贵池区高中2018-2019学年高三下学期第三次月考试卷数学
贵池区高级中学2018-2019学年高三上学期11月月考数学试卷含答案
贵池区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=e x +x ,g (x )=lnx+x ,h (x )=x ﹣的零点依次为a ,b ,c ,则()A .c <b <aB .a <b <cC .c <a <bD .b <a <c2. 已知,若不等式对一切恒成立,则的最大值为2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩(2)()f x f x -≥x R ∈a ( )A .B .C .D .716-916-12-14-3. 如图,该程序运行后输出的结果为()A .7B .15C .31D .634. 下列命题中正确的是()(A )若为真命题,则为真命题p q ∨p q ∧( B ) “,”是“”的充分必要条件0a >0b >2b aa b+≥ (C ) 命题“若,则或”的逆否命题为“若或,则”2320x x -+=1x =2x =1x ≠2x ≠2320x x -+≠(D ) 命题,使得,则,使得:p 0R x ∃∈20010x x +-<:p ⌝R x ∀∈210x x +-≥5. 函数y=2|x|的图象是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D . 6.是首项,公差的等差数列,如果,则序号等于( )A .667B .668C .669D .6707. 已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )A .1<e <B .e >C .e >D .1<e <8. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)9. 已知集合,,则()2{430}A x x x =++≥{21}xB x =<A B =I A .B .C .D .[3,1]--(,3][1,0)-∞--U (,3)(1,0]-∞--U (,0)-∞10.“m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件11.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)12.设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为()A.(1,1+B.(1)+∞C. (1,3)D .(3,)+∞二、填空题13.用“<”或“>”号填空:30.8 30.7.14. 设函数,.有下列四个命题:()xf x e =()lng x x m =+①若对任意,关于的不等式恒成立,则;[1,2]x ∈x ()()f x g x >m e <②若存在,使得不等式成立,则;0[1,2]x ∈00()()f x g x >2ln 2m e <-③若对任意及任意,不等式恒成立,则;1[1,2]x ∈2[1,2]x ∈12()()f x g x >ln 22em <-④若对任意,存在,使得不等式成立,则.1[1,2]x ∈2[1,2]x ∈12()()f x g x >m e <其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.15.命题“若1x ≥,则2421x x -+≥-”的否命题为.16.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.17.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .18.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .三、解答题19.已知m ≥0,函数f (x )=2|x ﹣1|﹣|2x+m|的最大值为3.(Ⅰ)求实数m 的值;(Ⅱ)若实数a ,b ,c 满足a ﹣2b+c=m ,求a 2+b 2+c 2的最小值. 20.(本题满分12分)已知向量,,,记函数(sin cos ))a x x x =+r )cos sin ,(cos x x x -=R x ∈.x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在中,角的对边分别为且满足,求的取值范围.ABC ∆C B A ,,c b a ,,C a c b cos 22=-)(B f 【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.21.本小题满分10分选修:不等式选讲45-已知函数.2()log (12)f x x x m =++--Ⅰ当时,求函数的定义域;7=m )(x f Ⅱ若关于的不等式的解集是,求的取值范围.x 2)(≥x f R m22.如图:等腰梯形ABCD ,E 为底AB 的中点,AD=DC=CB=AB=2,沿ED 折成四棱锥A ﹣BCDE ,使AC=.(1)证明:平面AED ⊥平面BCDE ;(2)求二面角E ﹣AC ﹣B 的余弦值.23.已知函数f (x )=2cos 2ωx+2sin ωxcos ωx ﹣1,且f (x )的周期为2.(Ⅰ)当时,求f (x )的最值;(Ⅱ)若,求的值.24.已知椭圆:(),点在椭圆上,且椭圆的离心率为.C 22221x y a b +=0a b >>3(1,2C C 12(1)求椭圆的方程;C (2)过椭圆的右焦点的直线与椭圆交于,两点,为椭圆的右顶点,直线,分别C F C P Q A C PA QA 交直线:于、两点,求证:.4x =M N FM FN ⊥贵池区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案BC如图,该程序运行后输DBCBBBB题号1112答案AA二、填空题13. > 14.①②④15.若1x <,则2421x x -+<-16.17. 3 .18. 6 .三、解答题19. 20.21.22. 23.24.(1) ;(2)证明见解析.22143x y +=。
高考数学-下学期第三次月考高三数学(理)试题.docx
2015-2016学年下学期第三次月考高三数学(理)试题一.选择题:(每题4分,共10小题,40分)1.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( )A .5B .8C .10D .142.正项等比数列{a n }的公比为2,若a 2a 10=16,则a 9的值是( )A .8B .16C .32D .643.某几何体的三视图如图所示,则它的体积是( )A .283π-B .83π- C .8-2π D .23π4.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3 B .4π C .2π D.4π3 5.如图是一个几何体的三视图,若该几何体的表面积为9π,则正视图中实数a 的值等于( )A .1B .2C .3D .46.设等差数列{a n }的前n 项和为S n ,若S 3=3,S 6=15,则S 9=( )A .27B .36C .44D .547.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1) C.n (n +1)2 .D n (n -1)28.下列不等式一定成立的是( )A . 21lg()lg (0)4x x x +>>B .1sin 2(,)sin x x k k Z x π+≥≠∈C.212||()x x x R +≥∈D 211()1x R x >∈+9.设l ,m 是两条不同直线,α,β是两个不同平面,则下列命题中正确的是( )A .若l ∥α,α∩β=m ,则l ∥mB .若l ∥α,m ⊥l ,则m ⊥αC .若l ∥α,m ∥α,则l ∥mD .若l ⊥α,l ∥β,则α⊥β 10.若函数)(x f 是奇函数,且在(+∞,0),内是增函数,0)3(=-f ,则不等式0)(<⋅x f x 的解集为( ) A .}303|{><<-x x x 或B .}303|{<<-<x x x 或C .}33|{>-<x x x 或D .}3003|{<<<<-x x x 或二.填空题:(每题4分,共5小题,20分) 11.已知a 、b ∈R +,且a+b=1,则ba 11+≥m,恒成立的实数m 的最大值是________________.12.函数y=31-x +x(x >3)的最小值.________________.13.公比为2的等比数列{}n a 的各项都是正数,且31116a a =,则210log a = .14.若实数x,y 满足{x −y +1≥0,x +y ≥0,x ≤0,则z=2x+3y 的最大值是 .15. 若不等式2x>x 2+a 对于一切x ∈[-2,3]恒成立,则实数a 的取值范围是 . 三.解答题:(每小题10分))16.如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ;(2)BC 1⊥AB 1.17.数列{a n }的通项公式为a n =4n-1, (1)求数列{a n }前n 项的和为n S ;(2)令b n =nS n,求数列{2n b n }的前n 项的和n T 。
城区高中2018-2019学年高三下学期第三次月考试卷数学(1)
城区高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 全称命题:∀x ∈R ,x 2>0的否定是( )A .∀x ∈R ,x 2≤0B .∃x ∈R ,x 2>0C .∃x ∈R ,x 2<0D .∃x ∈R ,x 2≤02. 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣1,0)∪(0,1)3. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A.B.﹣C.D.﹣4.设=(1,2),=(1,1),=+k,若,则实数k 的值等于( )A.﹣ B.﹣ C. D.5. “”是“一元二次方程x 2+x+m=0有实数解”的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件6. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限7.不等式恒成立的条件是( )A .m >2B .m <2C .m <0或m >2D .0<m <28. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是( ) A .4立方丈B .5立方丈C .6立方丈D .8立方丈9. 下面各组函数中为相同函数的是( )A .f (x )=,g (x )=x ﹣1B .f (x )=,g (x )=C .f (x )=ln e x 与g (x )=e lnxD .f (x )=(x ﹣1)0与g (x )=10.满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .1B .2C .3D .411.已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( ) A .[﹣9,+∞) B .[0,+∞) C .(﹣9,1)D .[﹣9,1)12.已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都成立,则实数a 的取值范围为( ) A .[﹣2,0] B .[﹣3,﹣1] C .[﹣5,1] D .[﹣2,1)二、填空题13.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .14.已知(1+x+x 2)(x)n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .15.过抛物线y 2=4x 的焦点作一条直线交抛物线于A ,B 两点,若线段AB 的中点M 的横坐标为2,则|AB|等于 .16.设椭圆E :+=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 . 17.函数y=sin 2x ﹣2sinx 的值域是y ∈ .18.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .三、解答题19.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.(I )求p 的值;(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.20.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.21.(本小题满分12分)已知函数f (x )=12x 2+x +a ,g (x )=e x .(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.22.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是梯形,//AB DC ,2ABD π∠=,AD =22AB DC ==,F为PA 的中点.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PB PD ===P BDF -的体积.23.(本小题满分12分)ABCDPF在等比数列{}n a 中,3339,22a S==. (1)求数列{}n a 的通项公式; (2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++<.24.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y =的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.25.已知函数f(x)=2x2﹣4x+a,g(x)=log a x(a>0且a≠1).(1)若函数f(x)在[﹣1,3m]上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)①求实数a的值;②设t1=f(x),t2=g(x),t3=2x,当x∈(0,1)时,试比较t1,t2,t3的大小.26.(本小题满分10分)选修4-1:几何证明选讲1111]CP=.如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3(1)若PE交圆O于点F,16EF=,求CE的长;5⊥于D,求CD的长. (2)若连接OP并延长交圆O于,A B两点,CD OP城区高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:命题:∀x∈R,x2>0的否定是:∃x∈R,x2≤0.故选D.【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.2.【答案】D【解析】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选D.【点评】本题综合考查奇函数定义与它的单调性.3.【答案】D【解析】解:∵;∴在方向上的投影为==.故选D.【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.4.【答案】A【解析】解:∵=(1,2),=(1,1),∴=+k=(1+k,2+k)∵,∴=0,∴1+k+2+k=0,解得k=﹣故选:A【点评】本题考查数量积和向量的垂直关系,属基础题.5.【答案】A【解析】解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.6.【答案】D【解析】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.【点评】本题考查了象限角的三角函数符号,属于基础题.7.【答案】D【解析】解:令f(x)=x2+mx+=(x+)2﹣+则f min(x)=﹣+.∵恒成立,∴﹣+>0解得0<m<2.故选D.【点评】本题考查了函数恒成立问题,是基础题.8.【答案】【解析】解析:选B.如图,设E 、F 在平面ABCD 上的射影分别为P ,Q ,过P ,Q 分别作GH ∥MN ∥AD 交AB 于G ,M ,交DC 于H ,N ,连接EH 、GH 、FN 、MN ,则平面EGH 与平面FMN 将原多面体分成四棱锥E -AGHD 与四棱锥F -MBCN 与直三棱柱EGH -FMN .由题意得GH =MN =AD =3,GM =EF =2,EP =FQ =1,AG +MB =AB -GM =2,所求的体积为V =13(S 矩形AGHD +S 矩形MBCN )·EP +S △EGH ·EF =13×(2×3)×1+12×3×1×2=5立方丈,故选B.9. 【答案】D【解析】解:对于A :f (x )=|x ﹣1|,g (x )=x ﹣1,表达式不同,不是相同函数;对于B :f (x )的定义域是:{x|x ≥1或x ≤﹣1},g (x )的定义域是{x}x ≥1},定义域不同,不是相同函数;对于C :f (x )的定义域是R ,g (x )的定义域是{x|x >0},定义域不同,不是相同函数; 对于D :f (x )=1,g (x )=1,定义域都是{x|x ≠1},是相同函数;故选:D .【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题. 10.【答案】B【解析】解:∵M ∩{1,2,4}={1,4}, ∴1,4是M 中的元素,2不是M 中的元素. ∵M ⊆{1,2,3,4}, ∴M={1,4}或M={1,3,4}. 故选:B .11.【答案】D【解析】解:函数f (x )=lg (1﹣x )在(﹣∞,1)上递减, 由于函数的值域为(﹣∞,1], 则lg (1﹣x )≤1, 则有0<1﹣x ≤10, 解得,﹣9≤x <1. 则定义域为[﹣9,1), 故选D .【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.12.【答案】A【解析】解:∵偶函数f(x)在[0,+∞)上是增函数,则f(x)在(﹣∞,0)上是减函数,则f(x﹣2)在区间[,1]上的最小值为f(﹣1)=f(1)若f(ax+1)≤f(x﹣2)对任意都成立,当时,﹣1≤ax+1≤1,即﹣2≤ax≤0恒成立则﹣2≤a≤0故选A二、填空题13.【答案】.【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:.故答案为:.14.【答案】5.【解析】二项式定理.【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利用(x)n(n∈N+)的通项公式讨论即可.【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.15.【答案】6.【解析】解:由抛物线y2=4x可得p=2.设A(x1,y1),B(x2,y2).∵线段AB的中点M的横坐标为2,∴x1+x2=2×2=4.∵直线AB过焦点F,∴|AB|=x1+x2+p=4+2=6.故答案为:6.【点评】本题考查了抛物线的过焦点的弦长公式、中点坐标公式,属于基础题.16.【答案】.【解析】解:如图,设AC中点为M,连接OM,则OM为△ABC的中位线,于是△OFM∽△AFB,且==,即=可得e==.故答案为:.【点评】本题考查椭圆的方程和性质,主要是离心率的求法,运用中位线定理和三角形相似的性质是解题的关键.17.【答案】[﹣1,3].【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].故答案为[﹣1,3].【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.18.【答案】.【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.三、解答题19.【答案】【解析】解:(I )由题意可知,抛物线y 2=2px (p >0)的焦点坐标为,准线方程为.所以,直线l 的方程为…由消y 并整理,得…设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=3p ,又|AB|=|AF|+|BF|=x 1+x 2+p=4, 所以,3p+p=4,所以p=1…(II )由(I )可知,抛物线的方程为y 2=2x .由题意,直线m 的方程为y=kx+(2k ﹣1).…由方程组(1)可得ky 2﹣2y+4k ﹣2=0(2)…当k=0时,由方程(2),得y=﹣1.把y=﹣1代入y 2=2x ,得.这时.直线m 与抛物线只有一个公共点.…当k ≠0时,方程(2)得判别式为△=4﹣4k (4k ﹣2).由△>0,即4﹣4k (4k ﹣2)>0,亦即4k 2﹣2k ﹣1<0.解得.于是,当且k ≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m 与抛物线有两个不同的公共点,…因此,所求m 的取值范围是.…【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.20.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)()g a 【解析】【试题分析】(1)先对函数()()323131,02f x x a x ax a =+--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值()01,f =()3213122f a a a =--+=()()211212a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]0,x p ∈时,有()11f x -≤≤成立;(3)借助(2)的结论()f x :在[)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。
城区高中2018-2019学年高三下学期第三次月考试卷数学(2)
城区高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. “双曲线C 的渐近线方程为y=±x ”是“双曲线C的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件 2. 设x ,y ∈R ,且x+y=4,则5x +5y 的最小值是( )A .9B .25C .162D .503. 已知函数f (x )=是R 上的增函数,则a 的取值范围是( )A .﹣3≤a <0B .﹣3≤a ≤﹣2C .a ≤﹣2D .a <04. 已知命题p :“若直线a 与平面α内两条直线垂直,则直线a 与平面α垂直”,命题q :“存在两个相交平面垂直于同一条直线”,则下列命题中的真命题为( ) A .p ∧q B .p ∨q C .¬p ∨q D .p ∧¬q5. 下列哪组中的两个函数是相等函数( ) A .()()4f x x =g B .()()24=,22x f x g x x x -=-+ C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 6. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, } B .{,, } C .{V|≤V≤} D .{V|0<V≤}7. 已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1 D .a ≤﹣38. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)- 9. 如图,1111DC B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .10.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .(x ≠0)B .(x ≠0)C .(x ≠0)D .(x ≠0)11.圆222(2)x y r -+=(0r >)与双曲线2213yx -=的渐近线相切,则r 的值为( )A B .2 C D .【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力. 12.在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .二、填空题13.设椭圆E :+=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 .14.长方体1111ABCD A B C D -中,对角线1A C 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sin sin sin αβγ++= .15.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .16.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .17.已知三棱柱ABC ﹣A 1B 1C 1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O 的表面上,且球O 的表面积为7π,则此三棱柱的体积为 . 18.命题“若1x ≥,则2421x x -+≥-”的否命题为.三、解答题19.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.20.在平面直角坐标系xOy中,圆C:x2+y2=4,A(,0),A1(﹣,0),点P为平面内一动点,以PA为直径的圆与圆C相切.(Ⅰ)求证:|PA1|+|PA|为定值,并求出点P的轨迹方程C1;(Ⅱ)若直线PA与曲线C1的另一交点为Q,求△POQ面积的最大值.21.已知曲线C1的参数方程为曲线C2的极坐标方程为ρ=2cos(θ﹣),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.(1)求曲线C2的直角坐标方程;(2)求曲线C2上的动点M到直线C1的距离的最大值.22.已知y=f(x)的定义域为[1,4],f(1)=2,f(2)=3.当x∈[1,2]时,f(x)的图象为线段;当x∈[2,4]时,f(x)的图象为二次函数图象的一部分,且顶点为(3,1).(1)求f(x)的解析式;(2)求f(x)的值域.23.已知椭圆E :=1(a >b >0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E 的方程; (Ⅱ)经过点P (﹣2,0)分别作斜率为k 1,k 2的两条直线,两直线分别与椭圆E 交于M ,N 两点,当直线MN 与y 轴垂直时,求k 1k 2的值.24.已知圆C :(x ﹣1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A ,B 两点. (1)当l 经过圆心C 时,求直线l 的方程;(2)当弦AB 被点P 平分时,求直线l 的方程.25.(本小题满分12分)已知函数1()ln (42)()f x m x m x m x=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.26.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系中,曲线C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,C 2的极坐标方程为ρ=2sin (θ+π4).(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=3π4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面积.城区高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,若双曲线C的方程为﹣=2,满足渐近线方程为y=±x,但双曲线C的方程为﹣=1不成立,即充分性不成立,故“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.2.【答案】D【解析】解:∵5x>0,5y>0,又x+y=4,∴5x+5y≥2=2=2=50.故选D.【点评】本题考查基本不等式,关键在于在应用基本不等式时灵活应用指数运算的性质,属于基础题.3.【答案】B【解析】解:∵函数是R上的增函数设g(x)=﹣x2﹣ax﹣5(x≤1),h(x)=(x>1)由分段函数的性质可知,函数g(x)=﹣x2﹣ax﹣5在(﹣∞,1]单调递增,函数h(x)=在(1,+∞)单调递增,且g(1)≤h(1)∴∴解可得,﹣3≤a≤﹣2故选B4.【答案】C【解析】解:根据线面垂直的定义知若直线a与平面α内两条相交直线垂直,则直线a与平面α垂直,当两条直线不相交时,结论不成立,即命题p为假命题.垂直于同一条直线的两个平面是平行的,故命题存在两个相交平面垂直于同一条直线为假命题.,即命题q 为假命题.则¬p∨q为真命题,其余都为假命题,故选:C.【点评】本题主要考查复合命题真假之间的判断,分别判断命题p,q的真假是解决本题的关键.5.【答案】D111]【解析】考点:相等函数的概念.6.【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V≤}.故选:D.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.7.【答案】A【解析】解:由|x+1|≤2得﹣3≤x≤1,即p:﹣3≤x≤1,若p是q的充分不必要条件,则a≥1,故选:A.【点评】本题主要考查充分条件和必要条件的判断,比较基础.8. 【答案】A【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).9. 【答案】D 【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直. 10.【答案】B【解析】解:∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选B.【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.11.【答案】C12.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。
池州市贵池区2017-2018学年度第二学期高三第三模考-精选教育文档
池州市贵池区2019-2019学年度第二学期高三第三次模考时间:120分钟分值:150分本试题分为第I卷(选择题)和第II卷(非选择题)两部分第二部分阅读理解(共两节,满分40分)第一节(共15题,每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该题涂黑。
AI-drive360Looking for things to do in Orlando after you’ve visited Disney World? Families should head for i-drive 360: an 18-acre entertainment complex centred around a 400-foot tall observation wheel - the Coea-Cola Orlando Eye ——that offers breathtaking views of Central Florida. There two on-site museums make I-Drive360 stand out. Skeletons:Museum of Osteology features 500 complete animal skeletons(骨骼)that provide remarkable look into the world of wildlife. Sea Life Orlando is an interactive underwater adventure allowing you to observe sea species up close from inside a thrilling 360-degree ocean tunnel.Lake Eola ParkLocated in the heart of downtown Orlando. Lake Eola Park is continuously rated one of the best things to do in Orlando by both visitors and locals alike. Whether you want a leisurely walk or a heart-pumping jog, you can taste the peaceful scenery along the 1. 5-kilometre pathway that lines the lake. Feeling romantic?Wonder WorksWonder Works was actually built to look as though it was dropped upside-down on anotherwise ordinary Orlando city block! No, your eyes aren’t playing tricks on you ——here everything is upside down! Kids, of all ages will find the 100-plus hands-on exhibits inside the striking structure just as mind-blowing, from the natural disasters-themed displays to a 36-foot-high indoor ropes course.College Park NeighborhoodVoted"Orlando’s Best Neighborhood, "it's here you"ll find the Dubsdread Golf Course (the only pub-lic golf course in the city), and some of the best food Orlando has to offer. In the fall, College Park plays host to a popular Jazz Festival, with as many as 10 bands playing on three stages dotted throughout the neighborhood.21. What makes I-drive360 most famous?A. The coca-cola Orlando EyeB. Is tie and ideal location.C. Its two on-site museumsD. The 360-degree ocean tunnel22. If you have a mood for a walk, where would you go?A. I-drive360.B. Lake Eola Park.C. Wonder Work.D. College Park Neighborhood.23. What can we know about Wonder Works?A. It has earned a lot of money.B. Many hands are working there.C No adult will be admitted into it.D: It is educational and entertaining.24. What do the four attractions have in common?A. They are all Orlando-Based.B. They are closely located.C. They all are seaside ones.D. They are all for children.BMadison Williams was studying in her bedroom when her moth shouted,“A little boy fell into a septic tank (化粪池).Can you help?”Madison and her mother ran to a neighbor's yard. The tank was 11 inches in diameter(直径)——slighter wider than a basketball——with a cover that had not been fixed well. A boy, aged only two, had slipped in and was drowning in four feet of sewage(污水) inside a 8-feet-deep tank. Every possible means had been tried, but in vain.Madison quickly realized that she was the only one who could fit through the small hole. Without hesitation, she said, "Lower me in. "Inside, the smelly air made her sick. But she moved on. In the process, she jammed her left wrist against a hidden pole, injuring the muscles in her wrist and arm. Rather than tend to her injury, Madison skimmed the surface of the sewage, hoping to feel the boy. Minutes ticked by and she finally saw the dim outline of his foot. Madison shot her good hand out and grasped it tightly. Ten minutes later, they were lifted up.The boy was placed on his side, and an adult gave him several hard whacks(重击)on the back,one right after the other, until the boy coughed up liquids. It was only when Madison heard him cry that she knew he was all right. But it took Madison longer to recover than the boy, who was taken to the hospital and released that same night. She, however, receivedmonths of physical treatment for her wrist, which, says neighbor Mary Holley, made the girls actions all the more impressive. Holley says. "Will any other 13-year-old voluntarily go into a septic tank?”25.The passage mainly tells us thatA. what is needed for a 13-year-old girlB. a selfless teenage girl saved a little boyC. a two-year-old boy fell into a septic tankD. how people pulled together to save a boy26. The little boy fell into the septic tank mainly becauseA. he was too young to standB. there was no one to follow himD. he was curious about the tankC. the tank cover was not secured27. What does Holley think of Madison?A.BraveB. Aggressive.C. Elegant.D. Forgiving28. We can conclude from the passage that ________ .A. Madison has a slim figureB. Madison has a good featureC. Madison took in more liquids than the boyD. Madison was sent to hospital earlier than the boyCWill a parent ever forget the first time they hug their baby? A survey of 125 full-term and premature(早产的)newborns at Nationwide Children's Hospital in Columbus, Ohio, found early, gentle displays of affection from parents and caregivers have lasting effects on how baby brains react to gentle touch. That means early exposure to hugs could help pre-term babies experience affection as pleasant while also increasing positive brain responses.Nearly every parent has no doubt heard about the benefits of kangaroo care and skin-to-skin contact, but this new information proves those hours spent sleeping on mam or dad's chest can even counteract negative experiences among weak premature babies.The survey found the more supportive touch a premature baby received from their parents or hospital staff, the stronger their brain responses were. According to one of the authors, Dr. Nathalie Maitre, the survey indicates skin-to-skin care is absolutely vital for babies spending a long period of time in neonatal(新生儿的)intensive care units. When a baby is stuck in the NICU, mom and dad aren't always available for hugging duty.“When parents cannot do this, hospitals need to consider someone professional to provide a carefully planned touch experience, sometimes missing from a hospital setting,"Maitre tells Science Daily.…Knowing that a gentle hug can help counteract the prick(刺痛)of a needle is just one more reason for parents to pet their baby as much as possible ——not that anyone needs another reason.We parents often feel like our hearts are growing bigger each time we hug our little ones, but the truth is their brains are growing even faster than our bonds.29What does the research find?A More hugs benefit newborns more.B Gentle hugs benefit children as well.C. How to measure advantages of hugs.D. What is needed for premature newborns.30. What does the underlined word “counteract” in Paragraph 2.mean?A. give rise to. B weaken. C. increase. D. lead a.31. What does Dr. Nathalie Maitre suggest in Paragraph 3?A. Parents need more guidance to touch their babies.…B. Some hospitals fail to offer such touch experiences.C, More effort should be made to improve medical care.D. Parents didn't follow the doctors' professional direction.DLake Effect snow results from cold, arctic air traveling over a relatively warm body of water. The cold, dry air picks up the lake moisture(湿气)and deposits it, in the form of snow, over land. In Cleveland, the wind generally blows from the west across Lake Erie and pours the Lake Effect snow in the city's eastern suburbs, from Shaker Heights all the way to Buffalo.In Cleveland, Lake Effect snow occurs early in the season before lake Erie has a chance to freeze. During most winters, Lake Erie, the most (shallow of all of the Great Lakes, freezes around mid-January. It often occurs again in the late winter and early spring when the lake begins to thaw(解冻).Lake Effect produces heavy snowfall, up to 6inches in one hour. It's also relatively unpredictable. In the early fall, when ground temperatures are relatively high, you will occasionally have thundersnow —snow accompanied by thunder and lightening. In Northeast Ohio, the "snowbelt" runs east of the city, from the "heights" suburbs all the way to the PA state line.In addition to creating wonderful winter scenes in the small towns of eastern Ohio, such as Chardon, Burton, and Madison, Lake Effect snow serves as a blanket to keep the ground temperature even, which is beneficial to the Lake and Ashtabula County Ohio wine, produce," and nursery growers.Lake Effect occurs over all of the Great Lakes, usually at the southeastern shores. Since Lake-Effect is drawn to the higher altitudes, the phenomenon is also found as far inland as theAppalachian peaks of West Virginia. In addition to the five Great Lakes, Lake Effect also occurs over the Great Salt Lake in Utah.33. What is the purpose of writing the text?A. To introduce snow in Lake Erie.B. To advertise for Cleveland city.C. To explore Luke Effect snow.D. To explain-lake Eect in America.34. What does the third paragraph mainly talk about?A. Consequences of Lake Effect snow.B. Factors that decide Lake Effect snow.C. Advantages and disadvantages of snow.D. Benefits that-Lake Effect snow brings.35.What can we know from the passage?A. Lake Effect might also take place on mountains.B. Lake Erie is the deepest of the Great Lakes.C. Jake Effect snow takes shapes from Lake Erie.D. Luke Effect takes place even when the lake is frozen.第二节(共5小题;每小题2分,满分10分)根据短文内容,从句文后的选项中选出能填入空白处的最佳选项,选项种有两项为多余选项。
城区高中2018-2019学年高三下学期第三次月考试卷数学
城区高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( )A.124+ B.124- C. 34D .0 2. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种3. 已知一三棱锥的三视图如图所示,那么它的体积为( ) A .13 B .23C .1D .2 4. 执行如图所示的程序框图,输出的z 值为( )A .3B .4C .5D .65. 函数f (x )=()x2﹣9的单调递减区间为( ) A .(﹣∞,0) B .(0,+∞) C .(﹣9,+∞) D .(﹣∞,﹣9)6. 已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P使得,则此椭圆的离心率的取值范围是( )A .(0,) B .(0,] C.(,] D .[,1)7. 自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.在调查某高中学校高三学生自主招生报考的情况,得到如下结果: ①报考“北约”联盟的学生,都没报考“华约”联盟 ②报考“华约”联盟的学生,也报考了“京派”联盟 ③报考“卓越”联盟的学生,都没报考“京派”联盟 ④不报考“卓越”联盟的学生,就报考“华约”联盟 根据上述调查结果,下列结论错误的是( ) A .没有同时报考“华约” 和“卓越”联盟的学生班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________B .报考“华约”和“京派”联盟的考生一样多C .报考“北约” 联盟的考生也报考了“卓越”联盟D .报考“京派” 联盟的考生也报考了“北约”联盟8. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-29. 双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( ) A .13B .15C .12D .1110.已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}2则几何体的体积为( )34意在考查学生空间想象能力和计算能a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列b D .b <1<a值等于 .2)+sin2,则该数列的前16项和为 .__________.16.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +<恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.17.(x﹣)6的展开式的常数项是(应用数字作答).18.等比数列{a n}的前n项和为S n,已知S3=a1+3a2,则公比q=.三、解答题19.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1的直角坐标方程与曲线C2的普通方程;(Ⅱ)试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.20.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.求证:PC⊥BC;(Ⅱ)求三棱锥C﹣DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.21.(本小题满分10分)已知圆P 过点)0,1(A ,)0,4(B .(1)若圆P 还过点)2,6(-C ,求圆P 的方程; (2)若圆心P 的纵坐标为,求圆P 的方程.22.已知三棱柱ABC ﹣A 1B 1C 1,底面三角形ABC 为正三角形,侧棱AA 1⊥底面ABC ,AB=2,AA 1=4,E 为AA 1的中点,F 为BC 的中点 (1)求证:直线AF ∥平面BEC 1 (2)求A 到平面BEC 1的距离.23.已知f (α)=,(1)化简f (α);(2)若f (α)=﹣2,求sin αcos α+cos 2α的值.24.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.25.选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.266(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.城区高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义. 2. 【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C 31C 62C 21C 42=540种.故选D .3. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B . 4. 【答案】D【解析】解:执行循环体前,S=1,a=0,不满足退出循环的条件,执行循环体后,S=1×20=20,a=1,当S=2°,a=1,不满足退出循环的条件,执行循环体后,S=1×21=21,a=2 当S=21,a=2,不满足退出循环的条件,执行循环体后,S=21×22=23,a=3 当S=23,a=3,不满足退出循环的条件,执行循环体后,S=23×23=26,a=4 当S=26,a=4,满足退出循环的条件,则z==6故输出结果为6 故选:D【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.5. 【答案】B【解析】解:原函数是由t=x 2与y=()t﹣9复合而成,∵t=x 2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=()t﹣9其定义域上为减函数,∴f (x )=()x2﹣9在(﹣∞,0)上是增函数,在(0,+∞)为减函数,∴函数ff (x )=()x2﹣9的单调递减区间是(0,+∞).故选:B .【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键.6. 【答案】D 【解析】解:由题意设=2x ,则2x+x=2a ,解得x=,故||=,||=,当P 与两焦点F 1,F 2能构成三角形时,由余弦定理可得 4c 2=+﹣2×××cos ∠F 1PF 2, 由cos ∠F 1PF 2∈(﹣1,1)可得4c 2=﹣cos ∠F 1PF 2∈(,),即<4c 2<,∴<<1,即<e 2<1,∴<e <1;当P 与两焦点F 1,F 2共线时,可得a+c=2(a ﹣c ),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.7. 【答案】D【解析】集合A 表示报考“北约”联盟的学生,集合B 表示报考“华约”联盟的学生, 集合C 表示报考“京派”联盟的学生,集合D 表示报考“卓越”联盟的学生,由题意得U A B B CD C D B=∅⎧⎪⊆⎪⎨=∅⎪⎪=⎩ð,∴U A D B C D B ⊆⎧⎪=⎨⎪=⎩ð, 选项A .B D =∅,正确;选项B .B C =,正确; 选项C .A D ⊆,正确. 8. 【答案】B 【解析】A DB=C考点:向量共线定理.9.【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,∵双曲线上一点P到左焦点的距离为5,∴|x﹣5|=2×4∵x>0,∴x=13故选A.10.【答案】D【解析】考点:1.复数的相关概念;2.集合的运算11.【答案】D【解析】12.【答案】A【解析】解:由f(x)=e x+x﹣2=0得e x=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出计算y=e x,y=lnx,y=2﹣x的图象如图:∵函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=e x与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选:A.【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键.二、填空题13.【答案】.【解析】解:角α终边上一点为P(﹣1,2),所以tanα=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.14.【答案】546.【解析】解:当n=2k﹣1(k∈N*)时,a2k+1=a2k﹣1+1,数列{a2k﹣1}为等差数列,a2k﹣1=a1+k﹣1=k;当n=2k(k∈N*)时,a2k+2=2a2k,数列{a2k}为等比数列,.∴该数列的前16项和S16=(a1+a3+…+a15)+(a2+a4+…+a16)=(1+2+...+8)+(2+22+ (28)=+=36+29﹣2=546.故答案为:546.【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.a15.【答案】2【解析】试题分析:因为()ln f x a x x =-在区间(1,2)上单调递增,所以(1,2)x ∈时,()'10af x x=-≥恒成立,即a x ≥恒成立,可得2a ≥,故答案为2a ≥.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题. 16.【答案】15(,)43-17.【答案】 ﹣160【解析】解:由于(x ﹣)6展开式的通项公式为 T r+1=•(﹣2)r •x 6﹣2r ,令6﹣2r=0,求得r=3,可得(x ﹣)6展开式的常数项为﹣8=﹣160,故答案为:﹣160.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.18.【答案】 2 .【解析】解:设等比数列的公比为q , 由S 3=a 1+3a 2,当q=1时,上式显然不成立;当q ≠1时,得,即q 2﹣3q+2=0,解得:q=2.故答案为:2.【点评】本题考查了等比数列的前n 项和,考查了等比数列的通项公式,是基础的计算题.三、解答题19.【答案】【解析】解:(Ⅰ)由曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,可得它的直角坐标方程为x+y=1,根据曲线C 2的参数方程为(θ为参数),可得它的普通方程为+y 2=1.(Ⅱ)把曲线C 1与C 2是联立方程组,化简可得 5x 2﹣8x=0,显然△=64>0,故曲线C 1与C 2是相交于两个点.解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.20.【答案】【解析】解:(I )证明:∵PD ⊥平面ABCD ,∴PD ⊥BC , 又∵ABCD 是正方形,∴BC ⊥CD ,∵PDICE=D , ∴BC ⊥平面PCD ,又∵PC ⊂面PBC ,∴PC ⊥BC . (II )解:∵BC ⊥平面PCD , ∴GC 是三棱锥G ﹣DEC 的高.∵E 是PC 的中点,∴.∴.(III )连接AC ,取AC 中点O ,连接EO 、GO ,延长GO 交AD 于点M ,则PA ∥平面MEG . 下面证明之:∵E 为PC 的中点,O 是AC 的中点,∴EO ∥平面PA , 又∵EO ⊂平面MEG ,PA ⊄平面MEG ,∴PA ∥平面MEG , 在正方形ABCD 中,∵O 是AC 中点,∴△OCG ≌△OAM ,∴,∴所求AM 的长为.【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.21.【答案】(1)047522=++-+y x y x ;(2)425)2()25(22=-+-y x . 【解析】试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程022=++++F Ey Dx y x ,将三点代入,求解圆的方程;(2)AB 的垂直平分线过圆心,所以圆心的横坐标为25,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.试题解析:(1)设圆P 的方程是022=++++F Ey Dx y x ,则由已知得⎪⎩⎪⎨⎧=+-+-+=++++=++++026)2(6004040001222222F E D F D F D ,解得⎪⎩⎪⎨⎧==-=475F E D . 故圆P 的方程为047522=++-+y x y x .(2)由圆的对称性可知,圆心P 的横坐标为25241=+,故圆心)2,25(P , 故圆P 的半径25)20()251(||22=-+-==AP r ,故圆P 的标准方程为425)2()25(22=-+-y x .考点:圆的方程 22.【答案】【解析】解:(1)取BC 1的中点H ,连接HE 、HF , 则△BCC 1中,HF ∥CC 1且HF=CC 1又∵平行四边形AA 1C 1C 中,AE ∥CC 1且AE=CC 1 ∴AE ∥HF 且AE=HF ,可得四边形AFHE 为平行四边形, ∴AF ∥HE ,∵AF ⊄平面REC 1,HE ⊂平面REC 1 ∴AF ∥平面REC 1.… (2)等边△ABC 中,高AF==,所以EH=AF=由三棱柱ABC ﹣A 1B 1C 1是正三棱柱,得C 1到平面AA 1B 1B的距离等于∵Rt △A 1C 1E ≌Rt △ABE ,∴EC 1=EB ,得EH ⊥BC 1 可得S△=BC 1•EH=××=,而S △ABE=AB ×BE=2由等体积法得V A ﹣BEC1=V C1﹣BEC ,∴S△×d=S △ABE×,(d 为点A 到平面BEC 1的距离)即××d=×2×,解之得d=∴点A 到平面BEC 1的距离等于.…【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题.23.【答案】【解析】解:(1)f (α)===﹣tan α;…5(分) (2)∵f (α)=﹣2, ∴tan α=2,…6(分)∴sin αcos α+cos 2α====.…10(分)24.【答案】(1)详见解析;(2)3λ=.【解析】(1)由于2AB =,AM BM ==,则AM BM ⊥,又∵平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM ,∴⊥BM 平面ADM ,…………3分又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分25.【答案】【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax≤2∵不等式f(x)≤3的解集为{x|﹣2≤x≤1}.∴当a≤0时,不合题意;当a>0时,,∴a=2;(Ⅱ)记,∴h(x)=∴|h(x)|≤1∵恒成立,∴k≥1.【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.26.【答案】【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为.则,∴年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4.(3)由(2)可知,当x=11时,=0.5x+0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.。
贵州省2018-2019学年第二学期高一数学第三次月考试卷及参考答案带解析
贵州省2018-2019学年第二学期高一数学第三次月考试卷一、选择题1、古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。
下列数中及时三角形数又是正方形数的是()A.1225 B.1024 C.289 D.13782、如图圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]上的图像大致为( )A. B.C.D.3、函数在内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点4、下列函数中,最小值为2的是()A.B.C.D.5、数列满足则()A.1 B.1999 C.1000 D.-16、若的内角所对的边分别为,已知,且,则等于()A.B.C.D.7、阅读右面的程序框图,则输出的S=()A.14 B.20C.30 D.558、已知a>0,b>0,a+b=2,则y=的最小值是 ( )A.B.4 C.D.59、若a>b>0,0<c<d,则一定有( )A.B.C.D.10、设全集,集合,则()A.B.C.D.11、等比数列的前项和为,且,,成等差数列,若,则()A.7 B.8 C.15 D.16二、填空题12、设数列{}是首项为1的正项数列,且(n+1),则它的通项公式______。
13、已知A,B,C是圆O上的三点(点O为圆的圆心),若,则与的夹角为______。
14、函数的最小值为_________。
15、在中,若,,则=_____。
三、解答题16、已知数列的前项和为,且满足:(Ⅰ)求数列的通项公式;(Ⅱ)若存在,使得成等差数列,试判断:对于任意的,且是否成等差数列,并证明你的结论。
17、当时,关于x的不等式的解集中整数恰好有3个,求实数a 的取值范围。
贵池区高级中学2018-2019学年上学期高三数学10月月考试题
贵池区高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数的虚部为( )A .﹣2B .﹣2iC .2D .2i2. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( ) A.B.C .24D .483. 若()()()()2,106,10x x f x f f x x -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩,则()5f 的值为( ) A .10 B .11 C.12 D .134. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4 5. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A .4320B .2400C .2160D .13206. 已知全集U R =,{|239}xA x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .A B B =C .()R A B ≠∅ðD .()R A B R =ð7. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=58. 集合{}{}2|ln 0,|9A x x B x x =≥=<,则AB =( )A .()1,3B .[)1,3C .[]1,+∞D .[],3e 9. 下列命题中的说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题10.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能 11.函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-12.已知是虚数单位,若复数)(3i a i +-(R a ∈)的实部与虚部相等,则=a ( )A .1-B .2-C .D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 . 14.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .15.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积S =,则边c 的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.16.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .三、解答题(本大共6小题,共70分。
城区高中2018-2019学年高三下学期第三次月考试卷数学(3)
城区高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )A.B.C.D.2. 一枚质地均匀的正方体骰子,六个面上分别刻着1点至6点.甲、乙二人各掷骰子一次,则甲掷得的向上的点数比乙大的概率为( ) A.B.C.D.3. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D64. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=( ) A .(﹣7,﹣4) B .(7,4) C .(﹣1,4)D .(1,4)5. 设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111] 6. 函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实数m 的取值范围是( ) A.() B.(,]C.() D.(]7. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A .4320B .2400C .2160D .13208. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y=3﹣5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y=bx+a必过;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .39. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.C.1 D.10.已知点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,双曲线C的焦距为12,则它的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x11.设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()A.B.C.D.12.下面各组函数中为相同函数的是()A.f(x)=,g(x)=x﹣1 B.f(x)=,g(x)=C.f(x)=ln e x与g(x)=e lnx D.f(x)=(x﹣1)0与g(x)=二、填空题13.函数()2=在点()f x xlogA处切线的斜率为▲.1,214.若函数f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,则实数a的取值范围是.15.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.16.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 . 17.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1; ③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC的重心和外心,且•=5,则△ABC 的形状是直角三角形.18.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.三、解答题19.已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n+1﹣a n =2,数列{b n }的前n 项和S n =n 2+a n . (Ⅰ)求数列{a n },{b n }的通项公式; (Ⅱ)求数列{}的前n 项和T n .20.如图,底面为正三角形的三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,D 为线段B 1C 1中点. (Ⅰ) 证明:AC 1∥平面A 1BD ;(Ⅱ) 在棱CC 1上是否存在一点E ,使得平面A 1BE ⊥平面A 1ABB 1?若存在,请找出点E 所在位置,并给出证明;若不存在,请说明理由.21.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.22.如图,F1,F2是椭圆C:+y2=1的左、右焦点,A,B是椭圆C上的两个动点,且线段AB的中点M在直线l:x=﹣上.(1)若B的坐标为(0,1),求点M的坐标;(2)求•的取值范围.23.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。
高三第三次月考数学试卷文档
一、单项选择题1、 指数函数y=5x 的底数是( ) A .yB .xC .5D .152、 下列平面直角坐标系中的四个图形中,可以做为函数y =f (x )的图象的是( )3、若(a2-9)0=1,则a 必须满足( ) A .a ≠3B .a ≠-3C .a ≠3或a ≠-3D .a ≠3且a ≠-34、()21((2))f x x f f =-=已知函数,则( ) A. 3 B. 5 C . 2 D. 无法确定 5、 如果指数函数f (x )=(2a -3)x是R 上的减函数,则实数a 的取值范围是( )A .0<a <1B .32<a <2C .a >1D .a >326、 已知下列函数:①f(x)=2x 3; ②f(x)=-x ; ③f(x)=3x +5; ④f(x)=x 5+x 3+x . 其中,是奇函数的个数为( ) A .1 B .2 C .3 D .4A .B .C .D .7、log a 若3<1,则实数a 的取值范围是( )A . ∞(3,+)B . ∞(1,+)C . (0,1)D . ⋃∞(0,1)(3,+)8、 函数 y =(x -1)0x +1 的定义域是( )A .[-1,1]B .(-1,1)∪(1,+∞)C .(-1,1)D .(-1,+∞)9、 若0<a<1,则函数logy x =与函数y=x+a 的图像可能是( )10、在同一坐标系中,当a>1时函数xy a log = 与x a y -=的图像是( )二、填空题1、 函数y=x 2-2x-3的单调递增区间是 .2、 二次函数252++=bx x y 图像顶点在x 轴上,b =_______. 3、 (),(1)2xf x f x x =+=+已知则_______. A BCD4、 设log 34•log 48•log 8m =log 416,则m 的值为___________.5、 设3a =2, 3b =5,则32a-b =_____________.6、 函数y =log a x 在闭区间[1,4]上的最大值与最小值的和为2,则a 的值是__________.7、 已知函数xx f -=13)(,则=)2(log 3f .2203828.()()(lg5)275--+-= . 9、已知3a=4b=M ,且1a +1b =2,则M 的值为___________.10、(log 43+log 83)(log 35+log 95)(log 52+log 252)的值为________. 三解答题1、 判断函数f (x )=a x -1a x +1的奇偶性,并证明你的结论.2、 已知二次函数y =f (x )图象的对称轴是x =-2,它在x 轴上截得的线段长为6,且抛物线过点(-1,-4),求该二次函数的解析式.3、 已知函数f(x)=2121x-+, 试判断f (x )的奇偶性。
贵池区高中2018-2019学年上学期高三数学10月月考试题
贵池区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x =B .22y x =C .24y x =D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力. 2. 已知函数,,若,则( )A1 B2 C3 D-13. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )A .B .C .D .4. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]5. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( )A .36πB .48πC .60πD .72π6. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为( )A .y=x+2B .y=C .y=3xD .y=3x 37. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .3008. 已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( ) A .1- B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题. 9.sin 15°sin 5°-2sin 80°的值为( ) A .1 B .-1 C .2D .-210.一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为( )A .64B .32C .643 D .32311.设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6 C8 D1012.已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .240二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .14.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________. 15.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.16.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sinsin sin αβγ++= .三、解答题(本大共6小题,共70分。
【教育资料】池州市贵池区2017-2018学年度第二学期高三第三模考学习专用
池州市贵池区2019-2019学年度第二学期高三第三次模考时间:120分钟分值:150分本试题分为第I卷(选择题)和第II卷(非选择题)两部分第二部分阅读理解(共两节,满分40分)第一节(共15题,每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该题涂黑。
AI-drive360Looking for things to do in Orlando after you’ve visited Disney World? Families should head for i-drive 360: an 18-acre entertainment complex centred around a 400-foot tall observation wheel - the Coea-Cola Orlando Eye ——that offers breathtaking views of Central Florida. There two on-site museums make I-Drive360 stand out. Skeletons:Museum of Osteology features 500 complete animal skeletons(骨骼)that provide remarkable look into the world of wildlife. Sea Life Orlando is an interactive underwater adventure allowing you to observe sea species up close from inside a thrilling 360-degree ocean tunnel.Lake Eola ParkLocated in the heart of downtown Orlando. Lake Eola Park is continuously rated one of the best things to do in Orlando by both visitors and locals alike. Whether you want a leisurely walk or a heart-pumping jog, you can taste the peaceful scenery along the 1. 5-kilometre pathway that lines the lake. Feeling romantic?Wonder WorksWonder Works was actually built to look as though it was dropped upside-down on anotherwise ordinary Orlando city block! No, your eyes aren’t playing tricks on you ——here everything is upside down! Kids, of all ages will find the 100-plus hands-on exhibits inside the striking structure just as mind-blowing, from the natural disasters-themed displays to a 36-foot-high indoor ropes course.College Park NeighborhoodVoted"Orlando’s Best Neighborhood, "it's here you"ll find the Dubsdread Golf Course (the only pub-lic golf course in the city), and some of the best food Orlando has to offer. In the fall, College Park plays host to a popular Jazz Festival, with as many as 10 bands playing on three stages dotted throughout the neighborhood.21. What makes I-drive360 most famous?A. The coca-cola Orlando EyeB. Is tie and ideal location.C. Its two on-site museumsD. The 360-degree ocean tunnel22. If you have a mood for a walk, where would you go?A. I-drive360.B. Lake Eola Park.C. Wonder Work.D. College Park Neighborhood.23. What can we know about Wonder Works?A. It has earned a lot of money.B. Many hands are working there.C No adult will be admitted into it.D: It is educational and entertaining.24. What do the four attractions have in common?A. They are all Orlando-Based.B. They are closely located.C. They all are seaside ones.D. They are all for children.BMadison Williams was studying in her bedroom when her moth shouted,“A little boy fell into a septic tank (化粪池).Can you help?”Madison and her mother ran to a neighbor's yard. The tank was 11 inches in diameter(直径)——slighter wider than a basketball——with a cover that had not been fixed well. A boy, aged only two, had slipped in and was drowning in four feet of sewage(污水) inside a 8-feet-deep tank. Every possible means had been tried, but in vain.Madison quickly realized that she was the only one who could fit through the small hole. Without hesitation, she said, "Lower me in. "Inside, the smelly air made her sick. But she moved on. In the process, she jammed her left wrist against a hidden pole, injuring the muscles in her wrist and arm. Rather than tend to her injury, Madison skimmed the surface of the sewage, hoping to feel the boy. Minutes ticked by and she finally saw the dim outline of his foot. Madison shot her good hand out and grasped it tightly. Ten minutes later, they were lifted up.The boy was placed on his side, and an adult gave him several hard whacks(重击)on the back,one right after the other, until the boy coughed up liquids. It was only when Madison heard him cry that she knew he was all right. But it took Madison longer to recover than the boy, who was taken to the hospital and released that same night. She, however, received months of physical treatment for her wrist, which, says neighbor Mary Holley, made the girlsactions all the more impressive. Holley says. "Will any other 13-year-old voluntarily go into a septic tank?”25.The passage mainly tells us thatA. what is needed for a 13-year-old girlB. a selfless teenage girl saved a little boyC. a two-year-old boy fell into a septic tankD. how people pulled together to save a boy26. The little boy fell into the septic tank mainly becauseA. he was too young to standB. there was no one to follow himD. he was curious about the tankC. the tank cover was not secured27. What does Holley think of Madison?A.BraveB. Aggressive.C. Elegant.D. Forgiving28. We can conclude from the passage that ________ .A. Madison has a slim figureB. Madison has a good featureC. Madison took in more liquids than the boyD. Madison was sent to hospital earlier than the boyCWill a parent ever forget the first time they hug their baby? A survey of 125 full-term andpremature(早产的)newborns at Nationwide Children's Hospital in Columbus, Ohio, found early, gentle displays of affection from parents and caregivers have lasting effects on how baby brains react to gentle touch. That means early exposure to hugs could help pre-term babies experience affection as pleasant while also increasing positive brain responses.Nearly every parent has no doubt heard about the benefits of kangaroo care and skin-to-skin contact, but this new information proves those hours spent sleeping on mam or dad's chest can even counteract negative experiences among weak premature babies.The survey found the more supportive touch a premature baby received from their parents or hospital staff, the stronger their brain responses were. According to one of the authors, Dr. Nathalie Maitre, the survey indicates skin-to-skin care is absolutely vital for babies spending a long period of time in neonatal(新生儿的)intensive care units. When a baby is stuck in the NICU, mom and dad aren't always available for hugging duty.“When parents cannot do this, hospitals need to consider someone professional to provide a carefully planned touch experience, sometimes missing from a hospital setting,"Maitre tells Science Daily.…Knowing that a gentle hug can help counteract the prick(刺痛)of a needle is just one more reason for parents to pet their baby as much as possible ——not that anyone needs another reason.We parents often feel like our hearts are growing bigger each time we hug our little ones, but the truth is their brains are growing even faster than our bonds.29What does the research find?A More hugs benefit newborns more.B Gentle hugs benefit children as well.C. How to measure advantages of hugs.D. What is needed for premature newborns.30. What does the underlined word “counteract” in Paragraph 2.mean?A. give rise to. B weaken. C. increase. D. lead a.31. What does Dr. Nathalie Maitre suggest in Paragraph 3?A. Parents need more guidance to touch their babies.…B. Some hospitals fail to offer such touch experiences.C, More effort should be made to improve medical care.D. Parents didn't follow the doctors' professional direction.DLake Effect snow results from cold, arctic air traveling over a relatively warm body of water. The cold, dry air picks up the lake moisture(湿气)and deposits it, in the form of snow, over land. In Cleveland, the wind generally blows from the west across Lake Erie and pours the Lake Effect snow in the city's eastern suburbs, from Shaker Heights all the way to Buffalo.In Cleveland, Lake Effect snow occurs early in the season before lake Erie has a chance to freeze. During most winters, Lake Erie, the most (shallow of all of the Great Lakes, freezes around mid-January. It often occurs again in the late winter and early spring when the lake begins to thaw(解冻).Lake Effect produces heavy snowfall, up to 6inches in one hour. It's also relatively unpredictable. In the early fall, when ground temperatures are relatively high, you will occasionally have thundersnow —snow accompanied by thunder and lightening. In Northeast Ohio, the "snowbelt" runs east of the city, from the "heights" suburbs all the way to the PA state line.In addition to creating wonderful winter scenes in the small towns of eastern Ohio, such as Chardon, Burton, and Madison, Lake Effect snow serves as a blanket to keep the ground temperature even, which is beneficial to the Lake and Ashtabula County Ohio wine, produce," and nursery growers.Lake Effect occurs over all of the Great Lakes, usually at the southeastern shores. Since Lake-Effect is drawn to the higher altitudes, the phenomenon is also found as far inland as the Appalachian peaks of West Virginia. In addition to the five Great Lakes, Lake Effect also occurs over the Great Salt Lake in Utah.33. What is the purpose of writing the text?A. To introduce snow in Lake Erie.B. To advertise for Cleveland city.C. To explore Luke Effect snow.D. To explain-lake Eect in America.34. What does the third paragraph mainly talk about?A. Consequences of Lake Effect snow.B. Factors that decide Lake Effect snow.C. Advantages and disadvantages of snow.D. Benefits that-Lake Effect snow brings.35.What can we know from the passage?A. Lake Effect might also take place on mountains.B. Lake Erie is the deepest of the Great Lakes.C. Jake Effect snow takes shapes from Lake Erie.D. Luke Effect takes place even when the lake is frozen.第二节(共5小题;每小题2分,满分10分)根据短文内容,从句文后的选项中选出能填入空白处的最佳选项,选项种有两项为多余选项。
贵池区第三中学2018-2019学年高三上学期11月月考数学试卷含答案
贵池区第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设函数对一切实数都满足,且方程恰有6个不同的实根,则这()y f x =x (3)(3)f x f x +=-()0f x =6个实根的和为( )A. B. C.D.181290【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.2. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( )A .B .﹣C .3D .﹣33. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是()A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N4. 在函数y=中,若f (x )=1,则x 的值是()A .1B .1或C .±1D .5. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .4846. 复数是虚数单位)的虚部为( )i iiz (21+=A .B .C .D .1-i -i 22【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.7. 函数f (x )=﹣lnx 的零点个数为( )A .0B .1C .2D .38. 过点,的直线的斜率为,则( )),2(a M -)4,(a N 21-=||MN A .B .C .D .1018036569. 已知函数f (x )=2x ,则f ′(x )=( )A .2xB .2x ln2C .2x +ln2D .10.定义集合运算:A*B={z|z=xy ,x ∈A ,y ∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为( )A .0B .2C .3D .611.已知椭圆C :+y 2=1,点M 1,M 2…,M 5为其长轴AB 的6等分点,分别过这五点作斜率为k (k ≠0)的一组平行线,交椭圆C 于P 1,P 2,…,P 10,则直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .﹣B .﹣C .D .﹣12.已知双曲线C :﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作直线l ⊥x 轴交双曲线C的渐近线于点A ,B 若以AB 为直径的圆恰过点F 2,则该双曲线的离心率为( )A .B .C .2D .二、填空题13.已知双曲线的一条渐近线方程为y=x ,则实数m 等于 .14.若的展开式中含有常数项,则n 的最小值等于 .15.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号).①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8;③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率;④双曲线﹣=1与椭圆有相同的焦点.16.不等式恒成立,则实数的值是__________.()2110ax a x +++≥17.已知、、分别是三内角的对应的三边,若,则a b c ABC ∆A B C 、、C a A c cos sin -=的取值范围是___________.3cos()4A B π-+【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.18.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 . 三、解答题19.(1)计算:(﹣)0+lne ﹣+8+log 62+log 63;(2)已知向量=(sin θ,cos θ),=(﹣2,1),满足∥,其中θ∈(,π),求cos θ的值.20.已知数列的前项和公式为.{}n a 2230n S n n =-(1)求数列的通项公式;{}n a n a (2)求的最小值及对应的值.n S 21.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥A 1B 1,D 为棱A 1B 1上的点.(1)证明:DF ⊥AE ;(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为?若存在,说明点D 的位置,若不存在,说明理由.22.已知双曲线C :与点P (1,2).(1)求过点P (1,2)且与曲线C 只有一个交点的直线方程;(2)是否存在过点P 的弦AB ,使AB 的中点为P ,若存在,求出弦AB 所在的直线方程,若不存在,请说明理由.23.设A=,,集合2{x|2x+ax+2=0}2A ∈2{x |x 1}B ==(1)求的值,并写出集合A 的所有子集;a (2)若集合,且,求实数的值。
贵池区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
贵池区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( )A .80+20πB .40+20πC .60+10πD .80+10π2. 在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1﹣x 2)sinC=0有两个不等的实根,则A 为( )A .锐角B .直角C .钝角D .不存在3. 已知数列的首项为,且满足,则此数列的第4项是( ){}n a 11a =11122n n n a a +=+A .1 B . C. D .1234584. 已知函数()在定义域上为单调递增函数,则的最小值是( )2()2ln 2f x a x x x =+-a R ∈A . B . C . D .14125. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”,已知函数f (x )=是“可构造三角形函数”,则实数t 的取值范围是()A .C .D .6. “”是“圆关于直线成轴对称图形”的( )3<-b a 056222=++-+a y x y x b x y 2+=A .充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.7. 阅读如右图所示的程序框图,若输入,则输出的值是( )0.45a =k (A ) 3 ( B ) 4(C ) 5(D ) 6班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 给出函数,如下表,则的值域为()()f x ()g x (())f gxA .B .C .D .以上情况都有可能{}4,2{}1,3{}1,2,3,49. 已知命题p :“若直线a 与平面α内两条直线垂直,则直线a 与平面α垂直”,命题q :“存在两个相交平面垂直于同一条直线”,则下列命题中的真命题为()A .p ∧qB .p ∨qC .¬p ∨qD .p ∧¬q10.用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( )A .1B .7C .﹣7D .﹣511.设为双曲线的右焦点,若的垂直平分线与渐近线在第一象限内的交点到F 22221(0,0)x y a b a b-=>>OF 另一条渐近线的距离为,则双曲线的离心率为( )1||2OF A . BC .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.12.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=()A .30°B .60°C .120°D .150°二、填空题13.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 . 14.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .15.设某总体是由编号为的20个个体组成,利用下面的随机数表选取个个体,选取方01,02,…,19,206法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.16.定义在R 上的可导函数()f x ,已知()f x y e=′的图象如图所示,则()y f x =的增区间是 ▲ .所示的框图,输入,则输出的数等于1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 623818.长方体中,对角线与棱、、所成角分别为、、,1111ABCD A B C D -1A C CB CD 1CC αβ则 . 222sinsin sin αβγ++=三、解答题19.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.20.已知函数f (x )=x 3+ax+2.(Ⅰ)求证:曲线=f (x )在点(1,f (1))处的切线在y 轴上的截距为定值;(Ⅱ)若x ≥0时,不等式xe x +m[f ′(x )﹣a]≥m 2x 恒成立,求实数m 的取值范围. 21.已知函数f(x)=sinx﹣2sin2(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.22.(本小题满分12分)在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2cos C+4x sin C+6≥0对一切实数x恒成立.(1)求cos C的取值范围;(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.23.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.24.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0;命题q:实数x满足x2﹣5x+6≤0(1)若a=1,且q∧p为真,求实数x的取值范围;(2)若p是q必要不充分条件,求实数a的取值范围.贵池区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.依题意得(2r ×2r +πr 2)×2+5×2r ×2+5×2r +πr ×5=92+14π,12 即(8+π)r 2+(30+5π)r -(92+14π)=0,即(r -2)[(8+π)r +46+7π]=0,∴r =2,∴该几何体的体积为(4×4+π×22)×5=80+10π.122. 【答案】A【解析】解:在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1﹣x 2)sinC=0有两个不等的实根,即(sinA ﹣sinC )x 2+2sinB x+(sinA+sinC )=0 有两个不等的实根,∴△=4sin 2B ﹣4 (sin 2A ﹣sin 2C )>0,由正弦定理可得 b 2+c 2﹣a 2>0,再由余弦定理可得 cosA=>0,故A 为锐角,故选A . 3. 【答案】B 【解析】4. 【答案】A 【解析】试题分析:由题意知函数定义域为,,因为函数),0(+∞2'222()x x a f x x++=2()2ln 2f x a x x x=+-()在定义域上为单调递增函数在定义域上恒成立,转化为在a R ∈0)('≥x f 2()222h x x x a =++),0(+∞恒成立,,故选A. 110,4a ∴∆≤∴≥考点:导数与函数的单调性.5. 【答案】D【解析】解:由题意可得f (a )+f (b )>f (c )对于∀a ,b ,c ∈R 都恒成立,由于f (x )==1+,①当t ﹣1=0,f (x )=1,此时,f (a ),f (b ),f (c )都为1,构成一个等边三角形的三边长,满足条件.②当t ﹣1>0,f (x )在R 上是减函数,1<f (a )<1+t ﹣1=t ,同理1<f (b )<t ,1<f (c )<t ,由f (a )+f (b )>f (c ),可得 2≥t ,解得1<t ≤2.③当t ﹣1<0,f (x )在R 上是增函数,t <f (a )<1,同理t <f (b )<1,t <f (c )<1,由f (a )+f (b )>f (c ),可得 2t ≥1,解得1>t ≥.综上可得,≤t ≤2,故实数t 的取值范围是[,2],故选D .【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题. 6. 【答案】A【解析】7. 【答案】 D.【解析】该程序框图计算的是数列前项和,其中数列通项为n ()()12121n a n n =-+最小值为5时满足()()11111113352121221n S n n n ⎡⎤∴=+++=-⎢⎥⨯⨯-++⎣⎦L 90.452nS n n >∴>∴Q ,由程序框图可得值是6. 故选D .0.45n S >k 8. 【答案】A 【解析】试题分析:故值域为()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========.{}4,2考点:复合函数求值.9.【答案】C【解析】解:根据线面垂直的定义知若直线a与平面α内两条相交直线垂直,则直线a与平面α垂直,当两条直线不相交时,结论不成立,即命题p为假命题.垂直于同一条直线的两个平面是平行的,故命题存在两个相交平面垂直于同一条直线为假命题.,即命题q为假命题.则¬p∨q为真命题,其余都为假命题,故选:C.【点评】本题主要考查复合命题真假之间的判断,分别判断命题p,q的真假是解决本题的关键.10.【答案】C【解析】解:∵f(x)=x6﹣5x5+6x4+x2+0.3x+2=(((((x﹣5)x+6)x+0)x+2)x+0.3)x+2,∴v0=a6=1,v1=v0x+a5=1×(﹣2)﹣5=﹣7,故选C.11.【答案】B【解析】12.【答案】A【解析】解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.二、填空题13.【答案】12【解析】考点:球的体积与表面积.【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.14.【答案】 2 .【解析】解:由a 6=a 5+2a 4得,a 4q 2=a 4q+2a 4,即q 2﹣q ﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2,故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题. 15.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.16.【答案】(﹣∞,2)【解析】试题分析:由()21()0f x xef x '≤≥⇒≥′时,()21()0f xx e f x '><⇒<′时,所以()y f x =的增区间是(﹣∞,2)考点:函数单调区间17.【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则。
市中区高中2018-2019学年高三下学期第三次月考试卷数学(2)
市中区高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=( )A .2B .4C .8D .162. 若函数1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩则(3)f -的值为( )A .5B .1-C .7-D .2 3. 已知函数f (x )=x 3+mx 2+(2m+3)x (m ∈R )存在两个极值点x 1,x 2,直线l 经过点A (x 1,x 12),B(x 2,x 22),记圆(x+1)2+y 2=上的点到直线l 的最短距离为g (m ),则g (m )的取值范围是( )A .[0,2]B .[0,3]C .[0,) D .[0,)4. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a 5. 如果执行右面的框图,输入N=5,则输出的数等于( )A. B. C. D.6. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .18C .D .7. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x = B .22y x = C .24y x = D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.8. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A .B .C .D .9. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A .B .C .D .10.直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=011.函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A . B .C .D .12.在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .二、填空题13.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号).14.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子在△ABC中,角A、B、C所对的边分别是a、b、c,M是BC的中点,BM=2,AM=c﹣b,△ABC面积的最大值为.15.如图,在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为.16.运行如图所示的程序框图后,输出的结果是17.从等边三角形纸片ABC上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为.18.若曲线f(x)=ae x+bsinx(a,b∈R)在x=0处与直线y=﹣1相切,则b﹣a=.三、解答题19.已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),(1)求实数a,b的值;(2)求函数f(x)的值域.20.已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.(1)若A⊆B,求实数m的取值范围;(2)若A∩B=∅,求实数m的取值范围.21.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:(I)AB∥平面EFG;(II)平面EFG⊥平面ABC.22.(本小题满分12分)椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,P是椭圆上一点,PF⊥x轴,A,B是C的长轴上的两个顶点,已知|PF|=1,k P A·k PB=-12.(1)求椭圆C的方程;(2)过椭圆C的中心O的直线l交椭圆于M,N两点,求三角形PMN面积的最大值,并求此时l的方程.23.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.24.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为真,¬p为真,求实数m的取值范围.25.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O为原点,极轴所在直线为x 轴建立平面直角坐标系.(Ⅰ)求圆C的参数方程;(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标.26.在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.市中区高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:由等差数列的性质可得a 3+a 13=2a 8,即有a 82=4a 8,解得a 8=4(0舍去), 即有b 8=a 8=4,由等比数列的性质可得b 4b 12=b 82=16.故选:D .2. 【答案】D111] 【解析】试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值. 3. 【答案】C【解析】解:函数f (x )=x 3+mx 2+(2m+3)x 的导数为f ′(x )=x 2+2mx+2m+3, 由题意可得,判别式△>0,即有4m 2﹣4(2m+3)>0,解得m >3或m <﹣1, 又x 1+x 2=﹣2m ,x 1x 2=2m+3,直线l 经过点A (x 1,x 12),B (x 2,x 22),即有斜率k==x 1+x 2=﹣2m ,则有直线AB :y ﹣x 12=﹣2m (x ﹣x 1), 即为2mx+y ﹣2mx 1﹣x 12=0,圆(x+1)2+y 2=的圆心为(﹣1,0),半径r 为.则g (m )=d ﹣r=﹣,由于f ′(x 1)=x 12+2mx 1+2m+3=0,则g (m )=﹣,又m >3或m <﹣1,即有m 2>1.则g (m )<﹣=,则有0≤g (m )<.故选C .【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题.4. 【答案】C 【解析】考点:等差数列的通项公式.5. 【答案】D【解析】解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知: 该程序的作用是累加并输出S=的值.∵S==1﹣=故选D .6. 【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D .7. 【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x . 8. 【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g (x )=﹣log b x=log a x ,f (x )=a x与∴函数f (x )与函数g (x )的单调性是在定义域内同增同减 结合选项可知选B , 故答案为B9. 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个, 所以共有4×6=24个,而在8个点中选3个点的有C 83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.10.【答案】B【解析】解:∵直线x+2y ﹣3=0的斜率为﹣,∴与直线x+2y ﹣3=0垂直的直线斜率为2, 故直线l 的方程为y ﹣(﹣2)=2(x ﹣2),化为一般式可得2x ﹣y ﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.11.【答案】C【解析】解:∵f (x )≤0⇔x 2﹣x ﹣2≤0⇔﹣1≤x ≤2, ∴f (x 0)≤0⇔﹣1≤x 0≤2,即x 0∈[﹣1,2], ∵在定义域内任取一点x 0, ∴x 0∈[﹣5,5], ∴使f (x 0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键12.【答案】D【解析】设的公比为,则,,因为也是等比数列,所以,即,所以因为,所以,即,所以,故选D答案:D二、填空题13.【答案】②④【解析】解:根据题意得:圆心(k﹣1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;考虑两圆的位置关系,圆k:圆心(k﹣1,3k),半径为k2,圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R﹣r=(k+1)2﹣k2=2k+,任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.则真命题的代号是②④.故答案为:②④【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.14.【答案】2.【解析】解:在△ABM中,由余弦定理得:cosB==.在△ABC中,由余弦定理得:cosB==.∴=.即b2+c2=4bc﹣8.∵cosA==,∴sinA==.∴S=sinA=bc=.∴当bc=8时,S取得最大值2.故答案为2.【点评】本题考查了余弦定理得应用,根据余弦定理得出bc的关系是解题关键.15.【答案】114.【解析】解:根据题目要求得出:当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114.故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.16.【答案】0【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin的值,由于sin周期为8,所以S=sin+sin+…+sin=0.故答案为:0.【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查.17.【答案】.【解析】解:设大小正方形的边长分别为x,y,(x,y>0).则+x+y+=3+,化为:x+y=3.则x2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.18.【答案】2.【解析】解:f(x)=ae x+bsinx的导数为f′(x)=ae x+bcosx,可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,由x=0处与直线y=﹣1相切,可得a+b=0,且ae0+bsin0=a=﹣1,解得a=﹣1,b=1,则b﹣a=2.故答案为:2.三、解答题19.【答案】【解析】解:(1)∵函数是奇函数,则f(﹣x)=﹣f(x)∴,∵a≠0,∴﹣x+b=﹣x﹣b,∴b=0(3分)又函数f(x)的图象经过点(1,3),∴f(1)=3,∴,∵b=0,∴a=2(6分)(2)由(1)知(7分)当x>0时,,当且仅当,即时取等号(10分)当x<0时,,∴当且仅当,即时取等号(13分)综上可知函数f(x)的值域为(12分)【点评】本题主要考查函数的奇偶性和单调性的应用,转化函数研究性质是问题的关键.20.【答案】【解析】解:(1)由A⊆B知:,得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2];(2)由A∩B=∅,得:①若2m≥1﹣m即m≥时,B=∅,符合题意;②若2m<1﹣m即m<时,需或,得0≤m<或∅,即0≤m<,综上知m≥0.即实数m的取值范围为[0,+∞).【点评】本题主要考查集合的包含关系判断及应用,交集及其运算.解答(2)题时要分类讨论,以防错解或漏解.21.【答案】【解析】证明:(I)在三棱锥A﹣BCD中,E,G分别是AC,BC的中点.所以AB∥EG…因为EG⊂平面EFG,AB⊄平面EFG所以AB∥平面EFG…(II)因为AB⊥平面BCD,CD⊂平面BCD所以AB⊥CD…又BC⊥CD且AB∩BC=B所以CD⊥平面ABC…又E,F分别是AC,AD,的中点所以CD∥EF所以EF⊥平面ABC…又EF⊂平面EFG,所以平面平面EFG⊥平面ABC.…【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键.22.【答案】 【解析】解:(1)可设P 的坐标为(c ,m ), 则c 2a 2+m 2b2=1, ∴m =±b 2a ,∵|PF |=1 ,即|m |=1,∴b 2=a ,①又A ,B 的坐标分别为(-a ,0),(a ,0),由k P A ·k PB =-12得b 2ac +a ·b 2a c -a=-12,即b 2=12a 2,②由①②解得a =2,b =2,∴椭圆C 的方程为x 24+y 22=1.(2)当l 与y 轴重合时(即斜率不存在),由(1)知点P 的坐标为P (2,1),此时S △PMN =12×22×2=2.当l 不与y 轴重合时,设其方程为y =kx ,代入C 的方程得x 24+k 2x 22=1,即x =±21+2k2,∴y =±2k1+2k 2,即M (21+2k2,2k 1+2k2),N (-21+2k2,-2k 1+2k2),∴|MN |= ⎝ ⎛⎭⎪⎫41+2k 22+⎝ ⎛⎭⎪⎫4k 1+2k 22 =41+k 21+2k 2,点P (2,1)到l :kx -y =0的距离d =|2k -1|k 2+1,∴S △PMN =12|MN |d =12·41+k 21+2k 2·|2k -1|k 2+1=2·|2k -1|1+2k2=22k 2+1-22k1+2k2=21-22k 1+2k 2, 当k >0时,22k 1+2k 2≤22k22k =1,此时S ≥0显然成立, 当k =0时,S =2.当k <0时,-22k 1+2k 2≤1+2k 21+2k 2=1,当且仅当2k 2=1,即k =-22时,取等号. 此时S ≤22,综上所述0≤S ≤2 2. 即当k =-22时,△PMN 的面积的最大值为22,此时l 的方程为y =-22x . 23.【答案】【解析】解:(Ⅰ)设数列{a n }的公比为q ,由a 32=9a 2a 6得a 32=9a 42,所以q 2=.由条件可知各项均为正数,故q=.由2a 1+3a 2=1得2a 1+3a 1q=1,所以a 1=.故数列{a n }的通项式为a n =.(Ⅱ)b n =++…+=﹣(1+2+…+n )=﹣,故=﹣=﹣2(﹣)则++…+=﹣2=﹣,所以数列{}的前n 项和为﹣.【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n 项和的公式,会进行数列的求和运算,是一道中档题.24.【答案】【解析】解:若命题p 是真命题:“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”,则<1,解得1﹣;若命题q 是真命题:“方程x 2﹣x+m ﹣4=0的两根异号”,则m ﹣4<0,解得m <4. 若p ∨q 为真,¬p 为真, 则p 为假命题,q 为真命题.∴.∴实数m的取值范围是或.【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.25.【答案】【解析】(本小题满分10分)选修4﹣4:坐标系与参数方程解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)﹣6,所以x2+y2=4x+4y﹣6,所以x2+y2﹣4x﹣4y+6=0,即(x﹣2)2+(y﹣2)2=2为圆C的普通方程.…所以所求的圆C的参数方程为(θ为参数).…(Ⅱ)由(Ⅰ)可得,…当时,即点P的直角坐标为(3,3)时,…x+y取到最大值为6.…26.【答案】【解析】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).设点P的坐标为(x,y)化简得x2+3y2=4(x≠±1).故动点P轨迹方程为x2+3y2=4(x≠±1)(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)则.因为sin∠APB=sin∠MPN,所以所以=即(3﹣x0)2=|x02﹣1|,解得因为x02+3y02=4,所以故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为.【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵池区高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. (2011辽宁)设sin(+θ)=,则sin2θ=( )A.﹣ B.﹣ C. D.2. 已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A . B . C . D .3. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;②x 2+y 2=3;③+y 2=1;④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) A .①③ B .②④ C .①②③ D .②③④4. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-< 5. lgx ,lgy ,lgz 成等差数列是由y 2=zx 成立的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件6. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=7. 已知偶函数f (x )满足当x >0时,3f (x )﹣2f()=,则f (﹣2)等于( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .8. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D29. 设集合M={x|x 2﹣2x ﹣3<0},N={x|log 2x <0},则M ∩N 等于( )A .(﹣1,0)B .(﹣1,1)C .(0,1)D .(1,3)10.奇函数f (x )在区间[3,6]上是增函数,在区间[3,6]上的最大值为8,最小值为﹣1,则f (6)+f (﹣3)的值为( ) A .10B .﹣10C .9D .1511.不等式的解集是( )A .{x|≤x ≤2}B .{x|≤x <2}C .{x|x >2或x ≤}D .{x|x ≥}12.已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.二、填空题13.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .14.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .15.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围是 .16.在数列中,则实数a= ,b= .17. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <.其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.18.在(2x+)6的二项式中,常数项等于 (结果用数值表示).三、解答题19.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O 及等腰直角三角形EFH ,其中FE FH ⊥,为裁剪出面积尽可能大的梯形铁片ABCD (不计损耗),将点,A B 放在弧EF 上,点,C D 放在斜边EH 上,且////AD BC HF ,设AOE θ∠=.(1)求梯形铁片ABCD 的面积S 关于θ的函数关系式;(2)试确定θ的值,使得梯形铁片ABCD 的面积S 最大,并求出最大值.20.(本小题满分12分)已知函数f (x )=12x 2+x +a ,g (x )=e x .(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.21.已知函数f (x )=+lnx ﹣1(a 是常数,e ≈=2.71828).(1)若x=2是函数f (x )的极值点,求曲线y=f (x )在点(1,f (1))处的切线方程;(2)当a=1时,方程f (x )=m 在x ∈[,e 2]上有两解,求实数m 的取值范围;(3)求证:n∈N*,ln(en)>1+.22.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.23.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.24.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.(Ⅰ)求底面积并用含x的表达式表示池壁面积;(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?25.已知定义域为R的函数f(x)=是奇函数.(Ⅰ)求b的值;(Ⅱ)判断函数f(x)的单调性;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.26.如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点.(Ⅰ)求证:BC⊥平面A1AC;(Ⅱ)若D为AC的中点,求证:A1D∥平面O1BC.贵池区高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,则sin2θ=2sinθcosθ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.2.【答案】C【解析】解:设g(x)=xe x,y=mx﹣m,由题设原不等式有唯一整数解,即g(x)=xe x在直线y=mx﹣m下方,g′(x)=(x+1)e x,g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),结合函数图象得K PA≤m<K PB,即≤m<,,故选:C.【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.3.【答案】D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交.MN的中点坐标为(﹣,0),MN斜率为=∴MN 的垂直平分线为y=﹣2(x+),∵①4x+2y ﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.②x 2+y 2=3与y=﹣2(x+),联立,消去y 得5x 2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN 的垂直平分线有交点,③中的方程与y=﹣2(x+),联立,消去y 得9x 2﹣24x ﹣16=0,△>0可知③中的曲线与MN 的垂直平分线有交点,④中的方程与y=﹣2(x+),联立,消去y 得7x 2﹣24x+20=0,△>0可知④中的曲线与MN 的垂直平分线有交点, 故选D4. 【答案】D5. 【答案】A【解析】解:lgx ,lgy ,lgz 成等差数列,∴2lgy=lgx •lgz ,即y 2=zx ,∴充分性成立,因为y 2=zx ,但是x ,z 可能同时为负数,所以必要性不成立,故选:A .【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题.6. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α-=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .7. 【答案】D【解析】解:∵当x >0时,3f (x )﹣2f ()=…①,∴3f ()﹣2f (x )==…②,①×3+③×2得:5f (x )=,故f (x )=,又∵函数f (x )为偶函数,故f(﹣2)=f(2)=,故选:D.【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x>0时,函数f(x)的解析式,是解答的关键.8.【答案】C【解析】由已知,得{z|z=x+y,x∈A,y∈B}={-1,1,3},所以集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3.9.【答案】C【解析】解:∵集合M={x|x2﹣2x﹣3<0}={x|﹣1<x<3},N={x|log2x<0}={x|0<x<1},∴M∩N={x|0<x<1}=(0,1).故选:C.【点评】本题考查集合的交集及其运算,是基础题,解题时要注意一元二次不等式和对数函数等知识点的合理运用.10.【答案】C【解析】解:由于f(x)在[3,6]上为增函数,f(x)的最大值为f(6)=8,f(x)的最小值为f(3)=﹣1,f(x)为奇函数,故f(﹣3)=﹣f(3)=1,∴f(6)+f(﹣3)=8+1=9.故选:C.11.【答案】B【解析】解:不等式,移项得:,即≤0,可化为:或解得:≤x<2,则原不等式的解集为:≤x<2故选B.【点评】此题考查了其他不等式的解法,考查了转化及分类讨论的数学思想,是高考中常考的题型.学生进行不等式变形,在不等式两边同时除以﹣1时,注意不等号方向要改变.12.【答案】C二、填空题13.【答案】(﹣,).【解析】解:∵,,设OC与AB交于D(x,y)点则:AD:BD=1:5即D分有向线段AB所成的比为则解得:∴又∵||=2∴=(﹣,)故答案为:(﹣,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.14.【答案】12【解析】考点:球的体积与表面积.【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.15.【答案】[4,16].【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanα•x+1;圆C的参数方程(θ为参数),化为普通方程是(x﹣2)2+(y﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.16.【答案】a=,b=.【解析】解:由5,10,17,a﹣b,37知,a﹣b=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,.【点评】本题考查了数列的性质的判断与归纳法的应用.17.【答案】①②④ 【解析】18.【答案】 240【解析】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.三、解答题19.【答案】(1)()21sin cos S θθ=+,其中02πθ<<.(2)6πθ=时,max 2S =【解析】试题分析:(1)求梯形铁片ABCD 的面积S 关键是用θ表示上下底及高,先由图形得AOE BOF θ∠=∠=,这样可得高2cos AB θ=,再根据等腰直角三角形性质得()1cos sin AD θθ=-+,()1cos sin BC θθ=++最后根据梯形面积公式得()2AD BC ABS +⋅=()21sin cos θθ=+,交代定义域02πθ<<.(2)利用导数求函数最值:先求导数()'f θ()()22sin 1sin 1θθ=--+,再求导函数零点6πθ=,列表分析函数单调性变化规律,确定函数最值试题解析:(1)连接OB ,根据对称性可得AOE BOF θ∠=∠=且1OA OB ==, 所以1cos sin AD θθ=-+,1cos sin BC θθ=++,2cos AB θ=,所以()2AD BC ABS +⋅=()21sin cos θθ=+,其中02πθ<<.考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x )>0或f′(x )<0求单调区间;第二步:解f′(x )=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小. 20.【答案】【解析】解:(1)y =g (x )=e x 关于直线y =x 对称的曲线h (x )=ln x , 设曲线y =h (x )与切线mx -y -1=0的切点为(x 0,ln x 0), 由h (x )=ln x 得h ′(x )=1x ,(x >0),则有⎩⎪⎨⎪⎧1x 0=m mx 0-ln x 0-1=0,解得x 0=m =1. ∴m 的值为1.(2)φ(x )=12x 2+x +a -e x ,φ′(x )=x +1-e x , 令t (x )=x +1-e x , ∴t ′(x )=1-e x ,当x <0时,t ′(x )>0,x >0时,t ′(x )<0, x =0时,t ′(x )=0.∴φ′(x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴φ′(x )max =φ′(0)=0, 即φ′(x )≤0在(-∞,+∞)恒成立, 即φ(x )在(-∞,+∞)单调递减,且当a =1有φ(0)=0.∴不论a 为何值时,φ(x )=f (x )-g (x )有唯一零点x 0, 当x 0∈(0,1)时,则φ(0)φ(1)<0, 即(a -1)(a -2e -32)<0,∴1<a <2e -32,即a 的取值范围为(1,2e -32).21.【答案】【解析】解:(1).因为x=2是函数f (x )的极值点,所以a=2,则f (x )=,则f (1)=1,f'(1)=﹣1,所以切线方程为x+y ﹣2=0;(2)当a=1时,,其中x ∈[,e 2],当x ∈[,1)时,f'(x )<0;x ∈(1,e 2]时,f'(x )>0,∴x=1是f (x )在[,e 2]上唯一的极小值点,∴[f (x )]min =f (1)=0.又,,综上,所求实数m 的取值范围为{m|0<m ≤e ﹣2};(3)等价于,若a=1时,由(2)知f (x )=在[1,+∞)上为增函数,当n >1时,令x=,则x >1,故f (x )>f (1)=0,即,∴.故即,即.22.【答案】【解析】解:(I )如图(a ),取AA 1的中点M ,连接EM ,BM ,因为E 是DD 1的中点,四边形ADD 1A 1为正方形,所以EM ∥AD .又在正方体ABCD ﹣A 1B 1C 1D 1中.AD ⊥平面ABB 1A 1,所以EM ⊥面ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,∠EBM 直线BE 与平面ABB 1A 1所成的角.设正方体的棱长为2,则EM=AD=2,BE=,于是在Rt △BEM 中,即直线BE 与平面ABB 1A 1所成的角的正弦值为.(Ⅱ)在棱C 1D 1上存在点F ,使B 1F 平面A 1BE ,事实上,如图(b )所示,分别取C 1D 1和CD 的中点F ,G ,连接EG ,BG ,CD 1,FG ,因A 1D 1∥B 1C 1∥BC ,且A 1D 1=BC ,所以四边形A 1BCD 1为平行四边形,因此D 1C ∥A 1B ,又E ,G 分别为D 1D ,CD 的中点,所以EG ∥D 1C ,从而EG ∥A 1B ,这说明A 1,B ,G ,E 共面,所以BG ⊂平面A 1BE因四边形C 1CDD 1与B 1BCC 1皆为正方形,F ,G 分别为C 1D 1和CD 的中点,所以FG ∥C 1C ∥B 1B ,且FG=C 1C=B 1B ,因此四边形B 1BGF 为平行四边形,所以B 1F ∥BG ,而B 1F ⊄平面A 1BE ,BG ⊂平面A 1BE ,故B 1F ∥平面A 1BE .【点评】本题考查直线与平面所成的角,直线与平面平行,考查考生探究能力、空间想象能力.23.【答案】(1)3,2,1;(2)710. 【解析】111]试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为710. 考点:1、分层抽样的应用;2、古典概型概率公式. 24.【答案】【解析】解:(Ⅰ)设水池的底面积为S 1,池壁面积为S 2,则有(平方米),可知,池底长方形宽为米,则(Ⅱ)设总造价为y ,则当且仅当,即x=40时取等号,所以x=40时,总造价最低为297600元.答:x=40时,总造价最低为297600元.25.【答案】【解析】解:(Ⅰ)因为f (x )是奇函数,所以f (0)=0,即⇒b=1,∴.(Ⅱ)由(Ⅰ)知,设x 1<x 2则f (x 1)﹣f (x 2)=﹣=因为函数y=2x在R 上是增函数且x 1<x 2∴f (x 1)﹣f (x 2)=>0即f (x 1)>f (x 2)∴f (x )在(﹣∞,+∞)上为减函数(III )f (x )在(﹣∞,+∞)上为减函数,又因为f (x )是奇函数,所以f (t 2﹣2t )+f (2t 2﹣k )<0等价于f (t 2﹣2t )<﹣f (2t 2﹣k )=f (k ﹣2t 2), 因为f (x )为减函数,由上式可得:t 2﹣2t >k ﹣2t 2. 即对一切t ∈R 有:3t 2﹣2t ﹣k >0,从而判别式.所以k的取值范围是k<﹣.【点评】本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略,是一道综合题.26.【答案】【解析】证明:(Ⅰ)因为AB为圆O的直径,点C为圆O上的任意一点∴BC⊥AC …又圆柱OO1中,AA1⊥底面圆O,∴AA1⊥BC,即BC⊥AA1…而AA1∩AC=A∴BC⊥平面A1AC …(Ⅱ)取BC中点E,连结DE、O1E,∵D为AC的中点∴△ABC中,DE∥AB,且DE=AB …又圆柱OO1中,A1O1∥AB,且∴DE∥A1O1,DE=A1O1∴A1DEO1为平行四边形…∴A1D∥EO1…而A1D⊄平面O1BC,EO1⊂平面O1BC∴A1D∥平面O1BC …【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力.。