2012中考数学考前模拟测试精选题(9)

合集下载

2012年中考数学模拟试卷

2012年中考数学模拟试卷

2012年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算-2-1的结果是()(A)-1 (B)1 (C)3 (D)-32.如左图,这个几何体的主视图是()A. B. C. D.3.的角平分线AD交BC于点D,,则点D到AB的距离是( )A.1 B.2 C.3 D.44.估计+1的值是()A.在2和3之间 B.在3和4之间C.在4和5之间 D.在5和6之间5.《茂名日报》(2007年5月18日)报道,刚刚投产半年的茂名百万吨乙烯工程传来喜讯,正在创造全国最好的效益,每月为国家创利30 000万元,这个数用科学记数法表示是( )A. B. C. D.6.设一元二次方程的两个根分别是,则下列等式正确的是()A. B.C. D.7.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是()城市北京上海杭州苏州武汉重庆广州东莞珠海深圳最高温26252929313228272829度(℃)A.28 B.28.5 C.29 D.29.58.不等式组的解集是()A. B.C. D.9.如图,一扇形纸片,圆心角为,弦的长为,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()DD1D2AA1A2A3A4B1B2CC2C1C3C4BA.cm B.cmOBAOC.cm D.cm10.在平行四边形中,点,,,和,,,分别是和的五等分点,点,和,分别是和的三等分点,已知四边形的面积为1,则平行四边形的面积为()A. B. C. D.11.如图,小亮在操场上玩,一段时间内沿的路径匀速散步,能近似刻画小亮到出发点的距离与时间之间关系的函数图象是()A.B.C.D.12.如图,记抛物线的图象与正半轴的交点为,将线段分成等份.设分点分别为,,,,过每个分点作轴的垂线,分别与抛物线交于点,,…,,再记直角三角形,,…的面积分别为,,…,这样就有,,…;记,当越来越大时,你猜想最接近的常数是()P1P2P3P n-11AxyQ1Q2Q3Q n-1O1A. B. C. D.二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中横线上)13.分解因式:分解因式:.APO14.如图,PA与半圆O相切于点A,如果∠P=35°,那么∠AOP=_____°.15.如图,把矩形纸片放入平面直角坐标系中,使,分别落在轴,轴上,连结,将纸片沿折叠,使点落在点的位置.若,,则点的坐标为____________.703532285450595616.下图是一组数据的折线统计图,这组数据的极差是 ,平均数是 .FCGDHAEB17.如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是___________厘米.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤)18.(本小题满分7分)(1)计算:先化简,再求值:,其中.(2)解分式方程:解方程:.19.(本小题满分7分)(1)如图,在平行四边形中,,的平分线分别交对边于点,交四边形的对角线于点.求证:.(2)如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.20.(本小题满分8分)在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式:①②③④小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:(1)当抽得①和②时,用①,②作为条件能判定是等腰三角形吗?说说你的理由;(2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使不能构成等腰三角形的概率.ADEBC21.(本小题满分8分)今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:班级(1)班(2)班(3)班金额2000(元)吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.请根据以上信息,帮助吴老师解决下列问题:(1)求出(2)班与(3)班的捐款金额各是多少元;(2)求出(1)班的学生人数.22.(本小题满分9分)如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,xOyAB以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.23.(本小题满分9分)如图①,在边长为的正方形中,是对角线上的两个动点,它们分别从点,点同时出发,沿对角线以的相同速度运动,过作垂直交的直角边于;过作垂直交的直角边于,连接,.设,,,围成的图形面积为,,,围成的图形面积为(这里规定:线段的面积为).到达到达停止.若的运动时间为,解答下列问题:FEGDCBAH图①BA图②CD(1)当时,直接写出以为(2)顶点的四边形是什么四边形,(3)并求为何值时,.(2)①若是与的和,求与之间的函数关系式.(图②为备用图)②求的最大值.24.(本小题满分9分)如图,已知平面直角坐标系中,有一矩形纸片OABC,O为坐标原点,轴,B(3,),现将纸片按如图折叠,AD,DE为折痕,.折叠后,点O落在点,点C落在点,并且与在同一直线上.CDOABEO1C1xy(1)求折痕AD 所在直线的解析式; (2)求经过三点O,,C的抛物线的解析式; (3)若⊙的半径为,圆心在(2)的抛物线上运动,⊙与两坐标轴都相切时,求⊙半径的值.。

2012届中考模拟考试数学试题

2012届中考模拟考试数学试题
2012 届中考模拟考试
数学试卷
(满分 120 分,120 分钟完卷)
注意:不允许使用科学计算器进行运算,凡无精确度要求的题目,结果均保留 准确值,解答题应写出演算过程、推理步骤或文字说明。
A 卷(共 100 分)
第Ⅰ卷(选择题,共 36 分)
一、选择题:本大题共 12 个小题,每小题 3 分,共 36 分)
900 得到 ABO ,若 A 的坐标为(-2,4),B 点坐标为(-3,0); ① 在图中画 出 ABO 和 ABO (3 分) ②直接写出 A和A 点的坐标;(2 分) ③ ABO的顶点 A 在变换过程中所经过 的路径长为多少( 3 分)
22、如图,水坝的横断面是梯形,背水坡 AB 的坡角∠BAD=600,坡长 AB=20 3 m,为加强水坝强度,将坝底从 A 处向后水平延伸到 F 处,使新的背水 坡的坡角∠F=450,求 AF 的长度(结果精确到 1 米,参考数据, 2 1.414 , 3 1.732 )
EF⊥AE,则 CF 等于( )
(A)1
(B)2
(C) 2 3
(D) 3 2
12、如图,反比例函数
y1
k1 x
和正比例函数
y2
பைடு நூலகம்
k2x

图像交于 A(—1,—3)、B(1,3)两点,若 y1 y2 ,
则 x 的取值范围是( )
(A) 1 x 0
(B) 1 x 1
(C) x 1或0 x 1
②求 sin OEF 的值(3 分) ③若直线 EF 与线段 AD、BC 分别相交 于点 G、H,求 AB CD 的值(3 分)
GH
二、本大题一个小题共 11 分 26 、 如 图 , 在 平 面 直 角 坐 标 系 中 , 抛 物 线 y x2 mx n 经过 A(3,0),B(0,-3)两点,

2012中考数学模拟试题

2012中考数学模拟试题

2012中考数学模拟试题一、选择题:(每小题3分,共24分)1.-3的倒数为( )A.-13B.13C.3 D.-32.下列运算正确的是()A.326a a a=B.325()a a-=C.()233--=-D.2336(3)9ab a b=3..为了响应中央号召,2011年某市加大财政支农力度,全市农业支出累计将达到530 000 000元,其中530 000 000元用科学记数法可表示为A.53×107元B.53×108元C.5.3×107元D.5.3×108元4.下列四种标志中,既是轴对称图形又是中心对称图形的是( )5.如图,由几个小正方体组成的立体图形的左视图是( )6. 估计58的立方根的大小在( )A. 2与3之间B.3与4之间C. 4与5之间D. 5与6之间7. 如图,点A的坐标为(1,0),点B在直线上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(-12,12)C.(22,-22)D.(12,-12)第7题8、抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如表所示.给出下列说法:x … -3 -2 -1 0 1 2 … y…-64664…3,0);④在对称轴左侧,y 随x 增大而减小.从表可知,下列说法正确的个数有( ) A .1个B .2个C .3个D .4个二、填空题(每小题3分,共30分) 9.分解因式:a 3-ab 2= _____ .10. 函数y =x+2中,自变量x 的取值范围是 ___ _ 11.若3|2|0a b ++-=,则2009()a b +的值为 ____12.已知x 1、x 2是方程x 2+4x +2=0的两个实数根,则1x 1 +1x 2=_________13.如图,已知DE 是△ABC 的中位线,S △ADE =4,则S △ABC =_____ 14. 抛物线y =2x 2-bx +3的对称轴是直线x =l ,则b 的值为 _______ 15.设a >b >0,a 2+b 2—6ab =0,则a bb a+-的值等于______ 16. 关于x 的方程211x ax +=-的解是正数,则a 的取值范围是 ____ 17.若二次函数223y ax ax =-++的部分图象如图所示,则一元二次方程2230ax ax -++=的根为 .18.观察下图(每幅图中最小..的三角形都是全等的);则第n 个图中这种最小....的三角形共有 个.三、解答题(共计76分)19.(5分) 计算:(1)()113tan 3012132-⎛⎫--︒+-+- ⎪⎝⎭20. (5分))先化简、再求值:352242a a a a -⎛⎫÷-- ⎪--⎝⎭,其中a =3-3..21 (5分)解不等式组:()5122433112x x x ⎧-≤-⎪⎨-<⎪⎩,并把它的解集在数轴上表示出来22.(6分)如图,在△ABC 中,AB =AC ,D 是BC 中点,AE 平分∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O 过A 、E 两点, 交AD 于点G ,交AB 于点F . (1)求证:BC 与⊙O 相切;(2)当∠BAC =120°时,求∠EFG 的度数.23.(6分)如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G , AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE . 求证:(1)△ABC ≌△DEF ; (2)GF =GC .24(8分)某校八年级(1)班积极响应校团委的号召, 每位同学都向“希望工程”捐献图书,全班40名同学共捐图书400册.特别值得一提的是李保、王刚两位同学在父母的支持下各捐献了90册图书. 班册数 4 5 6 7 8 90 人数68152(1)分别求出该班级捐献7册图书和8册图书的人数;(2)请算出捐书册数的平均数、中位数和众数, 并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由。

2012年九年级中考模拟考试数学试题

2012年九年级中考模拟考试数学试题

2012年九年级中考模拟考试数学参考答案一.选择题(每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 答案BCABDACDBC二.填空题(每小题5分,共30分)11.2)2(-a 12.小林 13.π20 14.5215.)21)(1(50x x ++ 或501501002++x x 16.1053三.解答题(共80分) 17.(本题10分)(1)解: 原式=13221+-+ (每项1分,共4分) =21(1分)(2)解: 解① 6102≥+x 2-≥x (2分) 解② 24->-x 21<x (2分) ∴不等式组的解为212<≤-x (1分)18. (本题8分)证明:∵四边形ABCD 是平行四边形∴ AB ∥CD , AB=CD (2分) ∴∠ABD=∠CDB (1分)∵AE ⊥BD ,CF ⊥BD ∴∠AEB=∠CFD=900(2分) ∴△ABE ≌△CDF (1分) ∴BE=DF (2分)19.(本题8分)画对一题得4分,答案不唯一,只要正确均得满分。

例如:20.(本题9分) 解:(1)21(2分) (2)树状图如下: (3分)∴共有6种可能的结果。

(1分)(3)3162==P (3分)21.(本题10分)解:(1)列出方程组 (2分) 42-=x y (2分) (2)求得D (2,0) (1分) 2-=x y (2分) (3)求得F (0,-2) (1分) S=3 (2分) 22.(本题9分)解:(1)证明:∵ AB 是⊙O 的直径 ∴∠C=90度 (1分) ∵ PA 是⊙O 的切线 ∴∠PAO=∠C=90度 (1分)∵ OP ∥BC ∴ ∠AOP=∠ABC (1分) ∴△ABC ∽△POA (1分) (2)∵△ABC ∽△POA ∴OP AB AO BC = ∴5.463=BC ∴BC=4 (2分) ∴AC=5222=-CB BA (1分) ∵ OP ∥BC ∠C=90度 ∴ ∠ADO=90度 ∴521==AC CD (1分) ∴BD=2122=+BC CD (1分)出口入口开始北北南南西西BAjDCBA (图1)jQ PNM(图2)23.(本题12分)解:(1)① x 5.37, y 15 (每空1分,共2分)②⎩⎨⎧=+=+480155.3720y x y x (2分)⎩⎨⎧==128y x (2分) 答:略。

详细版2012中考数学模拟试题.doc

详细版2012中考数学模拟试题.doc

2012中考数学模拟试题(共150分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共3 0分)每小题均有四个选项,其中只有一项符合题目要求。

)1. 4的平方根是( ) (A)±16 (B)16(C )±2 (D)22.如图所示的几何体的俯视图是( )3. 在函数12y x -自变量x 的取值范围是( ) (A)12x ≤(B) 12x < (C) 12x ≥(D) 12x > 4. 近年来,随着交通网络的不断完善,我市近郊游持续升温。

据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为( ) (A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是( ) (A )2x x x += (B) 2x x x ⋅=(C)235()x x = (D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根,则下列关于判别式 24n mk-的判断正确的是( )(A) 240n mk -< (B)240n mk -= (C)240n mk -> (D)240n mk -≥7.如图,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD=58°, 则∠BCD=( ) (A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示,则下列判断正确的是( ) (A)0m > (B)0n < (C)0mn < (D)0m n ->BCD E ABCDE309. 为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是( ) (A)6小时、6小时(B) 6小时、4小时(C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm ,若点0到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是( ) (A)相交 (B)相切 (C)相离 (D)无法确定第Ⅱ卷《非选择题,共120分)二、填空题:(本大题共8个小题,每小题4分,共32分) 11. 分解因式:.221x x ++=________________。

2012年中考数学模拟压轴题100题精选(91-100题)答案

2012年中考数学模拟压轴题100题精选(91-100题)答案

2012年中考数学模拟压轴题100题精选(91-100题)答案【091】(1)解:法1:由题意得⎩⎨⎧n =2+c ,2n -1=2+c . ……1分解得⎩⎨⎧n =1,c =-1.……2分法2:∵ 抛物线y =x 2-x +c 的对称轴是x =12,且 12-(-1) =2-12 A 、B 两点关于对称轴对称.∴ n =2n -1 ……1分 ∴ n =1,c =-1. ……2分∴ 有 y =x 2-x -1 ……3分 =(x -12)2-54.∴ 二次函数y =x 2-x -1的最小值是-54. ……4分(2)解:∵ 点P (m ,m )(m >0),∴ PO =2m .∴ 22≤2m ≤2+2.∴ 2≤m ≤1+2. ……5分 法1: ∵ 点P (m ,m )(m >0)在二次函数y =x 2-x +c 的图象上, ∴ m =m 2-m +c ,即c =-m 2+2m . ∵ 开口向下,且对称轴m =1,∴ 当2≤m ≤1+2 时,有 -1≤c ≤0. ……6分 法2:∵ 2≤m ≤1+2, ∴ 1≤m -1≤2. ∴ 1≤(m -1)2≤2.∵ 点P (m ,m )(m >0)在二次函数y =x 2-x +c 的图象上, ∴ m =m 2-m +c ,即1-c =(m -1)2.∴ 1≤1-c ≤2.∴ -1≤c ≤0. ……6分 ∵ 点D 、E 关于原点成中心对称, 法1: ∴ x 2=-x 1,y 2=-y 1.∴ ⎩⎨⎧y 1=x 12-x 1+c ,-y 1=x 12+x 1+c .∴ 2y 1=-2x 1, y 1=-x 1. 设直线DE :y =kx . 有 -x 1=kx 1.由题意,存在x 1≠x 2.∴ 存在x 1,使x 1≠0. ……7分∴ k =-1.∴ 直线DE : y =-x . ……8分 法2:设直线DE :y =kx .则根据题意有 kx =x 2-x +c ,即x 2-(k +1) x +c =0. ∵ -1≤c ≤0, ∴ (k +1)2-4c ≥0.∴ 方程x 2-(k +1) x +c =0有实数根. ……7分 ∵ x 1+x 2=0, ∴ k +1=0. ∴ k =-1.∴ 直线DE : y =-x . ……8分 若 ⎩⎪⎨⎪⎧y =-x ,y =x 2-x +c +38.则有 x 2+c +38=0.即 x 2=-c -38. ① 当 -c -38=0时,即c =-38时,方程x 2=-c -38有相同的实数根,即直线y =-x 与抛物线y =x 2-x +c +38有唯一交点. ……9分② 当 -c -38>0时,即c <-38时,即-1≤c <-38时,方程x 2=-c -38有两个不同实数根,即直线y =-x 与抛物线y =x 2-x +c +38有两个不同的交点. ……10分③ 当 -c -38<0时,即c >-38时,即-38<c ≤0时,方程x 2=-c -38没有实数根,即直线y =-x 与抛物线y =x 2-x +c +38没有交点. ……11分【092】解:(1)如图,在坐标系中标出O ,A ,C∵∠AO C≠90°, ∴∠ABC =90°,故BC ⊥OC , BC ⊥AB ,∴B (72,1).(1分,)即s =72,t =1.直角梯形如图所画.(2分)(大致说清理由即可)(2)由题意,y =x 2+mx -m 与 y =1(线段AB )相交,得,12y =x mx m,y =.+-⎧⎨⎩ (3分)∴1=x 2+mx -m ,由 (x -1)(x +1+m )=0,得121,1x x m ==--.∵1x =1<32,不合题意,舍去. (4分)∴抛物线y =x 2+mx -m 与AB 边只能相交于(2x ,1), ∴32≤-m -1≤72,∴9252m --≤≤ . ①(5分)又∵顶点P (2424,m m m+--)是直角梯形OABC 的内部和其边上的一个动点,∴7022m ≤-≤,即7m -≤≤ . ② (6分)∵2224(2)4(1)44211m mm m ++-+-=-=-+≤,(或者抛物线y =x 2+mx -m 顶点的纵坐标最大值是1) ∴点P 一定在线段AB 的下方. (7分) 又∵点P 在x 轴的上方, ∴2440m m+-≥,(4)0,m m +≤∴0,0,4040m m m m ≤≥+≥+≤⎧⎧⎨⎨⎩⎩或者. (*8分) 4(9)0. m ∴-≤≤分③(9分)又∵点P 在直线y =23x 的下方,∴242()432m mm +-≤⨯-,(10分)即(38)0.m m +≥0,0,380380.m m m m ≤≥+≤+≥⎧⎧⎨⎨⎩⎩或者 (*8分处评分后,此处不重复评分) 80.3m m ∴≤-≥(11分),或 ④由①②③④ ,得4-≤83m ≤-.(12分)说明:解答过程,全部不等式漏写等号的扣1分,个别漏写的酌情处理.【093】解:(1)连结BO 与A C 交于点H ,则当点P 运动到点H 时,直线DP 平分矩形O ABC 的面积.理由如下:∵矩形是中心对称图形,且点H 为矩形的对称中心.又据经过中心对称图形对称中心的任一直线平分此中心对称图形的面积,因为直线DP 过矩形O ABC的对称中心点H ,所以直线DP 平分矩形O ABC 的面积.…………2分由已知可得此时点P 的坐标为3(2)2P ,.设直线DP 的函数解析式为y kx b =+.则有503 2.2k b k b -+=⎧⎪⎨+=⎪⎩,解得413k =,2013b =.所以,直线DP 的函数解析式为:4201313y x =+.··················································· 5分(2)存在点M 使得D O M △与A B C △相似.如图,不妨设直线DP 与y 轴的正半轴交于点(0)m M y ,. 因为D O M ABC ∠=∠,若△DOM 与△ABC 相似,则有O M BC O DAB=或O M AB O DBC=.当O M BC O D AB=时,即354m y =,解得154m y =.所以点115(0)4M ,满足条件.当O M AB O DBC=时,即453m y =,解得203m y =.所以点220(0)3M ,满足条件.由对称性知,点315(0)4M -,也满足条件.综上所述,满足使D O M △与A B C △相似的点M 有3个,分别为115(0)4M ,、220(0)3M ,、315(0)4M -,. ·············································································································· 9分(3)如图 ,过D 作DP ⊥AC 于点P ,以P 为圆心,半径长为52画圆,过点D 分别作P 的切线DE 、DF ,点E 、F 是切点.除P 点外在直线AC 上任取一点P 1,半径长为52画圆,过点D 分别作P 的切线DE 1、DF 1,点E 1、F 1是切点.在△DEP 和△DFP 中,∠PED =∠PFD ,PF =PE ,PD =PD ,∴△DPE ≌△DPF . ∴S四边形DEPF =2S△DPE =2×1522DE PE DE PE DE⨯⋅=⋅=.∴当DE 取最小值时,S四边形DEPF 的值最小. ∵222D E D P P E =-,2221111DE DP P E =-,∴222211DE DE DP DP -=-. ∵1DP DP >,∴2210DE DE ->. ∴1DE DE >.由1P 点的任意性知:DE 是D点与切点所连线段长的最小值. (12)在△ADP 与△AOC 中,∠DPA =∠AOC , ∠DAP =∠CAO , ∴△ADP ∽△AOC .x∴DP CO DACA=,即485D P =.∴325D P =.∴10D E ==.∴S四边形DEPF=44·····································································14分(注:本卷中所有题目,若由其它方法得出正确结论,请参照标准给分.) 【094】解:(1)令二次函数2y ax bx c =++,则16402a b c a b c c -+=⎧⎪++=⎨⎪=⎩········································································································· 1分 12322a b c ⎧=-⎪⎪⎪∴=-⎨⎪=⎪⎪⎩··················································································································· 2分∴过A B C ,,三点的抛物线的解析式为213222y x x =--+ ······································· 4分(2)以A B 为直径的圆圆心坐标为302O ⎛⎫' ⎪⎝⎭,52O C '∴=32O O '=································································································· 5分C D 为圆O '切线 O C C D '∴⊥ ··············································································· 6分 90O C D D C O '∴∠+∠=°90C O O O C O ''∠+∠=° C O O D C O'∴∠=∠ O C O C D O '∴△∽△ //O O O C O C O D '=······························································ 8分 3/22/2O D = 83O D ∴=D ∴坐标为803⎛⎫⎪⎝⎭, ······································································································· 9分(3)存在 ····················································································································10分 抛物线对称轴为32X =-设满足条件的圆的半径为r ,则E 的坐标为3()2r r -+,或3()2F r r --,而E 点在抛物线213222y x x =--+上21333()()22222r r r ∴=--+--++112r ∴=-+212r =--故在以E F 为直径的圆,恰好与x轴相切,该圆的半径为12-+,12+···········12分注:解答题只要方法合理均可酌情给分 【095】(1)B (4,0),(02)C -,.··········································································· 2分213222y x x =--. ···································································································· 4分 (2)A B C △是直角三角形. ······················································································ 5分 证明:令0y =,则2132022x x --=.1214x x ∴=-=,.(10)A ∴-,. ················································································································ 6分解法一:5AB AC BC ∴===,. ······························································ 7分22252025AC BC AB ∴+=+==.A B C ∴△是直角三角形. ····························································································· 8分 解法二:11242C O A O A O C O B O B OO C===∴== ,,,90A O C C O B ∠=∠= °,A O C C OB ∴△∽△. ································································································· 7分 AC O C B O ∴∠=∠. 90C B O B C O ∠+∠= °,90A C O B C O ∴∠+∠=°.即90A C B ∠=°.A B C ∴△是直角三角形. ····························································································· 8分(3)能.①当矩形两个顶点在A B 上时,如图1,C O 交G F 于H .G F A B ∥,C G F C A B ∴△∽△. G F C H A B C O∴=. ························································ 9分 解法一:设G F x =,则D E x =,25C H x =,225D G O H O C C H x ==-=-.2222255D EFG S x x x x ⎛⎫∴=-=-+ ⎪⎝⎭矩形·图1522⎝⎭当52x =时,S 最大.512D E D G ∴==,.A D G A O C △∽△, 11222A D D G A D O D O E A OO C∴=∴=∴==,,,.102D ⎛⎫∴- ⎪⎝⎭,,(20)E ,. ····························································································11分 解法二:设D G x =,则1052xD E G F -==.221055555(1)2222D E F G xS x x x x -∴==-+=--+矩形·. ···········································10分∴当1x =时,S 最大.512D G D E ∴==,.A D G A O C △∽△, 11222A D D G A D O D O E A OO C∴=∴=∴==,,,.102D ⎛⎫∴- ⎪⎝⎭,,(20)E ,. ····························································································11分 ②当矩形一个顶点在A B 上时,F 与C 重合,如图2, D G BC ∥, A G D A C B ∴△∽△. G D A G B CA F∴=.解法一:设G D x =,AC BC ∴==2x G F A C A G ∴=-=.∴2122D EFG x S x x ⎫=-=-+⎪⎭矩形·=(21522x --+. ··································································································12分当x =S 最大.2G D AG ∴==,52A D ∴==.32O D ∴=图22⎝⎭解法二:设D E x =,AC = ,BC =G C x ∴=,AG x =-.2GD x ∴=.()222D EFG S x x x ∴==-+矩形·=25222x ⎛⎫--+ ⎪ ⎪⎝⎭·····································································································12分∴当2x =时,S 最大,2G D AG ∴==.52A D ∴==.3.2O D ∴=∴302D ⎛⎫⎪⎝⎭,·················································································································13分 综上所述:当矩形两个顶点在A B 上时,坐标分别为102⎛⎫-⎪⎝⎭,,(2,0); 当矩形一个顶点在A B 上时,坐标为302⎛⎫⎪⎝⎭, ·································································14分 【096】(1)因所求抛物线的顶点M 的坐标为(2,4),故可设其关系式为()224y a x =-+ ………………(1分) 又抛物线经过O (0,0),于是得()20240a -+=, ………………(2分) 解得 a=-1 ………………(3分)∴ 所求函数关系式为()224y x =--+,即24y x x =-+. ……………(4分)(2)① 点P 不在直线ME 上. ………………(5分)根据抛物线的对称性可知E 点的坐标为(4,0), 又M 的坐标为(2,4),设直线ME 的关系式为y=kx +b . 于是得⎩⎨⎧=+=+4204b k b k ,解得⎩⎨⎧=-=82b k所以直线ME 的关系式为y=-2x +8. ……(6分) 由已知条件易得,当t 25=时,OA=AP 25=,⎪⎭⎫⎝⎛∴25,25P ……………(7分)∵ P 点的坐标不满足直线ME 的关系式y=-2x +8. ∴ 当t 25=时,点P 不在直线ME 上. ………………(8分)② S 存在最大值. 理由如下: ………………(9分)∵ 点A 在x 轴的非负半轴上,且N 在抛物线上, ∴ OA=AP=t .∴ 点P ,N 的坐标分别为(t ,t )、(t ,-t 2+4t ) ∴ AN=-t 2+4t (0≤t ≤3) , ∴ AN -AP=(-t 2+4 t )- t=-t 2+3 t=t (3-t )≥0 , ∴ PN=-t 2+3 t …(10分)(ⅰ)当PN=0,即t=0或t =3时,以点P ,N ,C ,D 为顶点的多边形是三角形,此三角形的高为AD ,∴ S=21DC ·AD=21×3×2=3. ………………(11分)(ⅱ)当PN ≠0时,以点P ,N ,C ,D 为顶点的多边形是四边形∵ PN ∥CD ,AD ⊥CD ,∴ S=21(CD+PN )·AD=21[3+(-t 2+3 t )]×2=-t 2+3 t +3=421232+⎪⎭⎫ ⎝⎛--t 其中(0<t <3),由a=-1,0<23<3,此时421=最大S . …………(12分)综上所述,当t 23=时,以点P ,N ,C ,D 为顶点的多边形面积有最大值,这个最大值为421. ………………(13分)说明:(ⅱ)中的关系式,当t=0和t=3时也适合.【097】解:(1)点D 的坐标为(43)-,. ······························································ (2分) (2)抛物线的表达式为23984y x x =-. ······························································ (4分)(3)抛物线的对称轴与x 轴的交点1P 符合条件. ∵O A C B ∥, ∴1P O M C D O ∠=∠.∵190O P M D C O ∠=∠=°,∴1R t R t P O M C D O △∽△.··························· (6∵抛物线的对称轴3x =,∴点1P 的坐标为1(30)P ,. ····················································································· (7分)过点O 作O D 的垂线交抛物线的对称轴于点2P . ∵对称轴平行于y 轴, ∴2P M O D O C ∠=∠. ∵290P OM DCO ∠=∠=°,∴21Rt Rt P M O DOC △∽△. ············································································· (8分)∴点2P 也符合条件,2O P M O D C ∠=∠.∴121390P O C O P P O D C O ==∠=∠=,°,∴21R t R t P P O D C O △≌△. ··············································································· (9分) ∴124P P C D ==. ∵点2P 在第一象限, ∴点2P 的坐标为2P (34),,∴符合条件的点P 有两个,分别是1(30)P ,,2P (34),.········································(11分) 【098】解:(1)当t =4时,B (4,0) 设直线AB 的解析式为y = kx +b . 把 A (0,6),B (4,0) 代入得:⎩⎨⎧b =64k +b =0, 解得:⎩⎨⎧k =-32b =6, ∴直线AB 的解析式为:y =-32x +6.………………………………………4分(2) 过点C 作CE ⊥x 轴于点E由∠AOB =∠CEB =90°,∠ABO =∠BCE ,得△AOB ∽△BEC . ∴12B EC E B C A OB OA B===,∴BE = 12AO =3,CE = 12OB = t2,∴点C 的坐标为(t +3,t2).…………………………………………………………2分方法一:S 梯形AOEC = 12O E ·(AO +EC )= 12(t +3)(6+t 2)=14t 2+154t +9,S △ AOB = 12AO ·OB = 12×6·t =3t ,S △ BEC = 12BE ·CE = 12×3×t 2= 34,∴S △ ABC = S 梯形AOEC - S △ AOB -S △ BEC= 14t 2+154t +9-3t -34t = 14t 2+9. 方法二:∵AB ⊥BC ,AB =2BC ,∴S △ ABC = 12AB ·BC = BC 2.在R t △ABC 中,BC 2= CE 2+ BE 2= 14t 2+9,即S △ ABC = 14t 2+9.…………………………………………………………2分(3)存在,理由如下: ①当t ≥0时. Ⅰ.若AD =BD . 又∵BD ∥y 轴∴∠OAB =∠ABD ,∠BAD =∠ABD , ∴∠OAB =∠BAD . 又∵∠AOB =∠ABC , ∴△ABO ∽△ACB , ∴12O BB C A OA B==,∴t 6 = 12, ∴t =3,即B (3,0).Ⅱ.若AB =AD .延长AB 与CE 交于点G , 又∵BD ∥CG ∴AG =AC过点A 画AH ⊥CG 于H . ∴CH =HG =12 CG由△AOB ∽△GEB , 得GE BE =AO OB , ∴GE =18t. 又∵HE =AO =6,CE =t2∴18t +6=12 ×(t 2+18t ) ∴t 2-24t -36=0解得:t =12±6 5. 因为 t ≥0,所以t =12+65,即B(12+65,0).Ⅲ.由已知条件可知,当0≤t <12时,∠ADB 为钝角,故BD ≠ AB . 当t ≥12时,BD ≤CE <BC<AB . ∴当t ≥0时,不存在BD =AB 的情况.②当-3≤t <0时,如图,∠DAB 是钝角.设AD =AB , 过点C 分别作CE ⊥x 轴,CF ⊥y 轴于点E ,点F . 可求得点C 的坐标为(t +3,t2),∴CF =OE =t +3,AF =6-t2,由BD ∥y 轴,AB =AD 得,∠BAO =∠ABD ,∠FAC =∠BDA ,∠ABD =∠ADB ∴∠BAO =∠FAC ,又∵∠AOB =∠AFC =90°, ∴△AOB ∽△AFC , ∴B O A OC FA F= , ∴6362t t t -=+-, ∴t 2-24t -36=0解得:t =12±6 5.因为-3≤t <0, 所以t =12-65,即B (12-65,0).③当t <-3时,如图,∠ABD 是钝角.设AB =BD , 过点C 分别作CE ⊥x 轴,CF ⊥y 轴于点E ,点F , 可求得点C 的坐标为(t +3,t2),∴CF = -(t +3),AF =6-t2,∵AB =BD , ∴∠D =∠BAD . 又∵BD ∥y 轴, ∴∠D =∠CAF , ∴∠BAC =∠CAF .又∵∠ABC =∠AFC =90°,AC =AC , ∴△ABC ≌△AFC , ∴AF =AB ,CF =BC ,∴AF =2CF ,即6-t2=-2(t +3),解得:t =-8,即B (-8,0).综上所述,存在点B 使△ABD 为等腰三角形,此时点B 坐标为:B 1 (3,0),B 2 (12+65,0),B 3 (12-65,0),B 4(-8,0). ………………………4分【099】解:(1) 弦(图中线段AB )、弧(图中的ACB 弧)、弓形、求弓形的面积(因为是封闭图形)等.(写对一个给1分,写对两个给2分)(2) 情形1 如图21,AB 为弦,CD 为垂直于弦AB 的直径. …………………………3分 结论:(垂径定理的结论之一). …………………………………………………………………………4分 证明:略(对照课本的证明过程给分). ……………………………………………………………7分 情形2 如图22,AB 为弦,CD 为弦,且AB 与CD 在圆内相交于点P . 结论:PD PC PB PA ⋅=⋅.证明:略.情形3 (图略)AB 为弦,CD 为弦,且m 与n 在圆外相交于点P . 结论:PD PC PB PA ⋅=⋅. 证明:略.情形4 如图23,AB 为弦,CD 为弦,且AB ∥CD . = .证明:略.(上面四种情形中做一个即可,图1分,结论1分,证明3分;其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)(3) 若点C 和点E 重合,则由圆的对称性,知点C 和点D 关于直径AB 对称. …………………………………………8分 设x BAC=∠,则x BAD =∠,x ABC -︒=∠90.…………………………………………9分 又D 是的中点,所以ABC ACD CAD CAD ∠-︒=+∠=∠1802, 即)90(18022x x -︒-︒=⋅.………………………………………………………………………………10分 解得︒=∠=30BAC x .………………………………………………………………………………………11分 (若求得AC AB 23=或FB AF ⋅=3等也可,评分可参照上面的标准;也可以先直觉猜测点B 、C 是圆的十二等分点,然后说明)【100】解:(1)令0))((4)2(2=+--=∆a m a m b 得222m b a =+ 由勾股定理的逆定理和抛物线的对称性知△ABM 是一个以a 、b 为直角边的等腰直角三角形 (2)设1)2(2-+=x a y ,∵△ABM 是等腰直角三角形∴斜边上的中线等于斜边的一半,又顶点M(-2,-1) ∴121=AB ,即AB =2,∴A(-3,0),B(-1,0)将B(-1,0) 代入1)2(2-+=x a y 中得1=a∴抛物线的解析式为1)2(2-+=x y ,即342++=x x y (3)设平行于x 轴的直线为k y = 解方程组⎩⎨⎧++==342x x y ky 得121++-=k x ,122+--=k x ()1->k∴线段CD 的长为12+k ,∵以CD 为直径的圆与x 轴相切,据题意得kk =+1,ABC A B 第25题图3第25题图22第25题图23m。

2012年中考数学模拟卷

2012年中考数学模拟卷

2012年中考数学模拟卷 (时间:120分 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分)1.已知多项式2x a +a 可以等于()A.-1B.-2C.4D.92.某红外线遥控器发出的红外线波长为0.000 000 94m ,用科学记数法表示这个数是( )×108m ×107m ×10-8m ×10-7 m3.下列计算正确的是( )A.428=⋅B. 3232=+C.123=-D.28 =2 4.在△ABC 中,∠C =90°,若将各边长度都扩大为原来的5倍,则∠A 的正弦值( )A .扩大25倍B .缩小5倍C .扩大5倍D .不变°角的图形方法很多,下列构成的图中所标的15°角有错的是()6.形状相同、大小相等的两个长方体小木块放置于桌面,其俯视图如下图所示,则其主视图是( )二、填空题 (本大题共8小题,每小题3分,共24分)7.写出三个你熟悉的无理数:、、.8.若-3x=13则x = . 9.三位同学一次数学考试的得分与他们三人的平均成绩的差分别为-8,6,a 则a =2.10.观察分析下列数据,寻找规律:0,5,10,15,25,5……那么第17个数据应是11.如图,将图1绕着“”顺时针旋转度时,可变成图2.12. 如图,抛物线2y ax bx c =++(a <0)经过原点,并与直线AB 交于A (-1,-2)、 B (3.-2)两点,过点B 作B C ⊥x 轴于C ,则图中两个阴影部分的面积之和为13. ×年×月有5个星期五,它们的日期之和是75,那么这个月的7日是星期 5(2)a a --=1,则a =三、(本大题共4小题, 每小题6分,共24分).15.先化简后求值:221442x x x x ---++﹙其中,x =-5﹚ 16.如图,射线OA 放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OB ,使ta n ∠AOB 的值分别为1、12、13. 17.某教师为了了解学生零花钱的使用情况,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了如下统计表.零花钱数额(元) 5 10 15 20学生个数(个) 10 1520 5 (1) 由表中的信息求这50名学生每人一周内的零花钱额的中位数、众数和平均数.(2)根据统计表表中的数据绘制一扇形统计图,并指出图中表示每人一周内零花钱为10元的圆心角的度数.18.在一个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球1个,黄球1个.若从中任意摸出一个球,这个球是红球的概率为0.5.(1)求口袋中红球的个数.(2)若摸到黄球记2分,摸到白球记1分,摸到红球记0分,小明从口袋中摸出一个球不放回,再摸出一个.请用画树状图的方法求小明摸得的两个球共得3分的概率.四、(本大题共2小题,每小题8分,共16分)19.某景点门票是每人100元,20人以上(含20人)的团体票8折优惠,在人数不足20人的情况下,试问:当人数为多少时买20张团体票比买个人票花钱更少?20.如图,在□ABCD 的形外分别作等腰直角△ABF 和等腰直角△ADE ,∠F AB=∠EAD =90°,连结AC 、EF .在图中找出所有与△F AE 全等的三角形,并选择其中一对加以证明.五、(本大题共2小题, 每小题9分,共18分)21.如图,把两块起初完全重合一起的量角器(量角器的直径AB=4,圆心为O ),下面一块不动,上面一块沿AB 所在的直线向右平移,当圆心与点B 重合时,量角器停止平移,此时半⊙O 与半⊙B 交于P ,连接AP.(1)AP 与半⊙B 有怎样的位置关系?请说明理由;(2)在半⊙O 的量角器上,A 、B 点的读数分别为180°、0°时,问点P 在这块量角器上的读数是多少?(3)求图中的阴影部分的面积.244(1)y ax ax a =-++经过原点.(1)试求a 的值及抛物线与x 轴交点;(2)画出二次函数244(1)y ax ax a =-++的图象,并利用图象指出在第1象限内,x 取何值时,y 随x 的增大而增大;(3)若抛物线的顶点为P ,平行于y 轴的直线m 与抛物线交于E ,与线段OP 交于F ,当线段EF 最长时,求直线m 与x 轴的交点坐标.六、(本大题共2小题, 每小题10分,共20分)23. 问题背景.A 、B 、C 、D 四个同学在探究正五边形ABCDE (如图所示)时,每个同学从图中各发现一个正确的的结论:A 同学:图中有五个等腰三角形;B 同学:图中有两对不全等但相似的三角形;C 同学:图中四边形ABPE 是菱形;D 同学:点P 是线段BD 的黄金分割点.任务要求:(1)分别写出A 同学所说的五个等腰三角形和B 同学所说的两对相似三角形(不添加辅助线,不证明);(2)试证明C 、D 两同学的结论.24.如图,A (-1,m )与B (2,m+33)是反比例函数k y x=图像上的两点. (1)求反比例函数解析式;(2)求直线AB 、BC 的解析式;(3)若点C 的坐标为(-1,0),D 是反比例函数图象上一点,且以A 、B 、C 、D 四 点为顶点的四边形为梯形,试求D 点的坐标.参考答案一、选择题(本大题共6小题,每小题3分,共18分)1.A,2.D,3.A,4.D,5.D,6.B.二、填空题 (本大题共8小题,每小题3分,共24分)7.如:,3,2π, 8.19-,9.2, 10.45,11.90, 12.2, 13. 四,14.1或3或5三、(本大题共4小题, 每小题6分,共24分).15.解:原式=221(2)2x x x ---+…………………………2分 =1122x x --+………………………………3分 =244x -.……………….………………………5分 当x =-5时,原式=24(5)4--=4……………6分 16.解:每画对一个2分,共6分17..解:(1)中位数是,众数是15,平均数为150(5×10+10×15+15×20+20×5)=12.…………………………3分 (2) 如图所示:……………………………………………………………4分零花钱为10元的圆心角的度数为108°.…………………………6分18.(1)设袋中有红球x 个,则有0.511x x=++,解得x =2. 所以,袋中的红球有2个……………………………………3分(2)画树状图如下:1 1 3 1 02 1 0 23 2 2开白 红 红 黄红 红 黄 第二次 第一次 得分 白 红 黄 白 红 黄白 红 红由上述树状图可知:所有可能出现的结果共有12种.其中摸出两个球共得3分的有2种.所以P (从中摸出两个得3分)=21126=.………………………………6分 四、(本大题共2小题,每小题8分,共16分)19.解:设人数为x (x <20)100x >20×100×………………………4分x >16………………………………………5分∴16<x <20,当人数为17,18,19时买20人的团体票比买个人票花钱更少.………8分 20.解:△ABC (或△CDA )与△FAE 全等.………………2分(下面仅对△ABC ≌△FAE 证明)∵90FAB EAD ∠=∠=,∴∠+EAF ∠180=DAB °.∵四边形ABCD 是平行四边形,∴BC AD BC AD =,//.∴∠+DAB ∠180=CBA °.∴∠CBA =∠EAF .∵AD AE =,∴AE BC =.∵AF AB =,∴△ABC ≌△FAE . ……………………………………8分五、(本大题共2小题, 每小题9分,共18分)21.解:(1)AP 与半⊙B 相切理由:连接PB ,∵AB 是直径,∴∠APB=90°∴AP 是半⊙B 相切线.………………………3分(2)连接OP ,∵B 是半⊙B 的圆心,OC 是直径,∴OP=OB=PB ,∴△POB 是等边三角形.∴∠POB=60°,∴点P 处的读数是60°………………6分(3) 过P 作PD ⊥AB 于D ,OB=OP=2,OD=1,∴PD=3,则0.5OPD s =三角形×1×3=32阴影部分面积为=4122π⨯-(2332π-)=233π+………………………………9分 22.解:(1)∵抛物线244(1)y ax ax a =-++经过原点,∴a+1=0,a=-1.∴24y x x =-+,当y=0时,x=0或4,∴与x 轴的交点坐标为(0,0),(4,0).……3分(2)∵24y x x =-+=2(2)4,x --+顶点坐标为(2,4),(0,0)、(4,0).∴在第1象限内,当0<x <2时,y 随x 的增大而增大.…………………………………………6分(3)设直线OP 的解析式为y=kx ,当x=2,y=4,∴y=2x,∴线段EF 长=24x x -+-2 x=2(1)1x --+∴当x=1时,线段EF 最大长为1,∴直线m 与x 轴的交点坐标为(1,0)………………………………………………………………………9分六、(本大题共2小题, 每小题10分,共20分)23.解:(1)等腰三角形:△BCD 、△CPB 、△CDE 、△DEP 、△CDP ;两对相似三角形:△BC D ∽△CPD 、△CP D ∽△CDE ………………………………………3分(2)C 同学:在五边形ABCDE 中∠CBA =∠A=∠BCD=108°又∵BC=CD ;∠CBD=36°,∠ABD=72°∠A+∠ABD=180°∴AE ∥BD ,同理AB ∥PE又∵AB=AE∴四边形ABPE 是菱形……………………………7分D 同学:在五边形ABCDE 中,∠BCD=108°,∠BDC=∠CBD=∠PCD=36°∴△BC D ∽△CPD.BC BD PC CD=, 又∵∠BCP=∠BPC=72°,∴BP=BC=CD ,∴2BP =BD ×PD∴P 是线段BD 的黄金分割点……………………………………(10分)24.解:(1)∵A 、B 都是双曲线k y x=上的点, ∴-1·m=2(=k ,,∴∴反比例函数解析式为:y =.……………………………………3分 (2)∵,∴A (-1,,B (2),设直线AB 的解析式为y=kx+b ,∴2k b k b ⎧-=-+⎪=+,k b ⎧=⎪⎨=⎪⎩,∴直线AB 的解析式为……………………………………4分设直线BC 的解析式为11y k x b =+,∴111102k b k b =-+⎧⎪=+,113k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴BC的解析式为y x =+………………………………6分 (3)当AD ∥BC 时,直线AD的解析式为23y x b =+, 把A (-1,2b=-53,∴y x =,x = 2560x x --=,x=6或x=-1,∴D (6,3).……………………………………………8分 当CD ∥AB 时,直线CD的解析式为3y b =+,把点C 代入得3b ,3b,∴, ∴220x x +-=,1x =1,2x =-2,D (1,D (-2,),综上所述,D 点坐标为(6、(1,-2,.…………………10分 2012年中考数学模拟卷(时间:120分 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分)1.已知多项式2x a +a 可以等于(A ) A.-1 B.-2 C.4 D.92.某红外线遥控器发出的红外线波长为0.000 000 94m ,用科学记数法表示这个数是(D ) ×108m ×107m ×10-8m ×10-7 m3.下列计算正确的是( A )A.428=⋅B. 3232=+C.123=-D.28 =2 4.在△ABC 中,∠C =90°,若将各边长度都扩大为原来的5倍,则∠A 的正弦值(D )A .扩大25倍B .缩小5倍C .扩大5倍D .不变°角的图形方法很多,下列构成的图中所标的15°角有错的是( D )6.形状相同、大小相等的两个长方体小木块放置于桌面,其俯视图如下图所示,则其主视图是( B )二、填空题 (本大题共8小题,每小题3分,共24分)7.写出三个你熟悉的无理数:、、.如:,3,2π8.若-3x=13 则x = 19-. 9.三位同学一次数学考试的得分与他们三人的平均成绩的差分别为-8,6,a 则a =2.10.观察分析下列数据,寻找规律:0,5,10,15,25,5……那么第17个数据应是4511.如图,将图1绕着“”顺时针旋转90度时,可变成图2.12. 如图,抛物线2y ax bx c =++(a <0)经过原点,并与直线AB 交于A(-1,-2)、B (3.-2)两点,过点B 作BC ⊥x 轴于C ,则图中两个阴影部分的面积之和为213. ×年×月有5个星期五,它们的日期之和是75,那么这个月的7日是星期四 5(2)a a --=1,则a =1或3或5三、(本大题共4小题, 每小题6分,共24分).15.先化简后求值:221442x x x x ---++﹙其中,x =-5﹚ 解:原式=221(2)2x x x ---+…………………………2分 =1122x x --+………………………………3分 =244x -.……………….………………………5分当x =-5时,原式=24(5)4--=4……………6分 16.如图,射线OA 放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OB ,使ta n ∠AOB 的值分别为1、12、13. 解:每画对一个2分,共6分17.某教师为了了解学生零花钱的使用情况,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了如下统计表.零花钱数额(元) 5 10 15 20学生个数(个) 10 1520 5 (4) 由表中的信息求这50名学生每人一周内的零花钱额的中位数、众数和平均数.(2)根据统计表表中的数据绘制一扇形统计图,并指出图中表示每人一周内零花钱为10元的圆心角的度数.17.解:(1)中位数是,众数是15,平均数为150(5×10+10×15+15×20+20×5)=12.…………………………3分 (5) 如图所示:……………………………………………………………4分零花钱为10元的圆心角的度数为108°.…………………………6分18.在一个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球1个,黄球1个.若从中任意摸出一个球,这个球是红球的概率为0.5.(1)求口袋中红球的个数.(2)若摸到黄球记2分,摸到白球记1分,摸到红球记0分,小明从口袋中摸出一个球不放回,再摸出一个.请用画树状图的方法求小明摸得的两个球共得3分的概率.(1)设袋中有红球x 个,则有0.511x x=++,解得x =2. 所以,袋中的红球有2个……………………………………3分(2)画树状图如下:由上述树状图可知:所有可能出现的结果共有12种.其中摸出两个球共得3分的有2种.所以P (从中摸出两个得3分)=21126=.………………………………6分 四、(本大题共2小题,每小题8分,共16分)19.某景点门票是每人100元,20人以上(含20人)的团体票8折优惠,在人数不足20人的情况下,试问:当人数为多少时买20张团体票比买个人票花钱更少?解:设人数为x (x <20)100x >20×100×………………………3分x >16………………………………………4分∴16<x <20,当人数为17,18,19时买20人的团体票比买个人票花钱更少.………6分20.如图,在□ABCD 的形外分别作等腰直角△ABF 和等腰直角△ADE ,∠F AB=∠EAD =90°,连结AC 、EF .在图中找出所有与△F AE 全等的三角形,并选择其中一对加以证明. 解:△ABC (或△CDA )与△FAE 全等.………………2分(下面仅对△ABC ≌△FAE 证明)∵90FAB EAD ∠=∠=,∴∠+EAF ∠180=DAB °.∵四边形ABCD 是平行四边形,∴BC AD BC AD =,//.∴∠+DAB ∠180=CBA °.∴∠CBA =∠EAF .∵AD AE =,∴AE BC =.∵AF AB =,∴△ABC ≌△FAE . ……………………………………6分五、(本大题共2小题, 每小题9分,共18分)21.如图,把两块起初完全重合一起的量角器(量角器的直径AB=4,圆心为O ),下面一块不动,上面一块沿AB 所在的直线向右平移,当圆心与点B 重合时,量角器停止平移,此时半⊙O 与半⊙B 交于P ,连接AP.(1)AP 与半⊙B 有怎样的位置关系?请说明理由;(2)在半⊙O 的量角器上,A 、B 点的读数分别为180°、0°时,问点P 在这块量角器上的读数是多少?1 1 3 1 02 1 0 23 2 2 开白 红 红 黄红 红 黄 第二次第一次 得分 白 红 黄 白 红 黄 白 红 红(3)求图中的阴影部分的面积.解:(1)AP 与半⊙B 相切理由:连接PB ,∵AB 是直径,∴∠APB=90°∴AP 是半⊙B 相切线.………………………3分(2)连接OP ,∵B 是半⊙B 的圆心,OC 是直径,∴OP=OB=PB ,∴△POB 是等边三角形.∴∠POB=60°,∴点P 处的读数是60°………………6分(6) 过P 作PD ⊥AB 于D ,OB=OP=2,OD=1,∴PD=3,则0.5OPD s =三角形×1×3=32阴影部分面积为=4122π⨯-(2332π-)=233π+………………………………9分 244(1)y ax ax a =-++经过原点.(1)试求a 的值及抛物线与x 轴交点;(2)画出二次函数244(1)y ax ax a =-++的图象,并利用图象指出在第1象限内,x 取何值时,y 随x 的增大而增大;(3)若抛物线的顶点为P ,平行于y 轴的直线m 与抛物线交于E ,与线段OP 交于F ,当线段EF 最长时,求直线m 与x 轴的交点坐标.解:(1)∵抛物线244(1)y ax ax a =-++经过原点,∴a+1=0,a=-1.∴24y x x =-+,当y=0时,x=0或4,∴与x 轴的交点坐标为(0,0),(4,0).……3分(2)∵24y x x =-+=2(2)4,x --+顶点坐标为(2,4),(0,0)、(4,0).∴在第1象限内,当0<x <2时,y 随x 的增大而增大.…………………………………………6分(3)设直线OP 的解析式为y=kx ,当x=2,y=4,∴y=2x,∴线段EF 长=24x x -+-2 x=2(1)1x --+∴当x=1时,线段EF 最大长为1,∴直线m 与x 轴的交点坐标为(1,0)………………………………………………………………………9分六、(本大题共2小题, 每小题10分,共20分)23. 问题背景.A 、B 、C 、D 四个同学在探究正五边形ABCDE (如图所示)时,每个同学从图中各发现一个正确的的结论:A 同学:图中有五个等腰三角形;B 同学:图中有两对不全等但相似的三角形;C 同学:图中四边形ABPE 是菱形;D 同学:点P 是线段BD 的黄金分割点.任务要求:(1)分别写出A 同学所说的五个等腰三角形和B 同学所说的两对相似三角形(不添加辅助线,不证明); (2)试证明C 、D 两同学的结论.23.解:(1)等腰三角形:△BCD 、△CPB 、△CDE 、△DEP 、△CDP ;两对相似三角形:△BC D ∽△CPD 、△CP D ∽△CDE ………………………………………3分(2)C 同学:在五边形ABCDE 中∠CBA =∠A=∠BCD=108°又∵BC=CD ;∠CBD=36°,∠ABD=72°∠A+∠ABD=180°∴AE ∥BD ,同理AB ∥PE又∵AB=AE∴四边形ABPE 是菱形……………………………7分D 同学:在五边形ABCDE 中,∠BCD=108°,∠BDC=∠CBD=∠PCD=36°∴△BC D ∽△CPD.BC BDPC CD =,又∵∠BCP=∠BPC=72°,∴BP=BC=CD ,∴2BP =BD ×PD∴P 是线段BD 的黄金分割点……………………………………(10分)24.如图,A (-1,m )与B (2,m+33)是反比例函数ky x =图像上的两点.(1)求反比例函数解析式;(2)求直线AB 、BC 的解析式;(3)若点C 的坐标为(-1,0),D 是反比例函数图象上一点,且以A 、B 、C 、D 四点为顶点的四边形为梯形,试求D 点的坐标.24.解:(1)∵A 、B 都是双曲线ky x =上的点,∴-1·m=2(m+33)=k ,-m=2m+63=3m=-63,m=-23,∴k=-m=23,∴反比例函数解析式为:23y x =.……………………………………3分(2)∵m=-23,∴A (-1,-23),B (2,3),设直线AB 的解析式为y=kx+b ,∴2332k b k b ⎧-=-+⎪⎨=+⎪⎩,33k b ⎧=⎪⎨=-⎪⎩,∴直线AB 的解析式为y=3x-3.……………………………………4分设直线BC 的解析式为11y k x b =+,∴111102k b k b =-+⎧⎪=+,113k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴BC的解析式为y x =+………………………………6分 (3)当AD ∥BC 时,直线AD的解析式为23y x b =+, 把A (-1,2b=-53,∴y x =,x = 2560x x --=,x=6或x=-1,∴D (6,3).……………………………………………8分 当CD ∥AB 时,直线CD的解析式为3y b =+,把点C 代入得3b ,3b,∴, ∴220x x +-=,1x =1,2x =-2,D (1,D (-2,),综上所述,D 点坐标为(6、(1,-2,.…………………10分。

2012年中考数学模拟试题(含答案)

2012年中考数学模拟试题(含答案)

2012年中考数学模拟试题考试时间:120分钟,满分150分一、选择题(每题2分,共30分)1、如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>-b>-a B.a>-a>b>-bC.b>a>-b>-a D.-a>b>-b>a2、如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=4cm2,则阴影面积等于()A.2cm2B.1cm2C.1/2cm2D.1/4cm2第2题第3题3、如图,矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于().4、一元二次方程,中,c<0.该方程的解的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能确定5、如图,△ABC中,AB、AC边上的高CE、BD相交于P点,图中所有的相似三角形共有()A.4对B.5对C.6对D.7对6、等边△A1B1C1内接于等边△ABC的内切圆,则的值为()A. B. C. D.7、当45°<<90°时,下列各式中正确的是()A.tan>cos>sinB.sin>cos>tanC.tan>sin>cosD.cos>sin>tan8、如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=(x>0)的图象上,则点E的坐标是()A.(,)B.()C.(,)D.()第8题第9题9、已知一次函数的图象如图所示,当时,的取值范围是()A. B. C. D.10、在同一坐标系中一次函数和二次函数的图象可能为()11、若,,三点都在函数的图象上,则的大小关系是()A. B. C. D.12、如图,小亮在操场上玩,一段时间内沿的路径匀速散步,能近似刻画小亮到出发点的距离与时间之间关系的函数图象是()13、如图,正三角形内接于圆,动点在圆周的劣弧上,且不与重合,则等于()A. B. C. D.第13题第14题第15题14、如图,一次函数图象经过点,且与正比例函数的图象交于点,则该一次函数的表达式为()A. B. C. D.15、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.cmB.4cmC.cmD.3cm二、填空题(每题3分,共36分)16、已知,则的值为___________.17、如图所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为___________.第17题第18题18、如图,在中,.将其绕点顺时针旋转一周,则分别以为半径的圆形成一圆环.则该圆环的面积为__________.19、已知关于x的不等式(1-a)x>2的解集为,则a的取值范围是__________.20、方程有实数根,则锐角的取值范围是______.21、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是__________.第21题第22题22、如图,一张长方形纸片ABCD,其长AD=a,宽AB=b(a>b),在BC边上选取一点M,将ABM沿AM翻折后B至B′的位置,若B′为长方形纸片ABCD的对称中心,则a/b的值是_____________.23、已知二次函数的部分图象如图所示,则关于的一元二次方程的解为___________.第23题第24题24、如图所示的抛物线是二次函数的图象,那么的值是___________.25、在平面直角坐标系中,直线向上平移1个单位长度得到直线.直线与反比例函数的图象的一个交点为,则的值等于__________.26、如图,要使输出值大于100,则输入的最小正整数是____________.27、有5张写有数字的卡片(如左图所示),它们的背面都相同,现将它们背面朝上(如右图所示),从中翻开任意一张是数字2的概率为_________.三、解答题(每题5分,共20分)28、已知y=的定义域为R ,求实数a 的取值范围.29、计算:0.25×⎝⎛⎭⎫12-2+(3.14-π)0-2sin60°.30、先化简,再求值:⎝⎛⎭⎫a a -1-1÷a a2-2a +1,其中a = 2.31、解不等式组:()②①⎪⎩⎪⎨⎧-+≤+321234xxxx四、综合题(共64分)32、(本题满分9分)“便民”水泥代销点销售某种水泥,每吨进价为250元.如果每吨销售价定为290元时,平均每天可售出16吨.(1)若代销点采取降价促销的方式,试建立每吨的销售利润(元)与每吨降价(元)之间的函数关系式.(2)若每吨售价每降低5元,则平均每天能多售出4吨.问:每吨水泥的实际售价定为多少元时,每天的销售利润平均可达720元.DEA M NCB如图,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角,且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.(1)求证:△ACE≌△DCB;(2)请你判断△ACM与△DPM的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC 上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.(1)求梯形ABCD的面积;(2)求四边形MEFN面积的最大值.(3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由.35、(本题满分10分)如图,⊙O经过点B、D、E,BD是⊙O的直径,∠C=90°,BE平分∠ABC.(1)试证明直线AC是⊙O的切线;(2)当AE=4,AD=2时,求⊙O的半径及BC的长.(第35题)已知:如图,直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax2+bx(a<0)的顶点在直线AC上.(1)求A、C两点的坐标;(2)求出抛物线的函数关系式;(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;(4)若E为⊙B优弧上一动点,连结AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3,若存在,试求出点M的坐标;若不存在,试说明理由.如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.答案选择题答案:D答案:B答案:D答案:B答案:C答案:A答案:C答案:A答案:C答案:A答案:A答案:C答案:B答案:A答案:A二、填空题16、答案:-3.17、答案:-1,0,1,218、答案:19、答案:a>120、答案:0°<≤30°.21、答案:22、答案:23、答案:,24、答案:-125、答案:226、答案:2127. 答案:三、解答题28、确定a的取值范围,使之对任意实数x都有ax2+4ax+3≠0.解:当a=0时,ax2+4ax+3=3≠0对任意x∈R都成立;当a≠0时,要使二次三项式ax2+4ax+3对任意实数x恒不为零,必须满足:其判别式,于是,0<a <.综上,.29. 原式=14×4+1-2×32(4分)=2- 3.(8分)30. 原式=a -a +1a -1·-a (3分)=a -1a .(6分)当a =2时,原式=2-12=2-22.(8分)31.解:由 ① 得 23≤-x x , 1-≥x由 ② 得 ()x x 213 - ,323 x x -, 3 x∴ 31 x ≤-四、综合题32.(1)依题意,得……………………………………3分 (2)依题意,得………………………………………… 4分 解得…………………………………………1分…………………………………………1分答:每吨水泥的实际售价应定为元时,每天的销售利润平均可达720元. 1分34. (1)连接OE.[来源:学科网ZXXK]∵BE是∠ABC的平分线,∴∠1=∠2.∵OE=OB,∴∠1=∠3.∴∠2=∠3.∴O E∥AC.又∠C=90°,∴ ∠AEO =90°.[来源:学科网]∴ AC 是⊙O 的切线.(6分)(2)设⊙O 的半径为r ,在Rt △AEO 中,由勾股定理可得OA2=OE2+AE2.∵ AE =4,AD =2,∴ (2+r)2=r2+42.∴ r =3.∵ OE ∥AC ,∴ AO AB =OE BC .∴ 2+32+6=3BC. ∴ BC =245.(10分)35 .① A(-6,0),C(0,6) ………………………………………………………2分② …………………………………………………………………3分 ③相切,BD=6 ………………………………………………………………………3分 ④存在这样的点M ,M()或() ……………3分36 .解:(1)在矩形OABC 中,设OC=x 则OA=x+2,依题意得解得:(不合题意,舍去) ∴OC=3, OA=5 ……………………………… 3分(2)连结O ′D在矩形OABC 中,OC=AB ,∠OCB=∠ABC=90°,CE=BE=∴ △OCE ≌△ABE ∴EA=EO ∴∠1=∠2在⊙O ′中, ∵ O ′O= O ′D ∴∠1=∠3∴∠3=∠2 ∴O ′D ∥AE ,∵DF ⊥AE ∴ DF ⊥O ′D又∵点D 在⊙O ′上,O ′D 为⊙O ′的半径 ,∴DF 为⊙O ′切线. ……………………………………………………………………4分(3)不同意.理由如下:①当AO=AP 时,以点A 为圆心,以AO 为半径画弧交BC 于P1和P4两点过P1点作P1H ⊥OA 于点H ,P1H=OC=3,∵AP1=OA=5∴AH=4, ∴OH=1 求得点P1(1,3) 同理可得:P4(9,3) ……………3分 ②当OA=OP 时,同上可求得:P2(4,3),P3(4,3) …………………………2分因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形. ……………………1分。

2012中考数学模拟题(包含答案)

2012中考数学模拟题(包含答案)

A B C D 绝密★启用前2012年广州市初中毕业生学业考试综合训练数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试用时120分钟.第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、2的倒数是( ) A 、12 B 、-12C 、2D 、-2 2、不等式x <2在数轴上表示正确的是( )3.下列命题中,属于假命题的是( ) A 、三角形两边之差小于第三边 B 、三角形的外角和是360°C 、三角形的一条中线能将三角形分成面积相等的两部分D 、等边三角形即是轴对称图形,又是中心对称图形 4、方程组125x y x y +=⎧⎨-=⎩,的解是( )A .12.x y =-⎧⎨=⎩, B .23.x y =-⎧⎨=⎩, C .21.x y =⎧⎨=⎩, D .21.x y =⎧⎨=-⎩,5、在一个晴朗的上午,皮皮拿着一块正方形术板在阳光下做投影实验,正方形木板在地面上形成的投影不可能是( )6.如图,水平放置的下列几何体,主视图不是..长方形的是( )7.如图,梯形ABCD 中,AD ∥BC ,EF 是梯形的中位线,对角线AC 交EF 于G ,若BC =10,EF =8,则GF 的长等于( )A 、2B 、3C 、4D 、5B .D .A .C . GF E D CBAB.C.D.8.将一个正方体沿某些棱展开后,能够得到的平面图形是()9、已知x<1)A、x-1 B、x+1 C、-x-1 D、1-x10.已知圆锥的母线长为5,高为4,则该圆锥的侧面积为()A.20π B.15π C.12π D.30π第二部分(非选择题共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.如图,已知a b∥,1=50∠︒,则2∠= °.12.计算0)2(-=_________.13.使11+x在实数范围内有意义的x的取值范围是.14、如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=54,则AC=_________.15、袋子中装有3个红球和5个白球,这些球除颜色外均相同.在看不到球的条件下,随机从袋中摸出一个球,则摸出白球的概率是__________.16.如图,小红作出了面积为1的正△ABC,然后分别取△ABC三边的中点A1,B1,C1,作出了正△A1B1C1,用同样的方法,作出了正△A2B2C2,……,由此可得,正△A8B8C8的面积是.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)因式分解:aax42-.18.(本小题满分9分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计表及如图所示的统计图.请根据图表中的信息回答以下问题.(1)求a的值;(2)求这50名学生每人一周内的零花钱数额的众数和平均数.C1B第16题图第14题图AB CD第19题图19.(本小题满分10分)如图,已知平行四边形ABCD .(1)用直尺和圆规作出ADC ∠的平分线DE ,交AB 于点E ,(保留作图痕迹,不要求写作法); (2)求证:AD AE =.20.(本小题满分10分)先化简,再求值:22(3)(2)(2)2x x x x +++--,其中13x =-.21.(本小题满分12分)某企业2009年盈利1500万元,2011年克服全球金融危机的不利影响,仍实现盈利2160万元.从2009年到2011年,如果该企业每年盈利的年增长率相同,求: (1)该企业2010年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2012年盈利多少万元?22.(本小题满分12分)如图 ,已知一次函数1y x m =+(m 为常数)的图象与反比例函数 2k y x=(k 为常数,0k ≠)的图象相交于点 A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.23.(本小题满分12分)如图,在⊙O 中,直径AB 垂直于弦CD ,垂足为E ,连接AC ,将△ACE 沿AC 翻折得到△ACF ,直线FC 与直线AB 相交于点G . (1)直线FC 与⊙O 有何位置关系?并说明理由; (2)若2OB BG ==,求CD 的长.A F24.(本小题满分14分)如图1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值; (2)延长EF 交正方形外角平分线CP P 于点(如图2),试判断AE EP 与的大小关系,并说明理由; (3)在图2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.25.(本小题满分14分)如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0), 与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长;(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK 的面积最大?并求出最大面积.图1 A D CB E 图2B C E D A F P F2012年广州市初中毕业生学业考试综合训练参考答案17.(2)(2)a x x +-18.(1)a 的值:10(人);(2)这50名学生每人一周内的零花钱数额的众数:15元,平均数:12元 19.略20.原式=6x +5,当13x =-时,原式=3.21.(1)该企业2010年盈利1800万元;(2)预计2012年盈利2592万元22.解:(1)由题意,得31m =+,解得2m =,所以一次函数的解析式为12y x =+.由题意,得31k =,解得3k =,所以反比例函数的解析式为23y x =. 由题意,得32x x+=,解得1213x x ==-,.当23x =-时,121y y ==-,所以交点(31)B --,.(2)由图象可知,当30x -<≤或1x ≥时,函数值12y y ≥.23.解:(1)直线FC与⊙O 相切.理由如下:连接OC .∵OA OC =,∴12∠=∠,由翻折得,13∠=∠,90F AEC ∠=∠=︒. ∴23∠=∠. ∴OC ∥AF . ∴90OCG F ∠=∠=︒. ∴直线FC 与⊙O 相切.(2)在Rt △OCG 中,1cos 22OC OC COG OG OB ∠===, ∴60COG ∠=︒.……6分在Rt △OCE 中,sin602CE OC =⋅︒=⨯……8分 ∵直径AB 垂直于弦CD , ∴2CD CE ==.……9分24.解:(1)AE EF ⊥2390∴∠+∠=° 四边形ABCD 为正方形90B C ∴∠=∠=° 1390∴∠+∠=°12∠=∠ (3)90DAM ABE DA AB ∠=∠==°,A D1DAM ABE ∴△≌△DM AE ∴=AE EP =DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形 证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP . 90AD BA DAM ABE =∠=∠=,°Rt Rt DAM ABE ∴△≌△14DM AE ∴=∠=∠,1590∠+∠=° 4590∴∠+∠=°AE DM ∴⊥ AE EP ⊥ DM EP ∴⊥∴四边形DMEP 为平行四边形(备注:此小题若有其他的证明方法,只要证出判定平行四边形的一个条件,即可得分)25.(1)由题意,得 ⎩⎨⎧=++=+-,0424,04416b a b a 解得21-=a ,b =-1.所以抛物线的解析式为4212+--=x x y ,顶点D 的坐标为(-1,29).(2)设抛物线的对称轴与x 轴交于点M .因为EF 垂直平分BC ,即C 关于直线EG 的对称点为B ,连结BD 交于EF 于一点,则这一点为所求点H ,使DH + CH 最小,即最小为DH + CH = DH + HB = BD =132322=+DM BM . 而 25)429(122=-+=CD . ∴ △CDH 的周长最小值为CD + DR + CH =21335+. 设直线BD 的解析式为y = k 1x + b ,则 ⎪⎩⎪⎨⎧=+-=+,29,021111b k b k 解得 231-=k ,b 1 = 3. 所以直线BD 的解析式为y =23-x + 3. 由于BC = 25,CE = BC ∕2 =5,Rt △CEG ∽△COB ,得 CE : CO = CG : CB ,所以 CG = 2.5,GO = 1.5.G (0,1.5).同理可得直线EF 解析式为y =21x +23. 联立直线BD 与EF 的方程,解得使△CDH 的周长最小的点H (43,815). (3)设K (t ,4212+--t t ),x F <t <x E .过K 作x 轴的垂线交EF 于N .则 KN = y K -y N =4212+--t t -(21t +23)=2523212+--t t .所以 S △EFK = S △KFN + S △KNE =21KN (t + 3)+21KN (1-t )= 2KN = -t 2-3t + 5 =-(t +23)2 +429.B CED A F P5 41M即当t =-23时,△EFK 的面积最大,最大面积为429,此时K (-23,835).。

2012年中考数学模拟试题及答案详解

2012年中考数学模拟试题及答案详解

2012年中考数学模拟试题及答案详解注意事项:1.本试卷共8页,三大题,满分120分,考试时间120分钟.2. 第Ⅰ卷上选择题和填空题在第Ⅱ卷的答题栏上答题,在第Ⅰ卷上答题无效.第Ⅰ卷一、选择题(每小题3 分,共24分)1.下列计算中,正确的是A.2x+3y=5xyB.x·x4=x4C.x8÷x2=x4D.(x2y)3=x6y32.如图是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是3.平面直角坐标系中,某点在第二象限且它的横坐标、纵坐标之和为2,则该点的坐标是A.(-1,2) B.(-1,3)C.(4,-2) D.(0,2)4.如图,有反比例函数,的图象和一个圆,则图中阴影部分的面积是A. B.2C.4 D.条件不足,无法求5.正比例函数的图象经过第二、四象限,若同时满足方程,则此方程的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.当五个数从小到大排列后,其中位数是4,如果这组数据唯一的众数是6,那么这5个数可能的最大和是( )A.21 B.22 C.23 D.247.如图,在△ABC中,AC=,则AB等于A.4 B.5C.6 D.78. A是半径为5的⊙O内的一点,且OA=3,则过点A且长小于10的整数弦的条数是A.1条B.2条C.3条D.4条二、填空题(每空3分,共18分)9.分解因式2x2-4xy +2y2= .10.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= .第10题图第11题图第13题图11.如图是由8块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,尉蚂蚁停留在黑色瓷砖上的概率是 .12.关于x的分式方程有增根x=-2,则k的值是 . 13.如图,B是线段AC的中点,过点C的直线l与AC成600的角,在直线上取一点P,使∠APB=300,则满足条件的点P有 个.14.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3),B(4,-1).若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=____时,四边形ABDC的周长最短.请把第Ⅰ卷选择题答案填在下面相对应的位置上题号12345678答案9. ;10. ; 11. ;12. ;13. ; 14. .第Ⅱ卷三、解答题:15.(5分)计算:16.(5分)17.(5分)先化简,再求值:,其中(tan45°-cos30°)18.( 6分)用四块如图①所示的正方形瓷砖拼成一个新的正方形,使拼成的图案是一个轴对称图形。

2012年数学中考模拟试题及答案

2012年数学中考模拟试题及答案

2012年数学中考模拟试题及答案亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光。

(本试卷总分130)一.填空题:(本大题共13题,每小题3分,共39分)1.-6的绝对值是 ;8的平方根是 ;-1的相反数是 。

2.“世界银行全球扶贫大会”于2004年5月26日在上海开幕.从会上获知,我国国民生产总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示应为 亿元。

3.分解因式:=-x x 823。

4.函数xy +=51中,自变量x 的取值范围是 。

5.一个口袋中装有4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出1个球是白球的概率是__________ 。

6.二次函数562-+-=x x y ,对称轴是__________________。

7.如图,正方形的面积是144,则阴影部分面积的小正方形边长是 。

8. 已知点P (-3,2),点A 与点P 关于y 轴对称,则点A 的坐标是_________。

9.某班初二年级甲、乙两班举行电脑汉字输入速度比赛,两个班参加比赛的学生每分钟有一位同学根据上表得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀的人数比甲班优秀的人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大。

上述结果正确的是__________________(填序号)。

10.如右图:AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E , 如果AB =12cm ,CD =8cm ,那么AE 的长为 11. 函数111x k y =的图象通过P (2,3)点,且与函数2y 的图象关于y 轴对称,那么它们的解析式y 1= ,y 212. 右图描述的是李平同学放学回家过程中,离校的路程与所用时间之间的函数关系。

请你设计一个问题,让其他同学通过观察图象能回答你所提的问题。

(注意:提出的问题要尽量贴近生活:不需要在图中添加数字或其余字母)你设计的问题是 。

2012年中考数学模拟试卷

2012年中考数学模拟试卷

2012年中考数学模拟试卷(总分150分,时间120分钟)一、选择题(本大题共有8小题,每小题3分,共24分)1.51-的相反数是 ( ) A . 51 B . 51- C . 5 D .5- 2.有理数a 、b 在数轴上的位置如图所示,则b a +的值 ( ) A .大于0 B .小于0C .小于aD .大于b 3.下列运算中正确的是 ( )A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+4. 两个相似三角形的面积比是9:16,则这两个三角形的相似比是 ( )A .9:16B . 3:4C .9:4D .3:165.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°6.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是 ( )A .32 cmB .3cmC .332 cm D .1cm7.如图是某几何体的三视图及相关数据,则该几何体的侧面积是 ( )A .πab 21B .πac 21 C .πab D .πac 8.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是 ( )A .38B .52C .66D .74二、填空题(本大题共有10小题,每小题3分,共30分)9.计算3)2(-等于 .10.使2-x 有意义的x 的取值范围是 .11.自上海世博会开幕以来,中国馆以其独特的造型吸引 了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是 .12.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元.下列所列方程中正确的是13.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是 . 0 2 8 4 2 4 6 22 4 6 8 44主视图左视图俯视图14.若22=-b a ,则b a 486-+= .15.从1-9这九年自然数中任取一个,是2的倍数的概率是 .16.如图,AB 是⊙O 的直径,CD 是弦,DAB ∠=48︒,则ACD ∠= ︒.17.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB=,则下底BC 的长为 __________.18.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为三、解答题(本大题共有10小题,共96分)19.(本题满分8分)计算:(1)计算:(-1)2010-| -7 |+ 9 ×( 5 -π)0+( 1 5 )-1(2).化简:aa a a a -+-÷--2244)111(20.(本题满分8分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间 1小时的扇形圆心角的度数;(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少.21.(本题满分8分)有三张背面完全相同的卡片,它们的正面分别写上2、3、12,把它们的背面朝上洗匀后;小丽先从中抽取一张,然后小明从余下..的卡片中再抽取一张. (1)直接写出小丽取出的卡片恰好是3的概率;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你60°30°D CB AD C B A O E认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.22.(本题满分8分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.23.(本题满分10分)如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由;(2)若AB =6,BC =8,求四边形OCED 的面积.24.(本题满分10分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)25.(本题满分10分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (—1,0)、C (0,—3)两点,与x 轴交于另一点B .(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.F E C BAB'C'26.(本题满分10分)如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F .(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.27.(本题满分12分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y 与时间x 的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)28.(本题满分12分)已知⊙O 1的半径为R ,周长为C . (1)在⊙O 1内任意作三条弦,其长分别是1l 、2l 、3l .求证:1l +2l +3l < C ;(2)如图,在直角坐标系x O y 中,设⊙O 1的圆心为O 1)(R R ,.①当直线l :)0(>+=b b x y 与⊙O 1相切时,求b 的值;②当反比例函数)0(>=k k y 的图象与⊙O 1有两个交点时,求k 的取值范围.。

2012年中考数学模拟试卷

2012年中考数学模拟试卷

2012年中考数学模拟试卷一. 选择题(共30分,每小题3分)1.12-的倒数是( ). A.2 B .2- C .12 D .12-2.1978年,我国国内生产总值是3 645亿元,2007年升至249 530亿元.将249 530亿元用科学记数表示为( ). A .1324.95310⨯元 B .1224.95310⨯元 C .132.495310⨯元 D .142.495310⨯元3.图中圆与圆之间不同的位置关系有( ). A .2种 B .3种 C .4种 D .5种 4.王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是( ). A .2.4,2.5 B .2.4,2 C .2.5,2.5 D .2.5,2 5.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ). A .(1,2) B .(1-,2-) C .(2,1-) D .(1,2-)6.如果点(12)P m m -,在第四象限,那么m 的取值范围是( ). A .102m <<B .102m -<<C .0m <D .12m > 7.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ). A .1.5 B .2 C .3 D .68.化简2b aa a ab ⎛⎫- ⎪-⎝⎭的结果是( ).A .a b -B .a b +C .1a b -D .1a b+9.如图,9030AOB B ∠=∠=°,°,A OB ''△可以看作是由AOB △绕点O 顺时针旋转α角度得到的.若点A '在AB 上,则旋转角α的大小可以是( ).A .30°B .45°C .60°D .90°10.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与轴().(第3题图)120°(第7题图)AOBA 'B '(第9题图)y… 1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点二.选择题(共18分,每小题3分)11.如图,AB CD ∥,直线EF 分别交AB CD 、于点E F 、, 147∠=°,则2∠的大小是__________. 12.若1122()()A x y B x y ,,,是双曲线3y x=上的两点, 且120x x >>,则12_______y y {填“>”、“=”、“<”}.13、如图在△ABC 中D 是AB 边上一点,连接CD ,要使△ADC 与△ABC 相似,应添加的条件是14、如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时最深为 米15、已知A (x 1,y 2),B(x 2,y 2)都在6y x=图像上。

2012年中考数学模拟试题

2012年中考数学模拟试题

POB AC D2012年中考数学模拟试题一、选择题1.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )2.单词NAME 的四个字母中,是中心对称图形的是( ) A .N B .A C.M D .E3.在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为 ( ) A.161 B. 16π C. 41 D. 4π 4.如图,⊙O 中,弦AB 、CD 相交于点P , 若30A ∠=︒,70APD ∠=︒, 则B ∠等于( )A .30°B .35°C .40°D .50°5.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小华已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A .方差B .极差C . 中位数D .平均数6.如图,过y 轴上一个动点M 作x 轴的平行线,交双曲线xy 4-=于点A ,交双曲线 xy 10=于点B ,点C 、点D 在x 轴上运动,且始终保持DC=AB ,则平行四边形ABCD 的面积是( )A .7B .10C .14D .287.下列四个三角形,与左图中的三角形相似的是( )8. 如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD =12 m ,塔影长DE =18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )A .24mB .22mC .20 mD .18 m9.如图,△ABC 被一个矩形所截,矩形的一条边与AB 、AC 分别交于点D 、E ,另一条边与BC 在同一条直线上.如果点D 恰为AB 的三等分点,那么图中阴影部分面积是A .B .C. D . (第4题图)正面(第1题图)A .B .C .D .第8题图(第1图)△ABC 面积的 A .31 B .91 C . 94D .9510、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏. 游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖. 参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻). 某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A.14B.15C.16D.32011. 为了判断甲乙两组学生英语口语测试成绩哪一组比较整齐,通常需要知道这两组成成绩的 ( ) A.平均数 B.方差 C.众数 D.中位数 12、设532x-=,则代数式(1)(2)(3)x x x x +++的值为( )A .0B .1C .-1D .2二、填空题1.如图,在Rt △ABC 中,∠C =90°, AM 是BC 边上的中线,53sin =∠CAM ,则B ∠tan 的值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考模拟试卷数学卷考生须知:1. 本试卷满分120分, 考试时间100分钟.2. 答题前, 在答题纸上写姓名和准考证号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.4. 考试结束后, 试题卷和答题纸一并上交.试 题 卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可用多种不同方法来选取正确答案.1.如图,数轴上点A 所表示的数的倒数是( ▲ )A . 2-B . 2C .12 D .12- 2.化简()2222a a --(a ≠0)的结果是( ▲ )A. 0B. 22a C. 24a - D. 26a - 3.下列判断正确的是( ▲ )A. “打开电视机,正在播NBA 篮球赛”是必然事件B. “掷一枚硬币正面朝上的概率是21”表示每抛掷硬币2次就必有1次反面朝上 C. 一组数据2,3,4,5,5,6的众数和中位数都是5 D. 甲组数据的方差S 甲2=0.24,乙组数据的方差S乙2=0.03,则乙组数据比甲组数据稳定4.直角三角形两直角边和为7,面积为6,则斜边长为( ▲ )A. 5B.C. 7D.5.下列图形中,既是轴对称图形,又是中心对称图形的是( ▲ )A. B. C. D.第1题第9题6.已知()0332=++++m y x x 中,y 为负数,则m 的取值范围是( ▲ )A. m >9B. m <9C. m >-9D. m <-97.一个圆锥,它的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角度数是( ▲ )A. 60°B. 90°C. 120°D. 180°8.一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( ▲ ) A. 甲或乙或丙 B. 乙 C. 丙 D. 乙或丙 9.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是( ▲ ) A .12 B .2 C .52 D .5510.如图,在矩形ABCD 中,BC=8,AB=6,经过点B 和点D 的两个动圆均与AC 相切,且与AB 、BC 、AD 、DC 分别交于点G 、H 、E 、F ,则EF+GH 的最小值是( ▲ )A .6B .8C .9.6D .10二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11. 已知点A (1,k -+2)在双曲线ky x=上.则k 的值为 . 12. 如图,已知OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB =40°,则∠OBD = ▲ 度. 13. “五·一”假期,某公司组织全体员工分别到西湖、动漫节、宋城旅游,购买前往各地的车票种类、数量如图所示.若公司决定采用随机抽取的方式把车票分配给员工,则员工小王抽到去动漫节车票的概率为 ▲ .14. 如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是 ▲ 米.AGBH CFDE第10题ACA BCDEO 第15题15. 如图,在半圆O 中,直径AE=10,四边形ABCD 是平行四边形,且顶点A 、B 、C 在半圆上,点D 在直径AE 上,连接CE ,若AD=8,则CE 长为 .16. 如图,在第一象限内作射线OC ,与x 轴的夹角为30o ,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H .在抛物线y=x2(x >0)上取点P ,在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是 .三. 全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17. (本小题满分6分)在下面三小题中任选其中两小题.......完成 (1)已知2=+b a ,求代数式b b a 422+-的值;(2)分解因式 (3)已知 ,求分式 的值18.(本小题满分6分)解不等式组:3265212x x x x -<+⎧⎪⎨-+>⎪⎩,并把解集在数轴上表示出来.第16题32=yx 3224-a19. (本小题满分6分)如图, CD 切⊙O 于点D ,连结OC , 交⊙O于点B ,过点B 作弦AB ⊥OD ,点E 为垂足,已知⊙O 的半径为10,sin ∠COD=54.求:(1)弦AB 的长; (2)CD 的长; 20. (本小题满分8分)已知正比例函数x a y )3(1+=(a <0)与反比例函数xa y 32-=的图象有两个公共点,其中一个公共点的纵坐标为4. (1)求这两个函数的解析式;(2)在坐标系中画出它们的图象(可不列表); (3)利用图像直接写出当x 取何值时,21y y >. 21. (本小题满分8分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在哪个月的销售量最大? ▲ 月份;(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?(3)若乙品牌电脑一月份比甲品牌电脑一月份多销售42台,那么三月份乙品牌电脑比ABCO E D 第19题甲品牌电脑多销售(少销售)多少台?22. (本小题满分10分)如图1,点P 、Q 分别是边长为4cm 的等边∆ABC 边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s ,(1)连接AQ 、CP 交于点M ,则在P 、Q 运动的过程中,∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数; (2)何时∆PBQ 是直角三角形?(3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数;23.(本小题满分10分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告。

已知这种商品每月的广告费用m (千元)与销售量倍数p 关系为p = m m 24.02+- ;试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!24. (本小题满分12分)如图,在平面直角坐标系xoy 中,矩形ABCD 的边AB 在x 轴上,且AB=3,BC=32,直线y=323-x 经过点C ,交y 轴于点G 。

(1)点C 、D 的坐标分别是C ( ),D ( ); (2)求顶点在直线y=323-x 上且经过点C 、D 的抛物线的解析式;A PBQCM第22题图1APBQCM第22题图2y(3)将(2)中的抛物线沿直线y=323 x 平移,平移后的抛物线交y 轴于点F ,顶点为点E (顶点在y 轴右侧)。

平移后是否存在这样的抛物线,使⊿EFG 为等腰三角形? 若存在,请求出此时抛物线的解析式;若不存在,请说 明理由。

城关中学2011年中考模拟试卷数学答题卷考生须知:5. 本试卷满分120分, 考试时间100分钟.6. 答题前, 在答题纸上写姓名和准考证号.7. 必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.8. 考试结束后, 试题卷和答题纸一并上交.试 题 卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可用多种不同方法来选取正确答案.二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11._______ _____; 12.______ _______; 13.____ ____________; 14.______________; 15._______ ______; 16._____________ ________ . 三. 全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17.(本题6分)题号1 2 3 4 5 6 7 8 9 10 答案18.(本题6分) 19.(本题6分)20.(本题8分)21.(本题8分)(1)(2)(3)22.(本题10分) (1)A BCOED第19题A(2)(3)23.(本题10分)24.(本题12分) (1)C ( ), D ( ); (2)(3)OxABCyDGoAPBQCM 第22题图22011年中考模拟试卷数学卷参考答案及评分标准考生须知:9. 本试卷满分120分, 考试时间100分钟. 10. 答题前, 在答题纸上写姓名和准考证号.11. 必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.12. 考试结束后, 试题卷和答题纸一并上交.试 题 卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分) 题号 12345678910答案D B D A C A D B B C二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11. 1 12. 50 13.2114. 8 15. 10 16. (33,31)(332,32)(3,3)(23,2) (对一个得1分) 三. 全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分) (1)2=+b ab b a b a b b a 4))((422++-=+-∴b b a b b a 4224)(2+-=+-= 422)(222=⨯=+=+=b a b a (2))16(232244-=-a a)4)(4(222-+=a a )2)(2)(4(22+-+=a a a …… 1′…… 1′ …… 1′…… 1′…… 1′ …… 1′(3)32=y x,不妨设k y k x 3,2== 81623422=+-=+-∴k k k k y x y x 18. (本小题满分6分)解:由(1)得:4<x由(2)得:0>x不等式组的解为:40<<x 在数轴上表示为:19. (本小题满分6分)(1)OD AB ⊥ BBECOD BE AB 0sin ,2=∠=∴ 16,85410=∴=⨯=∴AB BE (2)∵CD 切⊙O 于D ,∴OD CD ⊥ ∴54sin ==∠OC CD COD ,不妨设k CD 4=,则k OD k CO 3,5== ∴310,103===k k OD ∴3404==k CD 20. (本小题满分8分) (1) ∵交点纵坐标为4,∴⎩⎨⎧=-=+xa x a 434)3(,解得5,521=-=a a (舍去) ∴正比例函数:x y 2-=反比例函数:xy 8-= (2)(3)当202<<-<x x 或时,21y y > 21. (本小题满分8分)-1 2 0 41 3 -2 4-42(2,-4)(-2,4)…… 1′ …… 2′…… 2′…… 2′…… 1′ …… 1′…… 2′…… 1′…… 2′…… 1′…… 2′…… 2′…… 2′…… 2′…… 1′(1)二(2)二月份共销售乙品牌电脑:()150%3050120180150=⨯+++ (台)(3)三月份乙品牌电脑比甲品牌电脑多销售: 108120%38%32)42150(=-⨯÷+(台)22. (本小题满分10分)(1)060=∠CMQ 不变。

相关文档
最新文档