福建武夷山市政和县外屯中学七年级下第二次月考数学试卷(新课标人教版 七年级下 数学试卷)

合集下载

七年级下期第二次月考(答案) (2)

七年级下期第二次月考(答案) (2)

七年级下期第二次月考数学试题(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D四个选项,其中只有一个是正确的,请将正确答案涂在答题卡上. 1.下列各组图形中,是全等图形的是()A.B.C.D.2.计算32aa⋅的结果是()A.22a B.5a C.6a D.32a3.在某地,温度)(CT︒与高度d(米)的关系可以近似地用15010dT-=来表示,则当高度900=d (米)时,温度T为()A.C︒4B.C︒3C.C︒2D.C︒14.下列条件中,不能判断出a∥b的是( )A.31∠=∠B.42∠=∠C.32∠=∠D.︒=∠+∠180325.如图所示,将两根钢条AC、BD的中点O连在一起,使AC、BD可以绕着点O自由转动,就做成了一个测工件内槽宽的卡钳,此时CD的长就等于AB的长,判定AOB∆≌COD∆的理由是()A.SAS B.ASAC.SSS D.AAS6.下列运算的结果是()A.12+m B.12+-mm C.122++mm D.122+-mm7.如图所示:a∥b,︒=∠601,︒=∠1102,则A∠的输入m平方m-m÷平方结果BCODA度数为( )A .︒30B . ︒40C .︒50D .︒608.若352=m ,则)15)(15(-+m m 的值是( )A .2B .4C . 6D .89.如果等腰三角形的两边长分别是cm 5和cm 10,那么它的周长是( )A .cm 15B .cm 20C .cm 25D .cm 20或cm 2510.均匀地向如图所示的圆锥形空杯子里注水,最后把杯子注满,在注水过程中,水面高度h 随时间t 的变化规律最可能由下面哪个图象表示( )A .B .C .D .11.取ABC ∆三边中点两两相连得111C B A ∆(如图2),再取111C B A ∆三边中点两两相连得222C B A ∆(如图3),继续进行这样的操作直到得到777C B A ∆,此时图形中共有 三角形( )A .33个B .29个C .25个D .21个……图1 图2 图312.如图,在ABC Rt ∆中,CB AB =,AC BO ⊥,把ABC ∆折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连接DE 、EF .下列结论:①DC BD =;②DE 是AED ∆的高;③FB FE =;④FE ∥BC ;⑤︒=∠5.67FDE ,上述结论中正确的个数是( )A .1个B .2个C .3个D .4个二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将答案填在答题卡上.13.近期H7N9流感病例频现,其罪魁祸首在于禽流感病毒.研究表明,禽流感病毒颗粒呈多形性,其中球形直径最大可达0.000 000 45m ,这个数可用科学记数法表示为_________________14.如图,若︒=∠+∠28421 ,则3∠=______物体的重量(kg )0 1 2 3 4 5 弹簧的长度(cm ) 12 12.5 13 13.5 14 14.5 则在弹簧能承受的范围内,当物体的重量是7kg 时,弹簧的长度是_______cm16.如图,BA CA ⊥,ED BD ⊥,EBC ABD ∠=∠,若︒=∠30C ,则E ∠=_____ 17.如图,AD 是ABC ∆的一条角平方线,AB DE ⊥于点E ,AC DF ⊥于点F ,3=AC ,2=DE ,4=AB ,则=∆ABC S ________(16题图) (17题图)18.c b a ,,均为小于13的正整数, 若一组c b a ,,同时满足以下条件:①22m c n a ==,且m n ,均为正整数②c bx ax ++2是一个完全平方式③c b a ,,可作为三角形的三边长度则称这组c b a ,,为一个幸运数组,记作)(c b a ,,,比如)441(,,,)144(,,就是两个不同的幸运数组.这样的幸运数组一共有___________个三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:2013102)1()31(12.133--+⨯-+--20.如图,已知线段a 及α∠,请用尺规作一个ABC ∆使得a AB 2=,a AC =,α∠=∠A四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(1)用简便方法计算:11012-(2)化简:()()()a a a a 423225-⋅---⋅22.先化简,后求值:)1)(1()32)(2()2(2+-+++--x x x x x ,其中2=x .23.如图,DE AB =,EF BC =,DC AF =;BG 、EH 分别是ABC ∆与DEF ∆的角平分线;ID ∥BG .(1)求证ABC ∆≌DEF ∆.(2)在第一问的基础上,若要证明ID ∥HE ,请补全下面的证明过程.证明: ∵ABC ∆≌DEF ∆(已证)∴DEF ABC ∠=∠,EFH BCG ∠=∠( __________________________ ) 又∵BG 、EH 分别是ABC ∆与DEF ∆的角平分线∴ABC GBC ∠=∠21,=∠HEF ______________ ∴HEF GBC ∠=∠(等量代换)在BGC ∆中,︒=∠+∠+∠180CGB BCG GBC在EHF ∆中,︒=∠+∠+∠180FHE EFH HEF∴________________________(等量代换)∴_________________( __________________________ )又∵ID ∥BG∴ID ∥HE ( ________________________________ )24. 张师傅驾车运送荔枝到某地销售,汽车出发前油箱里有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶_______小时后加油______升;(2)加油前该车平均一小时耗油多少升?(3)请写出加油前油箱剩余油量y与行驶时间t之间的函数关系式(4)已知加油前后汽车都以70千米/时匀速行驶,如果加油站距目的地210千米,要到达目的地,油箱中的油是否够用?请说明理由.五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25. D 、E 分别在等边三角形ABC 的BC 和AB 边上运动(不与顶点重叠),且始终保证AE BD =;连接AD 、CE ;过点D 作DF ∥AB ,过点E 作EF ∥AC , DF 与EF 交于点F(1)若某时刻DC BD <(如图1),求证: CEF ADF ∠=∠.(2)若某时刻DC BD >(如图2),请探究ADF ∠与CEF ∠的等量关系并说明理由图1 图226.用5个边长为a 的正方形组成图1所示十字图形,小明沿着图1所示虚线剪了两刀把它拼成了一个正方形DCGH .图1 图2(1)请在图2中把小明拼出的正方形补全,并在顶点处标上字母.(2)求证:a AB 5.0=(3)①=2CD _______;直接写出ACD Rt ∆中,AC 、AD 与CD 之间的等量关系 ______________________________________=______________②BCD Rt ∆中CB 、CD 与BD 之间是否也存在类似的等量关系,请说明.。

七年级数学(下) 第二次月考试卷(含答案)

七年级数学(下) 第二次月考试卷(含答案)

人教版七年级数学(下)第二次月考试卷一、选择题:本大题共10小题,每小题4分,共40分.1.(4分)下列函数中,属于二次函数的是()A.y=2x+1 B.y=(x﹣1)2﹣x2C.y=2x2﹣7 D.2.(4分)已知二次函数y=2(x﹣3)2﹣2,下列说法:①其图象开口向上;②顶点坐标为(3,﹣2);③其图象与y轴的交点坐标为(0,﹣2);④当x≤3时,y随x的增大而减小,其中正确的有()A.1个B.2个C.3个D.4个3.(4分)有五张正面分别写有数字﹣3,﹣2,1,2,3的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的四张卡片中随机抽取一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率是()A.B.C.D.4.(4分)两个相似三角形的对应边上的中线比为1:,则它们面积比的为()A.2:1 B.1:2 C.1:D.:15.(4分)在同一坐标系中,函数y=ax2+bx与y=的图象大致是图中的()A.B.C.D.6.(4分)根据电视台天气预报:某市明天降雨的概率为80%,对此信息,下列几种说法中正确的是()A.该市明天一定会下雨B.该市明天有80%地区会降雨C.该市明天有80%的时间会降雨D.该市明天下雨的可能性很大7.(4分)如图,点G、F分别是△BCD的边BC、CD上的点,BD的延长线与GF的延长线相交于点A,DE∥BC交GA于点E,则下列结论错误的是()A.=B.=C.=D.=8.(4分)抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限9.(4分)如图,在直角坐标系xOy中,A(﹣4,0),B(0,2),连结AB并延长到C,连结CO,若△COB∽△CAO,则点C的坐标为()A.(1,)B.(,)C.(,2)D.(,2)10.(4分)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题:本小题共6小题,每小题5分,共30分.11.(5分)将抛物线y=x2经过两次平移后所得抛物线的顶点坐标为(﹣3,2),则平移后所得抛物线的解析式为.12.(5分)如图,AD∥BE∥CF,直线l1,l2与三条平行线分别交于点A,B,C和点D,E,F.若AC=3,BC=2,DE=1.5,则DF的长为.13.(5分)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).14.(5分)如图,AD是△ABC的高,EF∥BC分别交AB、AD、AC于点E、G、F,连结DF,若S△AEG=S四边形EBDG,则=.15.(5分)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.线段DC上有一点E,当△ABE的面积等于5时,点E的坐标为.16.(5分)在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M 的坐标为.(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,则实数a的值为.三、解答题:本题共8小题,共80分.17.(8分)(1)已知=≠0,求代数式的值;(2)已知线段AB=10cm,点C、点D是线段AB的两个不同黄金分割点,求C、D之间的距离.18.(8分)已知抛物线的顶点坐标为(2,1)且经过点(﹣1,﹣8).(1)求抛物线的解析式;(2)求出抛物线与坐标轴的交点坐标.19.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.20.(8分)不透明的口袋里装有3个球,这3个球分别标有数字1,2,3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.21.(10分)如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.22.(12分)如图,一次函数y=﹣x+2分别交y轴、x轴于A,B两点,抛物线y=﹣x2+bx+c过A,B两点.(1)求这个抛物线的解析式;(2)作垂直于x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,△NAB的面积有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.23.(12分)如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN 的值最大时,求点E的坐标.24.(14分)新定义函数:在y关于x的函数中,若0≤x≤1时,函数y有最大值和最小值,分别记y max和y min,且满足,则我们称函数y为“三角形函数”.(1)若函数y=x+a为“三角形函数”,求a的取值范围;(2)判断函数y=x2﹣x+1是否为“三角形函数”,并说明理由;(3)已知函数y=x2﹣2mx+1,若对于0≤x≤1上的任意三个实数a,b,c所对应的三个函数值都能构成一个三角形的三边长,则求满足条件的m的取值范围.参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.1.(4分)下列函数中,属于二次函数的是()A.y=2x+1 B.y=(x﹣1)2﹣x2C.y=2x2﹣7 D.【解答】解:A、是一次函数,故本选项错误;B、整理后是一次函数,故本选项错误;C、y=2x2﹣7是二次函数,故本选项正确;D、y与x2是反比例函数关系,故本选项错误.故选:C.2.(4分)已知二次函数y=2(x﹣3)2﹣2,下列说法:①其图象开口向上;②顶点坐标为(3,﹣2);③其图象与y轴的交点坐标为(0,﹣2);④当x≤3时,y随x的增大而减小,其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵二次函数y=2(x﹣3)2﹣2,∴抛物线开口向上,顶点坐标为(3,﹣2),对称轴为x=3,∴当x≤3时,y随x的增大而减小,故①、②、④正确,令x=0可得y=16,故图象与y轴的交点坐标为(0,16),故③不正确,∴正确的有3个,故选C.3.(4分)有五张正面分别写有数字﹣3,﹣2,1,2,3的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的四张卡片中随机抽取一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率是()A.B.C.D.【解答】解:画树状图为:共有20种等可能的结果数,其中点(a,b)在第二象限的结果数为6,所以点(a,b)在第二象限的概率==.故选C.4.(4分)两个相似三角形的对应边上的中线比为1:,则它们面积比的为()A.2:1 B.1:2 C.1:D.:1【解答】解:∵相似三角形对应边上的中线的比为1:,即相似比为1:,而相似三角形的面积比等于其相似比的平方比,∴其面积比为1:2.故选B5.(4分)在同一坐标系中,函数y=ax2+bx与y=的图象大致是图中的()A.B.C.D.【解答】解:A、根据反比例函数得出b>0,根据二次函数得出a>0,b<0,所以b的范围不同,故本选项错误;B、根据反比例函数得出b>0,根据二次函数得出a<0,b<0,所以b的范围不同,故本选项错误;C、根据反比例函数得出b<0,根据二次函数得出a>0,b>0,所以b的范围不同,故本选项错误;D、根据反比例函数得出b>0,根据二次函数得出a<0,b>0,所以b的范围相同,故本选项正确;故选D.6.(4分)根据电视台天气预报:某市明天降雨的概率为80%,对此信息,下列几种说法中正确的是()A.该市明天一定会下雨B.该市明天有80%地区会降雨C.该市明天有80%的时间会降雨D.该市明天下雨的可能性很大【解答】解:根据概率的意义可知,概率指的是发生的可能性,不是时间和地点.故选D.7.(4分)如图,点G、F分别是△BCD的边BC、CD上的点,BD的延长线与GF的延长线相交于点A,DE∥BC交GA于点E,则下列结论错误的是()=D.=A.=B.=C.【解答】解:∵DE∥BC交GA于点E,∴,,,A,B,D正确,故选C.8.(4分)抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵y=x2﹣2x+m2+2=(x﹣1)2+(m2+1),∴顶点坐标为:(1,m 2+1), ∵1>0,m 2+1>0, ∴顶点在第一象限. 故选A .9.(4分)如图,在直角坐标系xOy 中,A (﹣4,0),B (0,2),连结AB 并延长到C ,连结CO ,若△COB ∽△CAO ,则点C 的坐标为( )A .(1,)B .(,)C .(,2)D .(,2)【解答】解:∵A (﹣4,0),B (0,2), ∴OA=4,OB=2, ∵△COB ∽△CAO ,∴====,∴CO=2CB ,AC=2CO , ∴AC=4CB ,∴=,过点C 作CD ⊥y 轴于点D , ∵AO ⊥y 轴, ∴AO ∥CD , ∴△AOB ∽△CDB ,∴===,∴CD=AO=,BD=OB=,∴OD=OB +BD=2+=,∴点C的坐标为(,).故选B.10.(4分)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:由题意,抛物线的解析式为y=at(t﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误.∴正确的有②③,故选B.二、填空题:本小题共6小题,每小题5分,共30分.11.(5分)将抛物线y=x2经过两次平移后所得抛物线的顶点坐标为(﹣3,2),则平移后所得抛物线的解析式为y=(x+3)2+2.【解答】解:∵抛物线y=x2经过两次平移后所得抛物线的顶点坐标为(﹣3,2),则平移后所得抛物线的解析式为y=(x+3)2+2,故答案是:y=(x+3)2+2.12.(5分)如图,AD∥BE∥CF,直线l1,l2与三条平行线分别交于点A,B,C和点D,E,F.若AC=3,BC=2,DE=1.5,则DF的长为 4.5.【解答】解:∵AD∥BE∥CF,∴,即=,∴DF=4.5,故答案为:4.5.13.(5分)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y 随x 的增大而增大, ∵x 1>x 2>1, ∴y 1>y 2. 故答案为:>.14.(5分)如图,AD 是△ABC 的高,EF ∥BC 分别交AB 、AD 、AC 于点E 、G 、F ,连结DF ,若S △AEG =S 四边形EBDG ,则=.【解答】解:∵EF ∥BC , ∴∠AEF=∠B ,∠AFE=∠C , ∴△AEG ∽△ABD ,∴S △AEG :S △ABD =(AE :AB )2,∵S △AEG =S 四边形EBDG ,且S △AEG +S 四边形EBDG =S △ABD , ∴S △AEG :S △ABD =1:4,即AE :AB=1:2, ∴E 点为AB 中点, ∴F 点为AC 中点,在Rt △ADC 中,DF=AC ,则=,故答案为:15.(5分)如图,点A (m ,6),B (n ,1)在反比例函数图象上,AD ⊥x 轴于点D ,BC ⊥x 轴于点C ,DC=5.线段DC 上有一点E ,当△ABE 的面积等于5时,点E 的坐标为 (5,0) .【解答】解:由题意得:,解得:,∴A(1,6),B(6,1),设反比例函数解析式为y=,将A(1,6)代入得:k=6,则反比例解析式为y=;设E(x,0),则DE=x﹣1,CE=6﹣x,∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°,=S四边形ABCD﹣S△ADE﹣S△BCE连接AE,BE,则S△ABE=(BC+AD)•DC﹣DE•AD﹣CE•BC=×(1+6)×5﹣(x﹣1)×6﹣(6﹣x)×1=﹣x=5,解得:x=5,则E(5,0).16.(5分)在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M 的坐标为(﹣1,2).(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,则实数a的值为4.【解答】解:(1)根据定义,点M坐标为(﹣1,2).(2)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数y′=的图象上(如图).∵﹣16≤y′≤16,∴﹣16=﹣x2+16.∴x=4.∴a的值是4.故答案为(﹣1,2),4.三、解答题:本题共8小题,共80分.17.(8分)(1)已知=≠0,求代数式的值;(2)已知线段AB=10cm,点C、点D是线段AB的两个不同黄金分割点,求C、D之间的距离.【解答】解:(1)设==k,可得:a=2k,b=3k,把a=2k,b=3k代入.(2)∵C、D是AB上的两个黄金分割点,∴AD=BC=AB=5﹣5,∴CD=AD+BC﹣AB=10﹣20cm.18.(8分)已知抛物线的顶点坐标为(2,1)且经过点(﹣1,﹣8).(1)求抛物线的解析式;(2)求出抛物线与坐标轴的交点坐标.【解答】解:(1)设抛物线解析式为y=a (x﹣2)2+1,把(﹣1,﹣8)代入得a•(﹣1﹣2)2+1=﹣8,解得a=﹣1所以抛物线解析式为y=﹣(x﹣2)2+1=﹣x2+4x﹣3;(2)令y=0,则﹣x2+4x﹣3=0,解得x1=3,x2=1所以抛物线与x轴的交点坐标是(1,0),(3,0).令y=0,得到x=﹣3,所以与y轴交于点(0,﹣3).19.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵=,∴△ADF ∽△ACG .(2)解:∵△ADF ∽△ACG ,∴=,又∵=,∴=,∴=1.20.(8分)不透明的口袋里装有3个球,这3个球分别标有数字1,2,3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少? (2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.【解答】解:(1)从3个球中随机摸出一个,摸到标有数字是2的球的概率是或P (摸到标有数字是2的球)=(3分);(2)游戏规则对双方公平.(1分)(注:学生只用一种方法做即可)(4分)由图(或表)可知,P (小明获胜)=,P (小东获胜)=,(2分) ∵P (小明获胜)=P (小东获胜), ∴游戏规则对双方公平.(1分)21.(10分)如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米. (1)求S 与x 的函数关系式及自变量的取值范围;(2)当x 取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,则求围成花圃的最大面积.【解答】解:(1)∵AB=x 米, ∴BC=(24﹣4x )米,∴S=AB•BC=x (24﹣4x )=﹣4x 2+24x (0<x <6);(2)S=﹣4x 2+24x=﹣4(x ﹣3)2+36, ∵0<x <6,∴当x=3时,S 有最大值为36平方米;(3)∵,∴4≤x <6,∴当x=4时,花圃的最大面积为32平方米.22.(12分)如图,一次函数y=﹣x +2分别交y 轴、x 轴于A ,B 两点,抛物线y=﹣x 2+bx +c 过A ,B 两点. (1)求这个抛物线的解析式;(2)作垂直于x 轴的直线x=t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t取何值时,△NAB的面积有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.【解答】解:(1)∵y=﹣+2分别交y轴、x轴于A、B两点,∴A、B点的坐标为:A(0,2),B(4,0),将x=0,y=2代入y=﹣x2+bx+c得c=2,将x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=,∴抛物线解析式为:y=﹣x2+x+2;(2)如图1,设MN交x轴于点E,则E(t,0),BE=4﹣t.∵tan∠ABO==,∴ME=BE•tan∠ABO=(4﹣t)×=2﹣t.又N点在抛物线上,且x N=t,∴y N=﹣t2+t+2,∴MN=y N﹣ME=﹣t2+t+2﹣(2﹣t)=﹣t2+4t∴当t=2时,MN有最大值4;(3)由(2)可知,A(0,2),M(2,1),N(2,5).以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如图2所示.(i)当D在y轴上时,设D的坐标为(0,a)由AD=MN,得|a﹣2|=4,解得a1=6,a2=﹣2从而D为(0,6)或D(0,﹣2),(ii)当D不在y轴上时,由图可知D3为D1N与D2M的交点,易得D1N的方程为y=﹣x+6,D2M的方程为y=x﹣2,由两方程联立解得D为(4,4)故所求的D点坐标为(0,6),(0,﹣2)或(4,4).23.(12分)如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN 的值最大时,求点E的坐标.【解答】解:(1)∵抛物线与x轴交于A(﹣1,0),B(4,0),∴设抛物线的解析式为:y=a(x+1)(x﹣4),把(0,﹣2)代入y=a(x+1)(x﹣4),∴a=,∴抛物线的解析式为:y=x2﹣x﹣2;(2)当△PBH与△AOC相似时,∴△AOC是直角三角形,∴△PBH也是直角三角形,由题意知:H(0,2),∴OH=2,∵A(﹣1,0),B(4,0),∴OA=1,OB=4,∴AH=,BH=2,∴AH2+BH2=AB2,∴∠AHB=90°,且∠ACO=∠AHO=∠HBA,∴△AOC∽△AHB,∴A(﹣1,0)符合要求,取AB中点G,则G(,0),连接HG并延长至F使GF=HG,连接AF,则四边形AFBH为矩形,∴∠HBD=90°,∠BHG=∠GBH=∠AHO=∠ACO,且F点坐标为(3,﹣2),将F(3,﹣2)代入y=x2﹣x﹣2得,F在抛物线上,∴点(3,﹣2)符合要求,所以符合要求的P点的坐标为(﹣1,0)和(3,﹣2).(3)过点M作MF⊥x轴于点F,设点E的坐标为(n,0),M的坐标为(m,﹣2),∵∠BME=∠BDC,∴∠EMC+∠BME=∠BDC+∠MBD,∴∠EMC=∠MBD,∵CD∥x轴,∴D的纵坐标为﹣2,令y=﹣2代入y=x2﹣x﹣2,∴x=0或x=3,∴D(3,﹣2),∵B(4,0),∴由勾股定理可求得:BD=,∵M(m,﹣2),∴MD=3﹣m,CM=m(0≤m≤3)∴由抛物线的对称性可知:∠NCM=∠BDC,∴△NCM∽△MDB,∴,∴,∴CN==﹣(m﹣)2+,∴当m=时,CN可取得最大值,∴此时M的坐标为(,﹣2),∴MF=2,BF=,MD=∴由勾股定理可求得:MB=,∵E(n,0),∴EB=4﹣n,∵CD∥x轴,∴∠NMC=∠BEM,∠EBM=∠BMD,∴△EMB∽△BDM,∴,∴MB2=MD•EB,∴=×(4﹣n),∴n=﹣,∴E的坐标为(﹣,0).24.(14分)新定义函数:在y关于x的函数中,若0≤x≤1时,函数y有最大值和最小值,分别记y max和y min,且满足,则我们称函数y为“三角形函数”.(1)若函数y=x+a为“三角形函数”,求a的取值范围;(2)判断函数y=x2﹣x+1是否为“三角形函数”,并说明理由;(3)已知函数y=x2﹣2mx+1,若对于0≤x≤1上的任意三个实数a,b,c所对应的三个函数值都能构成一个三角形的三边长,则求满足条件的m的取值范围.【解答】解:(1)∵当x=0,y min=a;x=1,y max=1+a,∵y=x+a为三角形函数,∴,∴a>1;(2)是三角形函数,理由如下:∵对称轴为直线,0≤x≤1,∴当,∴,∴它是三角形函数;(3)∵对于0≤x≤1上的任意三个实数a,b,c所对应的三个函数值都能构成一个三角形的三边长,∴,若a为最小,c为最大,则有,同理当b为最小,c为最大时也可得,∴y=x2﹣2mx+1是三角形函数,∵y=x2﹣2mx+1=(x﹣m)2﹣m2+1,∴对称轴为直线x=m,①当m≤0时,当x=0,y min=1,当x=1,y max=﹣2m+2,则2>﹣2m+2,解得m>0,∴无解;②当,,当x=1,y max=﹣2m+2,,解得0<m<1,∴;③当,,当x=0,y max=1,则,解得,∴;④当m>1,当x=1,y min=﹣2m+2,x=0,y max=1,则,解得,∴无解;综上述可知m的取值范围为或.。

人教版七年级下学期第二次月考数学试卷(含答案解析)

人教版七年级下学期第二次月考数学试卷(含答案解析)

人教版七年级下学期第二次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b22.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点9.如图,两个正方形边长分别为a、b,如果a+b=18,ab=60,则图中阴影部分的面积为()A.144B.72C.68D.3610.如图,已知△ABC的周长是10,点O为∠ABC与∠ACB的平分线的交点,且OD⊥BC 于D.若OD=2,则△ABC的面积是()A.20B.12C.10D.8二、填空题(本大题共6个小题,每小题3分,共18分).11.若a m=3,a n=2,则a2m﹣n=.12.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为.13.三角形两边长分别是2,4,第三边长为偶数,第三边长为.14.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=.15.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠F AC=65°,则∠B的度数为.16.已知△ABC中,AB=AC,过点B的直线将△ABC分成两个等腰三角形,则∠ABC =°.三、解答题(共7小题,计52分,解答应写出过程)17.(8分)计算:(1)(﹣)﹣2+4×(﹣1)2019﹣(π﹣5)0.(2)﹣2a2b5•(﹣4a2b)﹣(﹣3a2b3)2.18.(5分)先化简,再求值:[4(x﹣y)2﹣(2x﹣y)(y+2x)]÷(﹣2y),其中x=2,y=﹣1.19.(6分)某商场为吸引顾客,设立了一个可以自由转动的转盘,并规定每购买100元商品可以获得一次转动转盘的机会,如果转盘停止转动时,指针正好落在哪个区域,就根据所转结果付账.求一个顾客转动一次转盘但不打折的概率.20.(6分)如图,已知Rt△ABC,∠C=90°,请用尺规作斜边AB边上的高CD,垂足为D.(保留作图痕迹,不写作法)21.(7分)如图,在四边形ABCD中,AB∥DC,点E是CD的中点,AE=BE.求证:∠D=∠C.22.(8分)南宁市某中学环保兴趣小组对南湖清除淤泥工程进行调查,并从《南宁晚报》中收集到下列数据:南湖面积(单位:平方米)淤泥平均厚度(单位:米)每天清淤泥量(单位:立方米)160万0.70.6万根据上表解答下列问题:(1)请你按体积=面积×高来估算,南湖的淤泥量大约有多少万立方米?(2)设清除淤泥x天后,剩余的淤泥量为y万米3,求y与x的函数关系.(不要求写出x的取值范围)(3)为了使南湖的生物链不遭破坏,仍需保留一定量的淤泥.若需保留的淤泥量约为22万米3,求清除淤泥所需天数.23.(12分)我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得P A+PB最小.我们只要作点A关于l的对称点A',根据对称性可知,P A=P A',因此,求AP+BP最小就相当于求BP+P A'最小,显然当A'、P、B在一条直线上时A'P+PB最小,因此连接A'B,与直线1的交点,就是要求的点P.有很多问题都可用类似的方法去思考解决.(1)观察发现:如图1,在△ABC中,点D、E分别是AB、AC边的中点.请你在BC 边上确定一点P,使得△PDE的周长最小.(三角板、刻度尺画图,保留痕迹,不写作法)(2)实践运用:①如图2,为了做好五一期间的交通安全工作,西安市交警执勤小队从A处出发,先到公路m上设卡检查,再到公路n上设卡检查,最后再到达B地执行任务,他们应如何走才能使总路程最短?画出图形并说明做法.②如图3,△ABC中,∠BAC=90°,AB=6,BC=10,AC=8,BD是∠ABC的平分线,若P、Q分别是BD和AB上的动点,则P A+PQ的最小值是.(3)拓展延伸:如图4,在四边形ABCD的对角线AC上确定一点P,使∠APB=∠APD.(三角板、刻度尺画图,保留作图痕迹,不写作法)参考答案与试题解析一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b2【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A错误.(B)原式=8x3,故B错误.(D)原式=4a2﹣4ab+b2,故D错误.故选:C.2.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选:B.4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC=90°,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:D.5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地【分析】根据图象上特殊点的坐标和实际意义即可求出答案.【解答】解:骑车的同学比步行的同学晚出发30分钟,所以A正确;步行的速度是6÷1=6千米/小时,所以B正确;骑车的同学从出发到追上步行的同学用了50﹣30=20分钟,所以C正确;骑车的同学用了54﹣30=24分钟到目的地,比步行的同学提前6分钟到达目的地,所以D错误;故选:D.6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°【分析】首先判定△DAE≌△CAB,进而可得∠1=∠AED,再根据余角的性质可得答案.【解答】解:∵在△DAE和△CAB中,∴△DAE≌△CAB(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故选:D.7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,则可求得答案.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:A.8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC;可得△BCD 的周长等于AB+BC,又可求得∠BDC的度数,求得AD=BD=BC,则可求得答案;注意排除法在解选择题中的应用.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°=∠ABD,∴BD平分∠ABC,故A正确;∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故B正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故C正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故D错误.故选:D.9.如图,两个正方形边长分别为a、b,如果a+b=18,ab=60,则图中阴影部分的面积为()A.144B.72C.68D.36【分析】由题意表示出AB,AD,CG、FG,进而表示出BG,阴影部分面积=正方形ABCD+正方形ECGF面积﹣三角形ABD面积﹣三角形FBG面积,求出即可.【解答】解:由题意得:AB=AD=a,CG=FG=b,BG=BC+CG=a+b,∴S阴影=S正方形ABCD+S正方形ECGF﹣S直角△ABD﹣S直角△FBG=AB•AD+CG•FG﹣AB•AD﹣BG•FG=a2+b2﹣a2﹣(a+b)b=(a2+b2﹣ab)=[(a+b)2﹣3ab],∵a+b=18,ab=60,∴S阴影=×(182﹣3×60)=72.故选:B.10.如图,已知△ABC的周长是10,点O为∠ABC与∠ACB的平分线的交点,且OD⊥BC 于D.若OD=2,则△ABC的面积是()A.20B.12C.10D.8【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得到OE=OF =OD=2,根据三角形的面积公式计算即可.【解答】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵O为∠ABC与∠ACB的平分线的交点,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=2,∴△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积=×(AB+BC+AC)×OD=×10×2=10,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分).11.若a m=3,a n=2,则a2m﹣n=.【分析】根据a m÷a n=a m﹣n;(a m)n=a mn得到a2m﹣n=a2m÷a n=(a m)2÷a n,然后把a m=3,a n=2代入计算即可.【解答】解:∵a2m﹣n=a2m÷a n=(a m)2÷a n,而a m=3,a n=2,∴a2m﹣n=32÷2=.故答案为.12.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为7×10﹣9.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000007=7×10﹣9;故答案为:7×10﹣913.三角形两边长分别是2,4,第三边长为偶数,第三边长为4.【分析】利用三角形三边关系定理,先确定第三边的范围,进而就可以求出第三边的长.【解答】解:设第三边为a,根据三角形的三边关系知,4﹣2<a<4+2.即2<a<6,由周长为偶数,则a为4.故答案为:4.14.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=90°.【分析】根据平行线的性质即可得到结论.【解答】解:过C作CE∥m,∵m∥n,∴CE∥n,∴∠1=∠α,∠2=∠β,∵∠1+∠2=90°,∴∠α+∠β=90°,故答案为:90°.15.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠F AC=65°,则∠B的度数为65°.【分析】根据角平分线的定义得出∠CAD=∠BAD,根据线段垂直平分线的性质得出F A =FD,推出∠FDA=∠F AD,根据三角形的外角性质得出∠FDA=∠B+∠BAD,代入求出即可.【解答】解:∵AD平分∠CAB,∴∠CAD=∠BAD,设∠CAD=∠BAD=x°,∵EF垂直平分AD,∴F A=FD,∴∠FDA=∠F AD,∵∠F AC=65°,∴∠F AD=∠F AC+∠CAD=65°+x°,∵∠FDA=∠B+∠BAD=∠B+x°,∴65°+x°=∠B+x°,∴∠B=65°,故答案为:65°.16.已知△ABC中,AB=AC,过点B的直线将△ABC分成两个等腰三角形,则∠ABC=72或()°.【分析】分两种情况讨论,依据等腰三角形的性质以及三角形内角和定理,即可得到∠ABC的度数.【解答】解:①如下图,若AB=AC,AD=BD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°,∴∠ABC=72°;②如图下图,若AB=AC,AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=()°,∴∠ABC=()°,故答案为:72或().三、解答题(共7小题,计52分,解答应写出过程)17.(8分)计算:(1)(﹣)﹣2+4×(﹣1)2019﹣(π﹣5)0.(2)﹣2a2b5•(﹣4a2b)﹣(﹣3a2b3)2.【分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及单项式乘以单项式运算法则计算得出答案.【解答】解:(1)(﹣)﹣2+4×(﹣1)2019﹣(π﹣5)0.=9﹣4﹣1=4;(2)﹣2a2b5•(﹣4a2b)﹣(﹣3a2b3)2.=8a4b6﹣9a4b6=﹣a4b6.18.(5分)先化简,再求值:[4(x﹣y)2﹣(2x﹣y)(y+2x)]÷(﹣2y),其中x=2,y=﹣1.【分析】根据平方差公式、完全平方公式、多项式除单项式的运算法则把原式化简,代入计算即可.【解答】解:[4(x﹣y)2﹣(2x﹣y)(y+2x)]÷(﹣2y)=[4(x2﹣2xy+y2)﹣(4x2﹣y2)]÷(﹣2y)=[(4x2﹣8xy+4y2)﹣(4x2﹣y2)]÷(﹣2y)=(5y2﹣8xy))÷(﹣2y)=4x﹣y,当x=2,y=﹣1时,原式=4×2﹣×(﹣1)=.19.(6分)某商场为吸引顾客,设立了一个可以自由转动的转盘,并规定每购买100元商品可以获得一次转动转盘的机会,如果转盘停止转动时,指针正好落在哪个区域,就根据所转结果付账.求一个顾客转动一次转盘但不打折的概率.【分析】用不打折的区域除以总区域即可得出答案.【解答】解:不打折的概率是:=.20.(6分)如图,已知Rt△ABC,∠C=90°,请用尺规作斜边AB边上的高CD,垂足为D.(保留作图痕迹,不写作法)【分析】利用基本作图,过点C作直线AB的垂线,垂足为D.【解答】解:如图,CD为所作.21.(7分)如图,在四边形ABCD中,AB∥DC,点E是CD的中点,AE=BE.求证:∠D=∠C.【分析】由等腰三角形的性质和平行线的性质证出∠DEA=∠CEB,由SAS证明△ADE ≌△BCE,即可得出结论.【解答】证明:∵AE=BE,∴∠EAB=∠EBA,∵AB∥DC,∴∠DEA=∠EAB,∠CEB=∠EBA,∴∠DEA=∠CEB,∵点E是CD的中点,∴DE=CE,在△ADE和△BCE中,,∴△ADE≌△BCE(SAS),∴∠D=∠C.22.(8分)南宁市某中学环保兴趣小组对南湖清除淤泥工程进行调查,并从《南宁晚报》中收集到下列数据:南湖面积(单位:平方米)淤泥平均厚度(单位:米)每天清淤泥量(单位:立方米)160万0.70.6万根据上表解答下列问题:(1)请你按体积=面积×高来估算,南湖的淤泥量大约有多少万立方米?(2)设清除淤泥x天后,剩余的淤泥量为y万米3,求y与x的函数关系.(不要求写出x的取值范围)(3)为了使南湖的生物链不遭破坏,仍需保留一定量的淤泥.若需保留的淤泥量约为22万米3,求清除淤泥所需天数.【分析】(1)根据给出的体积公式,列表已经给出了面积和高,直接求解即可.(2)剩余的淤泥量=淤泥总量﹣清除的淤泥的量,由此可得出y与x的函数关系式.(3)将y=22代入(2)所求的式子中,得出的x的值就是所求的天数.【解答】解:(1)160×0.7=112万米3;(2)由题意y=112﹣0.6x(3)当y=22时,112﹣0.6x=22,解得:x=150天答:需要150天.23.(12分)我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得P A+PB最小.我们只要作点A关于l的对称点A',根据对称性可知,P A=P A',因此,求AP+BP最小就相当于求BP+P A'最小,显然当A'、P、B在一条直线上时A'P+PB最小,因此连接A'B,与直线1的交点,就是要求的点P.有很多问题都可用类似的方法去思考解决.(1)观察发现:如图1,在△ABC中,点D、E分别是AB、AC边的中点.请你在BC 边上确定一点P,使得△PDE的周长最小.(三角板、刻度尺画图,保留痕迹,不写作法)(2)实践运用:①如图2,为了做好五一期间的交通安全工作,西安市交警执勤小队从A处出发,先到公路m上设卡检查,再到公路n上设卡检查,最后再到达B地执行任务,他们应如何走才能使总路程最短?画出图形并说明做法.②如图3,△ABC中,∠BAC=90°,AB=6,BC=10,AC=8,BD是∠ABC的平分线,若P、Q分别是BD和AB上的动点,则P A+PQ的最小值是.(3)拓展延伸:如图4,在四边形ABCD的对角线AC上确定一点P,使∠APB=∠APD.(三角板、刻度尺画图,保留作图痕迹,不写作法)【分析】(1)如图1中,作点D关于直线BC的对称点D′,连接ED′交BC于点P,连接PE,点P即为所求.(2)①如图2中,分别作A、B关于公路m、n的对称点A′、B′,连接A′B′交m、n于M、N两点,连AM、BN,则A→M→N→B即为最短路线.②如图,作点Q关于直线BD的对称点Q′,作AM⊥BC于M.由P A+PQ=P A+PQ′,推出根据垂线段最短可知,当A,P,Q′共线,且与AM重合时,P A+PQ的值最小,最小值=线段AM的长.(3)作B关于AC的对称点E,连接DE并延长交AC于P,连接PB,点P即为所求的点.【解答】解:(1)如图1中,点P即为所求.(2)①如图2中,线路A→M→N→B即为所求.②解:如图3中,作点Q关于直线BD的对称点Q′,作AM⊥BC于M,∵P A+PQ=P A+PQ′,∴根据垂线段最短可知,当A,P,Q′共线,且与AM重合时,P A+PQ的值最小,最小值=线段AM的长.∵△ABC中,∠BAC=90°,AB=6,BC=10,∴AC=8,∴AM===.故答案为.(3)如图4中,作B关于AC的对称点E,连接DE并延长交AC于P,连接PB,点P 即为所求的点.∵点B、E关于AC对称,∴∠DPC=∠BPC,∴∠APB=∠APD.故点P即为所求的点.。

人教版七年级数学(下)学期 第二次月考测试卷含解析

人教版七年级数学(下)学期 第二次月考测试卷含解析

人教版七年级数学(下)学期 第二次月考测试卷含解析一、选择题1.将不大于实数a 的最大整数记为[]a ,则33⎡⎤-=⎣⎦( )A .3-B .2-C .1-D .0 2.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a +3.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n4.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .35.下列各数中3.145,0.1010010001…,﹣17,2π38有理数的个数有( ) A .1个B .2个C .3个D .4个6.下列实数中,..31-4π0-8647,3,,,,,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个7.若a 、b 为实数,且满足|a -2|2b -0,则b -a 的值为( ) A .2B .0C .-2D .以上都不对8.在下列实数中,无理数是( ) A .337B .πC 25D .139.已知实数x ,y 241x y -+y 2﹣9|=06x y + ) A .±3B .3C .﹣33D .3310.下列运算中,正确的是( ) A 93=±B 382=C |4|2-=-D 2(8)8-=-二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).12.估计12与0.5的大小关系是:12_____0.5.(填“>”、“=”、“<”) 13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.用⊕表示一种运算,它的含义是:1(1)(1)xA B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________.15.如果一个数的平方根和它的立方根相等,则这个数是______. 16.一个数的立方等于它本身,这个数是__.17.已知2m =,则m 的相反数是________.18.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.19.35.12=0.3512=-,则x =_____________. 20.若一个正数的平方根是21a +和2a +,则这个正数是____________.三、解答题21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)n n =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031n n=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________. (2)1+12+13+…+110用求和符号可表示为_________. (3)计算6211n n =-∑()=_________.(填写最后的计算结果)22.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________.(3)根据以上规律求1+3+32+…+349+350的结果. 23.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2, (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n aa a a a ÷÷÷÷个(a≠0)记作a ,读作“a 的圈n 次方”.初步探究(1)直接写出计算结果:2③=________,1)2-(⑤=________; (2)关于除方,下列说法错误的是________A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1=1;C .3④=4③D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. 深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于________; (3)算一算:()3242162÷+-⨯④.24.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题. (1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.25.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究: 操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与 表示的点重合; 操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题: ①3表示的点与数 表示的点重合;②若数轴上A 、B 两点之间距离为8(A 在B 的左侧),且A 、B 两点经折叠后重合,则A 、B 两点表示的数分别是__________________; 操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.26.观察下列两个等式:112-2133=⨯+,225-5133=⨯+,给出定义如下:我们称使等式 1a b ab -=+ 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”. (1)数对(-2,1),(3,12)中是“共生有理数对”吗?说明理由. (2)若(m ,n )是“共生有理数对”,则(-n ,-m )是“共生有理数对”吗?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】-的范围,即可得出答案3【详解】解:∵12∴﹣23<﹣1∴3⎤=⎦﹣2故答案为B【点睛】.2.D解析:D【分析】任何数的绝对值都是一个非负数.非负数(正数和0)的绝对值是它本身,非正数(负数和0)的绝对值是它的相反数.任何数的平方都是大于等于0的.【详解】选项A中,当a=0,则a=0;选项B中,当a=0,则a²=0;选项C中,当a=100,则(a-100)²=0;选项D中,无论a取何值,a²+0.01始终大于0.故选:D.【点睛】此题考查绝对值的非负性,算术平方根的非负性,解题关键在于掌握其性质.3.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.4.D解析:D【详解】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有()x 1-,解得.故选D.5.C解析:C 【分析】直接利用有理数的定义进而判断得出答案. 【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个. 故选C . 【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键.6.B解析:B 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.由此分析判断即可. 【详解】解:∵=-24=,故是有理数;..0.23是无限循环小数,可以化为分数,属于有理数;17属于有理数;0是有理数;π2个.故选:B . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有如下三种形式:①含π的数,如π,2π等;②开方开不尽的数;③像0.1010010001…这样有一定规律的无限不循环小数.7.C解析:C 【详解】根据绝对值、算术平方根的非负性得a-2=0,20b -=, 所以a=2,b=0. 故b -a 的值为0-2=-2. 故选C.8.B解析:B【分析】分别根据无理数、有理数的定义即可判定选择项. 【详解】解:337,13是有理数, π是无理数, 故选B . 【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.9.D解析:D 【分析】由非负数的性质可得y 2=9,4x-y 2+1=0,分别求出x 与y 的值,代入所求式子即可. 【详解】2﹣9|=0, ∴y 2=9,4x ﹣y 2+1=0, ∴y =±3,x =2, ∴y+6=9或y+6=3,3= 故选:D . 【点睛】本题考查绝对值、二次根式的性质;熟练掌握绝对值和二次根式的性质,能够准确计算是解题的关键.10.B解析:B 【分析】根据平方根及立方根的定义逐一判断即可得答案. 【详解】,故该选项运算错误,2=,故该选项运算正确,2=,故该选项运算错误,8=,故该选项运算错误, 故选:B . 【点睛】本题考查平方根、算术平方根及立方根,一个正数的平方根有两个,它们互为相反数;其中正的平方根叫做这个数的算术平方根;一个数的立方根只有一个.二、填空题 11.. 【解析】 【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=. “解析:12++n n . 【解析】 【详解】根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.> 【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.13.-1. 【分析】根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1. 【分析】根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】解:(x +1)5=x 5+5x 4+10x 3+10x 2+5x +1, ∵(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5, ∴a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1,把a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1代入﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5中, 可得:﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5=﹣32+80﹣80+40﹣10+1=﹣1, 故答案为:﹣1 【点睛】本题考查了代数式求值,解题的关键是根据题意求得a 0,a 1,a 2,a 3,a 4,a 5的值.14.【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由 解得:x=8故答案为. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.15.0【解析】试题解析:平方根和它的立方根相等的数是0.解析:0【解析】试题解析:平方根和它的立方根相等的数是0.16.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.17.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】解:m的相反数是2)2-=,故答案为:2 【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.18.-2 【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定. 【详解】 解:= ……所以数列以,,三个数循环, 所以== 故答案为:. 【解析:-2 【分析】根据1与它前面的那个数的差的倒数,即111n na a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a . 【详解】 解:1a =132131213a ==-312312a ==--411123a ==+ ……所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2- 故答案为:2-. 【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.19.-0.0433 【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值. 【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433 【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值. 【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-” 故答案为:-0.0433 【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.20.1 【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数. 【详解】由题意得2a+1+a+2=0, 解得a=-1, ∴a+2=1解析:1 【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0, 解得a=-1, ∴a+2=1,∴这个正数是22(2)11a +==, 故答案为:1. 【点睛】此题考查平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.三、解答题21.(1)5012n n =∑;(2)1011n n =∑;(3)50 【分析】(1)根据题中的新定义得出结果即可; (2)根据题中的新定义得出结果即可;(3)利用题中的新定义将原式变形,计算即可得到结果. 【详解】解:解:(1)根据题意得:2+4+6+8+10+…+100=5012n n =∑;(2)1+12+13+…+110=1011n n =∑;(3)原式=1-1+4-1+9-1+16-1+25-1+36-1=85. 故答案为:(1)5012n n =∑;(2)1011n n =∑;(3)85. 【点睛】此题考查了有理数的加法和减法运算,弄清题中的新定义是解本题的关键.22.(1)x 7-1;(2)x n+1-1;(3)51312-.【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可; (3)先利用得出规律的变形,然后利用规律解答即可. 【详解】解:(1)根据题意得:(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7-1; (2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)= 12×(x 50+1-1)=51312-故答案为:(1)x 7-1;(2)x n+1-1;(3)51312-.【点睛】本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.23.初步探究(1)12;—8;(2)C ;深入思考(1)213;415;28;(2)21n a -;(3)—1. 【解析】试题分析:理解除方运算,利用除方运算的法则和意义解决初步探究,通过除方的法则,把深入思考的除方写成幂的形式解决(1),总结(1)得到通项(2).根据法则计算出(3)的结果. 试题解析: 概念学习(1)2③=2÷2÷2=,(﹣)⑤=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1÷(﹣)÷(﹣)÷(﹣)=(﹣2)÷(﹣)÷(﹣)=﹣8 故答案为,﹣8;(2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确; C 、3④=3÷3÷3÷3=,4③=4÷4÷4=,则 3④≠4③; 所以选项C 错误;D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确; 本题选择说法错误的,故选C ; 深入思考:(1)(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×()2=;5⑥=5÷5÷5÷5÷5÷5=1×()4=;(﹣)⑩=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣) =1×2×2×2×2×2×2×2×2 =28;故答案为,,28.(2)a ⓝ=a ÷a ÷a…÷a=1÷a n ﹣2=.(3):24÷23+(﹣8)×2③ =24÷8+(﹣8)× =3﹣4 =﹣1.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序. 24.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可. 【详解】 .(1)1×2+2×3+3×4+…+10×11=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯. (2)1×2+2×3+3×4+……+n×(n+1)=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++. 【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.25.(1)2 (2)①23--5,3(3)71937,,288【分析】(1)根据对称性找到折痕的点为原点O,可以得出-2与2重合;(2)根据对称性找到折痕的点为-1,①设3表示的点与数a表示的点重合,根据对称性列式求出a的值;②因为AB=8,所以A到折痕的点距离为4,因为折痕对应的点为-1,由此得出A、B两点表示的数;(3)分三种情况进行讨论:设折痕处对应的点所表示的数是x,如图1,当AB:BC:CD=1:1:2时,所以设AB=a,BC=a,CD=2a,得a+a+2a=9,a=94,得出AB、BC、CD的值,计算也x的值,同理可得出如图2、3对应的x的值.【详解】操作一,(1)∵表示的点1与-1表示的点重合,∴折痕为原点O,则-2表示的点与2表示的点重合,操作二:(2)∵折叠纸面,若使1表示的点与-3表示的点重合,则折痕表示的点为-1,①设3表示的点与数a表示的点重合,则3-(-1)=-1-a,a=-2-3;②∵数轴上A、B两点之间距离为8,∴数轴上A、B两点到折痕-1的距离为4,∵A在B的左侧,则A、B两点表示的数分别是-5和3;操作三:(3)设折痕处对应的点所表示的数是x,如图1,当AB:BC:CD=1:1:2时,设AB=a,BC=a,CD=2a,a+a+2a=9,a=94,∴AB=94,BC=94,CD=92,x=-1+94+98=198,如图2,当AB:BC:CD=1:2:1时,设AB=a,BC=2a,CD=a,a+a+2a=9,a=94,∴AB=94,BC=92,CD=94,x=-1+94+94=72,如图3,当AB:BC:CD=2:1:1时,设AB=2a,BC=a,CD=a,a+a+2a=9,a=94,∴AB=92,BC=CD=94,x=-1+92+98=378,综上所述:则折痕处对应的点所表示的数可能是198或72或378.26.(1) (−2,1)不是“共生有理数对”,13,2⎛⎫⎪⎝⎭是“共生有理数对”;理由见详解.(2)(−n,−m)是“共生有理数对”,理由见详解.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义即可判断;【详解】(1)−2−1=−3,−2×1+1=1,∴−2−1≠−2×1+1,∴(−2,1)不是“共生有理数对”,∵1515 3,312222 -=⨯+=,∴1133122-=⨯+,∴(13,2)是“共生有理数对”;(2)是.理由:− n−(−m)=−n+m,−n⋅(−m)+1=mn+1∵(m,n)是“共生有理数对”∴m−n=mn+1∴−n+m=mn+1∴(−n,−m)是“共生有理数对”,【点睛】考查有理数的混合运算,整式的加减—化简求值,等式的性质,读懂题目中“共生有理数对”的定义是解题的关键.。

新人教版七年级数学下册第二次月考数学试题

新人教版七年级数学下册第二次月考数学试题

新人教版七年级数学下册第二次月考数学试题说明:本试卷共6页,答题时间90分钟,满分150分,答案填写在答题卡上,在试卷上作答无效。

一、选择题(共8小题,每小题3分,共24分)1.下列各组图形,可经平移变换,由一个图形得到另一个图形的是(2.如图,△ABC 平移到'''C B A △位置,下列结论不成立的是第2题 第7题A.''B A AB ∥B.'-'='CC BB AAC.''='C B BBD.'''CC BB AA ∥∥3.估计13的值在A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.25的值为A.25B.5±C.-5D.55.下列图形中,已知∠1=∠2,则可得到AB ∥CD 的是A B C D6.下列命题中是假命题的是A.如果3=-a ,那么9-=aB.如果3=a ,那么9=a C.如果23=-a ,那么8-=a D.如果23-=-a ,那么8=a 7.如图,AC ⊥BC,AC=3,P 是边PC 上的动点,则AP 长不可能是A.2.5B.3C.4D.58.在同一平面内,有8条互不重合的直线8321l l l l 、、、、⋯,若433221l l l l l l ⊥⊥,∥,,54l l ∥…,以此类推,则7l 和8l 的位置关系是A.平行B.垂直C.平行或垂直D.无法确定二、填空题(共8小题,每小题3分,共24分)9.计算:=38______.10.命题“如果同位角相等,那么这两条直线平行”的题设是_____________。

11.如图,OA ⊥OB,OC ⊥OD ,若∠AOD=150°,则∠BOC=_______.第11题 第12题 第13题12.如图,∠C=120°,请添加一个条件,使得AB ∥CD ,则符合要求的其中一个条件可以是__________.13.如图,直线AB 、CD 交于点O ,射线OM 平分∠AOC ,且∠BOD=76°,则∠BOM=______.14.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=_______.第14题 第16题15.一个人从点A 点出发间北偏东60°方向走到B 点,再从B 点由方向南偏西15°方向走到C 点,那么∠ABC=__________.16.已知如图,AB ∥CD ,直线l 分别截AB 、CD 于P 、C 两点,PE 平分∠BPC 交CD 于点E ,PF 平分∠BPE 交CD 于点F ,若∠PCD=︒α,则∠PFC=___________°.三、解答题(本题共4小题,其中17、18题各10分,19题7分,20小题12分,共39分)17.计算:(1)32716-+ (2)()()121222---+-18.如图,三条直线AB 、CD 、FF 交于一点O,且OF 平分∠BOD.试问:OE 是不是∠AOC 的平分线?为什么?19.完成下面的证明:已知:如图,BE 平分∠ABD ,DE 平分∠BDC ,且∠1+∠2=90°.求证:AB ∥CD证明:∵DE 平分∠BDC(已知)∴∠BDC=2∠1(___________________)∵BE 平分∠ABD(已知)∴∠ABD=_______(角平分线的性质)∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)(______________)∵∠1+∠2=90°(已知)∴∠BDC+∠ABD=______(_____________)∴AB ∥CD(_________________________)20.如图,在方格纸内将△ABC 水平向右平移4个单位得到'''C B A △.(1)画出'''C B A △;(2)过点C 画直线AB 垂线CE ,垂足为E(利用网格点和直尺画图).四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.如图,直线AB 与CD 相交于点O ,OE ⊥AB.(1)如果∠AOD=140°,那么根据______,可得∠BOC=_______度;(2)如果∠EOD=2∠AOC,求∠AOD 的度数。

人教版七年级第二学期 第二次 月考检测数学试卷含答案

人教版七年级第二学期 第二次 月考检测数学试卷含答案

人教版七年级第二学期 第二次 月考检测数学试卷含答案一、选择题1.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .6662.若2a a a -=,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧 3.现定义一种新运算:a ★b=ab+a-b ,如:1★3=1×3+1-3=1,那么(-2)★5的值为( )A .17B .3C .13D .-17 4.25的算术平方根是( )A .5±B .5C .52±D .5 5.若2(1)|2|0x y -++=,则x y +的值等于( )A .-3B .3C .-1D .16.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C .②③ D .①②③ 7.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .38.下列各式中,正确的是( )A 91634B 91634;C 91638D 91634 9.下列判断中不正确的是( )A 37B .无理数都能用数轴上的点来表示C 174D 5510.有下列说法:(1164;(2)绝对值等于它本身的数是非负数;(3)某中学七年级有12个班,这里的12属于标号;(4)实数和数轴上的点一一对应;(5)一个有理数与一个无理数之积仍为无理数;(6)如果a ≈5.34,那么5.335≤a <5.345,其中说法正确的有( )个A .2B .3C .4D .5二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.a 10的整数部分,b 的立方根为-2,则a+b 的值为________.13.观察下列各式: 123415⨯⨯⨯+=; 2345111⨯⨯⨯+=; 3456119⨯⨯⨯+=;121314151a ⨯⨯⨯+=,则a =_____.14.313312+333123++33331234+++333312326++++=__________.15.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 16.一个数的立方等于它本身,这个数是__.17.比较大小:512__________0.5.(填“>”“<”或“=”) 18.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.19.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____.20.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?22.观察下来等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______.23.观察下列各式的计算结果2113131-1-24422===⨯ 2118241-1-39933===⨯ 21115351-1-4161644===⨯ 21124461-1-5252555===⨯ (1)用你发现的规律填写下列式子的结果:211-6= × ; 211-10= × ; (2)用你发现的规律计算: 22222111111-1-1-1-1-23420162017⨯⨯⨯⋯⨯⨯()()()()() (3)计算()2222211111111112341n n ⎡⎤⎛⎫-⨯-⨯-⨯⨯-⨯-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦()()()(直接写出结果) 24.概念学习 规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n a a a a a ÷÷÷÷个(a≠0)记作a ,读作“a 的圈n 次方”.初步探究 (1)直接写出计算结果:2③=________,1)2-(⑤=________; (2)关于除方,下列说法错误的是________ A .任何非零数的圈2次方都等于1; B .对于任何正整数n ,1=1; C .3④=4③ D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于________;(3)算一算:()3242162÷+-⨯④. 25.(12的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以122,<<因为21.4 1.96=,21.5 2.25=,所以1.42 1.5,<< 因为221.41 1.9881,1.42 2.0164==,所以1.412 1.42<< 因为221.414 1.999396,1.415 2.002225==,所以1.4142 1.415,<<2 1.41≈(精确到百分位),5(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a ,b 求a b -的值.26.阅读下列材料: 问题:如何计算1111122334910++++⨯⨯⨯⨯呢? 小明带领的数学活动小组通过探索完成了这道题的计算.他们的解法如下:解:原式1111111(1)()()()22334910=-+-+-++- 1110=-910= 请根据阅读材料,完成下列问题: (1)计算:111112233420192020++++⨯⨯⨯⨯; (2)计算:111126129900++++; (3)利用上述方法,求式子111115599131317+++⨯⨯⨯⨯的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.详解:1.52=2.25,可得出有2个1;2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146.故选:B.点睛本题考查了估算无理数的大小.2.B解析:B【分析】根据非正数的绝对值是它的相反数,可得答案.【详解】解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.3.D解析:D【分析】根据新运算的定义即可得到答案.【详解】∵a★b=ab+a﹣b,∴(﹣2)★5=(﹣2)×5﹣2﹣5=﹣17.故选D.【点睛】本题考查了基本的知识迁移能力,运用新定义,求解代数式即可,要灵活运用所学知识,要认真掌握.4.B解析:B【分析】直接根据算术平方根的定义计算即可.【详解】,∴5故选B.【点睛】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.解析:C【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】根据题意得,x-1=0,y+2=0,解得x=1,y=-2,所以x+y=1-2=-1.故选:C.【点睛】此题考查绝对值和算术平方根的非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.6.A解析:A【分析】在正确理解完全对称式的基础上,逐一进行判断,即可得出结论.【详解】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a-b)2=(b-a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故ab+bc+ca是完全对称式, ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab相同时)才会与原式的值一样∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a不是完全对称式.故此选项错误,所以①②是完全对称式,③不是故选择:A.【点睛】本题是信息题,考查了学生读题做题的能力.正确理解所给信息是解题的关键.7.D解析:D【详解】设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有()x1-,解得.故选D.8.A解析:A=±34,所以可知A选项正确;故选A.9.C解析:C【分析】运用实数大小的比较、绝对值有理数和无理数的定义和性质逐项分析即可.【详解】解:A是无理数,原说法正确,故此选项不符合题意;B、无理数都能用数轴上的点来表示,原说法正确,故此选项不符合题意;C44,原说法错误,故此选项符合题意;D故答案为C.【点睛】本题主要考查了实数大小的比较、绝对值有理数和无理数的定义和性质等知识点,灵活运用相关定义和性质是解答本题的关键.10.B解析:B【分析】根据算术平方根的定义、绝对值的性质、数轴的意义实数的运算及近似数的表示方法逐一判断即可得答案.【详解】,4的算术平方根是22,故(1)错误,绝对值等于它本身的数是非负数;故(2)正确,某中学七年级共有12个班级,是对于班级数记数的结果,所以这里的12属于记数,故(3)错误,实数和数轴上的点一一对应;故(4)正确,0与无理数的乘积为0,0是有理数,故(5)错误,如果a≈5.34,那么5.335≤a<5.345,故(6)正确,综上所述:正确的结论有(2)(4)(6),共3个,故选:B.【点睛】本题考查算术平方根的定义、实数的运算、绝对值的性质及近似数的表示方法,熟练掌握相关性质及运算法则是解题关键.二、填空题11.-4解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.12.-5【解析】∵32<10<42,∴的整数部分a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.13.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】n=求解即可.观察各式得出其中的规律,再代入12由题意得()31=⨯++n nn=代入原式中将12a==⨯+=12151181故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.14.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=10+=1+2+3+n+=351=1+2+326故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.15.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{ 2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.16.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.17.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.18.【分析】令,然后两边同时乘以3,接下来根据题目中的方法计算即可.令则∴∴故答案为:.【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解 解析:2021312- 【分析】令23202013333S =+++++,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令23202013333S =+++++ 则23202133333S =++++∴2021331S S -=- ∴2021312S -= 故答案为:2021312-. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解题的关键.19.【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c+d =0,然后代入求值即可.【详解】∵a、b 互为倒数,∴ab=1,∵c、d 互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.20.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)=+≥n n【分析】=+=(2=+n(n≥1)的等式表示出来是(3=+≥(1)n n【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是=+≥(1)n nn n=+≥(1)【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.三、解答题21.(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x =520x =>,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.22.(1)275,572;(2)(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a ,三位数是100a+10(a+b )+b ;右边的两位数是10a+b ,三位数是100b+10(a+b )+a ;“数字对称等式”为:(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a]. 故答案为275,572;(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.23.(1)5766⨯;9111010⨯(2)10092017(3)12n n+ 【解析】 试题分析:(1)根据题目中所给的规律直接写出答案;(2)根据所得的规律进行计算即可;(3)根据所得的规律进行计算即可德结论.试题解析:(1)5766⨯ , 9111010⨯; (2)原式=1324352016201822334420172017⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭() =1201822017⨯ =10092017 ; (3)12n n+. 点睛:本题是一个数字规律探究题,解决这类问题的基本方法为:通过观察,分析、归纳发现其中的规律,并应用规律解决问题.24.初步探究(1)12;—8;(2)C ;深入思考(1)213;415;28;(2)21n a -;(3)—1. 【解析】试题分析:理解除方运算,利用除方运算的法则和意义解决初步探究,通过除方的法则,把深入思考的除方写成幂的形式解决(1),总结(1)得到通项(2).根据法则计算出(3)的结果.试题解析:概念学习(1)2③=2÷2÷2=,(﹣)⑤=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1÷(﹣)÷(﹣)÷(﹣)=(﹣2)÷(﹣)÷(﹣)=﹣8故答案为,﹣8;(2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确;C 、3④=3÷3÷3÷3=,4③=4÷4÷4=,则 3④≠4③; 所以选项C 错误;D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;本题选择说法错误的,故选C ;深入思考:(1)(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×()2=;5⑥=5÷5÷5÷5÷5÷5=1×()4=; (﹣)⑩=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1×2×2×2×2×2×2×2×2=28; 故答案为,,28.(2)a ⓝ=a ÷a ÷a…÷a=1÷a n ﹣2=. (3):24÷23+(﹣8)×2③=24÷8+(﹣8)×=3﹣4=﹣1.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.25.(1)2.24;(2)①5,②35-【分析】(12近似值的方法解答即可;(210102的范围,再根据规定解答即可; 3的整数部分a 5b 的值,再代入所求式子化简计算即可.【详解】解:(1)因为2224,39==, 所以253,<<因为222.2 4.84,2.3 5.29==, 所以2.25 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<< 因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=-== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.26.(1)原式=20192020 (2)原式=99100 (3)原式=417 【分析】(1)类比题目中的拆项方法,类比得出答案即可;(2)先把原式拆分成题(1)原式的样子,再根据(1)的拆项方法,类比得出答案即可; (3)分母是相差4的两个自然数的乘积,类比拆成以两个自然数为分母,分子为1的两个自然数差的14即可. 【详解】解:(1)原式=(1-12)+(12-13)+(13-14)+……+(12019-12020) =1-12020 =20192020; (2)原式=111112233499100++++⨯⨯⨯⨯ =(1-12)+(12-13)+(13-14)+……+(199-1100)=1-1 100=99 100(3)原式=14×(4444155********+++⨯⨯⨯⨯)=14×(1-15+15-19+19-113+113-117)=14×(1-117)=14×1617=4 17【点睛】本题考查算式的规律,注意分子、分母的特点,解题的关键是根据规律灵活拆项,并进一步用规律解决问题.。

人教版七年级(下)第二次月考数学试卷(5)

人教版七年级(下)第二次月考数学试卷(5)

人教版七年级(下)第二次月考数学试卷(5)一.选择题(共10小题,满分20分,每小题2分)1.(2分)下列实数是无理数的是()A.0B.C.D.2.(2分)在下列图形中,∠1与∠2是同位角的是()A.B.C.D.3.(2分)已知点A(a+9,2a+6)在y轴上,a的值为()A.﹣9B.9C.3D.﹣34.(2分)下列调查中,最适宜采用普查方式的是()A.对全国初中学生视力状况的调查B.对“十一国庆”期间全国居民旅游出行方式的调查C.旅客上飞机前的安全检查D.了解某种品牌手机电池的使用寿命5.(2分)已知a<b,下列式子不成立的是()A.a+1<b+1B.4a<4bC.﹣>﹣b D.如果c<0,那么<6.(2分)估计×的值应在()A.3和3.5之间B.3.5和4之间C.4和4.5之间D.4.5和5之间7.(2分)在某个电影院里,如果用(2,5)表示2排5号,那么图框中的座次可以表示为()A.(9,9)B.(5,5)C.(5,9)D.(9,5)8.(2分)能判定直线a∥b的条件是()A.∠1=58°,∠3=59°B.∠2=118°,∠3=59°C.∠2=118°,∠4=119°D.∠1=61°,∠4=119°9.(2分)下列命题的逆命题是真命题的是()A.对顶角相等B.等角对等边C.同角的余角相等D.全等三角形对应角相等10.(2分)随着互联网的飞速发展,网上购物已成为了流行的消费方式.某网店第三季度的服装销售总额和其中某款服装的销售额占当月服装产品销售总额的百分比如图所示:下列结论正确的是()A.该款服装这3个月的销售额逐月递减B.该款服装这3个月的销售总额为23.69万元C.该款服装8月份和9月份的销售额相同D.该款服装8月份和9月份的销售总额大于7月份的销售额二.填空题(共8小题,满分24分,每小题3分)11.(3分)若x2=81,那么x=.12.(3分)写一个大于﹣4的无理数.13.(3分)点P(2,﹣3)到x轴的距离为.14.(3分)已知方程组的解为,则a+b的值为.15.(3分)已知关于x的不等式(3a﹣b)x<a+b的解集为x>0.5,则关于x的不等式ax+3b <0的解集为.16.(3分)如图,将图1的正方形剪掉一个小正方形,再沿虚线剪开,拼成如图2的长方形.已知长方形的宽为6,长为12,则图1正方形的边长为.17.(3分)如图,BE、CF分别是△ABC两边的中线,若△ABC的面积为30,则图中阴影部分的面积是.18.(3分)为了传承中华文化,激发学生的爱国情怀,提高学生的文学素养,某学校初一(9)班举办了“古诗词”大赛,现有小恩、小地、小奕三位同学进入了最后冠军的角逐,决赛共分为六轮,规定:每轮分别决出第1,2,3名(没有并列),对应名次的得分都分别为a,b,c(a>b>c且a,b,c均为正整数).选手最后得分为各轮得分之和,得分最高者为冠军.如表是三位选手在每轮比赛中的部分得分情况,根据题中所给信息,小奕同学第三轮的得分为分.第一轮第二轮第三轮第四轮第五轮第六轮最后得分小恩a a27小地a b c11小奕c b10三.解答题(共9小题,满分48分)19.(8分)计算:(1)×÷(2)﹣﹣|﹣2|20.(8分)解下列方程组:(1)(代入法);(2)(加减法)(3)21.(4分)解不等式组:,并求出整数解.22.(4分)请解答下列问题:(1)如图1,AB∥CD,试证明:∠B+∠D=∠BED.(2)已知:如图2,AB∥CD,请直接写出∠BED、∠B、∠D三者之间的关系式.(3)已知:如图3,AB∥CD,∠ABF=∠DCE.试说明∠BFE与∠FEC的大小关系并说明理由.23.(4分)在对某班的一次数学测验成绩进行统计的分析中,各分数段的人数如图,请回答下列问题:(1)该班有名学生;(2)69.5~79.5这一组的频数是人数的百分比是;(3)著60分以上.80分以下为及格等次,则该班及格等次的频数是,占总人数的百分比大约是(精确到1%);(4)若80分以上为优秀等次,则该班优秀等次的频数是,占总人数的百分比是.24.(4分)三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图所示,三角形A'B'C'是由三角形ABC经过平移得到的(1)分别写出点A',B',C'的坐标;(2)说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的?(3)若点P(a,b)是三角形ABC内的一点,则平移后三角形A'B'C'内的对应点为P′,写出点P'的坐标.25.(4分)为了更好治理黄浦江水质,保护环境,市治污公司决定购买10台污水处理设备.现有A、B两种型号的设备,经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A、B两种型号设备的月处理污水量如下表:A型B型价格(万元/台)a处理污水量(吨/月)240180(1)设A型设备每台的价格为a万元,则B型每台的价格为万元;(2)求A、B两种型号的设备的价格;(3)经预算:市治污公司购买污水处理设备的资金不超过105万元,且每月要求处理黄浦江的污水量不低于1860吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.26.(4分)如图①是一盏可以伸缩的台灯,它的优点是可以变化伸缩,找到合适的照明角度.图②是这盏台灯的示意图.已知台灯水平放置,当灯头AB与支架CD平行时可达到最佳照明角度,此时支架BC与水平线BE的夹角∠CBE=130°,两支架BC和CD的夹角∠BCD=110°.(1)求此时支架CD与底座MN的夹角∠CDM的度数;(2)求此时灯头AB与水平线BE的夹角∠ABE的度数.27.(8分)足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?。

福建武夷山市政和县外屯中学七年级下第二次月考数学试卷

福建武夷山市政和县外屯中学七年级下第二次月考数学试卷

54D3E21C B A外屯中学七年级下第二次月考数学试卷(总分 100分时间 120分钟)(如果说每一位同学是花儿,那么平时的学习就是枝叶的修剪;如果说刻苦勤奋是肥料,那么知识的积累就是花儿的根基;如果说考试是花展,那么骄人的成绩就是花儿的盛开。

)一.选择题(每题3分共30分)1. 如图,直线c 与直线a 、b 相交,且a ∥b ,则结论: ①∠1=∠2;②∠1=∠3;③∠3=∠2中正确的个数为( )A 、0B 、1C 、2D 、32.已知a <b ,则下列不等式中不正确的是( )A. 4a <4bB.-a +4>-b +4C.-4a <-4bD. a -4<b -4 3. 在平面直角坐标系中,点一定在( ) ()1,12+-m A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 4.在方程4x-3y=12中,若x=0,那么对应的y值应为:( ) A 、4 B 、-4 C 、3 D 、-35. 将下列长度的三条线段首尾顺次相接,能组成三角形的是( ) A 、4cm 3cm 5cm B 、1cm 2cm 3cm C 、25cm 12cm 11cm D 、2cm 2cm 4cm6. 用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( ) A 、正三角形 B 、正方形 C 、正五边形 D 、正六边形7. x 与3的和的一半是负数,用不等式表示为( ) A、 B 、 C 、 D 、8. 已知的值:①②③④其中,x y ,22x y =⎧⎨=⎩,,32x y =⎧⎨=⎩,,32x y =-⎧⎨=-⎩,,66x y =⎧⎨=⎩,,是二元一次方程的解的是( )24x y -=A.①B.②C.③D.④9.如右图,下列能判定∥的条件有( )个. AB CD (1) ; (2); ︒=∠+∠180BCD B 21∠=∠(3) ; (4) .43∠=∠5∠=∠BA.1B.2C.3D.410.设“○”“△”“□”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“○”“△”“□”质量从大到小的顺序排列为( )A、□○△ B、 □△○ C、 △○□ D 、△□○二.填空题(每题2分共16分)11.将二元一次方程6x -5y =7中用含y 的代数式表示x ,可变形为 __________________.12. 点P (m +3, m +1)在平面直角坐标系的x 轴上,则点P 坐标为 13、△ABC 中,若∠B=∠A+∠C,则△ABC 是 三角形。

人教版七年级第二学期 第二次月考数学试题含答案

人教版七年级第二学期 第二次月考数学试题含答案

人教版七年级第二学期 第二次月考数学试题含答案一、选择题1.下列说法正确的个数有( )①过一点有且只有一条直线与已知直线平行; ②垂线段最短;③坐标平面内的点与有序实数对是一一对应的; ④算术平方根和立方根都等于它本身的数是0和1; ⑤5的小数部分是51-. A .1B .2C .3D .42.下列说法错误的是( )A .a 2与(﹣a )2相等B .33()a -与33a 互为相反数C .3a 与3a -互为相反数D .|a|与|﹣a|互为相反数 3.在有理数中,一个数的立方等于这个数本身,这种数的个数为( ) A .1B .2C .3D .44.25的算术平方根是( ) A .5± B .5C .52±D .55.已知280x y -++=,则x y +的值为( )A .10B .-10C .-6D .不能确定 6.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1 B .-5或5 C .11或7 D .-11或﹣7 7.估计65的立方根大小在( ) A .8与9之间B .3与4之间C .4与5之间D .5与6之间8.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根. A .1B .2C .3D .49.下列说法不正确的是( ) A .81的平方根是±3 B .12-是14的平方根 C .带根号的数不一定是无理数 D .a 2的算术平方根是a10.如图,数轴上表示实数3的点可能是( )A .点PB .点QC .点RD .点S二、填空题11.若x +1是125的立方根,则x 的平方根是_________. 12.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤3722-的最大整数,则M +N 的平方根为________. 13.观察下列各式: (1)123415⨯⨯⨯+=; (2)2345111⨯⨯⨯+=; (3)3456119⨯⨯⨯+=;根据上述规律,若121314151a ⨯⨯⨯+=,则a =_____. 14.一个正数的平方根是21x -和2x -,则x 的值为_______.15.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___16.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.17.已知:103<157464<1003;43=64;53<157<63,则 315746454=,请根据上面的材料可得359319=_________.18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a ,则2x y +的值为______.19.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________20.若x ,y 为实数,且|2|30x y ++-=,则(x+y) 2012的值为____________.三、解答题21.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 22.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 23.观察下列各式﹣1×12=﹣1+12﹣1123⨯=﹣11+23 ﹣1134⨯=﹣11+34(1)根据以上规律可得:﹣1145⨯= ;11-1n n += (n ≥1的正整数). (2)用以上规律计算:(﹣1×12)+(﹣1123⨯)+(﹣1134⨯)+…+(﹣1120152016⨯).24.已知2a -的平方根是2±,33a b --的立方根是3,整数c 满足不等式1c c <+. (1)求,,a b c 的值.(2)求2232a b c ++的平方根.25.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ① 则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而121的小数部分.请解答下列问题:(1_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y +-的平方根。

福建省2022年七年级下学期第二次月考数学试卷

福建省2022年七年级下学期第二次月考数学试卷

福建省 七年级下学期第二次月考数学试卷一、选择题(每小题4分,共32分) 1、下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-42、下列命题不正确是 ( )A.两直线平行,同位角相等B.两点之间直线最短C.对顶角相等D.垂线段最短3、已知a b <,下列不等式变形正确的是( ).22Aa b ->- .22a b B >.22C a b ->- .3131D a b +>+4、二元一次方程x-2y=1有无数多个解,下列四组值中是该方程的解的是( )5、已知M(2,-3),N(-2,-3),则直线MN 与X 轴和Y 轴的位置关系分别为( )。

A 、垂直、垂直B 、平行、平行C 、垂直、平行D 、平行、垂直6、在平面直角坐标系中,线段AB 两端点的坐标分别为A (1,0),B (3,2)。

将线段AB向上平移1个单位后,A 、B 的对应点的坐标是( )A.(1,-1),(-1,-3)B.(1,1),(3,3)C.(-1,3),(3,1)D.(3,2),(1,4) 7、把不等式组 的解集表示在数轴上正确的是( )8、某校春运动会比赛中,七年级一班和二班的实力相当,关于比赛结果,甲同学说:一班与二班的得分比为4:3,乙同学说:一班比二班的得分2倍少40分,若设一班得X 分,二班得Y 分,则根据题意可列方程组( )A 、⎩⎨⎧-==40234y x y x B 、⎩⎨⎧+==40234y x y x C 、⎩⎨⎧+==40243y x y x D 、⎩⎨⎧-==40243y x yx二、填空题(每小题4分,共32分)9、 已知x=3,y=2是方程4x ﹢ky=2的解,则k= _______________。

10、在直角坐标系中,若点P(x-5,2x-6)在第二象限,那么x 的取值范围是________________11、不等式5x-9≤3(x+1)的解集是________. 12、若方程523m nx+--312m n y++=5是关于x,y的二元一次方程则m﹢n=13、如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.14、已知方程组⎩⎨⎧=++=+k y x k y x 32253的解满足x + y = 2 ,则k 的值为______15、从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16、我国从5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5-分.小明参加本次竞赛得分要超过100分,他至少要答对 道题. 三、计算题17.(本题8分)解不等式,并把解集在数轴上表示出来。

新人教版七年级(下)第二次月考数学试卷(解析版)

新人教版七年级(下)第二次月考数学试卷(解析版)

新人教版七年级(下)第二次月考数学试卷一、选择题(本大题共12个小题,每小题5分,共60分>在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.2.的平方根是()A.B.2C.±2D.3.如图,数轴上的A、B、C、D四点中,与表示数﹣的点最接近的是()A.点A B.点B C.点C D.点D4.若x,y为实数,且|x+2|+=0,则的值为()A.2B.﹣2C.1D.﹣15.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6B.8C.10D.126.端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是()A.景点离小明家180千米B.小明到家的时间为17点C.返程的速度为60千米每小时D.10点至14点,汽车匀速行驶7.下列说法错误的个数是()①无理数都是无限小数;②的平方根是±2;③﹣9是81的一个平方根;④=()2;⑤与数轴上的点一一对应的数是实数.A.1个B.2个C.3个D.4个8.△ABC中,∠A:∠B:∠C=3:5:8,则△ABC是()A.锐角三角形B.直角三角形,且∠C=90°C.直角三角形,且∠B=90°D.直角三角形,且∠A=90°9.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A.13B.19C.25D.16910.实数a、b在数轴上对应点的位置如图,则|a﹣b|﹣的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b11.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A.1个B.4个C.7个D.10个12.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.二、填空题(每题题5分,满分20,将答案填在答题纸上)13.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为.14.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=.15.实数﹣,0,,,0.1010010001…(两个1之间一次多一个0),,中,无理数有:.16.已知y=﹣24,则=.三、解答题(本大题共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)计算(1)(﹣2)0++(2)(﹣2)×﹣618.(10分)如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.19.(12分)在Rt△ABC中,∠C=90°,BC=6,AC=8,点D在线段AC上从C向A运动,若设CD=x,△ABD的面积为y.(1)写出y与x的关系式;(2)当x取何值时,y有最大值?最大值是多少?此时点D在什么位置?(3)当△ABD的面积是△ABC面积的一半时,点D在什么位置?20.(12分)某商店周年庆,印涮了10000张奖券,其中印有老虎图案的有10张,每张奖金1000元,印有羊图案的有50张,每张奖金100元,印有鸡图案的有100张,每张奖金20元,印有兔子图案的有400张,每张奖金2元,其余印有花朵图案但无奖金.从中任意抽取一张,请解答下列问题:(1)获得1000元奖金的概率是多少?(2)获得奖金的概率是多少?(3)若要使获得2元奖金的概率为,则需要将多少张印有花朵图案的奖券换为印有兔子图案的奖券?21.(12分)(1)如图1,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.(2)如图2,AB∥CD,AB=CD,BF=DE,求证:∠AEF=∠CFB.22.(12分)王老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a、b、c与n之间的关系,并用含自然数n的代数式表示:a=,b=,c=.(2)猜想以a、b、c为边的三角形是否为直角三角形?并证明你的猜想?(3)观察下列勾股数:32+42=52,52+122=132,72+242=252,92+402=412,分析其中的规律,根据规律写出第五组勾股数.参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分>在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.的平方根是()A.B.2C.±2D.【分析】首先根据算术平方根的定义化简,然后根据平方根的定义即可得出结果.【解答】解:∵=4,又∵22=4,(﹣2)2=4,∴的平方根为±2;故选:C.【点评】本题主要考查了平方根和算术平方根的定义.解题注意算术平方根和平方根的区别.平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.3.如图,数轴上的A、B、C、D四点中,与表示数﹣的点最接近的是()A.点A B.点B C.点C D.点D【分析】先估算出≈2.236,所以﹣≈﹣2.236,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.【解答】解:∵≈2.236,∴﹣≈﹣2.236,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.4.若x,y为实数,且|x+2|+=0,则的值为()A.2B.﹣2C.1D.﹣1【分析】根据非负数的性质列方程求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得x=﹣2,y=2,所以,==﹣1.故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6B.8C.10D.12【分析】设AB=5x,AC=3x,则根据勾股定理可求出BC,再由直角△ABC的周长为24可解得x 的值,这样也就得出了BC的值.【解答】解:设AB=5x,AC=3x,则BC==4x,又∵直角△ABC的周长为24,∴5x+3x+4x=24,解得:x=2,∴BC=8.故选:B.【点评】本题考查勾股定理的应用,属于基础题,解答本题的关键先求出BC含x的表达式,然后列出方程解出x.6.端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是()A.景点离小明家180千米B.小明到家的时间为17点C.返程的速度为60千米每小时D.10点至14点,汽车匀速行驶【分析】根据函数图象的纵坐标,可判断A;根据待定系数法,可得返回的函数解析式,根据函数值与自变量的对应关系,可判断B;根据函数图象的纵坐标,可得返回的路程,根据函数图象的横坐标,可得返回的时间,根据路程与时间的关系,可判断C;根据函数图象的纵坐标,可判断D.【解答】解:A、由纵坐标看出景点离小明家180千米,故A正确;B、由纵坐标看出返回时1小时行驶了180﹣120=60千米,180÷60=3,由横坐标看出14+3=17,故B正确;C、由纵坐标看出返回时1小时行驶了180﹣120=60千米,故C正确;D、由纵坐标看出10点至14点,路程不变,汽车没行驶,故D错误;故选:D.【点评】本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间是解题关键.7.下列说法错误的个数是()①无理数都是无限小数;②的平方根是±2;③﹣9是81的一个平方根;④=()2;⑤与数轴上的点一一对应的数是实数.A.1个B.2个C.3个D.4个【分析】根据无理数、平方根、数轴、二次根式的性质,分别对每一项进行分析即可.【解答】解:①无理数都是无限不循环小数,故本选项错误;②的平方根是±,故本选项错误;③﹣9是81的一个平方根,故本选项正确;④当a≥0时,=()2,故本选项错误;⑤与数轴上的点一一对应的数是实数,故本选项正确;错误的个数是3个,故选:C.【点评】此题考查了实数,用到的知识点是无理数、平方根、数轴、二次根式的性质,关键是熟练掌握有关定义与性质.8.△ABC中,∠A:∠B:∠C=3:5:8,则△ABC是()A.锐角三角形B.直角三角形,且∠C=90°C.直角三角形,且∠B=90°D.直角三角形,且∠A=90°【分析】根据已知条件∠A:∠B:∠C=3:5:8和三角形的内角和即可求得∠C=×180°=90°,于是得到结论.【解答】解:∵∠A:∠B:∠C=3:5:8,∠A+∠B+∠C=180°,∴∠C=×180°=90°∴△ABC是直角三角形,故选:B.【点评】本题考查了三角形的内角和,直角三角形的判定,熟练掌握三角形的内角和定理是解题的关键.9.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A.13B.19C.25D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选:C.【点评】注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.10.实数a、b在数轴上对应点的位置如图,则|a﹣b|﹣的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b【分析】首先由数轴可得a<b<0,然后利用二次根式与绝对值的性质,即可求得答案.【解答】解:根据题意得:a<b<0,∴a﹣b<0,∴|a﹣b|﹣=|a﹣b|﹣|a|=(b﹣a)﹣(﹣a)=b﹣a+a=b.故选:C.【点评】此题考查了数轴、二次根式与绝对值的性质.此题难度适中,注意=|a|.11.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A.1个B.4个C.7个D.10个【分析】(1)点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;(2)点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可.【解答】解:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选:D.【点评】本题主要考查等腰三角形的性质;要注意分点在三角形内部和三角形外部两种情况讨论,思考全面是正确解答本题的关键.12.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.【分析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.在△BDF中,由勾股定理即可求出BD的长.【解答】解:以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.∵DC∥AB,∴=,∴DF=CB=1,BF=2+2=4,∵FB是⊙A的直径,∴∠FDB=90°,∴BD==.故选:B.【点评】本题考查了勾股定理,解题的关键是作出以A为圆心,AB长为半径的圆,构建直角三角形,从而求解.二、填空题(每题题5分,满分20,将答案填在答题纸上)13.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为11或13.【分析】分3是腰长与底边两种情况讨论求解.【解答】解:①3是腰长时,三角形的三边分别为3、3、5,能组成三角形,周长=3+3+5=11,②3是底边长时,三角形的三边分别为3、5、5,能组成三角形,周长=3+5+5=13,综上所述,这个等腰三角形的周长是11或13.故答案为:11或13.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.14.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=40°.【分析】先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.【解答】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.【点评】本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.15.实数﹣,0,,,0.1010010001…(两个1之间一次多一个0),,中,无理数有:0.1010010001…(两个1之间一次多一个0),,.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.1010010001…(两个1之间一次多一个0),,是无理数,故答案为:0.1010010001…(两个1之间一次多一个0),,.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.已知y=﹣24,则=6.【分析】根据二次根式有意义的条件列出不等式,求出x、y,根据算术平方根的概念计算即可.【解答】解:由题意得,2x+3≤0,﹣3﹣2x≥0,解得,x=﹣,y=﹣24,=6,故答案为:6.【点评】本题考查的是二次根式有意义的条件、算术平方根的计算,掌握二次根式的被开方数是非负数是解题的关键.三、解答题(本大题共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)计算(1)(﹣2)0++(2)(﹣2)×﹣6【分析】(1)直接利用零指数幂的性质以及二次根式的性质化简得出答案;(2)直接利用二次根式的乘法运算法则计算得出答案.【解答】解:(1)(﹣2)0++=1+﹣1+3=4;(2)(﹣2)×﹣6=3﹣6﹣6×=﹣6.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.(10分)如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.【分析】(1)根据题意所述画出示意图即可.(2)根据AAS可得出△ABC≌△DEC,即求出DE的长度也就得出了AB之间的距离.【解答】解:(1)所画示意图如下:(2)在△ABC和△DEC中,,∴△ABC≌△DEC,∴AB=DE,又∵小刚共走了100步,其中AD走了40步,∴走完DE用了60步,步大约50厘米,即DE=60×0.5米=30米.答:小刚在点A处时他与电线塔的距离为30米.【点评】本题考查全等三角形的应用,像此类应用类得题目,一定要仔细审题,根据题意建立数学模型,难度一般不大,细心求解即可.19.(12分)在Rt△ABC中,∠C=90°,BC=6,AC=8,点D在线段AC上从C向A运动,若设CD=x,△ABD的面积为y.(1)写出y与x的关系式;(2)当x取何值时,y有最大值?最大值是多少?此时点D在什么位置?(3)当△ABD的面积是△ABC面积的一半时,点D在什么位置?【分析】(1)△ABD的面积=AD×BC,把相关数值代入化简即可;(2)由(1)可得x最小时,y最大,易得此时点D的位置;(3)让(1)中的y为10列式求值即可.【解答】解:(1)∵设CD=x,△ABD的面积为y.∴y=AD×BC=×(8﹣x)×6=﹣3x+24;(2)当x=0时,y有最大值,最大值是24,此时点D与点C重合.(3)∵S=×6×8=24△ABC=12时,即y=﹣3x+24=12时,x=4,∴当y=S△ABC即CD=4=AC,此时点D在AC的中点处.【点评】此题主要考查了三角形的面积和一次函数的应用;判断出所求三角形的底边及底边上的高是解决本题的突破点.20.(12分)某商店周年庆,印涮了10000张奖券,其中印有老虎图案的有10张,每张奖金1000元,印有羊图案的有50张,每张奖金100元,印有鸡图案的有100张,每张奖金20元,印有兔子图案的有400张,每张奖金2元,其余印有花朵图案但无奖金.从中任意抽取一张,请解答下列问题:(1)获得1000元奖金的概率是多少?(2)获得奖金的概率是多少?(3)若要使获得2元奖金的概率为,则需要将多少张印有花朵图案的奖券换为印有兔子图案的奖券?【分析】(1)根据10000张奖券中有10张印有老虎图案,每张奖金1000元,再根据概率公式即可得出答案;(2)先求出能获得奖金的奖票张数,再根据概率公式即可得出答案;(3)设需要将x张印有花朵图案的奖券换为印有兔子图案的奖券,根据概率公式列出算式,求出x 的值即可得出答案.【解答】解:(1)获得1000元奖金的概率是=;(2)由题意知:能获得奖金的奖票有10+50+100+400=560张获得奖金的概率是=;(3)设需要将x张印有花朵图案的奖券换为印有兔子图案的奖券,根据题意得:=,解得:x=600,答:需要将600张印有花朵图案的奖券换为印有兔子图案的奖券.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21.(12分)(1)如图1,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.(2)如图2,AB∥CD,AB=CD,BF=DE,求证:∠AEF=∠CFB.【分析】(1)推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.(2)根据平行线的性质、线段间的和差关系证得∠B=∠D、BE=DF;然后由全等三角形的判定定理SAS推知△ABE≌△CDF;最后由全等三角形的对应角相等证得结论;【解答】解:(1)∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.(2)∵AB∥CD(已知),∴∠B=∠D,又∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF,∴在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴∠A=∠C,∴∠BEA=∠DFC,∴:∠AEF=∠CFB.【点评】本题考查了平行线的性质和判定,平行公理及推论,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(12分)王老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a、b、c与n之间的关系,并用含自然数n的代数式表示:a=n2﹣1,b=2n,c=n2+1.(2)猜想以a、b、c为边的三角形是否为直角三角形?并证明你的猜想?(3)观察下列勾股数:32+42=52,52+122=132,72+242=252,92+402=412,分析其中的规律,根据规律写出第五组勾股数.【分析】(1)探究规律后,利用规律即可解决问题;(2)根据勾股定理的逆定理证明即可;(3)观察发现第一个数的奇数,另外两个数的底数的和是这个奇数的平方,由此即可解决问题;【解答】解:(1)由题意:a=n2﹣1,b=2n,c=n2+1,故答案为:n2﹣1,2n,n2+1;(2)猜想:以a、b、c为边的三角形是直角三角形.理由:∵a=n2﹣1,b=2n,c=n2+1,∴a2+b2=(n2﹣1)2+4n2=n4+2n2+1=(n2+1)2=c2,∴以a、b、c为边的三角形是直角三角形.(3)观察可知:第五组勾股数为:112+602=612.【点评】本题考查勾股数、规律型问题,解题的关键是学会观察,学会寻找规律,利用规律解决问题.。

人教版七年级(下)学期 第二次月考数学试题含答案

人教版七年级(下)学期 第二次月考数学试题含答案
(2)布谷数有如下运算性质:
若m,n为正整数,则 , .
根据运算性质解答下列各题:
①已知 ,求 和 的值;
②已知 .求 和 的值.
22.观察下列等式: , , ,
将以上三个等式两边分别相加得: =
(1)猜想并写出: =.
(2)直接写出下列各式的计算结果:
① =;
② =;
(3)探究并计算: .
23.已知 的算术平方根是 , 的立方根是 的整数部分是 ,求 的平方根.
A.1个B.2个C.3个D.4个
9.下列运算正确的是()
A. B. C. D.
10.已知实数x,y满足关系式 +|y2﹣9|=0,则 的值是( )
A.±3B.3C.﹣3或 D.3或
二、填空题
11.已知an= (n=1,2,3,…),记b1=2(1-a1),b2=2(1-a1)(1-a2),…,bn=2(1-a1)(1-a2)…(1-an),则通过计算推测出表达式bn=________(用含n的代数式表示).
3.52=12.25,可得出有6个3;
4.52=20.25,可得出有8个4;
5.52=30.25,可得出有10个5;
则剩余6个数全为6.
故[ ]+[ ]+[ ]+…+[ ]=1×2+2×4+3×6+4×8+5×10+6×6=146.
故选:B.
点睛本题考查了估算无理数的大小.
2.B
解析:B
【解析】
试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列,
15.一个数的立方等于它本身,这个数是__.
16.49的平方根是________,算术平方根是______,-8的立方根是_____.

人教版七年级(下)学期 第二次月考检测数学试题

人教版七年级(下)学期 第二次月考检测数学试题

人教版七年级(下)学期 第二次月考检测数学试题一、选择题1.下列结论正确的是( ) A .64的立方根是±4 B .﹣18没有立方根 C .立方根等于本身的数是0 D .327-=﹣3 2.在0, 3.14159, 3π, 2,227, 39, 0.7, 32中, 无理数有几个( ) A .2B .3C .4D .53.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒ 4.估计65的立方根大小在( )A .8与9之间B .3与4之间C .4与5之间D .5与6之间5.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在( )A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上6.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根. A .1B .2C .3D .47.下列各式中,正确的是( ) A .4=±2B .±42=C .2(2)2-=-D .3644-=-8.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 229.2a+b b-4=0,则a +b 的值为( )A .﹣2B .﹣1C .0D .210.下列运算中,正确的是( ) A .93=±B .382=C .|4|2-=-D .2(8)8-=-二、填空题11.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .12.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 13.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____. 14.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________. 15.如果某数的一个平方根是﹣5,那么这个数是_____.16.已知:103<157464<1003;43=64;53<157<63,则315746454=,请根据上面的359319=_________. 17.51-__________0.5.(填“>”“<”或“=”) 18.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____. 19.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.20.已知a 、b 为两个连续的整数,且a 19b ,则a +b =_____.三、解答题21.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①31000100==,又1000593191000000<<,10100∴<<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3 因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空. ①它的立方根是_______位数. ②它的立方根的个位数是_______. ③它的立方根的十位数是__________. ④195112的立方根是________. (2)请直接填写....结果:=________.=________. 22.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ .(2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ;( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.23.(1)观察下列式子:①100222112-=-==; ②211224222-=-==; ③322228442-=-==; ……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立; (2)求01220192222++++的个位数字.24.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = .(2)直接写出下列各式的计算结果:①1111...12233420152016++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 25.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式 1a b ab -=+成立的一对有理数,a b 为“共生有理数对”,记为(),a b ,如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫⎪⎝⎭,都是“共生有理数对”. (1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).(2,1)- ,(13,2) .(2)若 5,2a ⎛⎫-⎪⎝⎭是“共生有理数对”,求a 的值; (3)若(),m n 是“共生有理数对”,则(),n m --必是“共生有理数对”.请说明理由; (4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而121的小数部分.请解答下列问题:(1_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y +-的平方根。

最新人教版七年级数学下册第二次月考试题

最新人教版七年级数学下册第二次月考试题

人教版七年级数学下册第二次月考试题一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点A(﹣3,﹣4)在第()象限.A.一B .二C.三D.四2.计算的结果为()A.3B.﹣3C.±3D.4.53.在3.14,,,,π,2.01001000100001这六个数中,无理数有()A .1个B.2个C.3个D.4个4.如图,已知∠1=60°,∠2=60°,∠3=68°,则∠4的大小()A.68°B .60°C.102°D.112°5.如图,在4×8的方格中,建立直角坐标系E(﹣1,﹣2),F(2,﹣2),则G点坐标为()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)6.在直角坐标系中,A(0,1),B(3,3)将线段AB平移,A到达C(4,2),B到达D 点,则D点坐标为()A.(7,3)B.(6,4)C.(7,4)D.(8,4)7.如图AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED的度数为()A.90°B.108°C.100°D.80°8.下列说法错误的是()A.B.64的算术平方根是4C.D .,则x=19.一只跳蚤在第一象限及x、y轴上跳动,第一次它从原点跳到(0.1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2018次跳到点()A.(6,44)B.(7,45)C.(44,7)D.(7,44)10.下列命题是真命题的有()个①两条直线被第三条直线所截,同位角的平分线平行②垂直于同一条直线的两条直线互相平行③过一点有且只有一条直线与已知直线平行④对顶角相等,邻补角互补A.1B.2C.3D.4二、填空题(每小题3分,共18分)11.实数的绝对值是.12.x、y是实数,,则xy=.13.已知,A(0,4),B(﹣2,0),C(3,﹣1),则S△ABC=.14.若2n﹣3与n﹣1是整数x的平方根,则x=.15.把“同角的补角相等”改为如果…,那么…的形式:.16.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.三、解答题(共8小题,72分)17.(8分)计算:(1)(2)2(﹣1)﹣|﹣2|+.18.(8分)求下列各式中的x值(1)3(x﹣2)2=27 (2)2(x﹣1)3+16=0.19.(8分)完成下面的推理填空如图,已知,F是DG上的点,∠1+∠2=180°,∠3=∠B,求证:∠AED=∠C.证明:∵F是DG上的点(已知)∴∠2+∠DFE=180°()又∵∠1+∠2=180°(已知)∴∠1=∠DFE()∴BD∥EF()∴∠3=∠ADE()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠AED=∠C()20.(8分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.21.(8分)已知:a是9+的小数部分,b是9﹣的小数部分.①求a、b的值;②求4a+4b+5的平方根.22.(10分)①如图1,O是直线AB上一点,OE平分∠AOC,OF平分∠BOC,求证:OE ⊥OF.②如图2,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE23.(10分)(1)①如图1,AB∥CD,则∠B、∠P、∠D之间的关系是;②如图2,AB∥CD,则∠A、∠E、∠C之间的关系是;(2)①将图1中BA绕B点逆时针旋转一定角度交CD于Q(如图3).证明:∠BPD=∠1+∠2+∠3②将图2中AB绕点A顺时针旋转一定角度交CD于H(如图4)证明:∠E+∠C+∠CHA+∠A=360°(3)利用(2)中的结论求图5中∠A+∠B+∠C+∠D+∠E+∠F的度数.24.(12分)如图,平面直角坐标系中,A(﹣3,﹣2)、B(﹣1,﹣4)(1)直接写出:S△OAB=;(2)延长AB交y轴于P点,求P点坐标;(3)Q点在y轴上,以A、B、O、Q为顶点的四边形面积为6,求Q点坐标.一、选择题(每小题3分,共30分)1. 49的平方根是()A.7 B.﹣7 C.±7 D.2.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B. C.D.3.在下列各数:3.14,﹣π,,、、中无理数的个数是()A.2 B.3 C.4 D.54.下面四个图形中,∠1=∠2一定成立的是()A.B.C.D.5. 如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A.两点之间线段最短 B.点到直线的距离C.垂线段最短 D.两点确定一条直线6.下列运算正确的是()A. B.(﹣3)3=27 C.=2 D.=37.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=()第7题图第9题图A.20°B.30°C.40°D.50°8.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是()A.1 B.3 C.4 D.99.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°10.有下列命题:①两条直线被第三条直线所截,同位角相等;②0.1 的算术平方根是0.01;③算术平方根等于它本身的数是1;④若a2=b2,则a=b;⑤若=,则a=b.其中假命题的个数是()A.2个B.3 个C.4个D.5个二、填空题(每小题3分,共18分)11.的平方根为.12.把命题“对顶角相等”改写成“如果…那么…”的形式:.13.如图所示,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD 的位置关系为.第13题图第14题图14.如图,已知a∥b,∠1=70°,∠2=40°,则∠3= 度.15.已知x 、y 为实数,且+(y+2)2=0,则y x = .16.观察下列各式:,…,根据你发现的规律,若式子(a 、b 为正整数)符合以上规律,则= .三、解答题(共9个大题,共72分) 17、(8分)解下列一元二次方程(1)2x 2﹣50=0. (2) ()22125x -=18、(16分)计算下列各题(1) 25843+-- (2) 23+32-53-32(3) 364359-+-+ (4) ()()21843322-------19.(5分)填写下面证明中每一步的理由.如图,已知BD ⊥AC ,EF ⊥AC ,D ,F 是垂足,∠1=∠2.求证:∠ADG =∠C. 证明:∵BD ⊥AC ,E F ⊥AC(已知), ∴∠3=∠4=90°(垂直的定义), ∴BD ∥EF ( ). ∴∠2=∠CBD( ).∵∠1=∠2(已知),∴∠1=∠CBD( ), ∴GD ∥BC( ), ∴∠ADG =∠C( ).20.(6分)已知一个正数的平方根是x +1和x -5,则x 是多少 ?这个正数是这个正数的值是多少?21.(6分)若m +4的一个平方根是3,3m -n +5的立方根是2,(1)求m ,n 分别是多少(2)求m 2+n 2的平方根22.(6分)如图,已知直线AB 与直线CD 相交于点O ,∠BOE=90°,OF 平分 ∠BOD ,∠BOC :∠AOC=1:4.求∠COF 的度数.23.(7分)如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上,将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)求△A′B′C′的面积.24.(8分)如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.25.(10分)(1)如图①,AB∥CD,点E在直线AB与CD之间,连结AE、CF.证明:∠A+∠C=∠E;(2)当点E在如图②的位置时,AB∥CD,证明:∠A+∠E+∠C=360°;(3)如图③,点E、F、G在直线AB与CD之间,AB∥CD,连结AE、EF、FG、CG,若∠EFG=28°,则∠A+∠E+∠G+∠C=°.。

人教版七年级数学(下)学期 第二次月考检测测试卷

人教版七年级数学(下)学期 第二次月考检测测试卷

人教版七年级数学(下)学期 第二次月考检测测试卷一、选择题1.已知:表示不超过的最大整数,例:,令关于的函数(是正整数),例:=1,则下列结论错误..的是( ) A .B .C .D .或12.下列说法错误的是( ) A .﹣4是16的平方根 B .16的算术平方根是2 C .116的平方根是14D .25=53.下列各数中,不是无理数的是( ) A .30.8B .﹣3πC .14D .0.121 121 112…4.计算:122019(1)(1)(1)-+-++-的值是( )A .1-B .1C .2019D .2019- 5.下列数中,有理数是( )A .﹣7B .﹣0.6C .2πD .0.151151115…6.已知无理数7-2,估计它的值( ) A .小于1B .大于1C .等于1D .小于07.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n8.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-=C 42=±D .()515-=-9.若a 16b 64a+b 的值是( )A .4B .4或0C .6或2D .6 10.已知一个正数的两个平方根分别是3a +1和a +11,这个数的立方根为( )A .4B .3C .2D .0二、填空题11.观察下列算式:246816⨯⨯⨯+2(28)⨯1616+4=20; 4681016⨯⨯⨯+2(410)⨯1640+4=44;…根据以上规律计算:3032343616⨯⨯⨯+=__________12.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.13.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 15.写出一个大于3且小于4的无理数:___________.16.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________ 17.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________. 18.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.19.已知a 、b 为两个连续的整数,且a 19b ,则a +b =_____. 20.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b .例如89914*=,那么*(*16)m m =__________.三、解答题21.先阅读内容,然后解答问题: 因为:111111111111,,12223233434910910=-=-=-=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…=1﹣111111122334910+-+-+- =1﹣191010= 问题:(1)请你猜想(化为两个数的差):120152016⨯= ;120142016⨯= ;(2)若a 、b 为有理数,且|a ﹣1|+(ab ﹣2)2=0,求111(1)(1)(2)(2)ab a b a b +++++++…+1(2018)(2018)a b ++的值. 22.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数) (2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 23.观察下列等式:①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得 1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= .(3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 24.计算(1)+|-5|364-1)2020 (2231627332|(5)-+-25.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?26.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences).这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a18=,a n=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230…①等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②由② ﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以3131212121S-==--请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,a n,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示a n;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+a n.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】根据新定义的运算逐项进行计算即可做出判断.【详解】A. ==0-0=0,故A选项正确,不符合题意;B. ===,=,所以,故B选项正确,不符合题意;C. =,= ,当k=3时,==0,= =1,此时,故C选项错误,符合题意;D.设n为正整数,当k=4n时,==n-n=0,当k=4n+1时,==n-n=0,当k=4n+2时,==n-n=0,当k=4n+3时,==n+1-n=1,所以或1,故D选项正确,不符合题意,故选C.【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.C解析:C【分析】分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.【详解】A.﹣4是16的平方根,说法正确;B.162,说法正确;C.116的平方根是±14,故原说法错误;D.25,说法正确.故选:C.【点睛】此题考查了平方根以及算术平方根的定义,熟记相关定义是解题的关键.解析:C 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】B.3π-是无理数;12=,是有理数; D.0.121 121 112…是无理数; 故选:C . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.A解析:A 【分析】根据题意,1-的奇数次幂等于1-,1-的偶数次幂等于1,然后两个加数作为一组和为0,即可得到答案. 【详解】解:∵1-的奇数次幂等于1-,1-的偶数次幂等于1, ∴122019(1)(1)(1)-+-++-=1234201720182019[(1)(1)][(1)(1)][(1)(1)](1)-+-+-+-++-+-+-=2019(1)- =1-; 故选:A. 【点睛】本题考查了数字规律性问题,有理数的混合运算,解题的关键是熟练掌握1-的奇数次幂等于1-,1-的偶数次幂等于1.5.B解析:B 【分析】根据有理数的定义选出即可. 【详解】解:A 是无理数,故选项错误; B 、﹣0.6是有理数,故选项正确; C 、2π是无理数,故选项错误;D 、0.l51151115…是无理数,故选项错误. 故选:B . 【点睛】本题考查了实数,注意有理数是指有限小数和无限循环小数,包括整数和分数.6.A解析:A 【分析】首先根据479<<可以得出23<<2的范围即可.【详解】∵23<<,∴22232-<<-,∴021<<,2-的值大于0,小于1. 所以答案为A 选项. 【点睛】本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.7.B解析:B 【分析】根据n+p=0可以得到n 和p 互为相反数,原点在线段PN 的中点处,从而可以得到绝对值最大的数. 【详解】 解:∵n+p=0, ∴n 和p 互为相反数, ∴原点在线段PN 的中点处, ∴绝对值最大的一个是Q 点对应的q . 故选B . 【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.8.B解析:B 【分析】根据有理数的乘方以及算术平方根的意义即可求出答案. 【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.9.C解析:C【分析】由a a=±2,由b b=4,由此即可求得a+b的值.【详解】∵a∴a=±2,∵b∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C.【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.10.A解析:A【分析】根据一个正数的两个平方根互为相反数,可知3a+1+a+11=0,a=-3,继而得出答案.【详解】∵一个正数的两个平方根互为相反数,∴3a+1+a+11=0,a=-3,∴3a+1=-8,a+11=8∴这个数为64,所以,这个数的立方根为:4.故答案为:4.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.二、填空题11.【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】解:==1080+4=1084.故答案为:1084.【点睛】解析:【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】==1080+4=1084.故答案为:1084.【点睛】本题考查了算术平方根,读懂题目信息,观察出计算结果等于首尾两个偶数的乘积加上4是解题的关键.12.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.13.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.14.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}=321413x x +++-=2x+1, ∵M{3,2x +1,4x -1}=min{2,-x +3,5x}, ∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x +3,5x}= min{2,52,52}=2,成立; ②2x+1=-x+3,x=23,此时min{2,-x +3,5x}= min{2,73,103}=2,不成立; ③2x+1=5x ,x=13,此时min{2,-x +3,5x}= min{2,83,53}=53,成立, ∴x=12或13, 故答案为12或13. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.如等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数. 16.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】①10=,故①错误;②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数. 17.9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: ,解得:,则这个正数是.故答案为:9.【解析:9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键. 18.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.19.9【分析】首先根据的值确定a 、b 的值,然后可得a+b 的值.【详解】∵<,∴4<<5,∵a<<b ,∴a=4,b =5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的解析:9【分析】a 、b 的值,然后可得a +b 的值.【详解】<∴45,∵a b ,∴a=4,b=5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的大小,关键是正确确定a、b的值.20.+1【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..【点睛】此题考查实数的运算,解题的关键是要掌握运算法则.三、解答题21.(1)1120152016-,1140284032-;(2)20192020.【分析】(1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a、b的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∴a ﹣1=0,ab ﹣2=0,解得,a =1,b =2, ∴1111+(1)(1)(2)(2)(2018)(2018)ab a b a b a b +++++++++…… =111112233420192020+++⋯+⨯⨯⨯⨯ =1﹣1111111+2233420192020+-+-+- (1)12020 =20192020. 【点睛】本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.22.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。

人教版七年级(下)数学第二次月考数学试卷

人教版七年级(下)数学第二次月考数学试卷

人教版七年级(下)数学第二次月考数学试卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155°D.160°2 . 以下列各组线段为边,能组成三角形的是()A.2、2、4B.2、6、3C.8、6、3D.11、4、63 . 如图,在△ABC中,BD平分∠ABC,DE∥BC,且交AB于点E,∠A=60°,∠BDC=86°,则∠BDE的度数为()A.26°B.30°C.34°D.52°4 . 如图,在△ABC和△DEF中,给出以下六个条件中,以其中三个作为已知条件,不能判断△ABC和△DEF全等的是()①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F;A.①⑤②B.①②③C.④⑥①D.②③④5 . 如图,在△ABC中,点D是AB边上的一点,若AC=DC=DB,∠ACB=102°,则∠B的度数是()A.24°B.26°C.28°D.30°6 . 如果关于x的方程x3﹣5x2+(4+k)x﹣k=0的三个根可以作为一个等腰三角形的三边长,则实数k的值为A.3B.4C.5D.6二、填空题7 . 如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________cm.8 . 已知△ABC的两边长分别为AB=2和AC=6,第三边上的中线AD=x,则x的取值范围是______________.9 . 如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A1B1C,连结AA1,若∠AA1B1=15°,则∠B的度数是_____.10 . 如图,在△ABC中,∠ACB=58°,若P为△ABC内一点,且∠1=∠2,则∠BPC=________.11 . 如图,AB、AC垂直平分线相交于P点,∠BPC=110°,则∠A=.12 . 如图,在△ABC和△FED中,AD=FC,AB=FE,若要得到△ABC≌FED,则需要再添加的一个条件是__.(只需填写一个你认为正确的条件即可)13 . 如图,在Rt△ABC中,∠B=34°,∠ACB=90°,翻折△ABC,使点B落到点A上,折痕交BC于E,则∠CAE的度数为_____.14 . 如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.15 . 如图,△ABC≌△ADE,若∠BAE=130°,∠BAD=50°,则∠BAC=____.16 . 如图:有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到离A的距离等于___________时,ΔABC和ΔPQA全等.17 . 如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E,∠A=30°,则∠DCB的度数为________.三、解答题18 . 在四边形ABCD中,AD∥BC,AD=2BC,点E为AD的中点,连接BE、BD,∠ABD=90°.(1)如图l,求证:四边形BCDE为菱形;(2)如图2,连接AC交BD于点F,连接EF,若AC平分∠BAD,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ABC面积的.19 . “三月三,放风筝”,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明.20 . 如图,在△ABC 中,∠ACB=90°,AC=6cm,BC=8cm,动点P 从点C 出发,按C→B→A的路径,以 2cm 每秒的速度运动,设运动时间为t 秒.(1)当t=1 时,求△ACP 的面积.(2)t 为何值时,线段AP 是∠CAB 的平分线?(3)请利用备用图 2 继续探索:当t 为何值时,△ACP 是以AC 为腰的等腰三角形?(直接写出结论)21 . 在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作射线EF,(1)若∠DAB=60°,EF∥AB交BC于点H,请在图1中补全图形,并直接写出四边形ABHE的形状;(2)如图2,若∠DAB=90°,EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图2中补全图形,并证明点A,E,B,G在同一个圆上;(3)如图3,若∠DAB=(0°<<90°),EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图3中补全图形(要求:尺规作图,保留作图痕迹),并求出线段EG、AG、BG之间的数量关系(用含的式子表示);22 . 将纸片△ABC沿DE折叠使点A落在A'处的位置.(1)如果A'落在四边形BCDE的内部(如图1),∠A'与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A'落在四边形BCDE的外部(如图2),这时∠A'与∠1、∠2之间又存在怎样的数量关系?并说明理由.23 . 如图所示,在平面直角坐标系中,点坐标,且,满足(1)如图(1)当为等腰直角三角形时;①点坐标为__________;点坐标为__________.②在(1)的条件下,分别以和为边作等边和等边,连结,求的度数.(2)如图(2),过点作轴于点,点为轴正半轴上一点,为延长线上一点,以为直角边作等腰直角三角形,,过点作轴交于点,连结,求证:.参考答案一、单选题1、2、3、4、5、6、二、填空题1、2、3、4、5、6、7、8、9、10、11、三、解答题1、2、3、4、5、6、。

人教版七年级(下)第二次月考数学试卷(1)

人教版七年级(下)第二次月考数学试卷(1)

人教版七年级(下)第二次月考数学试卷(1)一、选择题(本大题共10小题,每小题3分,共30分)1.在实数3.1415926,,1.010010001…,2﹣₅,,,2.中,无理数的个数是()A.1B.2C.3D.42.如图,AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.∠BAD=∠CAD C.AB=AC D.BD=CD3.如图,在△ABC中,∠BAC=70°,∠B=60°,AD是△ABC的角平分线.则∠ADC 的度数是()A.95°B.100°C.105°D.110°4.下列计算正确的是()A.=±5B.=﹣5C.±=±5D.﹣=5 5.如图,把一副三角板放在桌面上,使两直角顶点重合,两条斜边平行,则∠1与∠2的差是()A.45°B.30°C.25°D.20°6.每年3月21日是世界睡眠日,良好的睡眠状况是保持身体健康的重要基础,为了解某校800名初三学生的睡眠时间,从13个班级中抽取50名学生进行调查,下列说法不正确的是()A.13个班级是抽取的一个样本B.50是样本容量C.800名初三学生的睡眠时间是总体D.每名初三学生的睡眠时间是个体7.已知|a|=3,=5,且|a+b|=a+b,那么a+b的值是()A.2或8B.2或﹣8C.﹣2或8D.﹣2或﹣88.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A,D两点分别与A',D'对应,若∠CFE=2∠CFD',则∠AEF的度数是()A.60°B.70°C.75°D.72°9.若不等式组无解,则m的取值范围是()A.m≥3B.m>3C.m≤3D.m<310.我国数学经典著作《九章算术》提出“盈不足术”,被欧洲人称为“契拉度丹算法”(即“中国算法”).书中有这样一个问题:今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十.问家数、牛价各几何?其意思为:今有人合伙买牛,每7家共出190钱,还差330钱;每9家共出270钱,又多了30钱.问家数、牛价各是多少?其结果分别为()A.110家,3000钱B.123家,3500钱C.125家,3650钱D.126家,3750钱二、填空题(本大题共8小题,每小题4分,共32分)11.如图,工程建筑中的屋顶钢架经常采用三角形的结构,其中的数学道理是.12.如图,点D在线段BC上,AC⊥BC,AB=8cm,AD=6cm,AC=4cm,则在△ABD中,BD边上的高是cm.13.“x与4的和不小于x的7倍”用不等式表示为.14.如图,AB∥CD,BC平分∠ABD,∠1=65°,则∠2=.15.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,),则点E的坐标为.16.若点P(3a﹣6,1﹣a)在x轴上,则点P的坐标为.17.关于x,y的二元一次方程组的解满足x+y=2,则m=.18.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…,根据规律探索可得,第56个点的坐标为.或演算步骤)19.计算:﹣(﹣1)﹣|2﹣|+.20.解方程组:.21.解不等式组:.22.已知3x+1的算术平方根是4,x+2y的立方根是﹣1.(1)求x、y的值;(2)求2x﹣5y的平方根.23.如图,正方形网格的每个小正方形边长为1,三角形ABC的顶点都在格点上.(1)以点B为坐标原点建立平面直角坐标系,写出三角形ABC的各顶点坐标;(2)将三角形ABC向右平移2个单位,再向上平移2个单位,画出平移后的三角形A1B1C1并写出各顶点的坐标;(3)求三角形ABC的面积.或演算步骤)24.“生活垃圾分类”逐渐成为社会生活新风尚,某学校为了了解学生对“生活垃圾分类”的看法,随机调查了200名学生(每名学生必须选择且只能选择一类看法),调查结果分为“A.很有必要”、“B.有必要”、“C.无所谓”、“D.没有必要”四类,并根据调查结果绘制了如图所示的两幅统计图(均不完整),请根据图中提供的信息,解答下列问题.(1)补全条形统计图;(2)求出扇形统计图中“D.没有必要”所在扇形的圆心角度数;(3)该校共有2500名学生,根据调查结果估计该校对“生活垃圾分类”的看法是“A.很有必要”的学生人数.25.如图,AB∥CD,∠1=∠2,∠3=∠4.(1)求证:AD∥BE;(2)若∠B=∠3=2∠2,求∠D的度数.26.已知a,b,c是三角形的三边长.(1)化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;(2)在(1)的条件下,若a=10,b=8,c=6,求这个式子的值.27.某中学准备去采购A、B两种实验器材,如表所示是销售人员的两次销售记录(每次销售这两种实验器材的单价都不变).A(件)B(件)金额(元)第一次20101100第二次25201750(1)求A型实验器材与B型实验器材的单价分别为多少元?(2)若购买这两种实验器材共50件,其中A型实验器材的数量(单位:件)不多于B 型实验器材的数量(单位:件)的2倍,总费用不超过2000元,请问共有几种采购方案?28.已知直线AB与直线CD平行,在这两条直线的内侧有一点E,连接BE、ED,∠ABE 的平分线与∠CDE的平分线交于点F.(1)如图1,当点E在直线BD的左侧时,请补全图形,写出∠BFD与∠BED之间的数量关系并说明理由;(2)当点E在直线BD的右侧时,在图2中补全图形,请问(1)中的结论是否发生变化?如果发生变化,请写出变化后的结论,并说明理由。

人教版七年级数学(下)第二次月考试题

人教版七年级数学(下)第二次月考试题

人教版七年级数学(下)第二次月考试题一、选择题(每小题4分,共48分)1. 观察下面图案,在A、B、C、D四幅图案中,能通过图案1平移得到的是()A. AB. BC. CD. D2. 的平方根是()A. 2B. ﹣2C. ±2D. 43. 点A(-4,6)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 在下列实数中,无理数是().5. 不等式﹣2x﹣1≥1的解集是()A. x≥﹣1B. x≤﹣1C. x≤0D. x≤16. 的解是()A. B. C. D.7. 如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A. ∠B. ∠C. ∠EOD=40°D. ∠BOE=90°8. C在直线b上,若∠1=20°,则∠2=()A. 25° C. 20° D. 35°9. ()A. B. C. D.10. 点)在平面直角坐标系的P坐标()A. (0,-2)B. (2,0)C. (4,0)D. (0,-4)11. 同们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A. 16块、16块B. 8块、24块C. 20块、12块D. 12块、20块12. 如图,已知四边形ABCD中,AD∥BC,,下列说法:①AB∥CD;②ED⊥CD;)A. 0个B. 1个C. 2个D. 3个二、填空题(每小题4分,共24分)13. ______。

14. 点P在第四象限,且点P到x轴的距离为3,到y轴的距离为7,则点P的坐标为_____________。

15. 当x______时,式子16. 如图是重叠的两个直角三角形,将其中一个直角三角形沿BC方向平移B E的距离就得到此图,已知AB=8cm,BE=4cm,DH=3cm,则图中阴影部分的面积是___________.17. 如果关于x4个,则a的取值范围是______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外屯中学七年级下第二次月考数学试卷
(总分 100分 时间 120分钟)
(如果说每一位同学是花儿,那么平时的学习就是枝叶的修剪;如果说刻苦勤奋是肥料,那么知识的积累就是花儿的根基;如果说考试是花展,那么骄人的成绩就是花儿的盛开。


一.选择题(每题3分共30分)
1. 如图,直线c 与直线a 、b 相交,且a ∥b ,则结论: ①∠1=∠2;②∠1=∠3;③∠3=∠2中正确的个数为( )
A 、0
B 、1
C 、2
D 、3
2.已知a <b ,则下列不等式中不正确的是( )
A. 4a <4b
B.-a +4>-b +4
C.-4a <-4b
D. a -4<b -4 3. 在平面直角坐标系中,点(
)
1,12
+-m 一定在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 4.在方程4x-3y=12中,若x=0,那么对应的y值应为:( ) A 、4 B 、-4 C 、3 D 、-3
5. 将下列长度的三条线段首尾顺次相接,能组成三角形的是( ) A 、4cm 3cm 5cm B 、1cm 2cm 3cm C 、25cm 12cm 11cm D 、2cm 2cm 4cm
6. 用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( ) A 、正三角形 B 、正方形 C 、正五边形 D 、正六边形
7. x 与3的和的一半是负数,用不等式表示为( ) A 、 B 、 C 、 D 、
8. 已知x y ,的值:①22x y =⎧⎨=⎩,;②32x y =⎧⎨=⎩,;③32x y =-⎧⎨=-⎩,;④66x y =⎧⎨=⎩,
.其中,
是二元一次方程24x y -=的解的是( )
A.①
B.②
C.③
D.④
9.如右图,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B
.
A.1
B.2
C.3
D.4
10.设“○”“△”“□”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“○”“△”“□”质量从大到小的顺序排列为( )
A、□○△ B、 □△○ C、 △○□ D 、△□○
二.填空题(每题2分共16分)
11.将二元一次方程6x -5y =7中用含y 的代数式表示x ,可变形为 __________________.
12. 点P (m +3, m +1)在平面直角坐标系的x 轴上,则点P 坐标为 13、△ABC 中,若∠B=∠A+∠C,则△ABC 是 三角形。

14、若等腰三角形的两边长分别为3cm 和6cm,则它的周长为__________。

15. 每个外角都是360的多边形的边数为 。

16. 不等式15x +<的正整数解是 .
17. 如图2,直线l 1∥l 2,AB ⊥l 1,垂足为O ,BC 与l 2相交于点E ,若∠1=43°,则∠2= 度。

18.已知方程组⎩⎨
⎧=+=+15
2310
32y x y x ,不解方程组则5(x +y )= .
※※※※※※※※※※※※※※※※※※※※※ 密 封 线 内 不 要 答 题 ※※※※※※※※※※※※※※※※※※※※
班别: 姓名: 座号:____
1302x +>1302x +<1(3)02x +>1(3)0
2x +
<
三.解答题(共计54分)
19.(6分)解不等式134155->+x x ,并把解集在数轴上表示出来
20、(6分)用代入法解方程组⎩
⎨⎧=+=-144
y x y x
21、(6分)用加减法解方程组
22、(6分)解方程组()()⎪⎩⎪⎨⎧=-++=--+162
4
43y x y
x y x y x
23. (6分)如图,CE ∥AB ,∠B=30º,∠AOB=100º,求∠C 和∠ODE 的度数。

A B
O
C D E
⎩⎨
⎧=-=+113032Y X Y X
24.如图:已知AB ∥DE ∥CF ,若∠ABC=70°,∠CDE=130°,求∠BCD 的度数。

(6分) 25、(4分)完成下列推理说明:
如图,已知AB ∥DE ,且有∠1=∠2,∠3=∠4, ∵AB ∥DE (已知)
∴∠1= (__________________________) ∵∠1=∠2,∠3=∠4(已知) ∴∠2= (等量代换)
∴BC ∥EF (___________________________)
26、(6分)一个多边形的外角和是内角和的7
2
,求这个多边形的边数
28. (8分) 有大小两种货车,3辆大车与5辆小车一次可运货24.5吨,2辆大车与3辆小车一次可运15.5吨,求每辆大车和每辆小车一次各可运货多少吨?
附加题:(10分)(当分数低于60分时可计入总分,计入后总分不高于60分)
1、(6分)如图,直线AB ∥CD ,EF 分别交AB 、CD 于点M 、G ,MN 平分∠EMB ,GH 平分∠MGD ,
求证:MN ∥GH 。

证明:∵AB ∥CD (已知)
∴∠EMB=∠EGD ( ) ∵MN 平分∠EMB ,GH 平分∠MGD (已知) ∴∠1=
21∠EMB ,∠2=2
1
∠MGD ( ) ∴∠1=∠2
∴MN ∥GH ( )
2、(4分)解方程 5x-2=3x+4
A
C
D
F
G
2
E N
B 1
M
H。

相关文档
最新文档