2009年辽宁省营口市中考数学试题

合集下载

2009年辽宁省营口市中考数学试卷

2009年辽宁省营口市中考数学试卷

2009年辽宁省营口市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)如图,下列选项中不是正三棱柱三视图的是( )A .B .C .D .2.(3分)“2009年中国慈善排行榜”近日在京揭晓,此次入榜的慈善家121位,共捐款18.84亿元.将18.84亿元用科学记数法表示为(保留两个有效数字)( )A .81910⨯元B .91.910⨯元C .91.88410⨯元D .91.810⨯元3.(3分)妈妈想对小刚中考前的4次数学考试成绩进行统计分析,判断他的数学成绩是否稳定,那么妈妈需要知道他这4次数学考试成绩的( )A .方差或标准差B .中位数或众数C .平均数或中位数D .众数或平均数 4.(3分)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40︒,则梯子底端到墙角的距离为( )A .5sin 40︒B .5cos40︒C .5tan 40︒D .5cos 40︒5.(3分)计算:1314+=,23110+=,33128+=,43182+=,531244+=,⋯,归纳计算结果中的,猜测200931+的个位数字是( )A .0B .2C .4D .86.(3分)如图,在ABC ∆中,90C ∠=︒,22.5B ∠=︒,AB 的垂直平分线交AB 于D ,交BC于E ,若3CE =,则BE 的长是( )A .3B .6C .2D .7.(3分)下列说法正确的是( )A .将酚酞溶液滴入液体中,酚酞溶液会变红是必然事件B .某种彩票中奖的概率是1%,买100张该种彩票一定会中奖C.将7,6,5,4,3依次重复写4遍,得到的20个数的平均数是5D.为调查某市所有初中生视力情况,抽查该市5所重点初中学生视力情况是合理的8.(3分)如图,将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去小扇形,把纸片展开,得到的图形是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)9.(3分)0sin60|π︒+-=.10.(3分)如图,将直尺与三角尺叠放在一起,在图中标记的所有角中,与2∠互余的角是.11.(3分)分式2293xx x-+的值为0,则x的值是.12.(3分)如图,光源P在横杆AB的上方,AB在灯光下的影子为CD,//AB CD,已知2AB m=,6CD m=,点P到CD的距离是2.7m,那么AB与CD间的距离是.13.(3分)如图,在梯形ABCD中,//AB CD,90BCD∠=︒,25AB cm=,24BC cm=.将该梯形折叠,点A恰好与点D重合,BE为折痕,那么梯形ABCD的面积为2cm.14.(3分)为了估计水库中鱼的数量,先从水库中捕捉50条鱼做记号,然后放回水库里,经过一段时间,等带有记号的鱼完全混于鱼群中之后,再捕捞300条鱼,发现有10条鱼做了记号,则可估计水库中大约有条鱼.15.(3分)两位同学在描述同一反比例函数的图象时,甲同学说:“从这个反比例函数图象上任意一点向x轴,y轴作垂线,与两坐标轴所围成的矩形的面积为6.”乙同学说:“这个反比例函数图象与直线y x=-有两个交点.”你认为这两位同学所描述的反比例函数的表达式为.16.(3分)如图,小华用一个半径为36cm,面积为2324cmπ的扇形纸板,制作一个圆锥形的玩具帽,则帽子的底面半径r=cm.三、解答题(共10小题,满分102分)17.(8分)解不等式组,并把解集在数轴上表示出来.() 5231,317122x xx x+>-⎧⎪⎨--⋅⎪⎩①②….18.(8分)如图,在所给网格中完成下列各题:(1)画出图1关于直线MN对称的图2;(2)从平移的角度看,图2是由图1向平移个单位得到的;(3)画出图1绕点P逆时针方向旋转90︒后的图3.19.(10分)我市团委要为灾区某中学捐赠书籍,为了了解学生的喜好,随机抽取该校若干名学生进行问卷调查(每人只选一种),下图是整理数据后绘制的两幅不完整的统计图.请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了多少名学生;(2)在扇形统计图中,求“其他”所在扇形的圆心角的度数;(3)将两幅统计图补充完整;(4)如果全校有1200名学生,请你估计全校喜欢“科幻”的学生人数.20.(10分)哥哥和弟弟都是奥运迷,哥哥手中有四张奥运福娃卡片,如果,其中一张贝贝,一张晶晶,两张欢欢,除正面的图案不同外,其余都相同.将这四张卡片背面朝上洗匀后再从中随机抽取.(1)弟弟从中抽取一张卡片是欢欢的概率是多少;(2)弟弟一次抽取两张卡片都是欢欢的概率是多少?(用树状图或列表法解答)21.(10分)为了预防甲型11H N流感,广东某口罩加工厂承担了加工24 000个新型防病毒口罩的任务.由于时间紧急,实际加工时每天的工作效率比原计划提高了50%,结果提前5天完成任务.该厂实际每天加工这种口罩多少个?22.(10分)如图,已知ABC⊥,∆中,C ABC∠=∠,以AB为直径作O交BC于D,DE AC 垂足为E.(1)判断DE与O的位置关系,并说明理由;(2)如果10CE=,求直径AB的长.BC=,423.(10分)“五一”假期小明骑自行车去郊游,早上8:00从家出发,9:30到达目的地.在郊游地点玩了3个半小时后按原路以原速返回,同时爸爸骑电动车从家出发沿同一路线迎接他,爸爸骑电动车的速度是20千米/小时,小明骑自行车的速度是10千米/小时.设小明离开家的时间为x 小时,下图是他们和家的距离y (千米)与x (时)的函数关系图象.(1)目的地与家相距 千米;(2)设爸爸与家的距离为1y (千米),求爸爸从出发到与小明相遇的过程中,1y 与x 的函数关系式(不要求写出自变量x 的取值范围);(3)设小明与家的距离为2y (千米),求小明从返程到与爸爸相遇的过程中,2y 与x 的函数关系式(不要求写出自变量x 的取值范围);(4)说明点C 的实际意义,并求出此时小明与家的距离.24.(10分)面对国际金融危机.某铁路旅行社为吸引市民组团去某风景区旅游,现推出如下标准:某单位组织员工去该风景区旅游,设有x 人参加,应付旅游费y 元.(1)请写出y 与x 的函数关系式;(2)若该单位现有45人,本次旅游至少去26人,则该单位最多应付旅游费多少元?25.(12分)如图1,P 是线段AB 上的一点,在AB 的同侧作APC ∆和BPD ∆,使P C P A =,PD PB =,APC BPD ∠=∠,连接CD ,点E 、F 、G 、H 分别是AC 、AB 、BD 、CD 的中点,顺次连接E 、F 、G 、H .(1)猜想四边形EFGH 的形状,直接回答,不必说明理由;(2)当点P 在线段AB 的上方时,如图2,在APB ∆的外部作APC ∆和BPD ∆,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,90APC BPD ∠=∠=︒,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.26.(14分)如图,正方形ABCO ,以O 为原点建立平面直角坐标系,点A 在x 轴的负半轴上,点C 在y 轴的正半轴上,把正方形ABCO 绕点O 顺时针旋转α后得到正方形111(45)A B C O α<︒,11B C 交y 轴于点D ,且D 为11B C 的中点,抛物线2y ax bx c =++过点1A 、1B 、1C .(1)求tan α的值;(2)求点1A 的坐标,并直接写出点1B 、点1C 的坐标;(3)求抛物线的函数表达式及其对称轴;(4)在抛物线的对称轴上是否存在点P ,使△11PB C 为直角三角形?若存在,直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.2009年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)如图,下列选项中不是正三棱柱三视图的是( )A .B .C .D .【解答】解:正三棱柱三视图分别为长方形加一条竖直的虚线,长方形,三角形;选项D 是不可能的,只有左视图为长方形,但它的大小应小于主视图.故选D .2.(3分)“2009年中国慈善排行榜”近日在京揭晓,此次入榜的慈善家121位,共捐款18.84亿元.将18.84亿元用科学记数法表示为(保留两个有效数字)( )A .81910⨯元B .91.910⨯元C .91.88410⨯元D .91.810⨯元【解答】解:1亿8110=⨯,18.84∴亿91.88410=⨯,18.84∴亿元91.910≈⨯元.故选:B .3.(3分)妈妈想对小刚中考前的4次数学考试成绩进行统计分析,判断他的数学成绩是否稳定,那么妈妈需要知道他这4次数学考试成绩的( )A .方差或标准差B .中位数或众数C .平均数或中位数D .众数或平均数 【解答】解:由于方差和标准差反映数据的波动性,要判断数学成绩是否稳定,需要知道他这4次数学考试成绩的方差或标准差.故选:A .4.(3分)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40︒,则梯子底端到墙角的距离为( )A .5sin 40︒B .5cos40︒C .5tan 40︒D .5cos 40︒【解答】解:梯子本身和墙、地面构成一个直角三角形,且与地面的夹角为40度,∴梯子底端到墙角的距离=梯子长度cos405cos40⨯︒=︒.故选:B .5.(3分)计算:1314+=,23110+=,33128+=,43182+=,531244+=,⋯,归纳计算结果中的,猜测200931+的个位数字是( )A .0B .2C .4D .8【解答】解:依题意得:个位数字的规律是每四次一循环,200945021÷=⋯,200931∴+的个位数为4.故选:C .6.(3分)如图,在ABC ∆中,90C ∠=︒,22.5B ∠=︒,AB 的垂直平分线交AB 于D ,交BC于E ,若3CE =,则BE 的长是( )A .3B .6C .2D .【解答】解:已知90C ∠=︒,22.5B ∠=︒,DE 垂直平分AB .故22.5B EAB ∠=∠=︒,所以45AEC ∠=︒.又90C ∠=︒,ACE ∴∆为等腰三角形所以3CE AC ==,故可得AE =.故选:D .7.(3分)下列说法正确的是( )A .将酚酞溶液滴入液体中,酚酞溶液会变红是必然事件B .某种彩票中奖的概率是1%,买100张该种彩票一定会中奖C .将7,6,5,4,3依次重复写4遍,得到的20个数的平均数是5D .为调查某市所有初中生视力情况,抽查该市5所重点初中学生视力情况是合理的【解答】解:A、错误,应为“将酚酞溶液滴入碱性液体中,酚酞溶液会变红是必然事件”;B、错误,某种彩票中奖的概率是1%,买100张该种彩票不一定会中奖;C、正确,(76543)55++++÷=,∴依次重复写4遍,得到的20个数的平均数是5;D、错误,为调查某市所有初中生视力情况,抽查该市5所重点初中学生视力情况是不合理的,因为这5个学校的样本没有代表性,不能反映大多数学校的情况.故选:C.8.(3分)如图,将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去小扇形,把纸片展开,得到的图形是()A.B.C.D.【解答】解:严格按照图中的顺序向下对折,向右对折,向右下角对折,从右下角剪去一个四分之一圆,展开得到结论.故选:A.二、填空题(共8小题,每小题3分,满分24分)9.(3分)0sin60|π︒+-=.【解答】解:原式1=1=+=10.(3分)如图,将直尺与三角尺叠放在一起,在图中标记的所有角中,与2∠互余的角是4∠,5∠,6∠.【解答】解:与2∠互余的角有4∠,5∠,6∠;一共3个.11.(3分)分式2293xx x-+的值为0,则x的值是3.【解答】解:由题意可得290x -=,解得3x =±,又230x x +≠,解得3x =.12.(3分)如图,光源P 在横杆AB 的上方,AB 在灯光下的影子为CD ,//AB CD ,已知2AB m =,6CD m =,点P 到CD 的距离是2.7m ,那么AB 与CD 间的距离是 1.8m .【解答】解://AB CD ,PAB PCD ∴∆∆∽,假设CD 到AB 距离为x , 则2.72.7x AB CD -=, 又2AB =,6CD =, ∴2.712.73x -= 1.8x ∴=.故答案为:1.8m13.(3分)如图,在梯形ABCD 中,//AB CD ,90BCD ∠=︒,25AB cm =,24BC cm =.将该梯形折叠,点A 恰好与点D 重合,BE 为折痕,那么梯形ABCD 的面积为 384 2cm .【解答】解:该梯形折叠,点A 恰好与点D 重合,BE 为折痕25BD AB ∴==7CD ∴=∴梯形ABCD 的面积2(725)242384cm =+⨯÷=.14.(3分)为了估计水库中鱼的数量,先从水库中捕捉50条鱼做记号,然后放回水库里,经过一段时间,等带有记号的鱼完全混于鱼群中之后,再捕捞300条鱼,发现有10条鱼做了记号,则可估计水库中大约有1500条鱼.【解答】解:10501500300÷=(条).15.(3分)两位同学在描述同一反比例函数的图象时,甲同学说:“从这个反比例函数图象上任意一点向x轴,y轴作垂线,与两坐标轴所围成的矩形的面积为6.”乙同学说:“这个反比例函数图象与直线y x=-有两个交点.”你认为这两位同学所描述的反比例函数的表达式为6yx=-.【解答】解:设kyx =,根据甲同学说的可求出||6k=,根据乙同学说的可知0k<,所以6k=-,即反比例函数的表达式为6yx=-.16.(3分)如图,小华用一个半径为36cm,面积为2324cmπ的扇形纸板,制作一个圆锥形的玩具帽,则帽子的底面半径r=9cm.【解答】解:由扇形的面积公式得,扇形面积12363242S rππ=⨯⨯=,9r cm∴=.三、解答题(共10小题,满分102分)17.(8分)解不等式组,并把解集在数轴上表示出来.() 5231,317122x xx x+>-⎧⎪⎨--⋅⎪⎩①②….【解答】解:解不等式①,得52 x>-.解不等式②,得4x….所以,不等式组的解集是542x-<….不等式组的解集在数轴上表示如图:18.(8分)如图,在所给网格中完成下列各题:(1)画出图1关于直线MN对称的图2;(2)从平移的角度看,图2是由图1向右平移个单位得到的;(3)画出图1绕点P逆时针方向旋转90 后的图3.【解答】解:(1)如图2所示;(2)图2是由图1向右平移8个单位得到的;(3)如图3所示.19.(10分)我市团委要为灾区某中学捐赠书籍,为了了解学生的喜好,随机抽取该校若干名学生进行问卷调查(每人只选一种),下图是整理数据后绘制的两幅不完整的统计图.请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了多少名学生;(2)在扇形统计图中,求“其他”所在扇形的圆心角的度数;(3)将两幅统计图补充完整;(4)如果全校有1200名学生,请你估计全校喜欢“科幻”的学生人数.【解答】解:(1)6020%300÷=(名), 所以,一共调查了300名学生.(2)方法一:7530025%÷=,360(140%20%25%)54︒⨯---=度. 所以,“其他”所在扇形的圆心角的度数为54度.方法二:30040%120⨯=,(3001206075)3004530015%---÷=÷=,36015%54︒⨯=度. 所以,“其他”所在扇形的圆心角的度数为54度.(3)根据上述具体数据进行正确画图:(4)120025%300⨯=(名),所以,估计全校喜欢“科幻”的学生人数为300名.20.(10分)哥哥和弟弟都是奥运迷,哥哥手中有四张奥运福娃卡片,如果,其中一张贝贝,一张晶晶,两张欢欢,除正面的图案不同外,其余都相同.将这四张卡片背面朝上洗匀后再从中随机抽取.(1)弟弟从中抽取一张卡片是欢欢的概率是多少; (2)弟弟一次抽取两张卡片都是欢欢的概率是多少? (用树状图或列表法解答)【解答】解:(1)根据题意可得:共4张卡片,其中有2张是“欢欢”故P(抽取一张卡片是欢欢)21 42==.(2分)(2)根据题意可画树状图为:或列表为:(8分)从树状图(或列表)可以看出所有可能结果共有12种,且每种结果出现的可能性相同,符合条件的有2种.P∴(一次抽取两张卡片都是欢欢)21126==.(10分)21.(10分)为了预防甲型11H N流感,广东某口罩加工厂承担了加工24 000个新型防病毒口罩的任务.由于时间紧急,实际加工时每天的工作效率比原计划提高了50%,结果提前5天完成任务.该厂实际每天加工这种口罩多少个?【解答】解:设该厂原计划每天加工这种口罩x个,则实际每天加工(150%)x+个.根据题意,得:(1分) 24000240005(150%)x x=++.(4分) 解这个方程,得1600x =.(7分) 经检验,1600x =是所列方程的根.(8分) (150%)16002400+⨯=(个).(9分) 答:该厂实际每天加工这种口罩2400个.(10分)22.(10分)如图,已知ABC ∆中,C ABC ∠=∠,以AB 为直径作O 交BC 于D ,DE AC ⊥,垂足为E .(1)判断DE 与O 的位置关系,并说明理由; (2)如果10BC =,4CE =,求直径AB 的长.【解答】解:(1)方法一:DE 与O 相切;(1分) 理由:连接OD ,(2分) OB OD =,ABC BDO ∴∠=∠;(3分) 又C ABC ∠=∠, BDO C ∴∠=∠; DE AC ⊥, 90C CDE ∴∠+∠=︒,90BDO CDE ∴∠+∠=︒,(4分) 180()90EDO BDO CDE ∴∠=︒-∠+∠=︒, OD DE ∴⊥,DE ∴与O 相切.(5分) 方法二:DE 与O 相切;(1分) 理由:连接OD ;(2分)OB OD =,ABC BDO ∴∠=∠;(3分) 又C ABC ∠=∠, C BDO ∴∠=∠,//OD AC ∴,(4分) EDO CED ∴∠=∠; DE AC ⊥, 90CED ∴∠=︒, 90EDO ∴∠=︒, OD DE ∴⊥,DE ∴与O 相切.(5分)(2)方法一:连接AD ;(6分) C ABC ∠=∠, AB AC ∴=;AB 是直径,90ADB ∴∠=︒;AD BC ∴⊥;(7分) 152BD CD BC ∴===;(8分) DE AC ⊥, 90CED ∴∠=︒;在Rt CDE ∆中,cos CEC CD =, 在Rt ACD ∆中,cos CDC AC=, ∴CE CDCD AC =,(9分) 即455AC=; 254AC ∴=, 254AB ∴=.(10分)方法二:连接AD .(6分) C ABC ∠=∠, AB AC ∴=.AB 是直径,90ADB ∴∠=︒,(7分) AD BC ∴⊥,152BD CD BC ∴===.(8分) 在Rt CDE ∆中,cos CEC CD=, 在Rt ADB ∆中,cos BDABD AB∠=, 又C ABC ∠=∠,∴CE BDCD AB =, 即455AB=;(9分) 254AB ∴=.(10分)方法三:连接AD ;(6分) C ABC ∠=∠, AB AC ∴=,AB 是直径,90ADB ∴∠=︒,AD BC ∴⊥,(7分) 152CD BC ∴==;(8分) DE AC ⊥, 90CED ∴∠=︒, CED CDA ∴∠=∠;又C C ∠=∠,CED CDA ∴∆∆∽,(9分)∴CE CD CD CA =,即455CA=, 254CA ∴=; 254AB ∴=.(10分)方法四:连接AD ;(6分) C ABC ∠=∠, AB AC ∴=;AB 是直径,90ADB ∴∠=︒,AD BC ∴⊥,(7分) 152BD CD BC ∴===;(8分) DE AC ⊥, 90CED ∴∠=︒, CED ADB ∴∠=∠;又C ABC ∠=∠, CED BDA ∴∆∆∽,(9分) ∴CE CD BD AB =, 即455AB=, 254AB ∴=.(10分)23.(10分)“五一”假期小明骑自行车去郊游,早上8:00从家出发,9:30到达目的地.在郊游地点玩了3个半小时后按原路以原速返回,同时爸爸骑电动车从家出发沿同一路线迎接他,爸爸骑电动车的速度是20千米/小时,小明骑自行车的速度是10千米/小时.设小明离开家的时间为x 小时,下图是他们和家的距离y (千米)与x (时)的函数关系图象.(1)目的地与家相距 千米;(2)设爸爸与家的距离为1y (千米),求爸爸从出发到与小明相遇的过程中,1y 与x 的函数关系式(不要求写出自变量x 的取值范围);(3)设小明与家的距离为2y (千米),求小明从返程到与爸爸相遇的过程中,2y 与x 的函数关系式(不要求写出自变量x 的取值范围); (4)说明点C 的实际意义,并求出此时小明与家的距离.【解答】解:方法一:(1)10 1.515⨯=(千米)(1分) (2)120(5)y x =- 即120100y x =-(4分) (3)21510(5)y x =-- 即21065y x =-+.(7分)(4)点C 表示小明与爸爸相遇.(8分) 当小明与爸爸相遇时,12y y =. 即201001065x x -=-+. 解得,152x =.(9分)当152x =时,2110565102y =-⨯+=(千米).所以此时小明离家还有10千米.(10分) 方法二: (1)15(1分)(2)小明从郊游地点返回,到与爸爸相遇所用时间:115(1020)2÷+=(小时)相遇时,爸爸与家的距离为:120102⨯=(千米) 所以,点C 的坐标为1(52,10).又由题意,得D 点坐标(5,0).所以易求直线DC 的表达式:120100y x =-.(4分) (3)因为点C 的坐标为1(52,10),B 点坐标(5,15),易求直线BC 的表达式:21065y x =-+.(7分) (4)点C 表示小明与爸爸相遇.(8分) 因为C 点坐标为1(52,10),所以此时小明离家还有10千米.(10分)24.(10分)面对国际金融危机.某铁路旅行社为吸引市民组团去某风景区旅游,现推出如下标准:某单位组织员工去该风景区旅游,设有x 人参加,应付旅游费y 元. (1)请写出y 与x 的函数关系式;(2)若该单位现有45人,本次旅游至少去26人,则该单位最多应付旅游费多少元?【解答】解:(1)由题意可知:当025x 剟时,1500y x =.(1分)当2550x <…时,[150020(25)]y x x =--(2分) 即2202000y x x =-+(3分) 当50x >时,1000y x =.(4分)(2)由题意,得2645x 剟, 所以选择函数关系式为:2202000y x x =-+.(5分) 配方,得220(50)50000y x =--+.(7分)200a =-<,所以抛物线开口向下.又因为对称轴是直线50x =.∴当45x =时,y 有最大值,即220(4550)5000049500y =-⨯-+=最大值(元) 因此,该单位最多应付旅游费49500元.(10分)25.(12分)如图1,P 是线段AB 上的一点,在AB 的同侧作APC ∆和BPD ∆,使P C P A =,PD PB =,APC BPD ∠=∠,连接CD ,点E 、F 、G 、H 分别是AC 、AB 、BD 、CD的中点,顺次连接E 、F 、G 、H .(1)猜想四边形EFGH 的形状,直接回答,不必说明理由;(2)当点P 在线段AB 的上方时,如图2,在APB ∆的外部作APC ∆和BPD ∆,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,90APC BPD ∠=∠=︒,其他条件不变,先补全图3,再判断四边形EFGH 的形状,并说明理由.【解答】解:(1)四边形EFGH 是菱形.(2分)(2)成立.(3分)理由:连接AD ,BC .(4分) APC BPD ∠=∠,APC CPD BPD CPD ∴∠+∠=∠+∠.即APD CPB ∠=∠. 又PA PC =,PD PB =,()APD CPB SAS ∴∆≅∆AD CB ∴=.(6分) E 、F 、G 、H 分别是AC 、AB 、BD 、CD 的中点,EF ∴、FG 、GH 、EH 分别是ABC ∆、ABD ∆、BCD ∆、ACD ∆的中位线.12EF BC ∴=,12FG AD =,12GH BC =,12EH AD =. EF FG GH EH ∴===.∴四边形EFGH 是菱形.(7分)(3)补全图形,如答图.(8分) 判断四边形EFGH 是正方形.(9分) 理由:连接AD ,BC . (2)中已证APD CPB ∆≅∆. PAD PCB ∴∠=∠. 90APC ∠=︒, 190PAD ∴∠+∠=︒.又12∠=∠. 290PCB ∴∠+∠=︒.390∴∠=︒.(11分) (2)中已证GH ,EH 分别是BCD ∆,ACD ∆的中位线, //GH BC ∴,//EH AD . 90EHG ∴∠=︒.又(2)中已证四边形EFGH 是菱形,∴菱形EFGH 是正方形.(12分)26.(14分)如图,正方形ABCO ,以O 为原点建立平面直角坐标系,点A 在x 轴的负半轴上,点C 在y 轴的正半轴上,把正方形ABCO 绕点O 顺时针旋转α后得到正方形111(45)A B C O α<︒,11B C 交y 轴于点D ,且D 为11B C 的中点,抛物线2y ax bx c =++过点1A 、1B 、1C . (1)求tan α的值;(2)求点1A 的坐标,并直接写出点1B 、点1C 的坐标; (3)求抛物线的函数表达式及其对称轴;(4)在抛物线的对称轴上是否存在点P ,使△11PB C 为直角三角形?若存在,直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)四边形111A B C O 为正方形, 111OC B C ∴=,1190OC B ∠=度.又D 是11B C 的中点,∴11111122C D B C OC ==. 由旋转性质可知,11C OD AOA α∠=∠=,∴在Rt △1C OD 中,111tan 2C D OC α==. tan α∴的值是12.(2分)(2)过点1A 作1A E x ⊥轴,垂足为点E . 在Rt △1A EO 中,1tan A EOEα=, ∴112A E OE =. 设1A E k =,则2OE k =,在Rt △1A EO中,1OA =, 根据勾股定理,得22211A E OE OA +=.即222(2)k k +=, 解得11k =-(舍),21k =. 11A E ∴=,2OE =.又点1A 在第二象限,∴点1A 的坐标为(2,1)-.(4分)直接写出点1B 的坐标为(1,3)-,点1C 的坐标为(1,2).(6分)(3)抛物线2y ax bx c =++过点1A ,1B ,1C . ∴42132a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩解得5612103a b c ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩∴抛物线的函数表达式为25110623y x x =--+.(8分) 将其配方,得253409()610120y x =-++.∴抛物线的对称轴是直线310x =-.(9分)(4)存在点P ,使△11PB C 为直角三角形.(10分) 满足条件的点P 共有4个:1322(,)105P -,233(,)105P --,33(10P -,43(10P -.(14分)。

辽宁省营口市中考数学试卷

辽宁省营口市中考数学试卷

辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()A.﹣5 B.±5 C .D.52.(3分)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱3.(3分)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,75.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<06.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.710.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B 两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE 折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.18.(3分)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)三、解答题(19小题10分,20小题10分,共20分.)19.(10分)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).四、解答题(21题12分,22小题12分,共24分)21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14分)25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由;(3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14分)26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B 两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】2017年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)(2017•营口)﹣5的相反数是()A.﹣5 B.±5 C.D.5【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:D.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2017•营口)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱【分析】分别写出各个立体图形的三视图,判断即可.【解答】解:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.故选:A.【点评】本题考查了简单几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.(3分)(2017•营口)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x【分析】根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.【解答】解:A、(﹣2xy)2=4x2y2,故本选项错误;B、x6÷x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、2x+3x=5x,故本选项正确;故选D.【点评】此题考查了同底数幂的除法、积的乘方、完全平方公式和合并同类项,熟练掌握运算法则是解题的关键,是一道基础题.4.(3分)(2017•营口)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.故选A.【点评】本题主要考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)(2017•营口)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<0【分析】由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a <0,b>0,然后一一判断各选项即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.【点评】本题考查一次函数的图象与系数的关系,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.6.(3分)(2017•营口)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C 错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.【解答】解:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(3分)(2017•营口)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=【分析】过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解答】解:过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:A.【点评】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、平移的性质等知识;本题综合性强,有一定难度.9.(3分)(2017•营口)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB 于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键.10.(3分)(2017•营口)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD 两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断.【解答】解:当0<t≤2时,S=t2,当2<t≤4时,S=t2﹣(2t﹣4)2=﹣t2+8t﹣8,观察图象可知,S与t之间的函数关系的图象大致是C.故答案为C.【点评】本题考查动点问题的函数图象,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)(2017•营口)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为 2.915×1010.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:29150000000=2.915×1010.故答案为:2.915×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•营口)函数y=中,自变量x的取值范围是x≥1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x﹣1≥0;分母不等于0,可知:x+1≠0,所以自变量x的取值范围就可以求出.【解答】解:根据题意得:x,﹣1≥0且x+1≠0,解得:x≥1.故答案为:x≥1.【点评】考查使得分式和二次根式有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)(2017•营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是15个.【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.(3分)(2017•营口)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(3分)(2017•营口)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为π﹣2.【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=2,分别求出扇形CEB′和三角形CDE的面积,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,∴CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,由勾股定理得:DE=2,∴阴影部分的面积是S=S扇形CEB′﹣S△CDE=﹣×2×2=,故答案为:.【点评】本题考查了扇形的面积,勾股定理,直角三角形的性质的应用,解此题的关键是能正确求出扇形CEB′和三角形CDE的面积,题目比较好,难度适中.16.(3分)(2017•营口)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为﹣=8.【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【解答】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据题意可得:﹣=8,故答案为:﹣=8.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系.17.(3分)(2017•营口)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE 的长为3或6.【分析】由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC为直角三角形分两种情况:①当∠EFC=90°时,可得出AE平分∠BAC,根据角平分线的性质即可得出=,解之即可得出BE的长度;②当∠FEC=90°时,可得出四边形ABEF 为正方形,根据正方形的性质即可得出BE的长度.【解答】解:∵AD=8,AB=6,四边形ABCD为矩形,∴BC=AD=8,∠B=90°,∴AC==10.△EFC为直角三角形分两种情况:①当∠EFC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F在对角线AC上,∴AE平分∠BAC,∴=,即=,∴BE=3;②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°,∴四边形ABEF为正方形,∴BE=AB=6.综上所述:BE的长为3或6.故答案为:3或6.【点评】本题考查了翻折变换、矩形的性质、角平分线的性质、正方形的判定与性质以及勾股定理,分∠EFC=90°和∠FEC=90°两种情况寻找BE的长度是解题的关键.18.(3分)(2017•营口)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A nB nC n的面积为.(用含n的代数式表示)【分析】由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出OA2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.【解答】解:∵点A1(1,),∴OA1=2.∵直线l1:y=x,直线l2:y=x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=OB1,∴A1B1=.∵△A1B1C1为等边三角形,∴A1A2=A1B1=1,∴OA2=3,A2B2=.同理,可得出:A3B3=,A4B4=,…,A n B n=,∴第n个等边三角形A n B n C n的面积为×A n B n2=.故答案为:.【点评】本题考查了一次函数图象上点的坐标特征、解直角三角形以及等边三角形的性质,通过解直角三角形及等边三角形的性质,找出A n B n=是解题的关键.三、解答题(19小题10分,20小题10分,共20分.)19.(10分)(2017•营口)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.【分析】先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入即可得.【解答】解:原式=[﹣]÷=•=﹣,当x=()﹣1﹣(2017﹣)0=3﹣1=2,y=sin60°=×=时,原式=﹣=﹣4.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.20.(10分)(2017•营口)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).【分析】(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.【点评】本题考查的是游戏公平性的判断,以及概率.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.四、解答题(21题12分,22小题12分,共24分)21.(12分)(2017•营口)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共100人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.【分析】(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.【解答】解:(1)这四个班参与大赛的学生数是:30÷30%=100(人);故答案为100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×=1250(人).答:全校的学生中参与这次活动的大约有1250人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(12分)(2017•营口)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)【分析】过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.【解答】解:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30×=20,∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=AB=10,由勾股定理可知:AD=10∵BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=10+10∵∠DAB=30°,∴CE=AC=5+5≈13.7答:船在航行过程中与码头C的最近距离是13.7海里【点评】本题考查解三角形的应用,解题的关键是熟练运用锐角三角函数以及勾股定理,本题属于中等题型.五、解答题(23小题12分,24小题12分,共24分)23.(12分)(2017•营口)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.【分析】(1)连接OC,由点C是的中点利用垂径定理可得出OC⊥BE,由AB 是⊙O的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC ⊥CD,由此即可证出CD是⊙O的切线.(2)过点O作OM⊥AC于点M,由点C是的中点利用圆周角定理可得出∠BAC=∠CAE,根据角平分线的定理结合cos∠CAD=可求出AB的长度,在Rt△AOM 中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长度.【解答】(1)证明:连接OC,如图1所示.∵点C是的中点,。

辽宁省营口市中考数学真题试题(含答案)

辽宁省营口市中考数学真题试题(含答案)

2015年初中毕业生毕业升学考试数学试卷考试时间:120分钟 试卷满分:150分注意事项:1.本试卷分第一部分(客观题)和第二部分(主观题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第一部分时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。

3.回答第二部分(主观题)时,将答案写在答题卡对应的区域内,写在本试卷上或答题卡指定的区域外无效。

4.考试结束后,将本试卷和答题卡一并交回。

第 一 部 分(客观题)一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分) 1.下列计算正确的是A .22--=B .236a a a ⋅=C .()213--=D =4.□ABCD 中,对角线AC 与BD 交于点O ,∠DAC =42º,∠CBD =23º,则∠COD 是 A .61º B .63º C .65º D .67º5.云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是 A .100元,100元 B .100元,200元 C .200元,100元 D .200元,200元6.若关于x 的分式方程2233x mx x++=--有增根,则m 的值是A .1m =-B .0m =C .3m =D .0m =或=3m7.将弧长为2πcm 、圆心角为120º的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是A 2πcmB .2πcmC .2πcmD 2πcm 6第4题图 B C DA O 第5题图 /元8.如图,△ABE 和△CDE 是以点E 为位似中心的位似图形,已知点A (3,4),点C (2,2),,双曲线11y x=在第一象限内的图象经过点B ,设直线AB 的解析式为22y k x b =+,当12y y >时,x 的取值范围是A .51x -<<B .0<<1x 或<5x -C .61x -<<D .01x <<或6x <-10.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是A .25︒B .30︒C .35︒D .40︒第 二 部 分(主观题)二、填空题(每小题3分,共24分)11.分解因式:22a c b c -+= .12.过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少 3 120 000吨二氧化碳的排放量.把数据 3 120 000用科学记数法表示为 .13.不等式组2151132523(2)≤x x x x -+⎧-⎪⎨⎪-<+⎩的所有正整数解的和为 . 14.圆内接正六边形的边心距为,则这个正六边形的面积为 cm 2. 15.如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 .16.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件.当每件的定价为 元时,该服装店平均每天的销售利润最大.17.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径....... 如图,△ABC 中,∠ABC =90º,以AC 为一边向形外作菱形ACEF ,点D 是菱形ACEF 对角线的交点,连接BD ,若∠DBC =60º,∠ACB =15º,BD=则菱形ACEF 的面积为 . 18.如图,边长为n 的正方形OABC 的边OA 、OC 分别在x 轴和y 轴的正半轴上,A 1、A 2、A 3、…、A n-1为OA 的n 等分点,B 1、B 2、B 3、…、B n-1为CB 的n 等分点,连接A 1B 1、A 2B 2、A 3B 3、…、A n-1B n-1,分别交21y x n=(0x ≥)于点C 1、C 2、C 3、…、C n-1,当252525258B C C A =时,则n = .三、解答题(19小题10分,20小题10分,共20分) 19.先化简,再求值:2222111121m m m m m -⎛⎫-÷- ⎪+--+⎝⎭.其中m满足一元二次方程2o o )12cos600m m +-=.20.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察分析并回答下列问题.⑴本次被调查的市民共有多少人?⑵分别补全条形统计图和扇形统计图,并计算图2中区域B 所对应的扇形圆心角的度数.⑶若该市有100万人口,请估计持有 A 、B 两组主要成因的市民有多少人?四、解答题(21小题12分,22小题12分,共24分)21.某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和图1组别/组第20题图 图2 D C 15% B A 45%2个白球,除颜色外其它都相同,摇奖者必须从摇奖机中一次连续摇出两个球,根据球的(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品卷,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.22.如图,我南海某海域A 处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60 º方向以每小时30海里的速度航行半小时到达C 处,同时捕鱼船低速航行到A 点的正北1.5海里D 处,渔政船航行到点C 处时测得点D 在南偏东53 º方向上.(1)求CD 两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E 处相会合,求∠ECD 的正弦值. (参考数据:5453sin ≈︒,5353cos ≈︒,3453tan ≈︒)五、解答题(23小题12分,24小题12分,共24分)23.如图,点P 是⊙O 外一点,PA 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线; (2)若PD =316cm ,AC =8cm ,求图中阴影部分的面积; (3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.第22题图 BAEOD24.某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的45倍,且每天包装大黄米和江米的质量之和为45千克. (1)求平均每天包装大黄米和江米的质量各是多少千克?(2)为迎接今年6月20日的“端午节”,该超市决定在节日前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围.(3)假设该超市每天都会将当天包装后的大黄米和江米全部出售,已知大黄米成本价为每千克7.9元,江米成本价为每千克9.5元,二者包装费用平均每千克均为0.5元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元? [总利润=售价额-成本-包装费用]第24题图六、解答题(本题满分14分) 25.【问题探究】 (1)如图1,锐角△ABC 中,分别以AB 、AC 为边向外作等腰△ABE 和等腰△ACD ,使AE=AB ,AD=AC ,∠BAE =∠CAD ,连接BD ,CE ,试猜想BD 与CE 的大小关系,并说明理由. 【深入探究】(2)如图2,四边形ABCD 中,AB =7cm ,BC =3cm ,∠ABC =∠ACD =∠ADC =45º,求BD 的长. (3)如图3,在(2)的条件下,当△ACD 在线段AC 的左侧时,求BD 的长.七、解答题(本题满分14分)第25题图图1 B EDCA 图3BD CA图2 B D CA26.如图1,一条抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且当x =-1和x =3时,y 的值相等.直线421815-=x y 与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M .(1)求这条抛物线的表达式. (2)动点P 从原点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 运动,同时动点Q 从点B 出发,在线段BC 上以每秒2个单位长度的速度向点C 运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t 秒.①若使△BPQ 为直角三角形,请求出所有符合条件的t 值;②求t 为何值时,四边形ACQ P 的面积有最小值,最小值是多少? (3)如图2,当动点P 运动到OB 的中点时,过点P 作PD ⊥x 轴,交抛物线于点D ,连接OD ,OM ,MD 得△ODM ,将△OPD 沿x 轴向左平移m 个单位长度(02m <<),将平移后的三角形与△ODM 重叠部分的面积记为S ,求S 与m 的函数关系式.第26题图图2 CPAM DO x B y备用图CPAMDO xB y图1QOCP AMx B y2015年初中毕业生毕业升学考试 数学试卷参考答案及评分标准说明:1.此答案仅供参考,阅卷之前请做答案。

2009年高考试题——(辽宁卷)数学理(全解析)

2009年高考试题——(辽宁卷)数学理(全解析)

2009年普通高等学校招生全国统一考试(辽宁卷)数 学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P(A+B)=P(A)+P(B) S=42R π如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A·B)=P(A)·P(B) 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率 V =243R π()(1)(0,1,2,kkn kn n P k C Pp k n -=-=其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{|35},{|55}M x x N x x =-<≤=-<<,则集合M N ⋂=(A ){|55}x x -<< (B ){|35}x x -<< (C ) {|55}x x -<≤ (D ) {|35}x x -<≤ (1)B 解析:M N ⋂={|35}x x -<<。

(2) 已知复数12z i =-,那么1z=()55A + ()55B - 12()55C i + 12()55D i - (2)D 解析:111212,125iz i i z-=+==+。

(3)平面向量a 与b 的夹角为060, (2,0),||1a b ==,则|2|a b +=(B) (C)4 (D)12 (3)B 解析:1cos ,2a b <>=,||2a =,||1b =,222(2)44a b a ab b +=++ 144214122=+⨯⨯⨯+=,|2|a b +=(4) 若圆C 且与直线0x y -=和40x y --=都相切,圆心在直线0x y +=,则圆Cx y23-O 2π712π1112π的方程为(A )()22(1)12x y ++-=(B )22(1)(1)2x y -++= (C )22(1)(1)2x y -+-=(D )()221(1)2x y +++=(4) B 解析:(法一)设圆心为(,)a a -,半径为r ,|r ==,∴1,a r = (法二)由题意知圆心为直线0x y -=、40x y --=分别与直线0x y +=的交点的中点, 交点分别为(0,0)、(2,-2),∴圆心为(1,-1。

2009年辽宁省大连市中考数学试题

2009年辽宁省大连市中考数学试题

2009年辽宁省大连市中考数学试题注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2二、填空题(本题共有9小题,每小题3分,共27分)图1 ②①D CB A 图2 俯视图左视图主视图图3D C BA12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________.三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵? 21c b a图 4C BA 图5 图6 图 7图 81F E DC BA20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题:⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.22.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y(千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?图 12 图 11五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由. Q(H)E DA B C D E P H H QP E DC B A B(P)A 图 15图 16 图17 图 18图 14大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x , (10)分解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ……………………………………………………2分 ∵O A =O D ,∴∠O D A =∠A =30°. …………………………………………………………3分 ∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3.………………………………………………………7分∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分 22. 解:(1)直线2--=x y . 令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m , (7)分 解得11=m ,52-=m .……………………………………………………………9分方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分 解得11=m ,52-=m . (9)分23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎨⎧+=分7,201622 b k解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分 设乙车出发x 分钟两车相遇. ……………………………………………………………5分 根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分 解得x =35. …………………………………………………………………………………9分答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分 设乙车出发x 分钟两车相遇. ……………………………………………………………5分 根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分 解得x =35. …………………………………………………………………………………9分答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0), ∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH-=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCHFG DH =,∴25164010=⨯=CH ;∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分 24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分 当0<t ≤3时,如图1. ……………………………………………………………………2分 过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQ AD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分.5353221212t t t QM AP S =⨯⨯=⋅=…………………………………………………………4分当3<t ≤29时,如图2. ……………………………………………………………………5分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE 过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD .∴AE AQ AD QM =, AEAQDE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP ∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t (8)分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD .∴AE AQ AD QM =, AEAQDE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQ M 梯∴BPQ M AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3. 由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQ P∴EQ P ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4. 由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴.595362121t t QN AB S Q AB =⨯⨯=⋅=∆.569)546(32121t t QN BC S Q BC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S Q CP∴Q CP Q BC Q AB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t (11)分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.EC =21AC ∴四边形DFCE 是平行四边形. ∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分 又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分 ∴E H =E C . …………………………………………………………………………………11分∴E H =21A C . …………………………………………………………………………12分 选图16.结论:E H =21A C . …………………………………………………………………1分证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分 ∵D 、E 、F 分别是边AB 、AC 、BC 的中点, ∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , …………………………………4分 EC=21AC ,∴四边形DFCE 是平行四边形. ∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C …………………………………………………………………………………8分 ∴E H =E C .……………………………………………………………………………………9分∴E H =21A C .…………………………………………………………………………………10分 选图17. 结论: E H =21A C . ………………………………………………………………1分证明:连接A H . ………………………………………………………………………………2分∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分 (2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴242424442ca ac a ac ac ab ac ==-=-, ∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分2∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分 设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x by 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x by 2-=,得c a ac a b a b b y ===--=222)(22. ∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。

【数学】辽宁省营口市中考数学真题试题含答案

【数学】辽宁省营口市中考数学真题试题含答案

【关键字】数学初中毕业生毕业升学考试数学试卷考试时间:120分钟试卷满分:150分注意事项:1.本试卷分第一部分(客观题)和第二部分(主观题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第一部分时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。

3.回答第二部分(主观题)时,将答案写在答题卡对应的区域内,写在本试卷上或答题卡指定的区域外无效。

4.考试结束后,将本试卷和答题卡一并交回。

第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.下列计算正确的是A.B.C.D.2.如右图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数有可能是A.5或6 B.5或7C.4或5或6 D.5或6或73.函数中自变量的取值范围是A.x≥-3 B.C.x≥-3或D.x≥-3且4.□ABCD中,对角线AC与BD交于点O,∠DAC=42º,∠CBD=23º,则∠COD是A.61ºB.63ºC.65ºD.67º5.云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是A.100元,100元B.100元,200元C.200元,100元D.200元,200元6.若关于的分式方程有增根,则的值是A.B.C.D.或7.将弧长为2πcm、圆心角为120º的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是A.B.C.D.8.如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是A.(4,2)B.(4,1)C.(5,2)D.(5,1)9.如图,在平面直角坐标系中,A(-3,1),以点O为直角顶点作等腰直角三角形AOB,双曲线在第一象限内的图象经过点B,设直线AB的解析式为,当时,的取值范围是A.B.或C.D.或10.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是A.B.C.D.第二部分(主观题)二、填空题(每小题3分,共24分)11.分解因式:= .12.过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少 3 120 000吨二氧化碳的排放量.把数据 3 120 000用科学记数法表示为.13.不等式组的所有正整数解的和为.14.圆内接正六边形的边心距为,则这个正六边形的面积为cm2.15.如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.16.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件.当每件的定价为元时,该服装店平均每天的销售成本最大.17.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90º,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD,若∠DBC=60º,∠ACB=15º,BD=,则菱形ACEF的面积为.18.如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、An-1为OA的n等分点,B1、B2、B3、…、Bn-1为CB的n等分点,连接A1B1、A2B2、A3B3、…、An-1Bn-1,分别交()于点C1、C2、C3、…、Cn-1,当时,则n= .三、解答题(19小题10分,20小题10分,共20分)19.先化简,再求值:.其中满足一元二次方程.20.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了如下不完整的统计Array图表,观察分析并回答下列问题.⑴本次被调查的市民共有多少人?⑵分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数.⑶若该市有100万人口,请估计持有A、212(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品卷,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.22.如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60 º方向以每小时30海里的速度航行半小时到达C 处,同时捕鱼船低速航行到A 点的正北1.5海里D 处,渔政船航行到点C 处时测得点D 在南偏东53 º方向上.(1)求CD 两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E 处相会合,求∠ECD 的正弦值. (参考数据:5453sin ≈︒,5353cos ≈︒,3453tan ≈︒) 五、解答题(23小题12分,24小题12分,共24分)23.如图,点P 是⊙O 外一点,PA 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =316cm ,AC =8cm ,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长. 24.某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的45倍,且每天包装大黄米和江米的质量之和为45千克. (1)求平均每天包装大黄米和江米的质量各是多少千克? (2)为迎接今年6月20日的“端午节”,该超市决定在节日前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围. (3)假设该超市每天都会将当天包装后的大黄米和江米全部出售,已知大黄米成本价为每千克7.9元,江米成本价为每千克9.5元,二者包装费用平均每千克均为0.5元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元? [总利润=售价额-成本-包装费用]六、解答题(本题满分14分) 25.【问题探究】(1)如图1,锐角△ABC 中,分别以AB 、AC ABE 和等腰△ACD ,使AE=AB ,AD=AC ,∠BAE =∠CAD ,连接BD ,CE ,试猜想BD 与CE 的大小关系,并说明理由. 【深入探究】(2)如图2,四边形ABCD 中,AB =7cm ,BC =3cm ,∠ABC =∠ACD =∠ADC =45º,求BD 的长. (3)如图3,在(2)的条件下,当△ACD 在线段AC 的左侧时,求BD 的长.七、解答题(本题满分14分) 26.如图1,一条抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C 当x =-1和x =3时,y 的值相等.直线421815-=x y 与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M .(1)求这条抛物线的表达式.(2)动点P 从原点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 运动,同时动点Q 从点B 出发,在线段BC 上以每秒2个单位长度的速度向点C 运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t 秒.第22题图C北 东 60º 53º 第23题图B A E PO D C 第24题图 15 20 天数/天 每天包装的质量/千克4038 0第25题图 图1 B E D C A 图3B D A 图2 B DC A①若使△BPQ 为直角三角形,请求出所有符合条件的t 值;②求t 为何值时,四边形ACQ P 的面积有最小值,最小值是多少? (3)如图2,当动点P 运动到OB 的中点时,过点P 作PD ⊥x 轴,交抛物线于点D ,连接OD ,OM ,MD 得△ODM ,将△OPD 沿x 轴向左平移m 个单位长度(02m <<),将平移后的三角形与△ODM 重叠部分的面积记为S ,求S 与m 的函数关系式.第26题图图2 CPAM DO x B y备用图CPAMDO xB y图1QOCPAMx B y初中毕业生毕业升学考试 数学试卷参考答案及评分标准说明:1.此答案仅供参考,阅卷之前请做答案。

营口市中考数学试题含答案

营口市中考数学试题含答案

营口市初中毕业生学业考试数学试卷第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共24分) 1.6-的倒数是( ) A .6-B .6C .61D .61- 2.右图是某个几何体的三视图,该几何体是( )A .长方体B .三棱柱C .正方体D .圆柱3.估计30的值是( ) 第2题图 A .在3到4之间 B .在4到5之间 C .在5到6之间 D .在6到7之间 4.下列运算正确的是( ) A .2a a a =+ B .()743a a =- C .43a a a =⋅ D .2510a a a =÷5.下列说法正确的是( ) A .“明天的降水概率是80%”表示明天会有80%的地方下雨B .为了解学生视力情况,抽取了500名学生进行调查,其中的样本是500名学生C .要了解我市旅游景点客流量的情况,采用普查的调查方式D .一组数据5,1,3,6,9的中位数是56.不等式组()⎪⎩⎪⎨⎧--≤-7230131<x x 的解集在数轴上表示正确的是( )3-203-203-203-20A .B .C .D .7.如图,在ABC ∆中,点D 、E 分别是边AB 、AC 的中点,︒=∠50B ,︒=∠26A ,将ABC ∆沿DE 折叠,点A 的对应点是点'A ,则'AEA ∠的度数是( ) A .︒145 B .︒152 C .︒158 D .︒160A'DEBAC ED CAB P 30000127777555333333y x yxyx x y第7题图 第8题图 A . B . C . D .俯视图8.如图,在矩形ABCD 中,2=AB ,3=AD ,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径E C D A →→→运动,则APE ∆的面积y 与点P 经过的路径长x 之间的函数关系用图像表示大致是( )第二部分(主观题)二、填空题(每小题3分,共24分)9.全球每年大约有577 000 000 000 000米3的水从海洋和陆地转化为大气中的水汽, 将数577 000 000 000 000用科学记数法表示为 . 10.函数()021-+-=x x y 中,自变量x 的取值范围是 .11.小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为21S 、22S ,根据图中的信息判断两人方差的大小关系为 .ab第11题图 第12题图12.如图,直线a ∥b ,一个含有30°角的直角三角板放置在如图所示的位置,若︒=∠241,则=∠2 .13.一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是72,则袋中红球约为 个.14.如图,圆锥的底面半径OB 长为cm 5,母线AB 长为cm 15,则这个圆锥侧面展开图的圆心角α 为 度. BAOαxy DC BOA第14题图 第15题图 第16题图 15.如图,在平面直角坐标系中,ABC ∆的边AB ∥x 轴,点A 在双曲线xy 5=(x <0)上,点B 在双曲线xky =(x >0)上,边AC 中点D 在x 轴上,ABC ∆的面积为8,则=k .21小苗小华l 2l 1O C3C 2C 1B 3B 2B 1B A 3A 2A 1y x16.如图,在平面直角坐标系中,直线x y l 33:1=,直线x y l 3:2=,在直线1l 上取一点B ,使1=OB ,以点B 为对称中心,作点O 的对称点1B ,过点1B 作11A B ∥2l ,交x 轴于点1A ,作11C B ∥x 轴,交直线2l 于点1C ,得到四边形111C B OA ;再以点1B 为对称中心,作O 点的对称点2B ,过点2B 作22A B ∥2l ,交x 轴于点2A ,作22C B ∥x 轴,交直线2l 于点2C ,得到四边形222C B OA ;…;按此规律作下去,则四边形n n n C B OA 的面积是 . 三、解答题(17小题8分,18小题8分,共16分)17.先化简,再求值:⎪⎪⎭⎫⎝⎛---÷+--b a b ab a b a ab a b 2232,其中︒=45tan a ,︒=60sin 2b .18.如图,在平面直角坐标系中,ABC ∆的三个顶点坐标分别 为A (2-,1),B (1-,4),C (3-,2).(1)画出ABC ∆关于y 轴对称的图形111C B A ∆,并直接写出1C 点坐标;(2)以原点O 为位似中心,位似比为1:2,在y 轴的左侧, 画出ABC ∆放大后的图形222C B A ∆,并直接写出2C 点坐标;(3)如果点D (a ,b )在线段AB 上,请直接写出经过(2)的 第18题图 变化后D 的对应点2D 的坐标.四、解答题(19小题10分,20小题10分,共20分)19.近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A .没影响 B .影响不大 C .有影响,建议做无声运动 D .影响很大,建议取缔 E .不关心这个问题市民对“广场舞”噪音干扰的态度扇形统计图 调查中给出建议....的人数条形统计图 -111OCBAxym%33%20%5%10%E D CB A第19题图 人数/人年龄/岁655545352515706050403020100根据以上信息解答下列问题:(1)根据统计图填空:=m ,A 区域所对应的扇形圆心角为 度; (2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人? (3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议.... 20.第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,2,22(每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看. (1)请你直接写出按照爸爸的规则小明能看比赛的概率;(2)小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.五、解答题(21小题8分,22小题10分,共18分)21.如图,王老师站在湖边度假村的景点A 处,观察到一只水鸟由岸边D 处飞向湖中小岛C 处,点A 到DC 所在水平面的距离AB 是15米,观测水鸟在点D 和点C 处时的俯角分别为︒53和︒11,求C 、D 两点之间距离. (精确到1.0.参考数据80.053sin ≈︒,60.053cos ≈︒, 33.153tan ≈︒,19.011sin ≈︒,98.011cos ≈︒, 19.011tan ≈︒) 第21题图22.如图,在⊙O 中,直径AB 平分弦CD ,AB 与CD 相交于点E ,连接AC 、BC ,点F 是BA 延长线上的一点,且B FCA ∠=∠.(1)求证:CF 是⊙O 的切线. C DA EAD OF(2)若4=AC ,21tan =∠ACD ,求⊙O 的半径.第22题图六、解答题(23小题10分,24小题10分,共20分) 23.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所化钱数与原来相同.问学校获奖的同学有多少人?24.随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年..开始投入生产净水器,生产净水器的总量y (台)与今年..的生产天数x (天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台. (1)求y 与x 之间的函数表达式; (2)已知该厂家去年平均每天的生产数量与今年前90天 平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在 改进技术后,至少还要多少天完成生产计划?第24题图七、解答题(本题满分14分)25.四边形ABCD 是正方形,AC 与BD ,相交于点O ,点E 、F 是直线AD 上两动点,且DF AE =,CF 所在直线与对角线BD 所在直线交于点G ,连接AG ,直线AG 交BE 于点H .x/天y/台906030021001500(1)如图1,当点E 、F 在线段AD 上时,①求证:DCG DAG ∠=∠;②猜想AG 与BE 的位置关系,并加以证明; (2)如图2,在(1)条件下,连接HO ,试说明HO 平分BHG ∠;(3)当点E 、F 运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出BHO ∠的度数.图1HG F OCBD AE图2HG F E OCBD A图3FCBD AE八、解答题(本题满分14分)26.已知:抛物线c bx ax y ++=2(0≠a )经过点A (1,0),B (3,0),C (0,3-). (1)求抛物线的表达式及顶点D 的坐标;(2)如图①,点P 是直线BC 上方抛物线上一动点,过点P 作y 轴的平行线,交直线BC 于点E .是否存在一点P ,使线段PE 的长最大?若存在,求出PE 长的最大值;若不存在,请说明理由;(3)如图②,过点A 作y 轴的平行线,交直线BC 于点F ,连接DA 、DB .四边形OAFC 沿射线CB 方向运动,速度为每秒1个单位长度,运动时间为t 秒,当点C 与点B 重合时立即停止运动.设运动过程中四边形OAFC 与四边形ADBF 重叠部分面积为S ,请求出S 与t 的函数关系式.xyECDBOAP xyO'C'A'F C DBOAF'xy AF CDBO图① 图② 图③第26题图。

2009中考数学题及答案

2009中考数学题及答案

2009年大连市中考数学试题与参考答案注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示 的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm 7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2图1②①DCBA 图2俯视图左视图主视图图3DC BA二、填空题(本题共有9小题,每小题3分,共27分)9.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃. 10.计算)13)(13(-+=___________.11.如图4,直线a ∥b ,∠1 = 70°,则∠2 = __________.12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________. 三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)21c b a 图 4CBA 图 5 491017201510554320人数册数图 6 O y x -24图 7 A C B A′123-1-2-3-4-3-2-14321O y x 图 8 1F E DCBA19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: ⑴根据题意,填写下表: 车间 零件总个数平均每小时生产零件个数所用时间甲车间 600xx600乙车间900________⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.图 10 0成活的概率移植数量/千棵10.90.8108642E DCBA O图 1122.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .PQE D CB A 图 14 y/千米16O -2080604020x/分图 13 yx O B A 图 12猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由.Q(H)EDCQAB CDEPH H Q P ED CB A B(P)A图 15 图 16图 17yxO P DC BA图 18大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x ,…………………………………………………………10分 解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分 3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分 9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ............................................................2分 ∵O A =O D ,∴∠O D A =∠A =30°. (3)分∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分 ∴C D 是⊙O 的切线. ……………………………………………………………………5分 (2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33.∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3. (7)分 ∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分22. 解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………7分解得11=m ,52-=m .……………………………………………………………9分 方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分解得11=m ,52-=m .……………………………………………………………9分 23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎩⎨⎧+=+=分分8.6007,20162222 b k b k 解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0),∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH -=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCH FG DH =,∴25164010=⨯=CH ; ∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分当0<t ≤3时,如图1. ……………………………………………………………………2分过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQAD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分 .5353221212t t t QM AP S =⨯⨯=⋅= (4)分 当3<t ≤29时,如图2. (5)分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴QAB S ∆,595362121t t QM AB =⨯⨯=⋅=QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t ……………………8分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQM 梯∴BPQM AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分 当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQP∴EQP ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH =∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分∴.595362121t t QN AB S QAB =⨯⨯=⋅=∆.569)546(32121t t QN BC S QBC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S QCP∴QCP QBC QAB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t ………………………………11分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.∴DE ∥BC 且DE =21BC ,D F ∥A C 且D F =21A C , (4)分EC =21AC ∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分∴E H =E C . (11)分 ∴E H =21A C . (12)分 选图16.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点,∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , (4)分EC=21AC ,∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C .............................................................................................8分 ∴E H =E C . (9)分 ∴E H =21A C . (10)分 选图17. 结论: E H =21A C . (1)分证明:连接A H . ………………………………………………………………………………2分 ∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442ca ac a ac ac ab ac ==-=-,∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x b y 2-=,得c a aca b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。

往年辽宁省营口市中考数学真题及答案

往年辽宁省营口市中考数学真题及答案

A B C D 往年辽宁省营口市中考数学真题及答案考试时间:120分钟 试卷满分:150分题号 一 二 三 四 五 六 七 八 总分得分得分 评卷人 一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的代号填入题后的括号内,每小题3分,共24分)1.5-的绝对值是 ( ) A .5- B .5±C .51D .5 2.据测算,我国每天因土地沙漠化造成的经济损失约为5.1亿元,一年的经济损失约为05475000000元,用科学记数法表示这个数为 ( )A .1110475.5⨯元 B .1010475.5⨯元 C .11105475.0⨯元 D .8105475⨯元 3.如图,下列水平放置的几何体中,主视图是三角形的是 ( )4.下列图形中,既是轴对称图形,又是中心对称图形的是 ()A B C D5.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元),55,50,25,30,50,20,50这组数据的众数和中位数分别是( ) A .50元,20元 B .50元,40元 C .50元,50元 D .55元,50元 6.不等式组⎩⎨⎧+>-+xx x 2125)5(2的解集在数轴上表示正确的是 ( )7.炎炎夏日,甲安装队为A 小区安装60台空调,乙安装队为B 小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是 ( )A.25060-=x x B.x x 50260=- C.25060+=x x D.x x 50260=+ 8.如图1,在矩形ABCD 中,动点E 从点B 出发,沿B A D C 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则当7=x 时,点E 应运动到A E≥6B C DA -110-22-101-1-201210-1第13题图yxO BA第16题图B A ( )A .点C 处B .点D 处C .点B 处D .点A 处得分 评卷人二、填空题(每小题3分,共24分)9.函数52-=x xy 中,自变量x 的取值范围是 . 10.=-+-- 60cos 2)21()2013(10π .11.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为56.02=甲s ,45.02=乙s ,61.02=丙s ,则三人中射击成绩最稳定的是 . 12.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠D =65,则∠AEC = . 13.二次函数c bx x y ++-=2的图象如图所示,则一次函数c bx y +=的图象不经过第 象限.14.一个圆锥形零件,高为8cm ,底面圆的直径为12cm ,则此圆锥的侧面积是 2cm . 15.已知双曲线x y 3=和xky =的部分图象如图所示,点C 是y 轴正半轴上一点,过点C 作AB ∥x 轴分别交两个图象于点B A 、.若CB =CA 2,则k = . 16.按如图方式作正方形和等腰直角三角形.若第一个正方形的边长AB =1,第一个正方形与第一个等腰直角三角形的面积和为1S , 第二个正方形与第二个等腰直角三角形的面积和为2S ,……,则 第n 个正方形与第n 个等腰直角三角形的面积和n S = .得分 评卷人 三、解答题(17、18、19小题,每小题8分,共24分)17.先化简,再求值:122)1315(22+-+÷---x x x x x ,其中3=x .第15题图yx O ACB第12题图DA CB FEO C B A18.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫做格点). (1)画出△ABC 向下平移3个单位后的△111C B A ;(2)画出△ABC 绕点O 顺时针旋转90后的△222C B A ,并求出点A 旋转到2A 所经过的路线长.(结果保留π)19.如图,△ABC 中,AC AB =,AD 是△ABC 一个外角的平分线,且∠BAC =∠ACD . (1)求证:△ABC ≌△CDA ;(2)若∠ACB =60,求证:四边形ABCD 是菱形.第18题图 第19题图D AC B FE得分 评卷人 四、解答题(20小题10分,21小题10分,共20分)20.某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选. 同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整). 请根据图中提供的信息解答下列问题: (1)在这次调查中,一共抽取了多少名学生? (2)通过计算补全条形统计图;(3)在扇形统计图中, “公交车”部分所对应的圆心角是多少度?(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?21.小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下..的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.(1)用列表法或画树状图法,求小丽参赛的概率. (2)你认为这个游戏公平吗?请说明理由.得分 评卷人 五、解答题(22小题8分,23小题10分,共18分)22.如图,某人在山坡坡脚C 处测得一座建筑物顶点A 的仰角为60,沿山坡向上走到P 处再测得该建筑物26其他私家车公交车自行车 30%步行20%人数(人)其他家车交车行 行车28242016128441024第20题图第23题图DA CBO 顶点A 的仰角为45.已知BC =90米,且B 、C 、D 在同一条直线上,山坡坡度为21(即21tan =∠PCD ). (1)求该建筑物的高度(即AB 的长).(2)求此人所在位置点P 的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)23.如图,点C 是以AB 为直径的⊙O 上的一点,AD 与过点C 的切线互相垂直,垂足为点.D (1)求证:AC 平分BAD ∠;(2)若10,1==AC CD ,求⊙O 的半径长.得分 评卷人 六、解答题(本题满分12分)24.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y =802+-x .设这种产品每天的销售利润为w 元.(1)求w 与x 之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,山坡DAP 45°60°第22题图销售价应定为每千克多少元?25.如图1,△ABC为等腰直角三角形,90=∠ACB ,F 是AC 边上的一个动点(点F 与A 、C 不重合),以CF 为一边在等腰直角三角形外作正方形,CDEF 连接BF 、AD .(1)①猜想图1中线段BF 、AD 的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形,CDEF 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形. 图2中BF 交AC 于点H ,交AD 于点O ,请你判断①中得到的结论是否仍然成立,并选取图.2.证明你的判断.(2)将原题中的等腰直角三角形ABC 改为直角三角形ABC ,90=∠ACB ,正方形CDEF 改为矩形CDEF ,如图4,且4=AC ,3=BC ,=CD 34,1=CF ,BF 交AC 于点H ,交AD 于点O ,连接BD 、AF ,求22AF BD +的值.得分 评卷人 七、解答题(本题满分14分)图1FCA B 图2FO H CAB图3FE D A图4ABDE F HO C26.如图,抛物线与x 轴交于A ()0,1 、)03(, B 两点,与y 轴交于点C (),3,0设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标. (2)试判断△BCD 的形状,并说明理由.(3)探究坐标轴上是否存在点P ,使得以C A P 、、为顶点的三角形与△BCD 相似? 若存在,请直接写出点P八、解答题(本题满分14分)往年初中毕业生毕业升学考试数学试卷答案说明:1.此答案仅供参考,阅卷之前请做答案。

2009年辽宁省营口市数学中考真题(word版含答案)

2009年辽宁省营口市数学中考真题(word版含答案)

18.如图,在所给网格中完成下列各题: (1)画出图 1 关于直线 MN 对称的图 2; (2)从平移的角度看,图 2 是由图 1 向 平移 (3)画出图 1 绕点 P 逆时针方向旋转 90 ° 后的图 3.
个单位得到的; M 图1
P
N 第 18 题图
四、解答题(每题 10 分,共 20 分) 19.我市团委要为灾区某中学捐赠书籍,为了了解学生的喜好,随机抽取该校若干名学生进 行问卷调查(每人只选一种) ,下图是整理数据后绘制的两幅不完整的统计图.请你根据图 中提供的信息,解答下列问题: (1)这次活动一共调查了多少名学生? (2)在扇形统计图中,求“其他”所在扇形的圆心角的度数; (3)将两幅统计图补充完整; (4)如果全校有 1200 名学生,请你估计全校喜欢“科幻”的学生人数. 人数 150 120 90 60 30 0 小说 传记 科幻 其他 种类 第 19 题图 20.哥哥和弟弟都是奥运迷,哥哥手中有四张奥运福娃卡片,如果,其中一张贝贝,一张晶 晶,两张欢欢,除正面的图案不同外,其余都相同.将这四张卡片背面朝上洗匀后再从中随 机抽取. (1)弟弟从中抽取一张卡片是欢欢的概率是多少? (2)弟弟一次抽取两张卡片都是欢欢的概率是多少?(用树状图或列表法解答)
8.如图,将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去小扇形,将 纸片展开,得到的图形是( )
第 8 题图
A.
B.
C.
D.
二、填空题(每小题 3 分,共 24 分) 9. sin 60° 12 π
0

4 5 6
3 1
2
10.如图,将直尺与三角尺叠放在一起, 在图中标记的角中, 所有与 2 互余的角是 .
x2 9 11.分式 2 的值为 0,则 x 的值是 x 3x

人教版七年级下数学第五章 相交线与平行线 知识点+考点+典型例题

人教版七年级下数学第五章 相交线与平行线 知识点+考点+典型例题

第五章相交线与平行线【知识要点】1.两直线相交2.邻补角:有一条公共边,另一条边互为反向延长线的两个角互为邻补角。

3.对顶角(1)定义:有一个公共顶点,且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角 (或两条直线相交形成的四个角中,不相邻的两个角叫对顶角) 。

(2)对顶角的性质:对顶角相等。

4.垂直定义:当两条直线相交所形成的四个角中,有一个角是90°那么这两条线互相垂直。

5.垂线性质:①过一点有且只有一条直线与已知直线垂直;②垂线段最短。

6.平行线的定义:在同一平面内,不相交的两条直线叫平行线,“平行”用符号“∥”表示,如直线a,b 是平行线,可记作“a∥b”7.平行公理及推论(1)平行公理:过已知直线外一点有且只有一条直线与已知直线平行。

(2)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

注:(1)平行公理中的“有且只有”包含两层意思:一是存在性;二是唯一性。

(2)平行具有传递性,即如果a∥b,b∥c,则a∥c。

8.两条直线的位置关系:在同一平面内,两条直线的位置关系有相交和平行。

9.平行线的性质:(1)两直线平行,同位角相等(在同一平面内)(2)两直线平行,内错角相等(在同一平面内)(3)两直线平行,同旁内角互补(在同一平面内)10.平行线的判定(1)同位角相等,两直线平行;(在同一平面内)(2)内错角相等,两直线平行;(在同一平面内)(3)同旁内角互补,两直线平行;(在同一平面内)(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;补充:(5)平行的定义;(在同一平面内)(6)在同一平面内......,垂直于同一直线的两直线平行。

11.平移的定义及特征定义:将一个图形向某个方向平行移动,叫做图形的平移。

特征:①平移前后的两个图形形状、大小完全一样;②平移前与平移后两个图形的对应点连线平行且相等。

【典型例题】考点一:对相关概念的理解对顶角的性质,垂直的定义,垂线的性质,点到直线的距离,垂线性质与平行公理的区别等例1:判断下列说法的正误。

09年全国各地中考试题分类汇编——反比例函数

09年全国各地中考试题分类汇编——反比例函数

09年各地中考数学试题汇编——反比例函数1、(09福建漳州)矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可表示为( )2、(09甘肃兰州)如图,在直角坐标系中,点A 是x轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( ) A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小3、(09湖北恩施)一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是: ( )4、(09广东深圳)如图,反比例函数4y x =-的图象与直线13y x=-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则ABC △的面积为( ) C .4 D .25、(09广西南宁)在反比例函数1k y x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1-B .0C .1D .26、(09广西贵港)如图,点A 是y 轴正半轴上的一个定点,点B 是反比例函数y =2x(x >0)图象上的一个动点,当点B 的纵坐标逐渐减小时,△OAB 的面积将( )A .逐渐增大B .逐渐减小C .不变D .先增大后减小7、(09广西梧州)已知点A (11x y ,)、B (22x y ,)是反比例函数x k y =(0>k )图象上的两点,若210x x <<,则有( )A .210y y <<B .120y y <<C .021<<y yD .012<<y y8、(09浙江丽水)如图,点P 在反比例函数1y x=(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是( )A .)0(5>-=x x yB .)0(5>=x xyC . )0(6>-=x x yD .)0(6>=x xy9、(09山东青岛)一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应( ) A .不小于4.8Ω B .不大于4.8ΩC .不小于14ΩD .不大于14Ω10、(09山东泰安)如图,双曲线)0(>k xky =经过矩形QABC的边BC 的中点E ,交AB 于点D 。

辽宁省营口市2009-2010学年度九年级数学第一学期10月月考试卷华东师大版

辽宁省营口市2009-2010学年度九年级数学第一学期10月月考试卷华东师大版

2009-2010学年度某某省某某市第一学期九年级10月月考数学试卷一、选择题(每题3分,共24分)1.下列各方程中,一定是关于x 的一元二次方程的是 A .m x x +=432B .082=-ax C .02=+y xD .065=+-x xy2.如下图所示,D 在AB 上,且∠B =∠C ,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD 的是A .AD =AEB .∠AEB =∠ADC C .BE =CDD .AB =AC3.三角形的三个内角中,锐角的个数不少于A .1个B .2个C .3个D .无法确定4.等腰△ABC 的顶角∠A =135°,E 、F 是B 、C 上两点,且BF =BA ,CE =CA ,则∠EAF =( )度A .15B .22.5C .35.5D .455.方程05822=+-y y 的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定6.已知1x ,2x 是方程0522=--x x 的两个根,则=++2121)(2x x x xA .1B .21C .-2D .23-7.一个小组若干人,新年互送贺卡一X ,已知全组共送贺卡42X ,则这个小组共有A .6人B .7人C .8人D .9人8.如下图,在Rt △ABC 内,有边长分别为c b a 、、的三个正方形,则c b a 、、满足的关系式是A .c a b +=B .ac b =C .222c a b +=D .c a b 22==二、填空题(每题3分,共计24分)1.方程y y 412=--化为一般形式后,二次项系数是__________,一次项是__________,常数项是___________。

2.如下图,在高为2米,坡角为30°的楼梯表面铺地毯,则地毯至少需要___________。

3.△ABC 中,AB =5,AC =9,则BC 边上的中线AD 的长的取值X 围是___________。

辽宁省营口市中考数学真题试题

辽宁省营口市中考数学真题试题

辽宁省营口市中考数学真题试题数学试卷题号 一 二 三 四 五 六 七 八 总分 得分得分 评卷人1.32-的绝对值是 ( )(A)8-(B)8(C) 6-(D)62.不等式93≤-x 的解集在数轴上表示正确的是( )3.在Rt △ABC 中,若∠C= 90,BC=6,AC=8,则sin A 的值为 ( )(A)54 (B)43(C)53(D)344. 如图是由8个棱长为1个单位的小立方体组成的立体图形, 第4题图 这个立体图形的主视图是( )5.下列事件中,属于必然事件的是 ( ) (A) 打开电视,正在播放《新闻联播》 (B) 抛掷一次硬币正面朝上 (C) 袋中有3个红球,从中摸出一球是红球 (D) 阴天一定下雨6.圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为 ( ) (A)1 (B)3 (C)1或2 (D)1或3 7.若一个多边形的每个外角都等于 60,则它的内角和等于 ( ) (A) 180 (B) 720 (C) 1080 (D) 540一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的代号填入题后的括号内,每小题3分,共24分) 一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的代号填入题后的括号内,每小题3分,共24分)0 -3 (A)3 0(B)-3 (C)3 0 (D)(C) (A) (B) (D)8.如图,菱形ABCD的边长为2,∠B=30.动点P从点B出发,沿B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图像大致为()9.辽宁省进入全民医保改革3年来,共投入36420000000元,将数36420000000用科学记数法表示为 .10.数据1,2,3,a的平均数是3,数据4,5,a,b的众数是5,则ba+=___________.11.=-45tan29_______.12.如图,a、b、c为三条直线,a∥b,若∠2=121,则∠1=_____.13.如图,在等腰梯形ABCD中,AD∥BC,过点D作DF⊥BC于F.若AD=2,BC=4,DF=2,则DC的长为_______.14.若一个圆锥的底面半径为3cm,母线长为4cm,则这个圆锥的侧面积为.15.二次函数nxxy+-=62的部分图像如图所示,若关于x的一元二次方程062=+-nxx的一个解为11=x,则另一个解2x=______.16.如图,直线bxy+-=与双曲线xy1=(x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,连结OA、OB,若OAEOBFAOBSSS∆∆∆+=,则=b.17.在数学课上,教师对同学们说:“你们任意说出一个x的值(x≠0,1,2),我立刻就知道式子xxxx21)211(2--÷-+的计算结果”.请你说出其中的道理.二、填空题(每小题3分,共24分)三、解答题(17、18、19小题,每小题8分,共24分)yO x C A B第19题图C D B A19% 4874 38人数(人) 80 60 20 40y xD C OAB18.如图,直线834+-=x y 分别交x 轴、y 轴于A 、B 两点,线段AB 的垂直平分线分别交x 轴、y 轴于C 、D 两点. (1) 求点C 的坐标; (2) 求△BCD 的面积.19.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (2-,1-)、B (1-,1)、C (0,2-).(1) 点B 关于坐标原点O 对称的点的坐标为__________;(2) 将△ABC 绕点C 顺时针旋转 90,画出旋转后得到的△A 1B 1C ; 1得分 评卷人20.2012年4月23日是第17个世界读书日,《教育导报》记者就四川省农村中小学教师阅读状况进行了一次问卷调查,并根据调查结果绘制了教师每年阅读书籍数量的统计图(不完整).设x 表示阅读书籍的数量(x 为正整数,单位:本).其中A :31≤≤x ; B :64≤≤x ; C :97≤≤x ;D :10≥x .请你根据两幅图提供的信息解答下列问题:四、解答题(20小题10分,21小题10分,共20分)30mCB P DA 4530 第22题图(1) 本次共调查了多少名教师? (2) 补全条形统计图;(3) 计算扇形统计图中扇形D 的圆心角的度数.21.某市今年中考体育测试,其中男生测试项目有1000米跑、立定跳远、掷实心球、一分钟跳绳、引体向上五个项目.考生须从这五个项目中选取三个项目,要求:1000米跑必选,立定跳远和掷实心球二选一,一分钟跳绳和引体向上二选一. (1) 写出男生在体育测试中所有可能选择的结果;(2) 请你用列表法或画树状图法,求出两名男生在体育测试中所选项目完全相同的概率.得分评卷人22.如图所示,两个建筑物AB 和CD 的水平距离为30m ,张明同学住在建筑物AB 内10楼P 室,他观测建筑物CD 楼的顶部D 处的仰角为 30,测得底部C 处的俯角为 45,求建筑物CD 的高度.( 3取1.73,结果保留整数.)23.如图,实线部分为某月牙形公园的轮廓示意图,它可看作是由⊙P 上的一段优弧和⊙Q上的一段劣弧围成,⊙P 与⊙Q 的半径都是2km ,点P 在⊙Q 上. (1) 求月牙形公园的面积;(2) 现要在公园内建一块顶点都在⊙P 上的直角三角形场地ABC ,其中∠C= 90,求场地五、解答题(22小题8分,23小题10分,共18分)D CB A的最大面积.得分评卷人24.如图,四边形ABCD 是边长为60cm 的正方形硬纸片,剪掉阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使A 、B 、C 、D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒.(1) 若折叠后长方体底面正方形的面积为12502cm ,求长方体包装盒的高; (2) 设剪掉的等腰直角三角形的直角边长为)(cm x ,长方体的侧面积为S )(2cm ,求S 与x 的函数关系式,并求x 为何值时,S 的值最大.六、解答题(本题满分12分)Q PP第24题图AyxBCO备用图 第26题图AyxBC O图1D N得分 评卷人26.在平面直角坐标系中,已知抛物线c bx ax y ++=2经过点A 3(-,0)、B(0,3)、C (1,0)三点.(1) 求抛物线的解析式和顶点D 的坐标;(2) 如图1,将抛物线的对称轴绕抛物线的顶点D 顺时针旋转 60,与直线x y -=交于点N .在直线DN 上是否存在点M ,使得∠MON= 75.若存在,求出点M 的坐标;若不存在,请说明理由;(3) 点P 、Q 分别是抛物线c bx ax y ++=2和直线x y -=上的点,当四边形OBPQ 是直角梯形时,求出点Q 的坐标.八、解答题(本题满分14分)第18题图yO xCAB第19题图A 1B 1EyxDC OA B2012年初中毕业生毕业升学考试1.B 2.A 3.C 4.D 5.C 6.D 7.B 8.C9.1010642.3⨯; 10.11 ; 11.1;12.59°; 13. 5 ;14.12πcm 2;15.5 ; 16.343.17.式子)211(-+x 化成21--x x ,……2分 式子xx x 212--化成)2(1--x x x ,……2分式子21--x x ÷)2(1--x x x 化成1)2(21--⨯--x x x x x ,……2分 结果化简为x .……2分18.解:(1) 当x=0时,y=8.当y=0时, x=6 .∴OA=6,OB=8.在Rt△AOB 中,AB=10,……2分∵CD 是线段AB 的垂直平分线,∴AE=BE=5.∵∠OAB=∠CAE,∠AOB =∠AEC=90°,∴△AOB∽△AEC.∴AC AB AE OA =.∴AC=325. ∴OC=37.∴点C 的坐标为(﹣37,0).……4分 (2)∵∠ABO=∠DBE,∠AOB=∠BED=90°, ∴△AOB∽△DEB.∴BD AB BE OB =.∴BD=425.……2分 ∴S △BCD =21BD×OC=24175.……4分分; 设过点B 1的反比例函数解析式为x y =,把点B 1 (3,﹣1) 代入x ky = 中,得k =﹣3 .∴反比例函数解析式为y=x3-.……3分二、填空题(每小题3分,共24分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的代号填入题后的括号内,每小题3分,共24分)四、解答题(20小题10分,21小题10分,共20分)三、解答题(17、18、19小题,每小题8分,共24分)20.解:(1)38÷19﹪=200(人).……3分 (2)如图.……4分(3)360°×20040=72°.……3分21.(1)可能选择的结果有四种①1000米跑、立定跳远、一分钟跳绳;②1000米跑、立定跳远、引体向上;③1000米跑、掷实心球、一分钟跳绳;④1000米跑、掷实心球、引体向上 .……4分 (2)树状图法:图或表正确.……4分所有可能出现的结果共有16种,其中所选项目相同的有4种.所以两人所选项目相同的概率为41164=.……6分22.解:过点P 作PE ⊥CD 于E ,则四边形BCEP 是矩形. ∴PE=BC=30 .……1分在Rt ∆PDE 中,∵∠DPE=30°,PE=30,∴DE=PE×tan30=30×33=103.……3分在Rt△PEC 中,∵∠EPC= 45,PE=30, ∴CE=PE×tan45=30×1=30.……5分∴CD=DE﹢CE=30﹢103=30﹢17.3≈47(m )……7分①② ③ ④ ②② ③ ④ ③② ③ ④④② ③ ④五、解答题(22小题8分,23小题10分,共18分)DCB APQN 答:建筑物CD 的高约为47 m .……8分23.解:(1)连接DQ 、EQ 、PD 、PE 、PQ 、DE .由已知PD=PQ=DQ , ∴∆DPQ 是等边三角形. ∴∠D QP=60°. 同理∠E QP=60°. ∴∠DQE =120°.……1分QDE QDE DmE S S S ∆-=扇形弓形=QDE S 扇形36021202⨯π= 34π……2分=∆QDE S 3……3分3-34π=DmE S 弓形……4分 ∴月牙形公园的面积=π4﹣2(34π﹣3)=(34π﹢23)km 2. 答:月牙形公园的面积为(34π﹢23)km 2.……5分 (2)∵∠C=90°,∴AB 是⊙P 的直径.……2分过点C 作CF ⊥AB 于点F ,21=∆ABC S CF ·AB ,∵AB=4 km,ABC S ∆的面积取最大值就是CF 长度取最大值,即CF=2km. ……4分 ABC S ∆的面积最大值等于4 km 2,∴场地的最大面积为4( km 2).……5分24.(1)设剪掉阴影部分的每个等腰直角三角形的腰长为xcm ,由题意得:1250)22260(2=⨯-x.……3分 解得,251=x ,2552=x .……4分 255=x 不符合题意舍去……5分答:长方体包装盒的高为52cm .……6分另法:由已知得底面正方形的边长为1250=252,……2分 ∴AN=252×22=25.……3分 ∴PN=60﹣25×2=10.……4分∴PQ=10×22=52(cm).……5分 答:长方体包装盒的高为52cm .……6分(2) 由题意得,212042260242+-=⨯-⨯⨯=x x xS x .……4分∵a =﹣4<0,∴当x =152时,S 有最大值.……6分六、解答题(本题满分12分) FCA第23题图QP DEm图1FE MDCBAH图2GDCFE MB AGC DF M EBA H图325.(1)在矩形ABCD 中,∠EAM=∠FDM = 90,∠AM E =∠F MD .∵AM=DM,∴△AEM≌△DFM.…2分 ∴AE=DF.……3分 (2)答: △GEF 是等腰直角三角形.……1分 理由:方法(一):过点G 作GH⊥AD 于H ,∵∠A=∠B=∠AHG=90°, ∴四边形ABGH 是矩形. ∴GH=AB=2.∵MG⊥EF, ∴∠GME=90°.∴∠AME+∠GMH=90°. ∵∠AME+∠AEM=90°,∴∠AEM=∠GMH.……2分 ∴△AEM≌△HMG.∴ME=MG.∴∠E GM =45°.……3分由(1)得△AEM≌△DFM,∴ME=MF.又∵MG⊥EF,∴GE=GF.∴∠EGF=2∠E GM =90°.∴△GEF 是等腰直角三角形.……4分方法(二)过点M 作M H⊥BC 于H ,得到△AEM≌△HG M .具体步骤与给分点 同方法(一)方法(三)过点G 作GH⊥AD 于H ,证出△MGH≌△FMD.……2分 证出C F=BG ,CG=BE .……3分 证出△BEG≌△CG F . △GEF 是等腰直角三角形.…… 4分(若E 与B 重合时,则G 与C 重合,△GEF 就是△三角形) (3 )①332<AE ≤32 .…… 2分 ②△GEF 是等边三角形.……1分理由:过点G 作GH⊥AD 交AD 延长线于点H , ∵∠A=∠B=∠AHG=90°,∴四边形ABGH 是矩形. ∴GH=AB=23.……2分 ∵MG⊥EF,∴∠GME=90°.∴∠AME+∠GMH=90°. ∵∠AME+∠AEM=90°,∴∠AEM=∠GMH.又∵∠A=∠GHM=90°,∴△AEM∽△HMG.……3分 ∴GHAM MG EM =.在Rt△GME 中,∴tan∠M EG=AM GHEM MG ==3. ∴∠M EG= 60.……4分 由(1)得△AEM≌△DFM.∴ME=MF.又∵MG⊥EF,∴GE=GF.∴△GEF是等边三角形.……5分26.(1)解:由题意把A(-3,0)、B(0,3)、C(1,0)代入c bx ax y ++=2列方程组得七、解答题(本题满分14分) 八、解答题(本题满分14分)E FA yxBC O 图1DNMM⎪⎩⎪⎨⎧=++==+-03039c b a c c b a ,解得 ⎪⎩⎪⎨⎧=-=-=321c b a .……1分 ∴抛物线的解析式是322+--=x x y . ……2分 ∵4)1(3222++-=+--=x x x y ,∴抛物线的顶点D 的坐标为(-1,4).…… 3分(2)存在. 理由:方法(一):由旋转得∠EDF=60°, 在Rt△DEF 中,∵∠EDF=60°,DE=4, ∴EF=DE×tan60°=43.∴OF=OE+EF=1+43.∴F 点的坐标为(341--,0).……1分 设过点D 、F 的直线解析式是b x y +=κ, 把D (-1,4),F (341--,0)代入求得 33433++=x y .……2分 分两种情况:①当点M 在射线ND 上时,∵∠MON=75°,∠BON=45°,∴∠MOB=∠MON﹣∠BON=30°.∴∠MOC=60°.∴直线OM 的解析式为y =3x .……3分 ∴点M 的坐标为方程组.⎪⎩⎪⎨⎧=++=x y x y 333433的解,解方程组得,⎪⎪⎩⎪⎪⎨⎧+=+=2362132y x . ∴点M 的坐标为(2132+,236+).……4分②当点M 在射线NF 上时,不存在点M 使得∠MON=75°理由:∵∠MON=75°,∠FON=45°, ∴∠FOM=∠MON-∠FON=30°. ∵∠DFE=30°,∴∠FOM=∠DFE.∴OM∥FN .∴不存在……5分综上所述,存在点M ,且点M 的坐标为(2132+,236+).方法(二)①M 在射线ND 上,过点M 作MP ⊥x 轴于点P , 由旋转得∠EDF=60°, 在Rt△DEF 中,∵∠EDF=60°,DE=4E H FA y x 图4BC OD (P)QP E FA yBC O 图2DNMMxQP A yx图3BCO∴EF=DE×tan60°=43.∴OF=OE﹢EF=1+43.……2分 ∵∠MON=75°,∠BON=45°,∴∠MOB=∠MON﹣∠BON=30°. ∴∠MOC=60°.在Rt△MOP 3OP . 在Rt△MPF 中,∵tan∠MFP=PFMP,∴=++3413OP OP33.……3分∴OP=23﹢21.∴MP=6﹢23.∴M 点坐标为(23﹢21、6﹢23).……4分②M 在射线NF 上,,不存在点M 使得∠MON=75°理由:∵∠MON=75°,∠FON=45°,∴∠FOM=∠MON﹣∠FON=30°. ∵∠DFE=30°.∴∠FOM=∠DFE.∴OM∥DN. ∴不存在.……5分 综上所述,存在点M ,且点M 的坐标为(2132+,236+).(3)有两种情况①直角梯形OBPQ 中,PQ∥OB,∠OBP=90°. 如图3,∵∠OBP=∠AOB=90°,∴PB∥OA. 所以点P 、B 的纵坐标相同都是3.……1分因为点P 在抛物线322+--=x x y 上,把=y 3代入抛物线的解析式中得x 1=0(舍去) ,x 2=﹣2.由PQ∥OB 得到点P 、Q 的横坐标相同, 都等于-2.把x =﹣2代入=y ﹣x 得y =2.所以Q 点的坐标为(-2,2).……3分②在直角梯形OBPQ 中,PB∥OQ,∠BPQ=90°.如图4,∵D(-1,4),B(0,3) ,∴DB∥OQ.∵PB∥OQ, 点P 在抛物线上,∴点P 、D 重合.……1分 ∴∠EDF=∠EFD=45°.∴EF=ED=4. ∴OF=OE+EF=5.……2分作QH⊥x 轴于H ,∵∠QOF=∠QFO=45°,∴OQ=FQ.∴OH=21OF=25. ∴Q 点的横坐标﹣25.∵Q 点在=y ﹣x 上,∴把x =﹣25代入=y ﹣x 得y 25.∴Q 点的坐标为(﹣25,25).…… 3分 综上,符合条件的点Q 有两个,坐标分别为:(-2,2),(-25,25). ※ 试题其他方法参照给分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B C
D E
2009年中考营口市数学试题
一、选择题(每小题3分,共24分)
1.如图,下列选项中不是正三棱柱三视图的是( )
2.“2009年中国慈善排行榜”近日在京揭晓,此次入榜的慈善家121位,共捐款18.84亿元.将18.84亿元用科学记数法表示为(保留两个有效数字)( )
A .19×108元
B .1.9×109元
C .1.884×109元
D .1.8×109元 3.妈妈想对小刚中考前的4次数学考试成绩进行统计分析,判断他的数学成绩是否稳定,那么妈妈需要知道他这4次数学考试成绩的( ) A .方差或标准差 B .中位数或众数 C .平均数或中位数 D .众数或平均数
4.一架15米长的梯子斜靠在墙上,测得它与地面的夹角为40º,则梯子底端到墙角的距离为( )
A .5sin40º
B .5cos40º
C .5 tan40º
D .5
cos40º
5.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规律,猜测32009+1的个位数字是( ) A .0 B .2 C .4 D .8 6.如图,在△ABC 中,∠C =90º,∠B =22.5º,AB 的垂直平分线 交AB 于D ,交BC 于E ,若CE =3,则BE 的长是( ) A .3 B .6 C .2 3 D .3 2 7.下列说法正确的是( )
A .将酚酞溶液滴入液体中,酚酞溶液会变红是必然事件
B .某种彩票中奖的概率是1%,买100张该种彩票一定会中奖
C .将7,6,5,4,3依次重复写4遍,得到的20个数的平均数是5
D .为调查某市所有初中生视力情况,抽查该市5所重点初中学生视力情况是合理的 8.如图,将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去小扇形,把纸片展开,得到的图形是( )
二、填空题(每小题3分,共24分)
9.sin60º+|―12|― 0= .
10.如图,将直尺与三角尺叠放在一起,在图中标记的所有角中,与∠2互余的角是 .
11.分式 x 2
―9
x 2+3x
的值为0,则x 的值是 .
第1题图 A B C D
12.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =1.5m ,
CD =4.5m ,点P 到CD 的距离为2.7m ,则AB 与CD 间的距离是 m . 13.如图,在梯形ABCD 中,AB ∥CD ,∠BCD =90º,AB =25cm ,BC =24cm .将该梯形折
叠,点A 恰好与点D 重合,BE 为折痕,那么梯形ABCD 的面积为 cm 2. 14.为了估计水库中鱼的数量,先从水库中捕捉50条鱼做记号,然后放回水库里,经过一
端时间,等带有记号的鱼\完全混于鱼群中之后,再捕捞300条鱼,发现有10条鱼做了记号,则可估计水库中大约有 条鱼.
15.两位同学在描述同一反比例函数的图象时,甲同学说:“从这个反比例函数图象上任意
一点向x 轴、y 轴作垂线,与两坐标轴所围成的矩形的面积为6.”乙同学说:“这个反比例函数图象与直线y =-x 有两个交点.”你认为这两位同学所描述的反比例函数的表达式为 .
16.小红用一个半径为36cm ,面积为324πcm 2的扇形纸板,制作一个圆锥形玩具帽(接缝
的重合部分忽略不计),则帽子的底面半径为 cm . 三、解答题(每小题8分,共16分)
17.解不等式组,并把解集在数轴上表示出来.

⎪⎨⎪⎧5x +2>3(x -1), ①7- 3 2x ≥ 1 2x -1. ②
18.如图,在所给网格中完成下列各题:
(1)画出图1关于直线MN 的对称的图2;
(2)从平移的角度看,图2是由图1向 平移 个单位得到的; (3)画出图1绕点P 逆时针方向旋转90º后的图3.
A B C D P C
B
19.我市团委要为灾区某中学捐赠书籍,为了了解学生的喜好,随机抽取该校若干名学生进行问卷调查(每人只选一种),下图是整理数据后绘制的两幅不完整的统计图.请你根据提供的信息,解答下列问题:
(1)这次活动一共调查了多少名学生?
(2)在扇形统计图中,求“其他”所在扇形的圆心角的度数;
(3)将两幅统计图补充完整;
(4)如果全校有1200名学生,请你估计全校喜欢“科幻”的学生人数.
20.哥哥和弟弟都是奥运迷.哥哥手中有四张奥运福娃卡片,如图,其中一张贝贝,一张晶晶,两张欢欢,除正面的图案不同外,其余都相同.将这四张卡片朝上洗匀后再从中随机抽取.
(1)弟弟从中抽取一张卡片是欢欢的概率是多少?
(2)弟弟一次抽取两张卡片都是欢欢的概率是多少?(用树状图获列表法解答)
B 21.为了预防甲型H1N1流感,广东某口罩加工厂承担了加工24000个新型防病口罩的任
务.由于任务紧急,实际加工时每天的工作效率比原计划提高了50%,结果提前5天完成任务.该厂实际每天加工这种口罩多少个?
22.如图,已知△ABC 中,∠C =∠ABC ,以AB 为直径作 ⊙O 交BC 于D ,DE ⊥AC ,垂足为E . (1)判断DE 与⊙O 的位置关系,并说明理由; (2)如果BC =10,CE =4,求直径AB 的长.
六、解答题(每小题10分,共20分)
23.“五一”假期小明骑自行车去郊游,早上8∶00从家出发,9∶30到达目的地.在郊游
地点玩了3个半小时后按原路以原速返回,同时爸爸骑电动车从家出发沿同一路线迎接他,爸爸骑电动车的速度是20千米/小时,小明骑自行车的速度是10千米/小时.设小明离开家的时间为x 小时,下图是他们和家的距离y (千米)与x (时)的函数关系图象. (1)目的地与家相距 千米;
(2)设爸爸与家的距离为y 1(千米),求爸爸从出发到与小明相遇的过程中,y 1与x 的函数关系式(不要求写出自变量x 的取值范围);
时) (3)设小明与家的距离为y 2(千米),求小明从返程到与爸爸相遇的过程中,y 2与x 的函
数关系式(不要求写出自变量x 的取值范围);
(4)说明点C
24
某单位组织员工去该风景区旅游,设有x 人参加,应付旅游费y 元. (1)请写出y 与x 的函数关系式;
(2)若该单位现有45人,本次旅游至少去26人,则该单位最多应付旅游费多少元?
25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=P A,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.
(1)猜想四边形EFGH的形状,直接回答
....,不必说明理由;
(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条
件不变,(1)中的结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90º,其他条件不变,先补全图3,再判断四边形EFGH
的形状,并说明理由.
A B
P
图1 图2 图3
26.如图,正方形ABCO的边长为5,以O为原点建立平面直角坐标系,点A在x轴的负半轴上,点C在y轴的正半轴上,把正方形ABCO绕点O顺时针旋转α后得到正方形A1B1C1O(α<45º),B1C1交y轴于点D,且D为B1C1的中点,抛物线y=ax2+bx+c 过点A1、B1、C1.
(1)求tanα的值;
(2)求点A1的坐标,并直接写出
....点B1、点C1的坐标;
(3)求抛物线的函数表达式及其对称轴;
(4)在抛物线的对称轴
.......上是否存在点P,使△PB1C1为直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.。

相关文档
最新文档