〖数学10套合集〗云南省丽江市中考第四次适应性考试数学试题

合集下载

《试卷4份集锦》云南省丽江市中考第四次大联考数学试卷

《试卷4份集锦》云南省丽江市中考第四次大联考数学试卷

2019-2020学年数学中考模拟试卷一、选择题1.化简22 1x-÷11x-的结果是( )A.21x+B.2xC.21x-D.2(x+1)2.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=3.地球上的海洋面积约三亿六千一百万平方千米,用科学记数法表示为()平方千米.A.361×106B.36.1×107C.3.61×108D.0.361×1094.如图,一张矩形纸片ABCD,其中AD=10cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位置,BC′交AD于点G(图1),再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M(图2),则EM的长为()A.165B.83C.85D.1035.剪纸是我国传统的民间艺术,下列剪纸作品中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.如图,在四边形ABCD中,E、F分别是AB、AD中点,若EF=2,BC=5,CD=3,则tanC等于()A.43B.34C.35D.457.下列说法正确的是( )A .367人中至少有2人生日相同B .天气预报说明天的降水概率为90%,则明天一定会下雨C .任意掷一枚均匀的骰子,掷出的点数是奇数的概率是13 D .某种彩票中奖的概率是11000,则买1000张彩票一定有1张中奖 8.将抛物线21y x =+先向左平移1个单位长,再向上平移1个单位长,得到新抛物线( ) A.2(1)y x =+ B.2(1)2y x =++ C.2(1)y x =- D.2(1)2y x =-+9.如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,∠BEG >60°.现沿直线EG 将纸片折叠,使点B 落在纸片上的点H 处,连接AH ,则与∠BEG 相等的角的个数为( )A .5B .3C .2D .110.下列各式变形中,是因式分解的是( )A .a 2﹣2ab+b 2﹣1=(a ﹣b)2﹣1B .2x 2+2x =2x 2(1+1x) C .(x+2)(x ﹣2)=x 2﹣4D .x 4﹣1=(x 2+1)(x+1)(x ﹣1)11.已知,如图,在△ABC 中,D 是BC 的中点,AE 平分∠BAC ,BE ⊥AE 于点E ,且AC =14,ED =3,则AB 的长是( )A .6B .7C .8D .9 12.若11x m =-是方程mx ﹣2m+2=0的根,则x ﹣m 的值为( ) A .0B .1C .﹣1D .2二、填空题 13.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD 的A 、C 两点测得该塔顶端F 的仰角分别为∠α=48°和∠β=65°,矩形建筑物宽度AD=20m ,高度CD=30m ,则信号发射塔顶端到地面的高度FG 为__米(结果精确到1m ).参考数据:sin48°=0.7,cos48°=0.7,tan48°=1.1,cos65°=0.4,tan65°=2.114.把多项式34x x -分解因式的结果是______.15.如图,AD 是△ABC 的中线,点E 在边AB 上,且DE ⊥AD ,将△BDE 绕着点D 旋转,使得点B 与点C 重合,点E 落在点F 处,联结AF 交BC 于点G ,如果52AE BE =,那么GF AB的值等于______.16.2019年2月,全球首个5G 火车站在上海虹桥火车站启动.虹桥火车站中5G 网络峰值速率为4G 网络峰值速率的10倍.在峰值速率下传输8千兆数据,5G 网络比4G 网络快720秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 千兆数据,依题意,可列方程为___.17.因式分解:()()2a b b a ---=_______;18.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.通过多次摸球试验后,发现摸到红色球、黄色球的频率分别是0.2、0.3.则可估计纸箱中蓝色球有_____个.三、解答题19.如图,△ABC 为等腰三角形,O 是底边BC 的中点,腰AB 与⊙O 相切于点D ,OB 与⊙O 相交于点E .(1)求证:AC 是⊙O 的切线;(2)若BD =3,BE =1.求阴影部分的面积.20.如图所示,函数y 1=kx+b 的图象与函数2m y x=(x <0)的图象交于A (a ﹣2,3)、B (﹣3,a )两点.(1)求函数y 1、y 2的表达式;(2)过A 作AM ⊥y 轴,过B 作BN ⊥x 轴,试问在线段AB 上是否存在点P ,使S △PAM =3S △PBN ?若存在,请求出P 点坐标;若不存在,请说明理由.21.2017年我国“十二五”规划圆满完成,“十三五”规划顺利实施,经济社会发展取得历史性成就,发生历史性变革.这五年来,经济实力跃上新台阶,国内生产总值达到82.7万亿元,2018年,我国国内生产总值达到900309亿元人民币,首次迈过90万亿元门槛,比上一年同比增长66%,实现了65%左右的预期发展目标.下面的统计图反映了我国2013年到2018年国内生产总值及其增长速度情况,其中国内生产总值绝对数按现价计算,增长速度按不变价格计算根据以上信息,回答下列问题(1)把统计图补充完整;(2)我国2013年到2018年这六年的国内生产总值增长速度的中位数是 %;(3)2019年政府工作报告提出,今年的预期目标是国内生产总值比2018年增长6‰﹣6.5%,通过计算说明2019年我国国内生产总值至少达到多少亿元,即可达到预期目标.22.计算:|﹣5|+(﹣1)2019﹣11()3 ﹣02sin 45.23.如图,抛物线y =ax 2+bx+33与x 轴交于A (﹣3,0),B (9,0)两点,与y 轴交于点C ,连接AC ,BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD ⊥x 轴,与抛物线交于点D ,连接PD 与BC 交于点E .设点P 的运动时间为t 秒(t >0)(1)求抛物线的表达式;(2)①直接写出P ,D 两点的坐标(用含t 的代数式表示,结果需化简).②在点P ,Q 运动的过程中,当PQ =PD 时,求t 的值;(3)点M 为线段BC 上一点,在点P ,Q 运动的过程中,当点E 为PD 中点时,是否存在点M 使得PM+12BM 的值最小?若存在,请求出PM+12BM 的最小值;若不存在,请说明理由.24.4cos60°+(﹣1)2019﹣|﹣3+2|25.如图,AB 是⊙O 的直径AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC 交AC 的延长线于点E ,连接BD ,OE ,OE 交AD 于点F(1)求证:DE 是⊙O 的切线;(2)若35AC AB = ,求AF DF 的值; (3)在(2)的条件下,若⊙O 的直径为10,求BD 的长.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A A C B C A A B B DC C 13.10914.(2)(2)x x x +-15.1063 16.17.(a-b )(a-b+1)18.三、解答题19.(1)见解析;(2)336-π 【解析】【分析】(1)连接OD ,作OF ⊥AC 于F ,如图,利用等腰三角形的性质得AO ⊥BC ,AO 平分∠BAC ,再根据切线的性质得OD ⊥AB ,然后利用角平分线的性质得到OF=OD ,从而根据切线的判定定理得到结论;(2)设⊙O 的半径为r ,则OD=OE=r ,利用勾股定理得到222r 3)(r 1)+=+,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出33AD ==,然后根据扇形的面积公式,利用阴影部分的面积=2S △AOD -S 扇形DOF 进行计算. 【详解】解:(1)证明:连接OD ,作OF ⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO ⊥BC ,AO 平分∠BAC ,∵AB 与⊙O 相切于点D ,∴OD ⊥AB ,而OF ⊥AC ,∴OF =OD ,∴AC 是⊙O 的切线;(2)在Rt △BOD 中,设⊙O 的半径为r ,则OD =OE =r ,∴r 2+32=(r+1)2,解得r =1,∴OD =1,OB =2,∴∠B =30°,∠BOD =60°,∴∠AOD =30°,在Rt △AOD 中,33AD ==, ∴阴影部分的面积=2S △AOD ﹣S 扇形DOF2136012123360π⋅⋅=⨯⨯⨯- 3.6π= 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.20.(1)14y x =+,23y x =-;(2)存在,P 53,22⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)把A 、B 两点坐标代入直线AB 解析式可求得A 、B 两点的坐标,再把B 点坐标代入反比例函数解析式可求得k ,可求得函数y 2的表达式;(2)设出P 点坐标为(x ,x +4),根据三角形的面积关系可得到关于x 的方程,可求得P 点坐标.【详解】解:(1)∵A 、B 两点在函数2m y x=(x <0)的图象上, ∴3(a ﹣2)=﹣3a =m ,∴a =1,m =﹣3,∴A (﹣1,3),B (﹣3,1),∵函数y 1=kx+b 的图象过A 、B 点,∴3 31k bk b-+=⎧⎨-+=⎩,解得k=1,b=4∴y1=x+4,y2=3x -;(2)由(1)知A(﹣1,3),B(﹣3,1),∴AM=BN=1,∵P点在线段AB上,∴设P点坐标为(x,x+4),其中﹣1≤x≤﹣3,则P到AM的距离为h A=3﹣(x+4)=﹣x﹣1,P到BN的距离为h B=3+x,∴S△PBN=12BN•h B=12×1×(3+x)=12(x+3),S△PAM=12AM•h A=12×1×(﹣x﹣1)=﹣12(x+1),∵S△PAM=3S△PBN,∴﹣12(x+1)=32(x+3),解得x=﹣52,且﹣1≤x≤﹣3,符合条件,∴P(﹣52,32),综上可知存在满足条件的点P,其坐标为(﹣52,32).【点睛】本题主要考查一次函数和反比例函数的交点问题,在(1)中掌握交点坐标满足两函数解析式是解题的关键,在(2)中用P点坐标分别表示出△PBN和△PAM的面积是解题的关键.21.(1)见解析(2)6.9%(3)可达到预期目标【解析】【分析】(1)根据题意把统计图补充完整即可;(2)根据中位线的定义即可得到结论;(3)根据题意列式计算即可.【详解】(1)把统计图补充完整,如图所示;(2)我国2013年到2018年这六年的国内生产总值增长速度的中位数是6.9%;(3)900309×(1+6%)=954327.54亿元,答:2019年我国国内生产总值至少达到954327.54亿元,即可达到预期目标.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【解析】【分析】直接利用绝对值,负整数指数幂,特殊角的三角函数即可解答【详解】原式=25-1-3-2=0. 【点睛】此题考查了绝对值,负整数指数幂,特殊角的三角函数,解题关键在于熟练掌握运算法则 23.(1)23233393y x x =-++;(2)P 133,22t t ⎛⎫-+ ⎪ ⎪⎝⎭,D )24392,69t t t ⎡⎤--⎢⎥⎣⎦; 154t =;(3)存在,故PM+12BM 93. 【解析】【分析】(1)把A (﹣3,0),B (9,0)两点,代入解析式即可(2)先求出BC 的解析式①把P,Q 代入解析式即可解答②当PQ =PD 时,则DQ 中点的纵坐标=点P 的纵坐标,在代入解析式即可(3)根据点E 是PQ 的中点,求出点E 的坐标,将其代入解析式②即可求出P ,作点P 关于直线BC 的对称点P′,过点P′作P′H⊥x 轴、BC 于点H 、M ,过点P 作PN ⊥y 轴于点N ,再证明△P′MC≌△PNC (AAS ),即可解答【详解】解:(1)将A (﹣3,0),B (9,0)代入y =ax 23,得:81933093330a b a b ⎧++=⎪⎨-+=⎪⎩ ,解得:323a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为y=﹣39x2+233x+33①;(2)由题意得:∠ACO=∠OBC=30°,∠ACB=90°,将点B、C(0,33)的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣33x+33②;①点P的坐标为(﹣3+12t,3t),点Q(9﹣2t,0),将点Q的坐标代入①式并整理得:点D[9﹣2t,43(6t﹣t2)];②当PQ=PD时,则DQ中点的纵坐标=点P的纵坐标,即:12[43(6t﹣t2)]=3t,解得:t=154;(3)点P的坐标为(﹣3+12t,32t)、点D[9﹣2t,43(6t﹣t2)],点E是PQ的中点,则点E[3﹣34t,3t+23(6t﹣t2)],将点E的坐标代入②式并整理得:t2﹣6t+9=0,解得:t=3,即点P(﹣32,332)即点P是AC的中点,作点P关于直线BC的对称点P′,过点P′作P′H⊥x轴、BC于点H、M,过点P作PN⊥y轴于点N,则MH=12 MB,则此时,PM+12BM=PM+MH=P′H为最小值,∵∠ACB=90°,PC=P′C,∠P′CM=∠NCP,∠P′MC=∠PNC=90°,∴△P′MC≌△PNC(AAS),∴MC=NC=12 OC,OM=32OC93=P′H,故PM+12BM的最小值为932.【点睛】此题考查二次函数综合题,解题关键在于作辅助线24.0【解析】【分析】本题涉及绝对值、特殊角的三角函数值2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=4×12﹣1﹣|﹣1|=2﹣1﹣1=0.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(1)证明见解析;(2)85;(3)532.【解析】【分析】(1)连接OD,只需证明OD⊥DE即可;(2)连接BC,设AC=3k,AB=5k,BC=4k,可证OD垂直平分BC,利用勾股定理可得到OG,得到DG,于是AE=4k,然后通过OD∥AE,利用相似比即可求出AFDF的值.(3)由△ADB∽△AFO可得AD,由Rt△ABD勾股定理可得BD 【详解】(1)证明:连接OD,∵OD=OA,∴∠OAD=∠ADO,∵∠EAD=∠BAD,∴∠EAD=∠ADO,∴OD∥AE,∴∠AED+∠ODE=180°,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∵OD是圆的半径,∴DE是⊙O的切线;(2)解:连接OD,BC交OD于G,如图,∵AB为直径,∴∠ACB=90°,又∵OD∥AE,∴∠OGB=∠ACB=90°,∴OD⊥BC,∴G为BC的中点,即BG=CG,又∵35 ACAB=,∴设AC=3k,AB=5k,根据勾股定理得:BC=22AB AC-=4k,∴OB=12AB=5k2,BG=12BC=2k,∴OG═223kOB BG2-=,∴DG=OD﹣OG=5k3k22-=k,又∵四边形CEDG为矩形,∴CE=DG=k,∴AE=AC+CE=3k+k=4k,而OD∥AE,∴48552AF AE kkFD OD===.(3)连接BD由(2)可知85 AFDF=设AF=8k,DF=5k △ADB∽△AFOAF AOAB AD=解得k=53 26AD513在Rt△ADB中,AB2=AD2+BD2BD=53 2【点睛】考查了切线的判定定理,能够综合运用角平分线的性质、全等三角形的判定和性质以及平行线分线段成比例定理.2019-2020学年数学中考模拟试卷一、选择题1.下列命题,是真命题的是( )A.菱形的对角线相等B.若|a|=|b|,那么a=bC.同位角一定相等D.函数y=11x的自变量的取值范围是x≠﹣12.如图的四个转盘中,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A. B. C. D.3.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A. B. C. D.4.如图,已知点A、B、C、D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为( )A.13π﹣32B.13π﹣3C.23π﹣32D.23π﹣35.在一个不透明的口袋里装有2个红球,1个黄球和1个白球,它们除颜色不同外其余都相同.从口袋中随机摸出2个球,则摸到的两个球是一白一黄的概率是()A.12B.13C.14D.166.将抛物线向左平移1个单位,再向下平移3个单位得到的解析式是().A. B. C. D.7.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是()A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去2008.如图,已知CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,得出以下结论:①AC=FG;②S△FAB:S四边=1:2;③∠ABC=∠ABF;④AD2=FQ•AC.其中正确结论的个数是()形CBFGA.1 B.2 C.3 D.49.若代数式和的值相等,则x的值为()A.x=﹣7 B.x=7 C.x=﹣5 D.x=310.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.1811.如图,已知⊙O的半径为6cm,两弦AB与CD垂直相交于点E,若CE=3cm,DE=9cm,则AB=()A.3cmB.33cmC.53cmD.63cm12.如图,过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB=23,∠DCF=30°,则EF的长为()A.4 B.6 C.3D.23二、填空题13.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=_____.14.为了测量校园水平地面上一棵不可攀爬的树的高度,小文同学做了如下的探索:根据物理学中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在合适的位置,刚好能在镜子里看到树梢顶点,此时小文与平面镜的水平距离为2.0米,树的底部与平面镜的水平距离为8.0米,若小文的眼睛与地面的距离为1.6米,则树的高度约为________米.(注:反射角等于入射角)15.如图,已知MON=30°,OA=4,在OM、ON上分别找一点B、C,使AB+BC最小,则最小值为___________.16.用一组a,b,c的值说明命题“若ac=bc,则a=b”是错误的,这组值可以是a=_____.17.在﹣1,0,1,2这四个数中任取两个数m,n,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为_____.18.圆锥形冰淇淋的母线长是12cm,侧面积是60πcm2,则底面圆的半径长等于_____.三、解答题19.2019年4月23日是“第二十四个世界读书日”,我市某中学发起了“读好书”活动.为了解九年级学生阅读“艺术类、科普类、文学类、军事类“这四类书籍的情况,数学老师随机抽查了该年级学生课外阅读的数量,绘制了下面不完整的条形图和扇形图.(1)求本次抽查中阅读科普类书籍的人数,并补充完整条形图;(2)小明要从这四类书籍中任选两类来阅读,请你用列表法或树状图求小明刚好选择科普类和军事类书籍的概率.20.如图,在方格纸中每个小正方形的边长均为l,线段AB的端点在小正方形的顶点上,(所画图形顶点必须在小正方形的顶点上).(1)在如图中画一个以AB为边的四边形ABCD是中心对称图形,且四边形面积是12;(2)在如图中画一个以AB为边的四边形ABMN是轴对称图形,且只有一个角是直角,面积为15.21.计算:014(21)6sin30+---︒-22.某报社为了解温州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,调查结果共分为四个等级:A .非常了解:B .比较了解:C .基本了解;D .不了解.根据调查统计结果,绘制了不完整的三种统计图表.请结合统计图表,回答下列问题: 对雾霾的了解程度 百分比 A 非常了解 5% B 比较了解 m% C 基本了解 45% D不了解n%(1)本次参与调查的市民共有________人,m=________,n=________. (2)统计图中扇形D 的圆心角是________度.(3)某校准备开展关于雾霾的知识竞赛,九(3)班郑老师欲从2名男生和1名女生中任选2人参加比赛,求恰好选中“1男1女”的概率(要求列表或画树状图).23.如图,AC 是矩形ABCD 的对角线,⊙O 是△ABC 的内切圆,点E 是边AD 上一点,连结CE ,将△CDE 绕点C 旋转,当CD 落到对角线AC 上时,点E 恰与圆心O 重合,已知AE =6,则下列结论不正确的是( )A .BC+DE =ACB .⊙O 的半径是2C .∠ACB =2∠DCED .AE =CE24.解不等式组:273(1) 423133x xx x-<-⎧⎪⎨+<-⎪⎩,并将解集表示在数轴上.25.已知Oe的直径为10,点A,B,C在Oe上,CAB∠的平分线交Oe于点D.(I)如图①,当BC为OO的直径时,求BD的长;(Ⅱ)如图②,当BD=5时,求∠CDB的度数。

云南省2021届初中学业水平考试适应性月考卷(四)数学试题

云南省2021届初中学业水平考试适应性月考卷(四)数学试题

扫描全能王 创建扫描全能王 创建扫描全能王 创建数学参考答案·第1页(共7页)云南省2021届初中学业水平考试适应性月考卷(四)数学参考答案一、选择题(本大题共8个小题,每小题4分,满分32分) 题号1 2 3 4 5 6 7 8 答案 C B D A A D B C二、填空题(本大题共6个小题,每小题3分,满分18分)三、解答题(本大题共9个小题,满分70分) 15.(本小题6分)解:原式2(1)232(1)(1)(1)1x x x x x x x -+=--+-+ ………………………………………(2分) 232(1)1x x x x +=-++ 2322(1)x x x +-=+ 322x =+. …………………………………………………………(4分) 当12x =-时,原式331222==⎛⎫⨯-+ ⎪⎝⎭. ……………………………………………(6分) 16.(本小题6分)证明:在ABD △和CBD △中,AD CD ADB CDB BD BD =⎧⎪∠=∠⎨⎪=⎩,,, ……………………………………………………(3分) ∴ABD △≌(SAS)CBD △, ………………………………………………………(4分) ∴ABD CBD ∠=∠, ……………………………………………………………(5分) ∴BD 平分ABC ∠. ………………………………………………………………(6分)数学参考答案·第2页(共7页)解:(1)900 770 720 …………………………………………………………(6分)(2)平均数最适合用来估计. ………………………………………………………(7分) 该凉米线店一个月的营业额为9003027000⨯=(元). …………………………(8分)18.(本小题6分)解:设从公墓到家的平均速度为km/h x ,则从家到公墓的平均速度为2km/h x ,……………………………………………………………………………(1分) 由题意得:2020122x x -=, ………………………………………………………(3分) 两边同乘2x ,得:4020x -=,解得20x =. ………………………………………………………………………(4分) 经检验,20x =是原方程的解. …………………………………………………(5分) 答:从公墓到家的平均速度为20km/h . …………………………………………(6分) 19.(本小题7分) 解:(1)甲选择到青花街参观游玩的概率为14. ………………………………(3分) (2)记规划馆为A 、博物馆为B 、聂耳故居为C 、青花街为D ,列表如下:………………………………………………………………(5分)由表可得,共有16种等可能的结果数,其中甲、乙两人选择到上述四个地点中的同一个地点参观游玩的情况有()A A ,,()B B ,,()C C ,,()D D ,,共4种,……………………………………………………………………………………(6分) ∴甲、乙两人选择到上述四个地点中的同一个地点参观游玩的概率41164P ==. ………………………………………………………………………………(7分)数学参考答案·第3页(共7页)……………………………………………(1分)∵AB 为O 的直径,∴OA OD =, ∴A ODA ∠=∠. ……………………………………………………………………(2分) ∵AB BC =,∴A C ∠=∠,∴ODA C ∠=∠,∴//OD BC . ………………………………………………………………………(3分) ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 是O 的切线. ………………………………………………………………(4分) (2)解:如图,连接BD ,∵AB 为O 的直径,∴BD AC ⊥, ………………………………………………………………………(5分) ∴90ODA BDO ∠+∠=︒.由(1)知,OD DE ⊥,∴90BDE BDO ∠+∠=︒,∴ODA BDE ∠=∠.∵A ODA ∠=∠,∴A BDE ∠=∠. …………………………………………………………………(6分) 在Rt DEB △中,346sin 2BE BD A ==⨯=∠. ………………………………………(7分) 在Rt ADB △中,369sin 2BD AB A ==⨯=∠, ∴O 的半径为92. ………………………………………………………………(8分) 图1数学参考答案·第4页(共7页) …………………………………………………………………………………………(1分) 则235240m n m n +=⎧⎨+=⎩,, ……………………………………………………………………(2分) 解得:1510m n =⎧⎨=⎩,, ∴该公司大车间、小车间每周分别能生产疫苗15万剂、10万剂.……………………………………………………………………………(3分)(2)由题意得:15801070(10)y x x =⨯⨯+⨯-,化简得:5007000y x =+.∴y 与x 的函数解析式为5007000y x =+, ……………………………………(4分) x 的取值范围是:010x <<,x 为整数. …………………………………………(5分)(3)由题意得:1510(10)140x x +-≥,解得:8x ≥, …………………………(6分) ∴810x <≤,x 为整数,∴共有2种方案,分别是:新增8个大车间,2个小车间;新增9个大车间,1个小车间,……………………………………………………………………………………(7分) ∵5000>,∴y 随x 的增大而增大,∴当8x =时,即新增8个大车间,2个小车间时,每周生产疫苗的总成本y 最小.………………………………………………………………………………(8分)22.(本小题9分)(1)证明:∵DE 平分ADB ∠,∴2ADO EDB ∠=∠. ………………………………………………………………(1分) ∵AOB ∠为AOD △的一个外角,∴AOB ADO DAO ∠=∠+∠. ………………………………………………………(2分) ∵4AOB EDB ∠=∠,∴ADO DAO ∠=∠,数学参考答案·第5页(共7页)∴OA OD =. ………………………………………………………………………(3分) ∵四边形ABCD 是平行四边形,∴2AC OA =,2BD OD =,∴AC BD =. ………………………………………………………………………(4分) ∵四边形ABCD 是平行四边形,AC BD =,∴四边形ABCD 是矩形. ……………………………………………………………(5分)(2)解:如图2,过点E 作EF BD ⊥,垂足为点F ,由(1)知四边形ABCD 是矩形,∴EA AD ⊥,8AB CD ==,210BD OB ==.∵DE 平分ADB ∠,EF BD ⊥,∴AE EF =. ………………………………………………………………………(6分) ∵DE DE =,∴Rt DAE △≌Rt (HL)DFE △,∴DA DF =. …………………………………………………………………………(7分) 在Rt DAB △中,6DA DF ====,∴1064BF BD DF =-=-=. ……………………………………………………(8分) 设BE x =,则8AE EF x ==-,在Rt EFB △中,222EF BF BE +=,∴222(8)+4x x -=,解得:5x =,∴线段BE 的长为5. …………………………………………………………………(9分)23.(本小题12分)解:(1)∵抛物线213y x bx c =++的对称轴为4x =, ∴4123b-=⨯, ……………………………………………………………………(1分) 解得:83b =-. ……………………………………………………………………(2分) 图2数学参考答案·第6页(共7页)∵抛物线213y x bx c =++交x 轴于点(10)A -,, ∴18033c ++=, ……………………………………………………………………(3分) 解得:3c =-. ……………………………………………………………………(4分)(2)由(1)知,该抛物线的解析式为218333y x x =--. ∵抛物线的对称轴为4x =,交x 轴于点(10)A -,和点B ,与y 轴交于点C ,∴点B 的坐标为(90),,点C 的坐标为(03)-,, ………………………………(5分) ∴3OC =,9OB =.如图3,连接OP ,设点P 的坐标为218333m m m ⎛⎫-- ⎪⎝⎭,, ∵点P 在第四象限,∴09m <<,2183033m m --<. 13322OPC S m m =⨯⨯=△,1279322OBC S =⨯⨯=△, 22118327931223322OPB S m m m m =⨯⨯--=-++△, ∴2232732732712222222BCP OPB OPC OBC S S S S m m m m m =+-=-+++-=-+△△△△. ………………………………………………………………(6分)∵30BCP S =△,∴23273022m m -+=,解得:1245m m ==,, ∴当BCP △的面积等于30时,点P 的坐标为2543⎛⎫- ⎪⎝⎭,或(58)-,. …………(8分) (3)PD AD存在最大值. 如图,过点P 作PE BC ⊥,垂足为点E ,连接AC ,∵AC ==,BC ==,10AB =,∴222AC BC AB +=,图3数学参考答案·第7页(共7页) ∴ACB △是直角三角形,且90ACD ∠=︒.………………………………………………………………………………(9分) ∵PE BC ⊥,∴90ACD PED ∠=∠=︒,∵ADC PDE ∠=∠,∴ACD △∽PED △, ∴PD PE AD AC=. …………………………………………………………………(10分) 由(2)知,232722BCP S m m =-+△, ∴21327222BC PE m m ⨯⨯=-+,即2PE =∴222919811010240PD PE m m m AD AC -+⎛⎫====--+ ⎪⎝⎭, ………………(11分) ∵09m <<, ∴当92m =时,PD AD 的值最大,最大值为8140. …………………………………(12分)。

云南省丽江市2019-2020学年中考第四次适应性考试数学试题含解析

云南省丽江市2019-2020学年中考第四次适应性考试数学试题含解析

云南省丽江市2019-2020学年中考第四次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图所示,有一条线段是ABC ∆(AB AC >)的中线,该线段是( ).A .线段GHB .线段ADC .线段AED .线段AF2.下列图形中,既是中心对称图形又是轴对称图形的是( ) A .正五边形 B .平行四边形 C .矩形 D .等边三角形3.如图,点O′在第一象限,⊙O′与x 轴相切于H 点,与y 轴相交于A (0,2),B (0,8),则点O′的坐标是( )A .(6,4)B .(4,6)C .(5,4)D .(4,5)4.如图,在射线OA ,OB 上分别截取OA 1=OB 1,连接A 1B 1,在B 1A 1,B 1B 上分别截取B 1A 2=B 1B 2,连接A 2B 2,…按此规律作下去,若∠A 1B 1O=α,则∠A 10B 10O=( )A .102αB .92αC .20αD .18α5.已知二次函数y=ax 2+bx+c (a≠1)的图象如图所示,则下列结论: ①a 、b 同号;②当x=1和x=3时,函数值相等; ③4a+b=1;④当y=﹣2时,x 的值只能取1; ⑤当﹣1<x <5时,y <1. 其中,正确的有( )A .2个B .3个C .4个D .5个6.对于有理数x 、y 定义一种运算“”:,其中a 、b 、c 为常数,等式右边是通常的加法与乘法运算,已知,,则的值为( )A .-1B .-11C .1D .117.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定8.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大. A .3B .4C .5D .69.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.10.下列图案中,是轴对称图形的是( )A .B .C .D .11.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .12.已知a <1,点A (x 1,﹣2)、B (x 2,4)、C (x 3,5)为反比例函数a 1y x-=图象上的三点,则下列结论正 确的是( )A.x1>x2>x3B.x1>x3>x2C.x3>x1>x2D.x2>x3>x1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.14.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____15.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.16.点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是.17.已知反比例函数kyx=的图像经过点(-2017,2018),当0x>时,函数值y随自变量x的值增大而_________.(填“增大”或“减小”)18.用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成________(圆形、正方形两者选一)场在面积较大.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)20.(6分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB 于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由21.(6分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5 a 0.26 18 0.17 14 b8 8 0.16合计50 c我们定义频率=频数抽样人数,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是1850=0.1.(1)统计表中的a、b、c的值;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.22.(8分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC 的高为10米,灯柱BC 与灯杆AB 的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE 的长为13.3米,从D 、E 两处测得路灯A 的仰角分别为α和45°,且tanα=1.求灯杆AB 的长度.23.(8分)如图,圆O 是ABC V 的外接圆,AE 平分BAC ∠交圆O 于点E ,交BC 于点D ,过点E 作直线//l BC .(1)判断直线l 与圆O 的关系,并说明理由;(2)若ABC ∠的平分线BF 交AD 于点F ,求证:BE EF =; (3)在(2)的条件下,若5DE =,3DF =,求AF 的长.24.(10分)如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB 、CD 的延长线分别交于E 、F .(1)证明:△BOE ≌△DOF ;(2)当EF ⊥AC 时,求证四边形AECF 是菱形.25.(10分)已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.26.(12分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.27.(12分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB 上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF 交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.2.C【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.3.D【解析】【分析】过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.【详解】如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,∵O′为圆心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8−2=6, ∴AC=BC=3, ∴OC=8−3=5, ∵⊙O′与x 轴相切, ∴O′D=O′B=OC=5,在Rt △O′BC 中,由勾股定理可得=4, ∴P 点坐标为(4,5), 故选:D. 【点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算. 4.B 【解析】 【分析】根据等腰三角形两底角相等用α表示出∠A 2B 2O ,依此类推即可得到结论. 【详解】∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O =12α, 同理∠A 3B 3O =12×12α=212α,∠A 4B 4O =312α,∴∠A n B n O =n 112-α,∴∠A 10B 10O =9a2,故选B . 【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键. 5.A 【解析】 【分析】根据二次函数的性质和图象可以判断题目中各个小题是否成立. 【详解】 由函数图象可得,a>1,b<1,即a、b异号,故①错误,x=-1和x=5时,函数值相等,故②错误,∵-1522ba-+==2,得4a+b=1,故③正确,由图象可得,当y=-2时,x=1或x=4,故④错误,由图象可得,当-1<x<5时,y<1,故⑤正确,故选A.【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.6.B【解析】【分析】先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.【详解】由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28所以解这个方程组,得所以2△2=a+b+c=-35-2c+24+c+c=-2.故选B.【点睛】本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.7.C【解析】【分析】根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:根据数轴上点的位置得:5<a<10,∴a﹣4>0,a﹣11<0,则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故选:C.【点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.8.C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1.故p(5)最大,故选C.9.A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10.B【解析】【分析】根据轴对称图形的定义,逐一进行判断.【详解】A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.故选B.【点睛】本题考查的是轴对称图形的定义.11.D【解析】【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=1.故选D.【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.12.B【解析】【分析】根据a1yx-=的图象上的三点,把三点代入可以得到x1=﹣12a-,x1=14a-,x3=15a-,在根据a的大小即可解题【详解】解:∵点A(x1,﹣1)、B(x1,4)、C(x3,5)为反比例函数a1yx-=图象上的三点,∴x1=﹣12a-,x1=14a-,x3=15a-,∵a<1,∴a﹣1<0,∴x1>x3>x1.故选B.【点睛】此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5【解析】试题分析:利用根与系数的关系进行求解即可.解:∵x 1,x 2是方程x 2-3x +2=0的两根,∴x 1+ x 2=3b a -=,x 1x 2=2c a=, ∴x 1+x 2+x 1x 2=3+2=5.故答案为:5.14.8个【解析】【分析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【详解】袋中小球的总个数是:2÷14=8(个).故答案为8个.【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.15.85【解析】试题分析:根据网格,利用勾股定理求出AC 的长,AB 的长,以及AB 边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC 面积可以由AC 与BD 乘积的一半来求,利用面积法即可求出BD 的长:根据勾股定理得:22345AC =+=,由网格得:S △ABC =12×2×4=4,且S △ABC =12AC•BD=12×5BD , ∴12×5BD=4,解得:BD=85. 考点:1.网格型问题;2.勾股定理;3.三角形的面积.16.【解析】画树状图为:共有20种等可能的结果数,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15.故答案为1 5 .17.增大【解析】【分析】根据题意,利用待定系数法解出系数的符号,再根据k值的正负确定函数值的增减性.【详解】∵反比例函数kyx=的图像经过点(-2017,2018),∴k=-2017×2018<0,∴当x>0时,y随x的增大而增大.故答案为增大.18.圆形【解析】【分析】根据竹篱笆的长度可知所围成的正方形的边长,进而可计算出所围成的正方形的面积;根据圆的周长公式,可知所围成的圆的半径,进而将圆的面积计算出来,两者进行比较.【详解】围成的圆形场地的面积较大.理由如下:设正方形的边长为a,圆的半径为R,∵竹篱笆的长度为48米,∴4a=48,则a=1.即所围成的正方形的边长为1;2π×R=48,∴R=24π,即所围成的圆的半径为24π,∴正方形的面积S1=a2=144,圆的面积S2=π×(24π)2=576π,∵144<576π,∴围成的圆形场地的面积较大.故答案为:圆形.【点睛】此题主要考查实数的大小的比较在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)5.6(2)货物MNQP应挪走,理由见解析.【解析】【详解】(1)如图,作AD ⊥BC 于点DRt △ABD 中,AD=ABsin45°=42=222在Rt △ACD 中,∵∠ACD=30°∴2 5.6≈即新传送带AC 的长度约为5.6米.(2)结论:货物MNQP 应挪走.在Rt △ABD 中,BD=ABcos45°=42=222在Rt △ACD 中,CD=ACcos30°= 342=26∴CB=CD —BD=(26-22=26-2 2.1≈ ∵PC=PB —CB ≈4—2.1=1.9<2∴货物MNQP 应挪走.20.(1)112y x =+;(2)251544s t t =-+ (0≤t≤3);(3)t=1或2时;四边形BCMN 为平行四边形;t=1时,平行四边形BCMN 是菱形,t=2时,平行四边形BCMN 不是菱形,理由见解析.【解析】【分析】(1)由A 、B 在抛物线上,可求出A 、B 点的坐标,从而用待定系数法求出直线AB 的函数关系式. (2)用t 表示P 、M 、N 的坐标,由等式MN NP MP =-得到函数关系式.(3)由平行四边形对边相等的性质得到等式,求出t .再讨论邻边是否相等.【详解】解:(1)x=0时,y=1,∴点A 的坐标为:(0,1),∵BC ⊥x 轴,垂足为点C (3,0),∴点B 的横坐标为3,当x=3时,y=52, ∴点B 的坐标为(3,52), 设直线AB 的函数关系式为y=kx+b ,1532b k b =⎧⎪⎨+=⎪⎩, 解得,121k b ⎧=⎪⎨⎪=⎩,则直线AB 的函数关系式112y x =+ (2)当x=t 时,y=12t+1, ∴点M 的坐标为(t ,12t+1), 当x=t 时,2517144y t t =-++ ∴点N 的坐标为2517(,1)44t t t -++ 2251715151(1)44244s t t t t t =-++-+=-+ (0≤t≤3); (3)若四边形BCMN 为平行四边形,则有MN=BC , ∴25155=442t t -+, 解得t 1=1,t 2=2,∴当t=1或2时,四边形BCMN 为平行四边形,①当t=1时,MP=32,PC=2, ∴MC=52=MN ,此时四边形BCMN 为菱形, ②当t=2时,MP=2,PC=1,∴,此时四边形BCMN 不是菱形.【点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用. 21.(1)10、0.28、1;(2)见解析;(3)6.4本;(4)264名;【解析】【分析】(1)根据百分比=所占人数总人数计算即可; (2)求出a 组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【详解】(1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1; (2)补全图形如下:(3)所有被调查学生课外阅读的平均本数=105618+714+8850⨯+⨯⨯⨯=6.4(本) (4)该校八年级共有600名学生,该校八年级学生课外阅读7本和8本的总人数有600×14850+=264(名). 【点睛】本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.22.灯杆AB 的长度为2.3米.【解析】【分析】过点A 作AF ⊥CE ,交CE 于点F ,过点B 作BG ⊥AF ,交AF 于点G ,则FG=BC=2.设AF=x 知EF=AF=x 、DF=AF tan ADF ∠=6x ,由DE=13.3求得x=11.4,据此知AG=AF ﹣GF=1.4,再求得∠ABG=∠ABC ﹣∠CBG=30°可得AB=2AG=2.3.【详解】过点A 作AF ⊥CE ,交CE 于点F ,过点B 作BG ⊥AF ,交AF 于点G ,则FG=BC=2.由题意得:∠ADE=α,∠E=45°.设AF=x .∵∠E=45°,∴EF=AF=x .在Rt △ADF 中,∵tan ∠ADF=AF DF ,∴DF=AF tan ADF ∠=6x . ∵DE=13.3,∴x+6x =13.3,∴x=11.4,∴AG=AF ﹣GF=11.4﹣2=1.4. ∵∠ABC=120°,∴∠ABG=∠ABC ﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.答:灯杆AB 的长度为2.3米.【点睛】本题主要考查解直角三角形﹣仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.23.(1)直线l 与O e 相切,见解析;(2)见解析;(3)AF=245. 【解析】【分析】()1连接.OE 由题意可证明BE CE =n n ,于是得到BOE COE ∠=∠,由等腰三角形三线合一的性质可证明OE BC ⊥,于是可证明OE l ⊥,故此可证明直线l 与O e 相切;()2先由角平分线的定义可知ABF CBF ∠=∠,然后再证明CBE BAF ∠=∠,于是可得到EBF EFB ∠=∠,最后依据等角对等边证明BE EF =即可;()3先求得BE 的长,然后证明BED V ∽AEB V ,由相似三角形的性质可求得AE 的长,于是可得到AF 的长.【详解】()1直线l 与O e 相切.理由:如图1所示:连接OE .AE Q 平分BAC ∠,BAE CAE ∴∠=∠.BE CE n n∴=, OE BC ∴⊥.//l BC Q ,OE l ∴⊥.∴直线l 与O e 相切.()2BF Q 平分ABC ∠,ABF CBF ∴∠=∠.又CBE CAE BAE Q ∠=∠=∠,CBE CBF BAE ABF ∴∠+∠=∠+∠.又EFB BAE ABF ∠=∠+∠Q ,EBF EFB ∴∠=∠.BE EF ∴=.()3由()2得8BE EF DE DF ==+=.DBE BAE ∠=∠Q ,DEB BEA ∠=∠,BED ∴V ∽AEB V .DE BE BE AE ∴=,即588AE =,解得;645AE =. 6424855AF AE EF ∴=-=-=. 故答案为:(1)直线l 与O e 相切,见解析;(2)见解析;(3)AF=245. 【点睛】本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得EBF EFB ∠=∠是解题的关键.24.(1)(2)证明见解析【解析】【分析】(1)根据矩形的性质,通过“角角边”证明三角形全等即可;(2)根据题意和(1)可得AC 与EF 互相垂直平分,所以四边形AECF 是菱形.【详解】(1)证明:∵四边形ABCD 是矩形,∴OB=OD ,AE ∥CF ,∴∠E=∠F (两直线平行,内错角相等),在△BOE 与△DOF 中, E F BOE DOF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS ).(2)证明:∵四边形ABCD 是矩形,∴OA=OC ,又∵由(1)△BOE ≌△DOF 得,OE=OF ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形.25.解:(1)如图,△A 1B 1C 1即为所求,C 1(2,-2).(2)如图,△A 2BC 2即为所求,C 2(1,0),△A 2BC 2的面积:10【解析】【详解】分析:(1)根据网格结构,找出点A 、B 、C 向下平移4个单位的对应点1A 、1B 、1C 的位置,然后顺次连接即可,再根据平面直角坐标系写出点1C 的坐标;(2)延长BA 到2A 使A 2A =AB ,延长BC 到2C ,使C 2C =BC ,然后连接A 2C 2即可,再根据平面直角坐标系写出2C 点的坐标,利用△2A B 2C 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.本题解析:(1)如图,△A 1B 1C 1即为所求,C 1(2,-2)(2)如图,△2A B 2C 为所求,2C (1,0),△2A B 2C 的面积: 6×4−12×2×6−12×2×4−12×2×4=24−6−4−4=24−14=10,26.见解析,49. 【解析】【分析】 画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=49. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 27.(1)AE=DF ,AE ⊥DF ,理由见解析;(2)成立,2或2;(3)51【解析】试题分析:(1)根据正方形的性质,由SAS 先证得△ADE ≌△DCF .由全等三角形的性质得AE=DF ,∠DAE=∠CDF ,再由等角的余角相等可得AE ⊥DF ;(2)有两种情况:①当AC=CE 时,设正方形ABCD 的边长为a ,由勾股定理求出2a 即可;②当AE=AC 时,设正方形的边长为a ,由勾股定理求出2a ,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a 即可;(3)由(1)(2)知:点P 的路径是一段以AD 为直径的圆,设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最大,再由勾股定理可得QC 的长,再求CP 即可.试题解析:(1)AE=DF ,AE ⊥DF ,理由是:∵四边形ABCD 是正方形,∴AD=DC ,∠ADE=∠DCF=90°,∵动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动,∴DE=CF ,在△ADE 和△DCF 中 AD DC ADE DCF DE CF =⎧⎪∠=∠⎨⎪=⎩,∆≅∆,∴ADE DCF∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的结论还成立,有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得,222==+=,AC CE a a a则:2:2==;CE CD a a②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:222==+=,AC AE a a a∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即22;(3)∵点P 在运动中保持∠APD=90°,∴点P 的路径是以AD 为直径的圆,如图3,设AD 的中点为Q ,连接CQ 并延长交圆弧于点P ,此时CP 的长度最大,∵在Rt △QDC 中,2222215QC CD QD =+=+=∴51CP QC QP =+=,即线段CP 51.点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.。

云南省丽江市2019-2020学年中考第四次模拟数学试题含解析

云南省丽江市2019-2020学年中考第四次模拟数学试题含解析

云南省丽江市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.实数a ,b 在数轴上对应的点的位置如图所示,则正确的结论是( )A .a+b <0B .a >|﹣2|C .b >πD .0a b< 2.如图,AB 是⊙O 的弦,半径OC ⊥AB 于D ,若CD=2,⊙O 的半径为5,那么AB 的长为( )A .3B .4C .6D .83.如图,把一个矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。

A .70°B .65°C .50°D .25°410﹣1的值在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.下列计算正确的是( )A .a+a=2aB .b 3•b 3=2b 3C .a 3÷a=a 3D .(a 5)2=a 7 6.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34 7.如图,在四边形ABCD 中,AD ∥BC ,∠ABC+∠DCB=90°,且BC=2AD ,分别以AB 、BC 、DC 为边向外作正方形,它们的面积分别为S 1、S 2、S 1.若S 2=48,S 1=9,则S 1的值为( )A.18 B.12 C.9 D.18.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为A.1或−2 B.−或C.D.19.14-的绝对值是()A.﹣4 B.14C.4 D.0.410.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)11.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E∠=o,90C o∠=,45A∠=o,30D∠=o,则12∠+∠等于()A.150o B.180o C.210o D.270o12.下列计算正确的是()A.3a2﹣6a2=﹣3B.(﹣2a)•(﹣a)=2a2C .10a 10÷2a 2=5a 5D .﹣(a 3)2=a 6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点D 在ABC ∆的边BC 上,已知点E 、点F 分别为ABD ∆和ADC ∆的重心,如果12BC =,那么两个三角形重心之间的距离EF 的长等于________.14.如图,在△ABC 中,DE ∥BC ,1=2AD DB ,则ADE BCED V 的面积四边形的面积=_____.15.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长____cm .16.计算20180(1)(32)---=_____.17.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.18.当a ,b 互为相反数,则代数式a 2+ab ﹣2的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知BD 平分∠ABF ,且交AE 于点D .(1)求作:∠BAE 的平分线AP (要求:尺规作图,保留作图痕迹,不写作法);(2)设AP 交BD 于点O ,交BF 于点C ,连接CD ,当AC ⊥BD 时,求证:四边形ABCD 是菱形.20.(6分)先化简,再求值:22222+b a b a b a a ab b a b a -+÷--+-,其中,a 、b 满足2428a b a b -=-⎧⎨+=⎩. 21.(6分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C 所对圆心角的度数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.22.(8分)如图,经过原点的抛物线y=﹣x 2+2mx (m >0)与x 轴的另一个交点为A ,过点P (1,m )作直线PA ⊥x 轴于点M ,交抛物线于点B .记点B 关于抛物线对称轴的对称点为C (点B 、C 不重合),连接CB 、CP .(I )当m=3时,求点A 的坐标及BC 的长;(II )当m >1时,连接CA ,若CA ⊥CP ,求m 的值;(III )过点P 作PE ⊥PC ,且PE=PC ,当点E 落在坐标轴上时,求m 的值,并确定相对应的点E 的坐标.23.(8分)如图,已知AB 是O e 的直径,点C 、D 在O e 上,60D ∠=o 且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长;()2若OE 的延长线交O e 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S .24.(10分)如图,一次函数y=kx+b (k 、b 为常数,k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=1.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.25.(10分)先化简,22211121x x xx xx x--+⋅-++,其中x=12.26.(12分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)27.(12分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案.【详解】a=﹣2,2<b<1.A.a+b<0,故A不符合题意;B.a<|﹣2|,故B不符合题意;C.b<1<π,故C不符合题意;D.ab<0,故D符合题意;故选D.【点睛】本题考查了实数与数轴,利用有理数的运算是解题关键.2.D【解析】【分析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.【详解】连接OA.∵⊙O的半径为5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=12 AB;在直角三角形ODC中,根据勾股定理,得22OA OD=4,∴AB=1.【点睛】本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.3.C【解析】【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【详解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故选:C.【点睛】此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.4.B【解析】【分析】<<.【详解】<<,∴34<<∴213﹣1的值在2和3之间.故选B.【点睛】的大小,在确定答案的范围.5.A【解析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A.a+a=2a ,故本选项正确;B.336 b b b ⋅=,故本选项错误;C.32a a a ÷= ,故本选项错误;D.525210()a a a ⨯==,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.6.B【解析】【分析】【详解】解:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+, 已知关于x 的方程333x m m x x++--=3的解为正数, 所以﹣2m+9>0,解得m <92, 当x=3时,x=292m -+=3,解得:m=32, 所以m 的取值范围是:m <92且m≠32. 故答案选B .7.D【解析】【分析】 过A 作AH ∥CD 交BC 于H ,根据题意得到∠BAE=90°,根据勾股定理计算即可.【详解】∵S 2=48,∴A 作AH ∥CD 交BC 于H ,则∠AHB=∠DCB .∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD=23,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故选D.【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.8.D【解析】【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-=-1,∵当x≥2时,y随x的增大而增大,∴a>0,∵-2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D.【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.9.B【解析】分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.详解:因为-14的相反数为14所以-14的绝对值为14.故选:B点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.10.A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选A.点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.11.C【解析】【分析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:1D DOA ∠∠∠=+Q ,2E EPB ∠∠∠=+,DOA COP ∠∠=Q ,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++=D E 180C ∠∠∠++-o=309018090210++-=o o o o o ,故选C .【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.12.B【解析】【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A ,由合并同类项法则可得3a 2﹣6a 2=﹣3a 2,不正确;选项B ,单项式乘单项式的运算可得(﹣2a )•(﹣a )=2a 2,正确;选项C ,根据整式的除法可得10a 10÷2a 2=5a 8,不正确; 选项D ,根据幂的乘方可得﹣(a 3)2=﹣a 6,不正确.故答案选B .考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4【解析】【分析】连接AE 并延长交BD 于G ,连接AF 并延长交CD 于H ,根据三角形的重心的概念可得12DG BD =,12DH CD =,2AE GE =,2AF HF =,即可求出GH 的长,根据对应边成比例,夹角相等可得EAF GAH ∆∆∽,根据相似三角形的性质即可得答案.【详解】如图,连接AE 并延长交BD 于G ,连接AF 并延长交CD 于H ,∵点E 、F 分别是ABD ∆和ACD ∆的重心, ∴12DG BD =,12DH CD =,2AE GE =,2AF HF =, ∵12BC =, ∴111()126222GH DG DH BD CD BC =+=+==⨯=, ∵2AE GE =,2AF HF =,∴23AE AF AG AH ==, ∵EAF GAH ∠=∠,∴EAF GAH ∆∆∽,∴23EF AE GH AG ==, ∴4EF =,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.14.18【解析】【分析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.【详解】解:∵DE ∥BC ,AD 1=DB 2, ∴AD 1=AB 3, 由平行条件易证△ADE ~△ABC,∴S △ADE :S △ABC =1:9,∴ADE S ADE BCED S ABC S ADE V V V V 的面积四边形的面积=-=18. 【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.【解析】试题解析:因为正方形AECF 的面积为50cm 2,所以10AC cm ==,因为菱形ABCD 的面积为120cm 2, 所以21202410BD cm ⨯==,所以菱形的边长13.cm == 故答案为13.16.0【解析】分析:先计算乘方、零指数幂,再计算加减可得结果.详解:())0201812--=1-1=0故答案为0.点睛:零指数幂成立的条件是底数不为0.17.34【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=34. 故其概率为:34. 【点睛】 本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.18.﹣1.【解析】由已知易得:a+b=0,再把代数式a1+ab-1化为为a(a+b)-1即可求得其值了.详解:∵a与b互为相反数,∴a+b=0,∴a1+ab-1=a(a+b)-1=0-1=-1.故答案为:-1.点睛:知道“互为相反数的两数的和为0”及“能够把a1+ab-1化为为a(a+b)-1”是正确解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析:(2)见解析.【解析】试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;(2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.试题解析:(1)如图所示:(2)如图:在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.考点:1.菱形的判定;2.作图—基本作图.20.3 5【解析】【分析】先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得.【详解】原式=()2()•()a b a b a b aa b a b a b+----++,=a b aa b a b+-++,=ba b+,解方程组2428a ba b--⎧⎨+⎩==得23ab⎧⎨⎩==,所以原式=33=2+35.【点睛】本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则.21.(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72°;(4)14.【解析】试题分析:(1)用B的频数除以B所占的百分比即可求得结论;(2)分别求得C的频数及其所占的百分比即可补全统计图;(3)算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;(4)列出树形图即可求得结论.试题解析:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图;(3)180100%30%600⨯=,360°×(1-10%-30%-40%)=72°.(4)如图;(列表方法略,参照给分).P(C粽)=31 124.答:他第二个吃到的恰好是C粽的概率是14.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.22.(I)4;(II)32(III)(2,0)或(0,4)【解析】【分析】(I)当m=3时,抛物线解析式为y=-x2+6x,解方程-x2+6x=0得A(6,0),利用对称性得到C(5,5),从而得到BC的长;(II)解方程-x2+2mx=0得A(2m,0),利用对称性得到C(2m-1,2m-1),再根据勾股定理和两点间的距离公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;(III)如图,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,则根据P点坐标得到2m-2=m,解得m=2,再计算出ME=1得到此时E点坐标;作PH⊥y轴于H,如图,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后计算出HE′得到E′点坐标.【详解】解:(I)当m=3时,抛物线解析式为y=﹣x2+6x,当y=0时,﹣x2+6x=0,解得x1=0,x2=6,则A(6,0),抛物线的对称轴为直线x=3,∵P(1,3),∴B(1,5),∵点B关于抛物线对称轴的对称点为C∴C(5,5),∴BC=5﹣1=4;(II)当y=0时,﹣x2+2mx=0,解得x1=0,x2=2m,则A(2m,0),B(1,2m﹣1),∵点B关于抛物线对称轴的对称点为C,而抛物线的对称轴为直线x=m,∴C(2m﹣1,2m﹣1),∵PC⊥PA,∴PC2+AC2=PA2,∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,整理得2m2﹣5m+3=0,解得m1=1,m2=32,即m的值为32;(III)如图,∵PE⊥PC,PE=PC,∴△PME≌△CBP,∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,而P(1,m)∴2m﹣2=m,解得m=2,∴ME=m﹣1=1,∴E(2,0);作PH⊥y轴于H,如图,易得△PHE′≌△PBC,∴PH=PB=m﹣1,HE′=BC=2m﹣2,而P(1,m)∴m﹣1=1,解得m=2,∴HE′=2m﹣2=2,∴E′(0,4);综上所述,m的值为2,点E的坐标为(2,0)或(0,4).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用全等三角形的知识解决线段相等的问题;理解坐标与图形性质,记住两点间的距离公式.23.(1)OE=32;(2)阴影部分的面积为32【解析】【分析】(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.【详解】解:(1) ∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE // BC ,又∵点O 是AB 中点,∴OE 是△ABC 的中位线,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=12 BC=32; (2)连接OC ,∵∠D=60°,∴∠AOC=120°,∵OF ⊥AC ,∴AE=CE ,¶AF =¶CF, ∴∠AOF=∠COF=60°,∴△AOF 为等边三角形,∴AF=AO=CO ,∵在Rt △COE 与Rt △AFE 中,AF CO AE CE=⎧⎨=⎩, ∴△COE ≌△AFE ,∴阴影部分的面积=扇形FOC 的面积,∵S 扇形FOC =2603360π⨯=32π. ∴阴影部分的面积为32π.【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.24.(1)y=﹣2x+1;y=﹣;(2)140;(3)x≥10,或﹣4≤x <0;【解析】【分析】(1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C 的坐标,进而求出反比例函数的解析式.(2)联立方程组求解出交点坐标即可.(3)观察函数图象,当函数y=kx+b的图像处于下方或与其有重合点时,x的取值范围即为的解集.【详解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x轴,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴点C坐标为(﹣4,20),∴n=xy=﹣80.∴反比例函数解析式为:y=﹣,把点A(6,0),B(0,1)代入y=kx+b得:,解得:.∴一次函数解析式为:y=﹣2x+1,(2)当﹣=﹣2x+1时,解得,x1=10,x2=﹣4,当x=10时,y=﹣8,∴点E坐标为(10,﹣8),∴S△CDE=S△CDA+S△EDA=.(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象,∴由图象得,x≥10,或﹣4≤x<0.【点睛】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图像解不等式.25.2213x ,x + 【解析】【分析】根据分式的化简方法先通分再约分,然后带入求值.【详解】 解:22211121x x x x x x x --+⋅-++ 2(1)(1)(1)1(1)1111111121x x x x x x xx x x x x x x x +--=+⋅+--=++-+=+++=+ 当12x =时,2213x x =+. 【点睛】此题重点考查学生对分式的化简的应用,掌握分式的化简方法是解题的关键.26.(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y =700x ,当10<x≤1时,y =﹣5x 2+750x ,当x >1时,y =300x ;(3)公司应将最低销售单价调整为2875元.【解析】【分析】(1)设件数为x ,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;(2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x 的值,确定销售单价.【详解】(1)设商家一次购买这种产品x 件时,销售单价恰好为2800元.由题意得:3200﹣5(x ﹣10)=2800,解得:x =1.答:商家一次购买这种产品1件时,销售单价恰好为2800元;(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,由题意得:当0≤x≤10时,y =(3200﹣2500)x =700x ,当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,当x>1时,y=(2800﹣2500)•x=300x;(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,函数y=700x,y=300x均是y随x增大而增大,而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,最低价为3200﹣5•(75﹣10)=2875元,答:公司应将最低销售单价调整为2875元.【点睛】本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.27.1.【解析】试题分析:根据相似三角形的判定与性质,可得答案.试题解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴,∴DE===1.考点:相似三角形的判定与性质.。

云南省丽江市2019-2020学年中考四诊数学试题含解析

云南省丽江市2019-2020学年中考四诊数学试题含解析

云南省丽江市2019-2020学年中考四诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在ABCD Y 中,E 为边CD 上一点,将ADE V 沿AE 折叠至AD'E △处,'AD 与CE 交于点F ,若52B ∠=︒,20DAE ∠=︒,则'FED ∠的大小为( )A .20°B .30°C .36°D .40°2.计算(x -2)(x+5)的结果是A .x 2+3x+7B .x 2+3x+10C .x 2+3x -10D .x 2-3x -103.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是( )A .B .C .D .4.若关于x 的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为( )A .1-B .1C .22-或D .31-或5.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x =的图象上,且点B 在以O 点为圆心,OA 为半径的O e 上,则k 的值为( )A .34-B .1-C .32-D .2-6.反比例函数y =m x的图象如图所示,以下结论:①常数m <﹣1;②在每个象限内,y 随x 的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h <k ;④若点P(x ,y)在上,则点P′(﹣x ,﹣y)也在图象.其中正确结论的个数是( )A.1 B.2 C.3 D.47.如图,A(4,0),B(1,3),以OA、OB为边作□OACB,反比例函数kyx(k≠0)的图象经过点C.则下列结论不正确的是()A.□OACB的面积为12B.若y<3,则x>5C.将□OACB向上平移12个单位长度,点B落在反比例函数的图象上.D.将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上.8.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.49.-sin60°的倒数为( )A.-2 B.12C3D2310.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A.B.C.D.11.如图,四边形ABCD内接于⊙O,F是¶CD上一点,且¶¶,连接CF并延长交AD的延长线DF BC于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°12.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为______.14.若a﹣3有平方根,则实数a的取值范围是_____.15.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.16.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于__________.17.如图,在Rt△ABC中,AC=4,BC=33,将Rt△ABC以点A为中心,逆时针旋转60°得到△ADE,则线段BE的长度为_____.18.已知21xy=⎧⎨=⎩是二元一次方程组14{13mx nynx my+=-=的解,则m+3n的立方根为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,DEnEF=,试作出分别以mn,nm为两根且二次项系数为6的一个一元二次方程.20.(6分)如图所示,点B 、F 、C 、E 在同一直线上,AB ⊥BE ,DE ⊥BE ,连接AC 、DF ,且AC=DF ,BF=CE ,求证:AB=DE .21.(6分)已知关于x 的一元二次方程x 2﹣(m+3)x+m+2=1.(1)求证:无论实数m 取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m 的值.22.(8分)如图,在菱形ABCD 中,作⊥BE AD 于E ,BF ⊥CD 于F ,求证:AE CF =.23.(8分)求抛物线y=x 2+x ﹣2与x 轴的交点坐标.24.(10分)如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x 轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0).求该抛物线的解析式;求梯形COBD 的面积.25.(10分)如图,在等边三角形ABC 中,点D ,E 分别在BC, AB 上,且∠ADE=60°.求证:△ADC~△DEB .26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.27.(12分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.请判断:AF与BE的数量关系是,位置关系;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,由三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【详解】∵四边形ABCD 是平行四边形,∴D B 52∠∠==︒,由折叠的性质得:D'D 52∠∠==︒,EAD'DAE 20∠∠==︒,∴AEF D DAE 522072∠∠∠=+=︒+︒=︒,AED'180EAD'D'108∠∠∠=︒--=︒, ∴FED'1087236∠=︒-︒=︒;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF 和∠AED′是解决问题的关键.2.C【解析】【分析】根据多项式乘以多项式的法则进行计算即可.【详解】故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.3.C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢。

云南省丽江市2019-2020学年中考数学四月模拟试卷含解析

云南省丽江市2019-2020学年中考数学四月模拟试卷含解析

云南省丽江市2019-2020学年中考数学四月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式组的解集在数轴上表示正确的是( )A .B .C .D .2.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-= 3.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A .11910813x y y x x y =⎧⎨+-+=⎩()() B .10891311y x x y x y +=+⎧⎨+=⎩C .91181013x y x y y x ()()=⎧⎨+-+=⎩D .91110813x y y x x y =⎧⎨+-+=⎩()() 4.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是( )A .B .C.D.5.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于12AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是()A.7 B.10 C.11 D.126.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC 的大小是()A.55°B.60°C.65°D.70°8.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(p a)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是()A.B.C.D.9.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠110.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )A .1种B .2种C .3种D .4种11.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x = C .11x =-,23x = D .13x =-,21x =12.PM2.5是指大气中直径小于或等于2.5μm (1μm=0.000001m )的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯二、填空题:(本大题共6个小题,每小题4分,共24分.)13.边长为6的正六边形外接圆半径是_____.14.抛物线 221y x =-的顶点坐标是________.15.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.16.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.17.关于x 的一元二次方程x 2+4x ﹣k=0有实数根,则k 的取值范围是__________.18.二次根式1a + 中的字母a 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=0.4m ,EF=0.2m ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,求树高.20.(6分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC 中,AC =6,BC =3,∠ACB =30°,试判断△ABC 是否是”等高底”三角形,请说明理由.(1)问题探究:如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求ACBC的值.(3)应用拓展:如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的2倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.21.(6分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.22.(8分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)23.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.24.(10分)对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时,①在点()11,1P ,()20,2P ,322,22P ⎛⎫- ⎪ ⎪⎝⎭中,直线m 的平行点是______; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线3y x =的平行点,直接写出n 的取值范围.25.(10分)如图,点A 是直线AM 与⊙O 的交点,点B 在⊙O 上,BD ⊥AM ,垂足为D ,BD 与⊙O 交于点C ,OC 平分∠AOB ,∠B =60°.求证:AM 是⊙O 的切线;若⊙O 的半径为4,求图中阴影部分的面积(结果保留π和根号).26.(12分)先化简,再求值:2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中x =-5 27.(12分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A :菜包、B :面包、C :鸡蛋、D :油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】 试题分析:,由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:,故选D . 考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.2.C【解析】【分析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项.【详解】A 、原式6a =,故错误;B 、原式5a =,故错误;C 、利用合并同类项的知识可知该选项正确;D 、cos600.5︒=,cos600.50︒-=,所以原式无意义,错误,故选C .【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大.3.D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x 两,每枚白银重y 两,由题意得:91110813x y y x x y =⎧⎨+-+=⎩()(), 故选:D .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系. 4.B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.故选:B.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.B【解析】∵四边形ABCD是平行四边形,∴AD=BC=4,CD=AB=6,∵由作法可知,直线MN是线段AC的垂直平分线,∴AE=CE,∴AE+DE=CE+DE=AD,∴△CDE的周长=CE+DE+CD=AD+CD=4+6=1.故选B.6.B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【详解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.【点睛】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.7.C【解析】连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.8.C【解析】【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.【详解】∵pv=k(k为常数,k>0)∴p=kv(p>0,v>0,k>0),故选C.【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.9.D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.10.B【解析】【分析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程. 11.C【解析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.12.C【解析】试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.考点:用科学计数法计数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6【解析】【分析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.【详解】解:正6边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为6的正六边形外接圆半径是6,故答案为:6.【点睛】本题考查了正多边形和圆,得出正六边形的外接圆半径和正六边形的边长将组成一个等边三角形是解题的关键.14.(0,-1)【解析】∵a=2,b=0,c=-1,∴-b 2a =0,2414ac b a-=- , ∴抛物线221y x =-的顶点坐标是(0,-1),故答案为(0,-1).15.34【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=3 4 .故其概率为:34.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.16.15【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π.故答案为15π.考点:圆锥的计算.17.k≥﹣1【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+1x-k=0有实数根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案为k≥-1.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.18.a≥﹣1.【解析】【分析】根据二次根式的被开方数为非负数,可以得出关于a的不等式,继而求得a的取值范围.【详解】由分析可得,a+1≥0,解得:a≥﹣1.【点睛】熟练掌握二次根式被开方数为非负数是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.树高为 5.5 米【解析】【分析】根据两角相等的两个三角形相似,可得 △DEF ∽△DCB ,利用相似三角形的对边成比例,可得DE EF DC CB=, 代入数据计算即得BC 的长,由 AB =AC+BC ,即可求出树高. 【详解】∵∠DEF =∠DCB =90°,∠D =∠D ,∴△DEF ∽△DCB∴ DE EF DC CB=, ∵DE =0.4m ,EF =0.2m ,CD =8m , ∴0.40.28CB=, ∴CB =4(m ),∴AB =AC+BC =1.5+4=5.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.20.(1)△ABC 是“等高底”三角形;(1;(3)CD ,,1. 【解析】【分析】(1)过A 作AD ⊥BC 于D ,则△ADC 是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:132AD AC ==,根据“等高底”三角形的概念即可判断. (1)点B 是'AA C V 的重心,得到2BC BD =,设BD x =,则23AD BC x CD x ===,,根据勾股定理可得AC =,即可求出它们的比值.(3)分两种情况进行讨论:①当AB =时和②当AC =时.【详解】(1)△ABC 是“等高底”三角形;理由:如图1,过A 作AD ⊥BC 于D ,则△ADC 是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6, ∴132AD AC ==, ∴AD=BC=3,即△ABC 是“等高底”三角形;(1)如图1,∵△ABC 是“等高底”三角形,BC 是“等底”,∴AD BC =,∵△ABC 关于BC 所在直线的对称图形是'A BC V ,∴∠ADC=90°,∵点B 是'AA C V 的重心,∴2BC BD =,设BD x =,则23AD BC x CD x ===,, 由勾股定理得13AC x =,∴1313.AC x BC == (3)①当2AB BC =时,Ⅰ.如图3,作AE ⊥BC 于E ,DF ⊥AC 于F ,∵“等高底”△ABC 的“等底”为BC ,l 1∥l 1,l 1与l 1之间的距离为1,2AB BC =.∴222BC AE AB ,,===∴BE=1,即EC=4,∴25AC ,= ∵△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C ,∴∠DCF=45°,设DF CF x ==,∵l 1∥l 1,∴ACE DAF ∠=∠,∴1,2DF AE AF CE == 即2AF x =, ∴325AC x ==,∴225,210,33x CD x === Ⅱ.如图4,此时△ABC 等腰直角三角形,∵△ABC 绕点C 按顺时针方向旋转45°得到''A B C V ,∴ACD V 是等腰直角三角形,∴222CD AC ==. ②当2AC BC =时,Ⅰ.如图5,此时△ABC 是等腰直角三角形,∵△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C ,∴1'A C l ⊥,∴2CD AB BC ===;Ⅱ.如图6,作AE BC ⊥于E ,则AE BC =,∴22AC BC ==,∴45ACE ∠=︒,∴△ABC 绕点C 按顺时针方向旋转45°,得到''A B C V 时,点A'在直线l 1上,∴'A C ∥l 1,即直线'A C 与l 1无交点,综上所述,CD 210,22,2.3 【点睛】属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.21. (1) 反比例函数的解析式为y=6x ,一次函数的解析式为y=﹣12x+1.(2)2. 【解析】【分析】(1)根据反比例函数y 2=m x的图象过点A (2,3),利用待定系数法求出m ,进而得出B 点坐标,然后利用待定系数法求出一次函数解析式;(2)设直线y 1=kx+b 与x 轴交于C ,求出C 点坐标,根据S △AOB =S △AOC ﹣S △BOC ,列式计算即可.【详解】(1)∵反比例函数y 2=m x 的图象过A (2,3),B (6,n )两点,∴m=2×3=6n ,∴m=6,n=1,∴反比例函数的解析式为y=6x,B 的坐标是(6,1). 把A (2,3)、B (6,1)代入y 1=kx+b ,得:2361k b k b +=⎧⎨+=⎩,解得:124k b ⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣12x+1. (2)如图,设直线y=﹣12x+1与x 轴交于C ,则C (2,0). S △AOB =S △AOC ﹣S △BOC =12×2×3﹣12×2×1=12﹣1=2.【点睛】本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△AOC﹣S△BOC是解题的关键.22.这棵树CD的高度为8.7米【解析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BCsin∠CBD=10×32=53≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.考点:解直角三角形的应用23.(1)y=x+1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.【解析】试题分析:(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1),BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.试题解析:(1)∵点A与点B关于y轴对称,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函数的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函数的解析式:y=x+1.(2)∵点A与点B关于y轴对称,∴OA=OB∵PB丄x轴于点B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形∵点C为线段AP的中点,∴BC=,∴BC和PC是菱形的两条边由y=x+1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,∴点D (8,1), BP ⊥CD∴PE =BE =1,∴CE =DE =4,∴PB 与CD 互相垂直平分,∴四边形BCPD 为菱形.∴点D (8,1)即为所求.24.(1)①2P ,3P ;②2,22,(22,2--,(22,2,(2,22--;(2)4343n ≤≤. 【解析】【分析】(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1.如图2,当点B 在原点下方时,同法可求;(2)如图,直线OE 的解析式为3y x =,设直线BC//OE 交x 轴于C ,作CD ⊥OE 于D. 设⊙A 与直线BC 相切于点F ,想办法求出点A 的坐标,再根据对称性求出左侧点A 的坐标即可解决问题;【详解】解:(1)①因为P 2、P 3到直线y =x 的距离为1,所以根据平行点的定义可知,直线m 的平行点是2P ,3P ,故答案为2P ,3P .②解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线. 设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH =1.由直线m 的表达式为y =x ,可知∠OAB =∠OBA =45°. 所以2OB =. 直线AB 与⊙O 的交点即为满足条件的点Q .连接1OQ ,作1Q N y ⊥轴于点N ,可知110OQ =.在1Rt OHQ ∆中,可求13HQ =.所以12BQ =.在1Rt BHQ ∆中,可求12NQ NB ==. 所以22ON =.所以点1Q 的坐标为()2,22. 同理可求点2Q 的坐标为()22,2--.如图2,当点B 在原点下方时,可求点3Q 的坐标为(22,2点4Q 的坐标为(2,22-, 综上所述,点Q 的坐标为2,22,(22,2--,(22,2,(2,22-. (2)如图,直线OE 的解析式为3y x =,设直线BC ∥OE 交x 轴于C ,作CD ⊥OE 于D .当CD=1时,在Rt△COD中,∠COD=60°,∴3sin603CDOC==︒,设⊙A与直线BC相切于点F,在Rt△ACE中,同法可得23 AC=,∴43 OA=∴43 n=根据对称性可知,当⊙A在y轴左侧时,433n=-,观察图象可知满足条件的N的值为:434333n-≤≤.【点睛】此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.25.(1)见解析;(2)8 633π【解析】【分析】(1)根据题意,可得△BOC的等边三角形,进而可得∠BCO=∠BOC,根据角平分线的性质,可证得BD∥OA,根据∠BDM=90°,进而得到∠OAM=90°,即可得证;(2)连接AC,利用△AOC是等边三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的长,则S阴影=S梯形OADC﹣S扇形OAC即可得解.【详解】(1)证明:∵∠B=60°,OB=OC,∴△BOC是等边三角形,∴∠1=∠3=60°,∵OC平分∠AOB,∴∠1=∠2,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA为⊙O的半径,∴AM是⊙O的切线(2)解:连接AC,∵∠3=60°,OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴CD=2,∴AD=23,∴S阴影=S梯形OADC﹣S扇形OAC=12×(4+2)×23﹣26048=63-3603gππ.【点睛】本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算.26.13x-,-18【解析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.详解:2569 122x xx x-+⎛⎫-÷⎪++⎝⎭()23223x x x x -+=⨯+- 13x =-. 当5x =-时,原式18=-. 点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点. 27.(1)不可能;(2)16. 【解析】【分析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21126=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式m n计算事件A 或事件B 的概率.。

云南省丽江市2019-2020学年中考数学第四次调研试卷含解析

云南省丽江市2019-2020学年中考数学第四次调研试卷含解析

云南省丽江市2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-3.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为()A.512B.1213C.513D.13124.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF 的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:15.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.6.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为()A.B.C.D.±7.计算tan30°的值等于()A.B.C.D.8.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是()A.中位数不相等,方差不相等B.平均数相等,方差不相等C.中位数不相等,平均数相等D.平均数不相等,方差相等9.方程2x2﹣x﹣3=0的两个根为()A.x1=32,x2=﹣1 B.x1=﹣32,x2=1 C.x1=12,x2=﹣3 D.x1=﹣12,x2=310.cos60°的值等于()A.1 B.12C.22D.311.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27 B.36 C.27或36 D.1812.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A =24°,则∠BDC的度数为()A.42°B.66°C.69°D.77°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于_______.14.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B 饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.15.当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为_____.16.如图,点,A B是反比例函数(0,0)kyk xx=>>图像上的两点(点A在点B左侧),过点A 作AD x⊥轴于点D ,交OB于点E,延长AB 交x轴于点C,已知2125OABADCSS∆∆=,145OAES∆=,则k的值为__________.17.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.摸球的次数n 100 150 200 500 800 1000摸到白球的次数m 58 96 116 295 484 601摸到白球的频率m/n 0.58 0.64 0.58 0.59 0.605 0.601 18.已知AB=AC,tanA=2,BC=5,则△ABC的面积为_______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.20.(6分)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.求证:△ABF≌△CDE;如图,若∠1=65°,求∠B的大小.21.(6分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)22.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.23.(8分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.24.(10分)如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹) (2)连接AP 当B Ð为多少度时,AP 平分CAB ∠.25.(10分)如图,某校准备给长12米,宽8米的矩形ABCD 室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形PQFG ),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点O 为矩形和菱形的对称中心,OP AB P ,2OQ OP =,12AE PM =,为了美观,要求区域Ⅱ的面积不超过矩形ABCD 面积的18,若设OP x =米.甲 乙 丙单价(元/米2) 2m 5n 2m(1)当3x =时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当x 为多少时,室内光线亮度最好,并求此时白色区域的面积.②三种瓷砖的单价列表如下,,m n 均为正整数,若当2x =米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时m =__________,n =__________. 26.(12分)先化简,再求值:a b a -÷(a ﹣22ab b a-),其中a=3tan30°+1,2cos45°. 27.(12分)如图,AB 是⊙O 的直径,弧CD ⊥AB ,垂足为H ,P 为弧AD 上一点,连接PA 、PB ,PB交CD于E.(1)如图(1)连接PC、CB,求证:∠BCP=∠PED;(2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=12∠F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=25,求⊙O的直径AB.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.3.A【解析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.4.B【解析】【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.6.D【解析】【分析】根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组,求出方程组的解即可.【详解】解:设一次函数的解析式为:y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组,由①得:,把③代入②得:,解得:.故选:D.【点睛】本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.7.C【解析】tan30°=.故选C.8.D【解析】【分析】分别利用平均数以及方差和中位数的定义分析,进而求出答案.【详解】2、3、4的平均数为:13(2+3+4)=3,中位数是3,方差为:13[(2﹣3)2+(3﹣3)2+(3﹣4)2]=23;3、4、5的平均数为:13(3+4+5)=4,中位数是4,方差为:13[(3﹣4)2+(4﹣4)2+(5﹣4)2]=23;故中位数不相等,方差相等.故选:D.【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法. 9.A【解析】【分析】利用因式分解法解方程即可.【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=32,x2=-1.故选A.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).10.A【解析】【分析】根据特殊角的三角函数值直接得出结果.【详解】解:cos60°=1 2故选A.【点睛】识记特殊角的三角函数值是解题的关键.11.B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(3)当其他两条边中有一个为3时,将x=3代入原方程,得:33-33×3+k=0解得:k=37将k=37代入原方程,得:x3-33x+37=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(3)当3为底时,则其他两边相等,即△=0,此时:344-4k=0解得:k=3将k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为3.故选B.考点:3.等腰三角形的性质;3.一元二次方程的解.12.C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.43π 【解析】【分析】【详解】分析:题图中阴影部分为弓形与三角形的和,因此求出扇形AOC 的面积即可,所以关键是求圆心角的度数.本题考查组合图形的求法.扇形面积公式等.详解:连结OC ,∵△ABC 为正三角形,∴∠AOC=3603︒=120°, ∵AOB AOC S S =V V , ∴图中阴影部分的面积等于AOC S 扇形∴S 扇形AOC =22120243603603n r πππ⋅==即S 阴影=43πcm 2.故答案为43π. 点睛:本题考查了等边三角形性质,扇形的面积,三角形的面积等知识点的应用,关键是求出∠AOC 的度数,主要考查学生综合运用定理进行推理和计算的能力.14.950【解析】【分析】设工作日期间C 饮料数量为x 瓶,则B 饮料数量为2x 瓶,A 饮料数量为4x 瓶,得到工作日期间一天的销售收入为:8x+6x+5x =19x 元,和周六销售销售收入为:12x+9.6x+7.5x =29.1x 元,再结合题意得到10.1x﹣(5﹣3)=503,计算即可得到答案.【详解】解:设工作日期间C 饮料数量为x 瓶,则B 饮料数量为2x 瓶,A 饮料数量为4x 瓶,工作日期间一天的销售收入为:8x+6x+5x =19x 元,周六C 饮料数量为1.5x 瓶,则B 饮料数量为3.2x 瓶,A 饮料数量为6x 瓶,周六销售销售收入为:12x+9.6x+7.5x =29.1x 元,周六销售收入与工作日期间一天销售收入的差为:29.1x ﹣19x =10.1x 元,由于发生一起错单,收入的差为503元,因此,503加减一瓶饮料的差价一定是10.1的整数倍, 所以这起错单发生在B 、C 饮料上(B 、C 一瓶的差价为2元),且是消费者付B 饮料的钱,取走的是C 饮料;于是有:10.1x ﹣(5﹣3)=503解得:x =50工作日期间一天的销售收入为:19×50=950元, 故答案为:950.本题考查一元一次方程的实际应用,解题的关键是由题意得到等量关系.15.1.【解析】【分析】先根据二次函数的图象和性质判断出2≤x≤5时的增减性,然后再找最大值即可.【详解】对称轴为1x =∵a =﹣1<0,∴当x >1时,y 随x 的增大而减小,∴当x =2时,二次函数y =﹣(x ﹣1)2+2的最大值为1,故答案为:1.【点睛】本题主要考查二次函数在一定范围内的最大值,掌握二次函数的图象和性质是解题的关键.16.203 【解析】 【分析】 过点B 作BF ⊥OC于点F ,易证S △OAE =S 四边形DEBF =145,S △OAB =S 四边形DABF ,因为2125OAB ADCS S ∆∆=,所以2125DABF ADC S S ∆=四边形,425BCF ADC S S ∆∆=,又因为AD ∥BF ,所以S △BCF ∽S △ACD ,可得BF:AD=2:5,因为S △OAD =S △OBF ,所以12×OD×AD =12×OF×BF ,即BF:AD=2:5= OD :OF ,易证:S △OED ∽S △OBF ,S △OED :S △OBF =4:25,S △OED :S 四边形EDFB =4:21,所以S △OED =815 ,S △OBF = S △OED + S 四边形EDFB =815+145=103, 即可得解:k=2 S △OBF =203. 【详解】解:过点B 作BF ⊥OC 于点F ,由反比例函数的比例系数|k|的意义可知:S △OAD =S △OBF ,∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=145,S△OA B=S四边形DABF,∵2125OABADCSS∆∆=,∴2125DABFADCSS∆=四边形,425BCFADCSS∆∆=,∵AD∥BF∴S△BCF∽S△ACD,又∵425BCFADCSS∆∆=,∴BF:AD=2:5,∵S△OAD=S△OBF,∴12×OD×AD =12×OF×BF∴BF:AD=2:5= OD:OF易证:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21∵S四边形EDFB=145,∴S△OED=815,S△OBF= S△OED+ S四边形EDFB=815+145=103,∴k=2 S△OBF=20 3.故答案为20 3.【点睛】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理. 17.0.1【解析】【分析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.【详解】解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右,则P白球=0.1.故答案为0.1.【点睛】本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.18.25255+ 88【解析】【分析】作CD⊥AB,由tanA=2,设AD=x,CD=2x,根据勾股定理AC=5x,则BD=5-1x(),然后在Rt△CBD中BC2=BD2+CD2,即52=4x2+25-1x⎡⎤⎣⎦(),解得x2=25+558,则S△ABC=12AB CD⨯=215252x x x⨯⨯==25255+88【详解】如图作CD⊥AB,∵tanA=2,设AD=x,CD=2x,∴AC=5x,∴BD=5-1x(),在Rt△CBD中BC2=BD2+CD2,即52=4x2+25-1x⎡⎤⎣⎦(),x2=25+558,∴S△ABC=12AB CD⨯=215252x x x⨯⨯==25255+88【点睛】此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)详见解析.【解析】【分析】(1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.(2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.【详解】解:(1)如图,及为所求.(2)连接.∵是的切线,∴,∴,即,∵是直径,∴,∴,∵,∴,∴,又∴∽∴∴.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.20.(1)证明见解析;(2)50°.【解析】试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.试题解析:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.21.线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【解析】试题分析:在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF的长,从而可求得EF的长,即可求得CD的长.试题解析:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10.8(cm ),答:线段BE 的长约等于18.8cm ,线段CD 的长约等于10.8cm .【点睛】本题考查了解直角三角形的应用,正确地添加辅助线构造直角三角形是解题的关键.22.(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【解析】【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.23.(1)作图见解析;;(2)作图见解析.【解析】试题分析:(1)通过数格子可得到点P 关于AC 的对称点,再直接利用勾股定理可得到周长;(2)利用网格结合矩形的性质以及勾股定理可画出矩形.试题解析:(1)如图1所示:四边形AQCP 即为所求,它的周长为:;(2)如图2所示:四边形ABCD 即为所求.考点:1轴对称;2勾股定理.24.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.25.(1)8m 2;(2)68m 2;(3) 40,8【解析】【分析】(1)根据中心对称图形性质和,OP AB P ,12OM AB =,12AE PM =可得42x AE -=,即可解当83x =时,4个全等直角三角形的面积;(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x 的代数式表示出菱形和四个全等直角三角形的面积,列出含有x 的解析式表示白色区域面积,并化成顶点式,根据04OP <<,06OQ <≤,1968II S ≤⨯,求出自变量的取值范围,再根据二次函数的增减性即可解答; (3)计算出x=2时各部分面积以及用含m 、n 的代数式表示出费用,因为m,n 均为正整数,解得m=40,n=8.【详解】(1) ∵O 为长方形和菱形的对称中心,OP AB P ,∴142OM AB == ∵12AE PM =,OP PM OM +=,∴42x AE -= ∴当83x =时,41223AE -==,21124468223II S AM AE m =⨯⋅=⨯⨯⨯=(2)∵()2211442422I S OP OQ x x x m =⨯⋅=⨯⋅=,()214(246)2II S AM AE x m =⨯⋅=- ∴I III I I S AB BC S S =⋅--=-()22234672474.254x x x m ⎛⎫++=--+ ⎪⎝⎭, ∵04OP <<,06OQ <≤,1968II S ≤⨯ ∴040261246968x x x ⎧⎪<<⎪<≤⎨⎪⎪-≤⨯⎩解不等式组得23x ≤≤,∵40a =-<,结合图像,当34x ≥时,III S 随x 的增大而减小. ∴当2x =时, III S 取得最大值为()2242627268m -⨯+⨯+= (3)∵当2x =时,S Ⅰ=4x 2=16 m 2,246II S x =-=12 m 2,III S =68m 2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n 均为正整数,解得m=40,n=8.【点睛】本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x 的二次函数解析式表示出白色区面积.26.1a b -,3 【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用-1的偶次幂为1及特殊角的三角函数值求出a 的值,代入计算即可求出值.解:原式=,当,原式=.“点睛”此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.27.(1)见解析;(2)见解析;(3)AB=1【解析】【分析】(1)由垂径定理得出∠CPB=∠BCD,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得证;(2)连接OP,知OP=OB,先证∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F,据此即可得证;(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF,先证∠PAE=∠F,由tan∠PAE=tan∠F得PE EMAP MF=,再证∠GAP=∠MPE,由sin∠GAP=sin∠MPE得GP EMAP PE=,从而得出MF GPAP AP=,即MF=GP,由3PF=5PG即35PGPF=,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=25k、AP=352PEtan PAE=∠k,证∠PEM=∠ABP得BP=35k,继而可得BE=5k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案.【详解】证明:(1)∵AB是⊙O的直径且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)连接OP,则OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切线,∴OP⊥PF,则∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直径,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=12∠F;(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四点共圆,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴PE EM AP MF=,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,则GP EM AP PE=,∴MF GP AP AP=,∴MF=GP,∵3PF=5PG,∴35 PGPF=,设PG=3k,则PF=5k,MF=PG=3k,PM=2k 由(2)知∠FPE=∠PEF,∴PF=EF=5k,则EM=4k,∴tan∠PEM=2142kk=,tan∠F=4433kk=,∴tan∠PAE=43 PEAP=,∵2225PM EM k+=,∴AP=2PE tan PAE =∠, ∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM ,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA ,∴∠APG=∠ABP ,∴∠PEM=∠ABP ,则tan ∠ABP=tan ∠PEM ,即AP PM BP EM=,∴224k k BP k=, 则,∴则k=2,∴根据勾股定理得,AB=1.【点睛】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点.。

云南省丽江市2019-2020学年中考数学第四次押题试卷含解析

云南省丽江市2019-2020学年中考数学第四次押题试卷含解析

云南省丽江市2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于( )A .30°B .40°C .50°D .60°2.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )A .5,5B .5,6C .6,5D .6,63.已知某几何体的三视图(单位:cm )如图所示,则该几何体的侧面积等于( )A .12πcm 2B .15πcm 2C .24πcm 2D .30πcm 24.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π-B .2233π-C .433π-D .4233π-5.计算(-18)÷9的值是( )A .-9B .-27C .-2D .26.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论:①ΔADB ΔADC S S =;②当0<x <3时,12y y <;③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小.其中正确结论的个数是( )A .1B .2C .3D .47.把多项式ax 3﹣2ax 2+ax 分解因式,结果正确的是( )A .ax (x 2﹣2x )B .ax 2(x ﹣2)C .ax (x+1)(x ﹣1)D .ax (x ﹣1)28.不等式组73357x x x -+<+⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .9.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A .23B .16 C .13 D .1210.下列几何体是棱锥的是( )A .B .C .D .11.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )A .50,50B .50,30C .80,50D .30,50 12.﹣12的绝对值是( ) A .﹣12 B .12 C .﹣2 D .2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_______.14.计算:1275-=______.15.若关于x 的一元二次方程()2k 1x 4x 10-++=有两个不相等的实数根,则k 的取值范围是______. 16.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是__________.17.如图,AB 为⊙O 的直径,C 、D 为⊙O 上的点,»»AD CD=.若∠CAB=40°,则∠CAD=_____.18.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m ,他在不弯腰的情况下,在棚内的横向活动范围是__m .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,AC=6,求⊙O的半径.20.(6分)已知:如图,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.(1)求证:B是EC的中点;(2)分别延长CD、EA相交于点F,若AC2=DC•EC,求证:AD:AF=AC:FC.21.(6分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.求一次函数与反比例函数的解析式;求△AOB的面积.22.(8分)计算532224mmm m-⎛⎫+-÷⎪--⎝⎭.23.(8分)P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”(1)⊙O的半径为6,OP=1.①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=3x+b上存在点P,使得点P 关于⊙C的“幂值”为6,请直接写出b的取值范围_____.24.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.25.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.26.(12分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.求证:∠1=∠2;连结BE、DE,判断四边形BCDE的形状,并说明理由.27.(12分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.故选C.考点:1.面动旋转问题;2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.2.A【解析】试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.平均数为:×(6+3+4+1+7)=1,按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.故选A.考点:中位数;算术平均数.3.B【解析】由三视图可知这个几何体是圆锥,高是4cm ,底面半径是3cm ,所以母线长是22435+=(cm ),∴侧面积=π×3×5=15π(cm 2),故选B .4.D【解析】连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×3=3,因此可求得S 阴影=S 扇形AOB ﹣2S △AOC =21202360π⨯﹣2×12×2×3=43π﹣23. 故选D .点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键. 5.C【解析】【分析】直接利用有理数的除法运算法则计算得出答案.【详解】解:(-18)÷9=-1. 故选:C .【点睛】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.6.C【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C .考点:反比例函数与一次函数的交点问题.7.D【解析】【分析】先提取公因式ax ,再根据完全平方公式把x 2﹣2x+1继续分解即可.【详解】原式=ax (x 2﹣2x+1)=ax (x ﹣1)2,故选D .【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.8.C【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.【详解】解:解不等式﹣x+7<x+3得:x >2,解不等式3x ﹣5≤7得:x≤4,∴不等式组的解集为:2<x≤4,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=31 62 .故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.10.D【解析】分析:根据棱锥的概念判断即可.A是三棱柱,错误;B是圆柱,错误;C是圆锥,错误;D是四棱锥,正确.故选D.点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.11.A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A.点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.12.B【解析】【分析】根据求绝对值的法则,直接计算即可解答.【详解】111()222-=--=, 故选:B .【点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.38【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值即其发生的概率.详解:由于共有8个球,其中篮球有5个,则从袋子中摸出一个球,摸出蓝球的概率是38 ,故答案是38. 点睛:此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件 A 出现m 种结果,那么事件A 的概率P (A )=m n.14.-【解析】原式==-故答案为:-15.k <5且k≠1.【解析】试题解析:∵关于x 的一元二次方程()21410k x x -++=有两个不相等的实数根, ()2104410.k k -≠⎧∴⎨∆=-->⎩解得:5k <且1k ≠.故答案为5k <且1k ≠.16.k >-14且k≠1 【解析】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b 2-4ac=(2k+1)2-4k 2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k >-1/4 且k≠1.17.25°【解析】【分析】连接BC,BD, 根据直径所对的圆周角是直角,得∠ACB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠CBD,从而可得到∠BAD的度数.【详解】如图,连接BC,BD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵»»AD CD,∴∠ABD=∠CBD=12∠ABC=25°,∴∠CAD=∠CBD=25°.故答案为25°.【点睛】本题考查了圆周角定理及直径所对的圆周角是直角的知识点,解题的关键是正确作出辅助线.18.1【解析】【分析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x 2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)直线CD 与⊙O 相切;(2)⊙O 的半径为1.1.【解析】【详解】(1)相切,连接OC ,∵C 为»BE的中点,∴∠1=∠2,∵OA=OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD=2,AC=6,∵∠ADC=90°,∴CD=22AC AD -=2,∵CD 是⊙O 的切线,∴2CD =AD•DE ,∴DE=1,∴CE=22CD DE +=3,∵C 为»BE的中点,∴BC=CE=3,∵AB 为⊙O 的直径,∴∠ACB=90°,∴AB=22AC BC +=2.∴半径为1.120.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据平行线的性质结合角平分线的性质可得出∠BCA=∠BAC ,进而可得出BA=BC ,根据等角的余角相等结合等角对等边,即可得出AB=BE ,进而可得出BE=BA=BC ,此题得证;(2)根据AC 2=DC•EC 结合∠ACD=∠ECA 可得出△ACD ∽△ECA ,根据相似三角形的性质可得出∠ADC=∠EAC=90°,进而可得出∠FDA=∠FAC=90°,结合∠AFD=∠CFA 可得出△AFD ∽△CFA ,再利用相似三角形的性质可证出AD :AF=AC :FC .【详解】(1)∵DC ∥AB ,∴∠DCA=∠BAC .∵AC 平分∠BCD ,∴∠BCA=∠BAC=∠DCA ,∴BA=BC .∵∠BAC+∠BAE=90°,∠ACB+∠E =90°,∴∠BAE=∠E ,∴AB=BE ,∴BE=BA=BC ,∴B 是EC 的中点;(2)∵AC2=DC•EC,∴AC DC EC AC.∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.【点睛】本题考查了相似三角形的判定与性质、角平分线的性质以及等腰三角形的性质,解题的关键是:(1)利用等角对等边找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.21.(1)y=-6x,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.试题解析:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,, 解得,所以,一次函数解析式为y=﹣2x ﹣1;(2)设AB 与x 轴相交于点C ,令﹣2x ﹣1=0解得x=﹣2,所以,点C 的坐标为(﹣2,0),所以,OC=2,S △AOB =S △AOC +S △BOC , =×2×3+×2×1,=3+1,=1.考点:反比例函数与一次函数的交点问题.22.26m +【解析】 分析:先计算522m m +--,再做除法,结果化为整式或最简分式. 详解: 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭()()()2252423m m m m m +---=⋅-- ()222923m m m m --=⋅-- ()()()332223m m m m m -+-=⋅-- 26m =+.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.23.(1)①20;②当弦AB 的位置改变时,点P 关于⊙O 的“幂值”为定值,证明见解析;(2)点P 关于⊙O 的“幂值”为r 2﹣d 2;(3)﹣33.【解析】【详解】(1)①如图1所示:连接OA、OB、OP.由等腰三角形的三线合一的性质得到△PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;②过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′.先证明△APA′∽△B′PB,依据相似三角形的性质得到PA•PB=PA′•PB′从而得出结论;(2)连接OP、过点P作AB⊥OP,交圆O与A、B两点.由等腰三角形三线合一的性质可知AP=PB,然后在Rt△APO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CP⊥AB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围.【详解】(1)①如图1所示:连接OA、OB、OP,∵OA=OB,P为AB的中点,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB=222-=-=25,OB OP64∴PA=PB=25,∴⊙O的“幂值”=25×25=20,故答案为:20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明如下:如图,AB为⊙O中过点P的任意一条弦,且不与OP垂直,过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴PA PA PB PB='',∴PA•PB=PA′•PB′=20,∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值;(2)如图3所示;连接OP、过点P作AB⊥OP,交圆O与A、B两点,∵AO=OB,PO⊥AB,∴AP=PB,∴点P关于⊙O的“幂值”=AP•PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴关于⊙O的“幂值”=r2﹣d2,故答案为:点P关于⊙O的“幂值”为r2﹣d2;(3)如图1所示:过点C作CP⊥AB,,∵CP⊥AB,AB的解析式为3,∴直线CP的解析式为y=33联立AB与CP,得333y x by x⎧=+⎪⎨=+⎪⎩,∴点P的坐标为(﹣34﹣34b,34+14b),∵点P关于⊙C的“幂值”为6,∴r2﹣d2=6,∴d2=3,即(﹣343)2+(314b)2=3,整理得:b2b﹣9=0,解得b=﹣或∴b的取值范围是﹣,故答案为:﹣【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键.24.(1)见解析(2)BD=2【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,AD AD {CD DE==,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.25.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3)492.【解析】【分析】(1)利用三角形的中位线得出PM=12CE,PN=12BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=12BD,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12 BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12 CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=22,在Rt△ABC中,AB=AC=10,AN=52,∴MN最大=22+52=72,∴S△PMN最大=12PM2=12×12MN2=14×(72)2=492.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=12 BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=12PM2=12×72=492【点睛】本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.26.(1)证明见解析;(2)四边形BCDE是菱形,理由见解析.【解析】【分析】(1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.【详解】解:(1)证明:∵在△ADC和△ABC中,∴△ADC≌△ABC(SSS).∴∠1=∠2.(2)四边形BCDE是菱形,理由如下:如答图,∵∠1=∠2,DC=BC,∴AC垂直平分BD.∵OE=OC,∴四边形DEBC是平行四边形.∵AC⊥BD,∴四边形DEBC是菱形.【点睛】考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定.27.(1)14;(2)16.【解析】【分析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.【详解】(1)正数为2,所以该球上标记的数字为正数的概率为14;(2)画树状图为:共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率=212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A 或B的结果数目m,求出概率.。

丽江市数学中考适应性试卷

丽江市数学中考适应性试卷

丽江市数学中考适应性试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·玉林模拟) 2的相反数是()A . ﹣2B . 2C .D . -2. (2分) (2017七上·宁河月考) 我国研制的“曙光3000服务器”,它的峰值计算速度达到403,200,000,000次/秒,用科学记数法可表示为()A . 4032×108B . 403.2×109C . 4.032×1011D . 0.4032×10123. (2分)以下五家银行行标中,是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个4. (2分)下列运算,正确的是()A . a+a3=a4B . a2•a3=a6C . (a2)3=a6D . a10÷a2=a55. (2分) (2019八下·吉林期末) 某班主任老师为了对学生乱花钱的现象进行教育指导,对班里每位同学一周内大约花钱数额进行了统计,如下表:学生花钱数(元)510152025学生人数71218103根据这个统计表可知,该班学生一周花钱数额的众数、平均数是()A . 15,14B . 18,14C . 25,12D . 15,126. (2分)(2019·曹县模拟) 如图,将一个含有45°角的直角三角板摆放在矩形上,若∠1=35°,则∠2的度数为()A . 70°B . 75°C . 80°D . 85°7. (2分)(2020·寿宁模拟) 计算:()A .B .C . 2D . 18. (2分)如图所示,该几何体的左视图是()A .B .C .D .9. (2分) (2019九上·昭阳开学考) 如果有一台电脑被感染,经过两轮感染后就会有100台电脑被感染.若每一轮感染中平均一台电脑会感染台电脑,则下列所列方程中正确的是()A . 1+x+x2=100B . x(x+1)=100C . (x+1)2=100D . 1+(x+1)2=10010. (2分)关于x的不等式组只有6个整数解,则a的取值范围是()A . -≤a≤-4B . -<a≤-4C . -≤a<-4D . -<a<-411. (2分) (2019七上·武汉期末) 长方形如图折叠,D点折叠到的位置,已知∠ FC=40°,则∠EFC =()A . 120°B . 110°C . 105°D . 115°12. (2分)(2017·岳阳模拟) 如图,抛物线y=ax2+bx+c与两坐标轴的交点分别为A、B、C,且OA=OC=1,则下列关系中正确的是()A . a+b=﹣1B . a﹣b=﹣1C . b<2aD . ac<0二、填空题 (共4题;共5分)13. (1分) (2019七上·巴东期中) 平方得9的数是________.14. (1分)(2020·香坊模拟) 把分解因式的结果是________.15. (2分)(2011·宜宾) 如图,在△ABC.中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1 ,A1B交AC于点E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④A1F=CE.其中正确的是________(写出正确结论的序号).16. (1分) (2018七上·无锡月考) 观察下面的一列数,从中寻找规律,然后按规律填写接下去的个数.,,,,,________,________,________,…三、解答题 (共8题;共74分)17. (5分) (2018八上·黑龙江期末) 先化简,再求值:-,其中x= .18. (2分) (2017九上·东丽期末) 如图,⊙ 是△ 的外接圆,为直径,弦,交的延长线于点,求证:(Ⅰ);(Ⅱ)是⊙ 的切线.19. (15分)转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.20. (2分)(2017·五华模拟) 小宇想测量位于池塘两端的A,B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A,B两点的距离.21. (15分) (2019九下·锡山月考) 如图在平面直角坐标系xOy中,O为坐标原点,二次函数y=x2+bx+c 的图象经过点A(3,0)、点B(0,3),顶点为M.(1)求该二次函数的解析式;(2)求∠OBM的正切值.22. (10分)(2017·河南模拟) 我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.(1)求购买A,B两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于50棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?23. (10分)(2014·盐城) 【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC 中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.(1) .小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.(2) .【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;(3) .【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;(4) .【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2 dm,AD=3dm,BD= dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.24. (15分)(2014·深圳) 如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共8题;共74分)17-1、18-1、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-2、23-3、24-1、。

云南省丽江市中考数学模拟考试试卷

云南省丽江市中考数学模拟考试试卷

云南省丽江市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共10小题,每小题4分,共40分. (共10题;共40分)1. (4分)有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④-是17的平方根。

其中正确的有()A . 0个B . 1个C . 2个D . 3个2. (4分)下列各式计算正确的是()A . 2a2+a3=3a5B . (3xy)2÷(xy)=3xyC . (2b2)3=8b5D . 2x·3x5=6x63. (4分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A . abπB .C . acπD .4. (4分) (2019六下·广饶期中) 某种计算机完成一次基本运算的时间约为1纳秒(μm),即0.000000001s,这个数用科学记数法表示为()A . 1×10﹣8sB . 1×10﹣9sC . 10×10﹣10sD . 0.1×10﹣8s5. (4分)下列说法中,正确的是()A . 不可能事件发生的概率为0B . 随机事件发生的概率为C . 概率很小的事件不可能发生D . 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次6. (4分)若点P(x,y)的坐标满足xy=0,则点P必在()A . 原点B . x轴上C . y轴上D . 坐标轴上7. (4分)若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()A . a<1B . a≤4C . a≤1D . a≥18. (4分) (2019八上·皇姑期末) 若直线与轴的交点为,则这条直线的关系式可能是()A .B .C .D .9. (4分)如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,某同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的信息有()A . 4个B . 3个C . 2个D . 1个10. (4分) (2016八上·湖州期中) 如图,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC 于E,与CD相交于点F,H是BC边的中点,连结DH、BE与相交于点G,以下结论中正确的结论有()(1.)△ABC是等腰三角形(2.)BF=AC(3.)BH:BD:BC=1:(4.)GE2+CE2=BG2 .A . 1个B . 2个C . 3个D . 4个二、填空题:本大题共6小题,每小题4分,共24分. (共6题;共24分)11. (4分)(2017·微山模拟) 计算:()0﹣2|1﹣sin30°|+()﹣1=________.12. (4分) (2018九上·句容月考) 若一组数据6、7、4、6、x、1的平均数是5,则这组数据的众数是________.13. (4分) (2008七下·上饶竞赛) 一个多边形除了一个内角外,其余各内角之和为1680°, 那么这个多边形的边数为________.14. (4分)若实数a、b满足方程组,则a2b+ab2= ________.15. (4分)如图,已知⊙O的半径为2,C为直径AB延长线上一点,BC=2.过C任作一直线l.若l上总存在点P,使过P所作的⊙O的两切线互相垂直,则∠ACP的最大值等于________ .16. (4分)已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则________(填y1 , y2 , y3).三、解答题:本大题共9小题,共86分,解答应写文字说明,证明过程 (共9题;共86分)17. (8分)(2017·大冶模拟) 解不等式组:,并在数轴上表示出不等式组的解集.18. (8分)(2012·绵阳)(1)计算:(π﹣2)0﹣| + |×(﹣);(2)化简:(1+ )÷(2x﹣)19. (8分) (2016八上·汕头期中) 已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,D F⊥AC于点F,求证:DE=DF.20. (8分)(2019·泉州模拟) 《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?21. (8分) (2017八下·重庆期中) 一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作…若在第 n 次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.(1)判断与操作:如图2,矩形ABCD的长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.(2)探究与计算:已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.22. (10分)(2018·溧水模拟) 某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是________环,乙命中环数的众数是________环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会________.(填“变大”、“变小” 或“不变”)23. (10分) (2019八下·北京期中) 一次函数图象与反比例函数的图象交于点M、N.(1)求这两个函数的表达式;(2)根据图象写出使的自变量的取值范围.24. (13.0分)(2016·深圳模拟) 如图①,在平面直角坐标系中,直线y=﹣ x+ 与x轴交于C点,与y轴交于点E,点A在x轴的负半轴,以A点为圆心,AO为半径的圆与直线的CE相切于点F,交x轴负半轴于另一点B.(1)求⊙A的半径;(2)连BF、AE,则BF与AE之间有什么位置关系?写出结论并证明.(3)如图②,以AC为直径作⊙O1交y轴于M,N两点,点P是弧MC上任意一点,点Q是弧PM的中点,连CP,NQ,延长CP,NQ交于D点,求CD的长.25. (13.0分)(2017·黄冈模拟) 麻城市思源实验学校自从开展“高效课堂”模式以来,在课堂上进行当堂检测效果很好.每节课40分钟教学,假设老师用于精讲的时间x(单位:分钟)与学生学习收益量y的关系如图1所示,学生用于当堂检测的时间x(单位:分钟)与学生学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于当堂检测的时间不超过用于精讲的时间.(1)求老师精讲时的学生学习收益量y与用于精讲的时间x之间的函数关系式;(2)求学生当堂检测的学习收益量y与用于当堂检测的时间x的函数关系式;(3)问此“高效课堂”模式如何分配精讲和当堂检测的时间,才能使学生在这40分钟的学习收益总量最大?参考答案一、选择题:本大题共10小题,每小题4分,共40分. (共10题;共40分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题:本大题共6小题,每小题4分,共24分. (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题:本大题共9小题,共86分,解答应写文字说明,证明过程 (共9题;共86分) 17-1、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。

云南省丽江市中考模拟数学考试试卷

云南省丽江市中考模拟数学考试试卷
D .
13. (2分) (2017八下·钦州期末) 如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是( )
A . k>0
B . m>n
C . 当x<2时,y2>y1
D . 2k+n=m﹣2
14. (2分) 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下.
②当CG∥AB时,则△ABC的面积是________(直接写出结果)
26. (6分) (2017八上·江门月考) △ABC在平面直角坐标系中的位置如图所示.
(1) 作出△ABC关于y轴对称的△ABlCl;
(2) 点P在x轴上,且点P到点B与点C的距离之和最小,直接写出点P的坐标为________.
参考答案
A . 5050m2
B . 5000m2
C . 4900m2
D . 4998m2
5. (2分) (2017·武汉模拟) 下列式子计算结果为x2﹣4的是( )
A . (x+1)(x﹣4)
B . (x+2)(x﹣2)
C . (x+2)(2﹣x)
D . (x﹣2)2
6. (2分) (2018九上·丽水期中) 如图,点A,B,C在⊙O上,若∠BOC=72º,则∠BAC的度数是( )
(1) 求证:DE=CF;
(2) 求EF的长.
24. (15分) 某企业开展献爱心扶贫活动,将购买的60吨大米运往贫困地区帮扶贫困居民,现有甲、乙两种货车可以租用.已知一辆甲种货车和3辆乙种货车一次可运送29吨大米,2辆甲种货车和3辆乙种货车一次可运送37吨大米.
(1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年数学中考模拟试卷一、选择题1.若y=x+2–b 是正比例函数,则b 的值是( ) A .0 B .–2C .2D .–0.52.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°3.在平面直角坐标系中,点A 的坐标是(1,3),将点A 绕原点O 顺时针旋转90°得到点A′,则点A′的坐标是( ) A.(﹣3,1) B.(3,﹣1) C.(﹣1,3)D.(1,﹣3) 4.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且∠CDE =30°.设AD =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .5.将点A (﹣2,3)绕坐标原点逆时针旋转90后得到点A',则点A'的坐标为( ) A .(2,3)B .(3,2)C .(﹣2,﹣3)D .(﹣3,﹣2)6.港珠澳大桥是中国第一例集桥、双人工岛、隧道为一体的跨海通道. 其中海底隧道是由33个巨型沉管连接而成,沉管排水总量约76000吨. 将数76000用科学记数法表示为( ) A .47.610⨯ B .37610⨯ C .50.7610⨯ D .57.610⨯ 7.计算(﹣2x 2)3的结果是( )A .﹣6x 5B .6x 5C .8x 6D .﹣8x 68.如图是直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为( )A .30°B .45°C .60°D .90°9.y =x 2+(1﹣a )x+1是关于x 的二次函数,当x 的取值范围是1≤x≤3时,y 在x =1时取得最大值,则实数a 的取值范围是( ) A .a≤﹣5 B .a≥5C .a =3D .a≥310.如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:①;②;③.其中,正确结论的个数是( )A. B. C. D.11.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =﹣1x图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( ) A.x 1<x 2<x 3B.x 1<x 3<x 2C.x 2<x 1<x 3D.x 2<x 3<x 112.某种衬衫的进价为400元,出售时标价为550元,由于换季,商店准备打折销售,但要 保持利润不低于10%,那么至多打( ) A .6折 B .7折C .8折D .9折二、填空题13.分解因式(a -b)(a -9b)+4ab 的结果是____. 14.计算:(﹣12)2=_____. 15.某公司向银行申请了甲 、乙两种贷款,共计68万元,每年需付出8.42万元利息。

已知甲种贷款每年的利率为12%,乙种贷款每年的利率为13%,则该公司甲、乙两种贷款的数额分别为_____________. 16.若x+2y =4,则4+x+y =_____.17_____.18.某城市3年前人均收入为x 元,预计今年人均收入是3年前的2倍多500元,那么今年人均收入将达________元. 三、解答题19.如图,□ABCD 中,E 为BC 边上一点,连接DE ,若DE AD =,∠AFD+∠B=180°. 求证:AB AF =.20.为了深入培养学生交通安全意识,加强实践活动,新华中学八年级(1)班和交警队联合举行了“我当一日小交警”活动,利用星期天到交通路口值勤,协助交通警察对行人、车辆及非机动车辆进行纠章.在这次实践活动中,若每一个路口安排5名学生,那么还剩下4人;若每个路口安排6人,那么最后一个路口不足3人,但不少于1人.(1)求新华中学八年级(1)班有多少名学生?(2)在值勤过程中,学生发现每辆汽车驶出路口后有三种方式前行:左转、直行、右转,而且每种前行方式的可能性相同.请通过画树形图或列表的方法,求连续驶出路口的两辆汽车前行路线相同的概率.21.观察下面的变形规律:11=1122-⨯;111=2323-⨯;111=3434-⨯;….解答下面的问题:(1)若n为正整数,请你猜想1(1)n n+=;(2)证明你猜想的结论;(3)求和:112⨯+123⨯+134⨯+…+120092010⨯.22.观察下列等式:①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…根据等式所反映的规律,解答下列问题:(1)直接写出:第⑤个等式为;(2)猜想:第n个等式为(用含n的代数式表示),并证明.23.为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55∼70;第二组70∼85;第三组85∼100;第四组100∼115;第五组115∼130,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了__ _名学生;(2)补全频数分布直方图;(3)将得分转化为等级,规定:得分低于70分评为“D”,70∼100分评为“C”,100∼11评为“B”,115∼130分评为“A”,根据目前的统计,请你估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有多少名?24.如图,AB是半⊙O的直径,点C,D为半圆O上的点,AE||OD,过点D的⊙O的切线交AC的延长线于点E,M为弦AC中点(1)填空:四边形ODEM的形状是;(2)①若CEkCM=,则当k为多少时,四边形AODC为菱形,请说明理由;②当四边形AODC为菱形时,若四边形ODEM的面积为O的半径.25.图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,点A 、B 、M 、N 均落在格点上,在图①、图②给定的网格中按要求作图.(1)在图①中的格线MN 上确定一点P ,使PA 与PB 的长度之和最小 (2)在图②中的格线MN 上确定一点Q ,使∠AQM =∠BQM . 要求:只用无刻度的直尺,保留作图痕迹,不要求写出作法.【参考答案】*** 一、选择题13.(a-3b)2 14.415.42万元、26万元 16.6172 18.(2x+500) 三、解答题 19.见解析. 【解析】 【分析】根据平行四边形的性质可证明ADF ∆≌DEC ∆,从而可得结论. 【详解】在□ABCD 中,AB CD =,AB ∥CD ,AD ∥BC , ∴180B C ∠+∠=︒,ADF CED ∠=∠ ∵180AFD B ∠+∠=︒, ∴C AFD ∠=∠ 又∵DE AD =, ∴ADF ∆≌DEC ∆, ∴AF CD =,∴AF AB=.【点睛】本题考查了平行四边形的性质以及全等三角形的判定与性质,掌握判定与性质是解题的关键.20.(1)新华中学八年级(1)班有44或49名学;(2)1 3【解析】【分析】(1)设有x个交通路口,则八年级(1)班人数为(5x+4)名,根据题意列不等式组求解可得;(2)由树状图求得所有等可能的结果与两辆汽车前行路线相同的情况,继而利用概率公式即可求得答案.【详解】解:(1)设有x个交通路口,则八年级(1)班人数为(5x+4)名,根据题意得546(1)1 546(1)3 x xx x+--≥⎧⎨+--⎩<,解得:7<x≤9,∵x为正整数,∴x=8或9,所以5x+4=44或49.答:新华中学八年级(1)班有44或49名学;(2)列表可得:连续驶出路口的两辆汽车前行路线相同的有3种,分别为(左转,左转),(直行,直行),(右转,右转),∴连续驶出路口的两辆汽车前行路线相同的概率为31 =93,答:连续驶出路口的两辆汽车前行路线相同的概率是13.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法或列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21.(1)111=(1)1n n n n-++;(2)见解析;(3)20092010.【解析】【分析】(1)观察规律可得:111 (1)1n n n n=-++;(2)根据分式加减法的运算法则求解即可证得结论的正确性;(3)利用上面的结论,首先原式可化为:111111112233420092010-+-+-++-继而可求得答案.【详解】(1)由111111111;;121223233434=-=-=-⨯⨯⨯,…则:111(1)1n n n n=-++;(2)111111(1)(1)(1)(1)n n n nn n n n n n n n n n++--=-==+++++;(3)1111 12233420092010 ++++⨯⨯⨯⨯=1111111 12233420092010 -+-+-+-=1﹣1 2010=2009 2010.【点睛】此题考查了分式的加减运算法则,解题的关键是仔细观察,得到规律:111(1)1n n n n=-++,然后利用规律求解.22.(1)36﹣35=2×35;(2)3n+1﹣3n=2×3n.【解析】【分析】由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第⑤个等式,以及第n个等式的底数不变,指数依次分别是n+1、n、n.【详解】解:(1)由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第⑤个等式36﹣35=2×35;故答案为:36﹣35=2×35;(2)由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第n个等式的底数不变,指数依次分别是n+1、n、n,即3n+1﹣3n=2×3n.证明:左边=3n+1﹣3n=3×3n﹣3n=3n×(3﹣1)=2×3n=右边,所以结论得证.故答案为:3n+1﹣3n=2×3n.【点睛】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题.23.(1) 50;(2)见解析;(3) 1620.【解析】【分析】(1)根据第三组的数据,用人数除以百分数得出结论即可;(2)根据抽取的总人数减去前4组的人数,即可得到第五组的频数,并画图;(3)用样本中考试成绩评为“B”级及其以上的学生数占抽取的总人数的百分比,乘上全区该年级4500名考生数,即可得出结论.【详解】解:(1)20÷40%=50名,故答案为:50;(2)50-4-8-20-14=4,画图如下:(3)(4+14)÷50×4500=1620.答:估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有1620名.【点睛】本题主要考查了直方图和扇形图以及用样本估计总体的知识,根据直方图和扇形图中都有的数据求出抽取的学生总数是解决此题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.24.(1)四边形AODC为菱形,见解析;(2)①当k为1时,四边形AODC为菱形.理由见解析;②⊙O的半径为.【解析】【分析】(1)运用切线定理、垂径定理、平行线的性质证明四个角均为90°,即可说明四边形ODEM为矩形;(2)①当k为1时,四边形AODC为菱形.连接CD,CO.由四边形AODC为菱形,可得AO=OD=CD=AC,由OM垂直平分AC,得到OA=OC,所以OA=OC=AC,因此△OAC为等边三角形,于是∠CAO=60°,∠CDO=60°,∠ECD=30°,所以CE=12CD=12AC,又CM=12AC,因此CE=CM,即CECM=1,所以当k为1时,四边形AODC为菱形;②由四边形ODEM的面积为OD•MO=43,由①四边形AODC为菱形时,∠MAO=60°,所以OMOA=sin∠MAO=sin60°,MO,因此OD•MO=OA•=,所以OA=.【详解】(1)∵DE是⊙O的切线,∴OD⊥DE,∠ODE=90°,∵M为弦AC中点,∴OM⊥AC,∠OME=90°,∵AE||OD,∴∠E=90°,∠MOD=90°,∴四边形ODEM是矩形;(2)①当k为1时,四边形AODC为菱形.理由如下: 连接C D ,CO . ∵四边形AODC 为菱形, ∴AO =OD =CD =AC , ∵OM 垂直平分AC , ∴OA =OC , ∴OA =OC =AC , ∴△OAC 为等边三角形, ∴∠CAO =60°,∠CDO =60°, ∴∠ECD =30°, ∴CE =12CD =12AC , ∵CM =12AC , ∴CE =CM , ∴1CECM= , 当k 为1时,四边形AODC 为菱形;②∵四边形ODEM 的面积为,∴OD•MO=由①四边形AODC 为菱形时,∠MAO =60°,∴sin sin 60OM MAO OA ︒=∠= ,MO ,∴OD•MO=OA =,∴OA =∴⊙O 的半径为【点睛】本题是圆的综合题,熟练掌握矩形、菱形、三角函数、垂径定理等是解题的关键. 25.(1)见解析;(2)见解析. 【解析】 【分析】()1如图①,作A 关于MN 的对称点A',连接BA',交MN 于P ,P 点即为所求;()2如图③,作B 关于MN 的对称点B',连接AB'并延长交MN 于Q ,Q 点即为所求.【详解】解:(1)如图①,作A 关于MN 的对称点A′,连接BA′,交MN 于P ,此时PA+PB =PA′+PB=BA′,根据两点之间线段最短,此时PA+PB最小;(2)如图②,作B关于MN的对称点B′,连接AB′并延长交MN于Q,此时∠AQM=∠BQM.【点睛】本题考查了作图-应用与设计作图,轴对称的性质,轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)2.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .121x y x y -=⎧⎨-=⎩B .121x y x y -=-⎧⎨-=-⎩C .121x y x y -=-⎧⎨-=⎩D .121x y x y -=⎧⎨-=-⎩3.如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )A.3B.4C.6D.84.估6的值应在( )A.3和4之间B.4和5之间C.5和6之间D.6和7之间5.如图,点,D E 分别在ABC ∆的,AB AC 边上,下列条件:①AED B ∠=∠;②AE DEAB BC=;③,AD AEAC AB=其中能使ADE ∆与ACB ∆相似的是( )A .①②B .②C .①③D .②③6.小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上共支出100元,则她在午餐上共支出( )A .50元B .100元C .150元D .200元7.如图,一个游戏转盘分成红、黄、蓝三个扇形,其中红、黄两个扇形的圆心角度数分别为90°,120°.让转盘自由转动,停止后,指针落在蓝色区域的概率是( )A .14B .13C .512D .无法确定8.如图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0)直线y=kx-3k+4与交于B 、C 两点,则弦BC 的长的最小值为( )A .22B .24C .D .9.下列语句所描述的事件是随机事件的是( ) A.任意画一个五边形,其内角和为360 B.经过任意两点画一条直线 C.任意画一个菱形,是中心对称图形D.过平面内任意三点画一个圆10.如图,在△ABC 中,AB ⊥AC ,AB=5cm ,BC=13cm ,BD 是AC 边上的中线,则△BAD 的面积是( )A.215cmB.230cmC.260cmD.265cm 11.下列计算正确的是( )A .3a ﹣a =3B .(a 2)3=a 6C .3a+2a =2a 2D .a 2﹣a 2=a 412.如图,要测量小河两岸相对的两点P ,A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得PC =8米,cos ∠PCA =45,则PA 等于( )A.5米B.6米C.7.5米D.8米二、填空题13.箱子里有7个白球、3个红球,它们仅颜色不同,从中随机摸出一球是白球的概率是_____.14.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为__.15.已知一个正数的平方根是3x-2和5x-6,则这个数是_____.16x的取值范围是__________.17.计算=.18.如图,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是____元.三、解答题19.3x=12,0.2y=12,0.1z=0,∴对虾400亩,大黄鱼600亩,蛏子0亩;养植对虾的劳动力是12人,养殖大黄鱼的劳动力是12人,养殖蛏子的劳动力是0人.【点睛】(1)解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解;(2)利用函数的单调性来解决实际问题.20.已知关于x的不等式组523(-1),138222x xx x a+>⎧⎪⎨≤-+⎪⎩有四个整数解,画出数轴求实数a的取值范围.21.已知:如图,九年一班在进行方向角模拟测量时,A同学发现B同学在他的北偏东75°方向,C同学在他的正南方向,这时,D同学与BC在一条直线上,老师觉得他们的站位很有典型性,就组织同学又测出A、B距离为80米,B、D两同学恰好在C同学的东北方向且AD=BD.求C、D两名同学与A同学的距离分别是多少米(结果保留根号).22.解方程:1=1++1xx x.23.如图,五边形ABCDE内部有若干个点,用这些点以及五边形ABCDE的顶点,,,,A B C D E的顶点把原五边形分割成一些三角形(互相不重叠):内部有1个点内部有2个点内部有3个点(1)填写下表:请说明理由.24.如图,已知E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.请说明四边形BFDE是平行四边形.25.如图,在平面直角坐标系的第一象限中,有一点A(1,2),AB∥x轴且AB=6,点C在线段AB的垂直平分线上,且AC=5,将抛物线y=ax2(a>0)的对称轴右侧的图象记作G.(1)若G经过C点,求抛物线的解析式;(2)若G与△ABC有交点.①求a的取值范围;②当0<y≤8时,双曲线kyx经过G上一点,求k的最大值.【参考答案】*** 一、选择题13.7 1014.2 715.116.x≥217.18.三、解答题19.无20.-3≤a<-2【解析】【分析】先分别解两个不等式,分别求出它们的解集,再根据不等式组有四个整数解列出关于a的不等式求解即可.【详解】解:523(-1), 1382, 22x xx x a+>⎧⎪⎨≤-+⎪⎩①②解不等式①得:x>-52,解不等式②得:x≤a+4, ∵不等式组有四个整数解,∴不等式组的解集在数轴上表示为:∴1≤a+4<2,解得:-3≤a<-2.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.21.C、D两名同学与A同学的距离分别是米和3米.【解析】【分析】作AE⊥BC,利用直角三角形的三角函数解得即可.【详解】解:作AE⊥BC交BC于点E,则∠AEB=∠AEC=90°,由已知,得∠NAB =75°,∠C =45°, ∴∠B =30°, ∵BD =AD ,∴∠BAD =∠B =30°, ∴∠ADE =60°, ∵AB =80, ∴AE =12AB =40,∴40AD sin sin 603====∠︒AE ADE,40AC 452AE sin C sin ====∠︒ 答:C 、D 两名同学与A同学的距离分别是米. 【点睛】本题考查了解直角三角形的应用−−方向角问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想. 22.12x =-【解析】 【分析】先两边同乘()1x x +,再整理,最后检验答案是否合理. 【详解】解:两边同乘()1x x +,得2(1)1x x x x =+++.整理得21x =- 解得12x =-.经检验,12x =-是原方程的解.【点睛】本题考查解分式方程,解题的关键是掌握解去分母. 23.(1)详见解析;(2)1008 【解析】 【分析】(1)查出题干图形中三角形的个数,并观察发现,每多一个点,三角形的个数增加2,然后据此规律填表即可;(2)根据(1)中规律,列式求解,如果n 是整数,则能分割,如果不是整数,则不能分割. 【详解】(1)有1个点时,内部分割成5个三角形; 有2个点时,内部分割成5+2=7个三角形; 有3个点时,内部分割成5+2×2=9个三角形; 有4个点时,内部分割成6+2×3=11个三角形; …以此类推,有n 个点时,内部分割成5+2×(n-1)=(2n+3)个三角形; 故可填表为:令232019n +=,解得1008n =. ∴此时正方形ABCD 内部有1008个点. 【点睛】本题是对图形变化问题的考查,根据数据的变化规律,结合图形,总结出每增加一个点,三角形的个数增加2的规律是解题的关键. 24.证明见解析. 【解析】 【分析】连接BD ,利用对角线互相平分来证明即可. 【详解】证明:连接BD ,交AC 于点O .∵四边形ABCD 是平行四边形∴OA =OC OB =OD(平行四边形的对角线互相平分) 又∵AE =CF∴OA ﹣AE =OC ﹣CF ,即OE =OF∴四边形BFDE 是平行四边形(对角线互相平分的四边形是平行四边形) 【点睛】本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型. 25.(1)238y x =;(2)①2249a 剟,②k 的最大值为112. 【解析】 【分析】(1)如图1中,作CH ⊥AB 于H .求出点C 坐标即可解决问题;(2)①当抛物线经过点A 时,a =2,当抛物线经过点B 时,2=49a ,可得a =249,由此即可解决问题;②由题意当a=249时,y=249x2,当y=8时,8=249x2,因为x>0,推出x=14,由题意当反比例函数y=kx经过点(14,8)时k的值最大;【详解】解:(1)如图1中,作CH⊥AB于H.∵CA=CB=5,CH⊥AB,∴AH=HB=3,在Rt△ACH中,CH4,∴C(4,6),∵抛物线y=ax2(a>0)经过C点,∴6=16a,∴a=38,∴抛物线的解析式为y=38x2.(2)①∵A(1,2),B(7,2),当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,∴a=2 49,∵若G与△ABC有交点,∴249≤a≤2.②由题意当a=249时,y=249x2,当y=8时,8=249x2,∴x>0,∴x=14,∴当反比例函数y=kx经过点(14,8)时k的值最大,此时k=112,∴k的最大值为112.【点睛】本题考查二次函数综合题、待定系数法、勾股定理等知识,解题的关键是理解题意,学会利用特殊点解决问题,属于中考压轴题.2019-2020学年数学中考模拟试卷一、选择题1.函数11y x =-中自变量x 的取值范围是( ) A .2x ≤ B .2x ≤且1x ≠ C .x <2且1x ≠ D .1x ≠2.顺次连接菱形ABCD 各边中点所得到的四边形一定是( )A.菱形B.正方形C.矩形D.对角线互相垂直的四边形3.如图,在平面直角坐标系中,矩形ABCD 的边BC 在x 轴上,点D 的坐标为(﹣2,6),点B 是动点,反比例函数y =kx(x <0)经过点D ,若AC 的延长线交y 轴于点E ,连接BE ,则△BCE 的面积为( )A.3B.5C.6D.74.下列计算,正确的是( )A .3423a a a +=B .43a a a ÷=C .236a a a ⋅=D .236()a a -=5.将一元二次方程2650x x -+=配方后,原方程变形( ) A .5)3(2=-x B .2(6)5x -= C .2(6)4x -= D .2(3)4x -= 6.下列运算正确的是( )A .2a ﹣a =2B .2a+b =2abC .﹣a 2b+2a 2b =a 2bD .3a 2+2a 2=5a 47.如图,BD 平分,ABC BC DE ∠⊥于点,7,4E AB DE ==,则ABD S ∆=( )A .28B .21C .14D .78.如图,将长16cm ,宽8cm 的矩形纸片ABCD 折叠,使点A 与点C 重合,则折痕EF 的长为( )cm .A .6B .C .10D .9.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( ) A .(﹣3,﹣1)B .(1,1)C .(3,2)D .(4,3)10.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=( )A.30°B.25°C.20°D.15°11.下列计算正确的是()A.a2⋅a3=a6B.a6÷a3=a2C.(ab)2=ab2D.(﹣a2)3=﹣a612.如图,DE∥BC,CD平分∠ACB,∠AED=50°,则∠EDC的度数是()A.50°B.40°C.30°D.25°二、填空题13.如图,在平面直角坐标系中,点A的坐标为(3,1),直线l与x轴,y轴分别交于点B(﹣3,0),C(0,3),当x轴上的动点P到直线l的距离PE与到点A的距离PA之和最小时,则点E的坐标是_____.14.如图,在∆ABC中,AB=AC=10,E,D分别是AB,AC上的点,BE=4,CD=2,且BD=CE,则BD=________________.15.如果α是锐角,且sinα=cos20°,那么α=_____度.16.某商店为尽快清空往季商品,采取如下销售方案:将原来商品每件m元,加价50%,再做降价40%.经过调整后的实际价格为_____元.(结果用含m的代数式表示)17.抽屉里有2只黑色和1只白色的袜子,它们混在一起,随意抽出两只刚好配成一双的概率是_____________18.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.三、解答题19.图①、图②均是3×2的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上.在图①、图②给定的网格中各画一个△APC,使点P在线段AB上,点C为格点,且∠APC的正切值为2.要求:(1)图①中的△APC为直角三角形,图②中的△APC为锐角三角形.(2)只用无刻度的直尺,保留适当的作图痕迹.20.如图,一次函数y=﹣12x+3的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为2.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.21.为了传承中华优秀传统文化,某校学生会组织了一次全校1200名学生参加的“汉字听写”大赛,并设成绩优胜奖.赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩作为样本进行整理,得到下列不完整的统计图表:70 70 71 71 71 72 72 73 73 73 73 75 75 75 75 76 76 76 76 76 76 76 76 77 77 78 78 78 79 79请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数是;(4)若这次比赛成绩在78分以上(含78分)的学生获得优胜奖,则该校参加这次比赛的1200名学生中获优胜奖的约有多少人?22.解不等式组()214111143x x x x ⎧+-⎪⎨+--≤⎪⎩>23.解方程:1=1++1x x x. 24.我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有 人,补全条形统计图; (2)求扇形统计图中a 的值;(3)估计该校全体学生中喜爱“实验实践”的人数.25.如图, AB 是⊙O 的直径,AC 是⊙O 的切线, BC 与⊙O 相交于点D,点E 在⊙O 上,且DE=DA, AE 与BC 相交于点F , (1)求证: ∠CAD=∠B: (2)求证: FD=CD .【参考答案】*** 一、选择题13.15,22⎛⎫-⎪⎝⎭14.15. 16.9m 17.1318.13124π-三、解答题 19.见解析. 【解析】 【分析】根据正切函数的定义,结合网格特点作图即可. 【详解】解:如图所示,图①中的△APC 为直角三角形,图②中的△APC 为锐角三角形.由题意可知,是DE,AB 的中点,∴AP=2 ,PE=2, ∴由勾股定理的逆定理可知,∠AEP=90°,且tan ∠APC=2. 【点睛】本题主要考查作图﹣应用与设计作图,解题的关键是掌握正切函数的定义. 20.(1)y =4x ;(2)y =﹣16x+53,点P 的坐标为(0,53). 【解析】 【分析】(1)利用反比例函数k 的几何意义即可求出反比例函数的解析式;(2)先把解析式联立组成方程组求出A 、B 两点的坐标,再利用轴对称的性质找到符合条件的点P 的位置,利用一次函数与y 轴的交点求出P 点坐标,再利用勾股定理求出最小距离和. 【详解】(1)设A 点的坐标为(a ,b ),则OM =a ,AM =b , ∵△AOM 面积为2, ∴12ab =2, ∴ab =4,∵点A 在反比例函数图象上, ∴k =4,∴反比例函数的解析式为y=4x;(2)依题意可知,A、B两点的坐标为方程组1324y xyx⎧=+⎪⎪⎨⎪=⎪⎩的解,解方程组得:点A的坐标为(2,2),点B的坐标为(4,1),点A关于y轴的对称点A′的坐标为(﹣2,2),连接A′B,交y轴于点P,点P即为所求,此时PA+PB 最小,最小值为A′B的长.=设直线A′B的解析式为y=kx+b,带入A′,B的坐标得2214k bk b=-+⎧⎨=+⎩,解得:1k65b3⎧=-⎪⎪⎨⎪=⎪⎩,∴1563y x=-+,点P的坐标为(0,53).【点睛】本题考查了反比例函数与一次函数的交点问题,巧用轴对称的性质找到P点的坐标是解题的关键.21.(1)20,0.3;(2)详见解析;(3)75;(4)480(人).【解析】【分析】(1)根据频数、频率以及总数之间的关系即可求出a和b;(2)根据(1)求出a的值直接补全统计图即可;(3)根据中位数的定义直接解答即可;(4)用总人数乘以在这次比赛中获优胜奖的人数所占的百分比即可得出答案.【详解】解:(1)a=100×0.2=20(分),30÷100=0.3;故答案为:20,0.3;(2)根据(1)求出a的值,补图如下:(3)把这些数从小到大排列,中位数是第50、51个数的平均数,则中位数落在70≤x<80这组,中位数是75;故答案为:75;(4)样本中成绩在78分以上的人数为40人,占样本人数的40%,获优胜奖的人数约为1200×40%=480(人).【点睛】本题考查频数分布直方图、频数分布表、中位数、由样本估计总体等知识,解题的关键是掌握基本概念,熟练应用所学知识解决问题. 22.-5≤x<52【解析】 【分析】分别解出两不等式的解集,再求其公共解. 【详解】解:()214111143x x x x ⎧+-⎪⎨+--≤⎪⎩>①②由①得x <52; 由②得x≥-5;∴不等式组的解集为-5≤x<52. 【点睛】本题考查了解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 23.12x =-【解析】 【分析】先两边同乘()1x x +,再整理,最后检验答案是否合理. 【详解】解:两边同乘()1x x +,得2(1)1x x x x =+++.整理得21x =- 解得12x =-.经检验,12x =-是原方程的解.【点睛】本题考查解分式方程,解题的关键是掌握解去分母. 24.(1)80;图见解析;(2)20;(3)360. 【解析】 【分析】(1)用阳光体艺的人数除以对应的百分比即可得到接受调查的总人数. 用总人数减去其余各人数可得课堂演讲的人数,据此补全条形统计图. (2)根据样本中总人数及课堂演讲的人数即可求a 的值.(3)求出样本中学生中喜爱“实验实践”的人数的百分比,乘以学校总人数即可. 【详解】(1)32÷40%=80(人), 故答案为80,课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人)补图如下(2)16100%20%a% 80⨯==,所以a=20;(3)根据题意得:161800100%36080⨯⨯=(人),答:该校全体学生中喜爱“实验实践”的人数约为360人.【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.25.(1) 见解析;(2) 见解析.【解析】【分析】(1)由题意AC是⊙O的切线,可知∠CAD+∠BAD=90°,因为AB是⊙O的直径,所以∠ADB=90°,即∠B+∠BAD=90°,证出∠CAD=∠B.(2)根据DA=DE,得∠EAD=∠E,再证出△ADF≌△ADC,可得FD=CD.【详解】(1)∵AC是⊙O的切线,∴BA⊥AC,∴∠CAD+∠BAD=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠CAD=∠B,(2)∵DA=DE,∴∠EAD=∠E,而∠B=∠E,∴∠B=∠EAD,∴∠EAD=∠CAD,∵∠ADB=∠ADC=90°,AD=AD∴△ADF≌△ADC,∴FD=CD.【点睛】本题主要考查了切线的性质,圆周角定理,全等三角形的判定,熟知切线的性质是解题关键.2019-2020学年数学中考模拟试卷一、选择题1.下列计算错误的是( ) A .(﹣x )2•x 3=x 5B .(﹣x 2y )3=x 6y 3C .(﹣x )2•(﹣x )3=﹣x 5D .x 2+x 2=2x 22.一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (小时),航行的路程为S (千米),则S 与t 的函数图象大致是( )A. B.C. D.3.如图,菱形ABCD 的对角线AC 、BD 相交于点O .若周长为20,BD =8,则AC 的长是( )A.3B.4C.5D.64.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴的正半轴上,顶点B 在函数y =kx(x >0)的图象上,若∠C =60°,AB =2,则k 的值为( )A B C .1 D .25.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为菱形的是( )A .AC BD ⊥B .ABD ADB ∠=∠C .AB CD =D .AB BC =6.某班学生到距学校12km 的烈士陵园扫墓,一部分同学骑自行车先出发,经过12h 后,其余同学乘汽车出发,由于____________,设自行车的速度为/xkm h ,则可得方程为1212132x x -=,根据此情境和所列方程,上题中______________中的内容应该是( ) A .汽车速度是自行车速度的3倍,结果同时到达。

相关文档
最新文档