云南省2018年中考数学总复习第三章函数第一节平面直角坐标系与函数好题随堂演练

合集下载

人教版高考总复习一轮数学精品课件 主题二函数第三章 函数与基本初等函数-第一节 函数的概念及其表示法

人教版高考总复习一轮数学精品课件 主题二函数第三章 函数与基本初等函数-第一节 函数的概念及其表示法
题型二 函数的解析式
典例2根据下列条件,求函数的解析式.
(1)是二次函数,且,.
解(待定系数法)设,由,得,则,所以,且,解得,,故.
(2).
解方法一(换元法):令,则,,所以,所以函数的解析式为.方法二(配凑法).因为,所以函数的解析式为.
(3).
解(构造方程组法)将代入,得,联立得解得.
(4),对任意的实数,都有.
规律方法求函数解析式的常用方法
方法
使用条件
解题思路
待定系数法
已知函数的类型(图象)
设出含有待定系数的函数解析式,将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数
换元法
已知,求
设,从中解出,代入进行换元(应用换元法时要注意新元的取值范围)
配凑法
把右边的整理或配凑成只含的式子,然后用将代换
对应关系
并集
并集
知识拓展
教材中的几个重要函数
函数类型
定义
图象
绝对值函数
“双勾”函数
_
函数类型
定义
图象
取整函数
,其中表示不超过的最大整数
符号函数
续表
自测诊断
1.函数的定义域是()
B
A.B.C.D.
[解析]由题知解得且,所以函数的定义域为.故选B.
2.已知,则()
D
A.B.C.D.
[解析]由题意,故.故选D.
A
A.B.C.D.18
[解析]因为当时,,所以,所以;又当时,,所以.故选A.
[对点训练3](1)设函数则()
C
A.B.C.D.
[解析]因为,所以.故选C.
(2)已知函数则___.
[解析].故答案为.

中考数学 考点系统复习 第三章 函数 第九节 二次函数与几何综合题 类型三:二次函数与特殊三角形问题

中考数学 考点系统复习 第三章 函数 第九节 二次函数与几何综合题 类型三:二次函数与特殊三角形问题

求点的坐标: 1.分别表示出点 A,B,P 的坐标,再表示出线段 AB,BP,AP 的长度, 由①AB=AP,②AB=BP,③AP=BP 分别列方程求解即可. 2.作等腰三角形底边上的高,用勾股定理或相似建立等量关系. 3.以 AB 为底边时,可用解析法,先求中垂线的解析式,再联立方程组 求交点.
此时点 C 的坐标为21,1+32
5
或2 1,13-2
5
.
综上可知,当△ABC 是直角三角形时,点 C 的坐标共有 4 个为((1 1,,33)),
((1,1,- -2)
2),21,1+23
5
或21,1-23
5
.
问题:已知线段 AB 和直线 l,在 l 上求点 P,使△PAB 为直角三角形.
【分层分析】 点 P 在线段 BC 的中垂线与抛物线的交点处.求中垂线的解析式,联立方 程组求解.
解:存在.由题意得 B(3,0),C(0,-3),由点 B,C 的坐标求得直线
BC 的解析式为 y=x-3,线段 BC 的中点为32,-32,设线段 BC 的中垂线 的解析式为 y=-x+b,代入23,-32,得 b=0. ∴线段 BC 的中垂线的解析式为 y=-x,
【分层分析】 利用两圆一中垂的方法在直线 l上找出点 P,共有 5 个,并注意检验点 P 是否满足条件,当点 P,A,C 共线时,不符合题意.
解:存在.设 P(1,p),AC2=10, PA2=(1+1)2+(p-0)2=p2+4, PC2=(1-0)2+(p+3)2=p2+6p+10. 分三种情况讨论: ①当 PA=PC 时,p2+4=p2+6p+10, 解得 p=-1,∴P1(1,-1); ②当 AC=PC 时,p2+6p+10=10,解得 p1=0,p2=-6, 当 p=-6 时,显然 A,C,P 三点在一条直线上不能构成三角形,舍去, ∴P2(1,0);

2020年中考数学一轮复习第3章函数及其图象(付)

2020年中考数学一轮复习第3章函数及其图象(付)

第三章函数及其图象第一节平面直角坐标系姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)点(3,2)关于x轴的对称点为( )A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)2.(2018·湖南岳阳中考)函数y=x-3中自变量x的取值范围是( )A.x>3 B.x≠3C.x≥3 D.x≥03.(2017·山东济宁中考)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是( )A.① B.③C.②或④ D.①或③4.(2019·易错题)函数y=xx-2中自变量x的取值范围是__________.5.在平面直角坐标系中,点P(3,-x2-1)在第______象限.6.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(-1,0).现将△ABC 绕点A顺时针旋转90°,则旋转后点C的坐标是______________.7.(2019·改编题)如图,在平面直角坐标系中,已知点A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一根长为2 019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是________________.8.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.9.定义:直线l 1与l 2交于点O ,对于平面内任意一点M ,点M 到直线l 1,l 2的距离分别为p ,q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2B .3C .4D .510.在平面直角坐标系中,点P(-3,2)关于直线y =x 对称的点的坐标是( ) A .(-3,-2) B .(3,2) C .(2,-3)D .(3,-2)11.(2019·改编题)如图,在平面直角坐标系xOy 中,已知点M 0的坐标为(1,0),将线段OM 0绕原点O 逆时针方向旋转45°,再将其延长到M 1,使得M 1M 0⊥OM 0,得到线段OM 1;又将线段OM 1绕原点O 逆时针方向旋转45°,再将其延长到M 2,使得M 2M 1⊥OM 1,得到线段OM 2;如此下去,得到线段OM 3,OM 4,OM 5,…,根据以上规律,那么 M 2 019的坐标为_________________________.12.(2019·创新题)【阅读】在平面直角坐标系中,以任意两点P(x 1,y 1),Q(x 2,y 2)为端点的线段中点坐标为(x 1+x 22,y 1+y 22).【运用】(1)如图,矩形ONEF的对角线交于点M,ON,OF分别在x轴和y轴上,O为坐标原点,点E 的坐标为(4,3),则点M的坐标为________;(2)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A,B,C 构成平行四边形的顶点,求点D的坐标.13.(2018·浙江台州中考)甲、乙两运动员在长为100 m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5 m/s,乙跑步的速度为4 m/s,则起跑后100 s 内,两人相遇的次数为( )A.5 B.4C.3 D.2参考答案【基础训练】1.A 2.C 3.D 4.x≠2 5.四 6.(2,1) 7.(-1,1)8.解:(1)图中格点△A′B′C′是由格点△ABC 向右平移7个单位长度得到的. (2)如图,过点F 作FG∥直线a ,交DE 于点G.如果以直线a ,b 为坐标轴建立平面直角坐标系后,点A 的坐标为(-3,4),那么格点△DEF 各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,-3),S △DEF =S △DGF +S △GEF =12×5×1+12×5×1=5.【拔高训练】 9.C 10.C 11.( -21 009,21 009)12.解:(1)(2,32)(2)设点D 的坐标为(x ,y),若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合, ∴⎩⎪⎨⎪⎧1+x 2=-1+32,4+y 2=2+12,解得⎩⎪⎨⎪⎧x =1,y =-1.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合,∴⎩⎪⎨⎪⎧-1+x 2=1+32,2+y 2=4+12,解得⎩⎪⎨⎪⎧x =5,y =3.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合, ∴⎩⎪⎨⎪⎧3+x 2=-1+12,1+y 2=2+42,解得⎩⎪⎨⎪⎧x =-3,y =5.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5). 【培优训练】 13.B第二节 一次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.下列y 关于x 的函数中,是正比例函数的为( ) A .y =x 2B .y =2xC .y =x2D .y =x +122.若一次函数y =3x +b 的图象经过点(-1,2),则b 的值为( ) A .-7B .-1C .2D .53.(2018·陕西中考)若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( ) A .(-2,0) B .(2,0) C .(-6,0)D .(6,0)4.(2019·易错题)已知y 关于x 的函数y =(m -2)x +m 2-4,当m________时,该函数为一次函数;当m__________时,该函数为正比例函数.5. (2019·易错题)已知一次函数y =(1-m)x +m -2,当__________时,y 随x 的增大而增大.6.把直线y =-x -1沿y 轴向上平移2个单位,所得直线的函数表达式为________________. 7.如图,直线y 1=x +b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x +b>kx -1的解集为____________.8. (2019·易错题)对于一次函数y =kx +b ,当1≤x≤4时,3≤y≤6,则kb 的值是____________.9.(2018·重庆中考B 卷)如图,在平面直角坐标系中,直线l 1:y =12x 与直线l 2交点A 的横坐标为2,将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为-2.直线l 2与y 轴交于点D. (1)求直线l 2的表达式; (2)求△BDC 的面积.10.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M,若直线l2与x轴的交点为A(-2,0),则k的取值范围为( )A.-2<k<2 B.-2<k<0C.0<k<4 D.0<k<211.如图,点A,B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为____________.12.如图,在平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连结PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB 与直线y=x交于点A,且BD=2AD,连结CD,直线CD与直线y=x交于点Q,则点Q的坐标为__________.13.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位,再向上平移6个单位得到点P 3.请判断点P 3是否在直线l 上,并说明理由.参考答案【基础训练】1.C 2.D 3.B 4.≠2 =-2 5.m<1 6.y =-x +1 7.x>-1 8.2或-7 9.解:(1)把x =2代入y =12x 得y =1,∴点A 的坐标为(2,1).∵将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3, ∴直线l 3的表达式为y =12x -4,∴x=0时,y =-4,∴B(0,-4). 将y =-2代入y =12x -4,得x =4,∴点C 的坐标为(4,-2).设直线l 2的表达式为y =kx +b(k≠0), ∵直线l 2过A(2,1),C(4,-2),∴⎩⎪⎨⎪⎧2k +b =1,4k +b =-2,解得⎩⎪⎨⎪⎧k =-32,b =4,∴直线l 2的表达式为y =-32x +4.(2)∵y=-32x +4,∴x=0时,y =4,∴D(0,4).∵B(0,-4),∴BD=8, ∴△BDC 的面积=12×8×4=16.【拔高训练】10.D 11.(43,0) 12.(94,94)【培优训练】13.解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b(k≠0), ∵点P 1(2,1),P 2(3,3)在直线l 上,∴⎩⎪⎨⎪⎧2k +b =1,3k +b =3,解得⎩⎪⎨⎪⎧k =2,b =-3. ∴直线l 所表示的一次函数的表达式为y =2x -3. (3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9), ∵2×6-3=9,∴点P 3在直线l 上.第三节 一次函数的实际应用姓名:________ 班级:________ 用时:______分钟1.(2018·江苏无锡中考)一水果店是A 酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2 600 kg 的这种水果.已知水果店每售出1 kg 该水果可获利润10元,未售出的部分每1 kg 将亏损6元,以x(单位:kg ,2 000≤x≤3 000)表示A 酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润. (1)求y 关于x 的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22 000元?2.某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动,11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家.他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回,同时,爸爸在家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距________千米,小宇在活动中心活动时间为________小时,他从活动中心返家时,步行用了________小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.3.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30 ________ 2:50首尔时间________ 12:15 ________(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦时间(夏时制)为7:30,那么此时韩国首尔时间是多少?4. (2017·河北中考)如图,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E ,点B ,E 关于x 轴对称,连结AB.(1)求点C ,E 的坐标及直线AB 的表达式; (2)设面积的和S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S △AOC ≠S,请通过计算解释他的想法错在哪里.5.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k2计算. 例如:求点P(-2,1)到直线y =x +1的距离.解:因为直线y =x +1可变形为x -y +1=0,其中k =1,b =1,所以点P(-2,1)到直线y =x +1的距离为d =|kx 0-y 0+b|1+k 2=|1×(-2)-1+1|1+12=22=2.根据以上材料,求:(1)点P(1,1)到直线y=3x-2的距离,并说明点P与直线的位置关系;(2)点P(2,-1)到直线y=2x-1的距离;(3)已知直线y=-x+1与y=-x+3平行,求这两条直线的距离.参考答案1.解:(1)由题意得当2 000≤x≤2 600时,y=10x-6(2 600-x)=16x-15 600,当2 600<x≤3 000时,y=2 600×10=26 000.(2)由题意得16x-15 600≥22 000,解得x≥2 350.∴当A酒店本月对这种水果的需求量小于等于3 000 kg,不少于2 350 kg时,该水果店销售这批水果所获的利润不少于22 000元.2.解:(1)22 2 2 5(2)由题意知,点B 的坐标为(3,22),点C 的坐标为(175,20),设线段BC 的函数关系式为y =kx +b , 把点B 和点C 的坐标代入, 得⎩⎪⎨⎪⎧3k +b =22,175k +b =20,解得⎩⎪⎨⎪⎧k =-5,b =37,所以线段BC 所表示的y(千米)与x(小时)之间的函数关系式是y =-5x +37.(3)爸爸开车接上小宇前行驶路程为20千米,用时25小时,速度为20÷25=50(千米/小时),接上小宇后开车返回的速度是50千米/小时,路程为20千米,需要2050=25(小时),到家时间为8+3+25+25=1145时,即11时48分,所以小宇能在12:00前回到家.3.解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时, 故y 关于x 的函数表达式是y =x +1.填表如下:(2)从图2看出,设伦敦时间(夏时制)为t 时,则北京时间为(t +7)时, 由第(1)题,知韩国首尔时间为(t +8)时,所以,当伦敦时间(夏时制)为7:30时,韩国首尔时间为15:30. 4.解:(1)在直线y =-38x -398中,令y =0,则有0=-38x -398,∴x=-13,∴C(-13,0).令x =-5,则有y =-38×(-5)-398=-3,∴E(-5,-3).∵点B ,E 关于x 轴对称,∴B(-5,3). ∵A (0,5),∴设直线AB 的表达式为y =kx +5, ∴-5k +5=3,∴k=25,∴直线AB 的表达式为y =25x +5.(2)由(1)知,E(-5,-3),∴DE=3,∵C(-13,0),∴CD=-5-(-13)=8, ∴S △CDE =12CD·DE=12.由题意知,OA =5,OD =5,BD =3, ∴S 四边形ABDO =12(BD +OA)·OD=20,∴S=S △CDE +S 四边形ABDO =12+20=32. (3)由(2)知,S =32, 在△AOC 中,OA =5,OC =13, ∴S △AOC =12OA·OC=652=32.5,∴S≠S △AOC .理由:由(1)知,直线AB 的表达式为y =25x +5,令y =0,则0=25x +5,∴x=-252≠-13.∴点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∴S △AOC ≠S.5.解:(1)∵点P(1,1),∴点P 到直线y =3x -2的距离为d =|3×1-1-2|1+32=0, ∴点P 在直线y =3x -2上. (2)∵y=2x -1,∴k=2,b =-1. ∵P(2,-1),∴d=|2×2-(-1)-1|1+22=455. ∴点P(2,-1)到直线y =2x -1的距离为455.(3)在直线y =-x +1任意取一点P , 当x =0时,y =1,∴P(0,1). ∵直线y =-x +3,∴k=-1,b =3, ∴d=|-0-1+3|1+(-1)2=2,∴两平行线之间的距离为 2.第四节 反比例函数姓名:________ 班级:________ 用时:______分钟1.(2018·浙江宁波模拟)若y =(m +1)x m -2是反比例函数,则m 的取值为( )A .1B .-1C .±1D .任意实数2.以下各点中,与点(-2,6)在同一个反比例函数图象上的是( ) A .(6,2) B .(-2,-6) C .(3,4)D .(4,-3)3.(2019·易错题)已知点A(1,y 1),B(2,y 2),C(-3,y 3)都在反比例函数y =4x 的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 3<y 1<y 2 B .y 1<y 2<y 3 C .y 2<y 1<y 3D .y 3<y 2<y 14.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,反比例函数y =3x的图象经过点D ,则正方形ABCD 的面积是( )A .10B .11C .12D .135.(2018·江西中考)在平面直角坐标系中,分别过点A(m ,0),B(m +2,0)作x 轴的垂线l 1和l 2,探究直线l 1,直线l 2与双曲线y =3x的关系,下列结论中错误的是( )A .两直线中总有一条与双曲线相交B .当m =1时,两直线与双曲线的交点到原点的距离相等C .当-2<m <0时,两直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2 6. (2019·易错题)已知反比例函数y =-8x,下列结论:①图象必经过(-2,4);②图象在第二、四象限;③y 随x 的增大而增大;④当x>-1时,则y>8.其中错误的结论有( ) A .3个B .2个C .1个D .0个7.已知反比例函数y =6x 在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半轴上一点,连结AO ,AB ,且AO =AB ,则S △AOB =______.8.如图,一次函数y =kx +b 与反比例函数y =ax 的图象在第一象限交于A ,B 两点,B 点的坐标为(3,2),连结OA ,OB ,过点B 作BD⊥y 轴,垂足为点D ,交OA 于点C ,若OC =CA.(1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积.9.已知k 1<0<k 2,则函数y =k 1x -1和y =k 2x的图象大致是( )10.如图,点P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )在函数y =1x (x>0)的图象上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n -1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n -1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是______________;点P n 的坐标是______________(用含n 的式子表示).11.如图,已知点A(4,0),B(0,43),把一个直角三角尺DEF 放在△OAB 内,使其斜边FD 在线段AB 上,三角尺可沿着线段AB 上下滑动.其中∠EFD=30°,ED =2,点G 为边FD 的中点.(1)求直线AB 的函数表达式;(2)如图1,当点D 与点A 重合时,求经过点G 的反比例函数y =kx (k≠0)的函数表达式;(3)在三角尺滑动的过程中,经过点G 的反比例函数的图象能否同时经过点F ?如果能,求出此时反比例函数的表达式;如果不能,说明理由.12.(2018·江苏泰州中考)平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数y 1=kx (x>0)的图象上,点A′与点A 关于点O 对称,一次函数y 2=mx +n 的图象经过点A′. (1)设a =2,点B(4,2)在函数y 1,y 2的图象上. ①分别求函数y 1,y 2的表达式;②直接写出使y 1>y 2>0成立的x 的范围;(2)如图1,设函数y 1,y 2的图象相交于点B ,点B 的横坐标为3a ,△AA′B 的面积为16,求k 的值;(3)设m =12,如图2,过点A 作AD⊥x 轴,与函数y 2的图象相交于点D ,以AD 为一边向右侧作正方形ADEF ,试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.参考答案【基础训练】1.A 2.D 3.D 4.C 5.D 6.B 7.68.解:(1)∵反比例函数的表达式为y =a x ,且反比例函数经过点B(3,2),∴2=a3,即a =6.∴反比例函数的表达式为y =6x .如图,过点A 作AE⊥y 轴于点E , ∵过点B 作BD⊥y 轴,OC =CA ,∴CD 是△AOE 的中位线,即OE =2OD =4. 又∵点A 在反比例函数y =6x 的图象上,∴点A 的坐标为(32,4).∵一次函数的表达式为y =kx +b ,且经过A ,B 两点,根据题意,得 ⎩⎪⎨⎪⎧3k +b =2,32k +b =4,解得⎩⎪⎨⎪⎧k =-43,b =6, ∴一次函数的表达式为y =-43x +6.(2)∵CD 是△AOE 的中位线,∴CD=12AE =34,∴BC=BD -CD =3-34=94.∴S △AOB =S △ABC +S △BOC =12BC·OE=12×94×4=92.【拔高训练】 9.A10.(3+2,3-2) (n +n -1,n -n -1) 11.解:(1)设直线AB 的函数表达式为y =k′x+b. ∵点A(4,0),B(0,43),∴⎩⎨⎧4k′+b =0,b =43,解得⎩⎨⎧k′=-3,b =43,∴直线AB 的函数表达式为y =-3x +4 3.(2)∵在Rt△DEF 中,∠EFD=30°,ED =2,∴EF=23,DF =4. ∵点D 与点A 重合,∴点D(4,0), ∴点F(2,23),∴点G(3,3). ∵反比例函数y =kx 经过点G ,∴k=33,∴反比例函数的表达式为y =33x.(3)经过点G 的反比例函数的图象能同时经过点F ,理由如下: ∵点F 在直线AB 上, ∴设点F(t ,-3t +43).又∵ED=2,∴点D(t +2,-3t +23). ∵点G 为边FD 的中点. ∴G(t+1,-3t +33).若过点G 的反比例函数的图象也经过点F , 设此时反比例函数表达式为y =mx,则⎩⎪⎨⎪⎧-3t +33=mt +1,-3t +43=mt,整理得(-3t +33)(t +1)=(-3t +43)t , 解得t =32,∴m=1534,∴经过点G 的反比例函数的图象能同时经过点F ,这个反比例函数的表达式为y =1534x .【培优训练】12.解:(1)①由已知,点B(4,2)在y 1=kx (x >0)的图象上,∴k=8,∴y 1=8x.∵a=2,∴点A 坐标为(2,4),A′坐标为(-2,-4). 把B(4,2),A′(-2,-4)代入y 2=mx +n ,⎩⎪⎨⎪⎧2=4m +n ,-4=-2m +n , 解得⎩⎪⎨⎪⎧m =1,n =-2.∴y 2=x -2.②当y 1>y 2>0时,y 1=8x 图象在y 2=x -2图象上方,且两函数图象在x 轴上方,∴由图象得2<x <4.(2)如图,分别过点A ,B 作AC⊥x 轴于点C ,BD⊥x 轴于点D ,连结BO.∵O 为AA′的中点, ∴S △AOB =12S △AA′B =8,∵点A ,B 在双曲线上, ∴S △AOC =S △BOD , ∴S △AOB =S 四边形ACDB =8.由已知得,点A ,B 坐标为(a ,k a ),(3a ,k3a ),∴12(k 3a +ka)·2a=8,解得k =6. (3)由已知A(a ,k a ),则A′为(-a ,-ka ).把A′代入到y 2=12x +n 中,则-k a =-12a +n ,∴n=12a -k a,∴A′D 的表达式为y 2=12x +12a -ka .当x =a 时,点D 纵坐标为a -ka ,∴AD=2ka-a.∵AD=AF ,∴点F 和点P 横坐标为a +2k a -a =2ka .∴点P 纵坐标为12·2k a +12a -k a =12a.∴点P 在y 1=kx (x >0)的图象上.第五节 二次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式,结果为( ) A .y =(x +1)2+4 B .y =(x +1)2+2 C .y =(x -1)2+4D .y =(x -1)2+22.(2017·浙江丽水中考)将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位3.(2018·湖南益阳中考)已知二次函数y =ax 2+bx +c 的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .b 2-4ac <0 D .a +b +c <04.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是_________________________.5.(2019·改编题)矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为________________________.6.已知二次函数y =ax 2-bx -2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( ) A.34或1 B.14或1 C.34或12D.14或347.如图,反比例函数y =k x 的图象经过二次函数y =ax 2+bx 图象的顶点(-12,m)(m>0),则有( )A.a=b+2kB.a=b-2kC.k<b<0D.a<k<08.(2018·山东德州中考)如图,函数y=ax2-2x+1和y=ax-a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( )9.(2018·浙江杭州中考)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由;(2)若该二次函数图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.10.如图,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的表达式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.11.(2018·四川南充中考)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ; ④当n =-1a 时,△ABP 为等腰直角三角形.其中正确结论是________(填写序号).参考答案【基础训练】 1.D 2.D 3.B4.y =-19(x +6)2+4 5.y =x 2+8x +14【拔高训练】 6.A 7.D 8.B9.解:(1)由题意知Δ=b 2-4a[-(a +b)]=b 2+4ab +4a 2=(2a +b)2≥0, ∴该二次函数图象与x 轴的交点的个数有2个或1个. (2)当x =1时,y =a +b -(a +b)=0 ∴该二次函数图象不经过点C. 把点A(-1,4),B(0,-1)分别代入得⎩⎪⎨⎪⎧4=a -b -(a +b ),-1=-(a +b ),解得⎩⎪⎨⎪⎧a =3,b =-2.∴该二次函数的表达式为y =3x 2-2x -1. (3)证明:当x =2时,m =4a +2b -(a +b)=3a +b >0,① ∵a+b <0,∴-a -b >0.② ①+②得2a >0,∴a>0.10.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的表达式为y =x 2-4x +3.(2)方法1:如图1,过点P 作PG∥CF 交CB 于点G ,由题意知∠BCO=∠CFE=45°,F(0,m),C(0,3),∴△CFE 和△GPE 均为等腰直角三角形, ∴EF=22CF =22(3-m),PE =22PG. 设x P =t(1<t<3),则PE =22PG =22(-t +3-t -m) =22(-m -2t +3),t 2-4t +3=t +m , ∴PE+EF =22(-m -2t +3)+22(3-m)=22(-2t -2m +6)=-2(t +m -3)=-2(t 2-4t)=-2(t -2)2+42,∴当t =2时,PE +EF 的最大值为4 2.方法2:(几何法)如图2,由题易知直线BC 的表达式为y =-x +3,OC =OB =3, ∴∠OCB=45°. 同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形,以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于点H ,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2. (3)①由(1)知对称轴x =2,设D(2,n),如图3.当△BCD 是以BC 为直角边的直角三角形时,D 在BC 上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(32)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形时,D 在BC 下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(32)2=(2-0)2+(n -3)2,解得n =-1. ∴当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图4,以BC 的中点T(32,32),12BC 为半径作⊙T,与对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角,得∠CD 3B =∠CD 4B =90°. 设D(2,m),由DT =12BC =322得(32-2)2+(32-m)2=(322)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172).又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,D 点在线段D 1D 3或D 2D 4上时(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.【培优训练】 11.②④第六节 二次函数的综合应用姓名:________ 班级:________ 用时:______分钟1.(2018·湖北孝感中考)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是________________________.2.(2018·浙江湖州中考)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.3.(2019·易错题)某校在基地参加社会实践活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69 m的不锈钢栅栏围成,与墙平行的一边留一个宽为3 m的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x m(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?4. (2018·湖北襄阳中考)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数表达式为y =⎩⎪⎨⎪⎧mx -76m (1≤x<20,x 为正整数),n (20≤x≤30,x 为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本). (1)m =________,n =________;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少? (3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?5.(2018·山东泰安中考)一元二次方程(x +1)(x -3)=2x -5根的情况是( ) A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于36.如图,已知直线y =-34x +3分别交x 轴、y 轴于点A ,B ,P 是抛物线y =-12x 2+2x +5上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线y =-34x +3于点Q ,则当PQ =BQ 时,a 的值是__________________________.7.如图,抛物线y =a(x -1)2+c 与x 轴交于点A(1-3,0)和点B ,将抛物线沿x 轴向上翻折,顶点P 落在点P′(1,3)处. (1)求原抛物线的函数表达式;(2)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x 轴的平行线交抛物线于C ,D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W ,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比5-12(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少(参考数据:5≈2.236,6≈2.449,结果可保留根号).8.(2017·湖南邵阳中考)如图所示,顶点为(12,-94)的抛物线y =ax 2+bx +c 过点M(2,0).(1)求抛物线的表达式;(2)点A 是抛物线与x 轴的交点(不与点M 重合),点B 是抛物线与y 轴的交点,点C 是直线y =x +1上一点(处于x 轴下方),点D 是反比例函数y =kx (k >0)图象上一点,若以点A ,B ,C ,D 为顶点的四边形是菱形,求k 的值.参考答案【基础训练】1.x 1=-2,x 2=1 2.-23.解:(1)AB =x m ,可得BC =69+3-2x =(72-2x)m. (2)小英说法正确,理由如下:矩形面积S =x(72-2x)=-2(x -18)2+648, ∵72-2x>0, ∴x<36,∴0<x<36.∴当x =18时,S 取最大值, 此时x≠72-2x ,∴面积最大的不是正方形.4.解:(1)第12天的售价为32元/千克,代入y =mx -76m ,得32=12m -76m , 解得m =-12.第26天的售价为25元/千克,代入y =n , 则n =25,故答案为m =-12,n =25.(2)由题意知,第x 天的销售量为20+4(x -1)=4x +16, 当1≤x<20时,W =(4x +16)(-12x +38-18)=-2x 2+72x +320=-2(x -18)2+968,∴当x =18时,W 最大=968元.当20≤x≤30时,W =(4x +16)(25-18)=28x +112. ∵28>0,∴W 随x 的增大而增大, ∴当x =30时,W 最大=952元. ∵968>952,∴当x =18时,W 最大=968元.(3)当1≤x<20时,令-2x 2+72x +320=870, 解得x 1=25,x 2=11.∵抛物线W =-2x 2+72x +320的开口向下, ∴11≤x≤25时,W≥870. 又∵11≤x<20,x 为正整数, ∴有9天利润不低于870元,当20≤x≤30时,令28x +112≥870, 解得x≥27114.∴27114≤x≤30.∵x 为正整数,∴有3天利润不低于870元.∴综上所述,当天利润不低于870元的天数共有12天. 【拔高训练】5.D 6.-1,4,4+25,4-2 57.解:(1)∵点P 与点P′(1,3)关于x 轴对称, ∴点P 的坐标为(1,-3).设原抛物线的表达式为y =a(x -1)2-3,∵其过点A(1-3,0), ∴0=a(1-3-1)2-3,解得a =1.∴原抛物线的函数表达式为y =(x -1)2-3,即y =x 2-2x -2. (2)∵CD∥x 轴,P′(1,3)在CD 上, ∴C,D 两点纵坐标均为3.由(x -1)2-3=3,解得x 1=1-6,x 2=1+6,∴C,D 两点的坐标分别为(1-6,3),(1+6,3),∴CD=2 6. ∴“W”图案的高与宽(CD)的比为326=64(或约等于0.612).【培优训练】8.解:(1)依题意可设抛物线的表达式为 y =a(x -12)2-94(a≠0),将点M(2,0)代入可得a(2-12)2-94=0,解得a =1.故抛物线的表达式为y =(x -12)2-94.(2)由(1)知,抛物线的表达式为y =(x -12)2-94,其对称轴为x =12,∴点A 与点M(2,0)关于直线x =12对称,∴A(-1,0).令x =0,则y =-2, ∴B (0,-2).在Rt△OAB 中,OA =1,OB =2,则AB = 5. 设直线y =x +1与y 轴交于点G , 易求G(0,1).∴△AOG 是等腰直角三角形, ∴∠AGO=45°.∵点C 是直线y =x +1上一点(处于x 轴下方),而k >0,∴反比例函数y =kx (k >0)的图象位于第一、三象限.故点D 只能在第一、三象限,因此符合条件的菱形只能有如下2种情况: ①此菱形以AB 为边且AC 也为边,如图1所示,过点D 作DN⊥y 轴于点N , 在Rt△BDN 中,∵∠DBN =∠AGO=45°, ∴DN=BN =52=102,∴D(-102,-102-2). ∵点D 在反比例函数y =kx (k >0)图象上,∴k=-102×(-102-2)=52+10. ②此菱形以AB 为对角线,如图2,作AB 的垂直平分线CD 交直线y =x +1于点C ,交反比例函数y =kx (k >0)的图象于点D.再分别过点D ,B 作DE⊥x 轴于点F ,BE⊥y 轴,DE 与BE 相交于点E. 在Rt△BDE 中,同①可证∠AGO=∠DB O =∠BDE=45°, ∴BE=DE.可设点D 的坐标为(x ,x -2). ∵BE 2+DE 2=BD 2, ∴BD=2BE =2x. ∵四边形ABCD 是菱形, ∴AD=BD =2x.∴在Rt△ADF 中,AD 2=AF 2+DF 2,即(2x)=(x +1)2+(x -2)2, 解得x =52,∴点D 的坐标是(52,12).∵点D 在反比例函数y =kx (k >0)的图象上,∴k=52×12=54,综上所述,k 的值是52+10或54.。

中考数学复习系列课件

中考数学复习系列课件

中考新突破 ·数学(陕西)
知识要点 · 归纳
根据xy=3判断出x,y是同号,根据x+y=-5判断出x,y均是负数,从而确定 点所在的象限.
【解答】∵xy=3,∴x和y同号.又∵x+y=-5,∴x和y均为负数,∴点(x,y) 在第三象限.
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
18
练习1 在平面直角坐标系内,AB∥x轴,AB=5,点A的坐标为(1,3),则点B的
2.函数的三种表示方法:解析式法、○27 __列__表__法__、图象法.
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
9
3.确定函数自变量的取值范围
函数表达 式的形式
整式
自变量的取值范围 全体实数
举例
y=x+1 的自变量的取值范围为○28 __全__体__实__数__
坐标为
(C)
A.(-4,3)
B.(6,3)
C.(-4,3)或(6,3)
D.(1,-2)或(1,8)
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
19
考点 2 确定函数自变量的取值范围
例2 函数 y= 2-x+x+1 3中,自变量 x 的取值范围是
(B)
A.x≤2
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
13
知识点三 分析判断函数图象 1.判断实际问题的函数图象 (1)找起点:结合题干中所给自变量及因变量的取值范围,在对应的图象中找对 应点; (2)找特殊点:即交点或转折点,说明图象在此点处将发生变化; (3)判断图象趋势:判断出函数的增减性,图象的倾斜方向等; (4)看是否与坐标轴相交:即此时另外一个量为0.

中考数学考点专题复习课件反比例函数的图象和性质

中考数学考点专题复习课件反比例函数的图象和性质

解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.

中考试题中的核心素养第三章函数第一节平面直角坐标系与函数

中考试题中的核心素养第三章函数第一节平面直角坐标系与函数

第三章函数第一节平面直角坐标系与函数中考试题中的核心素养数学核心素养提升1.(2019随州)第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢. 结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()2.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x…123579…y… 1.98 3.95 2.63 1.58 1.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;第2题图(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:________________________________.3.(2017北京)小苏和小林在如图①所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图②所示.下列叙述正确的是()第3题图A. 两人从起跑线同时出发,同时到达终点B. 小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15 s跑过的路程大于小林前15 s跑过的路程D. 小林在跑最后100 m的过程中,与小苏相遇2次数学文化专练漏壶4.(2019武汉)“漏壶”是一种中国古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度,人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()参考答案中考试题中的核心素养1.B【解析】∵兔子让乌龟先跑一段距离,∴兔子在开始一段时间内的路程为0,而乌龟所走的路程随时间增大而增大,∴C、D选项均错误;∵乌龟最终赢得比赛,即乌龟比兔子所用时间少,∴A选项错误.2.解:(1)将图中的点连成平滑曲线如解图;第2题解图(2)① 2(1.8到2.1内均可);②当1<x<2时,y随x的增大而增大;当x>2时,y随x的增大而减小.3.D4.A【解析】由题意可知,水是从壶底均匀流出的,因此壶底到水面的高度和漏水时间呈一次函数关系,且随时间增加,壶底到水面的高度在下降,故选 A.。

中考数学重点难点分值题型分布

中考数学重点难点分值题型分布

中考数学重点难点分值题型分布第一章数与式1.1实数考点1:实数的分类与实数的有关概念掌握题型:选择题、填空题; 分值:3分考试内容:1.实数的定义与分类2.实数的大小比较3.数轴4.相反数、倒数、绝对值5.无理数的估算考点2:实数的运算掌握题型:选择题、填空题;分值:3分、4分考试内容:1.平方根与立方根2.实数的混合运算考点3:科学计数法掌握与近似数了解题型:选择题;分值:3分考试内容:1.科学记数法2.近似数1.2代数式考点1:代数式理解——必考点题型:选择题;分值:4分考试内容:1.列代数式表示简单的数量关系2.能解释一些简单代数式的实际意义或几何意义考点2:求代数式的值题型:解答题;分值:6分考试内容:1.代数式的值的概念“了解2.根据问题所提供的资料,求代数式的值1.3整式考点1:整式及其运算灵活运用题型:填空题;分值:3分考试内容:1.整式的有关概念了解2.整数指数幂的意义和基本性质了解3.整式加减乘除法运算的法则4.会进行简单的整式加减乘除法运算考点2:整式乘法公式灵活运用——必考点题型:填空题;分值:3分、4分考试内容:1.完全平方公式、平方差公式的几何背景了解2.平方差公式、完全平方公式3.用平方差公式、完全平方公式进行简单计算考点3:因式分解灵活运用题型:填空题;分值:3分、4分考试内容:1.因式分解的意义及其与整式乘法之间的关系了解2.用提取公因式法、、公式法进行因式分解,会在实数范围内分解因式1.4分式与二次根式考点1:分式的概念与基本性质灵活运用——必考点题型:选择题;分值:3分考试内容:1.分式的概念了解2.确定分式有意义的条件3.确定使分式的值为零的条件4.分式的基本性质5.约分和通分考点2:分式的运算掌握——必考点题型:解答题;分值:6分考试内容:1.分式的加、减、乘、除、乘方运算法则2.简单的分式加减乘除乘方运算,用恰当方法解决与分式有关的问题考点3:二次根式掌握——必考点题型:选择题;分值:3分1.二次根式的概念2.最简二次根式3.二次根式的运算第二章方程组与不等式组2.1整式方程考点1:一元一次方程掌握,灵活运用题型:选择题、解答题;分值:3分、6分、8分考试内容:1.方程是刻画现实世界数量关系的一个数学模型了解2.运用一元一次方程解决简单的实际问题3.方程的解的概念了解4.由方程的解求方程中字母系数的值5.一元一次方程的有关概念了解6.一元一次方程的解法考点2:一元二次方程掌握,灵活运用——必考点题型:选择题、填空题;分值:3分、4分1.一元二次方程的概念了解2.一元二次方程的解法3.用一元二次方程根的判别式判断根的情况4.运用一元二次方程解决简单的实际问题2.2分式方程考点1:分式方程及其解法——必考点题型:选择题、填空题;分值:3分、4分考试内容:1.分式方程的概念2.分式方程的增根3.分式方程的求解4.分式方程的检验考点2:分式方程的应用题型:解答题;分值:10分考试内容:1.利用分式方程解决生活实际问题2.注意分式方程要对方程和实际意义进行双检验2.3方程组考点1:二元一次方程组题型:解答题;分值:7分考试内容:1.二元一次方程组的有关概念了解2.代入消元法、加减消元法的意义3.选择适当的方法解二元一次方程组考点2:二元一次方程组的应用——必考点题型:解答题;分值:9分考试内容:运用二元一次方程组解决简单的实际问题2.4不等式组考点1:不等式和一元一次不等式组题型:选择题、填空题;分值:3分、4分考试内容:1.不等式的意义了解2.根据具体问题中的数量关系列出不等式3.不等式的基本性质4.利用不等式的性质比较两个实数的大小5.一元一次不等式的解集了解6.解不等式组考点2:一元一次不等式组的应用——必考点题型:解答题;分值:8分考试内容:根据具体问题中的数量关系,用一元一次不等式或不等式组解决简单问题第三章变量与函数3.1位置的确定与变量之间的关系考点1:平面直角坐标系题型:选择题、填空题;分值:3分考试内容:1.坐标平面内点的坐标特征的运用2.坐标轴、原点对称的点的坐标的特征考点2:函数及其图象题型:选择题、填空题;分值:3分、8分考试内容:1.求函数自变量的取值范围2.根据条件写出函数关系式3.用描点法画出函数图像考点3:函数的有关应用题型:选择题;分值:3分考试内容:解决与函数有关的应用型问题3.2一次函数考点1:一次函数的概念、图象和性质题型:解答题;分值:3分、10分考试内容:1.对一次函数概念的理解理解2.根据已知条件用待定系数法确定函数解析式3.会画一次函数图象并能根据图象解决相关的问题4.根据自变量的变化判断函数值的增减情况灵活运用5.由函数值的取值范围判断自变量的取值范围,求一次函数图象的交点坐标考点2:一次函数的应用题型:解答题;分值:9分考试内容:与一次函数有关的应用问题灵活运用3.3反比例函数考点1:求反比例函数解析式题型:填空题;分值:4分考试内容:1.对反比例函数的理解2.根据已知条件用待定系数法确定反比例函数解析式考点2:反比例函数的图象和性质题型:解答题;分值:8分考试内容:1.会画反比例函数的增减性;掌握比例系数K的几何意义考点3:反比例函数的应用题型:填空题、解答题;分值:3分、9分考试内容:1.反比例函数与一次函数图象与性质的综合应用2.确定与反比例函数有关的应用型问题3.4二次函数考点1:二次函数的图象和性质题型:选择题、解答题;分值: 3分、3分考试内容:1.用配方法把抛物线的解析式y=ax2+bx+ca≠0化为y=ax-h2+ka≠0的形式2.根据已知条件用待定系数法确定二次函数的解析式3.根据抛物线的位置确定a、b、c的符号,根据公式确定抛物线的顶点和对称轴4.根据自变量的变化判断二次函数值的增减情况5.根据函数图象求一元二次方程的根,由一元二次方程根的情况判断抛物线与x轴的交点;根据图象判断一元二次不等式的解集考点2:二次函数的综合应用题型:解答题;分值:10分、12分考试内容:1.利用二次函数解决简单的实际问题2.与二次函数有关的综合应用第四章图形的认识4.1角、相交线与平行线考点1:角题型:选择题;分值:3分考试内容:1.角的有关概念了解2.角的比较、角的和差计算3.余角、补角考点2:相交线题型:选择题;分值:3分考试内容:1.对顶角2.垂线、点到直线的距离3.作已知直线的垂线4.命题、定理、证明考点3:平行线题型:选择题;分值:3分考试内容:1.平行线的性质2.平行线间的距离3.平行线的判定4.2三角形及其全等考点1:三角形的相关概念题型:选择题;分值:3分考试内容:1.角平分线、中线、高线、中位线以及性质2.画任意三角形的角平分线、中线和高3.三角形的稳定性、三边关系定理、三角形内角和定理考点2:三角形全等题型:填空题、解答题;分值:3分考试内容:1.全等三角形对应边相等、对应角相等2.三角形全等的判定定理:SAS, ASA, AAS, SSS, HL 4.3等腰三角形与直角三角形考点1:等腰三角形题型:选择题;分值:3分考试内容:1.等腰三角形的有关概念、性质和判定2.等边三角形的有关概念、性质和判定考点2:直角三角形题型:选择题;分值:3分考试内容:1.直角三角形的概念、性质和判定2.勾股定理及其逆定理:4.4多边形与平行四边形考点1:多边形题型:选择题;分值:3分考试内容:多边形和正多边形的概念、内角和与外角和公式了解考点2:平行四边形题型:解答题;分值:9分考试内容:1、平行四边形的概念和性质2、平行四边形的判定4.5特殊的平行四边形考点1:矩形题型:选择题、填空题、解答题;分值:3分、8分考试内容:1.矩形的概念、性质2.矩形的判定考点2:菱形题型:选择、解答;分值:3分、10分考试内容:1、菱形的概念、性质2、菱形的判定考点3:正方形题型:选择题、解答题;分值:3分考试内容:1.正方形具有矩形和菱形的性质2.既是矩形又是菱形的四边形是正方形4.6梯形依据考情选用题型:填空题;分值:3分考试内容:1.梯形的概念和性质2.等腰梯形的概念、性质和判定3.直角梯形的概念第五章圆5.1圆的性质及与圆有关的位置关系考点1:圆的有关概念与性质题型:选择题、解答题;分值:3分、4分、9分考试内容:1.垂径定理及其推论的应用2.弧、圆心角、圆周角之间的关系3.圆周角定理及其推论考点2:与圆有关的位置关系题型:选择题、解答题考试内容:1.点和圆的位置关系2.直线和圆的位置关系3.切线的性质和判定5.2与圆有关的计算题型:选择题、填空题、解答题;分值:3分、10分考试内容:1.求圆的周长、弧长及简单组合图形的周长2.求圆的面积、扇形的面积及简单组合图形的面积3.圆柱的侧面积和全面积的计算4.圆锥的侧面积和全面积的计算第六章空间与图形6.1圆形的轴对称、平移与旋转考点1:轴对称的概念及性质题型:选择题;分值:3分考试内容:1.轴对称的概念及性质2.基本图形的对称性及轴对称的应用考点2:图形的平移题型:选择题;分值:3分考试内容:1.平移的概念和性质2.简单图形的平移及平移的应用考点3:图形的旋转题型:选择题;分值:3分考试内容:1.旋转的概念及性质2.基本图形的旋转及旋转的应用6.2图形的相似考点1:相似的有关概念题型:近5年未考考试内容:成比例线段、比例的基本性质、黄金分割考点2:相似三角形的性质与判定题型:填空题;分值:3分考试内容:1.相似的概念及相似的判定2.相似的性质、多边形相似比、周长比与面积比考点3:位似的概念与性质题型:选择题;分值:3分考试内容:1.位似的概念和性质2.利用位似放大或缩小图形,会在坐标系中作位似图形并求出对应的坐标6.3解直角三角形题型:选择题、填空题、解答题;分值:3、6分考点1:锐角三角函数考试内容:1.锐角三角函数的定义及其性质2.特殊角的三角函数值考点2:解直角三角形考试内容:1.解直角三角形的概念2.直角三角形的边角关系3.仰角、俯角、坡度坡比4.用三角函数解决与直角三角形有关的实际问题6.4视图与投影考点1:几何体及其展开图题型:选择题;分值:3分考试内容:基本几何体的展开图考点2:几何体的三视图题型:选择题;分值:3分考试内容:画基本几何体或简单组合体的三视图,根据三视图描述实物考点3:投影题型:近五年未考考试内容:1.中心投影和平行投影2.影子、视点、视角和盲区的概念第七章统计与概率7.1统计考点1:数据的收集题型:选择题;分值:3分考试内容:1.普查和抽样调查2.总体、个体、样本和样本容量3.用样本估计总体的思想考点2:数据的处理题型:选择题;分值:3分考试内容:1.求一组数据的平均数包括加权平均数、众数、中位数、极差与方差2.根据具体问题,选择合适的统计量表示数据的集中程度或离散程度3.根据统计结果做出合理的判断和预测考点3:统计图表题型:解答题;分值:4分、8分考试内容:1.用扇形统计图表示数据2.频数、频率的概念,频数分布的意义和作用3.列频数分布表,画频数分布直方图和频数分布折线图4.利用统计图表解决简单的实际问题7.2概率考点1:事件的分类题型:选择题;分值:3分考试内容:不可能事件、必然事件和随机事件考点2:概率的计算题型:解答题;分值:10分考试内容:1.概率的意义2.运用列举法包括列表、画树状图计算简单事件发生的概率考点3:用频率估计概率题型:填空题;分值:3分考试内容:大量重复试验时,可以用频率估计概率解决一些实际问题。

云南省中考数学总复习第三章函数第二节一次函数训练(2021-2022学年)

云南省中考数学总复习第三章函数第二节一次函数训练(2021-2022学年)

第二节一次函数姓名:________班级:________ 限时:______分钟1.(2018·曲靖二模)若函数y=kx的图象经过点A(-1,2)和点B(k,m),则m=______. 2.(2018·昭通昭阳区模拟)一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是____________.3.(2018·邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.4.(2018·宜宾)已知点A是直线y=x+1上一点,其横坐标为-错误!未定义书签。

,若点B与点A关于y轴对称,则点B的坐标为________.5.(2018·济宁)在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,若x1<x2,则y1______y2.(填“>"“<"或“=”)6.(2018·长春)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3).若直线y=2x与线段AB有公共点,则n的值可以为_____________.(写出一个即可)7.(2018·深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A.(2,2) ﻩﻩB.(2,3)C.(2,4)ﻩﻩﻩD.(2,5)8.(教材改编)若一次函数y=(k+3)x-k的图象经过第一、二、三象限,则k的取值范围是( )A.k〉-3ﻩB.0<k≤3ﻬC.-3<k<0 D.0<k<39.(2018·曲靖罗平三模)已知一次函数y=kx+b,y随着x的增大而增大,且kb<0,则在直角坐标系内它的大致图象是( )10.(2018·遵义)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是( )A.x>2B.x<2 C.x≥2ﻩﻩD.x≤211.(2018·枣庄)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.-5ﻩﻩB.错误!C.错误!未定义书签。

中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)

中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)
A.(2011,0) B.(2011,1) (2)用方向和距离表示.
技法点拨►在平面直角坐标系中,解决点所处的象限与坐标符号之间的关系问题,综合各象限的坐标特征,经常利用不等式(组)解答.
技法点拨C►.应(用2函0数1图1,象解2题)的三D步.骤:(2(10)找1:0,找清0图)象的横、纵坐标各自具有的含义;
典型例题运用 类型1 平面直角坐标系中点的坐标
(【3)思点路P(分x,析y【A】)到.根原例据点第每1的一】一距A段离函象等数若于图限⑤象点_的__A倾_(B斜a.程+度第,1反,二映b象了-水限面1上)升在速第度的二快慢象,限再观,察则容器点的粗B(细-,作a出,判断b.+2)在(
)
.第三象限 .第四象限 C D (2)点P(x,y)在第二、四象限角平分线上⇔x+y=0
提示
确定位置常用的方法一般有两种:(1)用有序实数对(a,b)表示;(2)用方向和 距离表示.
考点2 点的坐标特征
象限内的点 第一象限:x>0,y>0; 第二象限:x<0,y>0;
第三象限:x<0,y<0; 第四象限:x>0,y<0
(1)点P(x,y)在x轴上⇔y=0,x为任意实数;
坐标轴上的点
(2)点P(x,y)在y轴上⇔x=0,y为任意实数; (3)点P(x,y)既在x轴上,又在y轴上⇔x=y=0,即点
B 以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1), P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n +1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).∵2017= 504×4+1,∴第2017秒时,点P的坐标为(2017,1).

平面直角坐标系与函数-2023年中考数学第一轮总复习课件(全国通用)

平面直角坐标系与函数-2023年中考数学第一轮总复习课件(全国通用)

地理位置的 ①平面直角坐标系法;②方位角+距离;③经纬度.
表示方法
典例精讲
坐标的几何意义
知识点二
【例2】如图,直线m⊥n,在某直角坐标系中,x轴∥m,y轴∥n,点A的坐标为
(-4,2),点B的坐标为(2,-4),则坐标原点为( A )
A.O1 B.O2 C.O3 D.O4
A n
O1 O4
O2
B m
秒的速度分别沿折线A-D-C与折线A-B-C运动至点C.设阴影部分△AMN的面
积为S,运动时间为t,则S关于t的函数图象大致为( D )
D
Cs
s
s
s
M
A N B O A tO B tO C t O D t 6.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和 BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( B )
强化训练
平面直角坐标系与函数
提升能力
7.如图,在菱形ABCD中,∠B=60º,AB=2,动点P从点B出发,以每秒1个单位长度
的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线
AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的
面积P为y,A运动Q时间为Dx秒43y3,则下列图象43y3能大致反映yy4与33 x之间函数4y33关系的是( B )
原点对称,则这时C点的坐标可能是( B )
A.(1,3) B.(2,-1) C.(2,1) D.(3,1)
2.在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M、N的坐标分
别为(-2,0),(2,0)则在第二象限内的点时__A___.

中考数学复习第三章函数讲义

中考数学复习第三章函数讲义

第三章函数第一节函数及其图象【考点1】平面直角坐标系及点的坐标1. 在平面内两条且有公共原点的数轴组成了平面直角坐标系。

2. 建立了平面直角坐标系的平面称为坐标平面。

3.坐标平面内每一个点P都对应着一个坐标x和一个坐标y,我们称一对有序实数P(x,y),即点P的坐标。

4. 平面直角坐标系中点的特征【考点2】函数的有关概念及其表达式1. 变量:某一变化的过程中可以取不同数值的量叫做变量。

2. 常量:某一变化的过程中保持相同数值的量叫做常量。

3. 函数:在某一变化的过程中有两个量x和y,如果对于x的每一个值,y都有的值与它对应,那么称y是x的函数,其中x是,y是因变量。

4. 函数的表示方法有:、、。

在解决一些与函数有关的问题时,有时可以同时用两种或两种以上的方法来表示函数。

5. 画函数图象的一般步骤:列表、、。

【考点3】函数自变量的取值范围与函数值【中考试题精编】 1. 在函数中3-x =y ,自变量x 的取值范围是 ( )A. x ≠3B. x >3C. x <3D. x ≥32. 王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料,如图是王芳离家的距离与时间的函数关系图象,若黑点表示王芳家的位置,则王芳走的路线可能是( )A. B. C. D.3. 函数1-x 2=y 中,自变量的取值范围是 。

4. 在函数x x y +-=31中,自变量x 的取值范围是 .5. 根据图中的程序,当输入x=2时,输出结果是 。

第二节 一次函数【考点1】一次函数的概念如果y=kx+b (k,b 为常数,且 ),那么y 叫做x 的一次函数。

当b=0时,也就是y=kx(k ≠0),这时称y 是x 的正比例函数。

【考点2】一次函数的图象和性质 的增大而减小【考点3】一次函数与一次方程和一次不等式的关系一次函数y=kx+b (k,b 为常数,k ≠0) (1)当y=0时,一元一次方程kx+b=0(2) 当y >0或y <0时,一元一次不等式kx+b >0或kx+b <0【提示】当一次函数中的一个变量的值确定时,可用一元一次方程确定另一个变量的值;当 已知一次函数中的一个变量取值的范围时,可用一元一次不等式(组)确定另一个变量的取值。

中考数学冲刺复习之第三章《函数》

中考数学冲刺复习之第三章《函数》
(____bk __,0)的一条直线,特别地,当b=0时,一次函数y=kx
也叫正比例函数,它的图象是经过_原__点___的一条直线.
2.一次函数y=kx+b(k≠0)的图象、性质如下表:
二、例题与变式
【考点1】待定系数法,一次函数的性质 【例1】已知一次函数的图象经过(0,6),(-1,4) 两点.(1)求一次函数的解析式; (2)当-2<x<1时,求y的取值范围; (3)当-3≤x≤2时,求 y的最大值与最小值. 解:(1)y=2x+6 (2)2<y<8 (3)最大值为10,最小值为0.
【变式3】如图是甲、乙两车在某时段速度随时间变化
的图象,根据图象的信息回答下列问题:
(1)乙车前4秒钟行驶的的路程为___4_8______米; (2)在0到8秒钟甲车的速度每秒钟增加__4____米; (3)在4到8秒钟内,甲车的速度与乙车的速度相比,谁大?
解:(3)甲
三、过关训练
A组
1.函数 y 2 x 在实数范围内有意义,则x的取值范围是
解:S=-3x+24(0<x<8) 如图1.
【变式2】设P(x,0)是x轴上的一个动点,它与x轴 上表示-2的点的距离为y,求y关于x的函数解析式, 并画出这个函数的图象.
解: y=|x-(-2)|=|x+2| x+2(x≥-2),
= -x-2(x<-2).
如图2 .
【考点3】求直线与坐标轴的交点,分类思想
式2x+m>-x-2的解集为__x_>__2_________.
B组 5.在平面直角坐标系中,直线y=-x+3过点A
(5,m),把点A向左平移2个单位长度,再向上平 移4个单位长度,得到点C.过点C且与y=2x平行的 直线交y轴于点B. (1)求直线CB的解析式; (2)求直线CB与坐标轴围成的面积.

中考数学 精讲篇 考点系统复习 第三章 函数 第三节 反比例函数 课时1 反比例函数的图象与性质

中考数学 精讲篇 考点系统复习 第三章 函数 第三节 反比例函数 课时1 反比例函数的图象与性质
已知反比例函数 y=x(a≠0). a
(1)若反比例函数 y=x(a≠0)的图象在每一个象限内, y 都随 x 的增大 而增大,则 a 的取值范围是 a<a<00; (2)若点 P(m,n)在反比例函数图象上,则点 Q(-m,-n)在 在 (选填 “在”或“不在”)该反比例函数图象上;
(3)若反比例函数的图象分布在第一、三象限,则 a 的取值范围是 a a>>0 a
0;若点(-2,y1),(2,y2),(3,y3)在函数 y=x(a>0)的图象上,则 y1, y2,y3 的大小关系为 y2y2>y>3y>3>yy11(用“>”连接); (4)若点(3,-3)在反比例函数 y=ax(a≠0)的图象上,则该反比例函数的
解析式为 y=y=--9x ,当 y>-2 时,x 的取值范围是 x<x0<或0x或x>>4.5; 4.5
图②
(7)如图③,点 A,C 是反比例函数 y=ax的图象上的两点.分别过点 A,C 作 AB⊥x 轴于点 B,CD⊥x 轴于点 D,若 AB=OB=OD=CD,且四边形 ABCD 的面积为 6,则 a 的值是 3 3 .
图③
比较反比例函数值大小的方法: 1.在同一分支上的点,可根据反比例函数的增减性进行比较. 2.不在同一分支上的点,可根据函数值的正负进行比较. 3.特殊值法也是解决此类问题的常用方法.若 k 值题中未给出,则可给 k 取特定值,但要注意 k 值的正负.
C.当 I≤10 A 时,R≥3.6 Ω
D.当 R=6 Ω时,I=4 A,
2.(2021·广安第 7 题 3 分)若点 A(-3,y1),B(-1,y2),C(2,y3)都在 k
反比例函数 y= x (k<0)的图象上,则 y1,y2,y3 的大小关系是( A ) A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y1,

中考数学总复习第一编教材知识梳理篇第三章函数及其图象第一节函数及其图象精试题

中考数学总复习第一编教材知识梳理篇第三章函数及其图象第一节函数及其图象精试题

第三章函数及其图象第一节函数及其图象怀化七年中考命题规律)标2021选择6函数自变量的取值范围求含有二次根式且位于分母的自变量的取值范围3填空13求函数值自变量的值,求函数的值36命题规律纵观怀化七年中考,有五年考察了此考点内容,并且以选择题、填空题的形式呈现,其中求函数自变量的取值范围考察了4次,平面直角坐标系考察了2次.命题预测预计2021年怀化中考,本课时的考察重点为求函数自变量的取值范围与函数图象的判断,可能会及其他知识结合,特别是及几何图形结合的图象,题型以选择题为主.,怀化七年中考真题及模拟)平面直角坐标系(2次)1.(2021怀化中考)在平面直角坐标系中,点(-3,3)所在象限是( B)A.第一象限B.第二象限C.第三象限D.第四象限2.(2021怀化中考)如图,假设在象棋盘上建立直角坐标系,假设“帅〞位于点(-1,-2),“馬〞位于点(2,-2),那么“兵〞位于点( C)A.(-1,1) B.(-2,-1)C .(-3,1)D .(1,-2)求自变量的取值范围与函数值(5次)3.(2021怀化中考)函数y =x -1x -2中,自变量x 的取值范围是( C )A .x ≥1B .x>1C .x ≥1且x≠2D .x ≠24.(2021怀化中考)在函数y =2x -3中,自变量x 的取值范围是( D )A .x>32B .x ≤32C .x ≠32D .x ≥325.(2021怀化中考)函数y =1x -2中,自变量x 的取值范围是( A )A .x>2B .x ≥2C .x ≠2D .x ≤26.(2021怀化中考)函数y =x -3中,自变量x 的取值范围是__x≥3__.7.(2021怀化中考)函数y =-6x ,当x =-2时,y 的值是__3__.及实际相结合的函数图象(1次)8.(2021怀化一模)小敏家距学校1 200 m ,某天小敏从家里出发骑自行车上学,开场她以v 1 m /min 的速度匀速行驶了600 m ,遇到交通堵塞,耽误了3 min ,然后以v 2 m /min 的速度匀速前进一直到学校(v 1<v 2),你认为小敏离家的距离y 及时间x 之间的函数图象大致是( A ),A ) ,B ) ,C ) ,D )9.(2021沅陵模拟)一艘轮船在同一航线上往返于甲、乙两地.轮船在静水中的速度为15 km /h ,水流速度为5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h ),航行的路程为s(km ),那么s 及t 的函数图象大致是( C ),A ),B ),C ),D )10.(2021怀化考试说明)如图,在矩形中截取两个一样的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长与宽分别为y 与x ,那么y 及x 的函数图象大致是( A ),A ) ,B ) ,C ) ,D )11.(2021中考预测)如图,梯形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,且AE =EF =FB =5,DE =12,动点P 从点A 出发,沿折线AD —DC —CB 以每秒1个单位长的速度运动到点B 停顿.设运动时间为t s ,y =S △EPF ,那么y 及t 的函数图象大致是( A ),A ) ,B ) ,C ) ,D )12.(2021怀化学业考试指导)在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中(铁块完全淹没于水中),然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度.如图能反映弹簧秤的读数y(单位:N )及铁块被提起的高度x(单位:cm )之间的函数关系的大致图象是( C ),A ) ,B ) ,C ) ,D )13.(2021 麻阳模拟)小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30 s .他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:s ),他及教练的距离为y(单位:m ),表示y 及t 的函数关系的图象大致如图2所示,那么这个固定位置可能是图1中的( D )A .点MB .点NC .点PD .点Q14.(2021 中方模拟)点M(1-2m ,m -1)关于x 轴对称的点在第一象限,那么m 的取值范围在数轴上表示正确的选项是( A ),A ),B ),C ) ,D )15.(2021怀化二模)根据如下图的程序计算函数值,假设输入的x 的值为-1,那么输出的函数值为( A )A .1B .-2C .13 D .3,中考考点清单)平面直角坐标系及点的坐标1.有序实数对:坐标平面上任意一点都可以用唯一一对有序实数来表示;反过来,任意一对有序实数都可以表示坐标平面上唯一一个点.【方法技巧】一般地,点P(a ,b)到x 轴的距离为|b|;到y 轴的距离为|a|;到原点的距离为a 2+b 2.2.平面直角坐标系中点的坐标特征各象限点的坐标的符号特征 第一象限(+,+);第二象限①__(-,+)__;第三象限(-,-);第四象限②__(+,-)__ 坐标轴上点的坐标特征x 轴上的点的纵坐标为③__0__,y 轴上的点的横坐标为0,原点的坐标为(0,0)各象限角平分线上点的坐标特征 第一、三象限角平分线上点的横、纵坐标相等;第二、四象限角平分线上点的横、纵坐标④__互为相反数__对称点的坐标特征点P(a ,b)关于x 轴对称的点的坐标为(a ,-b);点P(a ,b)关于y 轴对称的点的坐标为⑤__(-a ,b)__;点P(a ,b)关于原点对称的点的坐标为P′(-a ,-b) 平移点的坐标特征将点P(x ,y)向右或向左平移a 个单位,得到对应点的坐标P′是(x +a ,y)或(x -a ,y);将点P(x ,y)向上或向下平移b 个单位,得到对应点的坐标P′是(x ,y +b)或(x ,y -b);将点P(x ,y)向右或向左平移a 个单位,再向上或向下平移b 个单位,得到对应点P′的坐标是⑥__(x +a ,y +b)或(x -a ,y -b)__,简记为:左减右加,上加下减函数的相关概念3.变量:在一个变化过程中,可以取不同数值的量叫做变量. 4.常量:在一个变化过程中,数值保持不变的量叫做常量.5.函数:一般地,在某个变化过程中,有两个变量,就能相应地确定y 的一个值,那么,我们就说y 是x 的函数.其中,x 叫做自变量.函数自变量的取值范围表达式 取值范围 整式型 取全体实数 分式型,如y =ax分母不为0,即x≠0 根式型,如y =x 被开方数大于等于0,即x≥0分式+根式型,如y =ax同时满足两个条件:①被开方数大于等于0即x≥0;②分母不为0,即x≠0函数的表示方法及其图象函数图象的判断近7年共考察3次,题型都为选择题,出题背景有:(1)及实际问题结合;(2)及几何图形结合;(3)及几何图形中的动点问题结合,设问方式均为“判断函数图象大致是〞.6.表示方法:数值表、图象、表达式是函数关系的三种不同表达形式,它们分别表现出具体、形象直观与便于抽象应用的特点.7.图象的画法:知道函数的表达式,一般用描点法按以下步骤画出函数的图象.(1)取值.根据函数的表达式,取自变量的一些值,得出函数的对应值,按这些对应值列表.(2)画点.根据自变量与函数的数值表,在直角坐标系中描点.(3)连线.用平滑的曲线将这些点连接起来,即得函数的图象.8.函数表达式,判断点P(x,y)是否在函数图象上的方法:假设点P(x,y)的坐标适合函数表达式,那么点P(x,y)在其图象上;假设点P(x,y)的坐标不适合函数表达式,那么点P(x,y)不在其图象上.【方法技巧】判断符合题意的函数图象的方法(1)及实际问题结合:判断符合实际问题的函数图象时,需遵循以下几点:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找相对应点;②找特殊点:即指交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性;④看是否及坐标轴相交:即此时另外一个量为0.(2)及几何图形(含动点)结合:以几何图形为背景判断函数图象的题目,一般的解题思路为设时间为t,找因变量及t之间存在的函数关系,用含t的式子表示,再找相对应的函数图象,要注意的是是否需要分类讨论自变量的取值范围.(3)分析函数图象判断结论正误:分清图象的横纵坐标代表的量及函数中自变量的取值范围,同时也要注意:①分段函数要分段讨论;②转折点:判断函数图象的倾斜方向或增减性发生变化的关键点;③平行线:函数值随自变量的增大而保持不变.再结合题干推导出实际问题的运动过程,从而判断结论的正误.,中考重难点突破)平面直角坐标系中点的坐标特征【例1】假设将点A(-4,3)先向右平移3个单位,再向下平移1个单位,得到点A1,点A1的坐标为( )A.(-1,3) B.(-1,2)C.(-7,2) D.(-7,4)【解析】∵点A(-4,3)先向右平移3个单位,再向下平移1个单位,∴点A1的坐标为(-1,2).【学生解答】B1.在平面直角坐标系中,假设点P的坐标为(-3,2),那么点P所在的象限是( B)A.第一象限B.第二象限C .第三象限D .第四象限函数自变量的取值范围【例2】(2021原创)函数y =xx -3-(x -2)0中,自变量x 的取值范围是________.【解析】根据题意得,x ≥0且x -3≠0且x -2≠0,解得x≥0且x≠3且x≠2.【学生解答】x ≥0且x≠3且x≠2【方法指导】对于分式、根式、零指数幂相结合型求自变量取值范围的,先求出各自变量的取值范围,然后取公共解集即可.2.(2021娄底中考)函数y =xx -2中自变量x 的取值范围是( A )A .x ≥0且x≠2B .x ≥0C .x ≠2D .x>2函数图象的判断【例3】(2021 营口中考)如图,在矩形ABCD 中,AB =2,AD =3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,那么△APE 的面积y 及点P 经过的路径长x 之间的函数关系用图象表示大致是( ),A ) ,B ) ,C ) ,D )【解析】∵在矩形ABCD 中,AB =2,AD =3,∴CD =AB =2,BC =AD =3,∵点E 是BC 边上靠近点B 的三等分点,∴CE =23×3=2.①点P 在AD 上时,△APE 的面积y =12x ·2=x(0≤x≤3);②点P 在CD 上时,S △APE =S四边形AECD-S△ADP -S △CEP =12×(2+3)×2-12×3×(x -3)-12×2×(3+2-x)=5-32x +92-5+x =-12x +92,∴y =-12x +92(3<x≤5);③点P 在CE 上时,S △APE =12×(3+2+2-x)×2=-x +7,∴y =-x +7(5<x≤7),纵观各选项,只有A 选项图形符合. 【学生解答】A【方法指导】根据动点P 的运动路径A→D→C→E 可得,在计算△APE 的面积时应该分为3种情况,①当P 在AD 上时,②当P 在DC 上时,③当P 在CE 上时,分别计算出即可.要注意转折点有x =3时与x =5时.3.(2021广东中考)如图,在正方形ABCD 中,点P 从点A 出发,沿着正方形的边顺时针方向运动一周,那么△APC 的面积y 及点P 运动的路程x 之间形成的函数关系的图象大致是( C),A) ,B),C) ,D)。

中考数学 考点系统复习 第三章 函数 第二节 一次函数 课时2 一次函数的实际应用

中考数学 考点系统复习 第三章 函数 第二节 一次函数 课时2 一次函数的实际应用
课时2 一次函数的实际 应用
(RJ 八下 P99 习题 T11 改编)某市为了鼓励居民节约用水,采用分段 计费的方法按月计算每户家庭的水费,月用水量不超过 20 立方米时,按 2 元/立方米计费;月用水量超过 20 立方米时,超过部分按 2.6 元/立方 米计费.设某户家庭用水量为 x 立方米时,所交水费为 y 元.
解:(1)设去年 A 型车每辆售价 x 元,则今年售价每辆为(x-200)元,由 题意得 80 x000=80 00x0-(12-0010%), 解得 x=2 000. 经检验,x=2 000 是原方程的解. 答:去年 A 型车每辆售价为 2 000 元.
(2)设今年新进 A 型车 a 辆,则 B 型车(60-a)辆,获利 y 元,由题意得 y=(1 800-1 500)a+(2 400-1 800)(60-a). ∴y=-300a+36 000. ∵B 型车的进货数量不超过 A 型车数量的两倍, ∴60-a≤2a,∴a≥20. ∵y=-300a+36 000.∴k=-300<0, ∴y 随 a 的增大而减小.∴a=20 时,y 有最大值, ∴B 型车的数量为 60-20=40(辆). 答:当新进 A 型车 20 辆,B 型车 40 辆时,这批车获利最大.
(1)写出 y 与 x 之间的函数表达式;
解:由题意可得,当 0≤x≤20 时,y=2x, 当 x>20 时,y=20×2+(x-20)×2.6=2.6x-12,
2x(0≤x≤20), 综上可得,y=2.6x-第二季度交纳水费的情况如下: 月份 四月份 五月份
交费金额 30 元 34 元 小明家这个季度共用水多少立方米?
解:(1)设乙食材每千克进价为 a 元,则甲食材每千克进价为 2a 元,由 题意得820a-2a0=1,解得 a=20.经检验,a=20 是原方程的解,且符合题 意. ∴2a=40 元.答:甲、乙两种食材每千克进价分别为 40 元、20 元.

2024数学中考真题诊断练习:第三章 函数

2024数学中考真题诊断练习:第三章 函数

段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种
现象进行研究,得到时长一定时,插线板电源线中的电流 I 与使用电器的总功
率 P 的函数图象(如图(1)),插线板电源线产生的热量 Q 与 I 的函数图象(如图
(2)).下列结论中错误的是(
C )
A. 当 P =440 W时, I =2 A
0时, y 随 x 的增大而减小.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
刷诊断
5.
[2024山西中考]生物学研究表明,某种蛇在一定生长阶段,其体长
y (cm)是尾长 x (cm)的一次函数,部分数据如下表所示,则 y 与 x 之间的关系式
为(
A
)
尾长(cm)
6
8
10
体长 y (cm)
45.5
2
2
-1<0,∴ y >1,∴若0< x <1,则 a (x-1)2+ b (x-1)+ c >1,故②正确.由
1

1

①可得- <- <0.∵ a =-1,∴- < <0,∴-1< b <0.当 a =-1




S△ AOC = AO × = yC ,



由题意得 yC <6,∴ yC <4,∴ a >1.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
刷诊断
考点14
反比例函数的实际应用

【中考一轮复习】平面直角坐标系与函数课件

【中考一轮复习】平面直角坐标系与函数课件

A.(1,3) C.(2,1)
B.(2,-1) D.(3,1)
N A
C
B M
拓展提升------坐标的几何意义
1.在平面直角坐标系中,A,B,C,D,M,N的位置 M A
B
如图所示,若点M的坐标为(-2,0),点N的坐标
为(2,0)则在第二象限内的点时__A___.
O
2.如图,在平面直角坐标系中,一动点从原点O C
解:由题意得,x+3≠0,4-x≥0,解得x≤4且x≠-3,故选:D
归纳拓展
(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数为非负数.
当堂训练---函数的有关概念
1.函数 y =
x+3 x -1
中自变量的取值范围是(
地理位置的 ①平面直角坐标系法;②方位角+距离;③经纬度。
表示方法
典型例题---坐标的几何意义
【例2-1】在平面直角坐标系中,点P(4,-3)到x轴的距离是( B )
A.4
B.3
C.5
D.-3
解:在平面直角坐标系中,点P(4,-3)到x轴的距离为3.
故选:B.
典型例题---坐标的几何意义
【例2-2】如图,直线m⊥n,在某直角坐标系中,x轴∥m,y轴∥n,点
A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( A )
A.O1 B.O2 C.O3 D.O4
A n
O1 O2 在如图的方格纸中,每个小正方形的边长为1,如果以MN所在的
直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,
使A点与B点关于原点对称,则这时C点的坐标可能是( B )

中考数学 精讲篇 考点系统复习 第三章 函数 第一节 平面直角坐标系与函数

中考数学 精讲篇 考点系统复习 第三章 函数 第一节 平面直角坐标系与函数

命题点 2:函数自变量的取值范围(近 6 年考查 4 次) 7.(2017·河池第 3 题 3 分)若函数 y=x-1 1有意义,则 A.x>1 B.x<1 C.x=1 D.x≠1Fra bibliotek( D)
8.(2020·贺州第 16 题 3 分)函数 y= x1-2自变量 x 的取值范围是 xx>>22.
命题点 3:函数图象的分析与判断(近 6 年考查 3 次)
11.(RJ 八下 P76 例 2 变式)爷爷在离家 900 米的公园锻炼后回家,离开
公园 20 分钟后,爷爷停下来与朋友聊天 10 分钟,接着又走了 15 分钟回
到家中.下列图形中表示爷爷离家的距离 y(米)与爷爷离开公园的时间
x(分)之间的函数关系是
(B )
【考情分析】广西近 6 年主要以选填题形式考查:1.平面直角坐标系中 点的坐标特征:①各象限内点的坐标特征;②象限中对称点的坐标特征; ③点的平移.2.函数及其图象判断,考查形式主要是与几何图形中的动点 问题结合判断函数图象或通过函数图象判断动点运动情况.难度较大, 分值一般 3 分.
命题点 1:平面直角坐标系中点的坐标特征(近 6 年考查 17 次)
1.(2021·北部湾经济区第 7 题 3 分)平面直角坐标系内与点 P(3,4)关
于原点对称的点的坐标是
( B)
A.(-3,4) B.(-3,-4)
C.(3,-4) D.(4,3)
2.(2015·钦州第 8 题 3 分)在平面直角坐标系中,将点 A(x,y)向左平
移 5 个单位长度,再向上平移 3 个单位长度后与点 B(-3,2)重合,则点
A 的坐标是
( D)
A.(2,5) B.(-8,5)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 函数
好题随堂演练
1.(2018·新疆)点(-1,2)所在的象限是第______象限.
2.已知AB∥x 轴,点A 坐标为(-3,2),并且AB =4,则点B 的坐标为____________________________.
3.(2018·绵阳)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为__________________.
4.(2018·宿迁)函数y =1x -1
中,自变量x 的取值范围是( ) A. x≠0
B. x <1
C. x >1
D. x≠1
5.(2018·武汉)点A(2,-5)关于x 轴对称的点的坐标是( )
A .(2,5)
B .(-2,5)
C .(-2,-5)
D .(-5,2)
6.若点P(2,-4),Q(x ,-4)之间的距离是3,则x 的值为( )
A .3
B .5
C .-1
D .5或-1
7.在平面直角坐标系中,把点P(-3,2)绕原点O 顺时针旋转180°,所得到的对应点P′的坐标为
( )
A .(3,2)
B .(2,-3)
C .(-3,-2)
D .(3,-2)
8.(2018·重庆B 卷)根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )
A. 9
B. 7
C. -9
D. -7
9.(2018·长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是( )
A.小明吃早餐用了25 min
B.小明读报用了30 min
C.食堂到图书馆的距离为0.8 km
D.小明从图书馆回家的速度为0.8 km/min
10.(2018·孝感)如图,在△ABC中,∠B=90°,AB=3 cm,BC=6 cm,动点P从点A开始沿AB向点B 以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是( )
参考答案
1.二 2.(1,2)或(-7,2) 3.(-2,-2)
4.D 5.A 6.D 7.D 8.C
9.B 【解析】 A选项,吃早餐用的时间为(25-8) min=17 min;B选项,读报用的时间为(58-28) min =30 min;C选项,食堂到图书馆距离应为(0.8-0.6) km=0.2 km;D选项,小明从图书馆回家的速度应为0.8 km/10min=0.08 km/min.故选项B正确.
10.C 【解析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.由题意可得:PB=3-t,
BQ=2t,则△PBQ的面积S=1
2
PB·BQ=
1
2
(3-t)× 2t=-t2+3t,故△PBQ的面积S随出发时间t的函数
关系图象大致是二次函数图象,开口向下.。

相关文档
最新文档