数学八年级上北师大版4.2一次函数与正比例函数同步训练B
北师大版数学八年级上册42一次函数与正比例函数 同步练习(含简单答案)
北师大版数学八年级上册 4.2一次函数与正比例函数同步练习一、选择题1. 若函数y =(k +3)x +k −1是正比例函数,则k 的值是( )A. 3B. 2C. 1D. 任意实数2. 已知y 关于x 成正比例,且当x =2时,y =−6,则当x =1时,y 的值为( )A. 3B. −3C. 12D. −123. 下表列出了一项试验统计数据,表示将皮球从高处d 落下时,弹跳高度b 与下落高度d 的关系.下面能表示这种关系的函数式是.( ) d 50 80 100 150 b25405075A. b =d 2B. b =2dC. b =0.5dD. b =d +254. 若函数y =(k −4)x +5是一次函数,则k 应满足的条件为( )A. k >4B. k <4C. k =4D. k ≠45. 若一次函数y =(k −2)x +17,当x =−3时,y =2,则k 的值为( )A. −4B. 8C. −3D. 76. 下列说法中,正确的是( )A. 一次函数也是正比例函数B. 一个函数不是一次函数就是正比例函数C. 一个函数不是正比例函数,就一定不是一次函数D. 正比例函数也是一次函数7. 下列函数:①y =xπ;②y =2x +1;③y =−1x;④y =x 2+1中,是一次函数的有( )A. 4个B. 3个C. 2个D. 1个8. 若直线y =kx +b 经过A (0,2)和B (3,0)两点,那么这个一次函数关系式是( )A. y =2x +3B. y =−23x +2C. y =3x +2D. y =x −1二、填空题9.y=−2x−5是函数,其中k=,b=310.若函数y=(m−2)x|m|−1是一次函数,则m=.11.某实验前4次获得的实验数据如下表.若此项实验结果y与次数x之间近似为一次函数关系,则该函数表达式为.12.已知y与x+1成正比例,当x=5时,y=12,则y关于x的函数表达式是.13.为节约用水,某市居民生活用水按级收费,具体收费标准如下表:设某户居民家的月用水量为x(x>31)吨,应付水费为y元,则y关于x的函数表达式为.14.已知一次函数y=kx+b(k≠0)的图象经过A(1,−1)、B(−1,3)两点,则k______0(填“>”或“<”).三、解答题15.已知y与x−1成正比例,且x=3时y=−4.(1)求y与x之间的函数关系式;(2)当y=8时,求x的值.16.已知一次函数的图象经过点(2,1)和(0,−2).(1)求出该函数图象与x轴的交点坐标;(2)判断点(−4,6)是否在该函数图象上.17.在直角坐标系xOy中,直线l过(1,3)和(3,1)两点,且与x轴,y轴分别交于A,B两点.(1)求直线l的函数关系式;(2)求△AOB的面积.18.鞋子的“鞋码”(号)和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值(注:“鞋码”是表示鞋子大小的一种号码):鞋长(cm)16192124鞋码(号)22283238(1)设鞋长为x(cm),“鞋码”为y(号),试判断x和y满足何种函数关系;(2)求x,y之间的函数表达式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?19.已知直线l1:y=2x,直线l2过点A(0,6)与B(6,0),两直线交于点C.(1)求直线l2的解析式,并求出交点C的坐标;(2)过点P(3,0)且垂直于x轴的直线与l1,l2的交点分别为D,E,求线段DE的长.20.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设某户家庭月用电量为x度时,应交电费y元.(1)分别求出0≤x≤200和x>200时,y与x之间的函数关系式.(2)小明家5月份交电费117元,小明家这个月用电多少度?参考答案1.C2.B3.C4.D5.D6.D7.C8.B9.一次,−2,−5310.−211.y=3x+3712.y=2x+213.y=7x−96(x>31)14.<15.解:(1)∵y与x−1成正比例,∴设y=k(x−1),∴y=kx−k,∵当x=3时,y=−4,∴−4=3k−k,解得k=−2,把k=−2代入y=kx−k,得y=−2x+2,∴y与x之间的函数关系式为y=−2x+2;(2)把y=8代入y=−2x+2得−2x+2=8解得x=−3,∴x的值为−3.16.解:(1)设该函数解析式为y =kx +b ,把点(2,1)和(0,−2)代入解析式得2k +b =1,b =−2, 解得k =32,b =−2, ∴该函数解析式为y =32x −2;令y =0,则32x −2=0,解得x =43,∴该函数图象与x 轴的交点为(43,0); (2)当x =−4时,y =32×(−4)−2=−8≠6,∴点(−4,6)不在该函数图象上.17.解:(1)设直线l 的函数关系式为y =kx +b(k ≠0),把(3,1),(1,3)代入得{3k +b =1k +b =3,解方程组得{k =−1b =4,∴直线l 的函数关系式为y =−x +4;(2)当x =0时,y =4,∴B(0,4), 当y =0,−x +4=0, 解得x =4, ∴A(4,0),∴S △AOB =12AO ⋅BO =12×4×4=8.18.解:(1)满足一次函数关系.(2)y =2x −10(x 不是连续的值). (3)此人的鞋长为27 cm .19.解:(1)设直线l 2的解析式为y =kx +b ,把点A(0,6)、B(6,0)分别代入得:{b =66k +b =0. 解得{k =−1b =6.故直线l 2的解析式为y =−x +6. 联立{y =−x +6y =2x,解得{x =2y =4.故C(2,4);(2)把x=3代入直线l1:y=2x,得y=6,即D(2,6).把x=3代入y=−x+6,得y=3,即E(3,3).故DE=|6−3|=3.所以线段DE的长度是3.20.解:(1)当0≤x≤200时,y与x之间的函数表达式是y=0.55x;当x>200时,y与x之间的函数表达式是y=0.55×200+0.7(x−200),即y=0.7x−30.(2)小明家5月份用电210度.。
北师大版八年级上册数学4.2 一次函数与正比例函数 同步练习1(精选)
北师大版八年级上册数学4.2 一次函数与正比例函数 同步练习1(精选)4.2 一次函数与正比例函数一、填空题1.以下函数:①y =2x 2+x +1 ②y =2πr ③y =x 1 ④y =(2-1)x ⑤y =-(a +x )(a 是常数) ⑥s =2t 是一次函数的是________.2.当m =________时,y =(m -1)x 2m 是正比例函数.3.当k =________时,y =(k +1)x 2k +k 是一次函数.二、写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比例函数?(1)小红去商店买笔记本,每个笔记本2.5元,小红所付买本款y (元)与买本的个数x (个)之间的关系.答:_______________________________________________________(2)等腰三角形的周长是18,若腰长为y ,底边长为x ,则y 与x 之间的关系.并求出x 的取值范围. 答:_______________________________________________________(3)有一个长为120米,宽为110米的矩形场地准备扩建,使长增加x 米,宽增加y 米,且使矩形的周长为500米,则y 与x 的关系.答:_______________________________________________(4)据测试:拧不紧的水龙头每秒钟会滴下两滴水,每滴水约0.05毫升.小明同学在洗手时,没有把水龙头拧紧,当小明离开x 小时后水龙头滴了y 毫升水.y 与x 之间的关系.答:______________________________________________三、设某种储蓄的月利率为0.16%,现存入a (a >0)元本金.(1)写出本息和y (元)与所存月数x (月)之间的函数关系式.(2)当a =20000时,计算10个月后的本息和是多少元?四、容积为800公升的水池内已贮水200公升,若每分钟注入的水量是15公升,设池内的水量为Q (公升),注水时间为t (分).(1)请写出Q 与t 的函数关系式.(2)注水多长时间可以把水池注满?(3)当注水时间为0.2小时时,池中水量是多少?参考答案一、1.②④⑤⑥ 2.-1 3.1二、(1)y =2.5x 是一次函数,也是正比例函数(2)y =9-21x (0<x <9)是一次函数,不是正比例函数 (3)y =20-x 是一次函数,不是正比例函数(4)y =360x 是一次函数,也是正比例函数三、(1)y =a (1+0.16%x )或写成y =a +0.16%ax(2)当a =20000,x =10时,y =20320四、(1)Q =200+15t(2)注水40分钟可以把水池注满(3)当注水0.2小时即12分钟时,池内有水380公升。
2023学年北师大版数学八年级上同步考点训练4-2 一次函数与正比例函数(能力提升)(含详解)
专题4.2 一次函数与正比例函数(能力提升)(原卷版)一、选择题。
1.(2022春•南关区校级月考)已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定2.(2022春•勃利县期末)下列函数中,是一次函数但不是正比例函数的为()A.y=﹣B.y=﹣C.y=﹣D.y=3.(2021春•南通期中)如图,一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分,则剩余木板的面积(空白部分)y(m2)与x(m)的函数关系式为(0≤x<5)()A.y=10﹣x B.y=5x C.y=2x D.y=﹣2x+104.(2021春•防城区月考)在①y=﹣8x;②y=﹣;③y=+1;④y=﹣8x2+6;⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个5.(2022•市南区校级二模)若关于x的方程﹣2x+b=0的解为x=2,则直线y=﹣2x+b一定经过点()A.(2,0)B.(0,3)C.(4,0)D.(2,5)6.(2022春•长葛市期末)如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,关于x的方程x+5=ax+b的解是()A.x=20B.x=25C.x=20或25D.x=﹣207.(2021•蕉岭县模拟)在平面直角坐标系中,一次函数y=mx+b(m,b均为常数)与正比例函数y=nx(n为常数)的图象如图所示,则关于x的方程mx=nx﹣b的解为()A.x=3B.x=﹣3C.x=1D.x=﹣18.(2021秋•霍邱县期中)在下列函数关系中:①y=kx,②y=x,③y=x2﹣(x﹣1)x,④y=x2+1,⑤y=22﹣x,一定是一次函数的个数有()A.3个B.2个C.4个D.5个9.(2021春•普陀区校级期中)下列函数中,一次函数是()A.B.y=﹣2xC.y=x2+2D.y=mx+n(m,n是常数)10.(2021秋•碑林区校级期中)如图,在平面直角坐标系中,已知点A(2,4),B(1,2),C(5,2),直线l经过点A,它将△ABC分成面积相等的两部分,则直线l的表达式为()A.y=﹣2x+6B.y=﹣2x+8C.y=2x+8D.y=﹣x+6二、填空题。
北师大版八年级数学上《4.2一次函数与正比例函数》同步测试含答案
八年级数学上册 第四章 一次函数 4.2 一次函数与正比例函数 同步测试题1.下列函数中,正比例函数是( )A .y =-xB .y =x +1C .y =x 2+1D .y =1x 2.下列函数关系式:①y =-x ;②y =2x +11;③y =x 2+x +1;④y =-3x,其中一次函数的个数是( ) A .1个 B .2个 C .3个 D .4个3.下列函数既是一次函数又是正比例函数的是( )A .y =3x 2B .y =xC .y =5x -4D .y =-3x4.下列函数中,是一次函数但不是正比例函数的是( )A .y =-x 2B .y =-5xC .y =-x -12D .y =x 2-1x5.下列变量之间的变化关系不是一次函数的是( )A .圆的周长和它的半径B .圆的面积和它的半径C .2x +y =5中的y 和xD .正方形的周长C 和它的边长a6.下列说法中不正确的是( )A .一次函数不一定是正比例函数B .不是一次函数就一定不是正比例函数C .正比例函数是特殊的一次函数D .不是正比例函数就一定不是一次函数7.若函数y =x +3+b 是正比例函数,则b =____.8.对于函数y =(k -3)x +k +3,当k =____时,它是正比例函数;当k____时,它是一次函数.9.已知一次函数y =2x +1,当x =0时,函数y 的值是____.10.把式子3x -y =2写成y =kx +b 的形式,则y = ,其中k =____,b =____.当x =-2时,y =____;当y =0时,x = .11.火车“动车组”以250千米/时的速度行驶,则行驶的路程s(千米)与行驶时间t(小时)之间的函数关系式是 ,它是 函数.(填“正比例”或“一次”)12.某城市的出租车收费标准如下:3公里内起步价为10元,超过3公里以后,以每公里2.4元记价.若某人坐出租车行驶x 公里,付给司机19.6元,则x = .13.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第4个图形中,火柴棒有____根,第n 个图形中,火柴棒有 根,若用y 表示火柴棒的根数,x 表示正方形的个数,则y 与x 的函数关系式是 ,y 是x 的____函数.14. 弹簧挂上物体后会伸长,测得某一弹簧的长度y(cm )与悬挂物体的质量x(kg )有下面一组对应值. 根据上述对应值回答:(1)弹簧不挂物体时的长度是多少?(2)当所挂物体的质量x每增加1 kg,弹簧长度如何变化?(3)求弹簧总长y( cm)与所挂物体质量x( kg)的函数关系式,并指出是什么函数?(4)答案1---6 ABDCDB7. 38. -3 ≠39. 110. 3x-2 3 -2 -8 2 311. s=250t 正比例12. 7公里13. 13 (3n+1) y=3x+1 一次14. 解:(1)12 cm(2)弹簧长度增加0.5 cm(3)y=12+0.5x,是一次函数(4)17 cm。
北师大版八年级上册数学第四章4.2一次函数与正比例函数同步习题
4.2 一次函数与正比例函数同步习题一、选择题1.已知函数y=(k -1)2k x 为正比例函数,则( )A.k≠±1B.k=±1C.k=-1D.k=12、下列说法正确的是( ).A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .正比例函数是一次函数 3、若函数是一次函数,则m 的值为( ) A . B .-1 C .1 D .24、已知正比例函数y=kx (k <0)的图象上两点A (x 1,y 1)、B (x 2,y 2),且 x 1<x 2,则下列不等式中恒成立的是( )A .y 1+y 2>0B .y 1+y 2<0C .y 1﹣y 2>0D .y 1﹣y 2<05、下列函数中,是一次函数但不是正比例函数的为( )A.2x y -=B.x y 1-=C.12--=x yD.12+=x y6、若正比例函数的图象经过点(-1,2),则这个图象必经过点( )A.(1,2)B.(-1,-2)C.(-2,-1)D.(1,-2) 7、已知点(﹣2,y 1),(﹣1,y 2),(1,y 3)都在直线y=﹣3x+2上,则y 1,y 2,y 3的值的大小关系是( )A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 1>y 2>y 38、若函数x m x m y )21()23(2-+-=(m 为常数)是正比例函数,则m 的值为( )A .32>mB .21<mC .32=m D .21=m 9、已知函数y =(m +1)x m2−3是正比例函数,且图象在第二、四象限内,则m的值是( )A.2B.-2C.±2D.-12 10、对于函数y=-k 2x(k 是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(1,k k-)C.经过一、三象限或二、四象限D.y 随着x 增大而减小二、填空题11、若点M (m ,1)在一次函数y=x ﹣2的图象上,则m=__. 12.函数y=kx 的图象经过点P (1,﹣3),则k 的值为_____. 13.函数y =(k +2)x + k 2-4中,当k =______时,它是一个正比例函数.14、写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y (千米)与行使时间x (时)之间的关系; (2)圆的面积y (cm 2)与它的半径x (cm )之间的关系;三、解答题15、已知一次函数y=(2m+4)x+(3-n)(1)求m,n为何值时,函数是正比例函数?(2)求m,n是什么数时,y随x的增大而减小?(3)若图象经过第一,二,三象限,求m,n的取值范围.16、已知函数y=(m﹣2)x3﹣|m|+m+7.(1)当m为何值时,y是x的一次函数?(2)若函数是一次函数,则x为何值时,y的值为3?。
4、2《一次函数与正比例函数》习题(1)21-22学年北师大版 八年级数学上册试题 一课一练
4.2《一次函数与正比例函数》习题1一、填空题1.某人购进一批苹果到市场上零售,已知卖出苹果数量x 与售价y 的关系如下表.2.已知函数y=(m -1)x ︳m ︳+1是一次函数,则m=___.3.我们把[a ,b]称为一次函数y =ax+b 的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n 的值为_____.二、选择题1.下列函数中,y 是x 的正比例函数的是( ) A .3xy =B .21y x =-C .22y x =D .21y x =-+2.下列函数(1)y x π=(2)21y x =-(3)1y x=(4)123y x -=-(5)21y x =-中,一次函数有( )个. A .1B .2C .3D .43.等腰三角形周长为20cm ,底边长ycm 与腰长xcm 之间的函数关系是( ) A .y=20-2x(0<x <10) B .y=20-2x(5<x <10) C .y=10-x(5<x <10)D .y=10-0.5x(10<x <20)4.已知y ﹣1与x 成正比例,当x =3时,y =2.则当x =﹣1时,y 的值是( ) A .﹣1B .0C .13-D .235.用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A .100(0.6)y n m =+B .100()0.6y n m =+ C .(1000.6)y n m =+ D .1000.6y mn =+ 6.已知y 是x 的一次函数,下表中列出了部分对应值:A .-1B .0C .12D .27.已知函数28(3)4m y m x -=++是关于x 的一次函数,则m 的值是( ) A .3m =±B .3m ≠-C .3m =-D .3m =8.已知初一(6)班的班费总共为200元,现在要为全班x 个同学每人购买一个笔袋,笔袋单价为2元,则购买后剩余班费y 元与班级人数x 之间的函数关系式为 ( ) A .2y x =B .2002y x =-C .2200y x =-D .2002y x =+9.当2x =时,函数41=-+y x 的值是( ) A .-3B .-5C .-7D .-910.某商场存放处每周的存车量为5000辆次,其中自行车存车费是毎辆一次1元,电动车存车费为每辆一次2元,若自行车存车量为x 辆次,存车的总收入为y 元,则y 与x 之间的关系式是( )A .y =﹣x +10000B .y =﹣2x +5000C .y =x +1000D .y =x +500011.若函数||(1)2m y m x =++是一次函数,则m 的值为( ) A .1m =±B .1m =-C .1m =D .1m ≠-12.对于一次函数y =kx +b (k ,b 为常数,k ≠0)下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是( )A .5B .8C .12D .1413.若正比例函数y kx =()0k ≠,当x 的值减小1,y 的值就减小2,则当x 的值增加2时,y 的值( ) A .增加4B .减小4C .增加2D .减小214.在计算器上按照下面的程序进行操作:下表分别是x 和输入的6个数及相应的计算结果A .-26B .-30C .26D .-29三、解答题1.已知银行2006年9月的“半年期存款”年利率是2.25%,某人当年9月存入银行a 元,经过半年到期时按规定缴纳20%利息税后,得到利息b 元.问税后利息b(元)与本金a(元)成正比例吗?如果成正比例,那么求出这个比例系数.2.商店要出售一种商品,出售时要在进价的基础上加上一定的利润,其销售量x (千克)与售价y (元)之间的关系如下表.(2)此商品的销售量为10千克时,售价为多少? (3)当售价为26.05元时,商品的销售量为多少千克?3.已知函数3(2)7m y m x m -=-++. (1)当m 为何值时,y 是x 的一次函数?(2)若函数是一次函数,则x 为何值时,y 的值为3?4.写出下列各题中y 关于x 的函数关系式,并判断y 是否为x 的一次函数,是否为正比例函数. (1)长方形的面积为20,长方形的长y 与宽x 之间的函数关系式;(2)刚上市时西瓜每千克3.6元,买西瓜的总价y 元与所买西瓜x 千克之间的函数关系式; (3)仓库内有粉笔400盒,如果每个星期领出36盒,仓库内余下的粉笔盒数y 与星期数x 之间的函数关系式;(4)爸爸为小林存了一份教育储蓄,首次存入10 000元,以后每个月存入500元,存入总数y 元与月数x 之间的函数关系式.5.如图所示,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点P 从点C 出发,沿CB 向点B 运动,设点P 所走过的路程长为x ,APB ∆的面积为y .(1)求y 关于x 的函数解析式; (2)求出函数定义域.6.若y -2与x+1成正比例.当x=2时,y=11. (1)求y 与x 的函数关系式;(2)求当x=0时,y的值;(3)求当y=0时,x的值.7.学校准备添置一批计算机.方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要计算机x台,方案1与方案2的费用分别为y1、y2元.(1)分别写出y1,y2的函数解析式;(2)当学校添置多少台计算机时,两种方案的费用相同?(3)若学校需要添置计算机50台,那么采用哪一种方案较省钱,说说你的理由.8.一辆装满油的小汽车在平直的公路上匀速行驶,下表是里程表及油量表中的数字:Q(L)(1)求油箱内的余油量Q(L)与这次加油后汽车行驶的路程x(km)之间的函数关系;(2)汽车从加油站开出时,里程表上的数字是多少?(精确到1km)(3)当油箱内剩余油量为2L时,油量警示灯就会亮起,这时就要给汽车加油,则这辆汽车再跑多少千米就必须进站加油?(精确到1km)答案一、填空题1.1-2.313.-1.4.﹣1. 二、选择题1.A. 2.C.3.B .4.D .5.A6.B7.D .8.B .9.C.10.A11.C . 12.C 13.A .14.D 三、解答题1.税后利息b (元)与本金a (元)成正比例.根据题意得:b 12=⨯2.25%×(1﹣20%)a 91000=a ,故比例系数为:91000.2.解:(1)0.30.05 1.30.05y x x x =++=+;(2)把10x =代入 1.30.05y x =+可得, 1.3100.0513.05y =⨯+=, 答:售价为13.05元;(3)把26.05y =代入 1.30.05y x =+, 可得:26.05 1.30.05x =+, 解得:20x, 答:商品的销售量为20千克. 3.(1)由3||(2)7m y m x m -=-++是一次函数得3120m m ⎧-=⎨-≠⎩,解得2m =-.故当2m =-时,3||(2)7m y m x m -=-++是一次函数. (2)由(1)可知45y x =-+. 当3y =时,345x =-+,解得12x =. 故当12x =时,y 的值为3. 4.(1)20y x=,不是一次函数,也不是正比例函数.(2) 3.6y x =,是正比例函数,也是一次函数. (3)36400y x =-+,是一次函数,不是正比例函数. (4)50010000y x =+,是一次函数,不是正比例函数.5.解:(1)由题意,得BP=6-x,()1186244;22y BP AC x x ∴==⨯-=- (2)因为P 在CB 上运动,BC=6,06x ∴≤≤6.(1)设y-2=k(x+1) 把当x=2时,y=11代入得 11-2=k(2+1),解得k=3, ∴y-2=3(x+1),整理得y=3x+5 (2)当x=0时,y=5;(3)当y=0时,3x+5=0,解得x=53-7.解:(1)y 1=7000x ; y 2=6000x+3000;(2)由7000x=6000x+3000,解得x=3,因此当学校添置3台计算机时,两种方案的费用相同;(3)当x=50时,y 1=7000×50=350000; y 2=6000×50+3000=303000,因为303000<350000,所以采用方案2较省钱.8.解:(1)由表格可知,汽车每行驶100km ,耗油8.5L ,即每行驶1km ,耗油0.085L , 所以油箱内的余油量Q(L)与这次加油后汽车行驶的路程x(km)之间的关系为0.08550Q x =-+. (2)从加油站开出时,汽车油箱的油量是50L.当里程表上的数字是2000时,油量表上的数字显示40. 则汽车从加油站开出时,里程表上的数字是10020001018828.5-⨯≈(km). (3)100(62)478.5⨯-≈(km).所以这辆汽车再跑47km 就必须加油。
4.2 一次函数与正比例函数 北师大版八年级数学上册同步练习1及答案
新版北师大版八年级数学上册第4章《一次函数》同步练习及答案—4.2一次函数与正比例函数(1)
专题一次函数探究题
1.用m根火柴可以拼成如图1所示的x个正方形,还可以拼成如图2所示的2y个正方形,那么用含x的代数式表示y,得______________.
2. 将长为38cm、宽为5cm的长方形白纸按如图所示的方法黏合在一起,黏合部分的白纸宽
为2cm.
(1)求5张白纸黏合的长度;
(2)设x张白纸黏合后的总长为ycm,写出y与x的函数关系式(标明自变量x的取值范围);
(3)用这些白纸黏合的总长能否为362cm?并说明理由.
参考答案:
1.y=x-【解析】由图1可知:一个正方形有4条边,两个正方形有4+3条边,
∴m=4+3(x-1)=1+3x;由图2可知:一组图形有7条边,两组图形有7+5条边,
∴m=7+5(y-1)=2+5y,所以1+3x=2+5y,即y=x-.
2.解:(1)5张白纸黏合,需黏合4次,重叠2×4=8cm.所以总长为38×5-8=182(cm).(2)x张白纸黏合,需黏合(x-1)次,重叠2(x-1)cm,所以总长y=38x-2(x-1)=36x+2(x≥1,且x为整数).
(3)能.当y=362时,得到36x+2=362,解得x=10,即10张白纸黏合的总长为362cm.3.解:(1)由图可以看出图形的周长=上下底的和+两腰长,∴l=3n+2.
(2)n=11时,图形周长为3×11+2=35.。
北师大版-数学-八年级上册-4.2 一次函数与正比例函数 同步练习
一次函数与正比例函数一.选择题:(四个选项中只有一个是正确的,选出正确选项填在题目的括号内)1.下列函数中,y 是x 的正比例函数的是()A .21y x =-B .3y x =C .22y x =D .21y x =--2.下列函数中,y 是x 的正比例函数的是()A .3x y =B .3y x =C .222y x =-D .2y x =3.下列函数中:25y x =+,1y x =,8y x =-,1y x =--,y 是x 的正比例函数的有() A .1个 B .2个 C .3个 D .4个4.若2(1)1y m x m =++-是关于x 的正比例函数,则m=() A .0 B .1 C .1± D .1-5.若2(2)4y m x m =-+-是关于x 的正比例函数,则m=() A .2 B .2- C .2± D .任意实数6.若(1)5k y k x k =-+是关于x 的一次函数,则k=( )A .1B .1-C .0或1-D .1或1-7.若23(2)5k y k x -=--是关于x 的一次函数,则k=( )A .2B .2-C .2或2-D .不能确定8.若1(2)3n y m x -=-+是关于x 的一次函数,则m ,n 满足( ) A .2,2m n ≠= B .2,2m n == C .2,1m n ≠= D .2,1m n ==9.要使1(2)n y m x n -=-+是关于x 的一次函数,则m ,n 满足( ) A .2,2m n ≠≠ B .2,2m n == C .2,2m n ≠= D .2,0m n ==10.下列各选项中的y 与x 的关系为正比例函数的是( )A .正方形周长y (厘米)和它的边长x (厘米)的关系B .圆的面积y (平方厘米)与半径x (厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米11.下列语句中,y与x是一次函数关系的有()个(1)汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x(时)之间的关系(2)高度不变的圆柱的体积y(厘米2)与它的底面半径x(厘米)之间的关系;(3)一根弹簧不挂物体时长10厘米,所挂物体的质量x每增加1kg,弹簧长度y增加0.6cm;(4)某种大米的单价是2.6元/千克,当购买大米x千克大米时,花费y元,y与x的关系; A.1个 B.2个 C.3个 D.4个12.下列说法不正确的是()A.一次函数不一定是正比例函数B.不是一次函数就不一定是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数二.填空题:(将正确答案填在题目的横线上)13.下列函数:①7y x=;②y x=π;③2y x=-;④21yx=;⑤7y x=-;;其中是一次函数的是:_______________________;(填序号)14.已知28(3)my m x-=-是关于x的正比例函数,则m=______;15.已知y与x成正比例,且当x=-2时,y=4,则y与x之间的函数关系式是_________________;16.已知y是x的一次函数,下表列出了一些对应值,则m=_______;17.已知36y x=-,则x=0时,y=_____,y=0时,x=_____;三.解答题:(写出必要的说明过程,解答步骤)18.已知函数2(1)(1)y m x m=++-;(1)当m取什么值时,y是x的正比例函数;(2)当m取什么值时,y是x的一次函数;19.已知12(2)(2)ky k x k-=++-是关于x的一次函数,求这个函数的表达式;20.已知2(1)(4)ky k x k=-+-是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.21.写出下列各题中y与x之间的解析式,并判断y是否是x的一次函数;(1)在时速为70千米的匀速运动中,路程y(千米)与时间x(小时)的关系;(2)居民用电标准是每千瓦时0.53元,则电费y(元)与用电量x(千瓦时)之间的关系;(3)汽车离开A站4千米,再以40千米/时的平均速度行驶了x小时,那么汽车离开A站的距离y(千米)与时间x(小时)之间的关系;(4)某车站规定旅客可以免费携带不超过20千克的行李,超过部分每千克收取1.5元的行李费用,则旅客需交的行李费y(元)与携带行李重量x(千克)之间的关系.22.已知(1)ky k x k=--是一次函数;(1)求k的值;(2)若点(2,a)在这个一次函数的图象上,求a的值.参考答案:1~12 BABBB BAACA CD13.①②⑤;14.-3;15.y=-2x;16.﹣5;17.-6,2;18.(1)∵函数y=(m+1)x+(m2﹣1)是正比例函数,∴m+1≠0且m2﹣1=0.解得:m=1.(2)根据一次函数的定义可知:m+1≠0,解得:m≠﹣1.19.依题意得:|k|﹣1=1且k+2≠0,解得k=2.∴y=(2+2)x|2|﹣1+(22﹣2)=4x+2,即该函数表达式为y=4x+2.20.(1)由题意可得:|k|=1,k﹣1≠0,解得:k=﹣1;(2)当x=3时,y=﹣2x﹣3=﹣9;(3)当y=0时,0=﹣2x﹣3,解得:32x=-x;21.(1)根据题意可得:y=70x,是一次函数;(2)根据题意可得:y=0.53x,是一次函数;(3)根据题意可得:y=4+40x,是一次函数;(4)根据题意可得:,是一次函数.22.(1)∵y是一次函数,∴|k|=1,解得k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.(2)将k=﹣1代入得一次函数的解析式为y=﹣2x+1.∵(2,a)在y=﹣2x+1图象上,∴a=﹣4+1=﹣3.。
064.北师大版八年级数学上册4.2 一次函数与正比例函数(同步练习)
4.2 一次函数与正比例函数 1.下列函数中,是一次函数但不是正比例函数的是( ).A.3x y =- B.3y x=- C.12x y += D.2212x y x+=2.若函数23y x b =+-是正比例函数,则b = .3.某学生的家离学校2km ,他以16km/min 的速度骑车到学校,写出他与学校的距离s (km )和骑车的时间t(min)的函数关系式为 ,s 是t 的 函数.4.如图,在三角形ABC 中,∠B 与∠C 的平分线交于点P,设∠A=x,∠BPC=y,当∠A变化时,求y与x之间的函数关系式,并判断y是不是x的一次函数.5.将长为13.5cm,宽为8cm的长方形白纸,按照图所示的方法粘合起来,粘合部分宽为1.5cm.(1)求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,求y与x之间的函数关系式.813.56.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A 到甲地运费50元/吨,到乙地30元/吨;从B 地到甲运费60元/吨,到乙地45元/吨.(1)设A 地到甲地运送蔬菜x 吨,请完成下表:(2)设总运费为W 元,请写出W 与x 的函数关系式.(3)怎样调运蔬菜才能使运费最少?答案:1. C.2. 23b =. 3. 126s t =-,(012t ≤≤);一次函数. 4. 1902y x =+,(0180)x <<;y 是x 的一次函数. 5. 61.5cm ;13.5 1.5(1)12 1.5y x x x =--=+.6.(1)运往甲地(单位:吨) 运往乙地(单位:吨) A x B(2)由题意,得 5030146015451W x x x x =+-+-+-()()()整理得,51275W x =+.(3)∵A ,B 到两地运送的蔬菜为非负数, ∴0,140,150,10.x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩ 解不等式组,得114x ≤≤在51275W x =+中,W 随x 增大而增大,∴当x 最小为1时,W 有最小值 1280元.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 运往甲地(单位:吨) 运往乙地(单位:吨) A x 14x - B 15x - 1x -9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。
北师大版八年级数学上册《4.2一次函数与正比例函数》同步练习题(带答案)
北师大版八年级数学上册《4.2一次函数与正比例函数》同步练习题(带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能2.下列函数中,y是x的一次函数的是()A.B.C.D.3.把方程改写成用含x的式子表示y的形式,正确的是()A.y=2x-3 B.y=3-2x C.D.4.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的周长C随着边长x的变化而变化B.正方形的面积S随着边长x的变化而变化C.面积为20的三角形的一边a随着这边上的高h的变化而变化D.水箱以0.5L/min的流量往外放水,水箱中的剩水量VL随着放水时间tmin的变化而变化5.汽车开始行驶时,油箱内有油升,如果每小时耗油升,则油箱内余油量升与行驶时间时之间的函数关系式为()A.B.C.D.6.已知正比例函数,则下列各点在该函数图象上的是()A.B.C.D.7.以下四点:(1,2),(2,3),(0,1),(﹣2,3)在直线y=2x+1上的有()A.1个B.2个C.3个D.4个8.小明用相同的积木玩一个拼图游戏,该积木每个角都是直角,长度如图1所示,小明用个这样的积木,按照如图2所示的方法玩拼图游戏,两两相扣,相互间不留空隙.则图形的总长度与图形个数之间的关系式为()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.已知是一次函数,则.10.长方形的周长是26,它的长y与宽x的函数关系式是.11.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就是说x是,y是x的 .12.某工程队承建30千米的管道铺设工程,预计工期为60天,设施工天时未铺设的管道长度是千米,则关于的关系式是.13.在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体的重量x的一组对应值:在弹簧允许范围内,写出弹簧长与所挂重物的关系式.所挂物重量弹簧长度14.已知y+6与x成正比例,且当x=3时,y=-12,求y与x的函数关系式.15.兰州市居民用电现有两种用电收费方式:设某家庭某月用电总量为x千瓦时,其中谷时用电60千瓦时,则峰时用电(x﹣60)千瓦时,智能分时电表计价时的总价为为y1(元),普通电表计价时的总价为y2(元).请分别写出两种电表计价时的总价与用电总量之间的函数关系式.16.已知,若函数y=(m-1)+3是关于x的一次函数(1)求m的值,并写出解析式.(2)判断点(1,2)是否在此函数图象上,说明理由.17.写出下列各题中y与x之间的关系式,并判断:y是否为x的一次函数?是否为x的正比例函数?(1)每盒铅笔12支,售价2.4元,铅笔售价y(元)与铅笔支数x(支)之间的关系。
北师大版八年级数学上册 4.2 正比例函数的图像与一次函数图像 同步练习
x变式:正比例函数y=−2x的大致图象是( )A. B. C. D.练习:3、已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是( )A. 1B. 2C. 3D. 44、当x>0时,函数y=−3x的图象在()33变式:如图,正比例函数图象经过点A,该函数解析式是______.练习正比例函数的性质2、在正比例函数y=−3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限关系___.5、正比例函数y=kx(k≠0)中,如果自变量x增加2,那么y的值增加8,则k的值是___.6、在正比例函数y=−3mx中,函数y的值随x值的增大而增大,则P(m,5)在第___象限。
7、如果一个正比例函数的图象经过不同象限的两点,,那么一定有()A. ,B. ,C. ,D. ,8、正比例函数y=(k−2)x中,y随x的增大而减小,则k的取值范围是( )的面积为3(1)求正比例函数的表达式;A. B. C. D.变式:如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是( )A. MB. NC. PD. Q 练习:7、若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为___.8、如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是( )A. B. C. D.9、在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第___象限。
(2)判断(4,3)是否在此函数的图象上。
(3)观察画出的图象,说一说当x为何值时y<0?。
4.2 一次函数与正比例函数 北师大版数学八年级上册素养提升练习(含解析)
第四章 一次函数2 一次函数与正比例函数基础过关全练知识点1 一次函数与正比例函数的概念1.(2022安徽无为月考)若y关于x的函数y=(a-4)x+b是正比例函数,则a,b应满足的条件是( ) A.a≠4且b≠0 B.a≠-4且b=0C.a=4且b=0D.a≠4且b=02.(2021甘肃兰州期中)下列选项中的y是x的正比例函数的是( )A.正方形的周长y(厘米)和它的边长x(厘米)B.圆的面积y(平方厘米)与半径x(厘米)C.立方体的体积y(立方厘米)和它的棱长x(厘米)D.一棵树现在的高度为60厘米,每个月长高3厘米,x个月后这棵树的高度为y厘米3.已知函数y=(m-3)x m2―8+3是关于x的一次函数,则m= .4.(2021安徽安庆期中)已知函数y=(m-2)x+|m|-2.(1)当m满足什么条件时,y=(m-2)x+|m|-2是一次函数?(2)当m满足什么条件时,y=(m-2)x+|m|-2是正比例函数?5.(2021河北唐山路北期末)已知y+3与x+2成正比例,且当x=3时,y=7.(1)求出y与x之间的函数关系式;(2)当x=-1时,求y的值;(3)当y=0时,求x的值.知识点2 确定实际问题中的一次函数关系式6.【教材变式·P82T1】张明开车自驾游的时间和路程如下表:时间/时12345路程/千米80160240320400他开车行驶的路程s(千米)与时间t(时)的函数关系式是 ,它 (填“是”或“不是”)正比例函数.7.【新独家原创】某桶装水销售部每天的房租、人员工资等固定成本为200元,每桶水的进价是3元,现在每桶水的销售价格为8元,如果用x(单位:桶)表示每天的销售量,用y(元)表示每天的利润(利润=总销售额-固定成本-售出水的成本).(1)试写出y与x的函数关系式;(2)因房租比原来便宜,现在固定成本减少了2%,每桶水的进价增加了2元,求此时y与x的函数关系式.8.【教材变式·P96T3】某公司要印制产品宣传材料,有两家印刷厂,甲厂提出:400份以上的部分,每份材料收0.6元印制费,少于或等于400份免费,但要收800元制版费;乙厂提出:每份材料收1.6元印制费,不收制版费.()(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)印制多少份宣传材料时,两家印刷厂的印刷费用相同?(3)印制800份宣传材料时,选择哪家印刷厂比较合算?能力提升全练9.(2023河北保定乐凯中学期中,6,★☆☆)下列函数中,是正比例函数的是( ) A.y=3x B.y=x2C.y=6 D.y=2x-3x10.(2023广东深圳宝安新安中学期中,20,★★☆)某种子商店销售玉米种子,为惠民促销,推出两种销售方案供采购者选择.方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克部分的种子价格打7折.()(1)请分别求出方案一和方案二中购买的种子数量x(千克)(x>3)和付款金额y(元)之间的函数关系式.(2)王伯伯要买20千克玉米种子,选哪种方案合适?说明理由.(3)李叔叔花36元,最多可买多少千克玉米种子?素养探究全练11.【模型观念】(2021河南郑州四十七中期中)如图,已知长方形ABCD 中,AB=CD=16,BC=DA=24,E为CD边的中点,P为长方形ABCD边上的动点,动点P以4个单位/秒的速度从点A出发,沿A→B→C→E运动,运动到点E时停止.设点P运动的时间为t秒,△APE的面积为y.(1)当t=2时,y的值是 ,当t=6时,y的值是 ;(2)求出点P的运动过程中,y与t之间的函数关系式.答案全解全析基础过关全练1.D ∵y关于x的函数y=(a-4)x+b是正比例函数,解得a≠4且b=0.故选D.∴a―4≠0,b=0,2.A A选项的关系式为y=4x,y是x的正比例函数;B选项的关系式为y=πx2,y不是x的正比例函数;C选项的关系式为y=x3,y不是x的正比例函数;D选项的关系式为y=3x+60,y是x的一次函数,不是正比例函数.故选A.3.-3解析 由题意得m2-8=1且m-3≠0,∴m=-3.4.解析 (1)由题意得m-2≠0,解得m≠2.(2)由题意得|m|-2=0,且m-2≠0,解得m=-2.5.解析 (1)设y+3=k(x+2)(k≠0),∵当x=3时,y=7,∴7+3=k(3+2),∴k=2,∴y+3=2x+4,即y=2x+1.(2)当x=-1时,y=-1×2+1=-1.(3)当y=0时,2x+1=0,解得x=-1.26.s=80t;是解析 由路程=时间×速度,得s=80t,是正比例函数.7.解析 (1)y与x的函数关系式为y=8x-3x-200=5x-200.(2)y与x的函数关系式为y=8x-5x-200×(1-2%)=3x-196.8.解析 (1)甲厂的收费y(元)与印制数量x(份)之间的函数解析式为y=800(x≤400),0.6x+560(x>400).乙厂的收费y(元)与印制数量x(份)之间的函数解析式为y=1.6x. (2)根据题意可知,当x≤400时,由800=1.6x得x=500(舍去);当x>400时,由0.6x+560=1.6x得x=560.∴印制560份宣传材料时,两家印刷厂的印刷费用相同.(3)当x=800时,甲厂的收费为y=0.6×800+560=1 040(元).当x=800时,乙厂的收费为y=1.6×800=1 280(元).∵1 280>1 040,∴印制800份宣传材料时,选择甲印刷厂比较合算.能力提升全练9.A10.解析 (1)由题意可得,方案一中,购买的种子数量x(千克)(x>3)和付款金额y(元)之间的函数关系式是y=4x.方案二中,购买的种子数量x(千克)(x>3)和付款金额y(元)之间的函数关系式是y=5×3+5×0.7(x-3)=3.5x+4.5.(2)王伯伯要买20千克玉米种子,选方案二合适.理由:当x =20时,方案一的花费为4×20=80(元),方案二的花费为3.5×20+4.5=74.5(元),∵80>74.5,∴王伯伯要买20千克玉米种子,选方案二合适.(3)当y =36时,方案一可以购买玉米种子的质量为36÷4=9(千克),方案二可以购买玉米种子的质量为(36-4.5)÷3.5=9(千克),即李叔叔花36元,最多可买9千克玉米种子.素养探究全练11.解析 (1)当t =2时,AP =4×2=8,所以△APE 的面积y =12×24×8=96.当t =6时,BP =6×4-AB =24-16=8,所以PC =BC -BP =24-8=16,所以△APE 的面积y =24×16-12×16×8-12×16×8-12×24×8=160.(2)①当0≤t ≤4时,点P 在AB 上(如图1),此时AP =4t ,所以△APE 的面积y =12×4t ×24=48t ;②当4<t ≤10时,点P 在BC 上(如图2),此时BP =4t -16,则PC =24-(4t -16)=40-4t ,所以△APE 的面积y =24×16-12×16×(4t -16)-12×(40-4t )×8-12×24×8=-16t +256;③当10<t ≤12时,点P 在CE 上(如图3),此时PE =48-4t ,所以△APE 的面积y =12(48-4t )×24=-48t +576.综上,y 与t 之间的函数关系式为y =48t (0≤t ≤4),―16t +256(4<t ≤10),―48t +576(10<t ≤12).图1图2图3。
4.2 一次函数与正比例函数八年级上册数学北师大版
4.已知函数 y=(3-m)x+2m-4.
(1)当 m 为何值时,函数是正比例函数?
(2)当 m 为何值时,函数是一次函数?
分析:(1)由正比例函数的定义可知:
①3-m≠0;②2m-4=0.
(2)由一次函数的定义可知:3-m≠0.
5.甲乙两地相距 150 公里,张三驾驶私家车从甲地开往乙地,
课堂小结
若两个变量x,y间的对应关系可以表示成 y=kx+b(k,
b 是常数,k≠0)的形式,则称y是x的一次函数.
一
次
例函
函数
数与
正
比
定义
一次函数y=kx+b(k,b 是常数,k≠0),当 b=0 时,
变为 y=kx,这时称y是x正比例函数.
①寻找等量关系(有时直接将公式当做等量关
列一次函
数关系式
寻找等量关系(有时直接将公式当做等量关
系).
用字母表示自变量和因变量,根据等量关系
列出等式.
将等式变形,写成一次函数的一般形式.
随堂练习
1.拖拉机开始工作时,油箱中有油 36 L,如果每小时耗油4 L,
那么油箱中剩余油量 y L 与工作时间 x h 之间的函数表达式
是 y = 36- 4x ,自变量 x 的取值范围是 0 ≤ x ≤ 9 ,当 x=4 时,
y=kx+b(k注意:一次函数y=kx+b(k≠0)有三个特征:①k≠0;
②自变量x的次数是1;③常数b可以是任意实数.
知识点二 正比例函数:一次函数y=kx+b(k,b 是常数,k≠0),
当 b=0 时,变为 y=kx,这时称y是x正比例函数.
2021新北师大版八年级上册4.2一次函数与正比例函数同步练习题
2021新北师大版八年级上册4.2一次函数与正比例函数同步练习题4.2一次函数与正比例函数※课时达到标准1.请你写出一个经过点(1,1)的函数解析式______________.2.等腰三角形顶角的y度和底角的x度之间的函数关系为___3。
如果主函数y=5x+m的图像通过点(-1,0),则★ 地基加固1.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是.2.已知一次函数y=kx+5的图象经过点(-1,2),然后k=m=________.4.在以下函数关系中,有()表示主函数①y?2x?1②y?1x③y?x?12?x④s60吨⑤Y100? 25xa。
1 B.2 C.3 D.4 5以下陈述不正确()a.主要函数不一定是正比例函数b.不是一次函数就一定不是正比例函数c.正比例函数是特殊的一次函数d.不是正比例函数就一定不是一次函数6.一次函数y=-2x+b的图象经过点(2,-8),写出这个函数的表达式.7.已知Y-2与X成正比。
当X=3,Y=1时,求出Y和X的函数表达式。
※课后作业3.已知y与4x-1成正比,当x=3,y=6时,写出函数关系___4。
功能y?十、5中自变量x的取值范围为____5.把等腰三角形中腰长记为x,底边长记为y,周长为24,写出y与x的函数关系式;自变量的取值范围是6.直线y=x+?2与y轴的交点是__________;与x轴的交点是_________;与?直线y=3x-2的交点是___________.7.若函数y?(m?2)xm2?3是正比例函数,则常数字m的值为_______8.当k=_____时,y=(k+1)xk2+k是一次函数.9.函数y=5x-10,当x=2时,y=______;当x=0时,y=______.10.如果函数y=MX-(m-2)的图像通过点(0,3),则m=___11.下面哪个点不在函数y=-2x+3的图象上().a、(-5,13)b.(0.5,2)c.(3,0)d.(1,1)12.直线y?kx?b经过a(0,2)和b(3,0)两点,那么这个一次函数关系式是().a.y?2x?3b.y??23x?2c、是吗?3倍?2d。
2018-2019学年数学北师大版八年级上册4.2《一次函数与正比例函数》同步练习
2018-2019学年数学北师大版八年级上册4.2《一次函数与正比例函数》同步练习一、选择题1.下列函数关系中表示一次函数的有()①y=2x+1②③④s=60t⑤y=100-25xA、1个B、2个C、3个D、4个+2.下面哪个点不在函数y=-2x+3的图象上()A、(-5,13)B、(0.5,2)C、(3,0)D、(1,1)+3.下列函数既是一次函数又是正比例函数的是( )A、y=3x2B、y=C、y=5x-4D、y=-3x+4.下列函数中,是一次函数但不是正比例函数的是( )D、y=A、y=-B、y=-C、y=-+5.函数y=m +(m-1)是一次函数,则m值()A、m≠0B、m=2C、m=2或4D、m>2+二、填空题:6.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是+7.已知函数y=(m-2)+2是关于x的一次函数,则m =+8.某音像社对外出租的光盘的收费方法是:每张光盘出租后的头两天,每天收0.8元,以后每天收0.5元,那么一张光盘在出租后n天(n≥2)应收租金元.+9.等腰三角形的周长为10cm,底边长为ycm,腰长为xcm,用x表示y的函数关系式为.+10.下面由火柴棒拼出的一列图形中,第n个图形由n个正方形组成:通过观察可以发现:第4个图形中,火柴棒有根,第n个图形中,火柴棒有根,若用y表示火柴棒的根数,x表示正方形的个数,则y与x的函数关系式是,y是x的函数.+三、解答题11.已知y+a与x+b(a、b为常数)成正比例.y是x的一次函数吗?请说明理由.+12.已知y=(k-3)x+k2-9是关于x的正比例函数,求当x=-4时,y的值.+13.已知y+a与x+b(a、b为常数)成正比例.y是x的一次函数吗?请说明理由. +14.已知y=(k-3)x+k2-9是关于x的正比例函数,求当x=-4时,y的值.+15.已知,若函数y=(m-1)+3是关于x的一次函数(1)、求m的值,并写出解析式.(2)、判断点(1,2)是否在此函数图象上,说明理由.+。
4.2《一次函数与正比例函数》一课一练 2021-2022学年北师大版八年级数学上册(含答案)
4.2《一次函数与正比例函数》习题1一、填空题1.已知函数2(1)3k y k x =-+是一次函数,则k =_________.2.下列函数关系是:①1y kx =+(k ≠0);②2y x =;③21y x =+;④2y x x ,其中是一次函数的有_____个.3.已知y 与x 成正比例,并且x =-3时,y =6,则y 与x 的函数关系式为________.4.已知y-4与x 成正比例,且当x =1时,y =2,那么当x =3时,y =________ .5.下表给出的是直线(0)y kx b k =+≠自变量x 及其对应的函数值y 的部分信息k =6.一蜡烛高20 厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h (厘米)与燃烧时间t (时)之间的关系式是__________(0≤t ≤5).7.汽车以60千米/时的平均速度,由A 地驶往相距420千米的上海,汽车距上海的路程s(千米)与行驶时间t(时)的函数关系式是_____.8.一根长为24cm 的蜡烛被点燃后,每分钟缩短1.2cm ,则其剩余长度y (cm )与燃烧时间x (min )的函数关系式为________________,自变量的取值范围是_________________.9.一水池的容积是390m ,现有水310m ,用水管以每小时35m 的速度向水池中注水,直到注满为止,则水池水量()3V m 与注水时间t (小时)之间的关系式为_______,自变量t 的取值范围是_______.二、选择题1.下列函数中,y 是x 的正比例函数的是( )A .21y x =+B .3x y =C .22y x =D .3y x= 2.下面各组变量的关系中,成正比例关系的有( )A .人的身高与年龄B .买同一练习本所要的钱数与所买本数C .正方形的面积与它的边长D .汽车从甲地到乙地,所用时间与行驶速度3.下列函数中,y 是x 的正比例函数的是( )A .y =x 2B .y =1xC .y =2x -D .y =12x + 4.下列函数中,y 是x 的正比例函数的是( )A .41y x =+B .2y x =C .y =D .y =5.已知y 关于x 成正比例,且当2x =时,6y =-,则当1x =时,y 的值为A .3B .3-C .12D .12-6.已知函数y =x +k +1是正比例函数,则k 的值为( )A .1B .﹣1C .0D .±1 7.若25(2)3m y m x -=++是一次函数,则m 的值为( )A .2B .-2C .±2D .8.若函数()215m y m x =+-是关于x 的一次函数,则m 的值为( )A .0B .1C .1-D .1或1-9.若函数y=(m-1)x ∣m ∣-5是一次函数,则m 的值为( )A .±1B .-1C .1D .210.下列函数关系式:①y =-2x ;②y =2x ;③y =-22x ;④y =2;⑤y =2x -1.其中是一次函数的是( )A .①⑤B .①④⑤C .②⑤D .②④⑤11.若函数24k y x -=+是一次函数,则k 的值是( )A .1B .2C .3D .412.下列函数中,y 是x 的一次函数的是( )A .26y x =-B .6x y =C .6y x =D .16y x -=-三、解答题1.已知3y 与x 成正比例,且2x =时,1y =.(1)求y 关于x 的函数表达式;(2)当12x =-时,求y 的值.2.已知y 与x+2成正比例,且当x=1时,y=6;(1)求出y 与x 之间的函数关系式;(2)当x=﹣3时,求y 的值;(3)当y <-1时,求x 的取值范围.3.某剧院举行专场音乐会,成人票每张20元,学生票每张5元.暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案一:购买一张成人票赠送一张学生票;方案二:按总价的90%付款.某校有4名老师带队,与若干名(不少于4人)学生一起听音乐会.设学生人数为x 人,4x ≥(x 为整数). (Ⅰ)根据题意填表:(Ⅱ)设方案一付款总金额为1元,方案二付款总金额为2y 元,分别求1y ,2y 关于x 的函数解析式;(Ⅲ)根据题意填空:①若用两种方案购买音乐会的花费相同,则听音乐会的学生有________________人;②若有60名学生听音乐会,则用方案_______________购买音乐会票的花费少;③若用一种方案购买音乐会票共花费了450元,则用方案________________购买音乐会票,使听音乐的学生人数多.4.将长为38cm、宽为5cm的长方形白纸按如图所示的方法黏合在一起,黏合部分的白纸宽为2cm.(1)求5张白纸黏合的长度;(2)设x张白纸黏合后的总长为ycm,写出y与x的函数关系式;(标明自变量x的取值范围)(3)用这些白纸黏合的长度能否为362cm,并说明理由.5.“十一”期间,小华一家人开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽要车的耗油量是均匀的)(1)求该车平均每千米的耗油量;(2)写出剩余油量Q(升)与行驶路程x(千米)之间的关系式;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.答案一、填空题1.-12.1.3.2y x =-4.2-5.2 66.h =20-4t7.s=420﹣60t .8.y=24-1.2x ,0≤x ≤20.9.(1)V=5t+10;(2)0≤t ≤16.二、选择题1.B . 2.B .3.C .4.C .5.B .6.B .7.A .8.B .9.B 10.A11.C .12.B .三、解答题1.解:(1)设3y kx (k 是常数且0k ≠),把x =2,y =1代入得2x =1+3,解得x =2,所以y +3=2x ,所以y 与x 的函数表达式为y =2x ﹣3;(2)当x =﹣12时,y =2×(﹣12)﹣3=﹣4. 2.解:(1)由题意y 与x+2成正比例,设正比例函数y=k(x+2), 将x=1,y=6代入有 k (1+2)=6得到k =2,所以 y 与x 之间的函数关系式为y=2x+4.(2)将x=-3 代入y=2x+4,即得y=2×(-3)+4=-2,即y=-2.(3)当y ﹤-1 时,则有2x+4﹤-1, 2x ﹤-5 解得x ﹤-52,所以x 的取值范围为x ﹤-52. 3.解:(Ⅰ)当学生为20人时,按方案一付:420(204)5160⨯+-⨯=元, 按方案二付:(420205)90%162⨯+⨯⨯=元,故答案为:160;162;.(Ⅱ)由题意得:()120454560y x x =⨯+-=+,()20.92045 4.572y x x =⨯⨯+=+.(Ⅲ)①由题意得:560 4.572,x x +=+0.512,x ∴=24.x ∴=即当学生为24人时,两种方案付款一样.②把60x =分别代入得:12360,342,y y ==∴ 方案二更便宜,③当560450,x +=78x ∴=,当4.572450x +=,84,x ∴=∴ 则用方案二购买使观看的学生更多.故答案为:①24;②二;③二.4.(1)53842182⨯-⨯=;答:5张白纸黏合的长度为182cm ;(2)382(1)362y x x x =--=+(x ≥1,且x 为整数);(3)能,当y=362时,得到:36x+2=362,解得x=10.5.解:(1)35250.12580-=(升/千米), ∴该车平均每千米耗油0.125升;(2)由题意得:Q =35﹣0.125x ;(3)当x =200时,Q =35﹣0.125×200=10,∵10>3,∴所以他们能在汽车报警前回到家.。
4.2 一次函数与正比例函数 北师大版八年级上册数学习题课件
9.某天通过高速公路收费站的汽车中,共有3000辆次缴了通行费,其中大车每辆 次缴费20元,小车每辆次缴费10元.设这一天小车缴通行费的辆次为x,总的通行费 收入为y元.
(1)试写出y关于x的函数关系式(不用体现x的取值范围),y是x的一次函数吗?是正 比例函数吗?
(2)若这一天小车缴通行费的辆次为1000,则这天的通行费收入是多少元? 解:(1)y=10x+20(3000-x)=-10x+60000,y是x的一次函数,但不是x的正比例 函数 (2)当x=1000时,y=-10×1000+60000=50000(元).即若这一天小车缴通行费的 辆次为1000,则这天的通行费收入为50000元
(2)李明身上仅仅有14元,乘出租车到科技馆的费用够不够?请说明理由.
解:(1)由题意,得y=8+1.8(x-3)=1.8x+2.6(x>3)
(2)当x=6时,y=1.8×6+2.6=13.4<14,∴乘出租车到科技馆的费用够用
15.某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须 缴月租费50元,另外每通话1分钟收费0.4元;B类收费标准如下:没有月租费,但每 通话1分钟收费0.6元.
8.写出下列各题中x与y的关系式,并判断y是否是x的正比例函数. (1)电报收费标准是每个字0.1元,电报费y(元)与字数(x)之间的函数关系式; (2)地面气温是28 ℃,如果每升高1 km,气温下降6 ℃,则气温y(℃)与升高的高度 x(km)的关系. 解:(1)y=0.1x,是正比例函数 (2)y=28-6x,不是正比例函数
14.某校组织学生到距离学校6 km的市科技馆参观,学生李明因事没能乘上学校 的包车,于是准备在学校门口乘出租车去科技馆.出租车的收费标准如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与正比例函数(B)
一、选择题
1.一次函数y=kx+b中,k为()
A.非零实数
B.正实数
C.非负实数
D.任意实数
2.下列函数中,一次函数是()
A.y=8x2
B.y=8x-1
C.y=x+1
D.y=
3.若函数y=(k+3)x+k-1是正比例函数,则k的值是()
A.3
B.2
C.1
D.任意实数
4.下列函数不是一次函数的是()
A.y=x
B.y=
C.y=-x+1
D.y=(x-3)
5.下列问题中,两个变量成正比例的是()
A.圆的面积S与它的半径r
B.正方形的周长C与它的边长a
C.三角形面积一定时,它的底边a和底边上的高h
D.路程不变时,匀速通过全程所需要的时间t与运动的速度v
6.已知下列函数:①y=-+3②y=3(3-x)③y=3x-x2④y=-⑤y=5,其中是一次函数的是()
A.①②③④⑤
B.②④
C.①③⑤
D.②④⑤
7.函数y=(m-2)x n-1+n是一次函数,m,n应满足的条件是()
A.m≠2且n=0
B.m=2且n=2
C.m≠2且n=2
D.m=2且n=0
8.在地球某地,温度T(℃)与高度d(m)的关系可近似地用用一次函数
来表示,这个一次函数的系数为()
A.10
B.150
C.-150
D.
二、填空题(本大题共4小题,共12.0分)
9.已知一次函数y=(k-1)x|k|+3,则k=______.
10.已知函数y=x+m2+m,当m=______时,它是正比例函数.
11.若y与x成正比例,且当时,y=2,则当时,x的值是______.
12.以下函数:
①y=2x2+x+1;②y=2πr;③y=;④y=(-1)x;⑤y=-(a+x)(a是常数);⑥s=2t,是一次函数的有______(填序号).
三、解答题
13.当m为何值时,函数是一次函数?
14.设函数y=(m-2)x2-|m|+m-1,
(1)当m为何值时,它是一次函数?
(2)当m为何值时,它是正比例函数?
15.如果y+2与x+1成正比例,当x=1时,y=-5.
(1)求出y与x的函数关系式.
(2)自变量x取何值时,函数值为4?
16.已知一次函数y=(m+3)x+m-4,y随x的增大而增大. (1)求m的取值范围;
(2)如果这个一次函数又是正比例函数,求m的值.
参考答案
一、选择题
1.A解析:一次函数y=kx+b中,k≠0,故选A.
2.C解析:A、y=8x2是二次函数,故本选项错误;
B、y=8x-1是反比例函数,故本选项错误;
C、y=x+1是一次函数,故本选项正确;
D、y=是反比例函数,故本选项错误.
3.C解析:∵函数y=(k+3)x+k-1是正比例函数,
∴k-1=0且k+3≠0.
解得k=1.
4.B解析:A、是一次函数,故A不符合题意;
B、是反比例函数,故B错误;
C、是一次函数,故C正确;
D、是反比例函数,故B错误.
5.B解析:A、圆的面积=π×半径2,不是正比例函数,故本选项错误;
B、正方形的周长=边长×4,是正比例函数,故本选项正确;
C、三角形面积S一定时,它的底边a和底边上的高h的关系s=ah,不是正比例函数,故本选项错误;
D、设路程为s,则依题意得s=vt,则v与t不是正比例关系.
6.B解析:①y=-+3是由反比例函数平移得到的,不是一次函数;
②y=3(3-x)=-3x+9,符合一次函数的定义;
③y=3x-x2属于二次函数;
④y=-属于正比例函数,是特殊的一次函数;
⑤y=5不是一次函数;
综上所述,其中是一次函数的是②④.
7.C解析:∵函数y=(m-2)x n-1+n是一次函数,
∴,解得,.
8.D解析:一次函数的系数为:-.
二、填空题
9.-1解析:根据题意得k-1≠0,|k|=1
则k≠1,k=±1,
即k=-1.
10.0或-1解析:由y=x+m2+m是正比例函数,得m2+m=0.
解得m=0或m=-1,
11.1
10
解析:设函数解析式为y=kx,
将,y=2代入解析式,得2=-k,
解得k=-6,
函数解析式为y=-6x,
当y=时,-6x=,
x=-.
12.②④⑤⑥解析:①y=2x2+x+1是二次函数;
②y=2πr是一次函数;
③y=自变量次数不为1,故不是一次函数;
④y=(-1)x是一次函数;
⑤y=-(a+x)(a是常数)是一次函数;
⑥s=2t是一次函数;
三、解答题
13.解:①当,即时,;
②当,即时,;
③当,即时,.
故当或或时,它是一次函数.
14.解:(1)∵函数y=(m-2)x2-|m|+m-1是一次函数,
∴,解得m=1;
(2)∵函数y=(m-2)x2-|m|+m-1是正比例函数,
∴,解得m=±1.
15.解:(1)依题意,设y+2=k(x+1),
将x=1,y=-5代入,得
k(1+1)=-5+2,
解得k=-1.5,
∴y+2=-1.5(x+1),
即y=-1.5x-3.5;
(2)把y=4代入y=-1.5x-3.5中,得
-1.5x-3.5=4,
解得x=-5,
即当x=-5时,函数值为4.
16.解:(1)∵一次函数y=(m+3)x+m-4,y随x的增大而增大,∴m+3>0,
解得:m>-3;
(2)∵y=(m+3)x+m-4是正比例函数,
∴m-4=0,
解得:m=4.。