云南昭通·九年级校联考阶段练习)如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD∥OC交⊙O于点D,连接CD.(1)求证:CD是⊙O的切线.(2)若∠BCD=60°,直径AB=10,求线段BC的长.【答案】(1)见解析(2)53【分析】(1)连接OD,BD,根据平行线的性质可得∠COD=∠ODA,∠COB=∠OAD,通过证明△ODC≌△OBC SAS,得出∠ODC=∠OBC,即可求证;(2)易得OB=OD=5,根据△COD≌△COB,得出∠OCD=∠OCB=30°,则OC=2OB=10,根据勾股定理求解即可.【详解】(1)证明:连接OD,BD,如图所示:∵OA=OD,∴∠ODA=∠OAD.∵AD∥OC,∴∠COD=∠ODA,∠COB=∠OAD,∴∠COD=∠COB.∵OD=OB,OC=OC,∴△ODC≌△OBC SAS.∴∠ODC=∠OBC,∵CB是圆O的切线且OB为半径,∴∠CBO=90°.∴∠CDO=90°.∴OD⊥CD.又∵OD是⊙O半径,∴CD为圆O的切线.(2)解:∵AB是直径,且AB=10,∴OB=OD=5据(1)知,△COD≌△COB,又∠BCD=60°,∴∠OCD=∠OCB=30°,∴在Rt△OBC中:OC=2OB=10,BC=OC2-OB2=102-52=53.【点睛】本题考查了圆周角定理、圆的切线的判定与性质、三角形全等的判定定理与性质,勾股定理等知识点,解题的关键通过正确作辅助线,构造全等三角形,熟练掌握相关知识点并灵活运用.【变式训练】1.(2023秋·云南昭通·九年级统考期末)如图,⊙O的半径为2,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积.【答案】(1)见解析(2)33【分析】(1)首先根据AD=CD,∠A=30°得到∠CDB=60°,进而得到∠OCD=60°,然后求出∠ACO=∠ACD+∠OCD=90°,即可证明;(2)首先得到△DCO是等边三角形,然后作CH⊥BD于点H,利用等腰三角形三线合一性质得到DH=1,进而利用勾股定理求出CH=CD2-DH2=22-12=3,得到AB=AO+OB=4+2=6,最后利用三角形面积公式求解即可.【详解】(1)证明:如图所示,连接OC∵AD=CD,∠A=30°∴∠ACD=30°∴∠CDB=60°∵OD=OC∴∠OCD=60°∴∠ACO=∠ACD+∠OCD=90°∵OC是半径∴直线AC是⊙O的切线;(2)由(1)得△DCO是等边三角形,CD=AD=OD=2作CH⊥BD于点H,则DH=1∴CH=CD2-DH2=22-12=3在△ACO中,∠ACO=90°,∠A=30°∴AO=2OC=4∴AB=AO+OB=4+2=6∴S△ABC=12AB⋅CH=12×6×3=33.【点睛】此题考查了圆和三角形综合题,圆切线的判定,勾股定理,等边三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.2.(2023秋·辽宁葫芦岛·九年级统考期末)如图,四边形ABCD内接于圆O,AD是圆O的直径,AD,BC的延长线交于点E,延长CB交AF于点F,∠BAF+∠DCE=90°.(1)求证:AF是圆O的切线;(2)点G在CE上,且BC=CD=CG,连接DG,DG=2,AB=5,求AD的长.【答案】(1)见解析(2)7【分析】(1)根据四边形ABCD内接于圆O和∠DCE+∠BCD=180°得出∠BAD=∠DCE,再根据∠BAF+∠DCE=90°得出∠FAD=90°即可证明;(2)连接OB,OC,BD,记OC与BD相交于点N,根据BC=CD用垂径定理得出BN=DN,再根据BC =CG,OA=OD运用三角形中位线得出CN,ON即可解答;【详解】(1)证明:∵四边形ABCD内接于圆O∴∠BAD+∠BCD=180°∵∠DCE+∠BCD=180°∴∠BAD=∠DCE∵∠BAF+∠DCE=90°∴∠BAF+∠BAD=90°,即∠FAD=90°又∵AD是圆O的直径∴AF是圆O的切线(2)如图,连接OB,OC,BD,记OC与BD相交于点N∵BC =CD ,∴BC =CD∴∠BOC =∠COD ,又OB =OD∴BN =DN∵BC =CG ,∴CN =12DG =12×2=1又∵OA =OD ,∴ON =12AB =12×5=2.5∴OC =ON +CN =3.5∴AD =2OC =7.【点睛】该题主要考查了圆切线证明,圆心角定理,垂径定理,三角形中位线等知识点,解题的关键是熟练掌握圆部分的这些知识点.【考点六切线的性质定理】1(2023·浙江衢州·统考二模)如图,⊙O 的切线PC 交直径AB 的延长线于点P ,C 为切点,若∠P =30°,⊙O 的半径为3,则PB 的长为.【答案】3【分析】连接OC ,根据切线的性质得到∠OCP =90°,再根据30°所对的直角边是斜边的一半计算即可;【详解】如图,连接OC ,∵PC 是⊙O 的切线,∴OC ⊥CP ,即∠OCP =90°,又∠P =30°,⊙O 的半径为3,∴OP =2CO =6,∴PB =6-3=3.故答案是3.【点睛】本题主要考查了切线的性质,直角三角形的性质,准确计算是解题的关键.【变式训练】1.(2022秋·福建福州·九年级统考期中)如图,AB 是⊙O 的直径,点C 是⊙O 外的一点,且BC 是⊙O 的切线,AC交⊙O于点D,若∠C=60°,则∠A=°.【答案】30【分析】根据切线的性质得到AB⊥BC,根据直角三角形的性质计算,得到答案.【详解】解:∵BC是⊙O的切线,∴AB⊥BC,∵∠C=60°,∴∠A=90°-60°=30°,故答案为:30.【点睛】本题考查的是切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.2.(2023·湖南永州·校考二模)如图,AB是⊙O的直径,PA与⊙O相切于点A,∠ABC=32°,OC的延长线交PA于点P,则∠P的度数是.【答案】26°/26度【分析】利用圆周角定理,切线的性质定理和三角形的内角和定理解答即可.【详解】解:∵AB是⊙O的直径,PA与⊙O相切于点A,∴OA⊥PA,∴∠PAB=90°,∵∠B=12∠AOC,∠ABC=32°,∴∠AOC=64°,∴∠P=180°-∠PAB-∠AOC=26°.故答案为:26°.【点睛】本题主要考查了圆周角定理,圆的切线的性质定理,熟练掌握上述定理是解题的关键.【考点七切线的性质与判定的综合应用】1(2023秋·江苏·九年级专题练习)如图,Rt△ABC中,∠ACB=90°,点O在边AC上,以点O为圆心,OC为半径的圆交边AC于点D,交边AB于点E,且BC=BE.(1)求证:AB 是⊙O 的切线.(2)若AE =24,BE =15,求⊙O 的半径.【答案】(1)见解析(2)⊙O 的半径为10.【分析】(1)连接OE ,连接BO ,通过证明△BOE ≌△BOC SSS 即可进行求证;(2)连接OE ,则BC =BE =15,AB =BE +AE =39根据勾股定理求出AC =AB 2-BC 2=36,设⊙O 的半径为r ,根据OA 2=OE 2+AE 2,列出方程求解即可.【详解】(1)证明:如图,连接OE ,连接BO ,在△OBC 和△OBE 中,OE =OCBE =BC BO =BO,∴△BOE ≌△BOC SSS ,∴∠BEO =∠BCO ,∵∠BCO =90°,∴∠BEO =90°,∵OE 是半径,∴AB 是⊙O 的切线;(2)解:如图,连接OE ,∵BE =15,AE =24,∴BC =BE =15,AB =BE +AE =15+24=39,∴AC =AB 2-BC 2=392-152=36,设⊙O 的半径为r ,则OE =OC =r ,OA =36-r ,∵OA 2=OE 2+AE 2,∴36-r 2=r 2+242,解得:r =10,∴⊙O 的半径为10.【点睛】本题主要考查了切线的判定和性质,勾股定理,解题的关键是掌握经过半径外端且垂直于半径的直线是圆的切线.【变式训练】1.(2023·河南周口·校联考三模)如图,点E 是以AB 为直径的⊙O 外一点,点C 是⊙O 上一点,EB 是⊙O 的切线,EC ⊥OC,连接AC 并延长交BE 的延长线于点F .(1)求证:点E 是BF 的中点;(2)若EC =OC ,⊙O 的半径为3,求CF 的长.【答案】(1)见解析(2)32【分析】(1)连接BC,证明EC是⊙O的切线.根据EB是⊙O的切线,可得EC=EB,进而证明EF= EC,等量代换可得EF=EB,即可得证;(2)根据EC=OC,可得四边形OCEB是正方形,则△ABF是等腰直角三角形.勾股定理,即可求解.【详解】(1)证明:连接BC.∵AB为⊙O的直径,∴∠ACB=90°.∵EC⊥OC,∴EC是⊙O的切线.∵EB是⊙O的切线,∴EC=EB,∴∠ECB=∠EBC.∵∠ECB+∠FCE=90°,∠EBC+∠F=90°,∴∠FCE=∠F,∴EF=EC,∴EF=EB,∴点E是BF的中点.(2)解:若EC=OC,由(1)得,四边形OCEB是正方形,∴△ABF是等腰直角三角形.∵⊙O半径为3,∴AB=6,∴AF=2AB=62,∵BC⊥AF∴CF=12AF=32.【点睛】本题考查了切线的性质与判定,切线长定理,勾股定理,正方形的性质,等腰直角三角形的性质,熟练掌握以上知识是解题的关键.2.(2023·云南昆明·统考二模)如图,在△ABC中,O为AB上一点,以点O为圆心,OB为半径作半圆,与BC相切于点B,过点A作AD⊥CO交CO的延长线于点D,且∠AOD=∠CAD.(1)求证:AC是半⊙O的切线;(2)若CO=AO,BC=4,求半⊙O的半径.【答案】(1)见解析(2)433【分析】(1)过点O作OF⊥AC于点F,由切线的性质知∠B=90°,∠BOC+∠BCO=90°,又∠CAD +∠ACO=90°,AOD=∠CAD,∠AOD=∠BOC,推证∠BCO=∠ACO,由角平分线性质定理得OF =OB,结论得证;(2)由切线长定理知CF=BC=4,由等腰三角形性质知AF=CF=4,∠OCA=∠OAC,进一步推证=433.∠OAC=30°,由直角三角形性质,求解圆半径为OF=AF3【详解】(1)证明:过点O作OF⊥AC于点F.∵BC为半⊙O切线,∴OB⊥BC,∴∠B=90°,∴∠BOC+∠BCO=90°.∵AD⊥CD,∴∠D=90°,∴∠CAD+∠ACO=90°.∵∠AOD=∠CAD,∠AOD=∠BOC∴∠BOC=∠CAD,∴∠BCO=∠ACO,∴CO平分∠ACB.∵OB⊥BC,OF⊥AC,∴OF=OB,∴OF是半⊙O的半径.∵OF⊥AC,∴AC是半⊙O的切线.(2)∵BC,AC是半⊙O的切线,BC=4,∴CF=BC=4.∵CO=AO,OF⊥AC,∴AF=CF=4,∠OCA=∠OAC.∵∠BCO=∠OCA,∴∠OCA=∠OAC=∠BCO.∵∠B=90°,∴∠BCA+∠OAC=90°,即∠OCA+∠OAC+∠BCO=90°,∴∠OAC=30°.在Rt△OFA中,OA=2OF,∴AF=OA2-OF2=3OF,∴⊙O 的半径为OF=AF3=43=433.【点睛】本题考查圆切线的判定和性质,切线长定理,等腰三角形性质,角平分线性质,直角三角形的性质,勾股定理,利用已知的角之间的数量关系结合直角三角形性质求解角度是解题的关键.3.(2023·全国·九年级专题练习)如图,AB是⊙O的直径,E为⊙O上的一点,∠ABE的平分线交⊙O于点C,过点C的直线交BA的延长线于点P,交BE的延长线于点D.且∠PCA=∠CBD.(1)求证:PC为⊙O的切线;(2)若PC=22BO,PB=12,直接写出半径的长.【答案】(1)见解析(2)3【分析】(1)连接OC,根据角平分线求得∠ABC=∠CBD,由等边对等角可得∠PCA=∠OCB,由AB是直径和等量代换可得∠PCO=90°,即可得证;(2)连接OC,设OB=OC=r,证明OP=3r,可得4r=12,推出r=3,即可求解.【详解】(1)证明:连接OC,∵BC平分∠ABE,∴∠ABC=∠CBD,∵OC=OB,∴∠ABC=∠OCB,∵∠PCA=∠CBD,∴∠PCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∴∠PCA+∠ACO=90°,∴∠PCO=90°,∴OC⊥PC,∵OC是半径,∴PC是OO的切线;(2)解:连接OC,如图,设OB=OC=r,∵PC=22OB,∴PC=22r,∴OP=OC2+PC2=r2+(22r)2=3r,∵PB=12,∴4r=12,∴r=3,【点睛】本题考查了切线的判定,勾股定理,等腰三角形的性质,解题的关键是学会添加常用辅助线,构造平行线解决问题.【考点八直角三角形周长、面积与内切圆半径的关系】1(2023·甘肃陇南·校考一模)如图,⊙O与∠A=90°的Rt△ABC的三边AB、BC、AC分别相切于点D、E、F,若BE=10,CF=3,则⊙O的半径为()A.5B.4C.3D.2【答案】D【分析】连接OD,OF,首先根据切线长定理得到BD=BE=10,CE=CF=3,然后证明出四边形ADOF是正方形,然后设AD=AF=x,根据勾股定理求解即可.【详解】如图,连接OD,OF,∵AC、AB、CB与⊙O相切,∴BD=BE=10,CE=CF=3,AD=AF,OD⊥AB,OF⊥AC,∴∠ADO=∠AFO=90°,∵∠BAC=90°,∴四边形ADOF是矩形,∴矩形ADOF是正方形,∴AD=OD,设AD=AF=x,Rt△ABC中,AB=BD+AD=x+10,AC=CF+AF=x=3,BC=BE+CE=13,由勾股定理得,AB2+AC2=BC2,∴10+x2=132,2+x+3∴x1=2,x2=-15(舍去),∴OD=2,故选:D.【点睛】此题考查了三角形的内切圆,切线长定理,勾股定理等知识,解题的关键是熟练掌握以上知识点.【变式训练】1.(2022秋·山东淄博·九年级统考期末)如图,△ABC中,∠C=90°,圆O是△ABC的内切圆,D,E,F是切点.若AB=5,AC=3,则OD=.【答案】1【分析】根据内切圆的性质先证明四边形OECD是矩形,可得OD=CE,再由切线长定理可得AF=AE, BF=BD,CD=CE,设OD=CD=CE=r,可得AF=AE=3-r,BF=BD=4-r,可得到关于r的方程,即可求解.【详解】解:∵圆O是△ABC的内切圆,∴OE⊥AC,OD⊥BC,∴∠ODC=∠OEC=∠C=90°,∴四边形OECD是矩形,∴OD=CE,∵圆O是△ABC的内切圆,∴AF=AE,BF=BD,CD=CE,设OD=CD=CE=r,∵AB=5,AC=3,∴BC=AB2-AC2=4,AF=AE=3-r∴BF=BD=4-r,∵AF+BF=5,∴3-r+4-r=5,解得:r=1,即OD=1.故答案为:1【点睛】本题主要考查了三角形的内切圆,切线长定理,勾股定理,熟练掌握三角形的内切圆的性质,切线长定理是解题的关键.2.(2023秋·陕西延安·九年级统考期末)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,⊙O是△ABC的内切圆,分别切边BC,AC,AB于点D,E,F.(1)求⊙O的半径.(2)若Q是Rt△ABC的外心,连接OQ,求OQ的长度.【答案】(1)1(2)OQ=52【分析】(1)先利用勾股定理求得AB=5,利用三角形面积公式S△ABC=S△OBC+S△OAC+S△OAB,即可求解;(2)证明四边形ODCE为正方形,边长为1,再利用切线长定理结合勾股定理即可.【详解】(1)解:如图,连接OF,OA,OB,OC,设⊙O的半径为r.∵⊙O是△ABC的内切圆,分别切边BC,AC,AB于点D,E,F,∴OD⊥BC,OE⊥AC,OF⊥AB.在Rt△ABC中,∠C=90°,BC=3,AC=4,∴AB=BC2+AC2=5.∵S△ABC=S△OBC+S△OAC+S△OAB,∴12×3×4=12×3r+12×4r+12×5r,解得r=1,∴⊙O的半径为1;(2)解:∵⊙O是△ABC的内切圆,分别切边BC,AC,AB于点D,E,F,∴BD=BF,CD=CE,AE=AF.OD⊥BC,OE⊥AC,OF⊥AB.∴四边形ODCE为正方形,∵OD=OE,∴四边形ODCE为正方形,∴CD=CE=r=1,∴BD=BF=2.∵Q是Rt△ABC的外心,∴QB=QA=12AB=52,∴FQ=QB-BF=12.在Rt△OFQ中,OF2+FQ2=OQ2,即12+122=OQ2,解得OQ=52(负值舍去).【点睛】此题考查了三角形的内切圆的性质、切线长定理、正方形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想与方程思想的应用.【过关检测】一、单选题1.(2022秋·湖南长沙·九年级校联考期末)在平面直角坐标系中,以点-3,4为圆心,3为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离【答案】B【分析】由已知点-3,4可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d 为直线与圆的距离,r为圆的半径,则有若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【详解】解:点-3,4到x轴的距离为4,大于半径3,点-3,4到y轴的距离为3,等于半径3,故该圆与x轴相离,与y轴相切,故选:B.【点睛】本题考查的是直线与圆的位置关系以及点到坐标轴的距离,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.2.(2022秋·福建福州·九年级统考期中)《九章算术》中“今有勾七步,股二十四步,问勾中容圆径几何?”其意思为:今有直角三角形,勾(短直角边)长为7步,股(长直角边)长为24步,问该直角三角形(内切圆)的直径是多少?()A.3步B.5步C.6步D.8步【答案】C【分析】设三角形△ABC,由勾股定理可求得直角三角形的斜边,设内切圆的半径为r,由S△ABC=12(AB+BC+CA)⋅r可求得半径,则可求得直径.【详解】解:设三角形为△ABC,∠C=90°,AC=7,BC=24,∴AB=AC2+BC2=72+242=25,设内切圆的半径为r,则S△ABC=12(AB+BC+CA)∙r,∴12AC⋅BC=12(AB+BC+CA)⋅r,即12×7×24=12×(7+24+25)×r,解得r=3,∴内切圆的直径是6步,故选:C.【点睛】本题主要考查三角形的内切圆,利用等积法得到关于内切圆半径的方程是解题的关键.3.(2023·全国·九年级专题练习)如图,在⊙O中,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40°B.50°C.55°D.60°【答案】A【分析】连接OC,由CE为圆O的切线,利用切线的性质得到OC垂直于CE,利用圆周角定理求出∠COB的度数,即可求出∠E的度数.【详解】解:如图所示,连接OC,∵CE为圆O的切线,∴OC⊥CE,∴∠OCE=90°,∵∠CDB=25°,∴∠COB=2∠CDB=50°,∴∠E=90°-∠COE=40°.故选:A.【点睛】此题考查了切线的性质,圆周角定理,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.4.(2023·广东深圳·校考一模)如图,AB是⊙O的直径,AE⊥EP,垂足为E,直线EP与⊙O相切于点C,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,若∠APC=36°,则∠CAE的度数是()A.27°B.18°C.30°D.36°【答案】A【分析】根据垂直的定义及平行线的判定可知OC∥AE,再利用等腰三角形的性质及平行线的性质即可解答.【详解】解:连接OC,∵PE与⊙O相切于C,∴半径OC⊥PE,∴∠OCP=90°,∵AE⊥PE,∴∠AEP=90°,∴OC∥AE,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO=12∠PAE,∵∠APC=36°,∴∠PAE=90°-∠P=90°-36°=54°,∴∠EAC=12∠PAE=12×54°=27°.故选:A.【点睛】本题考查了垂直的定义,平行线的性质,切线的性质,等腰三角形的性质,掌握平行线的性质及切线的性质是解题的关键.5.(2023秋·江苏·九年级专题练习)如图,在△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,CD=3,则线段AB的长是()A.23B.43C.3D.6【答案】D【分析】连接OD,根据切线的性质得到OD⊥AC,根据等腰三角形的性质得到∠OBD=∠ODB,根据角平分线的定义得到∠OBD=∠CBD,根据平行线的性质得到BC⊥AC,设OD=OB=x,则AO=2x,AB=3x,根据直角三角形的性质即可得到结论.【详解】解:连接OD,∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC,∵OD=OB,∴OBD=ODB,∵BD平分∠ABC,∴∠OBD=CBD,∴∠ODB=∠CBD,∴OD∥BC,∴BC⊥AC,∴∠ADO=∠C=90°,∵∠A=30°,∴AO=2OD,设OD=OB=x,则AO=2x,AB=3x,∴AD=3x,AC=332x,∴CD=AC-AD=332x-3x=3,∴x=2,∴AB=3x=6.故选:D.【点睛】本题考查了切线的性质,直角三角形的性质,平行线的判定和性质,正确地作出辅助线是解题的关键.二、填空题6.(2023秋·河北秦皇岛·九年级统考期末)如图,BD是⊙O的切线,∠BCE=30°,则∠D=.【答案】30°/30度【分析】连接OB,根据圆周角定理得到∠BOD=60°,根据切线的性质得到∠OBD=90°,于是得到∠D= 90°-60°=30°.【详解】如图,连接OB,∵∠BCE=30°,∴∠BOD=2∠C=60°,∵BD是⊙O的切线,∴∠OBD=90°,∴∠D=90°-60°=30°,故答案为:30°.【点睛】此题考查了切线的性质,圆周角定理,解题的关键是正确作出辅助线并熟练掌握圆周角定理和切线性质.7.(2023·浙江宁波·校联考一模)如图,▱ABCD的两边AB、BC分别切⊙O于点A、C,若∠B=50°,则∠DAE=.【答案】15°/15度【分析】如图,连接OA,OC,求解∠AOC=360°-2×90°-50°=130°,可得∠AEC=12∠AOC=65°,证明∠D=∠B=50°,再利用三角形的外角和的性质可得答案.【详解】解:如图,连接OA,OC,∵▱ABCD的两边AB、BC分别切⊙O于点A、C,∴∠OAB=∠OCB=90°,而∠B=50°,∴∠AOC=360°-2×90°-50°=130°,∴∠AEC=12∠AOC=65°,∵▱ABCD,∴∠D=∠B=50°,∴∠DAE=∠AEC-∠D=65°-50°=15°;故答案为:15°.【点睛】本题考查的是平行四边形的性质,圆周角定理的应用,切线的性质,四边形的内角和定理的应用,三角形的外角的性质,熟记以上基础知识是解本题的关键.8.(2023秋·江苏·九年级专题练习)如图,在平面直角坐标系中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相交,则平移的距离d的取值范围是.【答案】1<d<5/5>d>1【分析】分两种情况讨论:⊙P位于y轴左侧和⊙P位于y轴右侧,根据平移的性质和圆的切线的性质分别求解,即可得到答案.【详解】解:⊙P的圆心P的坐标为(-3,0),∴OP=3,∵⊙P的半径为2,∴AP=BP=2,∴OA=1,OB=5,∴当⊙P位于y轴左侧且与y轴相切时,平移的距离为1,当⊙P位于y轴右侧且与y轴相切时,平移的距离为5,∴平移的距离d的取值范围是1<d<5,故答案为:1<d<5.【点睛】本题考查了平移的性质,直线与圆的位置关系,解题关键是掌握当圆与直线相切时,点到圆心的距离等于圆的半径.9.(2023秋·江苏·九年级专题练习)如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8cm,那么△PDE的周长为.【答案】16cm/16厘米【分析】根据题意,结合切线长定理得到相应线段长,再由三角形周长定义求解即可得到答案.【详解】解:∵PA、PB、DE分别切⊙O于A、B、C,∴由切线长定理可得PA=PB,DA=DC,EC=EB,∵P到⊙O的切线长为8cm,PA=PB=8cm,∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=8+8=16cm,∴△PDE的周长为16cm,故答案为:16cm.【点睛】本题考查求三角形周长,涉及切线长定理、三角形周长等知识,熟练掌握切线长定理是解决问题的关键.10.(2023秋·河南漯河·九年级统考期末)如图,⊙O是△ABC的内切圆,切点分别为D,E,F,且∠A=90°,BC=5,CA=4,则⊙O的半径是.【答案】1【分析】先根据勾股定理求出AB=3,由切线长定理得BD=BE,AD=AF,CF=CE,设OD=OF= AF=AD=x,则CF=CE=4-x,BD=BE=3-x,然后根据CE+BE=5,求解即可.【详解】解:在Rt△ABC中,∵∠A=90°,BC=5,CA=4,∴AB=BC2-AC2=3,∵⊙O为Rt△ABC的内切圆,切点分别为D,E,F,∴BD=BE,AD=AF,CF=CE,如图,连接OD,OF,∵⊙O为Rt△ABC的内切圆,∴OD⊥AB,OF⊥AC,OD=OF,∴∠ODA=∠A=∠OFA=90°,∴四边形ADOF是正方形,设OD=OF=AF=AD=x,则CF=CE=4-x,BD=BE=3-x,∵CE+BE=5,∴4-x+3-x=5,∴x=1,则⊙O的半径为1.故答案为:1.【点睛】本题考查三角形的内切圆与内心,勾股定理,正方形的判定与性质,切线长定理等知识,解题的关键是熟练掌握切线长定理.三、解答题11.(2022秋·安徽芜湖·九年级校考阶段练习)如图,AB是⊙O的直径,点E在弦AC的延长线上,过点E作ED⊥AE交⊙O于点D,若AD平分∠BAC.。

直线和圆的方程全章十类必考压轴题

直线和圆的方程全章十类必考压轴题

直线和圆的方程全章十类必考压轴题直线和圆是几何学中的基本概念,它们在解决几何问题和建模实际情况中起着重要的作用。

在本文中,我们将讨论直线和圆的方程,并介绍与之相关的十类必考压轴题。

一、直线的方程1. 点斜式方程:已知直线上一点P(x₁, y₁)和直线的斜率k,直线的方程可以表示为y - y₁ = k(x - x₁)。

2. 两点式方程:已知直线上两点P₁(x₁, y₁)和P₂(x₂, y₂),直线的方程可以表示为(y - y₁)/(y₂ - y₁) = (x - x₁)/(x₂ - x₁)。

3. 截距式方程:已知直线与x轴和y轴的截距分别为a和b,直线的方程可以表示为y = mx + b,其中m为直线的斜率。

二、圆的方程4. 标准方程:已知圆心坐标为(h, k)和半径r,圆的方程可以表示为(x - h)² + (y - k)² = r²。

5. 中心半径式方程:已知圆心坐标为(h, k)和半径r,圆的方程可以表示为(x - h)² + (y - k)² = r²。

6. 直径式方程:已知圆上两点P₁(x₁, y₁)和P₂(x₂, y₂),圆的方程可以表示为(x - (x₁ + x₂)/2)² + (y - (y₁ + y₂)/2)² = ((x₂ - x₁)² + (y₂ - y₁)²)/4。

三、直线和圆的关系7. 直线与圆的位置关系:直线与圆有三种可能的位置关系,即相离、相切和相交。

相离时,直线与圆没有交点;相切时,直线与圆有且仅有一个交点;相交时,直线与圆有两个交点。

8. 直线与圆的切线:直线与圆相切时,直线被称为圆的切线。

切线与圆的切点处的切线斜率等于圆的斜率。

四、直线和圆的求解问题9. 直线与圆的交点:已知直线和圆的方程,可以通过联立方程求解得到直线与圆的交点坐标。

10. 直线和圆的切点:已知直线和圆的方程,可以通过求解直线与圆的切线方程,再求解切线与圆的交点坐标得到直线和圆的切点坐标。

高二数学直线与圆专项训练_提高(含解析)

高二数学直线与圆专项训练_提高(含解析)

使得 AP AQ 0 ,则 m 取值范围是

3x y 4 3
13.已知
x,
y
R
,且满足
3x y 0
.若存在 R 使得 xcos ysin 1 0 成立,则点
y
0
P(x, y) 构成的区域面积为

14.已知关于 x 的不等式 9 x2 k(x 2) 2 ,解集为a,b 且 b a 2,则 k
第 5 页/第 5 页
2 个, r 6 时, 4 个.
7. 32 8 3 ,提示:根据对称性,先画出第一象限图形. 3
8.
9 4
,
0
,提示:
b2
3ab a2
b a
3 2
2
9 4
,
b a
1, 3

b a
视作可行域内点到原点连线的斜率.
9. A 2,1,0,提示:第三条直线分别与第一、二条直线平行或经过前两条直线的交点.
由对称性,(x, 4) 到 ( y, 1 y2 ) 的距离的最小值应为 (x, 4) 到
x
x
原点距离的最小值减 1.所以
(x y)2 (4 x
1 y2 )2 (
x2
16 x2
1)2
(2
2 1)2 9 4
2
经检验等号可成立,故 a 8 4 2 .
19.(1) Q1(1,1) 、 Q2 (1,5) ,
x 1 2
y 1 ; 4
(2) 4x 3y 0 或 2x y 0 ,提示:题意即 (x 3y,8x y) 和 (x, y) 在同一直线上;
1 k2
(3)
A3
1
k
2
2k
1 k 2

专题08直线与圆的方程-2021年新高考数学尖子生培优题

专题08直线与圆的方程-2021年新高考数学尖子生培优题

2021年高考数学尖子生培优题典(新高考专版)专题08 直线与圆的方程姓名:__________________ 班级:______________ 得分:_________________一、单选题1.以点(2,-1)为半径的圆的标准方程是( )A .(x +2)2+(y -1)2B .(x +2)2+(y -1)2=2C .(x -2)2+(y +1)2=2D .(x -2)2+(y +1)2【答案】C【解析】由题意圆标准方程是22(2)(1)2x y −++=.2.设直线1:10l kx y −+=,2:10l x ky −+=,若12l l ⊥,则k =( )A .-1B .1C .±1D .0【答案】D【解析】 12l l ⊥,∴当0k ≠时,11k k ⋅=−,矛盾,当0k =时,符合题意3.圆2228130+−−+=x y x y 截直线10ax y +−=所得的弦长为a =()A .43− B .34− C D .2【答案】A【解析】圆2228130+−−+=x y x y �即22(1)(4)4x y −+−=1=根据点到直线距离公式可知1d � 化简可得22(3)1a a +=+ 解得43a =−4.直线0x a +−=的倾斜角为 � �A .30B .150°C .120°D .与a 取值有关【答案】B【解析】直线x y ﹣a=0,设倾斜角为θ,则. 又 0°≤θ�180°� �θ=150°�5.斜率为4的直线经过点A (3,5)�B (a,7)�C (�1�b )三点,则a �b 的值为( )A .a �72�b �0 B .a ��72�b ��11 C .a �72�b ��11 D .a ��72�b �11 【答案】C【解析】因为4AB AC k k ==�所以25434b a −==−−�则7,112a b ==−�故选C � 6.若方程22420x y x y k +−++=表示圆,则k 的取值范围是( )A .5k >B .5k <C .5k ≥D .5k ≤【解析】 方程22420x y x y k +−++=表示圆∴22416440D E F k +−=+−>,解得:5k <7.已知3(2,)A −,(3,2)B −−,直线l 过定点(1,1)P ,且与线段AB 相交,则直线l 的斜率k 的取值范围是() A .344k −≤≤ B .344k ≤≤ C .12k ≠ D .4k ≤−或34k ≥【答案】D【解析】画出图像,如图:312134,21314PA PB k k −−−−==−==−−−∴ 结合图像可知,要保证线段AB 与直线l 相交需满足斜率k 的取值范围: 4k ≤−或34k ≥8.若实数,x y 满足224240x y x y ++−+=,则yx 的取值范围是( )A .4,[0,)3 −∞−∪+∞B .3,[0,)4−∞−+∞ C .4,03− D .3,04 −【解析】实数,x y 满足224240x y x y ++−+=,即22(2)(1)1x y ++−=故动点(),x y 是以()2,1C −为圆心,以1r =为半径的圆上的点,则y x表示点(),x y 与()2,1−连线的斜率k ,如图所示,直线0kx y -=与圆有交点,相切时是临界状态,当直线0kx y -=1解得0k =或43k =−,故4,03k ∈− ,即4,03y x∈− .二、多选题9.(多选)若直线1l 的倾斜角为α,且12l l ⊥,则直线2l 的倾斜角可能为( )A .90α°−B .90α°+C .90α°−D .180α°−【答案】ABC【解析】(1)当0α°=时,2l 的倾斜角为90°(如图1);(2)当090α°°<<时,2l 的倾斜角为90α°+(如图2);(3)当90α°=时,2l 的倾斜角为0°(如图3);(4)当90180α°°<<时,2l 的倾斜角为90α°−(如图4).故直线2l 的倾斜角可能为90,90,|90|ααα°°°−+−,但不可能为180α°−.10.若直线y b =+与圆221x y +=相切,则b =( )A .2−B .C .2D .【答案】AC【解析】因为直线y b =+与圆221x y +=相切,1=,解得2b =±.11.直线y x b =+与曲线x =b 可取下列哪些值()A .B .1−C .1 D【答案】AC【解析】解:曲线x =221x y +=,0x ≥,画出直线与曲线的图象,如图,直线y x b =+与曲线x =则(1,1]{b ∈−12.古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知()0,0O ,()3,0A ,圆C :()()22220y x r r +=−>上有且仅有一个点P 满足2PA PO =,则r 的取值可以为( )A .1B .2C .3D .5【答案】AD 【解析】设(),P x y ,由2PA PO =,得()2222344x y x y −+=+,整理得()2214x y ++=, 又点P 是圆C :()()22220y x r r +=−>上有且仅有的一点,所以两圆相切.圆()2214x y ++=的圆心坐标为(﹣1,0),半径为2, 圆C :()()22220y x r r +=−>的圆心坐标为(2,0),半径为r ,两圆的圆心距为3, 当两圆外切时,r +2=3,得r =1,当两圆内切时,|r ﹣2|=3,得r =5.三、填空题13.直线2:sin 103l x y π−+=的斜率为__.【解析】由直线2:sin103l x y π−+=,得10x y +=,即220x +=,则该直线的斜率k 14.若三条直线y =2x ,x +y =3,mx-2y-5=0相交于同一点,则m 的值为________.【答案】9【解析】联立23y x x y = +=,解得1x =,2y =.把(1,2)代入250mx y −−=可得:450m −−=. 9m ∴=. 15. 若点(m ,n)在直线4x +3y -10=0上,则m 2+n 2的最小值是________.【答案】4【解析】因为m 2�n 2是直线4x �3y �10�0上的点(m �n)到原点距离的平方�所以其最小值就是原点到直线4x �3y �10�02=的平方.16.已知直线l :340x y m ++=,圆C :22420x y x +−+=,则圆C 的半径r =______;若在圆C 上存在两点A ,B ,在直线l 上存在一点P ,使得90APB ∠=°,则实数m 的取值范围是______.[]16,4−【解析】圆的标准方程为22(2)2x y −+=,圆心为(2,0)C ,半径为r =, 若在圆C 上存在两点A ,B ,在直线l 上存在一点P ,使得90APB ∠=°,过P 作圆的两条切线,PM PN(,M N 为切点),则90MPN ∠≥°,而当CP l ⊥时,MPN ∠最大,只要此最大角90≥°即可, 此时,圆心C 到直线l 的距离为65m d CP +==.所以r d =,解得164m −≤≤.四、解答题17.已知ABC ∆的三个顶点()1,0A −,()5,4B −,()1,2C .(1)求BC 边上的中线所在直线的方程;(2)求AB 边上的高线所在直线的方程.【解析】(1)由题意得:边BC 的中点D 为()3,1−,所以直线AD 的斜率()011134AD k −−==−−−, 所以BC 边上的中线AD 所在直线方程为()1014y x −=−+,即410x y ++=. (2)由题意得:直线AB 的斜率()042153AB k −−==−−−, 所以AB 边上的高所在直线方程为()3212y x −=−, 即3210x y −+=. 18.已知圆心为C (4,3)的圆经过原点O .(1)求圆C 的方程;(2)设直线3x ﹣4y +15=0与圆C 交于A ,B 两点,求△ABC 的面积.【解析】解:(1)圆C 的半径为5OC,从而圆C 的方程为(x ﹣4)2+(y ﹣3)2=25;(2)作CD ⊥AB 于D ,则CD 平分线段AB ,在直角三角形ADC 中,由点到直线的距离公式,得|CD |=3,所以4AD =,所以|AB |=2|AD |=8,所以△ABC 的面积1122S AB CD =.19.已知圆C 与y 轴相切,圆心在射线()300x y x −≥,且被直线y x =截得的弦长为. (1)求圆C 的方程;(2)若点P 在圆C 上,求点P 到直线34110x y −+=的距离的最小值. 【解析】(1) 圆心在射线()300x y x −≥上,则可设圆心为()3,a a ,其中0a ≥, 圆C 与y 轴相切,∴圆的半径为3a ,圆的方程为()()22239x a y a a −+−=, 设圆心到直线0x y −=的距离为d ,则d ,由弦长的几何关系得()2223d a +=,即)()2223a +=,解得1a =, 则圆C 的方程为()()22319x y −+−=;(2)圆心到直线34110x y −+=1635>, 则直线与圆相离,点P 到直线34110x y −+=的距离的最小值为161355−=. 20.已知圆O :228x y +=,点()012P −,,直线l 过点0P 且倾斜角为α. (1)判断点0P 与圆O 的位置关系,并说明理由; (2)若3π4α=,求直线l 被圆O 所戴得的弦AB 的长. 【解析】(1)点0P 在圆O 内,理由如下: 由已知得圆O 的圆心为()0,0O ,半径r =因为()012P −,,所以0OP =.因为0OP r <,所以点0P 在圆O 内. (2)因为3π4α=,所以直线l 的斜率为1−. 因为直线l 过点()012P −,, 所以直线l 的方程为()21y x −=−+,即10x y +−=, 由圆心O 到直线l的距离d所以AB =21.圆224x y +=,点P 为直线:40l x y +−=上一动点,过点P 引圆O 的两条切线,切点分别为A ,B .(1)若点P 的坐标为(6,2)−,求直线PA 、PB 的方程; (2)求证:直线AB 恒过定点Q ,并求出该定点Q 的坐标.【解析】解:(1)由题意,切线的斜率存在,设切线方程为2(6)y k x +=−,即620kx y k −−−=. 2,解得34k =−或0k =. ∴所求切线方程分别为2y =−和34100x y +−=; (2)根据题意,点P 为直线40x y +−=上一动点,设(4,)P m m −, PA ,PB 是圆O 的切线,OA PA ∴⊥,OB PB ⊥,AB ∴是圆O 与以PO 为直径的两圆的公共弦,可得以PO 为直径的圆的方程为2222[(2)]()(2)()2222m m m m x y −−+−=−+, 即22(4)0x m x y my −−+−=,①又圆O 的方程为:224x y +=,②,①−②,得(4)40m x my −+−=, 即()440m y x x −+−=,则该直线必过点()1,1Q . 22.已知动圆Q 经过定点()0,F a ,且与定直线:l y a =−相切(其中a 为常数,且0a >).记动圆圆心Q 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设点P 的坐标为()0,a −,过点P 作曲线C 的切线,切点为A ,若过点P 的直线m 与曲线C 交于M ,N 两点,证明:AFM AFN ∠=∠.【解析】(1)设(),Q x y ,由题意得y a =+,化简得24x ay =, 所以动圆圆心Q 的轨迹方程为24x ay =,它是以F 为焦点,以直线l 为准线的抛物线.(2)不妨设()2,04t A t t a >. 因为24x y a=,所以2x y a ′=, 从而直线PA 的斜率为2402t a t a t a+=−,解得2t a =,即()2,A a a , 又()0,F a ,所以//AF x 轴.要使AFM AFN ∠=∠,只需0FM FN k k +=. 设直线m 的方程为y kx a =−,代入24x ay =并整理, 得22440x akx a −+=.所以()221610a k ∆=−>,解得1k <−或1k >. 设()11,M x y ,()22,N x y ,则124x x ak +=,2124x x a =. ()()2112121212FM FN x y a x y a y a y a k k x x x x −+−−−+=+= ()()()21121212122222x kx a x kx a a x x k x x x x −+−+==− 224204a ak k a ⋅=−=. 故存在直线m ,使得AFM AFN ∠=∠, 此时直线m 的斜率的取值范围为()(),11,−∞−∪+∞.。

备考高考数学直线和圆提分专项练习

备考高考数学直线和圆提分专项练习

备考2019年高考数学直线和圆提分专项练习直线和圆存在三种位置关系,直线和圆提分专项练习,因此老师及家长请认真阅读,关注孩子的成长。

难点1 直线的方程1.求与直线3x+4y+12=0平行,且与坐标轴构成的三角形面积是24的直线乙的方程.2.设正方形ABCD(A、B、C、D顺时针排列)的外接圆方程为x2+y2-6x+a=0(a9),C、D点所在直线l的斜率为.(1)求外接圆圆心M点的坐标及正方形对角线AC、BD的斜率;(2)如果在x轴上方的A、B两点在一条以原点为顶点,以x 轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程;(3)如果ABCD的外接圆半径为2 ,在x轴上方的A、B两点在一条以x轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程.难点2两直线的位置关系1.若直线mx+y+2=0与线段AB有交点,其中A(-2,3),B(3,2),求实数m的取值范围.2.如图8-11,已知:射线OA为y=kx(k0,x0),射线OB为了y=-kx(x0),动点P(x,y)在AOx的内部,PMOA于M,PNkOB 于N,四边形ONPM的面积恰为k.(1)当k为定值时,动点P的纵坐标y是横坐标x的函数,求这个函数y=f(x)的解析式;(2)根据A的取值范围,确定y=f(x)的定义域.难点3线性规划1.已知x、y满足约束条件求目标函数z=2x-y的最大值和最小值.2.已知三种食物P、Q、R的维生素含量与成本如下表所示. 食物P 食物Q 食物R 维生素A(单位/kg) 400 600 400 维生素B(单位/kg) 800 200 400 成本(元/kg) 6 5 4 现在将xkg的食物P和ykg的食物Q及zkg的食物 R混合,制成100kg 的混合物.如果这100kg的混合物中至少含维生素A44000单位与维生素B48000单位,那么 x、y、z为何值时,混合物的成本最小?难点4直线与圆1.已知点T是半圆O的直径AB上一点,AB=2、OT=t (00时,z 最大,当B0时,当直线过可行域且y轴上截距最大时,z值最小。

高考数学培优 专题08 直线与圆的方程

高考数学培优 专题08  直线与圆的方程

高考数学培优专题08 直线与圆的方程一、单选题1. ( 2分) (2020·新课标Ⅰ·文)已知圆,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 42. ( 2分) (2020高三上·石家庄月考)已知过点的直线l与圆交于、两点,则的最小值为()A. B. 2 C. D. 43. ( 2分) (2020·新课标Ⅱ·理)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为()A. B. C. D.4. ( 2分) (2020·新课标Ⅰ·理)已知⊙M:,直线:,P为l 上的动点,过点P作⊙M的切线,切点为,当最小时,直线的方程为()A. B. C. D.5. ( 2分) (2020·吉林模拟)已知圆,若直线上总存在点P,使得过点P的圆C的两条切线互相垂直,则实数k的取值范围是()A. 或B.C. 或D.6. ( 2分) (2020·长春模拟)已知圆E的圆心在y轴上,且与圆的公共弦所在直线的方程为,则圆E的方程为()A. B. C. D.7. ( 2分) (2020高三上·南昌月考)在平面直角坐标系中,已知,,动点满足,且,则动点的轨迹长度为()A. B. C. D.8. ( 2分) (2020·榆林模拟)已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A. B. 16 C. D.二、多选题9. ( 3分) (2020高二上·郓城月考)已知直线:和直线:,下列说法正确的是()A. 始终过定点B. 若,则或-3C. 若,则或2D. 当时,始终不过第三象限10. ( 3分) (2020·德州模拟)直线与圆C:相交于A、B两点,则AB 长度可能为()A. 6B. 8C. 12D. 1611. ( 3分) (2020高二上·重庆期中)已知圆和圆相交于、两点,下列说法正确的为()A. 两圆有两条公切线B. 直线的方程为C. 线段的长为D. 圆上点,圆上点,的最大值为12. ( 3分) (2020高二上·重庆月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点、的距离之比为定值()的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系中,、,点满足,设点所构成的曲线为,下列结论正确的是()A. 的方程为B. 在上存在点,使得到点的距离为3C. 在上存在点,使得D. 在上存在点,使得三、填空题13. ( 1分) (2020高三上·如东月考)过点且与直线平行的直线l被圆所截得的弦长为________.14. ( 1分) (2020高三上·宁波期中)已知圆:,线段在直线上运动,点是线段上任意一点,若圆上存在两点,,使得,则线段长度的最大值是________.15. ( 1分) (2020·丹阳模拟)在直角坐标平面中,△ABC的两个顶点A、B的坐标分别为A(﹣1,0),B (1,0),平面内两点G、M同时满足下列条件:(1);(2);(3)∥,则△ABC的顶点C的轨迹方程为________.16. ( 1分) (2020·邵阳模拟)已知为坐标原点,圆:,圆:.分别为圆和圆上的动点,则的最大值为________.四、解答题17. ( 5分) (2018·临川模拟)已知圆心在原点的圆被直线截得的弦长为(Ⅰ) 求圆的方程;(Ⅱ) 设动直线与圆交于两点,问在轴正半轴上是否存在定点,使得直线与直线关于轴对称?若存在,请求出点的坐标;若不存在,请说明理由;18. ( 10分) (2019高三上·西城月考)已知点,点是圆上任意两个不同点,且满足,点是弦的中点.(1)求点的轨迹方程;(2)已知直线,若被所截得的线段长之比为,求的值19. ( 10分) (2020·东莞模拟)在平面直角坐标系xOy中,已知圆,圆心,点E在直线上,点P满足,,点P的轨迹为曲线M.(1)求曲线M的方程.(2)过点N的直线l分别交M于点A、B,交圆N于点C、D(自上而下),若、、成等差数列,求直线l的方程.20. ( 10分) (2020·泉州模拟)已知圆,直线与圆O相切于点A,直线垂直y轴于点B,且.(1)求点P的轨迹E的方程;(2)直线与E相交于两点,若的面积是的面积的两倍,求直线的方程.21. ( 5分) (2020·辽宁模拟)已知以动点为圆心的与直线:相切,与定圆:相外切.(Ⅰ)求动圆圆心的轨迹方程;(Ⅱ)过曲线上位于轴两侧的点、(不与轴垂直)分别作直线的垂线,垂足记为、,直线交轴于点,记、、的面积分别为、、,且,证明:直线过定点.22. ( 15分) (2018·兴化模拟)已知圆与轴负半轴相交于点,与轴正半轴相交于点.(1)若过点的直线被圆截得的弦长为,求直线的方程;(2)若在以为圆心半径为的圆上存在点,使得 ( 为坐标原点),求的取值范围;(3)设是圆上的两个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线与轴分别交于和,问是否为定值?若是求出该定值;若不是,请说明理由.答案解析部分一、单选题1.【答案】B【考点】直线与圆相交的性质【解析】【解答】圆化为,所以圆心坐标为,半径为,设,当过点的直线和直线垂直时,圆心到过点的直线的距离最大,所求的弦长最短,根据弦长公式最小值为.故答案为:B.【分析】根据直线和圆心与点连线垂直时,所求的弦长最短,即可得出结论.2.【答案】C【考点】点到直线的距离公式,圆的一般方程【解析】【解答】解:将圆的方程化为标准方程,则圆心为,半径,则圆心到定点的距离为,最小值为.故答案为:C.【分析】先根据题意求出圆心的坐标和半径,再求圆心到定点的距离,最后求的最小值3.【答案】B【考点】点到直线的距离公式,圆的标准方程,点与圆的位置关系【解析】【解答】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为.由题意可得,可得,解得或,所以圆心的坐标为或,圆心到直线的距离均为;所以,圆心到直线的距离为.故答案为:B.【分析】由题意可知圆心在第一象限,设圆心的坐标为,可得圆的半径为a,写出圆的标准方程,利用点在圆上,求得实数a的值,利用点到直线的距离公式可求出圆心到直线的距离.4.【答案】D【考点】直线与圆的位置关系,圆系方程【解析】【解答】圆的方程可化为,点M到直线l的距离为,所以直线l与圆相离.依圆的知识可知,四点四点共圆,且,所以,而,当直线时,,,此时最小.∴即,由解得,.所以以为直径的圆的方程为,即,两圆的方程相减可得:,即为直线的方程.故答案为:D.【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点共圆,且,根据可知,当直线时,最小,求出以为直径的圆的方程,根据圆系的知识即可求出直线的方程.5.【答案】A【考点】直线与圆的位置关系【解析】【解答】由题意,圆,若直线上总存在点P,使得过点P 的圆C的两条切线互相垂直,如图所示,根据过点P的圆C的两条切线互相垂直,可得四边形APBC为正方形,所以,所以只需圆心到直线的距离,解得或.故答案为:A.【分析】直接利用直线和圆的位置关系,由于存在点P使圆的两条切线垂直,得到四边形为正方形,进一步用点到直线的距离公式,列出方程,即可求解.6.【答案】C【考点】直线与圆相交的性质【解析】【解答】两圆圆心连线与公共弦垂直,不妨设所求圆心的坐标为,又圆的圆心为,半径为1,故,解得.故所求圆心为.直线截得所成弦长,圆心到直线的距离为,所以直线截得所求圆的弦长,解得.故圆心坐标为,半径为,故答案为:C.【分析】根据圆心的连线与公共弦所在直线垂直,即可求得圆心;再结合弦长公式,即可容易求得半径.7.【答案】C【考点】轨迹方程【解析】【解答】设,则,又,,,所以,即,因此,又,所以,即点的轨迹方程为;当时,;当时,;当时,;当时,;画出点对应的轨迹图形如下(四边形):由解得,同理,又,,所以,,因此动点的轨迹长度为.故答案为:C.【分析】设,根据题中条件,得到,由,求出点的轨迹方程为,画出轨迹方程对应的图形,即可求出轨迹长度.8.【答案】C【考点】轨迹方程【解析】【解答】由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【分析】根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.二、多选题9.【答案】A,C,D【考点】直线的图象特征与倾斜角、斜率的关系,直线的一般式方程与直线的平行关系,直线的一般式方程与直线的垂直关系【解析】【解答】:过点,A符合题意;当时,,重合,B不符合题意;由,得或2,C符合题意;:始终过,斜率为负,不会过第三象限,D符合题意.故答案为:ACD【分析】将直线化为可判断A;将或-3代入直线方程可判断B;根据可判断C;将直线化为,即可求解.10.【答案】B,C【考点】点到直线的距离公式,直线与圆的位置关系【解析】【解答】因为直线过定点,故圆的圆心到直线的距离的最大值为.又圆的半径为6,故弦长的最小值为. 又当直线过圆心时弦长取最大值为直径12,故.故答案为:BC【分析】先求得圆心到直线的距离最大值,再利用垂径定理求得弦长的范围即可.11.【答案】A,D【考点】直线与圆的位置关系,圆与圆的位置关系及其判定【解析】【解答】对于A,因为两圆相交,所以两圆有两条公切线,A符合题意;对于B,因为圆,圆,两圆作差得即,所以直线的方程为,B不符合题意;对于C,圆的圆心为,半径为2,则圆心到直线的距离,所以,C不符合题意;对于D,圆的圆心,半径为1,所以,D符合题意.故答案为:AD.【分析】根据题意由两圆的位置关系、两圆方程作差以及垂径定理和圆心之间的距离逐项判断即可得出结论。

压轴题型06 直线和圆中的隐形圆问题(原卷版)-高考数学压轴题专项训练(新高考专用)

压轴题型06 直线和圆中的隐形圆问题(原卷版)-高考数学压轴题专项训练(新高考专用)

压轴题06 直线和圆中的隐形圆问题在考查直线与圆的综合问题时,有些时候题设条件中没有直接给出相关圆的信息,而是隐含在题目中,要通过分析和转化,发现圆(或圆的方程),从而可以利用圆的知识来求解,这类问题称为“隐圆”问题隐圆问题是高中数学中难度较大的一个跨单元主题,它承接于初中的圆,融入了高中的平面向量,解三角形,解析几何等内容,综合性很高,更是学生学习的难点之一!当然,这部分内容在课本上也多有涉及,比如阿波罗尼斯圆,圆的参数方程等,基于此,本节将系统梳理相关内容,力争做成一份全面,完整的隐圆资料.○热○点○题○型1利用圆的定义(到定点的距离等于定长的点的轨迹)确定隐形圆 ○热○点○题○型2圆的内接四边形与托勒密定理 ○热○点○题○型3向量隐圆 ○热○点○题○型4米勒圆与最大视角1.如图32-3所示,已知A ,B 是圆C 1:x 2+y 2=1上的动点,AB =3,P 是圆C 2:(x -3)2+(y -4)2=1上的动点,则|P A →+PB →|的取值范围为________.图32-32.在平面直角坐标系xOy 中,已知点A (-1,0),B (5,0).若圆M :(x -4)2+(y -m )2=4上存在唯一点P ,使得直线P A ,PB 在y 轴上的截距之积为5,则实数m 的值为_________.3. 如果圆4)3()2(22=--+-a y a x 上总存在两个点到原点的距离为1,则实数a 的取值范围为_______.4.已知点()3,0P -在动直线()30mx ny m n +-+=上的投影为点M ,若点32,2N ⎛⎫ ⎪⎝⎭,则MN 的最大值为( ) A .1B .32C .2D .1125.若对于圆22:2220C x y x y +---=上任意的点A ,直线:4380l x y ++=上总存在不同两点M ,N ,使得90MAN ∠≥︒,则MN 的最小值为______. 6.在ABC ∆中,C B C B A sin sin sin sin sin 222⋅=-- (1)求A ;(2)若3=BC ,求ABC ∆周长的最大值.7.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,则线段AB 的中点M 的轨迹方程是__________.8.已知向量→→→c b a ,,满足1,2||,1||-=⋅==→→→→b a b a ,且向量→→→→--c b c a ,的夹角为4π,则||→c 的最大值为_________.9.已知平面向量a 、b 、c 满足0a b ⋅=,1a b ==,()()12c a c b -⋅-=,则c a -的最大值为()AB .1C .32D .210.已知点)0,3(),0,1(B A -.点P 为圆45:22=+y x O 上一个动点,则APB ∠sin 的最大值为__________.解析:如图,设D 是圆O 上不同于点P 的任意一点,连结DA 与圆O 交于点E ,连接 EC ,由三角形外角的性质,可知ADC AEC ∠>∠,由圆周角定理:=∠APC AEC ∠, 因此ADC APC ∠>∠,当且仅当ACP ∆的外接圆与圆O 相切于点P 时,APC ∠最大. 此时,可设ACP ∆的外接圆圆心),1(t M ,由于此时P M O ,,三点共线且MP OM OP +=,而42+==t MC MP ,则531422=+++t t ,解得:5442=t , 于是58=M R ,由正弦定理,则APB ∠sin 的最大值为45.11.如图32-2所示,在平面直角坐标系xOy 中,已知B ,C 为圆x 2+y 2=4上两点,点A (1,1),且AB ⊥AC ,则线段BC 的长的取值范围是________.图32-212.在平面直角坐标系xOy 中,已知点A ,B 在圆x 2+y 2=4上,且AB =22,点P (3,1),PO →·()P A →+PB →=16,设AB 的中点M 的横坐标为x 0,则x 0的所有值为________.13.在平面直角坐标系xOy 中,已知A ,B 为圆C :(x +4)2+(y -a )2=16上两个动点,且AB =211.若直线l :y =2x 上存在唯一的一个点P ,使得P A →+PB →=OC →,求实数a 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学 第3讲 直线与圆综合
1.已知圆C :x 2+y 2+2x -3=0.
(1)求圆的圆心C 的坐标和半径长;
(2)直线l 经过坐标原点且不与y 轴重合,l 与圆C 相交于A (x 1,y 1)、B (x 2,y 2)两点,求证:2
111x x 为定值;
(3)斜率为1的直线m 与圆C 相交于D 、E 两点,求直线m 的方程,使△CDE 的面积最大.
2.已知点G (5,4),圆C 1:(x -1)2+(x -4)2=25,过点G 的动直线l 与圆C 1相交于E 、F 两点,线段EF 的中点为C .
(1)求点C 的轨迹C 2的方程;
(2)若过点A (1,0)的直线l 1与C 2相交于P 、Q 两点,线段PQ 的中点为M ;又l 1与l 2:x +2y +2=0的交点为N ,求证|AM|•|AN|为定值.
3.已知点C (1,0),点A ,B 是⊙O :x2+y2=9上任意两个不同的点,且满足0=⋅BC AC ,设M 为弦AB 的中点.求点M 的轨迹T 的方程;
4.已知平面直角坐标系上一动点(,)P x y 到点(2,0)A -的距离是点P 到点(1,0)B 的距离的2倍。

(1)求点P 的轨迹方程;
(2)若点P 与点Q 关于点(2,1)对称,点(3,0)C ,求22
||||QA QC +的最大值和最小值;
(3)过点A 的直线l 与点P 的轨迹C 相交于,E F 两点,点(2,0)M ,则是否存在直线l ,使EFM S △取得最大值,若存在,求出此时l 的方程,若不存在,请说明理由。

5.已知圆22:4O x y +=和点(1,)M a .
(1)若过点M 有且只有一条直线与圆O 相切,求正数a 的值,并求出切线方程;
(2)若a =M 的圆的两条弦AC ,BD 互相垂直.
①求四边形ABCD 面积的最大值;②求||||AC BD +的最大值.
6.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .
(1)求圆C 1的圆心坐标;
(2)求线段AB 的中点M 的轨迹C 的方程;
(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.
7.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M、N两点,Q是MN的中点,直线l与l1相交于点P.
(I)求圆A的方程;
2时,求直线l的方程;
(Ⅱ)当MN=19
(Ⅲ)BP
BQ 是否为定值,如果是,求出定值;如果不是,请说明理由.
8.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方
(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.
9.平面直角坐标系xoy中,直线x-y+1=0截以原点O为圆心的圆所得的弦长为6.
(1)求圆O的方程;
(2)若直线l与圆O切于第一象限,且与坐标轴交于D,E,当DE长最小时,求直线l的方程;
(3)设M,P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交于x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由.
10.已知圆M:x2+(y-4)2=4,点P是直线l:x-2y=0上的一动点,过点P作圆M的切线PA、PB,切点为
A、B.
(Ⅰ)当切线PA的长度为23时,求点P的坐标;
(Ⅱ)若△PAM的外接圆为圆N,试问:当P运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;
(Ⅲ)求线段AB长度的最小值.
11.已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点N(1,0)任意作相互垂直的两条直线l1,l2,分别交曲线C于不同的两点A,B和不同的两点D,E.设线段AB,DE的中点分别为P,Q.
①求证:直线PQ过定点R,并求出定点R的坐标;
②求|PQ|的最小值.。

相关文档
最新文档