一元一次方程导学案新部编版
《一元一次方程》教案及导学案
一元一次方程教案一、教学目标:知识与技能1、再次培养学生会设出未知数,根据问题寻找相等关系、再根据相等关系列出方程的能力;2、理解一元一次方程、方程的解等概念;3、掌握检验某个值是不是方程的解的方法;过程与方法在解决实际问题的过程中探讨数量关系、列方程的方法,训练学生运用新知识解决实际问题的能力. 情感态度与价值观:鼓励学生进行观察思考,发展合作交流的意识和能力.二、教学重点:建立一元一次方程的概念,以及寻找相等关系、列出方程.三、教学难点:根据具体问题中的等量关系,列出一元一次方程。
四、教学过程设计一元一次方程导学案一、学习目标:1、会设出未知数,根据问题寻找相等关系、再根据相等关系列出方程;2、理解一元一次方程、方程的解等概念;3、掌握检验某个值是不是方程的解的方法;二、学习重点:建立一元一次方程的概念,以及寻找相等关系、列出方程. 三、学习难点:根据具体问题中的等量关系,列出一元一次方程。
(一)自主学习1、自学课本第79页内容完成下列问题 观察下面方程的特点(1)4x =24; (2)1700+150x=2450 (3)0.52x-(1-0.52x)=80 (1)从未知数的个数来看: (2)从未知数的次数来看: (3)从方程两边是否为整式来看:小结:像上面方程,它们都含有 个未知数(元),未知数的次数都是 ,这样的 方程叫做一元一次方程。
2、自学课本第80页,知道什么是方程的解,及检验一个值是否为方程的解. 检验2和-3是否为方程2x+4=x+1 的解。
解:当x=2时, 左边= = , 右边= = ,∵左边 右边(填=或≠) ∴x=2 方程的解(填是或不是) 当x=-3 时,左边= = , 右边= = , ∵左边 右边(填=或≠) ∴x=-3 方程的解(填是或不是) (二)组际合作展风采1、判断下列方程是不是一元一次方程: (1)23-x=一7: (2)2a-b=3(3 )y+3=6y-9; (4)0.32 m-(3+0.02 m) =0.7. (5)x 2=1 (6)61x(7)1082->-x ;(8)132≠+-x2、若方程3x a-4=5(a 已知,x 未知)是一元一次方程,则a 等于( ) A.任意有理数 B.0 C.1 D.0或1 3、x=2是下列方程( )的解.A.2x=6B.(x-3)(x+2)=0C.x 2=3 D.3x-6=04、 小颖种了一株树苗,开始时树苗高为40厘米,栽种后树苗每周长高约15厘米,大约几周后树苗长高到1米.(只列式,不求解)5、A 、B 两地相距 200千米,一辆小车从A 地开往B 地,3小时后离B 地还有20千米,求小卡车的平均速度(三)训练指导提能力1、x=3是下列哪个方程的解?( ) A. 3x-1-9=0 B. x=10-4x C. x(x-2)=3 D. 2x-7=122、已知x -5与2x -4的值互为相反数,列出关于x 的方程.3、x 、y 是两个有理数,“x 与y 的和的13等于4”用式子表示为( ). A .143x y ++= B .143x y += C .1()43x y += D .以上都不对 4、检验2和3-是否为方程2125-=--x x 的解。
(完整word版)一元一次方程导学案(DOC)
一元一次方程导学案【学习目标】1、知道什么是方程,会判断一个数学式子是算式还是方程;2、能根据简单的实际问题列一元一次方程,并了解其步骤;3、会判断方程的解。
【学习重点】一元一次方程的含义。
【学习难点】根据简单的实际问题列一元一次方程。
课前自主学习(查阅教材和相关资料,完成下列内容)考点一.方程的概念1、含有的等式叫方程。
考点二.一元一次方程的概念1.只含有个未知数,未知数的次数都是次的方程,叫做一元一次方程。
考点三.列方程遇到实际问题时,要先设字母表示 ,然后根据问题中的 ,最后写出含有未知数的 ,就能列出方程.归纳:列方程解实际问题的步骤:第一步: ,第二步: ,第三步: .考点四.解方程及方程的解的含义解方程就是求出使方程中等号左右两边的的值,这个值就是方程的 .【重要思想】1.类比思想:算式与方程的对比2.转化思想:把实际问题转化为数学问题,特别是方程问题.学练提升问题1:判断下列数学式子X+1, 0.5x-x, 2x-3=7, 3x+2=2x-5 , 2x2+3x-8=0,x+2y=7.是方程有 ,是一元一次方程有【规律总结】【同步测控】1.自己编造两个方程: , .2.自己编造两个一元一次方程: , .问题2.根据问题列方程:1.用一根长24cm的铁丝未成一个正方形,正方形的变长是多少?2.一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间他到规定的检修时间2450小时?【同步测控】根据下列问题,设未知数,列出方程1.环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?2.甲种铅笔每只0.3元,乙种铅笔铅笔每只0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?【规律总结】【同步测控】1.一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.2.x的2倍于10的和等于18;3.比b的一半小7的数等于a与b的和;4.把1400元奖学金按照两种奖项将给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生多少人?问题三、判断方程的根1.判断下列各数X=1,x=2,x=-1,x=0.5.那个是方程2x+3=5x-3的解?2.当x= 时,方程3x-5=1 两边相等?等式性质导学案【学习目标】1、了解等式的两条基本性质,并会用数学式子表示;2、能利用等式的基本性质解简单的方程; 【学习重点】理解等式的两条基本性质。
【导学案】《一元一次方程》导学案
第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.知道什么是方程,什么是一元一次方程,什么是方程的解.2.能用方程表示简单实际问题中的等量关系.3.知道用什么方法检验某个值是不是方程的解,能用估算的方法寻求方程的解,养成从猜想到验证的思维习惯.4.重点:一元一次方程及其解,列方程表示简单实际问题中的等量关系.【问题探究】阅读教材P 78~80,回答下列问题.探究一:1.用算术法解决教材P 78的问题.60÷(70-60)×70=420.2.在行程问题中,时间= ,设AB两地相距x千米,客车从A地到B地所用的时间用x表示为,卡车从A地到B地的时间用x表示为.3.题中哪句话表示了两车行驶时间的关系?客车比卡车早1小时经过B地.4.根据这句话写出等量关系式.答案不唯一,如卡车所用的时间-客车所用的时间=1小时.5.根据你写的等量关系式,列式为-=1.【归纳】含有未知数的等式叫作方程.【预习自测】某数的3倍比它的一半大2,若设某数为y,则列方程为3y-y=2.探究二:1.说说教材P 79“例1”中每个方程所依据的等量关系.(1)正方形的周长=边长×4;(2)已使用的小时数+预计使用的小时数=规定的检修时间;(3)女生人数-男生人数=女生比男生多的人数.2.“例1”中所列的方程,在未知数的个数、未知数的次数上有什么共同点?都只含有一个未知数,未知数的次数都是1.【归纳】只含有一个未知数,未知数的次数都是1,这样的方程叫作一元一次方程.【讨论】列方程解决实际问题的步骤有哪些?小组讨论交流.答案不唯一,学生叙述合理即可.如:审题,设未知数,找等量关系,列出方程等.梳理:什么叫解方程?什么是方程的解?求方程的解的过程叫作解方程;使方程左右两边相等的未知数的值叫作方程的解.【讨论】如何检验一个数是否为方程的解?第一,将数值代入方程左边进行计算;第二,将数值代入方程右边进行计算;第三,比较左右两边的值的大小,若左边=右边,则是方程的解,反之,则不是.【预习自测】1.下列各式中是一元一次方程的是(D)A.x-1=-yB.-5-3=-8C.x+3D.=x+12.下面四个数,哪一个是方程3x-6=0的解(B)A.1B.2C.3D.0互动探究1:下列说法中,正确的是(D)A.x=-3是方程x-3=0的解B.x=5是方程3x+15=0的解C.x=-2是方程-=0的解D.x=是方程8x-1=0的解互动探究2:在下列各式中,2x-1=0,=-2,10x2+7x+2,5+(-3)=2,x-5y=1,x2+2x=1,方程数记为m,一元一次方程数记为n,则m-n=2.互动探究3:一根铁丝用去后还剩下3米,设未知数x,列出的方程是x-x=3,则x是指这根铁丝的长.互动探究4:根据题意,设未知数,列出方程(不求解):(1)手机厂家今年上半年销售手机16000部,比去年同期的销售量增加到2.5倍,则该厂家去年同期销售手机多少部?(2)小明和爸爸下棋,爸爸赢一盘记2分,小明赢一盘记4分,下了6盘后两人的积分相同,问小明与爸爸各赢了几盘棋?(注:6盘中没有出现和棋的情况) 解:(1)设去年同期销售x部,则2.5x=16000;(2)设小明赢了x盘,则爸爸赢了(6-x)盘,根据积分相同可得方程:4x=2(6-x).【方法归纳交流】第(1)题中的“增加到”和“增加”的意思一样吗?为什么?不一样,如果原数是x,增加到2.5倍即为2.5x,增加2.5倍为3.5x.见《导学测评》P31。
一元一次方程全章导学案
第1课时 3.1.1一元一次方程【学习目标】1、理解方程、一元一次方程、方程的解等概念,会估算方程的解,会检验一个数是否是方程的解。
2、能根据题意用字母表示未知数,并分析出数量关系列方程.3、通过列方程的过程,感受方程作为刻画现实世界有效模型的意义,由算式到方程是数学的一大进步,从而体会数学的方程模型思想.【自主学习】一、课前导学:学生自学课本第77-80 页内容,并完成下列问题:1、什么是方程:2、什么是一元一次方程:3、什么是方程的解:二、自学检测:1.根据条件列出等式.(1)比a大5的数等于8. (2)b的三分之一等于9.(3)x的2倍与10的和等于18. (4)x的三分之一减y的差等于6.(5)比a的3倍大5的数等于a的4倍.(6)比b的一半小7的数等于a与b的和.解:(1)(2)(3)(4)(5)(6)【合作交流】例1、根据下面实际问题中的数量关系,设未知数列出方程:(1)用一根长为24cm的铁丝围成一个正方形,正方形的边长为多少?(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?(3)某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?点拨:1、找出每个问题中列方程所依据的相等关系?2、观察方程上述三个方程它们有什么共同特点?概括出一元一次方程的概念;解:例2、1000=x 和2000=x 中哪一个是方程8052.0152.0=--x x )(的解? 点拨:根据方程的解的定义,只要将其代入验证即可。
注意代入验证的步骤要规范。
解:【总结提升】1、列方程是解决问题的重要方法。
根据实际问题列方程的过程为:先设 ,再根据问题中的 关系列 ;2、判断一个数是不是某个方程的解,可以用 法.【当天落实】1、判断下列式子是一元一次方程是: 。
(只填序号)①05=x ; ②x 31+; ③42=-y y ; ④5=+y x ; ⑤()032≠=+a ax ⑥03=+x x ; ⑦4321+=-+x x . 2、下列说法中,正确的是( )A .的解是方程0341=+-=x x B.的解是方程13491=+-=m m m C .的解是方程3231=-=x x D .的解是方程5.1)3(5.00=+=x x3、用等式表示:(1)加法交换律;(2)乘法交换律;(3)分配律;(4)加法结合律.4、根据下列问题,设未知数,列出方程:(1)环形跑道一周长400m ,沿跑道跑多少周,可以跑3000m ?(2)甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?(3)用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元?第2课时 3.1.2 等式的性质【学习目标】1、了解等式的概念和等式的两条性质并能运用这两条性质解简单的一元一次方程;2、在运用等式的性质把简单的一元一次方程化成x =a 的形式的过程中,渗透化归的数学思想.【自主学习】一、课前导学:学生自学课本第81-82 页内容,并完成下列问题:等式的性质1: ; 用式子表示:如果b a =,那么 ;等式的性质2: ; 用式子表示:如果b a =,那么 ;如果()0≠=c b a ,那么 .二、自学检测:利用等式的性质解下列方程并检验:(1)65=-x ; (2)453.0=x ; (3)045=+x ; (4)3412=-x 解:【合作交流】例1、利用等式的性质解下列方程:(1)267=+x ; (2)205=-x ; (3)4531=--x 点拨:1、解以x 为未知数的方程,就是把方程逐步转化为 的形式, 是转化的重要依据;2、要使方程267=+x 转化为a x =(常数)的形式,需去掉方程左边的7,利用等式的性质1,方程两边减7就得出x 的值.其它的两个方程可以类似的考虑;3、一般地,从方程解出未知数的值以后,可以代入原方程 ,看这个值能否使方程的两边 .解:【总结提升】1、等式有哪些性质?2、在用等式的性质解方程时要注意什么?【当天落实】1、下列等式变形正确的是( )A .62062==+x x 变为 B.303-==-x x 变为C .62512==+x x 变为 D.15152-=-=x x x x 变为 2、如果12-=+x a x 的解是4-=x ,求23-a 的值。
《3.1.1 一元一次方程》教案、同步练习、导学案(3篇)
3.1 从算式到方程《3.1.1 一元一次方程》教案【教学目标】1.通过现实生活中的例子,体会方程的意义,领悟一元一次方程的概念,并会进行简单的辨别;(重点)2.初步学会找实际问题中的等量关系,设出未知数,列出方程.(重点,难点)【教学过程】一、情境导入问题:一辆客车和一辆卡车同时从A地出发沿同一公路同一方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A,B两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A,B两地相距x km,那么客车从A地到B地的行驶时间为________,货车从A地到B地的行驶时间为________.3.客车与货车行驶时间的关系是____________.4.根据上述关系,可列方程为____________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、合作探究探究点一:方程的概念判断下列各式是不是方程;若不是,请说明理由.(1)4×5=3×7-1;(2)2x+5y=3;(3)9-4x>0;(4)x-32=13;(5)2x+3.解析:根据方程的定义对各小题进行逐一分析即可.解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.方法总结:本题考查的是方程的概念,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.探究点二:一元一次方程的概念【类型一】 一元一次方程的辨别下列方程中是一元一次方程的有( )A .x +3=y +2B .1-3(1-2x )=-2(5-3x )C .x -1=1xD.y3-2=2y -7 解析:A.含有两个未知数,不是一元一次方程,错误;B.化简后含有未知数项可以消去,不是方程,错误;C.分母中含有字母,不是一元一次方程,错误;D.符合一元一次方程的定义,正确.故选D.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.【类型二】 利用一元一次方程的概念求字母次数的值方程(m +1)x |m |+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以⎩⎨⎧|m |=1m +1≠0,解得m =1.故选B.方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.据此可求方程中相关字母的值.探究点三:方程的解下列方程中,解为x =2的方程是( )A .3x -2=3B .-x +6=2xC .4-2(x -1)=1 D.12x +1=0 解析:A.当x =2时,左边=3×2-2=4≠右边,错误;B.当x =2时,左边=-2+6=4,右边=2×2=4,左边=右边,即x =2是该方程的解,正确;C.当x =2时,左边=4-2×(2-1)=2≠右边,错误;D.当x =2时,左边=12×2+1=2≠右边,错误.故选B.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点四:列方程某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60-x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60-x )=87解析:设铅笔卖出x 支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x 支铅笔的售价+(60-x )支圆珠笔的售价=87,据此列出方程为1.2×0.8x +2×0.9(60-x )=87.故选B.方法总结:解题的关键是正确理解题意,设出未知数,找到题目当中的等量关系,列方程.三、板书设计1.方程的定义2.一元一次方程:只含有一个未知数(元),未知数的次数都是1的整式方程叫做一元一次方程.3.列方程解决实际问题的步骤:①设未知数(用字母)②找等量关系(表示出相关的量)③列出方程【教学反思】本课首先用实际问题引入课题,然后运用算术的方法给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论.通过本节的教学让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.使学生体会到数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决;从而激发学生学习数学的热情.第三章一元一次方程3.1从算式到方程《3.1.1一元一次方程》同步练习能力提升1.下列说法中错误的是( )A.所有的方程都含有未知数B.x=-1是方程x+2=3的解C.某教科书5元一本,买x本共花去5x元D.比x的一半大-1的数是5,则可列方程x-1=52.某市电力部门呼吁广大市民做到节约用电,倡导低碳生活.为响应号召,某单位举行烛光晚餐,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空出26个座位.下列方程正确的是( )A.30x-8=31x+26B.30x+8=31x+26C.30x-8=31x-26D.30x+8=31x-263.若x=2是关于x的方程2x+3m-1=0的解,则m的值为( )A.-1B.0C.1D.4.已知方程(a-2)x|a|-1=1是关于x的一元一次方程,则a= .5.一个一元一次方程的解为2,请写出满足条件的一个一元一次方程.6.某地团组织集中开展“佩戴团徽送温暖,争做明义献爱心”的活动,王老师利用寒假带领团员乘车到农村开展“送字典下乡”活动.每张车票原价是50元,甲车车主说:“乘我的车可以8折(即原价的80%)优惠.”乙车车主说:“乘我的车可以9折(即原价的90%)优惠,老师不用买票.”王老师心里计算了一下,觉得无论坐谁的车,花费都一样.请问王老师一共带了多少名学生?如果设一共带了x名学生,那么可列方程为.7.小明在玩“QQ农场”游戏时,观察好友“咖啡思语”和“雨薇”的信息发现:“咖啡思语”的金币比“雨薇”的金币的4倍还多3个.“咖啡思语”的金币数如图所示,则“雨薇”有多少个金币?如果设“雨薇”有x个金币,那么可列方程为.8.由于电子技术的飞速发展,计算机的成本不断降低,若每隔3年计算机的价格降低,现价为2 400元的某型号计算机,3年前的价格为多少元?下面提供两种答案:3 500元,3 600元.请你列出方程再检验.★9.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客:“我在店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”请你求出顾客在店里买了多少箱这种特价鸡蛋.(列出方程即可)★10.已知关于x的方程ax+b=c的解为x=1,求|c-a-b-1|的值.创新应用★11.某校七年级四个班为贫困地区捐款:七(1)班捐的钱数是四个班捐款总和的;七(2)班捐的钱数是四个班捐款总和的;七(3)班捐的钱数是四个班捐款总和的;七(4)班捐了159元,求这四个班捐款的总和.若设这四个班捐款的总和为x元,你能列出方程吗?并检验x=636是不是所列方程的解.★12.已知关于x的方程(m-3)x m+4+18=0是一元一次方程.试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.参考答案能力提升1.B2.D 参加烛光晚餐的人数为(30x+8)人或(31x-26)人,根据参加烛光晚餐的人数不变,可得方程30x+8=31x-26.3.A 把x=2代入2x+3m-1=0得2×2+3m-1=0,经验证m=-1.4.-2 由题意,得|a|-1=1,所以|a|=2,所以a=2或a=-2.又因为a-2≠0,所以a≠2,所以a=-2.5.x-2=0(答案不唯一)6.(x+1)×50×80%=90%×50x此题要注意坐甲车的老师买票,坐乙车的老师不用买票,两车买票的人数不一样.7.4x+3=99 0878.解:设3年前价格为x元,根据题意,得x=2400,经检验知,x=3600是方程的解.9.解:设顾客买了x箱鸡蛋,由题意,得12x=2×14x-96.10.解:当x=1时,有a+b=c,所以|c-a-b-1|=|0-1|=1.创新应用11.解:根据题意,列方程得x+x+x+159=x.将x=636代入方程的两边,左边=×636+×636+×636+159=636,右边=636,所以左边=右边.所以x=636是所列方程的解.12.解:(1)由题意知m+4=1,且m-3≠0,所以m=-3.(2)原式=6m+4-12m+3=-6m+7.当m=-3时,原式=-6×(-3)+7=25.第三章 一元一次方程3.1 从算式到方程《3.1.1 一元一次方程》导学案【学习目标】:1.通过算术与方程方法的使用与比较,体验用方程解 决某些问题的优越性, 提高解决实际问题的能力.2.掌握方程、一元一次方程的定义以及解的概念,学会判断某个数值是不是 一元一次方程的解.3.初步学会如何寻找问题中的等量关系,并列出方程.【重点】:掌握一元一次方程的概念,能够根据具体问题中的数量关系列一元一次方程.【难点】:找出具体问题中的等量关系,列一元一次方程.【自主学习】一、知识链接回忆小学学过的有关方程的知识回答下列问题:1.含有 的 叫做方程.2.判断下列各式哪些是方程:(1)5x +3y -6x =37( ) (2)4x -7( )(3)5x ≥ 3( ) (4)6x ²+x -2=0( )(5)1+2=3( ) (6)x5-m =11( ) 二、新知预习1.根据要求列出式子.(1)x 的2倍与3的差是6;(2)正方形的周长为24cm,请写出它的边长a与周长的关系式.2.观察上面所列的两个式子,议一议它们有什么共同特征.【课堂探究】一、要点探究探究点1:方程及一元一次方程的概念合作探究一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是60 km/h,快车比慢车早1 h经过B地,A,B 两地间的路程是多少?(1)上述问题中涉及到了哪些量?①路程 ______________;②速度 ________________; 快车每小时比慢车多走_____km.③时间 ________________. 相同的时间,快车比慢车多走了_____km.快车走了______h,故AB之间的路程为_______km.算式:____________________________.(2)如果将AB之间的路程用x表示,用含x的式子表示下列时间关系:快车行完AB全程所用时间为 h;慢车行完AB全程所用时间为 h;两车所用的时间关系为:快车比慢车早到1h即:()-()=1把文字用符号替换为 .(3)如果用y表示客车行完AB的总时间,你能从快车与慢车的路程关系中找到等量关系,从而列出方程吗?(4)如果用z 表示慢车行完AB 的总时间,你能找到等量关系列出方程吗?(5)刚才列的方程都有什么特点?①每个方程中,各含有_______个未知数;②每个方程中未知数的次数均为_____;③每个方程中等号两边的式子都是________.要点归纳:只含有 个未知数(元),未知数的次数都是 ,等号两边都是 ,这样的方程叫做一元一次方程. 典例精析例1 若关于x 的方程2x |n |-1-9=0是一元一次方程,则n 的值为 .【变式题】加了限制条件,需进行取舍方程 (m +1) x |m |+1= 0是关于x 的一元一次方程,则m = .易错提醒:一元一次方程中求字母的值,需谨记两个条件:未知数的次数为__________,系数不为________.针对训练下列哪些是一元一次方程?(1)2x +1; (2)2m +15=3;(3)3x -5=5x +4; (4)x 2 +2x -6=0;(5)-3x +1.8=3y ; (6)3a +9>15;(7)61 x =1.探究点2:列方程例2 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.方法归纳:列出方程的一般步骤:1.设未知数;2.找等量关系;3.列方程.针对训练:1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇,可列方程为 ;2.六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗.设这个小队有x人,可列方程为 .探究点3:方程的解思考:对于方程4x =24,容易知道x=6可以使等式成立,对于方程170+15x=245,你知道x等于什么时,等式成立吗?我们来试一试.例3 x=1000和x=2000中哪一个是方程 0.52x-(1-0.52)x =80的解?方法总结:判断一个数值是不是方程的解的步骤:1.将数值代入方程左边进行计算;2.将数值代入方程右边进行计算;3.若左边=右边,则是方程的解,反之,则不是.针对训练检验x = 3是不是方程 2x-3 = 5x-15的解.5.已知方程 (m-2) x|m|-1+3 = m-5是关于x的一元一次方程,求m的值,并写出其方程.。
《一元一次方程》导学案
3.1.1 《一元一次方程》导学案教学目标:1、学会如何寻找问题中的相等关系,列出方程,了解方程的概念;2、培养学生获取信息、分析问题、处理问题的能力;3、通过实际问题,感受数学与生活的联系。
重点:了解一元一次方程及其相关概念。
难点:寻找问题中的相等关系,列方程。
教学过程:第一站:知识回忆1、什么是等式?什么是方程?2、路程、速度、时间之间有什么关系?第二站:情景创设问题:汽车匀速行驶途经王家庄、青山、秀水三地的时间如图表所示。
翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。
王家庄到翠湖的路程有多远? 地 名 时 间 王家庄 10:00 青 山 13:00 秀 水 15:00问题1、从上图中你能获得哪些信息?问题2、利用以上信息你能回答以下问题吗?① 青山到翠湖的路程是 千米;翠湖到秀水的路程是 千米;青山到秀水的路程是 千米。
② 汽车从青山到秀水的行驶时间是 小时;汽车从青山到秀水的行驶速度是 千米/小时。
③ 汽车匀速行驶是什么意思?④ 汽车从王家庄到青山的行驶时间是 小时,行驶速度是 千米/小时;所以王家庄到青山的路程是 千米。
⑤ 汽车从王家庄到秀水的行驶时间是 小时,行驶速度是 千米/小时;所以王家庄到秀水的路程是 千米。
⑥ 由④可以算出王家庄到翠湖的路程是: + = (千米)列综合算式是⑦由⑤可以算出王家庄到翠湖的路程是: - = (千米)?千米王家庄 50千米 秀水 70千米 青山 翠湖列综合算式是问题3、上面我们利用的是算术方法,小学我们曾经学过用方程解决问题的实例,那么本题能否用方程的知识来解决呢?请完成下面的填空:如果设王家庄到翠湖的路程是x千米①王家庄到青山的路程是千米;②王家庄到秀水的路程是千米③汽车从王家庄到青山的行驶速度是千米/小时;④汽车从王家庄到秀水的行驶速度是千米/小时;⑤汽车从青山到秀水的行驶速度是千米/小时⑥根据题意你找出的等量关系是:⑦根据⑥你列出的等式是:第三站:知识站牌问题4、请比较列算式和列方程两种方法各有什么特点?列算式:只用已知数,表示计算程序,依据是问题中的。
七年级数学《一元一次方程》导学案
《一元一次方程》导学案课型:(新授)课时:【总第1课时】设计人:教学时间:20 年10月23日【学习目标】1、知识技能:初步学会如何寻找问题中的相等关系,列出方程,了解方程、一元一次方程、方程的解的概念;培养获取信息,分析问题,处理问题的能力。
2、过程与方法:经历将实际问题数学化的一般过程,通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;发展归纳概括能力,通过表示数量关系、列方程解决问题、总结特征的活动,是学生初步感知与人合作交流的思维过程;3、情感态度:通过实际问题解决,体验从算术方法到代数方法是一种进步,进一步渗透数学建模思想;通过“实际问题-设未知数-建立模型”的具体操作,发展由实际问题抽象出方程模型的能力.【学习重点】初步掌握“根据具体问题中的数量关系列出方程”的一般步骤;掌握方程与一元一次方程的概念;会判断具体方程是否是一元一次方程。
【学习难点】找出题中表示数量关系的语句,并分析列方程。
【头脑风暴】你知道数学中“元”的含义吗?能给大家解释“一元”“二元”“多元”的含义吗?(一)换种方式表达1、你能用“数学符号语言”将“数学文字语言”进行翻译吗?(1)比a大5的数等于8;(2)b的三分之一等于9;(3)X的2倍与10的和是18;(4)比y的3倍大5的数等于y的4倍;(二)换种方法解决2、一辆客车和一辆卡车同时从汉中开往神河镇,客车的速度是80km/h,卡车的速度是70km/h,客车比卡车早1h到达神河镇。
你能算出从汉中到神河镇的路程是多少吗?(时间=路程÷速度)(1)你能用算式解决吗?(2)你能设未知数来解决吗?客车从汉中地到神河镇地的行驶时间为____h,卡车从汉中地到神河镇地的行驶时间为_____h 因为客车比卡车早1h经过神河镇地,所以___ 比____小1.(3)通过以上两种方法对问题的解决,你认为那种方法分析起来更简便?这种方法的优势在哪里?方法:优点:(三)我探索,我发现3、(1)请将以上五个等式依次写下来,观察它们的有什么共同特征?(注:用等号连接的式子叫等式)= 有个未知数,未知数的最高次数是;= 有个未知数,未知数的最高次数是;= 有个未知数,未知数的最高次数是;= 有个未知数,未知数的最高次数是;= 有个未知数,未知数的最高次数是;(2)由此你能给“方程”定义吗?【知识拓展1】:中国人对方程的研究有悠久历史,著名的中国古代数学著作《九章算术》大约成书于公元前200~前50年,其中有专门以”方程“命名的一章,其中以一些实际应用问题为例,给出了列由几个方程组的解题方法。
解一元一次方程1导学案
(4)
1 2 b bb 2 3
一、探究研讨: 问题 1 某校三年共购买计算机 140 台, 去年购买数量是 前年的 2 倍, 今年购买数量又是去年的 2 倍, 问前年这个 学校购买了多少台计算机? 根据题意可设前年购买计算机 x 台 , 则容易知道去 年购买计算机 台,今年购买计算机 台,根
完 善 提 高
探
据 问 题 中 的 相 等 关 系 : 可 列 得 方 程 . (含 x 的项都是同类项,可以_______) ,得
7 x 140 .
(根据等式的性质____,等式两边同时除以 7,,系数化 )
究
为 1,得
.
用下面的框图表示解此方程的具体过程如下:
x 2 x 4 x 140
合并同类项
(2) 3 y 0.5 y 10
案
(4)
5 15 a 4.5 5.5 x 2 2
拓 展 案 学 后 反 思
当 x 等于什么数时, 0.5x 0.7 的值与 6.5 1.3x 的值相 等?
完善 提高
本节课重点学习一元一次方程的解法:移项,合并同 类项,系数化成 1 等步骤。在每步都有每步的注意事项, 步步都要仔细认真。怎样用方程解决实际问题是本节课 的难点,学生理解问题有点难度。
2 ) 从 7 x 3 13x 2 得 到 13 x 7 x 2 3 . ( )
提 高
3 ) 从 2 x 3 3x 4 得 到 2 x 3x 4 3 .
标
( ) 2、解下列方程
(1)
1 3 x6 x 2 4 4 11 (3) 8 x 3 x 3 2
案
7 前年这个学校购买了 20 台计算机。
《第三章一元一次方程》导学案
第三章 一元一次方程《3.1.1 一元一次方程》导学案NO :34一、学习目标1. 初步学习如何寻找问题中的相等关系,列出方程,了解方程的概念; 2.在对实际问题情景的分析过程中感受方程模型的意义。
二、自主学习1、请同学们阅读P78 至P79,然后用算术方法解此问题,列算式为 ; 然后用设未知数列方程的数学思想来解决此问题,设A,B 两地的路程为x 千米,可列方程为: 像上面含有未知数的等式,叫 (读三遍)。
2、自学P79,根据下列问题,设未知数并列出方程.(1)用一根长20cm 的铁丝围成一个正方形,正方形的边长是多少?分析:设正方形的边长为x (cm ),那么周长为 (cm ),列方程: . (2)某校女生占全体学生数的61℅,比男生多61个,这个学校有学生多少个?分析:设这个学校有学生x 个人,则女生数为 ,男生数为 ,列方程是 ; (3)一台计算机已使用1200小时,预计每月再使用123小时,经过多少月这台计算机的使用时间达到规定的检修时间2612小时?(自主分析并列出方程)像上面(1)、(2)、(3)所列的方程,只含有一个 数,并且未知数的次数都是 ,这样的方程叫做 元 次方程(读三遍)。
注意:“ 一元”是指一个未知数;“一次”是指未知数的指数是一次(理解)。
上面的分析过程归纳如下:(1)分析实际问题中的 关系,利用 关系列出方程(一元一次方程),是用数学解决实际问题的一种方法。
(2)列方程经历的几个步骤 A 、设 数;B 、找出题中的 关系; C 、列出含有未知数的等式——( )。
3、阅读P80,理解列方程是解决实际问题的一种重要方法,利用方程能够求出未知数。
当x =6时,4x 值是24。
这时,方程4x =24等号左右两边相等,所以x =6,叫做方程4x =24 的解;同样,当x=10时,2x+3=23,这时方程2x+3=23等号两边 相等,所以,x=10叫做方程2x+3=23的 ;像这样,解方程就是求出使方程中等号左右两边 的未知数的值,这个值就是方程的 (读三遍)。
《一元一次方程》导学案
《一元一次方程》导学案《《一元一次方程》导学案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习目标:1、通过处理实际问题,让学生体验从算术方法到代数方法是一进步.2、初步学会寻找问题中的等量关系,列出方程,了解方程的概念。
3、理解方程、一元一次方程、方程的解等概念。
4、掌握检验某个值是不是方程的解的方法。
5、体验估算方法寻求方程的解的过程,培养学生求实的态度。
教学重、难点:1、了解方程、一元一次方程、方程的解等概念。
2、寻找问题中的等量关系,并列出方程课堂合作探究一.自主学习:1、_________叫做方程。
2、____________________________叫做一元一次方程3、_____________________________叫做方程的解。
二.自学合作探究:_____________________________________________是方程。
_______________________________是一元一次方程2、例题:根据下列问题,设未知数并列出方程(不必求解)(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?3、方程x=3是下列哪个方程的解?()A、3x+9=0B、x=10-4xC、x(x-2)=3D、2x-7=12三、巩固提高:1、甲班、乙班共有学生90名,甲班比乙班多2人,设乙班有x 人,根据题意列方程为__________________2、、某数的3倍比它的一半大2,若设某数为y,则列方程为__________________4、根据下列问题,设未知数并列出方程(不必求解)(1)环形跑道400m ,沿跑道多少周,可以跑3 000m ?(2)甲种铅笔每支0.3元,乙种铅笔每支0.6元,9元钱买了两种铅笔共20支,两种铅笔各买了多少只?(3)一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底?5、x=1 000和2 000中哪一个是方程0.52x-(1-0.52)x=80的解?6、请写出一个解为4的一元一次方程__________(答案不唯一)《一元一次方程》导学案这篇文章共2418字。
一元一次方程导学案新部编版.doc
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第一课时 3.1.1一元一次方程(1)班级 姓名__ 小组__评价__学习目标1. 了解什么是方程,什么是一元一次方程。
2. 体会字母表示数的优越性。
重点:知道什么是方程,一元一次方程难点:找等关系列方程使用说明及学法指导:先自学课本78—81页内容,独立完成学案,然后小组讨论交流。
一. 导学1. 书中问题用算术方法解决应怎样列算式:2.设X 千米表示AB 的路程:AB 的路程是x 千米,客车的速度为70千米每小时则要行驶__小时,卡车速度为60千米每小时,则卡车要行驶__小时。
又知道所以可列方程为:3.什么是方程?4.什么是一元一次方程?二、合作探究1.判断下列式子是否是方程:(1)5x+3y-6x=7 (2)4x-7 (3)5x >3(4)6x 2+x-2=0 (5)1+2=3 (6) -x5-m=112.下列式子哪些是一元一次方程?不是一元一次方程的,要说明理由.(1)9x=2 (2)x+2y=0 (3)x 2-1=0(4) x=0 (5) x3=2 (6) ax=b(a 、b 是常数)3.(1)已知2x m+1 +3=7是一元一次方程,求m 的值;(2)已知关于x 的方程mx n-1+2=5是一元一次方程,则m=__,n=__.4、根据下列条件列出方程:(1)某数的5倍加上3,等于该数的7倍减去5;(2)某数的3倍减去9,等于该数的三分之二加6;(3)某数的8倍比该数的5倍大12;(4)某数的一半加上4,比该数的3倍小21.(5)某班有x名学生,要求平均每人展出4枚邮票,实际展出的邮票量比要求数多了15枚,问该班共展出多少枚邮票?三、学习小结说说你的收获与困惑四、作业习题3.1第1、5题。
第二课时 3.1.1 一元一次方程(2)班级姓名__小组__评价__学习目标1.根据实际问题中的数量关系,设未知数,列出一元一次方程。
一元一次方程教案新部编本.doc
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校一 元 一 次 方 程实验中学初一数学组 郑进泉教学目标:1、了解什么是方程,什么是一元一次方程,2、体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的关键一步,从算式到方程是教学的一大进步。
3、认识列方程解决问题的思想,领会用字母表示未知数,用方程表示相等关系的符号化方法。
教学重、难点:知道什么是方程、一元一次方程?找相等关系列方程。
教学过程:(一)复习回顾、引入课题我们已经学过了等式及等式的性质,那请大家回忆什么叫等式?什么叫等式的性质? (设计意图)通过复习旧知识,寻找到新知识的生长点,学生自发的热烈掌声,激烈了回答问题的学生,同时其他学生的情绪变得兴奋,精神更加集中,为新课题的引入做好了心理准备。
(二)独立思考,发现新知请大家利用刚才所复习的内容来完成下面这个练习:下列式子中是等式的是:(多媒体投影)① 84-x ② 6321=++ ③ 132+a ④ 43>+x ⑤ 132+=x x ⑥ 31=+x ⑦ 122=-x x ⑧ 5=+y x(设计意图)通过复习巩固旧知的这组练习,为后面自然过度到得出方程的定义服务,让学生在不知不觉中就学会了新知识,体现知识的前后连贯性。
请大家再仔细观察这些等式有什么区别?(多媒体投影)② 6321=++ ⑤ 132+=x x ⑥ 31=+x⑦ 122=-x x ⑧ 5=+y x(设计意图)通过这组练习,培养学生观察、分析问题的能力,在有困难的时候可以借助别人的帮助,培养与他人合作的能力。
请大家利用方程的定义来判断:下列式子中是方程的是: (多媒体投影)① 268--y x ② 92516-=- ③1622=-t④ ()y y x 463=++- ⑤633-=-- ⑥ 321+=+x x⑦ 244=x ⑧ 652=+a (设计意图)通过这组练习,巩固学生对方程定义的理解,为引入一元一次方程打下伏笔。
一元一次方程导学案
第四章一元一次方程1 等式与方程【学习目标】1、能根据提议用字母表示未知数,然后能分析出等量关系,再根据等量关系列出方程;2、理解什么是一元一次方程;3、理解什么是方程的解及解方程,学会检测一个数值是不是方程的解的方法。
【重点难点】体会找等量关系,会用方程表示简单实际问题,能验证一个数是否是一个方程的解。
【导学指导】一、温故知新1、前面学过有关方程的一些知识,同学们能说出什么是方程吗?叫做方程。
2、判断下列是不是方程?(1) 3x-2 (2) 3-5=-2(3) 3x+4=2x (4) x+2y=3二、自主探究1、列出下列代数式(1)小刚年龄是x岁,那么小刚的年龄乘2再减5是。
(2)小颖种了一株树苗,开始时树苗高为40cm,栽种后树苗每周约长高5cm,x周后树苗长高到米2、根据下面实际问题中的数量关系,设未知数列出方程1)小刚的年龄乘2再减5就是21岁,那么小刚的年龄是多少?如果设小刚的年龄是x岁,由此可以得到方程。
2)小颖种了一株树苗,开始时树苗高为40cm,栽种后树苗每周长高约5cm,大约几周后树苗长高到1m?如果设x周后树苗长高到1m,由此可以得到方程。
3)根据第六次全国人口普查统计数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了147.30%。
2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?如果设2000年第五次全国人口普查时每10万人中约有x人具有大学文化程度,由此可以得到方程。
4)一个长方形操场的面积是5850m2,长与宽之差为25m,这个操场的长和宽分别是多少米?如果设这个操场的宽为xm,那么长为m,由此可以得到方程。
一、一元一次方程的概念观察下面方程的特点(1)4x=24;(2)1700+150=2450 (3)0.52x-(1-0.52x)=80小结:象上面方程,它们都含有个未知数(元),未知数的次数都是,这样的方程叫做一元一次方程。
数学七年级上册《一元一次方程》导学案
数学七年级上册《一元一次方程》导学案设计人: 审核人:【学习目标】1、记住一元一次方程的概念,会认一元一次方程。
2、能说出什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
3、进一步体会找等量关系,会用方程表示简单实际问题。
4、体会数学与我们日常生活联系密切,培养学习数学的兴趣。
【学习重点】1、弄清一元一次方程的概念及方程的解;2、能验证一个数是否是一个方程的解。
【学习难点】从列算式到列方程的思维习惯的转变【学习方法】通过类比思想、合作交流解决问题自学1、小学学过有关方程的一些知识,同学们能说出什么是方程吗?2、 判断下列是不是方程,是打“√”,不是打“×”:①;( ) ②3+4=7;( )③;( ) ④;( )⑤;( ) ⑥ ;( )(学法指导:学生通过回忆方程,能将思维调整到一元一次方程上来)3、自学课本79页“一元一次方程”因具备哪些要求?判断下列是不是一元一次方程,是打“√”,不是打“×”:①=4;( ) ② ;( ) ③; ( )④;( )3+x y x -=+613261=x 1082->-x 132≠+-x 3+x 132=+-x y x -=+613261=x③ ; ( ) ⑥3+4=7;( )知识链接A 一元一次方程具备的特征,含有一个未知数、未知数的次数是1、等号两边都是整式的方程。
B 、有些方程还需要化简整理以后再判断。
C 、未知数的系数不能为0,特别注意未知数的系数是字母时方法指导:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
E 若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.4、如何求出使方程左右两边相等的未知数的值?如方程=4中,=?方程中的呢?请用小学所学过的逆运算尝试解决上面的问题。
5、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师学科教案[ 20 – 20 学年度第__学期]
任教学科:_____________
任教年级:_____________
任教老师:_____________
xx市实验学校
释方程等号左右两边式子的含义.
问题1:在第(2)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?让学生在学习小组内讨论,然后分组汇报交流: 选“已使用的时间”可列方程:2 450-150x=1 700. 选“还可使用的时间”可列方程:150x=2 450-1 700. 问题2:在第(3)题中,你还能设其他的未知数为x 吗? 在学生独立思考、小组讨论的基础上交流:
设这个学校的男生数为x ,那么女生数为(x+80),全校的学生数为(x+x+80). 列方程:x +80=52%(x+x +80).
探究
交流
三、建立概念 1.概念的建立.
在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是1,这样的方程叫做一元一次方程.
“一元”:一个未知数;“一次”:未知数的指数是一次. 判断下列方程是不是一元一次方程: (1)23-x=一7: (2)2a-b=3
(3)y+3=6y-9; (4)0.32 m-(3+0.02 m) =0.7.
(5)x 2=1 (6)11423y y -=
2.引导学生归纳:
从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解
决实际问题的一种方法.
训练
达标
四、估算求解
列出方程后,还必须解这个方程,求出未知数的值.对于简单的方程,我们可以采用估算的方法.
①问题:你认为该怎样进行估算? ②在此基础上给出概念:能使方程左右两边的值相等的未知数的值,叫做方程的解.求方程的解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代人方程,看方程左右两边的值是否相等
课内小结
谈谈你本节课的收获
作业布置
完成练习册上的习题
实际问题 一元一次方程 设未知数 列方程
3、列方程:
设问1:怎样解这个方程?它与上节课遇到的方程有何不同?
设问2:怎样才能使它向x=a的形式转化呢?
设问3:以上变形依据是什么?
等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于
x=a的形式。
探究
交流
对于课本中的问题1还有不同的未知数的设法吗?
学生思考回答:若设去年购买计算机x台,得方程
2140
2
x
x x
++=
若设今年购买计算机x台,得方程
140
42
x x
x
++=
训练
达标
有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,
如果减少一条船,正好每条船坐9人,问这个班共多少同学?
课内
小结
谈谈你本节课的收获
作业布置完成练习册上的习题。