专题2.3+基本初等函数
基本初等函数知识点归纳
基本初等函数知识点归纳1.常值函数:常值函数是指在定义域上的值始终相同的函数。
常见的常值函数有恒等于0的零函数和恒等于1的单位函数。
常值函数的图像是一条与x轴平行的直线。
2.幂函数:幂函数是指形如y=x^n的函数,其中n是一个实数。
当n 为正偶数时,函数的图像在原点右侧递增;当n为正奇数时,图像在全定义域递增;当n为负数时,图像在全定义域递减。
特殊地,当n为0时,函数为常值函数13.指数函数:指数函数是形如y=a^x的函数,其中a为正实数且a≠1、指数函数的图像可以是递增或递减的曲线,具体取决于底数a的大小关系。
当a>1时,函数递增;当0<a<1时,函数递减。
指数函数特点是它们的图像都经过点(0,1)。
4. 对数函数:对数函数是指形如y = log_a(x)的函数,其中a为正实数且a ≠ 1、对数函数是指数函数的反函数,因此它们的图像是关于y = x对称的。
对数函数的图像在定义域上递增,对数函数的唯一一个特殊点是(1,0)。
5. 三角函数:三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
这些函数在三角学中起着重要的作用,并且它们的图像都是周期性的。
正弦函数和余弦函数的图像是一条在[-1,1]之间往复的波浪线,而正切函数和余切函数的图像是一条通过原点的无数个波浪线。
6. 反三角函数:反三角函数是三角函数的反函数。
反三角函数包括反正弦函数asin(x)、反余弦函数acos(x)、反正切函数atan(x)等。
它们的定义域和值域与所对应的三角函数的范围正好相反。
反三角函数的图像和所对应的三角函数的图像关于y = x对称。
以上是基本初等函数的主要内容,它们是数学中最常见的函数,不仅在实际问题中有着广泛的应用,而且还在高中数学的教学中起到了重要的作用。
通过对这些函数的学习与理解,可以更好地掌握数学知识,提高数学解题的能力。
易错点03 基本初等函数(含答案解析)
故选:B.
【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.
【易错警示】
易错点1.函数定义域理解不透
2.已知函数 的定义域为[0,1],求函数 的定义域
【答案】 .
【解析】
【分析】由 求解可得.
【详解】错解:由于函数 的定义域为[0,1],即 ,
∴ 的定义域是[1,2]
易错点7.公式运用不熟练没有得到最终解
8.已知log189=a,18b=5,用a、b表示log3645.
【答5= .
易错点8.关于方程根考虑不全面
9.已知 有且只有一根在区间(0,1)内,求 的取值范围.
【答案】 <-2.
【解析】
【分析】对参数 的取值情况进行分类讨论,再结合 再分类,即可求得参数范围.
【点睛】本题考查函数的奇偶性与单调性,解题时要注意函数的定义域,否则易出错.
易错点6.不理解符合函数的单调性
7.函数 在 上是x的减函数,则实数a的取值范围是______.
【答案】
【解析】
【分析】首先保证真数位置 在 上恒成立,得到 的范围要求,再分 和 进行讨论,由复合函数的单调性,得到关于 的不等式,得到答案.
【答案】A={x|2<x< }.
【解析】
【分析】由奇偶性把不等式变为f(x-3)<-f(x2-3)=f(3-x2),然后由单调性求出不等关系,同时要注意函数的定义域.
【详解】错解:∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),
又f(x)在(-3,3)上是减函数,
∴x-3>3-x2,即x2+x-6>0解得x>2或x<-3
基本初等函数的图像与性质
在数学的发展过程中,形成了最简单最常用的六类函数,即 常数函数 、 幂函数、 指数函数 、 对数函数 、 三角函数 与 反三角函数 ,这六类函数称为 基本初等函数。
一、常数函数y = c 或 f ( x ) = c , x ∈ R ,其中 c 是常数。
它的图像是通过点 (0,c),且平行 x轴的直线,如下图所示:常数函数的图像常数函数的性质:1、常数函数是有界函数,周期函数(没有最小的正周期)、偶函数;2、常数函数既是单调增加函数又是单调减少函数,特别的当 c = 0 时,它还是奇函数。
二、幂函数1、形如 y = x^a 的函数是幂函数,其中 a 是实数 。
幂函数图(1)2、常见幂函数的图像:幂函数图(2)注:画幂函数图像时,先画第一象限的部分,在根据函数奇偶性完成整个图像。
3、幂函数的性质:① 幂函数的图像最多只能同时出现在两个象限,且不经过第四象限;如图与坐标轴相交,则交点一定是坐标原点 。
② 所有幂函数在 (0,+∞)上都有定义,并且图像都经过点 (1,1)。
③ 若 a > 0 , 幂函数图像都经过点 (0,0)和(1,1),在第一象限内递增;若 a三、指数函数1、一般地,函数 y = a^x (a > 0 且 a ≠ 1)叫做 指数函数 ,自变量 x 叫做 指数 ,a 叫做 底数 ,函数的定义域是 R 。
2、指数函数的图像:指数函数图象3、指数函数的性质:① 指数函数 y = a^x (a > 0 且 a ≠ 1)的函数值恒大于零 ,定义域为 R ,值域为(0,+∞);② 指数函数 y = a^x (a > 0 且 a ≠ 1)的图像经过点 (0,1);③ 指数函数 y = a^x (a > 1)在 R 上递增 ,指数函数 y = a^x (0四、对数函数1、对数及其运算:一般地,如果 a (a > 0 , a ≠ 1)的 b 次幂等于 N ,即 a^b = N,那么 b 叫做以 a 为底N 的 对数 ;记作: log aN = b , 其中 a 叫做对数的 底数 , N 叫做 真数 。
基本初等函数
基本初等函数初等函数是由基本初等函数经过有限次的四则运算和复合运算所得到的函数。
基本初等函数和初等函数在其定义区间内均为连续函数。
不是初等函数的函数,称为非初等函数,如狄利克雷函数和黎曼函数。
有两种分类方法:数学分析有六种基本初等函数,高等数学只有五种。
基本初等函数包括以下几类:(1)常数函数y=c(c为常数)(2)幂函数y=x^a(a为常数)(3)指数函数y=a^x(a>0,a≠1)(4)对数函数y=log(a)x(a>0,a≠1,真数x>0)(5)三角函数和反三角函数(如正弦函数:y=sinx反正弦函数:y=arcsinx等)幂函数定义:一般来说,形状如y=xα(α具有理数的函数,即以底数为自变量,幂为变量,指数为常数的函数称为幂函数。
例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/xy=x0时x ≠0)等等都是幂函数。
一般形式如下:(α它是常数,可以是自然数、有理数,也可以是任复数。
指数函数定义:指数函数是数学中的一个重要函数。
应用于值e的函数写为exp(x)。
也可以等价写作ex,e是数学常数,是自然对数的底数,近似等于2.718281828,又称欧拉数。
一般形式如下:(a>0,a≠1)对数函数定义:一般来说,函数y=logax(a>0,且a≠1)称为对数函数,即以幂(真数)为自变量,指数为因变量,底数为常量函数,称为对数函数。
x是自变量,函数定义域为(0、∞),即x>0.它实际上是指数函数的反函数,可以表示为x=ay。
因此,指数函数中对a的规定也适用于对数函数。
一般形式如下:(a>0,a≠1,x>0,特别当α=e时,记为y=lnx)常见的三角函数主要有以下六种:正弦函数:y=sinx余弦函数:y=cosx正切函数:y=tanx余切函数:y=cotx正割函数:y=secx余割函数:y=cscx此外,还有正矢、余矢等罕见的三角函数。
基本初等函数知识点总结
基本初等函数知识点总结基本初等函数是数学中常见的一类函数,包括多项式函数、指数函数、对数函数、三角函数和反三角函数等。
它们在数学和实际问题中具有广泛的应用,因此掌握基本初等函数的性质和特点对于学习和理解数学非常重要。
下面将对基本初等函数的知识点进行总结。
一、多项式函数多项式函数是由常数乘以各个整数幂的变量构成的函数。
它的一般形式为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x+a_0$$其中,$a_n, a_{n-1},\dots,a_1,a_0$为常数,$n$为正整数,$a_n \neq 0$。
多项式函数的特点包括:定义域为实数集,值域为实数集,可导且导函数为次数比原来次数低一的多项式函数。
二、指数函数指数函数的一般形式为:$$f(x) = a^x$$其中,$a$为正实数且不等于1。
指数函数的特点包括:定义域为实数集,值域为正实数集,可导且导函数为$a^x\ln a$。
三、对数函数对数函数的一般形式为:$$f(x) = \log_a x$$其中,$a$为正实数且不等于1,$x$为正实数。
对数函数的特点包括:定义域为正实数集,值域为实数集,可导且导函数为$\frac{1}{x\ln a}$。
四、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
它们的一般形式为:$$\sin x, \cos x, \tan x$$其中,$x$为实数。
三角函数的特点包括:定义域为实数集,值域为闭区间[-1, 1],具有周期性,可导且导函数是相关三角函数的倍数。
五、反三角函数反三角函数包括反正弦函数、反余弦函数、反正切函数等。
它们的一般形式为:$$\arcsin x, \arccos x, \arctan x$$其中,$x$在相应的定义域内。
反三角函数的特点包括:定义域为闭区间[-1, 1],值域为实数集,可导且导函数是相关函数的倒数。
基本初等函数的性质还包括:1. 奇偶性对于函数$f(x)$,如果对于定义域内的任意$x$,有$f(-x)=-f(x)$,则称函数为奇函数;如果对于定义域内的任意$x$,有$f(-x)=f(x)$,则称函数为偶函数。
专题二:基本初等函数
专题二:函数、基本初等函数的图象与性质【知识链接】一、函数的有关概念:设A,B 非空的集合,如果按照某种确定的对应关系f 使对于集合A 中的任何一个数x ,在集合B 中都有唯一确定的是)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数。
1.函数的三要素:⎪⎩⎪⎨⎧对应法则值域定义域2.函数相等:如果两个函数的定义域和对应法则完全一致,则这两个函数相等。
3.函数的表示法:⎪⎩⎪⎨⎧关系式法图像法列表法4.函数的定义域: ①分式的分母不为0②根式的被开方数大于或等于0③对数的真数大于0,底数大于0且不等于1 ④零次幂的底数不等于0⑤三角函数中的正切x y tan =;)(2Z k k x ∈+≠ππ⑥已知函数)(x f 的定义域为D ,求函数)]([x g f 的定义域,只需D x g ∈)(⑦已知函数)]([x g f 的定义域,求函数)(x f 的定义域,只需{})(x g y y x =∈,即)(x g 的值域。
二、函数的基本性质⎪⎩⎪⎨⎧周期性奇偶性单调性注意:①若)()(x f a x f =+,则)(x f 是周期为a 的周期函数;若)()(x f a x f -=+则)(x f 是周期为a 2的周期函数;若)0()(1)(≠=+a x f a x f 恒成立,则)(x f 是周期为a 2的周期函数;若)0()(1)(≠-=+a x f a x f 恒成立,则)(x f 是周期为a 2的周期函数。
②若函数)(x f y =有两条对称轴)(,b a b x a x ≠==,则)(x f y =必是周期函数,且周期为b a T -=2③若)(x f y =图像有两个对称中心))(0,(),0,(b a b B a A ≠,则)(x f y =是周期函数,且周期为 b a T -=2④若)(x f y =的图像有一条对称中心)0,(a A 和一条对称轴)(b a b x ≠=,则函数必是周期函数且 周期为b a T -=4⑤若)()(x b f a x f -=+,则函数)(x f 的图像关于2ba x +=轴对称。
专题二:函数与基本初等函数(知识点梳理)
f x f x,那么就称函数 f (x) 为奇函数.奇函数图象关于原点对称.
(3) 奇、偶函数的性质: ① 奇、偶函数的定义域一定关于原点对称. ② 如果 f (x) 为奇函数,且在原点有定义,则 f (0) 0. ③ 如果 f (x) 为偶函数,则 f (x) f (x) f ( x ). ④奇函数的图像关于原点对称,图像关于原点对称的函数是奇函数;偶函数
步骤:取值—作差—变形—定号—判断
格式:解:设 x1, x2 a,b 且 x1 x2 ,则: f x1 f x2 =…
2、奇偶性
(1)奇函数: 一般地,如果对于函数 f (x) 的定义域内任意一个 x ,都有
f x f x,那么就称函数 f (x) 为偶函数.偶函数图象关于 y 轴对称.
高考数学必记知识点归纳总结 第三章 函数
一、函数的概念: 1、函数的定义:在某一个变化过程中有两个变量 x 和 y,设变量 x 的取值 范围为数集 D,如果对于 D 内的每一个 x 值,按照某个对应法则 f,y 都有 唯一确定的值与之对应,那么,把 x 叫做自变量,把 y 叫做 x 的函数.记为:
y f(x)
的图像关于 y 轴对称,图像关于 y 轴对称的函数是偶函数.
⑤奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的 区间上的单调性相反. ⑥在公共定义域内:两个奇函数的和是奇函数,两个奇函数的积是偶函数; 两个偶函数的和与积都是偶函数;一个奇函数与一个偶函数的积是奇函数.
注意:判断函数的奇偶性时,首先判断定义域是否关于原点对称,若定义域
⑴当 a 1时,
f (x) 0 loga f (x) loga g(x) g(x) 0
2019届高考理科数学一轮复习专题演练:专题2.3基本初等函数(含解析)
专题2.3基本初等函数【三年咼考】4 2 11. 【2019高考新课标3理数】已知a =2空,b=45, c=25',则( )(A) b ::: a :::c ( B) a ::: b ::: c (C) b :::c ... a(D) c ... a::: b【答案】A4 2 2 1 2 2【解析】因为a= 23=4345= b,c = 253= 53• 43= a,所以b :.a ::: c,故选A.5 b a2. 【2019 高考浙江理数】已知a>b>1.若log a b+log b a=—, a =b ,贝U a= , b=.2 --- ----------【答案】4 2【强忻】设log/三匕则r Al,因为F —==斗n r = 2 n 口■扩,因此扌三扩=> 卩=户=>2&=罗nb三2卫=4.3. [2019高考上海理数】已知点(3,9)在函数f(x)=1,a x的图像上,贝Uf (x)的反函数f」(x) = _________ .【答案】log2(x -1)【解析】将点(3,9)带入函数f x = 1 • a x的解析式得a = 2,所以f x =1 2x,用y表示x 得x = log2(y -1),所以f x = log2(x -1).4. [2019高考天津理数】已知函数f (x) = x (4^3)x 3a,^ 0,( a>0,且a z 1)在R[log a(x+1) + 1,x^0上单调递减,且关于x的方程I f(x)戶2 -x恰好有两个不相等的实数解,则a的取值范围是( )2 23 1 2 3 1 2 3(A) (0, ] (B) [―,—] ( C) [―,]_{ —} (D)[―,)【」{—}3 34 3 3 4 3 3 4【答案】C的实数解,可皿闰-S 扫弓又a = -B 寸』抛物线p = F+(4o —3找+%与直线 41 j 3=2-工相切,也符合题童…I 实数立的去范围是[-f -]U{-},故选C3 3 45.【2019高考上海理数】已知 a ・R ,函数f(x) =log 2(〕 a).x(1)当a = 5时,解不等式f (x) • 0 ;(2)若关于x 的方程f (x) - log?" -4)x • 2a - 5] =0的解集中恰好有一个元素,求a 的取 值范围;1(3)设a ■ 0,若对任意t [^,1],函数f (x)在区间[t,t 1]上的最大值与最小值的差不超过1,求a 的取值范围. 【解析】(1)由log 2 1 50,得1 5 1,解得x l x丿 x\(2) 1 a 二 a -4 x 2a -5, a —4 x 2a — 5 x -1 =0,当 a = 4 时,x = -1,经检x1验,满足题意.当a = 3时,x^ x 2 - -1,经检验,满足题意.当a = 3且a = 4时,x^a — 4x^ -1,x 广x 2. x 1是原方程的解当且仅当丄• a • 0 ,即a 2 ; x 2是原方程的解当且仅1当一,a ・0,即a 1 •于是满足题意的a ・1,2 1.综上,a 的取值范围为1,2 1U :3,4?.x2【解析】宙/■&)在丘上递减可知由方程|/(x)|=2 3 4-工恰好有两个不相等,所以f x 在0, •::上单调递减•函数 f x 在区间lt,t 1 1上的最大值与最小值分别为 f t ,f t -f t 1 二呃 J a-log2 丄a <1 即at2 a 1 t-1-0, It +1 丿对任意-1,1 成立.因为a 0,所以函数y=a「am在区间1,1上单调递增,1 3 1 3 12 2t 时,y有最小值—a ,由一a 0,得a .故a的取值范围为,■::.2 4 2 4 23 IL36. 【2019高考四川,理8】设a,b都是不等于1的正数,则“ 3a. 3b. 3 ”是“log a 3 :::log b 3 ”的()(A)充要条件(B)充分不必要条件(C必要不充分条件(D)既不充分也不必要条件【答案】B【解析】若3">3*>3,则Q—从而有1昭/<嗨异,故为充耸条件一若106,3<lo gi3不一定有比如4 =丄上二务从而3J>3*>3不成立”故选B37. 【2019高考北京,理7】如图,函数f x的图象为折线ACB,则不等式f x > log2 x 1的解集是()A. 〈x|—1:::x w 0? B .〈x|—1 w x w 1? C.〈x|—1:::x < 1 D .〈x | —1 ::: x < 2【答案】C【解析】如图所示,把函数y二log2x的图象向左平移一个单位得到y二log 2(x 1)的图象x - 1时两图象相交,不等式的解为-1 :::x < 1,用集合表示解集选C8. 【2019高考天津,理7】已知定义在R上的函数f x =2x^ -1 (m为实数)为偶函数,记 a = f (log °.53),b = f (log ? 5 ),c = f (2m ),则 a,b,c 的大小关系为()(A ) a ::: b ::: c (B ) a ::: c ::: b (C ) c ::: a ::: b (D ) c ::: b ::: a 【答案】C【解析】因为函数f x i ;=2x R _1为偶函数,所以m = o ,即f x i ; = 2x -1,所以b = f log ? 5 二 2log 25 一1 = 4,c 二 f 2m 二 f (0) = 2。
基本初等函数知识点
基本初等函数知识点一、引言在数学中,初等函数是由基本初等函数经过有限次的四则运算(加、减、乘、除)以及复合运算得到的函数。
基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数以及反三角函数。
本文将详细介绍这些基本初等函数的定义、性质和图像。
二、常数函数定义:常数函数 \( f(x) = c \),其中 \( c \) 是一个实数常数。
性质:常数函数的图像是一条平行于 \( x \) 轴的直线,其所有点的函数值都等于常数 \( c \)。
图像:见附录图1。
三、幂函数定义:幂函数 \( f(x) = x^n \),其中 \( n \) 是实数。
性质:幂函数的性质取决于指数 \( n \) 的值。
当 \( n \) 为正整数时,函数图像是 \( n \) 次幂的曲线;当 \( n \) 为负整数时,函数图像是倒数的幂函数曲线。
图像:见附录图2。
四、指数函数定义:指数函数 \( f(x) = a^x \),其中 \( a > 0 \) 且 \( a\neq 1 \)。
性质:指数函数的底数 \( a \) 决定了函数图像的形状。
当 \( a > 1 \) 时,函数是增长的;当 \( 0 < a < 1 \) 时,函数是衰减的。
图像:见附录图3。
五、对数函数定义:对数函数 \( f(x) = \log_a(x) \),其中 \( a > 0 \) 且\( a \neq 1 \)。
性质:对数函数是指数函数的逆函数。
当 \( a > 1 \) 时,函数是单调增加的;当 \( 0 < a < 1 \) 时,函数是单调减少的。
图像:见附录图4。
六、三角函数1. 正弦函数 \( \sin(x) \)2. 余弦函数 \( \cos(x) \)3. 正切函数 \( \tan(x) \)定义:这些函数与单位圆上的点的坐标有关。
性质:三角函数具有周期性,它们的周期为 \( 2\pi \)。
高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)
第1讲函数、基本初等函数的图象与性质考情解读(1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|.3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况.热点一 函数的性质及应用例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32=________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,12]时的解析式探求f (3)和f (-32)的值.答案 (1)(-1,3) (2)-14解析 (1)∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3. (2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t ) =f (1+t ),即f (t +1)=-f (t ),进而得到 f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫12=-14.所以f (3)+f ⎝⎛⎭⎫-32=0+⎝⎛⎭⎫-14=-14. 思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·重庆改编)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=________.(2)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________________________________________________________________________. 答案 (1)3 (2)⎝⎛⎭⎫-2,23 解析 (1)lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4=-1+4=3. (2)易知f (x )为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知, f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0, 令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,即⎩⎪⎨⎪⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.热点二 函数的图象例2 (1)下列四个图象可能是函数y =10ln|x +1|x +1图象的是________.(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为________.思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f (x )的单调性. 答案 (1)③ (2)b >a >c解析 (1)函数的定义域为{x |x ≠-1},其图象可由y =10ln|x |x 的图象沿x 轴向左平移1个单位而得到,y =10ln|x |x 为奇函数,图象关于原点对称,所以,y =10ln|x +1|x +1的图象关于点(-1,0)成中心对称.所以①④不可能是;又x >0时,y =10ln|x +1|x +1>0,所以②不可能是,图象③可能是.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f (-12)=f (52),当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)(2013·课标全国Ⅰ改编)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a的取值范围是________.(2)形如y =b|x |-a (a >0,b >0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg |x |图象的交点个数为n ,则n =________. 答案 (1)[-2,0] (2)4解析 (1)函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立. 比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,所以a ≥-2.综上所述:-2≤a ≤0. (2)由题意知,当a =1,b =1时, y =1|x |-1=⎩⎨⎧1x -1(x ≥0且x ≠1),-1x +1(x <0且x ≠-1),在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.热点三 基本初等函数的图象及性质例3 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________.(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是________.①α>β;②α+β>0;③α<β;④α2>β2.思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f (x )=x sin x ,利用f (x )的单调性.答案 (1)(-1,0)∪(1,+∞) (2)④解析 (1)方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ). 方法二 对a 分类讨论:当a >0时,log 2a >log 12a ,即log 2a >0,∴a >1.当a <0时,log 12(-a )>log 2(-a ),即log 2(-a )<0,∴-1<a <0.(2)设f (x )=x sin x ,x ∈[-π2,π2],∴y ′=x cos x +sin x =cos x (x +tan x ), 当x ∈[-π2,0]时,y ′<0,∴f (x )为减函数,当x ∈[0,π2]时,y ′>0,∴f (x )为增函数,且函数f (x )为偶函数,又αsin α-βsin β>0, ∴αsin α>βsin β,∴|α|>|β|,∴α2>β2.思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.(1)设15<(15)b <(15)a <1,那么a a ,b a ,a b 的大小关系式是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 (1)a b <a a <b a (2)0解析 (1)因为指数函数y =(15)x 在(-∞,+∞)上是递减函数,所以由15<(15)b <(15)a <1,得0<a <b <1,所以0<ab<1.所以y =a x ,y =b x ,y =(a b )x 在(-∞,+∞)上都是递减函数,从而a b <a a ,(ab )a <1得b a >a a ,故a b <a a <b a .(2)当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3.函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a . (2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中. 5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较. 6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟1.(2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 答案516解析 ∵f (x )是以4为周期的奇函数, ∴f ⎝⎛⎭⎫294=f ⎝⎛⎭⎫8-34=f ⎝⎛⎭⎫-34, f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫8-76=f ⎝⎛⎭⎫-76.∵当0≤x ≤1时,f (x )=x (1-x ), ∴f ⎝⎛⎭⎫34=34×⎝⎛⎭⎫1-34=316.∵当1<x ≤2时,f (x )=sin πx ,∴f ⎝⎛⎭⎫76=sin 7π6=-12. 又∵f (x )是奇函数,∴f ⎝⎛⎭⎫-34=-f ⎝⎛⎭⎫34=-316, f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫76=12. ∴f ⎝⎛⎭⎫294+f ⎝⎛⎫416=12-316=516.2.(2014·福建改编)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是________.答案 ②解析 由题意得y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.图象①中,y =3-x =(13)x ,显然图象错误;图象②中,y =x 3,由幂函数图象可知正确;图象③中,y =(-x )3=-x 3,显然与所画图象不符;图象④中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符,故图象②正确. 押题精练1.已知函数f (x )=e |ln x |-⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为________.答案 ①解析 据已知关系式可得f (x )=⎩⎨⎧e-ln x+⎝⎛⎭⎫x -1x =x (0<x ≤1),eln x-⎝⎛⎫x -1x =1x(x >1),作出其图象然后将其向左平移1个单位即得函数y =f (x +1)的图象.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.答案 (4,+∞)解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )的最小值为________. 答案 -1解析 由题意得,利用平移变化的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )的最小值为-1.4.已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 则所有正确命题的序号为________. 答案 ①②④解析 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0,①正确; 根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴,②正确; 根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确; 由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.(推荐时间:40分钟)1.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 答案 -9解析 令g (x )=f (x )-1=x 3cos x ,∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ), ∴g (x )为定义在R 上的奇函数.又∵f (a )=11, ∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9.2.(2014·浙江改编)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是________.答案 ④解析 幂函数f (x )=x a 的图象不过(0,1)点,图象①不正确;②由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a 的图象应是增长越来越慢的变化趋势,故②错;图象③中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a 的图象应是增长越来越快的变化趋势,故③错.图象④是正确的.3.(2014·朝阳模拟)已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值为________. 答案 -lg 2解析 当x <0时,-x >0,则f (-x )=lg(-x ). 又函数f (x )为奇函数,f (-x )=-f (x ), 所以当x <0时,f (x )=-lg(-x ). 所以f ⎝⎛⎭⎫1100=lg 1100=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100=f (-2)=-lg 2. 4.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 答案 -1解析 因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x +a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.5.设偶函数f (x )满足f (x )=2x -4(x ≥0),则f (x -2)>0的解集为________.答案 {x |x <0或x >4}解析 由于函数f (x )是偶函数,因此有f (|x |)=f (x ),不等式f (x -2)>0,即f (|x -2|)>0,f (|x -2|)=2|x -2|-4>0, |x -2|>2,即x -2<-2或x -2>2,由此解得x <0或x >4.∴f (x -2)>0的解集为{x |x <0或x >4}.6.使log 2(-x )<x +1成立的x 的取值范围是________.答案 (-1,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).7.函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,cos πx ,x <0的图象上关于y 轴对称的点共有________对. 答案 3解析 因为y =cos πx 是偶函数,图象关于y 轴对称.所以,本题可转化成求函数y =log 3x 与y =cos πx 图象的交点个数的问题.作函数图象如图,可知它们有三个交点,即函数f (x )图象上关于y 轴对称的点有3对.8.(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________. 答案 ⎣⎡⎦⎤12,2解析 由题意知a >0,又log 12a =log 2a -1=-log 2a . ∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ). ∵f (log 2a )+f (log 12a )≤2f (1), ∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1).又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,-1≤log 2a ≤1,∴a ∈⎣⎡⎦⎤12,2.9.已知函数f (x )=⎩⎪⎨⎪⎧ 13e x (x ≥2),f (x +1)(x <2),则f (ln 3)=________. 答案 e解析 f (ln 3)=f (ln 3+1)=13eln 3+1=e ,故填e. 10.已知函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0恒成立,则实数a 的取值范围为________.答案 {a |a ≤2}解析 f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥a ,-x (x -a ),x <a ,由(x 1-x 2)[f (x 1)-f (x 2)]>0知,函数y =f (x )在[2,+∞)单调递增,当a ≤0时,满足题意,当a >0时,只需a ≤2,即0<a ≤2,综上所述,实数a 的取值范围为a ≤2.11.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )的周期为2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12.又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b 2+212+1=b +43, 所以-12a +1=b +43. 整理,得a =-23(b +1).① 又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a .② 将②代入①,得a =2,b =-4.所以a +3b =2+3×(-4)=-10.12.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.则判断f (4.5),f (6.5),f (7)的大小关系为________.答案 f (4.5)<f (7)<f (6.5)解析 由已知得f (x )是以4为周期且关于直线x =2对称的函数.所以f (4.5)=f (4+12)=f (12), f (7)=f (4+3)=f (3),f (6.5)=f (4+52)=f (52). 又f (x )在[0,2]上为增函数.所以作出其在[0,4]上的图象知f (4.5)<f (7)<f (6.5).13.设函数f (x )=1+(-1)x 2(x ∈Z ),给出以下三个结论: ①f (x )为偶函数;②f (x )为周期函数;③f (x +1)+f (x )=1,其中正确结论的序号是________. 答案 ①②③解析 对于x ∈Z ,f (x )的图象为离散的点,关于y 轴对称,①正确;f (x )为周期函数,T =2,②正确;f (x +1)+f (x )=1+(-1)x +12+1+(-1)x 2 =1+(-1)x +1+(-1)x 2=1,③正确. 14.能够把圆O :x 2+y 2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数是圆O 的“和谐函数”的是________.①f (x )=e x +e -x ;②f (x )=ln 5-x 5+x; ③f (x )=tan x 2;④f (x )=4x 3+x . 答案 ②③④解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.①中,f (0)=e 0+e -0=2,所以f (x )=e x +e -x 的图象不过原点,故f (x )=e x +e -x 不是“和谐函数”;②中f (0)=ln 5-05+0=ln 1=0,且f (-x )=ln 5+x 5-x =-ln 5-x 5+x=-f (x ),所以f (x )为奇函数,所以f (x )=ln 5-x 5+x为“和谐函数”;③中,f (0)=tan 0=0,且f (-x )=tan -x 2=-tan x 2=-f (x ),f (x )为奇函数,故f (x )=tan x 2为“和谐函数”;④中,f (0)=0,且f (x )为奇函数,故f (x )=4x 3+x 为“和谐函数”,所以,②③④中的函数都是“和谐函数”.。
基本初等函数初等函数
基本初等函数初等函数基本初等函数是指那些可以用加减乘除及有限次数的幂函数、指数函数、对数函数、三角函数和反三角函数组合而成的函数。
这些函数在数学中具有重要的地位和广泛的应用。
本文将详细介绍一些常见的基本初等函数及其性质。
1.幂函数幂函数是形如f(x)=a^x(a>0,a≠1)的函数,其中a称为底数,x称为指数。
幂函数具有以下性质:-若a>1,则f(x)随着x的增大而迅速增大,随着x的减小而迅速减小;-若0<a<1,则f(x)随着x的增大而迅速减小,随着x的减小而迅速增大;-当x为负数时,若a为正数,则f(x)为定义良好的正数,若a为负数,则f(x)为定义良好的负数;-当x为零时,f(x)的值始终为12.指数函数指数函数是形如f(x)=a^x(a≠0,a≠1)的函数。
指数函数具有以下性质:-若a>1,则f(x)随着x的增大而迅速增大,随着x的减小而迅速减小;-若0<a<1,则f(x)随着x的增大而迅速减小,随着x的减小而迅速增大;-当x为负数时,f(x)的值可能为定义良好的正数或负数,具体取决于a的值;-当x为零时,f(x)的值始终为13.对数函数对数函数是形如f(x) = logₐ(x) (a>0, a≠1)的函数。
其中a为对数的底数,x为实数。
对数函数具有以下性质:-若x为正数,且a>1,则f(x)的值为正数;-若x为正数,且0<a<1,则f(x)的值为负数;-若x为零,则f(x)的值为负无穷大;- 对于任意的正数a和b,有logₐ(ab) = logₐ(a) + logₐ(b)的性质。
4.三角函数与反三角函数三角函数包括正弦函数、余弦函数、正切函数等。
正弦函数和余弦函数的定义域是整个实数集,而正切函数的定义域是除去π/2的奇倍数的实数集。
反三角函数是正弦函数、余弦函数、正切函数的逆函数,分别记作sin^(-1)(x)、cos^(-1)(x)、tan^(-1)(x)。
基本初等函数(高考数学专题)
基本初等函数一、指数函数1、指数与指数幂的运算 (1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n次方根用符号表示;当n 是偶数时,正数a 的正的n次方根用符号表示,负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.②式子这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n为奇数时,a =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mnaa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈()(0,0,)r r r ab a b a b r R =>>∈2、指数函数及其性质(4)指数函数1、化简下列各式(其中各字母均为正数):(1);)(65312121132ba ba b a ⋅⋅⋅⋅--2、已知实数a 、b满足等式b a )31()21(=0<b <a;②a <b<0;③0<a <b;④b <a <0;⑤a=b. ( )A.1个B.2个C.3个D.43、求下列函数的单调递增区间:y=262--x x .二、对数函数 1、对数与对数运算 (1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即l o geN (其中 2.71828e =…). (4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且2、对数函数及其性质(5)对数函数1、计算:(1))32(log 32-+(2)21lg 4932-34lg8+lg 245.变式训练1:化简求值.(1)log 2487+log 212-21log 242-1;(2)(lg2)2+lg2·lg50+lg25;(3)(log 32+log 92)·(log 43+log 83).2、比较下列各组数的大小.(1)log 332与log 556;2)log 1.10.7与log 1.20.7;(3)已知log 1b <log 1a <log 1c,比较2b ,2a ,2c 的大小关系.变式训练2:已知0<a <1,b >1,ab >1,则log a bb bba1log ,log,1的大小关系是 ( )A.log a bb bba1log log1<<B.bb b b aa1log 1log log<< C.b b b a ba1log 1log log << D.b b b a a b log 1log 1log <<三、幂函数 (1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qp y x =是奇函数,若p 为奇数q 为偶数时,则qp y x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.1、写出下列函数的定义域,并指出它们的奇偶性:(1)3y x=(2)12y x=(3)2y x-=(4)22y x x-=+(5)1122y x x-=+(6)1124()3()f x x x=+-变式训练1:讨论下列函数的定义域、值域,奇偶性与单调性:(1)5y x=(2)43y x-=(3)54y x=(4)35y x-=(5)12y x-=2、比较大小:(1)1122 1.5,1.7(2)33 (1.2),(1.25) --(3)112 5.25,5.26,5.26---(4)30.53 0.5,3,log0.53、已知幂函数223m my x--=(m Z∈)的图象与x轴、y轴都无交点,且关于原点对称,求m的值.变式训练2:证明幂函数12()f x x=在[0,)+∞上是增函数.分析:直接根据函数单调性的定义来证明.答案: 指数:1、解:原式=.100653121612131656131212131=⋅=⋅=⋅-+-+--b a baba ba b a2、B3、令u=x 2-x-6,则y=2u ,u=x 2-x-6的对称轴是x=21,在区间[21,+∞)上u=x 2-x-6是增函数.y=2uy=262--x x 在区间[21,+∞)上是增函数故函数y=262--x x 的单调递增区间是[21,+∞)对数: 1、(1)设)32(log 32-+=x,(2+3)x =2-3=321+=(2+3)-1,∴x=-1.(2)原式=21(lg32-lg49)-34lg821+21lg245=21 (5lg2-2lg7)-34×2lg 23+21(2lg7+lg5)=25lg2-lg7-2lg2+lg7+21lg5=21lg2+21lg5=21lg(2×5)= 21lg10=21.变式训练1: (1)原式=log 2487+log 212-log 242-log 22=log 2.232log 221log 242481272322-===⨯⨯⨯-(2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.(3)原式=(.452lg 63lg 5·3lg 22lg 3)2lg 33lg 2lg 23lg (·)3lg 22lg 3lg 2lg ==++2、(1)∵log 332<log 31=0,log 556>log 51=0,∴log 332<log 556.(2)方法一 ∵0<0.7<1,1.1< 1.2,0>2.1log 1.1log 7.00.7>,∴2.1log 11.1log 17.07.0<,即由换底公式可得log 1.10.7<log 1.20.7.方法二 作出y=log1.1x 与y=log 1.2x 的图象.如图所示两图象与x=0.7相交可知log 1.10.7<log 1.20.7.(3)∵y=x 21log 为减函数,且c a b 212121log log log<<,∴b >a >c,而y=2x 是增函数,∴2b >2a >2c .变式训练2:C 幂函数:1、(1)此函数的定义域为R ,33()()()f x x x f x -=-=-=- ∴此函数为奇函数.(2)12y x ==[0,)+∞ 此函数的定义域不关于原点对称 ∴此函数为非奇非偶函数. (3)221y x x-==∴此函数的定义域为(,0)(0,)-∞⋃+∞ 2211()()()f x f x x x-===-∴此函数为偶函数 (4)22221y x x x x-=+=+∴此函数的定义域为(,0)(0,)-∞⋃+∞ 222211()()()()f x x x f x x x -=-+=+=- ∴此函数为偶函数(5)1122y x x-=+=[0,)+∞ 此函数的定义域不关于原点对称∴此函数为非奇非偶函数(6)1124()3()f x x x =+-=0x x ≥⎧∴⎨-≥⎩ 0x ∴=∴此函数的定义域为{0} ∴此函数既是奇函数又是偶函数变式训练1、分析:要求幂函数的定义域和值域,可先将分数指数式化为根式. 解:(1)定义域R ,值域R ,奇函数,在R 上单调递增.(2)定义域(,0)(0,)-∞⋃+∞,值域(0,)+∞,偶函数,在(,0)-∞上单调递增, 在(0,)+∞ 上单调递减.(3)定义域[0,)+∞,值域[0,)+∞,偶函数,非奇非偶函数,在[0,)+∞上单调递增.(4)定义域(,0)(0,)-∞⋃+∞,值域(,0)(0,)-∞⋃+∞,奇函数,在(,0)-∞上单调递减,在(0,)+∞上单调递减.(5)定义域(0,)+∞,值域(0,)+∞,非奇非偶函数,在(0,)+∞上单调递减. 2、(1)∵12y x =在[0,)+∞上是增函数,1.5 1.7<,∴11221.5 1.7< (2)∵3y x =在R 上是增函数, 1.2 1.25->-,∴33( 1.2)( 1.25)->- (3)∵1y x -=在(0,)+∞上是减函数,5.25 5.26<,∴115.25 5.26-->;∵ 5.26x y =是增函数,12->-,∴125.26 5.26-->;综上,1125.25 5.26 5.26--->> (4)∵300.51<<,0.531>,3log 0.50<,∴30.53log 0.50.53<<3、分析:幂函数图象与x 轴、y 轴都无交点,则指数小于或等于零;图象关于原点对称,则函数为奇函数.结合m Z ∈,便可逐步确定m 的值. 解:∵幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,∴2230m m --≤,∴13m -≤≤;∵m Z ∈,∴2(23)m m Z --∈,又函数图象关于原点对称,∴223m m --是奇数,∴0m =或2m =.变式训练2:证明:设120x x ≤<则11221212()()f x f x x x -=-==12x x <120x x ∴-<0>12()()0f x f x ∴-< 即12()()f x f x <∴此函数在[0,)+∞上是增函数。
第二章 必刷小题3 基本初等函数-2024-2025学年高考数学大一轮复习(人教A版)配套PPT课件
用于去除铁锈、泥沙、悬浮物等各种大颗粒杂质.假设每一层PP棉滤芯可
以过滤掉三分之一的大颗粒杂质,过滤前水中大颗粒杂质含量为25 mg/L,
若要满足过滤后水中大颗粒杂质含量不超过2.5 mg/L,则PP棉滤芯层数
最少为(参考数据:lg 2≈0.30,lg 3≈0.48)
A.5
√B.6
C.7
D.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
因此loga(1+a)<loga1=0,故B正确;
因为0<a<1,所以0<1-a<1,
1
1
因此 (1 a)3 (1 a)2 ,故C不正确;
因为0<a<1,所以0<1-a<1,
因此a1-a<a0=1,故D正确.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11.(2024·绥化模拟)已知函数f(x)=a·12|x|+b的图象经过原点,且无限接近 直线y=2,但又不与该直线相交,则下列说法正确的是
第二章
必刷小题3 基本初等函数
一、单项选择题
1.已知函数f(x)=log3x与g(x)的图象关于y=x对称,则g(-1)等于
A.3
√B.13
C.1
D.-1
由题意知g(x)是f(x)=log3x的反函数, 所以 g(x)=3x,所以 g(-1)=3-1=13.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(2023·邯郸质检)已知幂函数 f(x)满足ff62=4,则 f 13的值为
A.2
√B.14
C.-14
D.-2
2-3初等解析函数
即e z是以2ni为周期的周期函数。 (5) ez 1 的充分必要条件是z 2ni. (其中n是整数)
4
ez e xiy e x (cos y i sin y)
(1) 证明加法定理 ez1 ez2 e(z1 z2 )
§2.3 初等函数
一、指数函数 二、对数函数 三、幂函数 四Δ、三角函数和双曲函数 五、反三角函数和反双曲函数
1
高数里我们学了基本初等函数: 指数函数,对数函数,幂函数,三角和反三角函数。 初等函数有求导公式。
2
1. 指数函数
定义:设 z x iy,则复变数 z 的指数函数定义为 e x (cos y i sin y)
将两式相加与相减, 得
cos y eiy eiy , 2
sin y eiy eiy . 2i
下面把余弦函数和正弦函数的定义推广到 自变数取复值的情况.
27
定义:对任意z,
余弦函数: cos z eiz eiz , 2
正弦函数 :
sin z
e iz
e iz 2i
,
正切函数:
tan z sin z , cos z
(2)
Ln z1 z2
Lnz1
Lnz2
(z2 0),
(3) 在除去负实轴(包括原点)的复平面内,主值支
和其它各分支处处连续, 处处可导, 且
(ln z) 1 , z
对于某一固定分支,有 (Lnz) 1 z
14
注意:(1) Ln(z1 z2 ) Lnz1 Lnz2 , 上式要理解为无穷多个值组成的集合相等。
证 设 z1 x1 iy1 , z2 x2 iy2 , z1 z2 (x1 x2) i(y1 y2),
基本初等函数讲义(全)
基本初等函数讲义(全)一、一次函数一次函数可以表示为y=kx+b(k不等于0),其中k表示斜率,b表示截距。
当k大于0时,函数图像随着x的增大而增大,当k小于0时,函数图像随着x的增大而减小。
当b大于0时,函数图像在y轴上方,当b小于0时,函数图像在y轴下方。
当b等于0时,函数图像经过原点。
二、二次函数1)二次函数有三种解析式形式:一般式、顶点式和两根式。
一般式为f(x)=ax^2+bx+c(a不等于0),顶点式为f(x)=a(x-h)^2+k(a不等于0),两根式为f(x)=a(x-x1)(x-x2)(a不等于0)。
2)求二次函数解析式的方法有三种情况:已知三个点坐标时,宜用一般式;已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式;若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便。
3)二次函数的图像是一条抛物线,对称轴方程为x=-b/2a,顶点坐标为(-b/2a。
-Δ/4a)。
当a大于0时,抛物线开口向上,函数在(-∞。
-b/2a)上递增,在[-b/2a。
+∞)上递减,最小值为f(-b/2a);当a小于0时,抛物线开口向下,函数在(-∞。
-b/2a]上递增,在[-b/2a。
+∞)上递减,最大值为f(-b/2a)。
三、幂函数1)幂函数可以表示为y=x^α,其中x为自变量,α是常数。
2)所有的幂函数在(0.+∞)都有定义,并且图像都通过点(1,1)。
四、指数函数1)根式的概念是指,如果xn=a,a属于实数,x属于实数,n大于1,且n属于正整数,那么x叫做a的n次方根。
2)正数的正分数指数幂的意义是,a的n次方根的正分数指数幂等于a的n次方。
正数的负分数指数幂没有意义。
非奇非偶函数指的是在定义域为(0.+∞)上的减函数。
对于loga x,当x>1时,函数值递增;当x<1时,函数值递减;当x=1时,函数值为0.在第一象限内,a越大,函数图像越靠低;在第四象限内,a越大,函数图像越靠高。
高考数学一轮复习 专题2.3 函数奇偶性(讲)
专题2.3 函数奇偶性【考纲解读】内 容要求备注A B C函数概念与基本初等函数Ⅰ函数的基本性质√1.了解奇函数、偶函数的定义,并能运用奇偶性的定义判断一些简单函数的奇偶性.2.掌握奇函数与偶函数的图像对称关系,并能熟练地利用对称性解决函数的综合问题.【直击考点】题组一 常识题1.[教材改编] 函数f (x )=x 2-1,f (x )=x 3,f (x )=x 2+cos x ,f (x )=1x+|x |中偶函数的个数是________. 【答案】2【解析】f (x )=x 2-1和f (x )=x 2+cos x 为偶函数.2.[教材改编] 已知f (x )为奇函数,当x >0时,f (x )=x -1,则f (-2)=________. 【答案】1- 2【解析】f (-2)=-f (2)=-(2-1)=1- 2.3.[教材改编] 已知函数f (x )满足f (x +3)=f (x ),当x ∈(0,1]时,f (x )=log 4(x 2+3),则f (2017)=________.【答案】1题组二 常错题4.函数f (x )=lg (1-x 2)|x +3|-3是________(填“奇”或“偶”或“非奇非偶”)函数.【答案】奇【解析】由⎩⎪⎨⎪⎧1-x 2>0,|x +3|-3≠0,得-1<x <1,且x ≠0,∴函数f (x )的定义域为(-1,0)∪(0,1).∵f (x )=lg (1-x 2)|x +3|-3=lg (1-x 2)x ,∴f (-x )=lg (1-x 2)-x=-f (x ),∴f (x )是奇函数.5.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,给出下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是________.(填序号) 【答案】①③6.已知定义在R 上的函数f (x )满足f (x )=-f ⎝ ⎛⎭⎪⎫x +32,且f (1)=2,则f (2014)=________. 【答案】2【解析】∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32,∴f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-f ⎝ ⎛⎭⎪⎫x +32=f (x ),∴f 2014=f (671×3+1)=f (1)=2. 题组三 常考题7. 下列函数为奇函数的是________.(填序号) ①y =1x2,②y =tan 2x ,③y =x +cos x ,④y =e x +e -x.【答案】②【解析】y =1x2和y =e x +e -x是偶函数,y =x +cos x 是非奇非偶函数,只有y =tan 2x 是奇函数.8.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 2+1,则f (1)+g (1)=________.【答案】2【解析】令x =-1得,f (-1)-g (-1)=(-1)2+1=2.因为f (x ),g (x )分别是偶函数和奇函数,所以f(-1)=f(1),g(-1)=-g(1),即f(1)+g(1)=2.9.函数f(x)=2x+aa·2x+b是R上的奇函数,则a·b=________.【答案】1【知识清单】1 函数奇偶性的判断奇偶性定义图像特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称2 函数奇偶性的应用(1)已知函数的奇偶性求函数的解析式.利用奇偶性关于f(x)的方程,从而可得f(x)的解析式.(2)已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用f(x)±f(-x)=0产生关于字母的恒等式,由系数的对等性可得知字母的值.(3)奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(4)抽象函数的奇偶性就是要判断-x对应的函数值与x对应的函数值之间的关系,从而得到函数图象关于原点或y轴对称,结合函数的图形作出进一步的判断.【考点深度剖析】函数的奇偶性在高考中占有重要的地位,在命题时主要是与函数的概念、图像、性质综合在一起考查.而近几年的高考中加大了对非三角函数的周期性和抽象函数的奇偶性、周期性的考查力度.【重点难点突破】考点1 函数奇偶性的判断【1-1】判断函数f(x)=1-x2+x2-1的奇偶性;【答案】f (x )既是奇函数又是偶函数. 【解析】解:∵由221010x x ⎧-≥⎨-≤⎩得x =±1∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数.【1-2】判断函数f (x )=4-x2|x +3|-3的奇偶性;【答案】f (x )是奇函数.【解析】∵由240|3|30x x ⎧-≥⎨+-≠⎩得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2], ∴f (x )=4-x2|x +3|-3=4-x 2x +3-3=4-x2x,∴f (-x )=-f (x ),∴f (x )是奇函数.【1-3】判断函数f (x )=22,0,0x x x x x x ⎧+>⎨-<⎩的奇偶性;【答案】f (x )是偶函数.【1-4】判断函数f (x )=3-2x +2x -3的奇偶性; 【答案】f (x )既不是奇函数,也不是偶函数.【解析】∵函数f (x )=3-2x +2x -3的定义域为3{}2,不关于坐标原点对称,∴函数f(x)既不是奇函数,也不是偶函数 【思想方法】1.判断函数奇偶性的两个方法 (1)定义法:(2)图像法:2.判断分段函数的奇偶性应分段分别证明f (-x )与f (x )的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.【温馨提醒】定义域关于原点对称是函数为奇函数或偶函数的必要条件 考点2 函数奇偶性的应用【2-1】已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________. 【答案】-1.【2-2】设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式()()0f x f x x+->的解集为________.【答案】 (-∞,-2)∪(0,2). 【解析】∵f (x )为偶函数, ∴()()2()0f x f x f x x x+-=>∴xf (x )>0.()00f x x >⎧∴⎨>⎩或()00f x x <⎧⎨<⎩又f (-2)=f (2)=0,f (x )在(0,+∞)上为减函数, 故x ∈(0,2)或x ∈(-∞,-2).【2-3】设函数f (x )是定义在R 上的奇函数,且对任意x ∈R 都有f (x )=f (x +4),当x ∈[-2,0)时,f (x )=2x,则f (2 014)-f (2 013)的值为_______.【答案】14【解析】由题可知函数的周期为4,故f (2 014)-f (2 013)=f (2)-f (1).因为f (x )是R 上的奇函数,所以f (2)=-f (-2)=-2-2=-14,f (1)=-f (-1)=-2-1=-12,所以f (2 014)-f (2 013)=-14+12=14.【2-4】已知函数f (x )=x 2-m是定义在区间[-3-m ,m 2-m ]上的奇函数,则f (m )=________.【答案】-1【思想方法】①若函数f (x )为偶函数,则函数在y 轴两侧单调性相反;若函数f (x )为奇函数,则函数在原点两侧的单调性相同.②利用函数的奇偶性把研究整个函数具有的性质问题转化到只研究部分(一半)区间上的问题,是简化问题的一种途径.【温馨提醒】奇偶函数的不等式求解时,要注意到:奇函数在对称的单调区间上有相同的单调性,偶函数在对称的单调区间上有相反的单调性.【易错试题常警惕】f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式. 解 (1)∵f (x )是周期为2的奇函数, ∴f (1)=f (1-2)=f (-1)=-f (1), ∴f (1)=0,f (-1)=0.(2)由题意知,f (0)=0.当x ∈(-1,0)时,-x ∈(0,1). 由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1,1]上,f (x )=⎩⎪⎨⎪⎧2x4x+1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.。
2.3初等函数
在复平面上,取连接0和点的一条无界简单 连续曲线L作为支割线,剪开z平面,得到一个 区域D,其边界就是曲线L, 则在区域D内可以将 Argz分解成无穷多个单值连续分支.每一个单值 连续分支由一个初值(或起点)唯一确定.
辐角函数w Argz在沿负实轴(包括原点)剪开 复平面所得的区域D可分解成无穷多个单值连续分支
(2) 设z 2ni, 则 e 2 n e 2 n e 2 n e 2 n | cos 2i | ,| sin 2i | . 2 2i
i
8
,| sin z | 4 2 1.
(6) cos z,sin z在整个复平面解析,且 (cos z )' sin z, (sin z )' cos z.
arg z2 1 L1 arg z.
(3) 当z从z1开始按照逆时针方向 沿着C \{0}内围绕原点的一条简单 闭曲线L2连续变动一周,回到z1时, arg z1增加2, 辐角arg z1变为 arg z1+2 .
类似地,连续变动k周回到z1时, 辐角arg z1变为arg z1+2k (k 1, 2,).
(5) sin 2 z cos2 z 1.
由cos z和sin z的定义,则不能得到 注意: | cos z | 1, | sin z | 1.
如: (1) 设 sin 2 z 1 i,cos2 z i, 则sin 2 z cos2 z 1,
但 sin z 4 2e
所以k 0.
因此所求的单值连续分支为f0 ( z) arg z.
(2) 由于fk (1)=arg(1) 2k 2k 3 ,
所以k 1.
因此所求的单值连续分支为f1 ( z) arg z 2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章函数概念与基本初等函数专题3 基本初等函数(理科)【三年高考精选】1. 【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.2. 【2018年全国卷Ⅲ理】设,,则A. B. C. D.【答案】B3.【2018年理数全国卷II】4.【2017课标1,理】设x 、y 、z 为正数,且,则A. 2x <3y <5zB. 5z <2x <3yC. 3y <5z <2xD. 3y <2x <5z 【答案】D 【解析】令,则,,∴,则,,则,故选D.5.【2017课标II ,理】6.【2017课标3,理15】7.【2016高考新课标1理数】若101a b c >><<,,则 (A )c c a b < (B )c cab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B 错误,2313log 2log 22<,选项C 正确,3211log log 22>,选项D 错误,故选C . 8.【2016高考新课标2理数】9.【2016高考新课标3理数】已知432a =,254b =,1325c =,则( ) (A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A .【三年高考刨析】,通过作差或作商进行比较大小准确掌握指对数函数图像与性质,对于比较【2019年高考命题预测】预测2019年高考继续会对基本初等函数图象和性质的考察.尤其注意以基本初等函数特别是指对函数为模型的抽象函数的考察,这种题型只给出定义域内满足某些运算性质的法则,往往集定义域、值域、单调性、奇偶性与一身,全面考察学生对函数概念和性质的理解.【2019年一轮复习指引】由前三年的高考命题形式 , 幂函数新课标要求较低,只要求掌握幂函数的概念,图像与简单性质,仅限于几个特殊的幂函数,关于幂函数常以5种幂函数为载体,考查幂函数的概念、图象与性质,多以小题形式出现,属容易题.二次函数的图象及性质是近几年高考的热点;用三个“二次”间的联系解决问题是重点,也是难点.题型以选择题和填空题为主,若与其他知识点交汇,则以解答题的形式出现.指数函数在历年的高考题中占据着重要的地位.对指数函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题.为此,我们要熟练掌握指数运算法则,明确算理,能对常见的指数型函数进行变形处理.高考题目形式多以指数函数为载体的复合函数来考察函数的性质.同时它们与其它知识点交汇命题,则难度会加大.对数函数在历年的高考题中占据着重要的地位.从近几年的高考形势来看,对对数函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题.为此,我们要熟练掌握对数运算法则,明确算理,能对常见的对数型函数进行变形处理.高考题目形式多以对数函数为载体的复合函数来考察函数的性质.同时它们与其它知识点交汇命题,则难度会加大.基本初等函数是考察函数、方程、不等式很好的载体,【2019年高考考点定位】高考对基本初等函数的考查有三种主要形式:一是比较大小;二是基本初等函数的图象和性质;三是基本初等函数的综合应用,其中经常以分段函数为载体考察函数、方程、不等式等知识的相联系.考点1 指数值、对数值的比较大小典例1【重庆市西南大学附中2018届第四次月考】已知定义在上的函数,记,,,则、、的大小关系是( )A. B.C.D.【答案】D点睛:本题考查函数的单调性与奇偶性的应用,比较大小问题,一般要利用函数的单调性,这里必须让函数的自变量在同一单调区间上,本题利用偶函数的性质易于转换.是比较大小的常见类型,应掌握其方法. 【备考知识梳理】指数函数(0,1)xy a a a =>≠,当a 1>时,指数函数在(,)-∞+∞单调递增;当0a 1<<时,指数函数在(,)-∞+∞单调递减.对数函数log (0,1)a y x a a =>≠,当a 1>时,对数函数在(0,)+∞单调递增;当0a 1<<时,对数函数在(0,)+∞单调递减.幂函数y x α=图象永远过(1,1),且当0α>时,在(0,)x ∈+∞时,单调递增;当0α<时,在(0,)x ∈+∞时,单调递减. 【规律方法技巧】指数值和对数值较大小,若指数值有底数相同或指数相同,可以考虑构造指数函数和幂函数和对数函数,通过考虑单调性,进而比较函数值的大小;其次还可以借助函数图象比较大小.若底数和指数不相同时,可考虑选取中间变量,指数值往往和1比较;对数值往往和0、1比较. 【考点针对训练】1. 【江西省南昌市2018届第三次模拟】已知,则的大小关系为( )A. B.C.D.【答案】D【解析】分析:利用对数函数、指数函数的单调性直接求解.详解:由题,的大小关系为故选:D .2. 【河南省天一大联考2018届阶段性测试(二)】已知点(),8m 在幂函数()()1nf x m x =-的图象上,设1213a f ⎛⎫⎛⎫ ⎪= ⎪ ⎪⎝⎭⎝⎭, ()ln b f π=, 122c f -⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为( ) A. a c b << B. a b c << C. b c a << D. b a c << 【答案】A【解析】点(),8m 在幂函数()()1nf x m x =-的图象上,将点代入得到()81,1 1. 3.nm m m n =-⨯-=⇒= 故函数为3y x = , 132211133a f ⎛⎫⎛⎫⎛⎫ ⎪==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()()3ln ln 1b f ππ==> , 132222.c f a --⎛⎫===> ⎪⎝⎭故大小关系是a c b <<。
故答案为A 。
【考点2】指数函数的图象和性质典例2【四川省2018届“联测促改”活动】已知()93xxf x t =-⋅, ()2121x x g x -=+,若存在实数a , b 同时满足()()0g a g b +=和()()0f a f b +=,则实数t 的取值范围是__________.【答案】[)1+∞, 【解析】∵()()211221=211221x x x xx x g x g x ------==-=-+++,∴函数()g x 为奇函数,又()()0g a g b +=,∴a b =-. ∴()()()()0f a f b f a f a +=+-=有解,即93930aaaat t ---⋅+-⋅=有解,即9933a aa at --+=+有解.令()332aam m -=+≥,则2992233a a a a m m m m--+-==-+,∵()2m m m ϕ=-在[)2,+∞上单调递增, ∴()()21m ϕϕ≥=.∴1t ≥.故实数t 的取值范围是[)1,+∞.点睛:(1)解题时要正确理解题意,其中得到a b =-是解题的关键.然后将问题转化为方程()()()()0f a f b f a f a +=+-=有解的问题处理.(2)解决能成立问题的常用方法是分离参数,分离参数后可将问题转化为求具体函数值域的问题.解题时注意以下结论的利用:“()a f x =能成立”等价于a 的范围即为函数()f x 的值域,“()a f x >能成立”等价于“()min a f x >”. 【备考知识梳理】质【规律方法技巧】1、 研究指数函数性质时,一定要首先考虑底数a 的范围,分a 1>和0a 1<<两种情况讨论,因为两种情况单调性不同,相应地图象也不同.2、与指数函数有关的函数的图像的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.3、一些指数方程、不等式问题的求解,往往利用相应的指数型函数图像数形结合求解. 【考点针对训练】1. 【北京市十五中2018届模拟练习二】已知函数()xf x a =,其中0a >,且1a ≠,如果以()()11,P x f x ,()()22,Q x f x 为端点的线段的中点在y 轴上,那么()()12f x f x ⋅等于( )A. 1B. aC. 2D. 2a【答案】A【解析】由题意得12x x =- ,所以()()12f x f x ⋅ 1201xx a aa === ,选A.2.【天津市部分区2018届期末考试】已知函数()12(0)21xxf x x =+>-,则()f x 的最小值为__________. 【答案】3【解析】∵0x >,∴21x>,故210x ->.∴()()112211132121x xx xf x =+=-++≥=--,当且仅当12121xx -=-,即1x =时等号成立.∴()f x 的最小值为3.答案: 3【考点3】对数的运算性质和对数函数的图象和性质典例3【新疆乌鲁木齐2018届5月适应性训练】已知,,若,,使得则实数的取值范围是( )A. B. C. D.【答案】A点睛:解答本题的关键是正确理解“若,,使得”的含义,然后将问题转化为求函数的最值的问题处理.【备考知识梳理】1.对数的定义:如果(1)0x a N a a >≠=且,那么数x 叫做以a 为底N 的对数,记作a x log N =其中a 叫做对数的底数,N 叫做真数.2.对数的性质与运算及换底公式(1)对数的性质()01a a >≠且:①10a log =;②1a log a =;③a log Na N =(2)对数的换底公式:基本公式log log log c a c bb a=(a ,c 均大于0且不等于1,b >0).(3)对数的运算法则:如果()01a a >≠且,00M N >>,,那么 ①(·)a a a log M N log M log N =+,②a a a log log M l NN Mog =-,③n a a log M nlog M = (n R ∈). 3.对数函数的图像与性质【规律方法技巧】1、 研究对数函数性质时,一定要首先考虑底数a 的范围,分a 1>和0a 1<<两种情况讨论,因为两种情况单调性不同,相应地图象也不同,同时要注意定义域.2、对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.3、一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解. 【考点针对训练】1. 【河南省洛阳市2018届第三次统一考试】函数的单调递减区间是( )A.B.C. D.【答案】B【解析】根据题意有,所以要求,结合复合函数单调性法则,实则求的增区间,所以有,解得,所以函数的单调减区间是,故选B.2.【河南省南阳市第一中学2018届第十四次考试】函数,则使得成立的取值范围是()A. B. C. D.【答案】B【解析】由题意知函数的定义域为,当时,,∴在上单调递减,∵是偶函数,∴在上单调递增.∵,∴,两边平方后化简得且,解得或,故使不等式成立的取值范围是.故选B.【考点4】二次函数的图象和性质典例4【浙江省台州中学2018届模拟】,若方程无实根,则方程()A. 有四个相异实根 B. 有两个相异实根 C. 有一个实根 D. 无实数根【答案】D【解析】分析:将函数看成抛物线的方程,由于抛物线的开口向上,由方程无实数根可知,对任意的,,从而得出没有实根.详解:因为抛物线开口向上,由方程无实数根可知,抛物线必在直线上方,即对任意的,,所以方程没有实根,故选D.点睛:该题考查的是有关方程根的个数问题,在解题的过程中,需要根据题意,利用二次函数的有关性质,以及所给的不等式,可以断定函数图像之间的关系,从而得到对应的结果,从而得到选项.【备考知识梳理】二次函数的图象和性质【规律方法技巧】1、分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等.2、抛物线的开口,对称轴位置定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论. 【考点针对训练】1.《数学统综》有如下记载:“有凹钱,取三数,小小大,存三角”.意思是说“在凹(或凸)函数(函数值为正)图象上取三个点,如果在这三点的纵坐标中两个较小数之和最大的数,则存在将这三点的纵坐标值作为三边长的三角形”.现已知凹函数()222f x x x =-+,在21,23m m ⎡⎤-+⎢⎥⎣⎦上取三个不同的点()(),a f a ,()(),b f b , ()(),c f c ,均存在()()(),,f a f b f c 为三边长的三角形,则实数m 的取值范围为( )A. []0,1 B. 0,2⎡⎢⎣⎭ C. 0,2⎛ ⎝⎦ D. 2⎣ 【答案】A【解析】由题意可知,∵()222f x x x =-+,∴0x =或2, 22201m m m ∴-+≤∴≤≤,,故选A. 2. 【山东省烟台市2018届高考适应性练习(一)】在区间内任取一实数,的图像与轴有公共点的概率为( ) A.B.C.D.【答案】D【考点5】幂函数的图象和性质典例5【天津市耀华中学2018届第三次月考】若幂函数()()21mf x m m x =--在()0,+∞上为增函数,则实数m的值为_________. 【答案】2【解析】()()21m f x m m x =--为幂函数,所以211m m --=,解得2m =或-1.当2m =时, ()2f x x =,此时在()0,+∞上为增函数,当1m =-时, ()1f x x -=,此时在()0,+∞上为减函数,不符合题意.故答案为:2. 【备考知识梳理】(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中x 是自变量,α是常数. (2)幂函数的图象比较(3)幂函数的性质比较[0【规律方法技巧】1.幂函数()y x Rαα∈=,其中α为常数,其本质特征是以幂的底x为自变量,指数α为常数,这是判断一个函数是否是幂函数的重要依据和唯一标准.2.在()0,1上,幂函数中指数越大,函数图象越靠近x轴(简记为“指大图低”),在(1,+∞)上,幂函数中指数越大,函数图象越远离x轴.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数的图象与坐标轴相交,则交点一定是原点.【考点针对训练】1. 【2018届广东省茂名市五大联盟学校联考】已知幂函数的图象过点,则函数在区间上的最小值是( )A. B. 0 C. D.【答案】B【解析】由题设,故在上单调递增,则当时取最小值,应选答案B。