自动控制理论5第五节脉冲响应函数

合集下载

脉冲响应函数

脉冲响应函数
式中,g(t)是脉冲响应函数,上述两式称为卷积。


y(t ) x(t ) * g (t ) g (t ) * x(t ) 表示为:
回忆拉氏变换的卷积定理,有L[y(t)]=L[x(t)*g(t)],所以: Y(s)=X(s)G(s)
Tuesday, November 27, 2018
4
单位阶跃响应函数
27, 2018
1 ( t ) dt 1 ,

1
(t )
0

2
t
脉冲响应函数
以下讨论线性控制系统在单位脉冲 (t ) 作用下的输出响 应g(t),称为脉冲响应函数。
L[ (t )] 1,Y ( s) 1 G(s),
y(t ) L1[Y (s)] L1[G(s)] g (t ) 故:
出现在 t 时刻,积分面积为A的理想脉冲函数定义如下: 0, t (t ) (t ) A ( t ) dt A A (t ) 且 , t 0 实际单位脉冲函数:
0, t 0 和 t (t ) 1 , , 0t (t ) (t ) 当 0时, Tuesday, November
从上式可以看出,g(t)是系统的脉冲响应函数,它等于 系统传递函数的拉氏反变换。g(t)与G(s)有一一对应的关系。 g(t)也是线性控制系统的数学模型。 [例2-16]:设系统的脉冲响应函数是 g (t ) 4e 1 t 4 8 2 [解]: G ( s ) L[ g (t )] L[4e ] 1 2s 1 s 2
G(s) -1 G(s) L[ g (t )dt ] , 即L [ ] g (t )dt s s

用脉冲响应求传递函数课件

用脉冲响应求传递函数课件
脉冲响应具有有限性,即系统对单位脉冲的响应在时间上是有限的,不会无限增长 或衰减。
脉冲响应具有记忆性,即系统对单位脉冲的响应不仅与当前输入有关,还与之前的 输入有关。
脉冲响应的计算方法
通过系统函数的定义,利用卷积 运算计算脉冲响应。
利用MATLAB等数学软件进行计 算,通过编程实现卷积运算。
利用实验手段,通过实际测量系 统对单位脉冲的响应,得到脉冲
响应数据。
PART 04
用脉冲响应求传递函数的 方法
REPORTING
方法概述
传递函数是线性时不变系统的数学模型,表示系统输入与输出之间的关 系。
脉冲响应是系统对单位脉冲输入的响应,能够全面反映系统的动态特性 。
通过用脉冲响应求传递函数的方法,可以将系统的动态特性转化为数学 模型,方便后续的分析和设计。
关注最新研究动态
建议学员关注相关领域的最新研究 动态,了解最新的理论和技术进展 ,以保持对相关领域的持续关注和 更新。
THANKS
感谢观看
REPORTING
脉冲响应是系统对单位脉冲输入的响 应,能够全面反映系统的动态行为。
课程目标
理解传递函数和脉冲 响应的基本概念及性 质。
能够运用所学知识解 决实际工程问题,提 高分析和解决问题的 能力。
掌握利用脉冲响应求 解传递函数的方法和 步骤。
PART 02
传递函数基础
REPORTING
传递函数的定义
传递函数
实例三:实际工程系统的应用
总结词
实际工程系统传递函数的求解
详细描述
在实际工程系统中,传递函数的求解通常需要结合具体的系统结构和参数。通过实验测量系统的脉冲响应,并利 用相关算法(如最小二乘法)可以估计出系统的传递函数。这种方法在控制系统设计、信号处理等领域具有广泛 的应用价值。

脉冲响应函数

脉冲响应函数

脉冲响应函数
脉冲响应函数是指一种数学函数,可以用来描述系统如何响应一个脉冲输入,以及该输入如何影响系统的输出。

当任意一个脉冲输入被应用到一个系统时,脉冲响应函数可以用来表示该系统的输出。

脉冲响应函数有多种形式,其中最常见的形式是双曲正弦(hyperbolic sine)函数。

此外,还有一些其他的脉冲响应函数,包括幂函数、双指数函数和正弦函数。

脉冲响应函数在工程领域中有着广泛的应用,其中最常见的应用是滤波,即使用脉冲响应函数来消除信号中的噪声或者干扰。

与滤波相关的另一个应用是控制,即使用脉冲响应函数来控制信号的频率或者其他参数。

脉冲响应函数也可以用于信号检测,即使用脉冲响应函数来计算信号的频率、相位或者其他参数。

此外,脉冲响应函数还被广泛应用于信号处理,包括消除信号中的噪声和干扰,以及改变信号的频率或其他参数。

总之,脉冲响应函数是一种数学函数,可以用来描述系统如何响应一个脉冲输入,以及该输入如何影响系统的输出。

脉冲响应函数在工程领域中有着广泛的应用,包括滤波、控制、信号检测和信号处理等。

自动控制理论_哈尔滨工业大学_5 第5章线性系统的频率分析_(5.1.1) 5.1频率特性的概念

自动控制理论_哈尔滨工业大学_5  第5章线性系统的频率分析_(5.1.1)  5.1频率特性的概念

如果线性定常系统的输入r(t)和输出c(t)存在傅里叶变换, 频率特性也是输入信号的傅氏变换和输出信号的傅氏变换之比。
G(
j
)

C( R(
j) j)
其中 R( j) r(t)e jtdt C( j) c(t)e jtdt


经过傅氏反变换
c(t)
U1m
1
1 j
sin(t


1
1
j
)
上式表明: 对于正弦输入,其输入的稳态响应仍然是一个同 频率正弦信号。但幅值降低,相角滞后。
输入输出为正弦函数时,可以表示成复数形式,设输入为 Xej0,输出为Yejφ,则输出输入之复数比为:
Ye j Xe j0

Y X
e j

A()e j ()
后于输入的角
度为:
φ=
B A
360o
②该角度与ω有
关系 ,为φ(ω)
③该角度与初始
角度无关 。
二、频率特性的定义
例:如图所示电气网络的传递函数为
U2 (s) 1 Cs 1 1
U1(s) R 1 Cs RCs 1 s 1
若输入为正弦信号: u1 U1m sin t
其拉氏变换为:

1
2
G( j)R( j)e jtd

系统的单位脉冲响应为:
g (t )

1
2
G( j)e jt d

本节小结
1. 控制系统频率特性的基本概念。 2. 频率特性与传递函数的关系。
频率特性有明确的物理意义,可以方便地用实验方法测定, 并用于系统的分析和建模。
频率特性主要适用于线性定常系统。

脉冲响应函数

脉冲响应函数

脉冲响应函数
脉冲响应函数是一种动态控制系统的重要工具,它对动态控制系统的响应性能有重要影响。

下面就脉冲响应函数进行详细介绍:
一、什么是脉冲响应函数
脉冲响应函数又称冲动响应函数,是指控制系统中给定脉冲输入后,控制系统的输出变化情况,以此来反映控制系统的动态性能。

二、脉冲响应函数对控制系统的重要影响
脉冲响应函数可以准确地反映控制系统的动态特性,可以清楚地表示出系统的调节能力、阻尼情况以及振荡频率等,反映了控制系统是否满足要求。

三、研究脉冲响应函数的方法
(1)模拟方法:模拟技术是研究脉冲响应函数最常用的方法,可以在发生器上给定某一脉冲信号,然后可以测量控制系统的输出信号在时间上的变化,从而形成脉冲响应函数。

(2)数学模型方法:建立控制系统模型,然后用数学方法研究脉冲传
播率,推导出脉冲响应函数。

(3)曲线拟合方法:此方法是以正弦或者多项式拟合的形式表示脉冲响应函数,通过曲线拟合可以得到脉冲响应函数的表示式。

四、研究中的关键要点
(1)建立正确的模型。

(2)优化脉冲响应函数特性。

(3)正确掌握脉冲响应函数在控制系统中的影响。

(4)选择合理的收敛算法来进行脉冲响应函数的计算。

五、总结
脉冲响应函数是控制系统中一种重要的性能指标,能够有助于我们了解一个控制系统的动态行为特点,为控制系统的改进及调试提供有用的参考。

研究脉冲响应函数的主要方法有模拟方法、数学模型方法和曲线拟合方法。

此外,研究脉冲响应函数时,还需要重点关注正确建立模型、优化脉冲响应函数特性、正确掌握脉冲响应函数在控制系统中的影响以及使用合理的收敛算法。

脉冲响应函数

脉冲响应函数
故:y(t) L1[Y (s)] L1[G(s)] g(t)
从上式可以看出,g(t)是系统的脉冲响应函数,它等于系统传递函数的拉氏 反变换。g(t)与G(s)有一一对应的关系。g(t)也是线性控制系统的数学模型。
[例2-16]:设系统的脉冲响应函数是
1t
,g求(tG)(s)。4e 2
[解]:
1t
Friday, June 05, 2020
8
1(t)的作用下的输出响应h(t).
0,t 0 x(t) 1(t) 1,t 0 X (s) L[x(t)] L[1(t)] 1
s 1 则输出: y(s) G(s), 单位阶跃响应函数:s h(t) L1[Y (s)] L1[1 G(s)]
s
Friday, June 05, 2020
Friday, June 05, 2020
7
பைடு நூலகம்
基本要求:
会列写控制系统中常用元件的数学模型以及根据系统的组成列写系统的微分方程; 根据微分方程求传递函数的方法; 熟悉绘制结构图和信号流图的方法; 熟悉由结构图和信号流图求取传递函数的方法 -结构图和信号流图的等效变换 -在结构图和信号流图上,用列方程的方法求传递函数 -梅逊公式
5
小结
脉冲响应函数; 脉冲响应函数与传递函数之间的关系; 单位阶跃响应函数; 脉冲响应函数和单位阶跃响应函数之间的关系。
Friday, June 05, 2020
6
本章总结
本章讨论了控制系统数学模型问题,数学模型是实际系统 与控制理论联系的桥梁,建立系统的数学模型是对系统进 行分析的第一步。 本章介绍了时域和频域的数学模型:系统的微分方程,传 递函数,结构图,信号流图,脉冲响应函数等。请注意各 种数学模型之间的联系。 本章研究的数学模型是基于线性定常控制系统的,是研究 输入输出之间的关系,不涉及系统内部状态的变化,故称 为输入输出模型。

自动控制原理部分重点

自动控制原理部分重点

自动控制原理重点第一章自动控制系统的基本概念第二节闭环控制系统的基本组成1、基本组成结构方块图如图所示2、基本元部件:(1)控制对象:进行控制的设备或过程。

(工作机械)(2)执行机构:执行机构直接作用于控制对象。

(电动机)(3)检测装置:用来检测被控量,并将其转换成与给定量相同的物理量(测速发电机)(4)中间环节:一般指放大元件。

(放大器,可控硅整流功放)(5)给定环节:设定被控量的给定值。

(电位器)(6)比较环节:将所测的被控量与给定量比较,确定两者偏差量。

(7)校正环节:用于改善系统性能。

校正环节可加于偏差信号与输出信号之间的通道内,也可加于某一局部反馈通道内。

前者称为串联校正,后者称为并联校正或反馈校正。

第三节自控控制系统的分类一、按数学描述形式分类:1.线性系统和非线性系统(1)线性系统:用线性微分方程或线性差分方程描述的系统。

(2)非线性系统:用非线性微分方程或差分方程描述的系统。

2.连续系统和离散系统(1)连续系统:系统中各元件的输入量和输出量均为时间t的连续函数。

连续系统的运动规律可用微分方程描述,系统中各部分信号都是模拟量。

(2)离散系统:系统中某一处或几处的信号是以脉冲系列或数码的形式传递的系统。

离散系统的运动规律可以用差分方程来描述。

计算机控制系统就是典型的离散系统。

二、按给定信号分类(1)恒值控制系统:给定值不变,要求系统输出量以一定的精度接近给定希望值的系统。

如生产过程中的温度、压力、流量、液位高度、电动机转速等自动控制系统属于恒值系统。

(2)随动控制系统:给定值按未知时间函数变化,要求输出跟随给定值的变化。

如跟随卫星的雷达天线系统。

(3)程序控制系统:给定值按一定时间函数变化。

如程控机床。

第四节对控制系统的基本要求对控制系统的基本要求归纳为稳定性、动态特性和稳态特性三个方面1、系统的暂态过程2、稳定性3、动态特性4、稳态特性值得注意的是,对于同一个系统体现稳定性、动态特性和稳态特性的稳、快、准这三个要求是相互制约的。

脉冲响应函数cholesky

脉冲响应函数cholesky

脉冲响应函数Cholesky1. 概述在信号处理和系统建模中,脉冲响应函数是一个重要的概念。

它描述了系统对突然输入的响应,是系统的重要特征之一。

在实际应用中,我们常常需要利用脉冲响应函数来分析系统的性能和特性。

Cholesky分解则是一种用来求解线性方程组和矩阵求逆的数值方法。

本文将介绍脉冲响应函数与Cholesky分解的关系以及Cholesky分解在脉冲响应函数中的应用。

2. 脉冲响应函数的基本概念脉冲响应函数是描述系统对突然输入的响应的函数。

在信号处理中,我们经常用脉冲响应函数来描述系统对瞬变输入的响应。

在时域中,脉冲响应函数可以用冲激响应来描述,通常用h(t)表示。

在频域中,脉冲响应函数可以用系统的频率响应来表示,通常用H(ω)表示。

3. Cholesky分解的基本原理Cholesky分解是一种将对称正定矩阵分解为下三角阵的方法。

对于一个对称正定矩阵A,可以将其分解为A=LL^T,其中L为下三角矩阵。

Cholesky分解的求解过程很简单,可以通过矩阵的迭代求解来实现。

4. 脉冲响应函数与Cholesky分解的关系在实际系统中,我们经常需要利用脉冲响应函数描述系统的响应。

而系统的响应可以通过系统的传递函数来描述。

对于一个线性时不变系统,其传递函数与脉冲响应函数存在一定的关系。

而计算传递函数的过程中,就需要用到Cholesky分解。

5. Cholesky分解在脉冲响应函数中的应用在实际应用中,我们经常需要根据系统的脉冲响应函数来计算系统的传递函数。

而计算传递函数的过程中,就需要用到Cholesky分解。

Cholesky分解可以帮助我们快速且准确地求解系统的传递函数,从而进一步分析系统的性能和特性。

6. 结论本文介绍了脉冲响应函数与Cholesky分解的关系以及Cholesky分解在脉冲响应函数中的应用。

在实际系统建模和信号处理中,这两个概念是非常重要的。

通过深入理解脉冲响应函数和Cholesky分解的原理及应用,可以帮助我们更好地分析和优化系统性能,为实际工程应用提供帮助。

自动控制原理 复习题及答案.概要

自动控制原理  复习题及答案.概要

自动控制原理1一、 单项选择题(每小题1分,共20分)1. 系统和输入已知,求输出并对动态特性进行研究,称为( )A.系统综合B.系统辨识C.系统分析D.系统设计2. 惯性环节和积分环节的频率特性在( )上相等。

A.幅频特性的斜率B.最小幅值C.相位变化率D.穿越频率3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( )A.比较元件B.给定元件C.反馈元件D.放大元件4. ω从0变化到+∞时,延迟环节频率特性极坐标图为( )A.圆B.半圆C.椭圆D.双曲线5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个( )A.比例环节B.微分环节C.积分环节D.惯性环节6. 若系统的开环传 递函数为2)(5 10+s s ,则它的开环增益为( ) A.1 B.2 C.5 D.107. 二阶系统的传递函数52 5)(2++=s s s G ,则该系统是( ) A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统8. 若保持二阶系统的ζ不变,提高ωn ,则可以( )A.提高上升时间和峰值时间B.减少上升时间和峰值时间C.提高上升时间和调整时间D.减少上升时间和超调量9. 一阶微分环节Ts s G +=1)(,当频率T1=ω时,则相频特性)(ωj G ∠为( ) A.45° B.-45° C.90° D.-90°10.最小相位系统的开环增益越大,其( )A.振荡次数越多B.稳定裕量越大C.相位变化越小D.稳态误差越小11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 ( )A.稳定B.临界稳定C.不稳定D.稳定性不确定。

12.某单位反馈系统的开环传递函数为:())5)(1(++=s s s k s G ,当k =( )时,闭环系统临界稳定。

A.10B.20C.30D.4013.设系统的特征方程为()025103234=++++=s s s s s D ,则此系统中包含正实部特征的个数有( )A.0B.1C.2D.314.单位反馈系统开环传递函数为()s s s s G ++=652,当输入为单位阶跃时,则其位置误差为( )A.2B.0.2C.0.5D.0.0515.若已知某串联校正装置的传递函数为1101)(++=s s s G c ,则它是一种( ) A.反馈校正 B.相位超前校正C.相位滞后—超前校正D.相位滞后校正16.稳态误差e ss 与误差信号E (s )的函数关系为( )A.)(lim 0s E e s ss →=B.)(lim 0s sE e s ss →= C.)(lim s E e s ss ∞→= D.)(lim s sE e s ss ∞→= 17.在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是( )A.减小增益B.超前校正C.滞后校正D.滞后-超前18.相位超前校正装置的奈氏曲线为()A.圆B.上半圆C.下半圆D.45°弧线K,则实轴上的根轨迹为()19.开环传递函数为G(s)H(s)=ss)3(3A.(-3,∞)B.(0,∞)C.(-∞,-3)D.(-3,0)20.在直流电动机调速系统中,霍尔传感器是用作()反馈的传感器。

5第五节稳定性与代数稳定判据

5第五节稳定性与代数稳定判据

不稳定。
I m S平面
稳 定
临 界
不 稳 Re
区稳定
定区
Sunday, June 07, 2020
11
再来讨论有界输入-有界输出意义下的稳定性定义。同样假设
系统的单位脉冲响应为y (t),则系统在任意输入信号r(t) 的作用
下,输出响应
y(t)可表示为
y
(t)与
r(t)
的卷积,
y(t) 0 y ( )r(t )d
16
劳斯判据
以下各项的计算式为:
sn an
an2 an4
sn1 an1 an3 an5
sn2 b1
b2
b3
sn3 c1
c2
c3
sn4 d1
d2
d3
s1
f1
s0 g1
an an2
b1
an1 an3 an1an2 anan3
an1
an1
an an4
b2
an1 an5 an1an4 anan5
该定义说明,由于扰动的作用,使系统的工作状态发生变 化,如果系统的状态能恢复到原来的工作状态,则系统是稳定 的。
Sunday, June 07, 2020
3
稳定的定义
定义二:在有界输入-有界输出(Bouned-Input-Bounded-Output) 意义下的稳定性定义。若线性系统在有界的输入量或干扰量的 作用下,其输出量的幅值也是有界的,则称系统是稳定的,否 则如果系统在有界输入作用下,产生无界输出,则称系统是不 稳定的。
位脉冲响应收敛于零,系统的极点均应有负的实部。则线性系
统稳定的充分必要条件可描述为:系统的所有极点必须位于 s

脉冲响应求传递函数

脉冲响应求传递函数

05
实例分析
实例一:简单的一阶系统
总结词
简单的一阶系统是脉冲响应求传递函数中最基础的情况,其特点是系统动态特性由一个一阶微分方程描述。
详细描述
一阶系统通常由一个惯性环节组成,其传递函数为 G(s) = K / (Ts + 1),其中 s 是复数变量,K 和 T 是常数。当 输入为单位脉冲信号时,输出为系统的脉冲响应。通过求解微分方程,可以得到系统的脉冲响应,进而求得传递 函数。
传递函数的性质
传递函数是复数函数,具有实 部和虚部。
传递函数具有零、极点和增 益三种基本元素。
传递函数的极点和零点决定了 用
01
传递函数用于分析线性时不变系统的动态响应特性, 如系统的稳定性、瞬态响应和稳态响应等。
02
通过传递函数可以设计控制系统,实现系统的优化 和改进。
统中对单位脉冲输入的响应。
通过系统的传递函数,可以计算 出系统的脉冲响应。
传递函数和脉冲响应之间存在一 定的数学关系,可以通过卷积、 积分等运算将传递函数转化为脉
冲响应。
03
传递函数的定义和性质
传递函数的定义
传递函数是线性时不变系统的数学模 型,用于描述系统对输入信号的响应 特性。
它定义为系统输出信号与输入信号通 过零初始条件下的拉普拉斯变换的比 值。
06
结论与展望
研究结论
传递函数是描述线性时不变系统动态特性的重要 工具,而脉冲响应是传递函数的实验估计,因此 研究脉冲响应与传递函数的关系具有重要意义。
在实际应用中,由于实验条件和测量精度的限制 ,我们通常无法直接测量系统的传递函数。而通 过求解脉冲响应函数,我们可以得到较为准确的 传递函数估计值。
方法三:傅里叶变换法

自动控制理论5第五节脉冲响应函数

自动控制理论5第五节脉冲响应函数

6/6/2019
7
本章总结
本章讨论了控制系统数学模型问题,数学模型是实际系 统与控制理论联系的桥梁,建立系统的数学模型是对系统 进行分析的第一步。 本章介绍了时域和频域的数学模型:系统的微分方程,传 递函数,结构图,信号流图,脉冲响应函数等。请注意各 种数学模型之间的联系。 本章研究的数学模型是基于线性定常控制系统的,是研究 输入输出之间的关系,不涉及系统内部状态的变化,故称 为输入输出模型。
X(s)L[x(t)]L[1(t)]1
s
则输出:y(s) 1G(s),
s
单位阶跃响应函数:h(t)L1[Y(s)
]L1[1G(s)]
s
6/6/2019
5
③ 脉冲响应函数和单位阶跃响应函数之间的关系:
g ( t) L 1 [ G (s )h ] ( t), L 1 [ G (s )/s ]
6/6/2019
9
根据积分定理:当零初值时,有
L[g(t)d]tG (ss),则 L -1[G s (] s)g(t)dt
h(t) g(t)dt
或 g (t ) h(t )
6/6/2019
6
小结
脉冲响应函数; 脉冲响应函数与传递函数之间的关系; 单位阶跃响应函数; 脉冲响应函数和单位阶跃响应函数之间的关系。
A(t) 0,,tt
实际单位脉冲函数:
且 A(t)dtA (t) (t )

0


(t)

1,1
0
(t)
t
当0时,(t)(t)
6/6/2019
8
基本要求: 会列写控制系统中常用元件的数学模型以及根据系统的组成
列写系统的微分方程; 根据微分方程求传递函数的方法; 熟悉绘制结构图和信号流图的方法; 熟悉由结构图和信号流图求取传递函数的方法 -结构图和信号流图的等效变换 -在结构图和信号流图上,用列方程的方法求传递函数 -梅逊公式

自动控制原理习题解答

自动控制原理习题解答

第三章3-3 已知各系统的脉冲响应,试求系统的闭环传递函数()s Φ:()()1.25(1)()0.0125;(2)()510sin 445;(3)()0.11t t k t e k t t t k t e --==++=-解答: (1) []0.0125()() 1.25s L k t s Φ==+(2)[])222223222()()5sin 4cos 425452442142511616116s L k t L t t t s s s s s s s s ⎡⎤Φ==++⎢⎥⎣⎦⎫=++⎪++⎭⎛⎫+++ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭(3)[]()111()()0.1110313s L k t s s s s ⎡⎤⎢⎥Φ==-=⎢⎥+⎢⎥+⎣⎦ 3-4 已知二阶系统的单位阶跃响应为)6.1sin(5.1210)(1.532.1︒-+-=t t h et试求系统的超调量σ%,峰值时间tp和调节时间ts.解答:因为0<ξ<1,所以系统是欠阻尼状态。

阻尼比ξ=cos(1.53︒)=,自然频率26.0/2.1==w n,阻尼振荡频率wd=6.16.01212=-⨯=-=ξw w n d 1. 峰值时间tp的计算96.16.1===ππwt dp2. 调节时间ts的计算9.226.05.35.3=⨯==w t ns ξ3. 超调量σ%的计算%48.9%1006.0%100%221/6.01/=⨯=⨯=-⨯---eeππξξσ3-5设单位反馈系统的开环传递函数为)6.0(14.0)(++=s s s s G ,试求系统在单位阶跃输入下的动态性能。

解答:方法一:根据比例-微分一节推导出的公式)135(6.014.0)12/()1()(+⨯⨯+=++=s s s s s s K s G w T n d ξ1)5.2(4.0114.0)6.0(14.01)6.0(14.0)2()(1)()(22222+++=+++=+++++=+++=+=s s s s s s s s s s s zs z S G s G s s s w w s w nn dn ξφ)1()](1[12)1sin(1)(222222ξξξξξξξπψξddnddndnn ddn tarctg z arctg z r t w r t h www w zw e n d -+--+-=-+-=ψ+-+=-把z=1/Td=,1=wn,5.0=ξd代入可得)3.8323sin(5.005.11)7.9623sin(5.005.11)( ---=--+=t e t t e t t h峰值时间的计算0472.1)1(2=-=ξξβdddarctg ,-1.6877=ψ158.312=--=ξβψdndpwt超调量得计算%65.21%10011%22=⨯--=-ξξξσddetrpd调节时间得计算29.6)ln(21ln )2ln(2131222=--+-+=-ww w z t ndn n d sd z ξξξ方法二:根据基本定义来求解闭环传递函数为114.0)6.0(14.01)6.0(14.0)(1)()(2+++=+++++=+=s s s s s s s s S G s G s s φ当输入为单位阶跃函数时 )232()21(21.0)232()21(2)21(116.01)1(14.0)(22++-++++-+=++--+=+++=s s s s s s s s s s s C s s 得单位阶跃响应)23sin(1.0)23cos(1)(2121t t t h e et --⨯--=)3.8423sin(121 +-=-t et )0(≥t 1. 峰值时间tp的计算 对h(t)求导并令其等于零得023)23cos()23sin(3.843.842121=⨯+-+︒-︒-t e t epp t t p p 3)23tan(3.84=+︒t p t p = 2. 超调量σ%的计算 %100)()()(%⨯∞∞-=h h h t p σ=%3. 调节时间ts得计算05.0)84.523sin(21≤-⨯-t est s5.33=t s3-6.已知控制系统的单位阶跃响应为6010()10.2 1.2t t h t e e --=+- ,试确定系统的阻尼比ζ和自然频率n ω。

脉冲传递函数

脉冲传递函数

脉冲传递函数脉冲传递函数(Impulse Response)是一种数学概念,用于描述线性时不变(LTI)系统对于脉冲输入信号的响应。

在实际应用中,LTI系统常用于滤波、均衡、信号传输等领域,而脉冲传递函数是分析和设计这些系统的重要工具之一。

脉冲传递函数通常用h(t)表示,是一个响应脉冲输入信号单位脉冲(或单位斜坡)的连续时间函数。

当LTI系统接收到一个脉冲信号(即只在一个时刻上有信号,其余时刻信号为0),其输出信号即为该系统的脉冲响应。

脉冲响应描述了系统对于不同频率的信号输入的滤波响应,因此是分析系统性能和设计滤波器等应用中的重要指标。

对于一个离散时间系统,类似于连续时间系统,脉冲传递函数可以表示为一个响应单位脉冲输入信号的离散时间函数。

脉冲传递函数可以用公式表达为:h(t)=L^{-1} \{H(s)\}H(s)是系统的传递函数,L^{-1}表示拉普拉斯反变换。

对于离散时间系统,同样可用Z变换及反变换表示脉冲传递函数,即:h(n)=\frac {1}{2π j} \oint_C H(z) z^{n-1} dzH(z)是系统的传递函数,C是一条限定了积分路径的封闭曲线,n为离散时间点。

脉冲传递函数的使用脉冲传递函数可以用于分析和设计LTI系统。

利用脉冲传递函数,可以计算系统对于任意输入信号的响应。

对于任意输入信号,可以将其表示为单位脉冲序列的线性组合。

假设输入信号为x(t),其可以表示为x(t)=\int_{-\infty}^\infty x(\tau) \delta(t-\tau) d\tau\delta(t)为单位脉冲函数。

利用线性性质,可以将其转化为单位脉冲响应的组合形式:y(t)=\int_{-\infty}^\infty x(\tau) h(t-\tau) d\tauh(t)为系统的脉冲传递函数。

根据卷积公式,可以得到输出信号y(t)为y(t)=x(t)*h(t)*表示卷积运算。

通过计算脉冲传递函数,可以得到系统对于任意输入信号的响应。

自动控制理论实验报告

自动控制理论实验报告

自动控制理论实验报告实验二控制系统的时域分析一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、实验要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0==?∞t x f dx x f 其拉氏变换为:)()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式:① )(sys impulse ;② );,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y =(二)分析系统稳定性有以下三种方法:1、利用pzmap 绘制连续系统的零极点图;2、利用tf2zp 求出系统零极点;3、利用roots 求分母多项式的根来确定系统的极点(三)系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容实验三控制系统的根轨迹分析一实验目的1.利用计算机完成控制系统的根轨迹作图2.了解控制系统根轨迹图的一般规律3.利用根轨迹图进行系统分析二实验要点1. 预习什么是系统根轨迹?2. 闭环系统根轨迹绘制规则。

三实验方法(一)方法:当系统中的开环增益k 从0到变化时,闭环特征方程的根在复平面上的一组曲线为根轨迹。

自动控制理论知识点总结

自动控制理论知识点总结

1.自控系统的基本要求:稳定性、快速性、准确性(P13)稳定性是由系统结构和参数决定的,与外界因素无关,这是因为控制系统一般含有储能元件或者惯性元件,其储能元件的能量不能突变。

因此系统收到扰动或者输入量时,控制过程不会立即完成,有一定的延缓,这就使被控量恢复期望值或有输入量有一个时间过程,称为过渡过程。

快速性对过渡过程的形式和快慢提出要求,一般称为动态性能。

准确性过渡过程结束后,被控量达到的稳态值(即平衡状态)应与期望值一致。

但由于系统结构,外作用形式及摩擦,间隙等非线性因素的影响,被控量的稳态值与期望值之间会有误差的存在,称为稳态误差。

+2.选作典型外作用的函数应具备的条件:1)这种函数在现场或试验室中容易得到2)控制系统在这种函数作用下的性能应代表在实际工作条件下的性能。

3)这种函数的数学表达式简单,便于理论计算。

常用典型函数:阶跃函数,幅值为1的阶跃称为单位阶跃函数斜坡函数脉冲函数,其强度通常用其面积表示,面积为1的称为单位脉冲函数或δ函数正弦函数,f(t)=Asin(ωt-φ),A角频率,ω角频率,φ初相角3.控制系统的数学模型是描述系统内部物理量(或变量)之间关系的数学表达式。

(P21)静态数学模型:在静态条件下(即变量各阶导数为零),描述变量之间关系的代数方程动态数学模型:描述变量各阶导数之间关系的微分方程建立数学模型的方法:分析法根据系统运动机理、物理规律列写运动方程实验法人为给系统施加某种测试信号,记录其输出响应,并用合适的数学模型去逼近,也称为系统辨识。

时域中的数学模型有:微分方程、差分方程、状态方程复域中的数学模型有:传递函数、结构图频域中的数学模型有:频率特性4.非线性微分方程的线性化:切线法或称为小偏差法(P27)小偏差法其实质是在一个很小的范围内,将非线性特性用一段直线来代替。

连续变化的非线性函数y=f(x),取平衡状态A为工作点,在A点处用泰勒级数展开,当增量很小时略去高次幂可得函数y=f(x)在A点附近的增量线性化方程y=Kx,其中K是函数f(x)在A 点的切线斜率。

脉冲响应函数

脉冲响应函数

定义
脉冲响应函数可作为系统特性的时域描述。至此,系统特性在时域可以用h(t)来描述,在频域可以用H(ω) 来描述,在复数域可以用H(sຫໍສະໝຸດ 来描述。三者的关系也是一一对应的。
对于任意的输入 u(t),线性系统的输出 y(t)表示为脉冲响应函数与输入的卷积,即如果系统是物理可 实现的,那么输入开始之前,输出为0,即当 τ<0时 h(τ)=0,这里τ是积分变量。
②相关法:由著名的维纳-霍夫方程得知:如果输入信号u(t)的自相关函数R(t)是一个脉冲函数kδ(t),则脉 冲响应函数在忽略一个常数因子意义下等于输入输出的互相关函数,即 h(t)=(1/k)Ruy(t)。实际使用相关法辨 识系统的脉冲响应时,常用伪随机信号作为输入信号,由相关仪或数字计算机可获得输入输出的互相关函数 Ruy(t),因为伪随机信号的自相关函数 R(t)近似为一个脉冲函数,于是h(t)=(1/k)Ruy(t)。这是比较通用的方 法。也可以输入一个带宽足够宽的近似白噪声信号,得到h(t)的近似表示。
脉冲响应函数
系统特性的时域描述
01 定义
目录
02 判定与辨识
在信号与系统或电路理论等学科中,冲激响应(或叫脉冲响应)一般是指系统在输入为单位冲激函数时的输出 (响应)。对于连续时间系统来说,冲激响应一般用函数h(t)来表示。对于无随机噪声的确定性线性系统,当输 入信号为一脉冲函数 δ(t)时,系统的输出响应 h(t)称为脉冲响应函数。
对于离散系统,脉冲响应函数是一个无穷权序列,系统的输出是输入序列u(t)与权序列h(t)的卷积和。系统 的脉冲响应函数是一类非常重要的非参数模型。
判定与辨识
辨识脉冲响应函数的方法分为直接法、相关法和间接法。
①直接法:将波形较理想的脉冲信号输入系统,按时域的响应方式记录下系统的输出响应,可以是响应曲线 或离散值。

单位阶跃响应与单位脉冲响应

单位阶跃响应与单位脉冲响应

➢ 一阶系统的形式
C(s) 1 R(s) Ts 1
闭环极点(特征根):-1/T
CHANG’AN UNIVERSITY
长安大学信息工程学院
自动控制理论
➢一阶系统的单位阶跃响应
R(s) 1 s
C(s) 1 1 1 T Ts 1 s s Ts 1
第三章
1t
c(t) 1 e T
R(s)

1 s2
C(s)

1 Ts 1

1 s2
1T T s2 s s 1
T
1t
c(t) t T Te T
t0
第三章
CHANG’AN UNIVERSITY
长安大学信息工程学院
自动控制理论
CHANG’AN UNIVERSITY
第三章
性质: 1)经过足够长的时间 (≥4T),输出增长速率近 似与输入相同; 2)输出相对于输入滞后 时间T; 3)稳态误差=T。
o
t
R(s)

2A S3
当A=1/2时称为单位抛物线函数,其数学表达式为
r (t )

0 1 2
t
t0 t0
R(s)

1 S3
CHANG’AN UNIVERSITY
长安大学信息工程学院
自动控制理论
四.脉冲函数
r(t)
A
第三章
0
r (t )


A

t 0及t 0t
稳定边界
CHANG’AN UNIVERSITY
n :无阻尼自然频率
长安大学信息工程学院
自动控制理论
临界阻尼:=1
C(s) R(s)

第六章脉冲响应函数

第六章脉冲响应函数

第6章 脉冲响应函数的辨识6.1辨识问题的提法下图所示,、将作用在系统上的一切随机干扰和噪声,用一个作用于系统输出的等效随机干扰源)t (v 来代替。

其中,输入信号)(u t 是过程的运行操作信号,是可以直接观测的确定性变量;)(y u t 是过程的实际输出,是不能被观测到的;y(t)是过程的观测输出,混有随机噪声)t (v 。

由此可以提出辨识问题:在已知输入、输出的观测量)(u t 、y(t)以及f t (f t 可以根据脉冲响应过渡历程时间的先验知识作粗略估计)的情况下,要求估计出脉冲响应函数)(g t 。

下面介绍两种辨识脉冲响应函数的常用方法:相关分析法和最小二乘法。

6.2用相关分析法辨识脉冲响应函数相关函数是基于一种统计的描述,是由输出信号)(y t 同其余变量之间的关系确定脉冲响应函数。

假定噪声)t (v 是一个零均值平稳随机过程,并与)(u t 不相关,且过程是线性时不变的、因果性的系统,过程的未知脉冲响应函数为)(g t ,则过程的输入、输出和脉冲响应函数之间的基本关系如下:⎰∞-=0)()()(y λλλd u t g t u (6.1)⎰+-=ft t v d u t g t 0)()()()(y λλλ (6.2)把变量t 用τ+t 代换,得⎰++-+=+ft t v d t u g t 0)()()()(y τλλτλτ (6.3)由于已经假设)t (v 与输入信号)(u t 不相关,因此对应的相关系数0)(uv =τR ,是可得维纳-霍夫方程。

λλλτd t R g R ft uu )()()(0uy -=⎰ (6.4)若将(6.4)离散化,得到离散型Wiener-Holf 方程:过程g(t))(u t y(t))(y u t )t (v ++∑-=∆-=1)()()(N i uu uy t i k R i g k R (6.5)式中t ∆为)(g t 的采样周期,f t t N =∆;∑-+=-=100)()(1)(M i i i uu i u k i u Mk R (6.6)∑-+=-=100)()(1)(M i i i uy i y k i u Mk R (6.7)M 为足够大的整数,0i 为计算起点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单位阶跃响应函数;
脉冲响应函数和单位阶跃响应函数之间的关系。
Monday, May 28, 2012
7
本章总结
本章讨论了控制系统数学模型问题,数学模型是实际系 统与控制理论联系的桥梁,建立系统的数学模型是对系统 进行分析的第一步。 本章介绍了时域和频域的数学模型:系统的微分方程,传 递函数,结构图,信号流图,脉冲响应函数等。请注意各 种数学模型之间的联系。 本章研究的数学模型是基于线性定常控制系统的,是研究 输入输出之间的关系,不涉及系统内部状态的变化,故称 为输入输出模型。


g ( ) x ( t ) d
0
式中,g(t)是脉冲响应函数,上述两式称为卷积。
y 表示为: ( t ) x ( t ) * g ( t ) g ( t ) * x ( t )
回忆拉氏变换的卷积定理,有L[y(t)]=L[x(t)*g(t)],所以: Y(s)=X(s)G(s)
1 s
y 则输出: ( s )
1
s 1 1 1 单位阶跃响应函数: ( t ) L [Y ( s )] L [ G ( s )] h
s
G ( s ),
Monday, May 28, 2012
5
③ 脉冲响应函数和单位阶跃响应函数之间的关系:
g ( t ) L [ G ( s )], h ( t ) L [ G ( s ) / s ]
1 t 2
1 t 2
]
4 s 1 2

8 2s 1
Monday, May 28, 2012
3
用脉冲响应函数表示输出
我们还可以不证明地表示出:利用脉冲响应函数,可以 求出系统在任何输入x(t)下的输出响应y(t)。
y (t )


0
x ( ) g ( t ) d 或 y ( t )

(t )
和 t
t
,


( t )dt
1
1
1,
0
当 0时, (t ) (t )
Monday, May 28, 2012
t

2
脉冲响应函数
以下讨论线性控制系统在单位脉冲 (t ) 作用下的输出响 应g(t),称为脉冲响应函数。

出现在 t 时刻,积分面积为A的理想脉冲函数定义如下:
0, t A (t ) , t


A ( t ) dt A (t )
0
(t )
实际单位脉冲函数:
0, t 0 (t ) 1 , 0
Monday, May 28, 2012
4
单位阶跃响应函数
② 单位阶跃响应函数: 单位阶跃响应函数也是线性控Байду номын сангаас系统的一种数学模型。 它是在单位阶跃函数1(t)的作用下的输出响应h(t).
0, t 0 x ( t ) 1( t ) 1, t 0
X ( s ) L [ x ( t )] L [1( t )]
根据积分定理:当零初值时,有 G (s) -1 G(s) L [ g ( t ) dt ] ,则L [ ] g(t)dt s s
1
1
h (t )

g ( t ) dt
或 g (t ) h (t )
Monday, May 28, 2012
6
小结
脉冲响应函数; 脉冲响应函数与传递函数之间的关系;
第五节 脉冲响应函数
Monday, May 28, 2012
1
脉冲函数
脉冲响应函数表示零初始条件时,线性系统对理想单位脉 冲输入信号的响应。它也是线性系统的数学模型。 ① 理想单位脉冲函数:
0, t 0 [定义]: ( t ) , t 0
,且 ( t ) dt 1 ,其积分面积为1。
Monday, May 28, 2012
8
基本要求: 会列写控制系统中常用元件的数学模型以及根据系统的组成 列写系统的微分方程; 根据微分方程求传递函数的方法; 熟悉绘制结构图和信号流图的方法;
熟悉由结构图和信号流图求取传递函数的方法
-结构图和信号流图的等效变换 -在结构图和信号流图上,用列方程的方法求传递函数 -梅逊公式
L[ (t )] 1, Y ( s ) 1 G ( s ),
y 故:( t ) L [Y ( s )] L [ G ( s )] g ( t )
1 1
从上式可以看出,g(t)是系统的脉冲响应函数,它等于 系统传递函数的拉氏反变换。g(t)与G(s)有一一对应的关系。 g(t)也是线性控制系统的数学模型。 [例2-16]:设系统的脉冲响应函数是 g ( t ) 4 e ,求G(s)。 [解]: ( s ) L [ g ( t )] L [ 4 e G
Monday, May 28, 2012
9
相关文档
最新文档