21.2.1配方法解一元二次方程(1)
21.2.1配方法解一元二次方程
1
配方法解一元二次方程
学习过程 【自主学习】
(一)复习:知识回顾:完全平方公式: 和 1.解下列方程:
(1)2
430x -= (2)2
693x x -+=
2.填上适当的数,使下列等式成立:
(1) 212x x ++____ = 2
(6)x + (2) 2
4x x -+____ = (x -___)2
(3) 28x x ++____ = (x +____)2 (4)22
____)(_____4
5
+=++
x x x 由上面等式的左边可知,常数项和一次项系数的关系是:
(二)探索新知:请阅读教材第32页,解方程2
450x
x +-=,完成下面框图:
2450x x +-=
归纳总结:
1、通过配成_______形式来解一元二次
方程的方法,叫做配方法。
2、配方是为了降次..,把一个一元二次方程化为______________方程来解。
三.自学课本例题1: 1.观察方程(1)的解题过程,归纳用配方法
解二次项系数是1的一元二次方程的一般步骤是: ①、移项,把_____移到方程右边;
②、配方,在方程的两边各加上___________,使左边成为完全平方;
③、利用直接开平方法解之。
2.观察方程(2)(3)的解题过程,归纳:方程的二次项系数不是1时,可以让方程的各项除以____________,将方程的二次项系数化为____。
2。
九年级数学上册-解一元二次方程21.2.1配方法第1课时直接开平方法教案新版新人教版
21.2 解一元二次方程21.2.1 配方法第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题.问题1:填空(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=± 2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.。
第二十一章21.2.1配方法
=x2+x+ 1 = 3 ,则x2+x- 1 =0,则p=1,q=- 1 ,则pq=- 1 .
44
2
2
2
栏目索引
21.2.1 配方法
栏目索引
1.(2018河北衡水安平期末)在解方程2x2+4x+1=0时,对方程进行配方,图 21-2-1-1①是a小思做的,图21-2-1-1②是小博做的,对于两人的做法,说法正 确的是 ( )
21.2.1 配方法
栏目索引
初中数学(人教版)
九年级 上册
第二十一章 二元一次方程
21.2.1 配方法
栏目索引
21.2.1 配方法
解析 (1)原方程可化为x2=27,
栏目索引
∴x=±3 3 ,
∴x1=3 3 ,x2=-3 3 . (2)原方程可化为(3x+1)2=8,∴3x+1=±2 2 ,
∴x= 1 2 2 , 3
4 3
2
=1
+
4 3
2
,即
x
4 3
2
= 25 .由此可得x+ 4 =± 5 ,解得x1=-3,x2= 1 .
9
33
3
(3)移项,得2x2-x=-2.二次项系数化为1,得x2- 12 x=-1.配方,得x2- 12 x+
1 4
2
=
-1+
21.2.1 配方法
栏目索引
一、选择题 1.(2019天津宁河期中,5,★☆☆)若一元二次方程x2=m有解,则m的取值 为 ( ) A.正数 B.非负数 C.一切实数 D.零
答案 B 当m≥0时,一元二次方程x2=m有解.故选B.
九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1配方法(第一课时直接开平方法)课件人教版
∴ x3 5 或 x3- 5 .
∴ x1= 5-3 ,x2 = - 5-3 .
解一元二次方程的基本思路是:
把一个一元二次方程“ 降次 ”,转化 为两个一元一次方程.
由应用直接开平方法解形如:
x2=p(p≥0),那么x=± p
由应用直接开平方法解形如:
(mx+n)2=p(p≥0),则mx+n=____p_ .
问题:一桶油漆可刷的面积为1500 dm2 , 李林用这桶油漆恰好刷完10个同样的正方体 形状的盒子的全部外表面,你能算出盒子的 棱长吗?
提示
可以根据正方体表面积 S=6a2求解. 同时要注意 所得的结果要符合实际
意义.
解:设正方体的棱长为x dm,则一个正方 体的表面积为__6_x_2_dm2 .根据一桶油漆可 刷面积列出方程 1_0_×_6_x_2_=_1_5_0_0____.
解下列方程:
(1)9x2 5 3;
解:移项,得 9x2 8.
系数化为1,得 x2 8 .
9
直接开平方,得
x
8. 9
x1
22 3
,x2
22 3
.
注意:二次根 式必须化为最 简二次根式。
(2)9x2 5 1.
解:先移项,得 9x2 4. 系数化为1,得 x2 4 0 9
1
x1
, 3
x2
1.
整理,得_x_2_=_2_5 , 根据平方根的意义得x=___±_5__. 即x1=___5___,x2=__-_5___. 因为_棱__长__不_能__为__负__值__,所以正方体的棱长 是_5_d_m__.
21.2.1 解一元二次方程-配方法
x1 a ,x2 a
这种解一元二次方程的方法叫做直接开平方法.
2、把一元二次方程的左边配成一个完全平方式, 然后用开平方法求解,这种解一元二次方程的方 法叫做配方法.
注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
思维拓展
2 1、把方程x -3x+p=0配方得到
(x+m)2=
1 2
(1)求常数p,m的值;
(2)求方程的解。
2、若: x y 4 x 6 y 13 0,
2 2
则x _____ -8
y
理论迁移
1、将代数式x2+6x+2化成(x+p)2+q的形式 为 (x+3)2-7 。 2、比较大小:
6x ≤ x2+9.(填“>”、“<”、“≥”、 3、若代数式2x2-6x+b可化为2(x-a)2-1,则 a+b的值是 5 。
课堂小结
1、一般地,对于形如x2=a(a≥0)的方程,根据平方
根的定义,可解得
例题精讲
例1 用配方法解下列方程:
(1) x2 - 8x +1 =0
(2) 2x2 +1=3x (3) 3x2-6x+4=0
教材P42
2、 3
归纳总结
解一元二次方程的基本思路:
二次方程
降次
一次方程
把原方程变为(mx+n)2=P的形式(其中m、 n、P是常数)。
当P≥0时,两边同时开平方,这样原方 程就转化为两个一元一次方程。 当P<0时,原方程的解又如何?
ห้องสมุดไป่ตู้
把一元二次方程的左边配成一个完全 平方式,然后用直接开平方法求解,这种 解一元二次方程的方法叫做配方法.
21.2.1配方法解一元二次方程
1. 证明:代数式x2+4x+ 5的值不小于1.
2. 证明:代数式-2y2+2y-1的值不大于
1 2
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
1.一般地,对于形如x2=a(a≥0)的方程,
答:道路宽1米
课堂练习
3.若实数x、y满足(x+y+2)(x+y-1)=0,
则x+y的值为( D ).
(A)1
(B)-2
(C)2或-1 (D)-2或1
4.对于任意的实数x,代数式x2-5x+10的值
是一个( B )
(A)非负数 (B)正数
(C)整数 (D)不能确定的数
综合应用
例题3. 用配方法解决下列问题
根据平方根的定义,可解得 x1 a,x2 a
这种解一元二次方程的方法叫做直接开平方
法. 2.把一元二次方程的左边配成一个完全平方
式,然后用开平方法求解,这种解一元二次方程的 方法叫做配方法.
注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
3.方程χ2=a(a≥0)的解为:χ= a
方程(χ-a)2=b(b≥0)的解为:χ= a b
小结中的两类方程为什么要加条件:a≥0,b≥0呢?
小练习
1.解方程:3x2+27=0得( ). (A)x=±3 (B)x=-3 (C)无实数 根 (D)方程的根有无数个 2.方程(x-1)2=4的根是( ). (A)3,-3 (B)3,-1 (C)2,-3 (D)3,-2
2121 一元二次方程的解法(一)配方法-2021-2022学年九年级数学上练(人教版)(解析版)
21.2.1 一元二次方程的解法(一)配方法瞄准目标,牢记要点夯实双基,稳中求进直接开方法解一元二次方程原理:题型一:直接开方法解一元二次方程原理:【例题1】下列方程不能用直接开平方法求解的是( ) A .240x -= B .2(1)90x --= C .230x x += D .22(1)(21)x x -=+【答案】C【分析】根据直接开方法求一元二次方程的解的类型客直接得出答案.【详解】能用直接开平方法求解的是:240x -=、2(1)90x --=和22(1)(21)x x -=+; 故选C .【点睛】此题考查了解一元二次方程-公式法,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0). 变式训练【变式1-1】关于x 的方程()2x a b +=能直接开平方求解的条件是( ) A .0,0a b ≥≥B .0,0a ≥≤知识点管理 归类探究 1 (1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义. 特别说明:用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).C .a b ,为任意数D .a 为任意数且0b ≥【答案】D【分析】根据一个数的平方是非负数,可得0b ≥. 【详解】∵()20x a +≥,∵0b ≥,a 为任意数,故选:D .【点睛】本题考查了用直接开方法求一元二次方程的解,基本形式有:2x a =(a≥0).形如关于x 的一元二次方程2x a ,可直接开平方求解题型二:形如关于x 的一元二次方程2x a ,可直接开平方求解【例题2】一元二次方程290x 的解是( )A .3x =B .3x =-C .123,3x x ==-D .12=3,3x x =-【答案】C【分析】先变形得到x 2=9,然后利用直接开平方法解方程. 【详解】解:x 2=9,x =±3,所以x 1=3,x 2=-3. 故选:C .【点睛】本题考查了直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程. 变式训练【变式2-1】方程280x -=的解为( ) A .14x =,24x =-B .122x =,222x =-2 若0a则x a =±;表示为1,2x a x a ==- 方程有两个不等实数根 若=0a 则x=O 表示为120x x == 方程有两个相等的实数根 若0a则方程无实数根特别说明:(1)先移项,再开方;(2)形如2x a =的方程不一定有解,需要分情况讨论.C .10x =,222x =D .22x =【答案】B【分析】移项得x 2=8,然后利用直接开平方法解方程即可.【详解】解:移项得28x =,两边开方的:22x =±,即1222,22x x ==-,故选:B . 【点睛】本题考查了一元二次方程的解法:直接开平方法,熟练掌握运算方法是解题的关键. 【变式2-2】方程x 2=0的解为( ) A .0x = B .120x x ==C .无解D .以上都不对【答案】B【分析】直接运用直接开平方法求解即可. 【详解】解:∵x 2=0,∵x 1=x 2=0.故选:B.【点睛】此题考查了解一元二次方程-直接开平方法,熟练掌握直接开平方的方法是解本题的关键. 【变式2-3】一元二次方程224x =-的解是( ) A .2x =- B .2x =C .无解D .12x =,22x =-【答案】C形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解题型三:形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解 【例题5】方程2(1)4x +=的解为( )A .121,1x x ==-B .121,3x x =-=C .122,2x x ==-D .121,3x x ==-【答案】D【分析】根据直接开平方法即可求解.3 形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解,两根是12,n m n mx x a a-+--==. 特别说明:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【详解】解2(1)4x +=x+1=±2∵x+1=2或x+1=-2 解得121,3x x ==- 故选D .【点睛】此题主要考查解一元二次方程,解题的关键是熟知直接开平方法的运用. 变式训练【变式5-1】2(31)9x -= 【答案】(1)x 1=43,x 2=23-;【分析】两边开方,即可得出两个一元一次方程,求出方程的解即可; 【详解】解:(1)2(31)9x -=, 两边开方得:313x -=±, 解得:x 1=43,x 2=23-;【变式5-2】解方程:(1)22(2)180x +-= (2)229(2)4(25)x x -=+ (1)解:22(2)180x +-=, ∵22(2)18x +=, ∵2(2)9x +=, ∵23x +=或23x,解得:x 1=1,x 2=-5;(2)解:∵9(x -2)2=4 (2x +5)2.∵3(x -2)=2(2x +5)或3(x -2)=-2(2x +5), 解得x 1=-16,x 2=47-配方法解一元二次方程题型四:用配方法给方程变形【例题3】(2021·浙江杭州市·八年级期中)用配方法解方程241x x -=时,原方程应变形为( ) A .2(2)1x -= B .2(2)5x +=C .2(2)1x +=D .2(2)5x -=【答案】D【分析】移项,配方,变形后即可得出选项. 【详解】解:x 2-4x =1, x 2-4x +4=1+4, ∵(x -2)2=5,4 1.配方法的定义通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.2.用配方法解一元二次方程的一般步骤①通过去分母、去括号、移项、合并同类项等步骤,把原方程化为20(0)ax bx c a ++=≠的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数,形如;⑤一般地,如果一个一元二次方程通过配方转化成的形式,那么就有:(1)当p >0时,原方程有两个不相等的实数根;(2)当p =0时,原方程有两个相等的实数根;(3)当p <0时,因为对任意实数x ,都有,所以原方程无实数根. . 特别说明:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.2()x n p +=2()x n p +=12x n p x n p =--=-+,12x x n ==-2()0x n +≥故选:D .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键. 变式训练【变式4-1】(2021·浙江杭州市·八年级期中)方程26100x x --=变形时,下列变形正确的为( ) A .2(3)1x += B .2(3)1x -=C .2(3)19x +=D .2(3)19x -=【答案】D【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断. 【详解】解:方程移项得:x 2-6x =10,配方得:x 2-6x +9=19,即(x -3)2=19,故选:D .【变式4-2】(2021·浙江杭州市·八年级期中)一元二次方程2660x x --=经配方可变形为( ) A .2(3)10x -= B .()2642x -=C .2(6)6x -=D .2(3)15x -=【答案】D【分析】把方程左边化为完全平方式的形式即可.【详解】解:原方程可化为x 2-6x +32-32=6,即(x -3)2=15.故选:D .【变式4-3】(2021·浙江杭州市·八年级期中)若方程280x x m -+=可通过配方写成2() =6x n -的形式,则285++=x x m 可配方成( ) A .2(5)1x n -+= B .2()1x n +=C .2(5)11x n -+=D .2()11x n +=【答案】D【分析】已知方程x 2-8x +m =0可以配方成(x -n )2=6的形式,把x 2-8x +m =0配方即可得到一个关于m 的方程,求得m 的值,再利用配方法即可确定x 2+8x +m =5配方后的形式. 【详解】解:∵x 2-8x +m =0, ∵x 2-8x =-m , ∵x 2-8x +16=-m +16,∵(x -4)2=-m +16, 依题意有n =4,-m +16=6, ∵n =4,m =10,∵x 2+8x +m =5是x 2+8x +5=0, ∵x 2+8x +16=-5+16, ∵(x +4)2=11, 即(x +n )2=11. 故选:D【点睛】本题考查了解一元二次方程-配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 题型五:配方法解一元二次方程【例题5】(2019·湖北黄冈市·九年级期中)解方程:2x 2﹣4x ﹣1=0.【答案】x 1x 2 【分析】用配方法解一元二次方程即可. 【详解】解:∵2x 2﹣4x ﹣1=0, ∵2x 2﹣4x=1,则x 2﹣2x=12, ∵x 2﹣2x+1=32,即(x ﹣1)2=32,则x ﹣∵x 1=22+x 2=22. 【点睛】此题考查了配方法解一元二次方程, 解题时要注意解题步骤的准确使用, 把左边配成完全平方式, 右边化为常数.变式训练【变式5-1】(2018·芜湖市繁昌区第三中学)解方程: 22310x x --=(用配方法)【答案】14x =,24x =;【分析】先两边同时除以2,再将原方程配方即可得出答案.【详解】解:231x 022x --= 2223331x 02442x ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭2317x 416⎛⎫-= ⎪⎝⎭∵1x =2x = 【变式5-2】(2018·全国九年级单元测试)x 2-4x +2=0(配方法);【答案】x 1=2x 2=2【分析】方程的常数项移到方程右边,两边都加上4,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;【详解】解方程变形得: x 2-4x=-2 配方得: x 2-4x+4=2,即(x -2) 2=2,开方得:x -2=±解得:12x =22x =【变式5-3】(2019·江苏期中)解方程:x 2+6x ﹣2=0.【答案】x=﹣.【分析】利用配方法可求出一元二次方程的解. 【详解】∵x 2+6x ﹣2=0,∵x 2+6x=2,则x 2+6x+9=2+9,即(x+3)2=11, ∵x+3=±11, ∵x=﹣3±11.配方法的应用题型六:配方法用于比较大小【例题6】(2020·福建省永春第五中学九年级期中)已知7115P m =-,2815Q m m =-,(m 为任意实数),则P 、Q 的大小关系为( ) A .P >Q B .P=QC .P <QD .不能确定【答案】C【分析】由题意表示出,再根据化简后的代数式的特征即可作出判断.【详解】解:∵∵P Q <故选C.【点睛】用不等式比较代数式的大小是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握. 变式训练【变式6-1】(2020·四川遂宁市·八年级期中)已知22862M x y x =-+-,29413N x y =++,则M N-5 1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 特别说明:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.的值 ( ) A .为正数 B .为负数C .为非正数D .不能确定【答案】B【分析】将M -N 整理成-(x -3)2-(y+2)2-2,从而说明M -N 的值为负数. 【详解】∵M -N=8x 2-y 2+6x -2-(9x 2+4y+13) =-x 2+6x -y 2-4y -15=-[(x 2-6x+9)+(y 2+4y+4)+2]=-(x -3)2-(y+2)2-2, ∵M -N 的值为负数,故选:B .【点睛】本题考查了配方法的应用、非负数的性质--偶次方.解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.【变式6-2】(2019·浙江杭州市·九年级其他模拟)若代数式238M x =+,224N x x =+,则M 与N 的大小关系是( ) A .M N ≥ B .M N ≤C .M N >D .M N <【答案】C【解析】∵223824M x N x x =+=+,,∵222238(24)48(2)40M N x x x x x x -=+-+=-+=-+>, ∵M N >.故选C.【变式6-3】(2021·河北九年级专题练习)已知M=29a ﹣1,N=a 2﹣79a (a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定【答案】A【详解】∵M =219a -,N =279a a -(a 为任意实数),∵N -M =21a a -+=21324a ⎛⎫-+ ⎪⎝⎭,∵N >M ,即M <N ,故选A . 题型七:配方法用于求待定字母的值【例题7】(2018·全国九年级单元测试)已知2a 4b 18-=-,2b 10c 7+=,2c 6a 27-=-.则a b c ++的值是( ) A .5-B .10C .0D .5【答案】C【分析】将已知三个式子相加后,配方即可得到a 、b 、c 的值,从而得出结论. 【详解】由a 2﹣4b =﹣18,b 2+10c =7,c 2﹣6a =﹣27得:a 2﹣4b +b 2+10c +c 2﹣6a +38=0,∵(a ﹣3)2+(b ﹣2)2+(c +5)2=0,∵a =3,b =2,c =﹣5,∵a +b +c =0. 故选C .【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值. 变式训练【变式7-1】(2020·江苏南通市·八年级期中)若x 2+y 2+4x ﹣6y+13=0,则式子x ﹣y 的值等于( ) A .﹣1 B .1C .﹣5D .5【答案】C【分析】把给出的式子进行配方,根据非负数的性质求出x ,y 的值,再代入要求的式子即可得出答案. 【详解】∵x 2+y 2+4x−6y +13=0, ∵x 2+4x +4+y 2−6y +9=0, ∵(x +2)2+(y−3)2=0,∵x =−2,y =3, ∵x−y =−2−3=−5; 故选C .【点睛】此题考查了配方法的应用,用到的知识点是非负数的性质,通过配方求出x ,y 的值是解题的关键. 【变式7-2】(2021·黑龙江大庆市·八年级期末)已知三角形三边长为a 、b 、c ,且满足247a b -=,246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【解析】∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∵a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∵a =3,b =2,c =2,∵此三角形为等腰三角形. 故选A .【变式7-3】若22228160m mn n n -+-+=,求m 、n 的值. 解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=,4,4n m ∴==.题型八:配方法用于求最值【例题8】(2020·湖南湘西土家族苗族自治州·八年级期末)阅读下面的解题过程,求21030y y -+的最小值.解:∵21030y y -+=()()222102551025555y y y y y -++=-++=-+,而()250y -≥,即()25y -最小值是0; ∵21030y y -+的最小值是5 依照上面解答过程,(1)求222020m m ++的最小值; (2)求242x x -+的最大值. 【答案】(1)2019;(2)5.【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可; (2)利用完全平方公式把原式变形,利用非负数的性质解答即可; 【详解】(1)2222020212019m m m m ++=+++ ()212019m =++∵()210m +≥,∵()2120192019m ++≥,∵222020m m ++的最小值为2019;(2)()2242215x x x x -+=--++()215x =--+,∵()210x -≥, ∵()210x --≤, ∵()2155x --+≤, ∵242x x -+的最大值是5.变式训练【变式8-1】(2019·辽宁大连市·八年级期末)已知关于x 的多项式24x mx -++的最大值为5,则m 的值可能为( ) A .1 B .2C .4D .5【答案】B【分析】利用配方法将24x mx -++进行配方,即可得出答案.【详解】解:22244,24m m x mx x ⎛⎫-++=--++ ⎪⎝⎭故245,4m += 解得: 2.m =± 故选B.【变式8-2】(2020·全国八年级课时练习)不论,a b 为任何实数,2261035a b a b +-++的值都是( ) A .非负数 B .正数 C .负数 D .非正数【答案】B【分析】利用完全平方公式配方,进而利用偶次方的性质得出答案. 【详解】2261035a b a b +-++22(3)(5)10a b =-+++>, ∵a 2+b 2−6a +10b +35的值恒为正数.故选:B .【点睛】此题主要考查了完全平方公式的应用以及偶次方的性质,正确配方得出是解题关键. 【变式8-3】(2020·山东威海市·八年级期中)若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∵不论a 取何值,x ≤﹣3. 故选D .【真题1】(2016·湖北荆州市·中考真题)将二次三项式x 2+4x +5化成(x +p)2+q 的形式应为____. 【答案】(x +2)2+1 【详解】试题分析:原式=2x +4x+4+1=()221x ++ 故答案为:()221x ++【真题2】(2010·河北中考真题)已知实数的最大值为______.【答案】4【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++1链接中考2(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【真题3】(2010·江苏镇江市·中考真题)已知实数的最大值为______.【答案】4 【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++12(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【拓展1】(2020·全国九年级课时练习)解方程:2232mx x -=+()1m ≠【答案】当1m 时,原方程的解是x =1m <时,原方程无实数解【分析】先移项,再合并同类项可得()215m x -=,根据1m ≠求出251x m =-,再讨论10m -<时,10m ->,分别计算出方程的解.【详解】解:移项得:2223mx x -=+, 化简得:()215m x -=,1m ≠,251x m ∴=-, 当10m -<时,2501x m =<-, ∴原方程无实数解,当10m ->时,2501x m =>-, 满分冲刺1x ∴==2x ==∴当1m 时,原方程的解是x ==当1m <时,原方程无实数解.【点睛】此题考查解一元二次方程,根据每个方程的特点选择适合的解法是解题的关键.【拓展2】(2020·渠县崇德实验学校七年级期中)“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∵(x +2)2+1≥1,∵x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:x 2﹣4x +5=(x )2+ ; (2)已知x 2﹣4x +y 2+2y +5=0,求x +y 的值; (3)比较代数式:x 2﹣1与2x ﹣3的大小. 【答案】(1)﹣2,1;(2)1;(3)x 2﹣1>2x ﹣3 【分析】(1)直接配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x 、y 的值,再求x +y 的值; (3)将两式相减,再配方即可作出判断. 【详解】解:(1)x 2﹣4x+5=(x ﹣2)2+1; (2)x 2﹣4x+y 2+2y+5=0, (x ﹣2)2+(y+1)2=0, 则x ﹣2=0,y+1=0, 解得x =2,y =﹣1, 则x+y =2﹣1=1; (3)x 2﹣1﹣(2x ﹣3) =x 2﹣2x+2 =(x ﹣1)2+1, ∵(x ﹣1)2≥0,∵(x﹣1)2+1>0,∵x2﹣1>2x﹣3.【点睛】本题考查了配方法的综合应用,配方的关键步骤是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.【拓展3】(2019·全国九年级单元测试)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵(y+2)2≥0,∵(y+2)2+4≥4,∵y2+4y+8的最小值为4.仿照上面的解答过程,求x2-x+4的最小值和6-2x-x2的最大值.【答案】154;7.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.【详解】解:(1)x2-x+4=(x-12)2+154,∵(x-12)2≥0,∵(x-12)2+154≥154.则x2-x+4的最小值是154;(2)6-2x-x2=-(x+1)2+7,∵-(x+1)2≤0,∵-(x+1)2+7≤7,则6-2x-x2的最大值为7.【点睛】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.配方法:先加上一次项系数一半的平方,使式中出现完全平方式,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.。
21.2.1配方法解一元二次方程 说课课件 人教版九年级数学上册
思考:解方程 (2x 1)2 5 …②
x2 6x 9 2 …③
问题3:方程②与方程①在形式上有何联系? 可否借鉴方程①的解法,求解方程②
解:由方程②得
(2x 1) 5
整体思 想
所以 (2x 1) 5 或 (2x 1) 5
解得
x1
5 1, 2
1 5 x2 2
返回
问题4:方程③与方程②①在形式上有何异同?能 否将方程③转化为方程②的形式?怎样求解?
①若 8x2 16 0,则x的值是
.
②如果方程 2(x 3)2 72 ,那么这个一元二次方程
的两根是 .
③解关于x的方程 (x m)2 n.
返回
五、教学评价分析
数学教学主要是数学活动的教学。
教师要真正成为学习的组织 者、引导者和合作者。
谢谢各位评委! 谢谢各位老师!
⑤ x 2 4x 4 5 ; ⑥ 9x2 6x 。1 4
(五)反思评价、发展提高
学生谈本课的学习感受和收获;
我学会了……
我体会到……
我感到困难的是……
课后作业布置: ⑴必做题:解下列方程
① 36x2 1 0
② 4x2 81
③ (x 5)2 25 ⑵选做题
④ x2 2x 1 4
结论:方程等号的左边是一个完全平方式, 右边是一个非负常数,这类一元二次方程都可以 表示为 x2 p( p 0) 或 (mx n)2 p ( p 0) 的形式.
返回
问题6:你能由问题5中的结论,谈一谈此类方程 解法的特点吗?
交流得出: ①转化为用直接开平方法解形如: x 2 p( p 0) 的方程,得 x p ,变一元
配方法解一元二次方程
一、教材分析
21.2.1 解一元二次方程—配方法
【跟踪训练】 1.一元二次方程 x2-3=0 的根为( C ) A.x=3 B.x=3 C.x1= 3,x2=- 3 D.x1=3,x2=-3
2.用直接开平方降次法解下列方程:
(1)x2-16=0;
(2)(x-2)2=5.
解:(1)x2-16=0,即 x2=16.
∴x1=4,x2=-4.
(2)(x-2)2=5,即 x-2=± 5.
∴x1=2+ 5,x2=2- 5.
作业
• 练习册第3页基础巩固的1、2、3、方程叫一元二次方程? • 2.它的一般形式是: • 3.二次项、二次项系数、一次项、一次项
系数、常数项分别是: • 4.如何求出2x2-8=0的解呢?
21.2 解一元二次方程
第1课时 配方法
学习目标
• 1.用直接开平方法解一元二次方程
自学指导
自学课本第5---6页,并完成以下填空。
解:(1)3x2-1=5 可化成 x2=2,
则原方程的解为 x1=- 2,x2= 2. (2)4(x-1)2-9=0 可化成(x-1)2=94. 两边开平方,得 x-1=±32. 则原方程的解为 x1=-12,x2=52. (3)4x2+16x+16=9 可化成(2x+4)2=9. 两边开平方,得 2x+4=±3. 则原方程的解为 x1=-72,x2=-12.
1.直接开平方降次法 根据平方根的定义,把一个一元二次方程_降__次___,转化为 ___两__个___一元一次方程,这种方法可解形如(x-a)2=b(b≥0)的 方程,其解为___x_=__a_±__b___.
注意:用直接开平方法求一元二次方程的解的类型有:
x2=a(a≥0);ax2=b(a,b 同号,且a≠0);(x+a)2=b(b≥0);
九年级数学上册21一元二次方程21.2解一元二次方程21.2.1配方法第一课时用直接开平方解一元二次
1.方程x2-64=0解是( D)
A.x=8
B.x=-8
C.x=4
D.x1=8 ,x2=-8
2.方程3x2+9=0根为( D)
A.3
B.-3
C.±3
D.无实数根
3.(滨州)以下方程中,一定有实数解是( B)
A.x2+1=0
B.(2x+1)2=0
C.(2x+1)2+3=0
D.( -a)2=a
4.方程(x+1)2=9解是( C)
∵一元二次方程(x-3)2=1两个解恰好分别是等腰△ABC底边长和腰长, ∴①当底边长和腰长分别为4和2时,4=2+2,此时不能组成三角形; ②当底边长和腰长分别是2和4时,4+4>2,此时能组成三角形, ∴△ABC周长为:2+4+4=10.
第8页
12.当m为何值时,方程
是关于x一元二次方程?
第9页
13.已知:x2+4x+y2-6y+13=0,求xx- 2+2yy2的值. 【解】 已知:x2+4x+y2-6y+13=0, 变形得:(x2+4x+4)+(y2-6y+9)=0, 即(x+2)2+(y-3)2=0, 所以x=-2,y=3.
第10页
21.2.1 配方法
第1课时 用直接开平方法解一元二次方程
1.利用直接开平方法解一元二次方程,其依据是__平__方__根__意义,即:假 如x2=p(p>0),则x1=____,x2=_____.
2.形如(ax+m)2=n(n>0)一元二次方程,也可利用直接开平方法求
解,即:先利用平方根意义把原方程转化为两个_____一__元__一__次__方ax程+m=
A.x=1或x=-1
B.x=3或Байду номын сангаас=-3
C.x1=2或x2=-4
人教版数学九年级上册21.2.1配方法解一元二次方程 教案
配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第21章第2节第1课时。
一、教学目标(一)知识目标1、理解求解一元二次方程的实质。
2、掌握解一元二次方程的配方法。
(二)能力目标1、体会数学的转化思想。
2、能根据配方法解一元二次方程的一般步骤解一元二次方程。
(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。
二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。
四、知识考点运用配方法解一元二次方程。
五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
2、引入:二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。
实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。
通过问题吸引学生的注意力,引发学生思考。
问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。
这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2列出方程:60x2=1500x2=25x=±5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。
1、用直接开平方法解一元二次方程(1)定义:运用平方根的定义直接开方求出一元二次方程解。
(2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。
问题2:要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?问题2重在引出用配方法解一元二次方程。
21.2.1第1课时用直接开平方法解一元二次方程课件
第1课时 用直接开平方法解 一元二次方程
一、教学目标
1.会利用开平方法解形如x2=p(p≥0)的方程. 2.初步了解形如(x+n)2=p(p≥0)方程的解法. 3.能根据具体问题的实际意义检验结果的合理性.
二、教学重难点
重点 运用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次 方程.
∴原方程的根为 x1=1+2 5,x2=1-2 5;
(2)原方程可化为(y-2)2=8,直接开平方得 y-2=±2 2, ∴原方程的根为 y1=2+2 2,y2=2-2 2; (3)原方程可化为 4(3x-1)2=9(3x+1)2,两边开平方得 2(3x -1)=±3(3x+1), ∴2(3x-1)=3(3x+1)或 2(3x-1)=-3(3x+1),
∴x1=-53,x2=-115.
例3 已知方程(x-3)2=k2+5的一个根是x=6,求k的 值和另一个根. 解:∵方程(x-3)2=k2+5的一个根是x=6,
∴(6-3)2=k2+5,解得k=±2, ∴原方程为(x-3)2=9, ∴另一个根为x=0.
练习
1.教材P6 练习. 2.若x2-2xy+y2=4,则x-y的值为( C )
提出问题: (1)一个正方体有几个面?若一个正方体的棱长为x dm ,则这个正方体的表面积是多少? (2)本题中的等量关系是什么?请概括该等量关系,列 出方程; (3)你能根据平方根的意义解方程 x2=25吗?本题中负 值为什么要舍去?
探究
对照上面解方Biblioteka (1)的过程,你认为应怎样解方程(x+3)²=5?
(1)一元二次方程与一元一次方程有什么不同?二次是 如何转化为一次的?
(2)请谈谈如何降次.
21.2.1 配方法解一元二次方程
通过配成完全平方形式 来解一元二次方程的方 法,叫做配方法。
练一练
填上适当的数,使等式成立。
(1) x 12x ____ x 6
2
6
2
2
(2) x2 4x 2 ____ x ___ 2
(3) x
2 2 4 4 8x ____ x ___
要使一块长方形场地的长比宽多6m,并且 面积为16m2,场地的长和宽应各是多少? 设场地的宽为 xm ,长
x 6m,列方程得
即
xx 6 16 2 x 6 x 16 0
0 方程 x 6 x 16 和方程
2
x 6 x 9 25
2
有何联系与区别呢?
4 x 2x 3
2
二次项系数化为1,得 配方
4 2 x 2x 1 1 3
2 2
x 1
由此可得
2
7 3
21 x 1 3
x1 1 21 , x2 1 3 21 3
(3)移项,得 2 配方
2
x 2 x 2
2 2
x 2 x 1 2 1
2
2
问题1 一桶油漆可刷的面积为1500 d m ,李林用这桶
2
油漆恰好刷完10个同样的正方体形状的盒子的全部 外表面,你能算出盒子的棱长吗?
2
设正方体的棱长为 xdm, 列方程10 6 x 1500 由此可得 x 25 x 5, 即 x1 5, x2 5
2
这种解法叫做什么? 直接开平方法
九年级
上册
21.2.1
配方法解一元二次方程
完全平方公式:
a a
21.2.1一元二次方程求根方法——配方法(1)
x2 + 6x = -4 ③ ②的形式呢? 怎样保证 变形的正确性 呢? 两边加 9 x2 + 6x + 9 = -4 + 9 左边写成平方形式
2 即 (x + 3) =5 由此可得…
2.推导求根公式
回顾解方程 过程: x2 + 6x + 4 = 0
x2 + 6x = -4 x2 + 6x + 9 = -4 + 9
③ 6 2 2 两边加 9 9,即( )=3 =9 2 x2 + 6x + 9 = -4 + 9
2 (x + 3) =5
x2 + 6x = -4
一般地,当二次项系数为 1 时,二次式加上一次项 系数一半的平方,二次式就可以写成完全平方的形式.
2.推导求根公式
议一议:结合方程①的解答过程,说出解一般二次 项系数为 1 的一元二次方程的基本思路是什么?具体步 骤是什么? 配方
2 (1) 2x
1 3x
6x 3 0 4x 2ห้องสมุดไป่ตู้ 0
(2)4 x (3)3 x
2 2
4.归纳小结
(1)用配方法解一元二次方程的基本思路是什么? 2 把方程配方为(x + n) = p 的形式,运用开平方法, 降次求解. (2)配方法解一元二次方程的一般步骤有哪些? (3)在配方法解一元二次方程的过程中应该注意 哪些问题?
x (5)
x 4 8x 12
方程 3 x 2 6 x 4 0 如何求解?
移项
3 x 2 6 x 4
二次项系数化为1
2
等式两边同除二次项系数
等式两边同加一次项系数一半的平方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)2x2-8=0(2)9x2-5=3(3)(x+6)2-9=0
【课堂练习】:
活动3、知识运用
1Байду номын сангаас用直接开平方法解下列方程:
(1)3(x-1)2-6=0(2)x2-4x+4=5(3)9x2+6x+1=4
(4)36x2-1=0(5)4x2=81(6)(x+5)2=25
(7)x2+2x+1=4
归纳小结
4.用直接开平方法解下列方程:
(1)(2-x)2-81=0(2)2(1-x)2-18=0(3)(2-x)2=4
5.解关于x的方程(x+m)2=n.
6、某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m.
(1)鸡场的面积能达到180m2吗?能达到200m吗?
(2)鸡场的面积能达到210m2吗?
A.(x- )2= ,x= ±
B.(x- )2=- ,原方程无解
C.(x- )2= ,x1= + ,x2=
D.(x- )2=1,x1= ,x2=-
二、填空题
1.若8x2-16=0,则x的值是_________.
2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.
3.如果a、b为实数,满足 +b2-12b+36=0,那么ab的值是_______.
7.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,并说明你制作的理由吗?
布置作业:
教后感悟:
解一元二次方程的实质是:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
归纳:如果方程能化成的形式,那么可得
【课堂活动】
活动1、预习反馈
活动2、例习题分析
例1用直接开平方法解下列方程:
(1)(3x+1)2=7(2)y2+2y+1=24(3)9n2-24n+16=11
应用直接开平方法解形如,那么可得达到降次转化之目的.
【课后巩固】
一、选择题
1.若x2-4x+p=(x+q)2,那么p、q的值分别是().
A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2
2.方程3x2+9=0的根为().
A.3 B.-3 C.±3 D.无实数根
3.用配方法解方程x2- x+1=0正确的解法是().
我们知道x2=25,根据平方根的意义,直接开平方得x=±5,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?
计算:用直接开平方法解下列方程:
(1)x2=8(2)(2x-1)2=5(3)x2+6x+9=2
(4)4m2-9=0(5)x2+4x+4=1(6)3(x-1)2-9=108
花兰寺学校数学学科高效课堂导学案
教研组长签字: 周次: 第 课时 总课时数:
课题
21.2.1配方法解一元二次方程(1)
课型
教
材
分
析
目标
1、理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.
2、提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
重点
重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.
难点
难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
导学过程
个性空间
(时间分配)
【课前预习】
导学过程
阅读教材,完成以下问题
一桶某种油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部表面,你能算出盒子的棱长吗?