2 用配方法求解一元二次方程 第2课时

合集下载

2 第2课时 用配方法求解二次项系数不为1的一元二次方程

2  第2课时 用配方法求解二次项系数不为1的一元二次方程
思维拓展
当x取何值时,2x2+4x-5的值最小?试求出这个最小值.
第2课时 用配方法求解二次项系数不为1的一元二次方程
第2课时 用配方法求解二次项系数不为1的一元二次方程
第2课时 用配方法求解二次项系数不为1的一元二次方程
变式:试用配方法说明:不论k取何实数,多项式k2-4k+5 的 值必定大于零.
第2课时 用配方法求解二次项系数不为1的一元二次方程
例题讲解
例1 解方程 3x2 + 8x -3 = 0.
解:两边同除以3,得 x2 + 8 x - 1=0 3
方程两边都加上一次项系数一半的平方
8 x2 +
x+(
4 )2-1=(
4
)2
3
3
3
即(x + 4 )2 =25 39
两边开方,得
(x + 4 ) = ± 5
3
3
即 x+ 4
=
5

x+
4 =
5
33
33
1
x1=
, 3
x2 =
-3
第2课时 用配方法求解二次项系数不为1的一元二次方程 归纳解一元二次方程的步骤
第2课时 用配方法求解二次项系数不为1的一元二次方程
二、一元二次方程的应用
例2 一小球以15m/s的初速度竖直向上弹出,它在空中的高
度h(m)与时间t(s)满足关系:h=15t-5t2,小球何时能达到10m的
移项,得
x2-6x= 40
方程两边都加上32(一次项系数一半的平方),得
x2-6x+32=40+32

(x-3)2=49>0

九年级数学上册第二章一元二次方程2用配方法求解一元二次方程第2课时二次项数不为1的一元二次方程的配方

九年级数学上册第二章一元二次方程2用配方法求解一元二次方程第2课时二次项数不为1的一元二次方程的配方

归类探究
类型之一 用配方法解一元二次方程 用配方法解方程:2x2+1=3x.
解:移项,得 2x2-3x=-1, 二次项系数化为 1,得 x2-32x=-21, 配方,得 x2-23x+-342=-12+-342,
即x-342=116,则 x-34=±14, ∴x1=1,x2=12.
【点悟】 配方是代数中一种非常常见的变形方法,对于一个二次项系数不 为 1 的二次三项式配方,一般先把二次项系数化为 1,然后在一次项后面加上一 次项系数一半的平方,这样就可以配成一个完全平方式了.
分层作业
1.用配方法解方程 3x2-6x+1=0,则方程可变形为( C ) A.(x-3)2=-13 B.3(x-1)2=13
C.(x-1)2=23
D.(3x-1)2=1
2.把方程21x2-3x-5=0 化成(x+m)2=n 的形式正确的是( C )
A.x+322=19 B.x+322=149
C.(x-3)2=19 D.(x-3)2=129
3.已知代数式 3x2-9x,当 x=_1_或__2__时,其值为-6;当 x=_4_或___-__1_时,
其值为 12.
4.若一个矩形的周长为 34 cm,面积是 70 cm2,要求它的边长,则可设一 边长为 x cm,则它的邻边长为_(1_7_-___x)_cm,可列出方程为x_(_1_7_-__x_)_=__7_0_,它的 两条邻边的边长分别为__7_c_m__,__1_0_c_m____.
(1)求代数式 m2+m+1 的最小值; (2)求代数式 4-x2+2x 的最大值.
解:(1)m2+m+1=m2+m+14+34=m+122+34≥34,∴m2+m+1 的最小值是34. (2)4-x2+2x=-x2+2x-1+5=-(x-1)2+5≤5, ∴4-x2+2x 的最大值是 5.

第二章一元二次方程 2 第二课时

第二章一元二次方程 2 第二课时
解:a2-4a+4+b2+6b+9=0. (a-2)2+(b+3)2=0. 因为(a-2)2与(b+3)2都是非负数, 所以有a-2=0,b+3=0. 解得a=2,b=-3,
课后作业
请同学们用同样的方法解题: 已知a2+b2+c2-2a+4b-6c=-14,试求a,b,c的值.
解:∵a2+b2+c2-2a+4b-6c+14=0, ∴(a-1)2+(b+2)2+(c-3)2=0. ∴a-1=0,b+2=0,c-3=0. 解得a=1,b=-2,c=3.
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/8/292021/8/29Sunday, August 29, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/8/292021/8/292021/8/298/29/2021 10:10:57 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/8/292021/8/292021/8/29Aug-2129-Aug-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/8/292021/8/292021/8/29Sunday, August 29, 2021
课堂讲练
【例2】先阅读下面的内容,再解决问题, 例题:若m2+2mn+2n2-6n+9=0,求m和n的值.
解:∵m2+2mn+2n2-6n+9=0, ∴m2+2mn+n2+n2-6n+9=0. ∴(m+n)2+(n-3)2=0. ∴m+n=0,n-3=0. ∴m=-3,n=3.

北师大版九年级数学上册《用配方法求解一元二次方程》第2课时示范公开课教学课件

北师大版九年级数学上册《用配方法求解一元二次方程》第2课时示范公开课教学课件
解: 设共有猴子 x 只.根据题意得方程
解得 x1=16,x2=48.所以,共有猴 16 只或 48 只.
整理,得
用配方法求解一元二次方程
通过配成完全平方式来解一元二次方程的方法叫做配方法.
将方程转化为(x + m)2 = n (n≥0)的形式,再利用平方根的意义开平方,直接求根.
①化 ②配 ③移 ④开 ⑤解
移项,得
配方,得
两边开平方,得

所以
1.解下列方程
(3) 4x2 -8x -3 =0;
解:两边同时除以 4,得
配方,得
两边开平方,得

所以
移项,得
2.印度古算书中有这样一首诗:“一群猴子分两队, 高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽叽喳喳,伶俐活泼又调皮.告我总数有多少,两队猴子在一起?”你能解决这个问题吗?
分析:
3x2+8x-3=0
两边同除以3
移项
两边开平方
解一元一次方程
配方
例2 解方程 3x2 + 8x - 3 = 0 .
想一想,可以先配方再移项吗?
解:方程两边都除以 3,得
移项,得
配方,得
两边开平方,得
所以

分析:
3x2+8x-3=0
两边同除以3
配方
两边开平方
解一元一次方程
解:根据题意得 15t-5t2 = 10.方程两边都除以 -5,得 t2 -3t = -2.配方,得即 两边开平方,得
所以
请分别描述一下,当t = 1 和t = 2时,小球到达10m所处的运动状态.
t = 1 时,小球向上运动,t = 2 时,小球向下运动.

用配方法求解一元二次方程(第二课时)

用配方法求解一元二次方程(第二课时)
〔1〕4x2 〔2〕7x2
7..当x为何值时,代数式5x2+7x+1和代数式 9x+15的值相等?
8.试证:不论k取何实数,关于x的方程 必是一元二次方程
9.在一块长16m,宽12m的矩形荒地上,要建造一个花园,并使花园所占面积为荒空中积的一半,你能求出以下图中的x吗?
※典型范例※
例1:
用配方法解方程x +2x-1=0时
①移项得__________________
②配方得__________________
即〔x+__________〕2=__________
③x+Leabharlann _________=__________或x+__________=__________
④ =__________, =__________
(1)x +5x-1=0 (2)2x -4x-1=0
(3)4x2+8x-3=0;(4)(3x+2)(x+3)=x+14.
2.用配方法解方程3x2-9x- =0,先把方程化为x2+bx+c=0的方式,那么以下变形正确的选项是( )
A.x2-9x- =0 B.x2-3x- =0C.x2-9x- =0D.x2-3x- =0
1.x +6x+8=0 2.3x +18x+24=0
〔1〕这两个方程有什么联络?
〔2〕用配方法求解这两个方程
【新知归结1】
★规律方法★假设方程的系数不是1,我们可以在方程的两边同时除以二次项系数,这样转化为系数是1的方程就可以应用学过的知识解方程了!
【协作交流】
1.2x +8x+6=0 转化成: x +4x+3=0

2用配方法求解一元二次方程 第2课时 用配方法解二次项系数不为1的一元二次方程

2用配方法求解一元二次方程 第2课时 用配方法解二次项系数不为1的一元二次方程

度h(m)与时间t(s)满足关系: h=15 t―5t2 小球何时能达到10m高?
课堂小结
1、怎样解二次系数不为1的一元二次方 程呢?
在用配方法解二次项系数不为1的一 元二次方程时,通常是先让方程的各项除 以二次项系数,即把这类方程转化为二次 项系数为 1的方程类型
2、用配方法解一元二次方程的步骤: (1)把二次项系数化为1;
2 用配方法求解一元二次方程 第2课时 用配方法解二次项系数不
为1的一元二次方程
学校:________ 教师:________
☞ 回顾与思考
上节课我们学习了配方法以及用其解二次项系数为1的一 元二次方程:
例如, x2-6x-40=0
移项,得
x2-6x= 40
方程两边都加上32(一次项系数一半的平方),得
即 x 2 2 7
3
9
驶向胜利 的彼岸开方,得 x 2 7来自33所以
x1
2 3
7 3
x2
2 3
7 3
反馈练习巩固新知
☞ 做一做
1、解下列方程 1) 4x2-8x-3=0 3)-3x2+6x-18=0 2) 2x2+6=7x 4) -x2-2x+6=0
实际运用, 你会吗?
2、一小球以15m/s的初速度竖直向上弹出,它在空中的高
(2)移项,方程的一边为二次项和一次项,另一 边为常数项; (3)方程两边同时加上一次项系数一半的平方; (4)用直接开平方法求出方程的根.
3、对于实际运用的题目,我们的步骤时什么呢? 列方程解应用题步骤:一审;二设;三列;四解;
五验;六答.
课本P40 习题2.4
所以
x1
3 2
10 2

第2课时 用配方法解较复杂的一元二次方程

第2课时 用配方法解较复杂的一元二次方程

7.已知代数式 A=2m2+3m+7,代数式 B=m2+5m+5, 试比较 A 与 B 的大小. 解:A-B=2m2+3m+7-m2-5m-5 =m2-2m+2 =(m-1)2+1. ∵(m-1)2≥0,∴(m-1)2+1>0. ∴A-B>0,即 A>B.
8.(西安高新区六中月考)给出以下五个方程: ①2(x+1)2=8;②x+2y=6;③x2-4x-5=0; ④45x2-5=0; ⑤x22=1x. (1)其中是一元二次方程的有 ①③④ (写序号); (2)请你选择其的一个一元二次方程用适当的方法求出 它的解.
专题讲解 |单元自测|滚动学习 | 科学高效
第二章 一元二次方程 2 用配方法求解一元二次方程 第2课时 用配方法解较复杂的一元二次方程
可编辑PPT
请双击文本框弹出对象, 便可编辑修改哦!!
知识点 用配方法求解二次项系数不为 1 的一元二次方程
1.用配方法解方程: 2x2-3x-2=0.
解:二次项系数化为 1,移项,得 x2-32x= 1 .
解:①2(x+1)2=8, 用直接开平方法,解得 x1=1,x2=-3; ③ x2-4x-5=0, 用配方法,解得 x1=5 或 x2=-1; ④ 45x2-5=0, 用直接开平方法,解得 x1=52,x2=-52.
利用配方法求最值
【方法指导】 用配方法求二次三项式的最值,需要把二次三 项式配方成 a(x+h)2+k 的形式,当 a<0,x=-h 时,该二次 三项式有最大值 k;当 a>0,x=-h 时,该二次三项式有最 小值 k. 当 x= 3 时,代数式 x2-6x+10 有最 小 (填“大”或“小”)值, 是1.
配方,得 x2-32x+
9 16

25 16

《用配方法求解一元二次方程》一元二次方程PPT课件(第2课时)

《用配方法求解一元二次方程》一元二次方程PPT课件(第2课时)
3
9

3
3
3
2
4
5
两边开平方,得 x
3
3
1
所以 x1 , x2 3
3
例2 如图,一块矩形土地,长是48 m,宽是24 m,现要在它
的中央划一块矩形草地(空白部分),四周铺上花砖路,路面宽
5
都相等,草地面积占矩形土地面积的 ,求花砖路面的宽.
9
【方法指导】若设花砖路面宽为x m,
度h(m)与时间t(s)满足关系:h=15t-5t2,小球何时能达
到10 m的高度?
解:根据题意得15t-5t2=10;
方程两边都除以-5,得
t2-3t=-2;
配方,得
t
3
3
2
2
-3t+2 =-2+2 ;


2Leabharlann 32 131

t-2 = ;t- =± ;
3 7
2± 2
,∴x1=
3
7
3
7
-2

,x
=______.
2
2
2
2
一般地,如果一个一元二次方程通过配方转化成
(x+n)2=p.
①当p>0时,则 x n p
x1 n p ,
,方程的两个根为
x2 n p
②当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为
即(x-18)2=196.
两边开平方,得x-18=±14.
即x-18=14,或x-18=-14.
所以x1=32(不合题意,舍去),x2=4.
故花砖路面的宽为4 m.
例3 试用配方法说明:不论k取何实数,多项式

第2课时 用配方法解二次项系数为1的一元二次方程

第2课时  用配方法解二次项系数为1的一元二次方程

上海 2006 高考 理科 状元-武亦 文
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
2.2.1
第2课时
配方法
用配方法解二次项系数为1的一元二次方程
解方程:x2 +4x=12.
我们已经知道,如果能把方程写成(x+n)2=d(d≥0) 的形式,那么就可以根据平方根的意义来求解. 因此,需要在方程的左边加上一次项系数的一半的平
方,即加上22;这了使等式仍然成立,应当再减去22.
为此,把方程写成:x2 +4x+22-22=12, 因此,有 x2 +4x+22=22+12. 即(x+2)2 =16. 根据平方根的意义,得 x+2=4 或 x+2=-4.
解得 x1=2,x2=-6.
结论
一般地,像上面这样,在方程的左边加上一次项系 数的一半的平方,再减去这个数,使得含未知数的项在
一个完全平方式里,这种做法叫作配方.
配方、整理后就可以直接根据平方根的意义来求解 了.这种解一元二次方程的方法叫作配方法. 配方是为了直接运用平方根的意义,从而把一个 一元二次方程转化为两个一元一次方程来解.

第2章 一元二次方程 2.2 用配方法求解一元二次方程 第2课时 用配方法求解一元二次方程(2)

第2章 一元二次方程 2.2 用配方法求解一元二次方程 第2课时 用配方法求解一元二次方程(2)

知识点3:配方法的应用
例3如果x,y满足x2+2x+y2-8y+17=0,试求yx的值. 分析:将x2+2x+y2-8y+17=0配方,得(x+1)2+(y-4)2=0,从 而可求出x,y的值,进而可得yx的值.
解:由 x2+2x+y2-8y+17=0,得(x2+2x +1)+(y2-8y+16)=0.解得 x=-1,y=4,所以 yx=4-1=14
等于( C ) A.4,13 B.4,19 C.-4,13 D.-4,19
3.用配方法解下列方程,其中应先在方程左右两边同时加上4的是
(A ) A.x2+4x=5 B.2x2-4x=5 C.x2-2x=5 D.x 2+2x=5 4.二次三项式x2-4x+7的值( C ) A.可以等于0 B.大于3 C.不小于3 D.既可以为正,也可以为负
6.若x2+6x+m2是一个完全平方式,则m的值是(C )
A.3
B.-3
C.±3 D.以上都不对
7.若方程4x2-(m-2)x+1=0的左边是一个完全平方式,则m等于
(B) A.-2 B.-2或6
C.-2或-6 D.2或-6
【概括总结】配方法解一元二次方程的步骤:1.把二次项系数化 为1;2.常数项移到方程右边;3.方程两边都加上一次项系数一半 的平方;4.利用平方根的意义求解.
12.一个小球以 15 m/s 的初速度向上竖直弹出,它在空中的高度 h(m)与时间 t(s)满足关系式 h=15t-5t2,当 t 为( D )时,小球的高度 为 10 m.
A.1.5 s B.2 s C.1 s D.1 s 和 2 s 13.把方程 2x2+4x-1=0 配方后得(x+m)2=k,则 m=_1_,k=_32 _. 14.填空:
解:设道路宽度为x m,由题意得(40- 2x)(26 - x) = 144×6 , 解 得 x1 = 2 , x2 = 44(不合题意,舍去),即道路宽度为2 m

九年级数学上册2.2用配方法求解一元二次方程第2课时用配方法解复杂的一元二次方程同步练习

九年级数学上册2.2用配方法求解一元二次方程第2课时用配方法解复杂的一元二次方程同步练习

第2课时 用配方法解复杂的一元二次方程知识点 用配方法解二次项系数不为1的一元二 次方程1.解:6x 2-x -1=0 ――→两边同时除以6第一步x 2-16x -16=0 ――→移项第二步x 2-16x =16 ――→配方第三步(x -19)2=16+19 ――→两边开方第四步x -19=±518――→移项第五步x 1=19+106,x 2=19-106. 上述步骤中,发生第一次错误是在( )A .第一步B .第二步C .第三步D .第四步2.用配方法解方程3x 2-6x +1=0,则方程可变形为( )A .(x -3)2=13B .3(x -1)2=13C .(x -1)2=23D .(3x -1)2=13.方程2x 2+3=7x ,经配方后得(x -74)2=________.4.将2x 2-12x -12=0变形为(x -m)2=n 的形式,则m +n =________. 5.当x =________时,代数式3x 2+2x +5的值是6. 6.用配方法解下列方程: (1)3x 2+4x -4=0;(2)2x 2+1=4x.7.如果一个一元二次方程的二次项是2x 2,经过配方整理得(x +12)2=1,那么它的一次项和常数项分别是( )A .x ,-34B .2x ,-12C .2x ,-32D .x ,-328.2016·贵阳期末已知等腰三角形两边a ,b 满足a 2+b 2-4a -10b +29=0,则此等腰三角形的周长为( )A .9B .10C .12D .9或129.把方程3x 2+4x -1=0配方后得(x +m)2=k ,则m =________,k =________. 10.已知a ,b ,c 是△ABC 的三条边长,且满足a 2+2b 2-2ab -2bc +c 2=0,则该三角形是________三角形.11.证明:关于x 的方程(a 2-8a +20)x 2+2ax +1=0,不论a 为何值,该方程都是一元二次方程.12.已知代数式A=2m2+3m+7,代数式B=m2+5m+5,试比较代数式A与B的大小.13.已知x=4满足方程x2-32mx=m2,试求出所有满足该方程的x和m的值.14.教材习题2.4第3题变式题如图2-2-2所示,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.点P,Q分别从点A,B同时出发,当其中一点到达终点时,另一点也随之停止移动.(1)经过几秒钟,△PBQ的面积为8 cm2?(2)经过几秒钟,P,Q两点间的距离为53 cm?图2-2-215.请你参考黑板中老师的讲解,完成下列解答:图2-2-3(1)通过上面例题的讲解可知,当x=________时,代数式x2+2x+3有最小值,且最小值是________.(2)对于代数式x4-2x2+5,先用配方法说明不论x为何实数,这个代数式的值总是正数;再求出当x为何实数时,这个代数式的值最小,最小值是多少.(3)设一个边长为a(a>3)的正方形的面积为S1,另一个矩形的面积为S2.若矩形的一边长比该正方形的边长小3,另一边长为4,试比较S1和S2的大小,并说明理由.详解1.C [解析] 开始错误的步骤是第三步:(x -19)2=16+19,等号左边括号内19应为112,等号右边的19应为1144.故选C.2.C 3.25164.185.-1或13 [解析] 解方程3x 2+2x +5=6即可.6.解:(1)方程的各项都除以3, 得x 2+43x -43=0.移项,得x 2+43x =43.配方,得x 2+43x +(23)2=43+(23)2,即(x +23)2=169.直接开平方,得x +23=±43,∴x 1=23,x 2=-2.(2)移项,得2x 2-4x =-1,方程的各项都除以2,得x 2-2x =-12,配方,得x 2-2x +1=1-12,即(x -1)2=12,直接开平方,得x -1=±22,∴x 1=2+22,x 2=2-22.7.C [解析] 将(x +12)2=1展开,得x 2+x +14=1.化为一般形式,得x 2+x -34=0.方程x 2+x -34=0两边同乘2,得2x 2+2x -32=0.故选C.8.C [解析] ∵a 2+b 2-4a -10b +29=0, ∴(a 2-4a +4)+(b 2-10b +25)=0, ∴(a -2)2+(b -5)2=0, ∴a =2,b =5,∴当腰为5时,等腰三角形的周长为5+5+2=12; 当腰为2时,2+2<5,构不成三角形. 故选C. 9.23 79 10.等边11.证明:因为a 2-8a +20=a 2-8a +16+4=(a -4)2+4≥4,所以不论a 为何值,a 2-8a +20的值都不可能等于0,由一元二次方程的定义可知,关于x 的方程(a 2-8a +20)x 2+2ax +1=0必为一元二次方程.12.解:∵A -B =2m 2+3m +7-(m 2+5m +5)=m 2-2m +2=(m -1)2+1>0,∴A >B .13.解:把x =4代入已知方程,得16-6m =m 2, 整理,得m 2+6m =16,配方,得()m +32=25, 解得m 1=-8,m 2=2.当m =-8时,方程为x 2+12x =64,解得x =4或x =-16; 当m =2时,方程为x 2-3x =4,解得x =4或x =-1.14.解:(1)设经过x s ,△PBQ 的面积为8 cm 2. 由题意,得12(6-x )×2x =8,解得x 1=2,x 2=4.所以经过2 s 或4 s ,△PBQ 的面积为8 cm 2. (2)设经过y s ,P ,Q 两点间的距离为53 cm. 由题意得AP =y cm ,BQ =2y cm ,BP =(6-y )cm. 由勾股定理得(6-y )2+(2y )2=(53)2, 解得y 1=3.4,y 2=-1(不合题意,舍去). 所以经过3.4 s ,P ,Q 两点间的距离为53 cm. 15.解:(1)∵x 2+2x +3=x 2+2x +1+2=(x +1)2+2, ∴当x =-1时,代数式x 2+2x +3有最小值,且最小值是2. 故答案为:-1,2. (2)x 4-2x 2+5 =x 4-2x 2+1+4 =(x 2-1)2+4, ∵(x 2-1)2≥0, ∴(x 2-1)2+4>0,∴代数式x 4-2x 2+5的值一定是正数.当x =±1时,这个代数式的值最小,最小值是4.(3)S 1>S 2.理由如下:由题意,得S 1=a 2,S 2=4(a -3)=4a -12, 则S 1-S 2=a 2-(4a -12)=a 2-4a +12=(a -2)2+8. ∵(a -2)2>0,∴(a -2)2+8>0, ∴S 1-S 2>0,∴S 1>S 2.第2课时 相似三角形周长和面积的性质知识点 1 有关周长的计算1.已知△ABC∽△A1B1C1,且AB=4,A1B1=6,则△ABC的周长和△A1B1C1的周长之比是( )A.9∶4 B.4∶9 C.2∶3 D.3∶2图4-7-102.如图4-7-10,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F,则△EDF与△BCF的周长之比是( )A.1∶2 B.1∶3 C.1∶4 D.1∶53.2016·贵阳期末如果△ABC∽△DEF,其相似比为3∶1,且△ABC的周长为27,那么△DEF的周长为( )A.9 B.18 C.27 D.814.如图4-7-11,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC 的延长线于点F,BG⊥AE于点G,BG=4 2,求△FCE的周长.图4-7-11知识点 2 有关面积的计算5.2017·重庆已知△ABC∽△DEF,且相似比为1∶2,则△ABC与△DEF的面积比为( )A.1∶4 B.4∶1 C.1∶2 D.2∶1图4-7-126.2017·永州如图4-7-12,在△ABC中,D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )A.1 B.2 C.3 D.47.教材例2变式题如图4-7-13,把△ABC沿AB边平移到△A′B′C′的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的14,若AB=2,则△ABC平移的距离是________.4-7-134-7-148.如图4-7-14,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,若AE=2,△ADE的面积为4,四边形BCED的面积为5,则AB的长为________.9.如图4-7-15所示,在▱ABCD中,AE∶EB=1∶2.(1)求△AEF与△CDF的周长的比;(2)若S△AEF=6 cm2,求S△CDF.图4-7-1510.若两个相似三角形的面积之比为1∶4,则它们的周长之比为( )A.1∶2 B.1∶4 C.1∶5 D.1∶1611.如图4-7-16,DE是△ABC的中位线,延长DE至点F,使EF=DE,连接CF,则S ∶S四边形BCED的值为( )△CEFA.1∶3 B.2∶3 C.1∶4 D.2∶54-7-164-7-1712.2017·贵阳期末(教材综合与实践——制作视力表的应用)我们在制作视力表时发现,每个“E”形图的长和宽相等(即每个“E”形图近似于正方形),如图4-7-17,小明在制作视力表时,测得l1=14 cm,l2=7 cm,他选择了一张面积为4 cm2的正方形卡纸,刚好可以剪得第②个小“E”形图.那么下面四张正方形卡纸中,能够刚好剪得第①个大“E”形图的是( )A.面积为8 cm2的卡纸B.面积为16 cm2的卡纸C.面积为32 cm2的卡纸D.面积为64 cm2的卡纸13.如图4-7-18,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若四边形BDFE的面积为6,求△ABD的面积.图4-7-1814.如图4-7-19所示,M是△ABC内一点,过点M分别作三条直线平行于△ABC的各边,所形成的三个小三角形△1,△2,△3(图中阴影部分)的面积分别是4,9和49,求△ABC 的面积.图4-7-1915.某社区拟筹资金2000元,计划在一块上、下底长分别是10 m、20 m的梯形空地上种植花草.如图4-7-20,他们想在△AMD和△CMB地带种植单价为10元/m2的太阳花,当△AMD地带种满花后,已经花了500元,请你预算一下,若继续在△CMB地带种植同样的太阳花,资金是否够用,并说明理由.图4-7-2016.如图4-7-21,在△ABC中,AB=5,BC=3,CA=4,PQ∥AB,点P在CA上(与点A,C不重合),点Q在BC上.(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长.(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长.(3)试问:在AB上是否存在一点M,使得△PQM为等腰直角三角形?若存在,请求出PQ 的长;若不存在,请简要说明理由.图4-7-211.C 2.A3.A [解析] ∵△ABC ∽△DEF ,其相似比为3∶1,∴△ABC 的周长△DEF 的周长=31,∴△DEF 的周长=13×27=9.故选A.4.解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,∴∠BAE =∠F ,∠EAD =∠AEB . ∵AE 平分∠BAD , ∴∠BAE =∠EAD , ∴∠BAE =∠AEB , ∴BE =AB =6, ∴CE =BC -BE =3.∵∠AEB =∠FEC ,∠BAE =∠F , ∴△ABE ∽△FCE , ∴△ABE 的周长△FCE 的周长=BECE=2.∵BG ⊥AE ,∴AE =2AG =2 AB 2-BG 2=4, ∴△ABE 的周长=AB +BE +AE =16, ∴△FCE 的周长=12×△ABE 的周长=8.5.A6.C [解析] ∵∠ACD =∠B ,∠A =∠A , ∴△ACD ∽△ABC ,∴S △ACD S △ABC =(AD AC )2=14.∵S △ACD =1,∴S △ABC =4,∴S △BCD =S △ABC -S △ACD =3.7.1 [解析] 如图,∵把△ABC 沿AB 边平移到△A ′B ′C ′的位置,∴AC ∥A ′C ′,∴△ABC ∽△A ′BD .∵S △ABC ∶S △A ′BD =4,∴AB ∶A ′B =2.∵AB =2,∴A ′B =1,∴AA ′=2-1=1. 8.3 [解析] ∵∠AED =∠B ,∠A 是公共角, ∴△ADE ∽△ACB ,∴S △ADE S △ACB =(AE AB)2. ∵△ADE 的面积为4,四边形BCED 的面积为5,∴△ABC 的面积为9. ∵AE =2,∴49=(2AB )2,解得AB =3.9.解:(1)∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠FAE =∠FCD , ∴△AEF ∽△CDF . ∵AE ∶EB =1∶2, ∴AE ∶AB =AE ∶CD =1∶3,∴△AEF 与△CDF 的周长的比为1∶3. (2)由(1)知,△AEF ∽△CDF ,相似比为1∶3, ∴它们的面积比为1∶9. ∵S △AEF =6 cm 2, ∴S △CDF =54 cm 2. 10.A 11.A12.B [解析] ∵每个“E ”形图近似于正方形,∴P 2D 2∥P 1D 1,∴∠PP 2D 2=∠PP 1D 1,∠P 2D 2P =∠P 1D 1P , ∴△PP 2D 2∽△PP 1D 1. ∵l 1=14 cm ,l 2=7 cm , ∴P 2D 2∶P 1D 1=1∶2.∵第②个小“E ”形图是面积为4 cm 2的正方形卡纸, ∴第①个大“E ”形图的面积=4×4=16(cm 2). 故选B.13.解:(1)证明:∵DC =AC ,CF 是∠ACB 的平分线,∴CF 是△ACD 的中线, ∴F 是AD 的中点. 又∵E 是AB 的中点, ∴EF ∥BD ,即EF ∥BC . (2)由(1)知,EF ∥BD , ∴△AEF ∽△ABD ,∴S △AEF S △ABD =⎝ ⎛⎭⎪⎫AE AB 2. 又∵AE =12AB ,S △AEF =S △ABD -S 四边形BDFE =S △ABD -6, ∴S △ABD -6S △ABD =⎝ ⎛⎭⎪⎫122,∴S △ABD =8.14.解:根据题意,容易得到△1∽△2∽△3∽△ABC .因为△1、△2、△3的面积分别是4,9和49,所以它们之间的相似比为2∶3∶7,即BC 边被分成的三段从左到右的比为2∶7∶3,则△1与△ABC 的相似比为2∶12=1∶6,所以它们的面积比为1∶36,求得△ABC 的面积是144.15.解:不够用.理由如下: 在梯形ABCD 中,∵AD ∥BC , ∴△AMD ∽△CMB , ∴S △AMD S △CMB =(AD BC)2. ∵AD =10 m ,BC =20 m , ∴S △AMD S △CMB =(1020)2=14. ∵S △AMD =500÷10=50(m 2). ∴S △CMB =50×4=200(m 2). 还需要资金200×10=2000(元),而剩余资金为2000-500=1500(元)<2000元, ∴资金不够用.16.解:(1)∵PQ ∥AB ,∴△PQC ∽△ABC . ∵S △PQC =S 四边形PABQ , ∴S △PQC ∶S △ABC =1∶2, ∴CP CA =12=22, ∴CP =22·CA =2 2. (2)∵△PQC ∽△ABC , ∴CP CA =CQ CB =PQ AB ,即CP 4=CQ3,∴CQ =34CP .同理:PQ =54CP ,∴C △PQC =CP +PQ +CQ =CP +54CP +34CP =3CP ,C 四边形PABQ=PA +AB +BQ +PQ =4-CP +AB +3-CQ +PQ =4-CP +5+3-34CP +54CP =12-12CP .由C △PQC =C 四边形PABQ ,得3CP =12-12CP ,∴72CP =12,∴CP =247.(3)存在.∵CA =4,AB =5,BC =3, ∴△ABC 中AB 边上的高为125.①如图(a)所示,当∠MPQ =90°且PM =PQ 时,∵△CPQ ∽△CAB ,∴PQ AB =△CPQ 中PQ 上的高△CAB 中AB 上的高, ∴PQ 5=125-PQ 125,∴PQ =6037; ②当∠PQM =90°时与①相同;③如图(b)所示,当∠PMQ =90°且PM =MQ 时,过点M 作ME ⊥PQ ,则ME =12PQ ,∴△CPQ 中PQ 上的高为125-ME =125-12PQ .∵PQ AB =△CPQ 中PQ 上的高△CAB 中AB 上的高,∴PQ 5=125-12PQ 125,∴PQ =12049. 综上可知,存在点M ,使得△PQM 为等腰直角三角形,此时PQ 的长为6037或12049.。

北师大版九年级上册数学 2.2 第2课时 配方法(优质) 教学课件

北师大版九年级上册数学 2.2 第2课时 配方法(优质) 教学课件
1 2x2 1 3x;
解:移项,得 2x2-3x=-1,
二次项系数化为1,得 x2 3 x 1 ,
22
配方,得
x2

3 2
x


3 4
2


1 2


3 4
2
,


x

3 4
2

1 16
,
移项和二次项系数
由此可得 x 3 1 ,
3
为什么方程 两边都加12?
因为实数的平方不会是负数,所以x取任何实数时,
上式都不成立,所以原方程无实数根.
思考1:用配方法解一元二次方程时,移项时要 注意些什么?
移项时需注意改变符号.
思考2:用配方法解一元二次方程的一般步骤. ①移项,二次项系数化为1; ②左边配成完全平方式; ③左边写成完全平方形式; ④降次; ⑤解一次方程.
+(
3 2
)2= (
3 2
)2
-
2,
(t -
3 2
)2
=
1 4
.
移项,得
(t - 3 )2 = 1 ,
2
2

t - 3 = 1 ,或 t - 3 = 1 .
22
2
2
所以
t1= 2 , t2 = 1 .
即在1s或2s时,小球可达10m高.
例2.试用配方法说明:不论k取何实数,多项式 k2-4k+5 的值必定大于零.
规律总结
一般地,如果一个一元二次方程通过配方转化成 (x+n)2=p.
①当p>0时,则 x n p ,方程的两个根为

用配方法解一元二次方程第二课时

用配方法解一元二次方程第二课时
Байду номын сангаас
谈谈你的收获
1.用配方法解一元二次方程的基本思路是什么? 2.用配方法解一元二次方程应注意什么问题?
谢谢
解方程:x2+8x-9=0
解:把常数项移到方程的右边,得 x2+8x=9
两边都加上一次项系数8的一半的平方,得 x2+8x+42=9+42 (x+4)2=25
开平方,得x+4=±5 即x+4=5,或x+4=-5 所以 x1=1,x2=-9
总结:用配方法解一元二次方程的步 骤
移项:把常数项移到方程的右边;
把一元二次方程的左边配成一个完全
平方式,右边为一个非负常数,然后用开
平方法求解,这种解一元二次方程的方法
叫做配方法。
做一做 填上适当的数,使下列等式成立。
x2+2x+___=(_x__+__6_)2 x2-4x-___=(x__-___)2 x2+8x+___=(_x__+___)2
各等式左边的常数项和一次项系数有什么关
(xxx6-662)223=6 356115201
即 (x+6)2 = 51 两边开平方,得 x+6=± 51
因此,方程 x2 +12x -15= 0 有两个根
x1 = 51 - 6 , x2 = - 51 - 6 这里,解一元二次方程的基本思路是将方
程转化为 (x+m)2 = n 的形式,当 n ≥0 时,两 边开平方便可求出它的根。
所 x1 = -6+3 3;x2 = -6 - 3 3 以
x2 + 4x+()= (x+)2
x 2 -10 x +()= ( x-)2

2.2第2课时用配方法求解二次项系数不为1的一元二次方程(教案)

2.2第2课时用配方法求解二次项系数不为1的一元二次方程(教案)
五、教学反思
在今天的教学中,我发现学生们对于配方法的概念和步骤掌握程度参差不齐。有的同学能够迅速理解配方法的原理,并在实际题目中运用自如;而有的同学则在配方法的代数变换过程中感到困惑。这让我意识到,在今后的教学中,我需要更加关注学生的个体差异,针对性地进行教学。
在讲授新课的过程中,我尽量用简单明了的语言解释配方法的步骤,并通过具体的案例让学生看到配方法在实际问题中的应用。然而,我发现在案例分析环节,部分学生的参与度并不高,他们似乎更愿意被动接受知识,而不是主动思考。这可能是因为我对案例的选择和引导方式还不够贴近学生的实际需求。在未来的教学中,我会尝试设计更多有趣的、贴近学生生活的案例,激发他们的学习兴趣。
3.重点难点解析:在讲授过程中,我会特别强调配方法的步骤和代数变换这两个重点。对于难点部分,如如何确定常数项的加减,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与配方法相关的实际问题,如实际生活中的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过具体方程的配方法演示来观察结果。
此外,我还发现课堂上的互动环节有待加强。为了提高学生的参与度,我将在以后的教学中,更多地采用提问、小组竞赛等形式,鼓励学生主动思考、积极参与。
本节课将通过示例讲解、学生练习和问题探讨等形式,帮助学生深入理解配方法在求解一元二次方程中的应用,并提高解题能力。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力:通过配方法的运用,让学生掌握求解一元二次方程的逻辑推理过程,提高分析问题和解决问题的能力。
2.增强学生的数学运算能力:在实际操作中,培养学生准确无误地进行数学运算,特别是在配方法中的代数变换和化简能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.6和-1 【解析】选A.
移项,得 x2-5x=6 配方, 得x2-5x+(- 5)2=6+(- 5 )2.
2 即(x- 5)2= 49 2 4 2

B.-6和1
C.-2和-3
D. 2和3
x- 5 = 7 ,
2 2
所以
x1=6,x2=-1.
3.(綦江·中考)解方程x2-2x-1=0 【解析】把常数项移到方程的右边,得 x2-2x=1 配方得 x2-2x+(-1)2=1+(-1)2
两边同时加上62,得 x2+12x+62=15+62 即(x+6)2=51 两边开平方,得 x 6 51 所以 x1 51 6, x2 51 6
【例题】
【例2】一小球以15m/s的初速度竖直向上弹出,它在空中 的高度h(m)与时间t(s)满足关系:h=15t―5 t 2,小球
2x2+8x+6=0 x2+4x+3=0
3x2+6x-9=0
-5x2+20x+25=0
x2+2x-3=0 x2-4x-5=0
【例题】
【例1】解方程3x2+8x-3=0. 分析:将二次项系数化为1后,用配方法解此方程. 【解析】两边都除以3,得:x 2 8 x 1 0
8 3
3
移项,得: x 2 x 1
2 用配方法求解一元二次方程
第2课时
ax bx c 0(a 0)
2
1.会用配方法熟练地解一元二次方程;
2.知道“配方”是一种数学方法,体会
转化的数学思想.
利用配方法解一元二次方程的步骤: (1)移项:把常数项移到方程的右边; (2)配方:方程两边都加上一次项系数一半的平方; (3)开方:根据平方根的概念,将一元二次方程转化 为两个一元一次方程; (4)求解:解一元一次方程得到一元二次方程的解.
将下列各式填上适当的项,配成完全平方式.
12 1 2 1.x2+2x+_____=(x+____)
2 2 (-2) 2 2 2.x -4x+_____=(x-____)
12x 6 2 3.x2+_____+36=(x+____) 5 2 52 =(x+____) 4.x2+10x+___
2 2 (-0.5) 0.5 2 5.x -x+______=(x-____)
何时能达到10m高?
【解析】根据题意得 15t-5t2=10 方程两边都除以-5,得 t2-3t=-2
配方,得
3 3 t 3t 2 2 2
2 2 2
1 3 t 4 22即t3 1 2 2
∴ t1 2, t2 1
人生不是受环境的支配,而是受自己习惯
思想的恐吓.
——赫胥黎
请你描述一下,刚才的实际问题中t有两个值, 它们所在时刻小球的运动状态.
1.(上海·中考)已知一元二次方程x2+x-1=0,下
列判断正确的是(
)
A.该方程有两个相等的实数根
B.该方程有两个不相等的实数根
C.该方程无实数根
D.该方程根的情况不确定
答案:选B.
2.(常德·中考)方程x2-5x-6=0的两根为(
即(x-1)2=2
由此可得 x-1= 2 , 所以 x1=1+ 2 ,x2=1- 2 .
4.解方程:3x2-6x+4=0 【解析】把常数项移到方程的右边,得 3x2 -6x=-4 二次项的系数化为1,得 x2 -2x=
4 3
两边都加上(-1)2,得
4 2 2 x -2x+(-1) = +(-1)2.
8 4 4 配方,得: x x 1 (方程两边都加上一次项系 3 3 3
2 2 2
数一半的平方)
4 5 x 即: 3 3
2 2
所以: x1 , x2 3
1 3
【跟踪训练】
解方程:x2+12x-15=0 【解析】移项得 x2+12x=15
请同学们比较下列两个一元二次方程的联系与区别. 1.x2+6x+8=0 2.3x2+18x+24=0 由此你想到怎样解二次 项系数不是1的一元二 次方程呢?
这两个方程有 什么联系?
【规律方法】如果方程的系数不是1,我们可以在
方程的两边同时除以二次项系数,这样转化为系
数是1的方程就可以利用学过的知识解方程了!
即(x-1)2=

因为实数的平方都是非负数,所以无论x取任何实数, (x-1)2都是非负数,上式都不成立,即原方程无实根.
1 3
3
1.解二次项系数不是1的一元二次方程的思路: 在方程的两边同时除以二次项系数转化为 二次项系数是1的一元二次方程. 2.解一元二次方程的步骤; 3.利用一元二次方程解决实际问题.
相关文档
最新文档