小学奥数等差数列
等差数列四年级奥数题
等差数列四年级奥数题
一、等差数列的基本概念
1. 定义
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
这个常数叫做等差数列的公差,通常用字母公式表示。
例如数列公式就是一个等差数列,公差公式,因为公式
,公式,公式等。
2. 通项公式
对于等差数列公式,其通项公式为公式,其中公式是首项(数列的第一项),公式是项数,公式是第公式项的值。
例如在等差数列公式中,公式,公式,那么第公式项公式。
3. 求和公式
等差数列的前公式项和公式为公式,也可以写成公式。
例如求等差数列公式的和。
这里公式,公式,先求项数公式,根据公式,公式,解得公式。
再用求和公式公式。
二、四年级奥数等差数列题目及解析
1. 题目
有一个等差数列:公式,求这个数列的第公式项是多少?
2. 解析
首先确定这个等差数列的首项公式,公差公式(因为公式
,公式等)。
根据等差数列的通项公式公式,要求第公式项,即公式。
把公式,公式,公式代入通项公式可得:公式。
3. 题目
已知等差数列公式,这个数列的前公式项的和是多少?
4. 解析
先确定首项公式,公差公式。
根据等差数列的前公式项和公式公式,这里公式。
把公式,公式,公式代入可得:
公式
公式
公式。
5. 题目
在一个等差数列中,首项是公式,第公式项是公式,求公差公式。
6. 解析
已知公式,公式,公式。
根据通项公式公式,把公式,公式,公式代入可得:
公式
公式
公式
解得公式。
小学奥数等差数列(新颖)
小学奥数等差数列(新颖)
简介
本文档将介绍小学奥数中的等差数列,并提供一些新颖的思路和方法来解决相关问题。
等差数列的定义
等差数列是指一个数列中的任意两个相邻项之差相等的数列。
通常用字母a表示首项,d表示公差,n表示项数,第n项表示为an,等差数列的通项公式为:
an = a + (n - 1)d
求等差数列的和
常见的等差数列求和方法包括以下几种:
- 公式法:根据等差数列的求和公式,直接计算出和的值。
- 递归法:通过不断累加前面的项来求和。
- 等差数列性质法:利用等差数列的性质和规律,简化求和运算。
等差数列的特殊性质
等差数列具有一些特殊的性质,可以帮助我们更好地理解和解题:
- 首项和末项之和等于中间任意两项之和。
- 等差数列的前n项和等于首项与最后一项的和乘以项数的一半。
等差数列的应用举例
以下是一些新颖的等差数列应用示例:
1. 题目:某个等差数列的首项是3,公差是5,项数是10,请
问这个数列的前10项和是多少?
解析:根据等差数列求和公式,代入a=3,d=5,n=10,可以
得出该数列的和。
2. 题目:某个等差数列的前n项和是125,首项是2,公差是6,请问这个数列的项数是多少?
解析:利用等差数列的性质,可以得出项数n满足条件125 = (2 + an) * n / 2,通过简单的计算可以得到n的值。
总结
等差数列在小学奥数中是一个重要的概念,掌握等差数列的定义、求和方法和特殊性质,能够更好地解决相关问题。
该文档介绍了等差数列的基本知识和应用举例,希望对您有所帮助。
小学四年级奥数第二讲__等差数列
等差数列像1,2,3,…,99,100这样的一串数我们称为“等差数列”,下面介绍有关等差数列的概念。
的概念。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后后项与前项之差后项与前项之差都相等的数称为等差数列,后项与前项之差一项称为末项。
从第一项开始,后项与前项之差都相等的数称为等差数列,称为公差,数列中数的个数称为项数。
称为公差,数列中数的个数称为项数。
等差数列的求和公式为:等差数列的求和公式为:数列和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 末项=首项+公差×(项数-1)[例1]计算1+2+3+ (1999)[例2]求首项是5,公差是3的等差数列的前1999项的和。
项的和。
[例3]计算3+7+11+ (99)[例4]计算(1)2000-3-6-9-…-51-54 (2)(2+4+6+…+96+98+100)-(1+3+5+…+95+97+99)[例5]2000×1999-1999×1998+1998×1997-1997×1996+…+4×3-3×2+2×1 [例6]在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?练习:1.计算:.计算:(1)1+2+3+…+76+77+78 (2)1+3+5+…+95+97+99 (3)2+6+10+14+…+202+206+210 (4)4+7+10+…+292+295+298 2.求首项是5,末项是93,公差是4的等差数列的和。
的等差数列的和。
3.求首项是13,公差是5的等差数列的前30项的和。
项的和。
4.计算:.计算:(1)4000-1-2-3-…-76-77-78 (2)560-557+554-551+…+500-497 (3)204-198+192-186+…+24-18+12-6 *5.计算:.计算:(1)(1+3+5+...+1999)-(2+4+6+ (1998)(2)1+2+3-4+5+6+7-8+9+10+11-12+…+25+26+27-28 6. 在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?是这个数列的第几项?7.一个剧院共有25排座位,从第一排起,以后每排都比前一排多2个座位,第25排有70个座位,这个剧院共有个座位,这个剧院共有 个座位。
小学奥数等差数列资料讲解
一、 等差数列的定义定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如: 2、5、8、11、14、17、20、L 从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、L 从第二项起,每一项比前一项小5 ,递减数列关键词:首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、 三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()拓展公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1 等差数列的基本概念及公式11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).③ 求和公式:和=(首项+末项)⨯项数÷2 (思路1) 1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++LL L和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=三、 一个重要定理:中项定理1、项数为奇数的等差数列,和=中间项×项数.譬如:①4+8+12+…+32+36=(4+36)×9÷2=20×9=180,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=L (),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.2、项数是偶数的等差数列,中间一项等于中间两项的平均数。
小学奥数:等差数列计算题.专项练习及答案解析
等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、L 、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、L 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++LLL 和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089L(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=L⑵13578799L++++++=⑶471013404346L+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:L()+++++++=+⨯÷=34567677783787623078⑵算式中的等差数列一共有50项,所以:13578799(199)5022500L++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:L()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
等差数列(小数数学 五年级奥数)
等差数列知识与方法:像(1)1,2,3,4,5,…;(2)10,20,30,40,50,…从第2项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列。
这个常数叫做等差数列的公差,通常用字母d表示。
在等差数列a1,a2,a3,…a n中,它的公差是d,那么a2=a1+da3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d…a n=a1+(n-1)×d(等差数列的通项公式)由此可见,等差数列从第2项起,每一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,利用它可以求出等差数列的任何一项。
例题1:求等差数列3,8,13,18......的第38项和第69项。
练习1:求等差数列1,4,7,10,13.....的第20项和第80项.练习2:超市工作人员在商品上依次编号,分别为4,8,12,16......,请问第34个商品上标注的是什么数字?第58个标注的是什么数字?例题2:36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习1:仓库里有一叠被编上号的书,共40本,已知每下面一本书比上面一本书的号码多5,最后一本书的编号是225,请问第一本书的编号是多少?练习2:幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具编号是98,每一个玩具的编号比后一个玩具的编号少3,问第一个小朋友上玩具编号是多少?例题3:等差数列4,12,20......,中的580是第几项?练习1:等差数列3,9,15,21.....中381是第几项?练习2:糖果生产商为机器编号,依次为7,13,19,25......。
问编号为433的机器是第几个?例题4:一批货箱上面的标号是按等差数列排列的。
第1项是3.6,第5项是12,求它的第2项.练习1:有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项.练习2:有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7。
小学奥数等差数列练习及答案【三篇】
小学奥数等差数列练习及答案【三篇】【篇一】知识点:1、数列:按一定顺序排成的一列数叫做数列。
数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。
数列中共有的项的个数叫做项数。
2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。
3、常用公式等差数列的总和=(首项+末项)项数2项数=(末项-首项)公差+1末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项-首项)(项数-1)等差数列(奇数个数)的总和=中间项项数【篇二】典例剖析:例(1)在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+1,便可求出。
(2)根据公式:末项=首项+公差(项数-1)解:项数=(201-3)3+1=67末项=3+3(201-1)=603答:共有67个数,第201个数是603练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?答案:第48项是286,508是第85项例(2)全部三位数的和是多少?分析::所有的三位数就是从100~999共900个数,观察100、101、102、……、998、999这个数列,发现这是一个公差为1的等差数列。
要求和能够利用等差数列求和公式来解答。
解:(100+999)9002=10999002=494550答:全部三位数的和是494550。
练一练:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。
答案:1000例(3)求自然数中被10除余1的所有两位数的和。
分析一:在两位数中,被10除余1最小的是11,的是91。
从题意可知,本题是求等差数列11、21、31、……、91的和。
它的项数是9,我们能够根据求和公式来计算。
解一:11+21+31+……+91=(11+91)92=459【篇三】1、有10只金子,54个乒乓球,能不能把54个乒乓球放进盒子中去,使各盒子的乒乓球数不相等?2、小明家住在一条胡同里,胡同里的门牌号从1号开始摸着排下去。
小学生奥数等差数列练习题及答案
小学生奥数等差数列练习题及答案1. 对于下列等差数列,求出其公差并继续列出下一个项:a) 3, 5, 7, 9, ...解答:a) 公差为2。
下一个项为11。
2. 给定等差数列的首项和公差,求出前n项的和。
a) 首项为2,公差为3,求前5项的和。
解答:a) 首项为2,公差为3。
前5项的和为2 + 5 + 8 + 11 + 14 = 40。
3. 给定等差数列的前n项和以及首项,求公差。
a) 前6项的和为42,首项为3,求公差。
解答:a) 前6项的和为42,首项为3。
根据等差数列求和公式,可得到以下方程:(6/2) * (2 * 3 + (6 - 1) * d) = 4218 + 15d = 4215d = 24d = 24/15公差为8/5。
4. 在下列等差数列中,求第n项:a) 1, 4, 7, 10, ...解答:a) 第n项可表示为1 + (n - 1) * 3。
例如,第5项为1 + (5 - 1) * 3 = 13。
5. 已知等差数列的首项和第n项,求公差。
a) 首项为5,第6项为20,求公差。
解答:a) 第n项可表示为首项加上公差乘以(n - 1)。
根据已知条件,可得到以下方程:5 + 5(n - 1) = 205n - 5 = 205n = 25n = 5公差为5。
6. 在下列等差数列中,求第n项的值:a) -2, -5, -8, -11, ...解答:a) 第n项可表示为-2 - (n - 1) * 3。
例如,第6项为-2 - (6 - 1) * 3 = -17。
7. 对于下列等差数列,求出给定的项:a) 2, 5, 8, 11, ...求第10项。
求第20项。
解答:a) 第n项可表示为首项加上公差乘以(n - 1)。
例如,第10项为2 + 3 * (10 - 1) = 29。
第20项为2 + 3 * (20 - 1) = 59。
8. 已知等差数列的首项和公差,求出前n项中大于m的项的个数。
四年级奥数等差数列和等比数列
四年级奥数等差数列和等比数列
简介
本文将介绍四年级奥数中的等差数列和等比数列概念及其求和公式。
等差数列
等差数列是指一个数列中的每一项与它的前一项之差都相等。
例如,2、4、6、8、10 就是一个等差数列,其中公差为2。
公式
对于等差数列,可以使用以下公式来求前n项和:
$$S_n = \frac{n}{2} (a_1 + a_n)$$
其中,$S_n$表示前n项的和,$a_1$表示数列的首项,
$a_n$表示数列的第n项。
等比数列
等比数列是指一个数列中的每一项与它的前一项之比都相等。
例如,2、6、18、54、162 就是一个等比数列,其中公比为3。
公式
对于等比数列,可以使用以下公式来求前n项和:
$$S_n = \frac{a_1(1-q^n)}{1-q}$$
其中,$S_n$表示前n项的和,$a_1$表示数列的首项,$q$表示公比,$n$表示项数。
总结
等差数列和等比数列是四年级奥数中常见的数列类型。
通过掌握它们的概念和求和公式,可以帮助学生更好地理解数列的特点和规律,并能应用到实际问题中。
以上是对四年级奥数中的等差数列和等比数列的简要介绍。
希望本文能够对大家有所帮助。
小学奥数等差数列公式
小学奥数等差数列公式公式1:求和公式:等差数列求和=(首项+末项)×项数÷2,即:Sn=(a1+an)×n÷2;公式2:通项公式:第n项=首项+(n-1)×公差,即:an=a1+(n-1)×d;公式3:项数公式:项数=(末项-首项)÷公差+1,即n=(an-a1)÷d+1。
上述三个公式必须掌握此外,还有一个中项定理,也掌握:中项定理:对于作意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
例1:建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?解:如果我们把每层砖的块数依次记下来,2,6,10,14,…容易知道,这是一个等差数列.方法1:a1=2,d=4,利用公式求出an=2106,则:n=(an-a1)÷d+1=527这堆砖共有则中间一项为a264=a1+(264-1)×4=1054.方法2:(a1+an)×n÷2=(2+2106)×527÷2=555458(块).则中间一项为(a1+an)÷2=1054a1=2,d=4,an=2106,这堆砖共有1054×527=555458(块).此题利用中项定理和等差数列公式均可解!例2:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.解:根据题意可列出算式:(2+4+6+8+...+2000)-(1+3+5+ (1999)解法1:能够看出,2,4,6,…,2000是一个公差为2的等差数列,1,3,5,…,1999也是一个公差为2的等差数列,且项数均为1000,所以:原式=(2+2000)×1000÷2-(1+1999)×1000÷2=1000.解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式=1000×1=1000.例3:100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?解:方法1:要求和,我们能够先把这50个数算出来.100个连续自然数构成等差数列,且和为8450,则:由题可知:(首项+末项)×100÷2=8450,求出:(首项+末项)=169。
(完整版)小学奥数--等差数列
等差数列专题解析典型例题例1、求等差数列3,8,13,18,…的第38项和第69项。
例2、36个小学生排成一排玩报数游戏,后一个同学报的数部比前一个同学多报8,已知最后一个同学报的数是286,则第一个同学报的数是几?像(1)1,2,3,4,5,…(2)10,20,30,40,50,… (3)4111432141,,,,,…这种从第二项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列.这个常数叫做等差数列的公差,通常用字母d 表示。
在等差数列1a ,n a a a ...,32,它的公差是d ,那么d a a 12d a d d a d a a 2)(1123da d d a d a a 3)2(1234…由此可见,等差数列从第二项起,每一项等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,所以:d n a a n )1(1。
这个公式我们称它为等差数列的通项公式,利用它可以求出等差数列中的任何一项。
例3、等差数列4,12,20,…中,580是第几项?例4,一批货箱,上面标的号是按等差数列排列的,第一项是 3.6,第五项是12,求它的第二项.例5、游戏园的智慧梯最高一级宽60厘米,最低一级宽150厘米,中间还有13级,各级的宽度成等差数列,求正中一级的宽。
随堂巩固1、求3+10+17+24+31+…+94的和2、求100至200之间被7除余2的所有三位数的和是多少?3、一个有30项的等差数列,公差是5,末项为154,这个数的首项是多少?4、有12个数组成等差数列,第六项与第七项的和是12,求这12个数的和。
5、在19和91之间插入5个数,使这7个数构成一个等差数列。
写出插入的五个数.6、从广州到北京的某次快车中途要依靠8个大站,铁路局要为这次快车准备多少种不同的车票?这些车票中有多少种不同的票价?7、学校举行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行91场比赛,有多少人参加了选拔赛?8、7个小队共种树100棵,各小队种的棵数都不相同,其中种树最多的小队种了18棵树,种树最少的小队至少种了多少棵树?。
小学奥数等差数列
小学奥数等差数列等差数列是数学中重要的概念之一,也是小学奥数中的常见考点。
本文将介绍等差数列的定义、性质以及解题方法。
1. 等差数列的定义等差数列是指一个数列中的每个数都与它的前一个数之差相等。
通常用字母 a 表示数列的首项,d 表示公差,那么数列中的第 n 项可以表示为:a + (n - 1) * d。
2. 等差数列的性质等差数列具有以下性质:- 公差相等:数列中任意两项之间的差值都相等。
- 递推公式:数列中每一项可以通过前一项加上公差得到。
- 首项与末项:数列中的首项为 a,末项为 a + (n - 1) * d。
- 数列长度:数列中的项数为 n = (末项 - 首项) / 公差 + 1。
3. 等差数列的解题方法解决等差数列的问题通常可采用以下方法:- 求某一项:使用递推公式即可求得数列中任意一项的值。
- 求和:等差数列的前n 项和可以通过求平均数乘以项数得到,即和 = (首项 + 末项) * 项数 / 2。
4. 解题示例假设有一个等差数列,其中首项为 2,公差为 3,求该等差数列的第 5 项和前 5 项的和。
根据等差数列的递推公式,第 5 项可以通过前一项加上公差得到:a5 = a4 + d = 2 + 3 = 5。
根据等差数列的求和公式,前 5 项的和可以计算如下:和 = (首项 + 末项) * 项数 / 2 = (2 + 5) * 5 / 2 = 35。
综上所述,该等差数列的第 5 项为 5,前 5 项的和为 35。
5. 总结等差数列是一个重要的数学概念,在小学奥数中常见。
通过掌握等差数列的定义、性质和解题方法,可以更好地应对相关的考试题目。
三年级奥数等差数列
三年级奥数等差数列小学三年级奥数专项练:等差数列知识要点】1.定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个数,这个数列就叫做等差数列。
2.特点:①相邻两项差值相等;②要么递增,要么递减。
3.名词:公差,首项,末项,项数按一定次序排列的一列数叫做数列。
数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项;最后一个数叫末项。
如果一个数列从第二项开始,每一项与它前一项的差都相等,就称这个数列为等差数列。
后项与前项的差就叫做这个数列的公差。
例如:1,2,3,4.是等差数列,公差是1;1,3,5,7.是等差数列,公差是2;5,10,15,20.是等差数列,公差是5.在等差数列中,有如下规律:通项公式:末项=首项+(项数-1)×公差第几项=首项+(项数-1)×公差;项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2 =平均数×项数平均数公式:平均数=(首项+末项)÷21) 一个等差数列共有15项,每一项都比它的前一项大3,它的首项是4,那么末项是______;2) 一个等差数列共有13项,每一项都比它的前一项小5,它的第1项是121,那么它的末项是_______。
3) 一个等差数列的首项是12,第20项等于392,那么这个等差数列的公差=_____;第19项=______,212是这个数列的第_____项。
计算下面的数列和:1) 1+2+3+4+…+23+24+25=2) 1+5+9+13+…+33+37+41=3) 3+7+11+15+19+23+27+31=拓展练:1、在10和40之间插入四个数,使得这六个数构成一个等差数列。
那么应插入哪些数?2、一个等差数列的首项是6,第8项是55,公差是()。
1) 2、4、6、8、……、28、30这个等差数列有()项。
2) 2、8、14、20、……62这个数列共有()项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列
知识点 1、数列定义:若干个数排成一列,像这样一串数,称为数列。
数列中的每一个数称为一项,其中第一个数称为首项(我们将用 1a 来表示),第二个数叫做第二项 以此类推,最后一个数叫做这个数列的末项(我们将用 n a 来表示),数列中数的个数称为项数,我们将用 n 来表示。
如:2,4,6,8, ,100
2、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
我们将这个差称为公差(我们用 d 来表示),即:
1122312----=-==-=-=n n n n a a a a a a a a d
例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
(省略号表示什么?)
练习1:试举出一个等差数列,并指出首项、末项、项数和公差。
3、 计算等差数列的相关公式:
(1)通项公式:第几项=首项+(项数-1)×公差
即:d n a a n ⨯-+=)1(1
(2)项数公式:项数=(末项-首项)÷公差+1
即:1)(1+÷-=d a a n n
(3)求和公式:总和=(首项+末项)×项数÷2
即:()21321÷⨯+=+++n a a a a a a n n
在等差数列中,如果已知首项、末项、公差。
求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例1:求等差数列3,5,7, 的第 10 项,第 100 项,并求出前 100 项的和。
【解析】我们观察这个等差数列,可以知道首项 1a =3,公差d=2,直接代入通
项公式,即可求得21293)110(110=⨯+=⨯-+=d a a ,
2012993)1100(1100=⨯+=⨯-+=d a a . 同样的,我们知道了首项3,末项201以及项数100,利用等差数列求和公式即可求和:3+5+7+ 201=(3+201)
⨯100÷2=10200.
解:由已知首项 1a =3,公差d=2,
所以由通项公式d n a a n ⨯-+=)1(1,得到21293)110(110=⨯+=⨯-+=d a a 2012993)1100(1100=⨯+=⨯-+=d a a 。
同理,由已知,1a =3,100a =201,项数n=100
代入求和公式得3+5+7+ 201=(3+201)⨯100÷2=10200.
练习2:1、求出你已经写出的等差数列的各项和。
2、有一个数列,4、10、16、22……52,这个数列有多少项?
3、一个等差数列,首项是3,公差是2,项数是10。
它的末项是多少?
4、求等差数列1、4、7、10……,这个等差数列的第30项是多少?
例2:在211、2
12两数之间插入一个数,使其成为一个等差数列。
解:根据第几项=首项+(项数-1)×公差,
那么第三项 3a =1a +2d ,即:212=2
11+2d ,所以d=0.5 故等差数列是,211、2、2
12。
拓展:1、在12 与 60 之间插入3个数,使这5个数成为一个等差数列。
2、在6和38 之间插入7个数,使他们成为等差数列,求这9 个数的和是多少? 例3:有10个朋友聚会,见面时如果每人都要和其余的人握一次手,那么共握了多少次手?
练习:1、某班有51个同学,毕业时每人都要和其他同学握一次手,那么这个班共握了多少次手?
2、有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次? 例4:4个连续整数的和是94,求这4个数。
解:由于4个数是连续的整数,那么这4个数就是公差d=1的等差数列,不妨设第一个数为1a ,那么第二个数就是1a +1,
同理:第3个数,第4个数分别是1a +2,1a +3
那么由已知,这四个整数的和是94,所以
1a +(1a +1)+(1a +2)+(1a +3)=94
因此1a =22,所以这4个连续分别是22、23、24、25.
练习:1、3连续整数的和是20,求这3个数。
2、5个连续整数的和是180,求这5个数。
3、6个连续偶数中,第一个数和最后一个数的和是78,求这6个连续偶数各是多少?
例5:丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学会1个,最后一天学会了16个。
丽丽在这些天中共学会了多少个单词?
解:因为丽丽从第二天开始,每天都比前一天多学会1个单词,
因此丽丽每天学会的单词个数是一个等差数列,并且这个等差数列的首项1a =6, 公差d =1,末项n a =16,若想求和,必须先算出项数n ,
根据公式 项数=(末项-首项)÷公差+1 ,
n=(16-6)÷1+1=11
那么丽丽在这些天中共学会的单词个数为:
6+7+8+……+16 = (6+16) 11÷2=121
练习:有一家电影院,共有30排座位,后一排都比前一排多两个位置,已知第一排有28个座位,那么这家电影院共可以容纳多少名观众?
2、一个家具厂生产书桌,从第二个月起,每个月增加10件,一年共生产了1920件,那么这一年的12月份共生产了多少书桌?
巩固练习:奥数精讲与测试p10 A卷,1、8、9、10、11
B卷:2、4、8、12
1、6+7+8+9+……+74+75=()
2、2+6+10+14+……+122+126=()
3、已知数列2、5、8、11、14……,47应该是其中的第几项?
4、有一个数列:6、10、14、18、22……,这个数列前100项的和是多少?
5、在等差数列1、5、9、13、17……401中,401是第几项?第50项是多少?
6、1+2+3+4+……+2007+2008=()
7、(2+4+6+……+2000)-(1+3+5+……+1999)=
8、1+2-3+4+5-6+7+8-9+……+58+59-60=
9、有从小到大排列的一列数,共有100项,末项为2003,公差为3,求这个数列的和。
10、求1——99个连续自然数的所有数字的和。