机械振动习题课
机械振动基础课后习题解答_第3章习题
m
0
0 m
u1 u2
3k k
k 3k
u1 u2
2ku0
sin 0
t
K
2M
3k
2m
k
k
3k 2m
H11 ( )
3k 2m ()
H 21 ( )
k ()
u1(t) u2 (t)
H11 ( ) H21()
2ku0
sin
t
3k 为反共振频率 m
P140,3-9: 图示系统初始静止,求左端基础产生阶跃位移u0后系统的响应。
ml2 1 0 M 3 0 7 /16
K
l2k 16
9 9
9
13
| K 2M | 0
1 0.65
k m
2 2.62
k m
P139,3-3: 建立图示系统的运动微分方程,并求当ki k,i 1, 6, m1 m, m2 2m, m3 m时的固有 频率和固有振型。
m1
M
m2
u2
c
3c
2c
u2
k
3k
2k
u2
0
m u3 0 2c 2c u3 0 2k 2k u3 f0
1 0,2
k m
, 3
2k m
1 1 1
φ1
1 , φ2
0
, φ3
1
1
1/ 2
1
u1 1
u2
1
u3 1
1 0 1/ 2
1 q1
1
q2
1 q3
)d
u0 2
(1 cos1t)
q2
(t)
u0 2
(1
cos 2t )
大学物理(第四版)课后习题及答案 机械振动
大学物理(第四版)课后习题及答案机械振动13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m,周期T=1.0s,初相ϕ=3π/4。
试写出它的运动方程,并做出x--t图、v--t 图和a--t图。
13-1分析弹簧振子的振动是简谐运动。
振幅A、初相ϕ、角频率ω是简谐运动方程x=Acos(ωt+ϕ)的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A、ϕ已知外,ω可通过关系式ω=2π确定。
振子运动的速度T和加速度的计算仍与质点运动学中的计算方法相同。
解因ω=2π,则运动方程 T⎛2πt⎛x=Acos(ωt+ϕ)=Acos t+ϕ⎛⎛T⎛根据题中给出的数据得x=(2.0⨯10-2m)cos[(2πs-1)t+0.75π]振子的速度和加速度分别为v=dx/dt=-(4π⨯10-2m⋅s-1)sin[(2πs-1)t+0.75π] a=d2x/dt2=-(8π2⨯10-2m⋅s-1)cos[(2πs-1)t+0.75πx-t、v-t及a-t图如图13-l所示π⎛⎛13-2 若简谐运动方程为x=(0.01m)cos⎛(20πs-1)t+⎛,求:(1)振幅、频率、角频率、周期和4⎛⎛初相;(2)t=2s 时的位移、速度和加速度。
13-2分析可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式x=Acos(ωt+ϕ)作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t值后,即可求得结果。
解(l)将x=(0.10m)cos[(20πs-1)t+0.25π]与x=Acos(ωt+ϕ)比较后可得:振幅A= 0.10 m,角频率ω=20πs-1,初相ϕ=0.25π,则周期T=2π/ω=0.1s,频率ν=1/T=10Hz。
(2)t= 2s时的位移、速度、加速度分别为x=(0.10m)cos(40π+0.25π)=7.07⨯10-2m v=dx/dt=-(2πm⋅s-1)sin(40π+0.25π)a=d2x/dt2=-(40π2m⋅s-2)cos(40π+0.25π)13-3 设地球是一个半径为R的均匀球体,密度ρ5.5×103kg•m。
机械振动_机械波课后习题
习题5 •机械振动5.1选择题(1) 一物体作简谐振动,振动方程为x=Acos(,t ),则该物体在t=0时刻2的动能与t二T/8(T为振动周期)时刻的动能之比为:(A) 1: 4 ( B) 1:2 (C) 1:1 (D) 2:1(2) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA2(B) kA2/2(C) kA2//4(D)0(3)谐振动过程中,动能和势能相等的位置的位移等于(A),4(C) 一3A2(B)冷(D) - 2A5.2填空题(1) 一质点在X轴上作简谐振动,振幅A = 4cm,周期T = 2s,其平衡位置取作坐标原点。
若t= 0时质点第一次通过x = —2cm处且向X轴负方向运动,则质点第二次通过x= —2cm处的时刻为___ So(2) —水平弹簧简谐振子的振动曲线如题 5.2(2图所示。
振子在位移为零,速度为—呱、加速度为零和弹性力为零的状态,对应于曲线上的______________ 点。
振子处在位移的绝对值为A、速度为零、加速度为--2A和弹性力为-KA的状态,则对应曲线上的_____________ 点。
题5.2(2)图(3) —质点沿x轴作简谐振动,振动范围的中心点为x轴的原点,已知周期为T,振幅为A。
(a) 若t=0时质点过x=0处且朝x轴正方向运动,则振动方程为x= __________________ 。
(b) 若t=0时质点过x=A/2处且朝x轴负方向运动,则振动方程为x= ________________ 。
5.3符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:⑴拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题5.3图题5.3图(b)5.4弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?5.5单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?5.6简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大?5.7质量为10 10:kg的小球与轻弹簧组成的系统,按x = 0.1cos(8t,空)(SI)的规律3作谐振动,求:(1) 振动的周期、振幅和初位相及速度与加速度的最大值;(2) 最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?⑶t2 =5S与t1 =1s两个时刻的位相差;5.8 一个沿x轴作简谐振动的弹簧振子,振幅为A,周期为T,其振动方程用余弦函数表示•如果t =0时质点的状态分别是:(1) x o = -A ;(2) 过平衡位置向正向运动;A(3) 过x二一处向负向运动;2A(4) 过x A处向正向运动.V2试求出相应的初位相,并写出振动方程.5.9 —质量为10 10^kg的物体作谐振动,振幅为24cm,周期为4.0s,当t =0时位移为24cm .求:(1) t =0.5s时,物体所在的位置及此时所受力的大小和方向;(2) 由起始位置运动到x = 12cm处所需的最短时间;(3) 在x =12cm处物体的总能量.5.10有一轻弹簧,下面悬挂质量为1.0g的物体时,伸长为4.9cm .用这个弹簧和一个质量为8.0g的小球构成弹簧振子,将小球由平衡位置向下拉开 1.0cm后,给予向上的初速度V。
机械振动课后习题集和规范标准答案第三章习题集和标准答案
3.1 如图所示扭转系统。
设12122;t t I I k k ==1.写出系统的刚度矩阵和质量矩阵;2.写出系统的频率方程并求出固有频率和振型,画出振型图。
解:1)以静平衡位置为原点,设12,I I 的转角12,θθ为广义坐标,画出12,I I 隔离体,根据牛顿第二定律得到运动微分方程:111121222221()0()0t t t I k k I k θθθθθθθ⎧++-=⎪⎨+-=⎪⎩&&&&,即:1112122222122()00t t t t t I k k k I k k θθθθθθ⎧++-=⎪⎨-+=⎪⎩&&&&所以:[][]12212220,0t t t t t k k k IM K k k I +-⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦系统运动微分方程可写为:[][]11220M K θθθθ⎧⎫⎧⎫⎪⎪+=⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭&&&& ………… (a)或者采用能量法:系统的动能和势能分别为θθ=+&&2211221122T E I Iθθθθθθθ=+-=++-222211212121221121111()()2222t t t t t t U k k k k k k 求偏导也可以得到[][],M K由于12122;t t I I k k ==,所以[][]212021,0111t M I K k -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦2)设系统固有振动的解为: 1122cos u t u θωθ⎧⎫⎧⎫=⎨⎬⎨⎬⎩⎭⎩⎭,代入(a )可得:[][]122()0u K M u ω⎧⎫-=⎨⎬⎩⎭………… (b)得到频率方程:22121211222()0t t t t k I k k k I ωωω--==--V即:224222121()240t t I k I k ωωω=-+=V解得:211,222(22t k I ω±==所以:1ω=<2ω= ………… (c)将(c )代入(b )可得:112121211122(22220(22t t t t t t k k I k I u u k k k I I ⎡⎤±--⎢⎥⎧⎫⎢⎥=⎨⎬⎢⎥⎩⎭⎢⎥--⎢⎥⎣⎦g g g解得:11212u u =-;12222u u = 令21u =,得到系统的振型为:-0.70710.70713.2 求图所示系统的固有频率和振型。
习题课
机械振动与机械波习题课
y 在 = 0 , = 0处 有 = 0和 t 时 x , y 0 t 得 =
B点(x=λ/2)的振动方程为 点 的振动方程为: 的振动方程为
3 x 3 y = 2Acos(2π π ) cos(ωt π +) λ 4 4
π
4
3 λ/2 3 π y = 2Acos(2π π ) cos(ωt π + ) λ 4 4 4 = 2Asin ωt
哈尔滨工程大学理学院
k = 0,1,2,L L k = 0,1,2,L L
机械振动与机械波习题课
± kλ r = r1 r2 = λ ± (2k +1) 2
k = 0,1,2L L k = 0,1,2L L
(4)驻波:振幅相等,传播方向相反的相干波相互 )驻波:振幅相等, 迭加而产生的波. 迭加而产生的波. (5)多普勒效应 :由于波源或观测者相对于媒质的 )多普勒效应: 运动, 而使观测者接受到的频率有所变化的现象. 运动 , 而使观测者接受到的频率有所变化的现象 .
哈尔滨工程大学理学院
机械振动与机械波习题课 解:力矩平衡NAd=Mg(d/2-x) 力矩平衡 NBd=Mg(d/2+x) F=fA-fB= NA-NB= - 2Mgx/d=Ma
y NA fA O Mg A
哈尔滨工程大学理学院
NB fB x
B
d T = 2π = 0.9s 2g
机械振动与机械波习题课 4,如图所示,两相干波源 1和S2的距离为 =30m,S1 ,如图所示,两相干波源S 的距离为d , 都在x 坐标轴上, 位于坐标原点O,设由 设由S 和S2都在 坐标轴上,S1位于坐标原点 设由 1和S2分 别发出的两列波沿x轴传播时 强度保持不变.x 轴传播时, 别发出的两列波沿 轴传播时,强度保持不变 1 = 9m 和x2 = 12m 处的两点是相邻的两个因干涉而静止的点, 处的两点是相邻的两个因干涉而静止的点, 求两波的波长和两波源间最小位相差.. 求两波的波长和两波源间最小位相差 .
大学物理(第四版)课后习题与答案_机械振动
13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相ϕ=3π/4。
试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。
13-1分析 弹簧振子的振动是简谐运动。
振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。
13-2分析 可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。
解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。
(2)t= 2s 时的位移、速度、加速度分别为m m x 21007.7)25.040cos()10.0(-⨯=+=ππ )25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。
机械振动与波习题课(1)
yP = Acos(ωt +ϕ)
(1)分别就图中的两种坐标写出其波动方程 ) 点为b的 点的振动方程 (2)写出距 点为 的Q点的振动方程 )写出距P点为 Y Y
l b b
O
P u
Q
X
O P
Q
X
原点的振动方程
u 原点的振动方程
l yO = Acos[ω(t + ) +ϕ] u
波动方程
yO = Acos(ωt +ϕ)
机械振动与波习题课
一、机械振动小结
1.简谐运动的特征与规律 简谐运动的特征与规律 A. 动力学特征: 动力学特征: B.运动学特征: 运动学特征: 运动学特征 C.规律: 规律: 规律
2.描写简谐运动的基本物理量及其关系 描写简谐运动的基本物理量及其关系 A.振幅: A 振幅: 振幅 B.角频率、频率和周期: 角频率、频率和周期: 角频率 C.初相位: 初相位: 初相位 由系统决定角频率: 由系统决定角频率: 由初始条件确定 A和 和
y(m)
0.5 -
ω = 2 πν = 2 π
.P 1 2
u
π
O
cos(
x(m)
π
2
λ
=
π
2
( s −1 )
t + ϕ 0 ) = cos(
2
× 2 + ϕ0 ) = 0
t = 2, v 0 > 0
3π π +ϕ0 = , 2 2
π
ϕ0 =
π
2
2.一平面简谐波沿 轴负向传播,波长为λ,P点处质点 一平面简谐波沿X轴负向传播 波长为λ 一平面简谐波沿 轴负向传播, 点处质点 的振动规律如图 (1)求出 处质点的振动方程 )求出P处质点的振动方程 (2)求此波的波动方程 ) (3)若图中 λ/2,求O处质点的振动方程 )若图中d=λ , 处质点的振动方程
机械振动 课后习题和答案 第三章 习题和答案
3.1 如图所示扭转系统。
设12122;t t I I k k ==1.写出系统的刚度矩阵和质量矩阵;2.写出系统的频率方程并求出固有频率和振型,画出振型图。
解:1)以静平衡位置为原点,设12,I I 的转角12,θθ为广义坐标,画出12,I I 隔离体,根据牛顿第二定律得到运动微分方程:111121222221()0()0t t t I k k I k θθθθθθθ⎧++-=⎪⎨+-=⎪⎩ ,即:1112122222122()00t t t t t I k k k I k k θθθθθθ⎧++-=⎪⎨-+=⎪⎩所以:[][]12212220,0t t t t t k k k I M K k k I +-⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦系统运动微分方程可写为:[][]11220M K θθθθ⎧⎫⎧⎫⎪⎪+=⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭………… (a)或者采用能量法:系统的动能和势能分别为θθ=+2211221122T E I I θθθθθθθ=+-=++-222211212121221121111()()2222t t t t t t U k k k k k k求偏导也可以得到[][],M K由于12122;t t I I k k ==,所以[][]212021,0111t M I K k -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦2)设系统固有振动的解为: 1122cos u t u θωθ⎧⎫⎧⎫=⎨⎬⎨⎬⎩⎭⎩⎭,代入(a )可得:[][]122()0u K M u ω⎧⎫-=⎨⎬⎩⎭………… (b)得到频率方程:22121211222()0t t t t k I k k k I ωωω--==--即:224222121()240t t I k I k ωωω=-+=解得:21,222ω==所以:1ω=2ω= ………… (c)将(c )代入(b )可得:112121211122(22220(22t t t t t t k k I k I u u k k k I I ⎡⎤±--⎢⎥⎧⎫⎢⎥=⎨⎬⎢⎥⎩⎭⎢⎥--⎢⎥⎣⎦解得:11212u u =-;12222u u =令21u ,得到系统的振型为:-0.70710.70713.2 求图所示系统的固有频率和振型。
胡海岩+机械振动基础课后习题解答--第1章习题
n2 B0 (n2 2 )2 (2n)2
系统的阻尼比 c 2.4103 0.4 2 mk 2 1009104
其中:B0
f0 k
(1) 求当=n时的稳态振幅Bd
Bd
B0 2
f0 2 k
90 2 0.4 9104
1.25103(m)
(2) 求振幅具有最大值时的激振频率
(n )2 4 2n
由以上各式得到:keq
(a b)2 a2 b2
k2 k1
k1x1 x1
a
bx1 ax2 ab
k 2 x2
o
x2
b f
P57.1-7: 图中简支梁长l 4m, 抗弯刚度EI 1.96106 Nm2, 且k 4.9105 N/m, m 400kg。 分别求图示两种系统的固有频率。
w
F F/2
第一章习题
P57.1-1: 一物体作简谐振动, 当它通过距平衡位置为0.05m, 0.1m处时的速度分别为0.2m/s和0.08m/s。 求其振动周期、振幅和最大速度。
u(t) a sin(t ) u(t) a cos(t )
两边平方,相加
代入已知条件
[a2 u2 (t)]2 u2 (t)
(ml2 2ml2 ) k l2 mgl 4
n
kl 4mg 12ml
P58.1-12: 图示摆,其转轴与铅垂方向成角,摆长l,质量不计。求摆动固有频率。 ml2 mg sin( )l sin
ml2 mg sin( )l sin 0
很小,sin
ml2 mg sin( )l 0
动周期为T2, 液体阻尼力可表示为fd 2 Au, 其中2 A为板的面积,为粘性系数,u为板
运动的速度。求证: 2 m AT1T2
机械振动试题
机械振动试题一、选择题1. 下列关于机械振动的说法中,正确的是:A. 机械振动只存在于弹簧系统中B. 机械振动只存在于质点系统中C. 机械振动既存在于弹簧系统中,也存在于质点系统中D. 机械振动只存在于液体中2. 以下哪个现象不属于机械振动的特征:A. 周期性B. 振动幅度相等C. 能量交换D. 机械振动的振幅随时间变化3. 关于自由振动和受迫振动的说法,正确的是:A. 自由振动需要外力驱动B. 受迫振动不需要外力驱动C. 自由振动和受迫振动都需要外力驱动D. 自由振动和受迫振动都不需要外力驱动4. 振动系统的自然频率与以下哪个因素无关:A. 系统的刚度B. 系统的阻尼C. 系统的质量D. 系统所受的外力5. 下面哪种振动现象是产生共振的原因:A. 外力频率与振动系统自然频率相同B. 外力频率与振动系统自然频率不同C. 外力频率与振动系统自然频率较大差异D. 外力频率与振动系统自然频率较小差异二、简答题1. 什么是机械振动?机械振动是物体围绕平衡位置做周期性的往复运动。
它有着特定的振动频率和振幅,是一种具有周期性和能量交换的运动形式。
2. 机械振动有哪些特征?机械振动具有周期性、振幅相等、能量交换和振幅随时间变化等特征。
周期性表示机械振动运动形式的重复性;振幅相等表示振动系统在每个周期内的振动幅度相等;能量交换表示振动系统的能量在正、反向振动过程中的转化与交换;振幅随时间变化表示振动幅度随着时间的推移而发生变化。
3. 什么是自由振动和受迫振动?自由振动是指机械振动系统受到初位移或初速度激发后,在无外力驱动的情况下进行的振动。
受迫振动是指机械振动系统受到外力周期性激励后产生的振动。
4. 什么是共振现象?共振现象是指当外力的频率与振动系统的自然频率相同时,产生的振幅迅速增大的现象。
在共振状态下,系统振幅可能会无限增大,从而引起系统的损坏甚至破坏。
5. 如何减小机械振动的共振现象?减小机械振动的共振现象可以通过以下几种方法来实现:- 调整外力的频率,使其与振动系统的自然频率有所偏离,避免共振;- 增加阻尼,通过增加振动系统的阻尼来消耗振动能量,减小共振现象;- 改变振动系统的刚度和质量,使其自然频率与外力频率有所偏离,从而减少共振。
机械振动·机械波课后习题
习题5·机械振动选择题(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时刻的动能与8/T t =(T 为振动周期)时刻的动能之比为:(A)1:4 (B )1:2 (C )1:1 (D) 2:1(2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA 2 (B) kA 2/2(C)kA 24A ±2A ±23A ±22A ±kg 10103-⨯20.1cos(8)(SI)3x t ππ=+s 52=t s 11=t x AT 0=t A x -=02A x =2A x -=kg 10103-⨯cm 24s 0.40=t cm 24+s 5.0=t cm 12=x cm 12=x g 0.1cm 9.4g 0.8cm 0.1s /cm 0.50=v t x -k M m h m0.1=l kg 10103-⨯=m s /m kg 100.14⋅⨯=∆-t F )0(=t m 20.06πm 173.0⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x ⎪⎩⎪⎨⎧+=+=cm )343cos(5cm )33cos(521ππt x t x x cm 2cos 6t x π=y (B)它的势能转化为动能.(C)它从相邻的一段质元获得能量其能量逐渐增大.(D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.(2) 某时刻驻波波形曲线如图所示,则a,b 两点位相差是(A)π (B)π/2(C)5π/4 (D)0(3) 设声波在媒质中的传播速度为u,声源的频率为v s .若声源S不动,而接收器R相对于媒质以速度V B 沿着S、R连线向着声源S运动,则位于S、R连线中点的质点P的振动频率为(A)s v (B)s B v uV u + (C)s Bv V u u + (D) s B v V u u - 填空题 (1)频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距____m 。
(完整版)大学机械振动课后习题和答案(1~4章总汇)
1.1 试举出振动设计、系统识别和环境预测的实例。
1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为1t k ,2t k 。
解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。
机械振动基础课后习题解答_第2章习题
0.5
1
1
1
1 1/ 3
u1 (t ) u2 (t)
8 4
/ /
9 9
cos(
k 2m
)t
1/9 1/ 9
cos(
2k )t m
(3) 求结构的稳态响应
m1u1(t) k1(u1(t) u2 (t)) m2u2 (t) k1(u1(t) u2 (t)) k2 (u2 (t) v(t))
0 0
(K 2M)φ 0
1
1
2 2
k J
,
2
1
2k 2 J
1 1
φ1
1/
2
,
φ2
1/
2
P88,2-6: 不计刚杆质量,按图示坐标建立运动微分方程,并求出固有频率和固有振型。
系统动能:T
1 2
mu12
1 2
2mu22
系统势能:U
1 2
k (2u1
u2 )2
1 2
k (2u2
P87,2-1: 图示用于风洞试验的翼型剖面由拉伸弹簧k1和扭转弹簧k2支承着,剖面重心G到支承点 的距离为e, 剖面绕重心的转动惯量为J0,试建立系统运动微分方程。
动能:T
1 2
m(h e )2
1 2
J0 2
势能:U
1 2
k1h2
1 2
k2 2
m me
J0
me me2
h
k1
0
(e 0)
)
Re
2k k
k k
2
m
0
0 m
-1
i
f1
f2
eit
u* (t )
1
机械振动 课后习题和答案 第二章 习题和答案
2.1 弹簧下悬挂一物体,弹簧静伸长为δ。
设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。
解:设物体质量为m ,弹簧刚度为k ,则:mg k δ=,即:n ω==取系统静平衡位置为原点0x =,系统运动方程为: δ⎧+=⎪=⎨⎪=⎩00020mx kx x x (参考教材P14)解得:δω=()2cos n x t t2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。
设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。
解:由题可知:弹簧的静伸长0.850.650.2()m =-= 所以:9.87(/)0.2n g rad s ω=== 取系统的平衡位置为原点,得到:系统的运动微分方程为:20n x x ω+=其中,初始条件:(0)0.2(0)0x x =-⎧⎨=⎩ (参考教材P14) 所以系统的响应为:()0.2cos ()n x t t m ω=-弹簧力为:()()cos ()k n mg F kx t x t t N ω===-因此:振幅为0.2m 、周期为2()7s π、弹簧力最大值为1N 。
2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。
解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2121()2T E m m x =+ 212U kx =由()0T d E U +=可知:12()0m m x kx ++= 即:12/()n k m m ω=+系统的初始条件为:⎧=⎪⎨=-⎪+⎩2020122m gx k m x gh m m (能量守恒得:221201()2m gh m m x =+) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+其中:ω⎧==⎪⎨==-⎪+⎩200021122n m g A x k x m g ghk A k m m即:ωω=-2()(cos )n n m g x t t t k2.4 一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。
机械振动习题课(推荐完整)
2
0 1 2 3 4 5 t/s
-2
练习1:水平放置的弹簧振子,质量是0.2kg,当它
做简谐运动时,运动到平衡位置左侧2cm时,受到的
回复力是4N,当它运动到平衡位置右侧4cm时,它的
加速度的大小和方向分别是( )
A.20m/s2,向右
B.20m/s2,向左
C.40m/s2,向左
D.40m/s2,向右
振动的周期T1和T2的关系为 ( ).
A T2=T1
B T2=2T1
N1
C T2=4T1
1 D T2= 4 T1
N2
【例2】一弹簧振子沿轴x 振动,振幅为4cm,振子的平衡位置位 于x 轴上的0点,图1中的为四个不同的振动状态;黑点表示振子 的位置,黑点上的箭头表示运动的方向,图2给出的①②③④四 条振动图线,可用于表示振子的振动图象。( )
C.振子向平衡位置运动时,加速度方向与速度方向相反
D.振子远离平衡位置运动时,加速度方向与速度方向相反
为A,小球运动到最高点恰好是原长位置则
()
A.小球运动到位置O时,回复力为0,弹簧的劲度系数为mg/A
B.小球的最大动能为mgA
C.振动过程中小球机械能守恒
D.在运动过程中,弹簧的最大弹力等于2mg
E .在运动过程中,弹簧的最大弹性势能等于2mgA
ADE
例:一较长的弹簧两端拴着质量分别为m1和m2的物 体,今将m2放于水平面上,缓缓向下加力将m1往下 压,如图,m1到最低点时所施压力大小为F.若要 求撤去F后m1跳起将m2拉得跳离桌面,F至少多大?
A.若规定状态a 时t = 0,则图象为① B.若规定状态b 时t = 0,则图象为② C.若规定状态c 时t = 0,则图象为③
胡海岩主编机械振动基础课后习题解答第2章习题
胡海岩主编---机械振动基础课后习题解答_第2章习题第2章习题含答案习题2-1 定常力作用下的单自由度系统1. 一个单自由度系统的质量m=2kg,刚度k=1000N/m,阻尼系数c=10N·s/m。
试求该系统的固有频率、阻尼比和振动的稳定性。
解:根据公式,该系统的固有频率可计算为:ωn = √(k/m) = √(1000/2) ≈ 22.36 rad/s阻尼比可计算为:ξ = c/(2√(mk)) = 10/(2√(2×1000)) ≈ 0.158振动的稳定性取决于阻尼比ξ的大小。
当ξ<1时,系统为欠阻尼;当ξ=1时,系统为临界阻尼;当ξ>1时,系统为过阻尼。
2. 一个单自由度系统的质量m=5kg,刚度k=500N/m,阻尼系数c=20N·s/m。
试求该系统的固有频率、阻尼比和振动的稳定性。
解:根据公式,该系统的固有频率可计算为:ωn = √(k/m) = √(500/5) = 10 rad/s阻尼比可计算为:ξ = c/(2√(mk)) = 20/(2√(5×500)) ≈ 0.141振动的稳定性取决于阻尼比ξ的大小。
当ξ<1时,系统为欠阻尼;当ξ=1时,系统为临界阻尼;当ξ>1时,系统为过阻尼。
习题2-2 强迫振动的幅值和相位1. 一个单自由度系统的质量m=3kg,刚度k=2000N/m,阻尼系数c=30N·s/m。
给定的外力F(t) = 10sin(5t)N。
试求该系统在稳态时的振动幅值和相位。
解:首先求解系统的强迫响应,即对外力F(t)进行拉氏变换:F(s) = L{F(t)} = L{10sin(5t)} = 10L{sin(5t)} = 10×(5/(s^2+25))根据公式,系统的强迫响应可计算为:X(s) = F(s)/((s^2+ωn^2)+2ξωns)其中,ωn=√(k/m)为系统的固有频率,ξ=c/(2√(mk))为系统的阻尼比。
机械振动(习题课及考前复习)
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
一、考试知识点
第一章
1、单自由度系统振动方程。
2、无阻尼单自由度系统的自由振动。
3、等效单自由度系统。
4、有阻尼单自由度系统的自由振动。
5、简谐力激励下的受迫振动。
6、基础简谐激励下的受迫振动。
第二章
1、多自由度系统的振动方程。
2、建立系统微分方程的方法。
3、无阻尼系统的自由振动。
4、无阻尼系统的受迫振动。
二、考题分布情况
1、主要围绕作业题、课堂练习题、经典例题题型展开。
2、复习时把握每章知识要点,理解基础题型解题方法。
3、考卷共6道大题。
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
m
222(2)m l θ= ⎧⎨⎩211
(2)m l θ= 212(22)2k l l l θθ−⋅−⋅⋅11k l l θ−⋅221(22)2k l l l
θθ−⋅−⋅⋅
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
m
m
m
m
m
m
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
m。
机械振动习题讲解
机械振动1、按激励的情况振动可分为哪几类(至少五类)。
(5)绪论答:(答出5个)固有振动:无激励时系统所有可能的运动集合.固有振动不是现实的振动,它仅反映系统的固有属性自由振动:系统在初始激励下或原有的激励消失后的振动。
强迫振动:系统在持续的外界激励作用下产生的振动自激振动:系统受到由其自身运动诱发出来的激励作用而产生和维持的振动.参数振动:激励因素以系统本身的参数随时间变化的形式出现的振动随机振动:系统在非确定性的随机激励下所作的振动2、振动中两个简谐振动的合成分几种情况,简单阐述其性质。
(9)第一章答:1、两个相同频率的简谐振动的合成仍然是简谐振动,并且保振原来的频率2、频率不同的两个简谐振动的合成不再是简谐振动,振动比为有理数时,合成为周期振动;频率比为无理数时,合成为非周期振动。
3、频率很接近的两个简谐振动的合成会出现“拍”的现象3、阐述等效刚度和等效质量的概念。
(6)第二章答:使系统在选定的坐标上产生单位位移而需要在此坐标方向上施加的力,叫做系统在这个坐标上的等效刚度使系统在选定的坐标上产生单位加速度而需要在此坐标方向上施加的力,叫做系统在这个坐标上的等效质量二、计算题:1、质量弹簧系统,W= 150N,= 1cm,= 0.8cm,= 0.16cm。
求阻尼系数c。
(10)第二章过阻尼例3解:由于ζ很小,2、橡皮金属减振器在额定重量下静位移为1.6mm,用作航空仪表隔振。
飞机振动范围20~200Hz;求:(1)最低隔振效率?(2)当隔振效率为50%时,对应的频率是多少?(15)第三章第二类隔振例1解:这是第二类隔振问题(1)仪表隔振系统的固有频率为:求用λ,由~λ曲线可见,当λ>1以后λ越大(激励频率越高),隔振效果提高;因此最低隔振效率发生在f=20Hz处。
忽略阻尼,则:(2)若 , 则由,得:;则:3、建立右图系统的运动微分方程(15)解:受力分析:4、图示三个数学摆串联,,摆长,求:系统作微幅摆动时的运动微分方程。
教科版选修3-4机械振动和机械波复习习题课
正向
0.8
4.振动与波的多解问题
【例4】(2012· 全国理综卷)一列简谐横波沿x轴正方向传播, 图9- 4(a)是t=0时刻的波形图,图(b)和图(c)分别是x轴上 1某两处质点的振动图象.由此可知,这两质点平衡位置之 间的距离可能是( )
1 A. 3m C. 1m 2 B. 3m 4 D. 3m
【答案】 BD
【切入点】本题考查波的图象和振动图象的联系.
【解析】根据振动图象(b)可知:t=0 时刻该质点位移为正最
1 5 大, 可能对应于波动图象中坐标 x1=2m 和 x2=2m 的两个质
点.根据振动图象(c)可知:t=0 时刻质点位移为-0.05m 且 11 向负方向运动,应是波动图象坐标为 x3= 6 m 处的质点. 因此这两质点平衡位置之间距离可能为 4 Δx=x3-x1=3m 2 Δx=x2-x3=3m
播方向在前进.
1、(福建卷)一列简谐横波在t=0时刻的波形 如图中的实线所示,t=0.02s时刻的波形如图中 虚线所示。若该波的周期T大于0.02s,则该波 的传播速度可能是 ( B )
A.2m/s
B.3m/s
C.4m/s
D.5m/s
2、(天津卷).一列简谐横波沿x轴正向传播 ,传到M点时波形如图所示,再经0.6s,N点 开始振动,则该波的振幅A和频率f为( D )
答案:A
【点评】
分析振动过程中各物理量变化时,一定要以
位移为桥梁,理清各物理量与位移的关系:位移增 大时,回复力、加速度、势能均增大,速度、动能 减小;位移减小时,回复力、加速度、势能均减小, 速度、动能增大.
2.受迫振动、共振 【例2】一砝码和一轻弹簧构成弹簧振子,如图所示的 装置可用于研究该弹簧振子的受迫振动.匀速转动把
机械振动前三节习题课ppt课件
A.振子在M、N两点受回复力相同 C
B.振子在M、N两点对平衡位置的位移相同
C.振子在M、N两点加速度大小相等
D.从M点到N点,振子先做匀加速运动,后 做匀减速运动
• 例题:一个做简谐运动的质点,先 后以相同的速度通过a、b两点历时 0.1s,再经过0.1s质点第二次(反向) 通过b点。若质点在这0.2s内经过的 路程是8cm,则此简谐运动的周期 为_____0_._4s,振幅为_______4_ cm。
思考:小球从高处自由落体,接 触弹簧压缩到最低点,在最低 点小球的加速度a与重力加速度 g的关系?
什么位置释放可以让它成为一个竖 直方向的弹簧振子?
经过2s它第二次经过M点;则质点第三
次经过M点所需要的时间是: CD
A、8s
B、4s
C、14s
D、(10/3)s
• 如图4所示,做简谐运动的质点,表示加速 度与位移的关系的图线是 ( )
• 如下图是弹簧振子的振动图线,试回答下列问 题: (1)振动的振幅、周期、频率各是多少?
• (2)如果从O点算起,到图线上哪一点为止振 子完全成了一次全振动?从A点算起呢?
1 2
mg
由以上可以得出振幅为A时, 最大 回复力大小为0.5mg. k A 0.5mg ③
欲使物体在振动时不离开弹簧, 则最大
回复力可为mg,k A mg
④
由 ③ ④ 联立得:A 2A
小结:
解决此类问题, 首先在确定对称点; 然后利用对称点中速度大小相等、加速 度大小相等, 回复力大小相等; 最后根据 题目要求确定所求物理量.
练习1、弹簧振子在AA’之间做简 谐振动,O为平衡位置,在OA之 间有一点C,那么振子每次经过C 点时一定相同的物理量有:ACD
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
总结
1、位移与速度大小变化情况相反;方向可能相 同,也可能相反。
位移与回复力大小变化情况相同;方向相反。 加速度与回复力的大小变化情况相同;方向 相同。 2、在忽略摩擦和阻力的理想情况下,动能和势 能周期性地相互转化,机械能守恒 。
求两个简谐 运动的相位 差
写出两个简谐 运动的位移对 时间的函数关 系式
C T2=4T1
1 D T2= T1 4
N2
【例2】一弹簧振子沿轴x 振动,振幅为4cm,振子的平衡位置位 于x 轴上的0点,图1中的为四个不同的振动状态;黑点表示振子 的位置,黑点上的箭头表示运动的方向,图2给出的①②③④四 条振动图线,可用于表示振子的振动图象。( ) A.若规定状态a 时t = 0,则图象为① B.若规定状态b 时t = 0,则图象为② C.若规定状态c 时t = 0,则图象为③ D.若规定状态d 时t = 0,则图象为④ d c b 1 2 a 3 4 5 x/cm x/cm 4 ③ ④ 0
【例1】图(1)是演示简谐振动图像的装置.当盛砂漏斗下面的 薄木板N被匀速地拉出时,摆动着的漏斗中漏出的砂在板上形成 的曲线显示出摆的位移随时间变化的关系,板上的直线OO1代表 时间轴. 图(2)是两个摆中的砂在各自木板上形成的曲线,若板N1和板N2 拉动的速度v1 和v2 的关系为v2=2v1,则板N1 、N2 上曲线所代表的 振动的周期T1和T2的关系为 ( ). N1 A T2=T1 B T2=2T1
【例2】质点做简谐振动,O为平衡位置,质点离开O点向P点 运动,经3s后第一次到达P点,再经2s第二次到达P点,则再 经过____________s它将第三次到达P点,质点振动频率是 ____________Hz.
简谐运动的周期性
【例3】一沿水平方向振动的弹簧振子做简谐运动,周期为T, 下述正确的是 A.若t时刻和(t+△t)振子运动位移的大小相等,方向相反,则△t 一定等于T的整数倍。
五.简谐运动的动力学条件
1.如果质点所受的回复力与它偏离平衡位移 的大小成正比,并且总是指向平衡位置,质 点的运动就是简谐运动。
F=-kx 即a=-kx/m 2.判断物体是否做简谐运动的方法: (1)根据物体的振动图像去判断 (2)根据回复力的规律F=-kx去判断
六、简谐运动位移、速度、回复力、能量 的变化规律
4 一质点在平衡位置O点附近作简谐振动,它离开O点经
2.5s第一次通过M点(M点在O点右侧),再经过1s第二次通 11s或3s s第三次通过M点,质点的振 过M点,再经过 12s或4s s。 动周期为
解:情形1:从O向右侧到M
T/4=3s
∴ T=12s
O
· ·
2.5s
M
· ·
1s
情形2:从O先向左再向右到M 则 t+3.5=T 2.5-t=T/2
《机械振动》第1单元 习题课
一、弹簧振子--理想化模型
1.平衡位置
2.位移的概念、路程的概念
二、简谐运动的定义
如果质点的位移与时间的关系遵从正弦函数 的规律,即它的振动图像(x-t图像)是一条 正弦曲线,这样的振动叫做简谐运动。
三、简谐运动的公式和图像
1、公式:x =Asin(t+0)其中
练习2:一个质点作简谐运动,其运动的位移与时间的关 系图象如图所示,下列说法正确的是( ) A.振动周期为4s B.振动频率为0.25Hz C.质点在8s内通过的路程为40cm D.5s末质点的位移为零.
如图所示,一个弹簧悬挂着一个小球,当弹簧伸长使小球在位 置O时处于平衡状态,现将小球向下拉动一段距离后释放,小球 在竖直线上做简谐振动,则 ( ) A.小球运动到位置O时,回复力为0 B.当弹簧恢复到原长时小球速度最大 C.当小球运动到最高点时,弹簧一定被压缩 D.在运动过程中,弹簧的最大弹力大于小球的重力
A B
O
A-O
O-B
B-O
O—A
x v F
动能和 势能 总机械 能
向左减小 向右增大
向右减小 动能增大 势能减小
向右增大 向右减小 向左增大 向右减小 向左增大 向左减小
向左增大 向左减小 向右增大 动能减小 动能增大 动能减小 势能增大 势能减小 势能增大
不变
不变
不变
不变
简谐运动的周期性
【例1】一个在水平方向做简谐运动的弹簧振子的振动周期是 0.025s,当振子从平衡位置开始向右运动,在0.17s时刻,振 子的运动情况是( ) A.正在向左做减速运动 B.正在向右做加速运动 C.加速度正在减小 D.动能正在减少
简谐运动的证明
【例1】如图所示,弹簧振子的质量为M,弹簧劲度系
数为k,在振子上放一质量为m的木块,使两者一起振 动。木块的回复力是振子对木块的摩擦力,也满 k 足 F = -k x ,x是弹簧的伸长(或压缩)量,那么 k 为( )
m A. M
m B. M+m
M C. M+m
M D. m
m M
简谐运动的图象
设从O向右到M要t s , ∴ T=4s
2.5s ts
1s
O
M
1.弹簧振子作简谐运动时,以下说法正确的是:
A.振子通过平衡位置时,回复力一定为零 B.振子做减速运动,加速度却在增大 C.振子向平衡位置运动时,加速度方向与速度方向相反 D.振子远离平衡位置运动时,加速度方向与速度方向相反 2.如图所示,是一弹簧振子,设向右方向为正,O为平衡位置, 则: A.A→O位移为负值,速度为正值 B.O→B时,位移为正值,加速度为负值 A O B C.B→O时,位移为负值,速度为负值 D.O→A时,位移为负值,加速度为正值
A是振幅
=2f
t+0表示简谐运动在t时刻的相位
0表示在t=0时刻的相位,叫初相
2、图像:
(1)位移-时间(x-t)图像是正弦(或余弦)曲线
(2)物理意义:表示一个质点在某段时间内各个时刻对 平衡位置的位移
(3)从图像中可以读出的信息
四、描述简谐运动的物理量
1、位移(x)振动物体相对于平衡位置的位移 2、振幅(A)振动物体离开平衡位置的最大距离 3、周期(T)完成一次全振动所需要的时间 频率(f)单位时间内完成全振动的次数 关系T=1/f 4、相位:周期性运动在各个时刻所处的不同的状态
B.若t时刻和(t+△t)振子运动速度大小相等,方向相反,则△t一 定等于 T 的整数倍。
2
C.若△t=T,则在t时刻和(t+△t)时刻振子运动的加速度一定相等。 D.若△t= E .若△t=
T 2 T 2
,则在t时刻和(t+△t)时刻弹簧长度一定相等 ,则弹力在△t内做的功一定为零
简谐运动的周期性 练习:一个做简谐运动的质点,它的振幅是4cm,频 率是2Hz. 该质点从平衡位置开始经过1s时,位移的大 小和所通过的路程分别为( ) A.0cm,16cm B.4cm,32cm C.0,32cm D.4cm,16cm 加深题:若把上题的条件改为周期为8s,其他条件不 变,则结果如何?
3 4 5
t/s
-2
练习1:水平放置的弹簧振子,质量是0.2kg,当它 做简谐运动时,运动到平衡位置左侧2cm时,受到的 回复力是4N,当它运动到平衡位置右侧4cm时,它的 加速度的大小和方向分别是( ) A.20m/s2,向右 B.20m/s2,向左 C.40m/s2,向左 D.40m/s2,向右
3.一个弹簧振子在光滑的水平面上做简谐运动,其中有两个时刻
弹簧振子的弹力大小相等,但方向相反,则这两个时刻振子的 A.速度一定大小相等,方向相反 B.加速度一定大小相等,方向相反 C.位移一定大小相等,但方向不一定相反 D.以上三项都不一定大小相等方向相反
1.做简谐振动的质点每相邻两次经过同一位置时, 一定相同的物理量是( ) A.速度 B. 位移 C. 动能 D.加速度 2.对做简谐运动的物体来说,当它通过平衡位置时, 具有最大值的是( ) A.加速度 B.势能 C.动能 D.回复力 3.一水平方向的弹簧振子,以平衡位置O点为中心, 在A、B两点间作简谐振动,则( ) A.振子在O点的速度和加速度都达到最大 B.振子的速度减小时,位移就增大 C.振子的加速度减小时,速率一定变小 D.振子的速度方向与加速度方向可能相同,可能 相反
-5 -4 -3 -2 -1 0
4
0
x/cm ① ② t/s
t/s
【例3】一质点做简谐运动,其离开平衡位置的位移与时间t的 关系如图所示,由图可知( ) A.质点振动的频率为4Hz B.质点振动的振幅为2cm C.在t=3s时刻,质点的速率最大 D.在t=4s时刻,质点所受的合力为零Biblioteka x/cm20
1 2