北京专用高考数学一轮复习第八章立体几何8.4直线平面垂直的判定与性质课件

合集下载

高考一轮复习通用版8.4直线平面平行的判定与性质课件(55张)

高考一轮复习通用版8.4直线平面平行的判定与性质课件(55张)

【对点训练】
1.如图所示,在四棱锥PABCD中,四边形ABCD是平行四边形,M 是PC的中点,在DM上取一点G,过G和PA作平面交BD于点H.
求证:PA∥GH.
2.[2022·江苏南通市检测]《九章算术》是我国古代的数学著作,是“算经 十书”中最重要的一部,它对几何学的研究比西方要早1 000多年.在《九
线线平行”)
符号语言
因为 _l_∥__a__, _a_⊂__α__, __l⊄__α__, 所以l∥α
因为 __l∥__α__, __l⊂__β__, ______, 所以l∥b
[提醒] 应用判定定理时,要注意“内”“外”“平行”三个条件 必须都具备,缺一不可.
2.平面与平面平行的判定定理和性质定理
2.在长方体ABCDA1B1C1D1中,已知AB=AD, E为AD的中点,在线段B1C1上是否存在点F, 使得平面A1AF∥平面ECC1?若存在,请加 以证明,若不存在,请说明理由.
微专题29 函数思想破解立体几何中的问题
名师点评利用函数思想建立MN与a的函数关系式是解此题的关键, 立体几何中的最值问题,通常借助函数思想求解.
因为 _α_∥__β__, ______, ______, 所以a∥b
二、必明2个常用结论 1.平行间的三种转化关系
2.平行关系中的三个重要结论
(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β. (2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ. (3)垂直于同一平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.
关键能力—考点突破
考点一 与线、面平行相关命题的判定 [基础性]
1.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法 正确的是( )

2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD ­A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCD­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。

2019届高考数学一轮复习第八章立体几何8-5直线平面垂直的判定与性质课件文

2019届高考数学一轮复习第八章立体几何8-5直线平面垂直的判定与性质课件文

角度 2:证明线线垂直 (2017·全国卷Ⅲ)在正方体 ABCD-A1B1C1D1 中,E
为棱 CD 的中点,则( ) A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC [思路引导] 每个选项都涉及直线 A1E,而其它直线均为面对
如:已知平面 α⊥平面 β,α∩β=l,点 A∈α,A∉l,直线 AB
∥l,直线 AC⊥l,直线 m∥α,m∥β,则下列四种位置关系中,
不一定成立的是(D)
A.AB∥m
B.AC⊥m
C.AB∥β
D.AC⊥β
提示:如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥
l⇒AB∥β,只有 D 不一定成立.


立体几何

第五节
直线、平面垂直的判定与性质
高考概览 1.以立体几何的有关定义、公理和定理为出发点,认识和理 解空间中线面垂直、面面垂直的有关性质与判定定理,并能够证 明相关性质定理;2.能运用线面垂直、面面垂直的判定及性质定 理证明一些空间图形的垂直关系的简单命题.
吃透教材 夯双基
填一填 记一记 厚积薄发
[小题速练] 1.下列结论错误的是( ) A.直线 l 与平面 α 内无数条直线都垂直,则 l⊥α B.若两条平行线中的一条垂直于一个平面,则另一条也垂 直于这个平面 C.垂直于同一条直线的两个平面平行 D.过一点有且只有一个平面与已知直线垂直
[解析] 若 α 内无数条直线是平行的,则 l 与 α 不一定垂直.故 A 错.
所以∠CFD=∠C1B1F,所以∠B1FD=90°, 所以 B1F⊥FD.因为 AD∩FD=D,所以 B1F⊥平面 ADF. 解法二:在 Rt△B1BD 中,BD=CD=1,BB1=3,所以 B1D = BD2+BB21= 10. 在 Rt△B1C1F 中,B1C1=2,C1F=1,所以 B1F= B1C21+C1F2 = 5. 在 Rt△DCF 中,CF=2,CD=1,所以 DF= CD2+CF2= 5. 显然 DF2+B1F2=B1D2,所以∠B1FD=90°.所以 B1F⊥FD.∵ AD∩FD=D,∴B1F⊥平面 ADF.

高考数学一轮复习第八章立体几何第41课直线平面垂直的判定及其性质课件

高考数学一轮复习第八章立体几何第41课直线平面垂直的判定及其性质课件

[变式训练 1] 如图 41-3,在三棱锥 A-BCD 中,AB⊥平面 BCD,CD⊥BD.
(1)求证:CD⊥平面 ABD; (2)若 AB=BD=CD=1,M 为 AD 中点,求三棱锥 A-MBC 的体积. [解] (1)证明:因为 AB⊥平面 BCD,CD⊂平面 BCD, 所以 AB⊥CD. 又因为 CD⊥BD,AB∩BD=B, AB⊂平面 ABD,BD⊂平面 ABD, 所以 CD⊥平面 ABD.
5.边长为 a 的正方形 ABCD 沿对角线 BD 折成直二面角,则折叠后 AC 的 长为________.
a [如图所示,取 BD 的中点 O,连结 A′O,CO,则∠A′OC 是二面角 A′-BD-C 的平面角.
即∠A′OC=90°,又 A′O=CO= 22a, ∴A′C= a22+a22=a,即折叠后 AC 的长(A′C)为 a.]
4.(教材改编)在三棱锥 P-ABC 中,点 P 在平面 ABC 中的射影为点 O, (1)若 PA=PB=PC,则点 O 是△ABC 的____________心. (2)若 PA⊥PB,PB⊥PC,PC⊥PA,则点 O 是△ABC 的____________心. (1)外心 (2)垂心 [∵PO⊥平面 ABC,且 PA=PB=PC, ∴OA=OB=OC,∴O 是△ABC 的外心. (2)∵PA⊥PB,PA⊥PC,PB∩PC=P,∴PA⊥平面 PBC, ∴PA⊥BC,又 PO⊥BC ∴BC⊥平面 PAO∴AO⊥BC, 同理 BO⊥AC,CO⊥AB, ∴O 是△ABC 的垂心.]
ll⊂ ⊥βα⇒α⊥βຫໍສະໝຸດ 如果两个平面互相垂直,那么在一
性质 定理
个平面内垂直于它们_交__线__的直线
垂直于另一个平面
α⊥β lα⊂∩ββ=a⇒_l⊥__α_ l⊥a

高考数学一轮总复习课件:直线、平面垂直的判定及性质

高考数学一轮总复习课件:直线、平面垂直的判定及性质
∵A1C1⊥BB1,A1O⊥BB1,A1C1∩A1O=A1, ∴BB1⊥平面A1OC1, 又C1O⊂平面A1OC1,∴BB1⊥C1O. 由题可知A1B1=A1C1=B1C1=2 2, 在△A1OB1中,A1O⊥OB1,∠A1B1B=45°,A1B1=2 2, ∴A1O=B1O=2.
在△B1OC1中,∵C1O⊥OB1,B1O=2,B1C1=2 2, ∴C1O=2. ∴OC12+OA12=A1C12,∴OC1⊥OA1, ∵BB1⊥C1O,A1O⊥C1O,BB1∩A1O=O,∴C1O⊥平面 ABB1A1, 又C1O⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1. 【答案】 略
①证明:平面PBD⊥平面PBC; ②求点D到平面PBC的距离.
【解析】 ①证明:如图,因为PD⊥DC,AD⊥DC, 所以二面角P-DC-A的平面角为∠PDA=90°,则PD⊥平面 ABCD, 又BC⊂平面ABCD,所以PD⊥BC. 又在平面四边形ABCD中,BD= AB2+AD2 = 2 2, 过B作BE⊥CD,由题意得,E为CD中点,又D为PA中点, 所以PD=AD=CE=DE=2, 又DE=AB, 所以BE=AD=2,BC= CE2+BE2=2 2,所以BC2+BD2=DC2, 即BD⊥BC,而PD∩BD=D,BD⊂平面PBD,PD⊂平面PBD, 故BC⊥平面PBD,因为BC⊂平面PBC,所以平面PBD⊥平面PBC.
又因为F为AC的中点, 所以OF∥CC1且OF=12CC1. 因为E为BB1的中点,所以BE∥CC1且BE=12CC1. 所以BE∥OF且BE=OF.
所以四边形BEOF是平行四边形,所以BF∥OE. 因为AB=CB,F为AC的中点,所以BF⊥AC,所以 OE⊥AC. 因为AA1⊥底面ABC,所以AA1⊥BF,所以OE⊥AA1. 又AA1,AC⊂平面ACC1A1,且AA1∩AC=A, 所以OE⊥平面ACC1A1. 因为OE⊂平面A1EC,所以平面A1EC⊥平面ACC1A1.

8-4直线与平面垂直的判定及其性质课件共120张PPT

8-4直线与平面垂直的判定及其性质课件共120张PPT

(3)[解] 当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下: 取PC的中点F,连接DE,EF,DF. 在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE. 而FE⊂平面DEF,DE⊂平面DEF,EF∩DE=E,PB⊂平面PGB,GB⊂平面 PGB,PB∩GB=B, 所以平面DEF∥平面PGB. 因为BG⊥平面PAD,PG⊂平面PAD,所以BG⊥PG. 又因为PG⊥AD,AD∩BG=G, 所以PG⊥平面ABCD.
第四节 直线与平面垂直的判定及其性质
[复习要点] 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线 面垂直的有关性质与判定定理.
2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命 题.
理清教材•巩固基础
知识点一 直线与平面垂直 1.定义:直线l与平面α内的__任__意____一条直线都垂直,就说直线l与平面α互相 垂直.
易/错/问/题
类比思维的应用:注意由平面到空间的思维的变化. (1)已知直线a,b,c,若a⊥b,b⊥c,则a与c的位置关系为_平__行__、__相__交__或__异__面_. (2)已知直线a和平面α,β,若α⊥β,a⊥β,则a与α的位置关系为a_∥__α_或__a_⊂__α__.
通/性/通/法
(4)面面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交 线的直线垂直于另一个平面(常用方法);
(5)面面平行的性质:如果一条直线垂直于两个平行平面中的一个平面,则这条 直线也垂直于另一个平面(客观题常用);
(6)若两相交平面同时垂直于第三个平面,则这两个平面的交线垂直于第三个平 面(客观题常用).
(2)如果一条直线垂直于平面,我们说它们所成的角为直角.
(3)如果一条直线和平面平行,或在平面内,我们说它们所成的角为0°的角. (4)直线和平面所成角的范围是___0_,__π2_ _.

高考数学一轮复习 第八章 立体几何与空间向量 8.4 直线、平面垂直的判定与性质课件 理 新人教A版.pptx

高考数学一轮复习 第八章 立体几何与空间向量 8.4 直线、平面垂直的判定与性质课件 理 新人教A版.pptx
其他选项均是正确的.
3.在三棱锥P-ABC中,点P在平面ABC中的射影为点O. (1)若PA=PB=PC,则点O是△ABC的_外____心;
解析 如图1,连接OA,OB,OC,OP, 在Rt△POA,Rt△POB和Rt△POC中,PA=PC=PB, 所以OA=OB=OC,即O为△ABC的外心.
(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的_垂____心.
平面所成的角.若一条直线垂直于平面,它们所成的角直是角
,若一条直线
和平面平行,或在平面内,它们所成的0°角是 的角.
(2)范围:0,π2.
3.平面与平面垂直
(1)二面角的有关概念
①二面角:从一条直线出发的 两个半平面 所组成的图形叫做二面角.
②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面
§8.4 直线、平面垂直的判定与性质
最新考纲
1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质 与判定定理.
2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.
考情考向分析
直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面 垂直、面面垂直的判定及其应用、直线与平面所成角等内容.题型主要以解答题的 形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.
设正方体的棱长为2, 则 OM= 1+2= 3,MN= 1+1= 2,
ON= 1+4= 5,
所以OM2+MN2=ON2,所以OM⊥MN.故选A.
6.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上 不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是 A.MN∥AB

数学课标通用(理科)一轮复习配套教师用书:第八章 立体几何 直线、平面垂直的判定与性质

数学课标通用(理科)一轮复习配套教师用书:第八章 立体几何  直线、平面垂直的判定与性质

§8.5 直线、平面垂直的判定与性质考纲展示►1.能以立体几何中的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质和判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的位置关系的简单命题.考点1 直线与平面垂直的判定与性质直线与平面垂直(1)直线和平面垂直的定义:直线l与平面α内的________直线都垂直,就说直线l与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:答案:(1)任意一条(2)两条相交直线a,b⊂αa∩b=O l⊥al⊥b平行a⊥αb⊥α(1)[教材习题改编]下列命题中不正确的是()A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ答案:A(2)[教材习题改编]如图,在三棱锥V-ABC中,∠VAB=∠VAC=∠ABC=90°,则构成三棱锥的四个三角形中直角三角形的个数为________.答案:4[典题1](1)[2017·上海六校联考]已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是()A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且α∥β[答案]C[解析]由线线平行性质的传递性和线面垂直的判定定理,可知C正确.(2)如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB ⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:①CD⊥AE;②PD⊥平面ABE.[证明] ①在四棱锥P-ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC。

而AE⊂平面PAC,∴CD⊥AE。

《空间直线、平面的垂直》立体几何初步(直线与直线垂直、直线与平面垂直的定义及判定)课件PPT文档

《空间直线、平面的垂直》立体几何初步(直线与直线垂直、直线与平面垂直的定义及判定)课件PPT文档

直线与平面垂 直的定义
理解并掌握直线与平面垂 直的定义,明确定义中 “任意”两字的重要性
直观想象
直线与平面垂 直的判定定理
掌握直线与平面垂直的判 定定理,并能解决有关 直观想象、逻辑推理 线面垂直的问题
第八章 立体几何初步
问题导学
P P T模板:www.1ppt.c om /m oba n/
P P T素材:www.1ppt.c om /suc a i/
个人简历:www.1ppt.c om /j ia nli/
试卷下载:www.1ppt.c om /shiti/
教案下载:www.1ppt.c om /j ia oa n/
手抄报:www.1ppt.c om /shouc ha oba o/
P P T课件:www.1ppt.c om /ke j ia n/
语文课件:/kejian/y uwen/ 数学课件:/kejian/shuxue/
英语课件:/kejian/y ingy u/ 美术课件:/kejian/meishu/
科学课件:/kejian/kexu e/ 物理课件:/kejian/wuli/
P P T素材:www.1ppt.c om /suc a i/
P P T背景:www.1ppt.c om /be ij ing/
P P T图表:www.1ppt.c om /tubia o/
P P T下载:www.1ppt.c om /xia za i/
PPT教程: /powerpoint/
化学课件:/kejian/huaxue/ 生物课件:/kejian/shengwu/
地理课件:www.1ppt.c om /ke j ia n/dili/
历史课件:www.1ppt.c om /ke j ia n/lishi/

北京专用2020届高考数学一轮第八章立体几何.直线平面垂直的判定与性质

北京专用2020届高考数学一轮第八章立体几何.直线平面垂直的判定与性质

S △AMC 1
1 2 ������AM������C1 M
C1 M


6 3 ꎬ所以点 A1
到平面 AMC1
的距离为
6 3
.
二、证明平面与平面垂直的方法
判定或证明面面垂直的主要方法:①利用判定定理.在审题 时要注意直观判断哪条直线可能是垂线ꎬ充分利用等腰三角形 底边上的中线垂直于底边ꎬ勾股定理的逆定理等. ②用定义证明. 只需判定两平面所成二面角为直二面角.③两个平行平面中的一 个垂直于第三个平面ꎬ则另一个也垂直于第三个平面. ④ 两个平 面的法向量 mꎬn 垂直ꎬ即 m������n = 0.
所以 PA⊥ABꎬPA⊥ADꎬ
又因为 AB⊥ADꎬPA∩AB = Aꎬ所以 AD⊥平面 PABꎬ
在直角△PAB 中ꎬPA = AB = 2ꎬE 为 PB 的中点ꎬ
所以 S△PAE = 1ꎬ
所以 VP-EAD = VD-PAE =
1 3
������S△PAE ������AD =
2 3
.
������������������������������������������������������������������������������
} l⊥aꎬl⊥b
a∩b =O ⇒l⊥α a⊂αꎬb⊂α
} a∥b ⇒b⊥α a⊥α
如果 一 条 直 线 和 一 个 平 面垂直ꎬ则这条直线垂直 于平 面内任意一条直线 性质 (即线面垂直⇒线线垂直)
} a⊥α ⇒a⊥b b⊂α
垂直 于 同 一 个 平 面 的 两 条直线平行
} a⊥α ⇒a∥b b⊥α
图形语言
符号语言
∠AOB 是 二 面 角 α-l-β 的平 面 角ꎬ 且 ∠AOB = 90°ꎬ则 α⊥β

新教材老高考适用2023高考数学一轮总复习第八章第四节直线平面垂直的判定与性质pptx课件北师大版

新教材老高考适用2023高考数学一轮总复习第八章第四节直线平面垂直的判定与性质pptx课件北师大版
时满足“l∥α,α⊥β”,但是l⊂β,所以l⊥β不满足,故C不正确;
对于D,若m⊂α,l⊂β,l∥m,则α∥β,取平面ABCD为α,
平面ADHE为β,直线BC为l,直线EH为m,此时满足
“m⊂α,l⊂β,l∥m”,但是α,β相交,不满足α∥β,故D不
正确.故选B.
方法总结
对点训练1下列说法中错误的是(
D.若α∩β=a,a∥b,则b∥α或b∥β
(2)(2021浙江丽水二模)已知直线l,m,平面α,β,则(
A.若l⊂α,m∥l,则m∥α
B.若l∥α,l⊥β,则α⊥β
C.若l∥α,α⊥β,则l⊥β
D.若m⊂α,l⊂β,l∥m,则α∥β
)
答案 (1)C (2)B
解析 (1)对于A,若a⊥α,α∥β,则a⊥β.又b⊥β,所以a∥b,故A正确;
第八章
第四节
直线、平面垂直的判定与性质




01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.从定义和基本事实出发,借 1.空间中垂直关系的判
助长方体,通过直观感知,了

解空间中直线与直线、直线 2.线面垂直的判定与性
与平面、平面与平面的垂直 质
直观想象
关系,并加以证明.
逻辑推理
解析 当a⊂α且a垂直于α,β的交线时,满足已知条件;当a∥α时也满足已知条

考点一
空间中垂直关系的判定
典例突破
例1.(1)已知a,b表示两条不同的直线,α,β表示两个不同的平面,下列说法错
误的是(
)
A.若a⊥α,b⊥β,α∥β,则a∥b
B.若a⊥α,b⊥β,a⊥b,则α⊥β
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档