2.2.1函数的单调性(一)学案(含答案)
17-18版:2.2.1 函数的单调性(一)
2.2.1函数的单调性(一)学习目标 1.理解函数单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性.知识点一函数的单调性思考画出函数f(x)=x、f(x)=x2的图象,并指出f(x)=x、f(x)=x2的图象的升降情况如何?梳理一般地,单调性是相对于区间来说的,函数图象在某区间上上升,则函数在该区间上为单调增函数,该区间称为单调增区间.反之则为单调减函数,相应区间称为单调减区间.因为很多时候我们不知道函数图象是什么样的,而且用上升下降来刻画单调性很粗糙.所以有以下定义:设函数y=f(x)的定义域为A,区间I⊆A.(1)如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说y=f(x)在区间I上是单调增函数,I称为y=f(x)的单调增区间.(2)如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说y=f(x)在区间I上是单调减函数,I称为y=f(x)的单调减区间.单调增区间和单调减区间统称为单调区间.知识点二函数的单调区间思考 我们已经知道f (x )=x 2的单调减区间为(-∞,0],f (x )=1x 的单调减区间为(-∞,0),这两个单调减区间的书写形式能不能交换?梳理 一般地,有下列常识(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开. (2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大.类型一 求单调区间并判断单调性例1 如图是定义在区间[-5,5]上的函数y =f (x ),根据图象说出函数的单调区间,以及在每一单调区间上,它是单调增函数还是单调减函数?反思与感悟函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D上函数要么是单调增函数,要么是单调减函数,不能二者兼有.跟踪训练1写出函数y=|x2-2x-3|的单调区间,并指出单调性.类型二证明单调性命题角度1证明具体函数的单调性例2证明f(x)=x在其定义域上是单调增函数.反思与感悟 运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x 1,x 2且x 1<x 2的条件下,转化为确定f (x 1)与f (x 2)的大小,要牢记五大步骤:取值→作差→变形→定号→小结.跟踪训练2 求证:函数f (x )=x +1x 在[1,+∞)上是单调增函数.命题角度2 证明抽象函数的单调性例3 已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x >0时,f (x )>1.求证:函数f (x )在R 上是单调增函数.反思与感悟 因为抽象函数不知道解析式,所以不能代入求f (x 1)-f (x 2),但可以借助题目提供的函数性质来确定f (x 1)-f (x 2)的大小,这时就需要根据解题需要对抽象函数进行赋值. 跟踪训练3 已知函数f (x )的定义域是R ,对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.求证:f (x )在R 上是单调减函数.类型三 单调性的应用命题角度1 利用单调性求参数范围例4 若函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的单调减函数,则a 的取值范围为________.反思与感悟 分段函数在定义域上单调,除了要保证各段上单调外,还要保证在接口处不能反超.另外,函数在单调区间上的图象不一定是连续不断的.跟踪训练4 已知函数f (x )=x 2-2ax -3在区间[1,2]上单调,则实数a 的取值范围为________________.命题角度2 用单调性解不等式例5 已知y =f (x )在定义域(-1,1)上是单调减函数,且f (1-a )<f (2a -1),求a 的取值范围.反思与感悟 若已知函数f (x )的单调性,则由x 1,x 2的大小,可得f (x 1),f (x 2)的大小;由f (x 1),f (x 2)的大小,可得x 1,x 2的大小.跟踪训练5 在例5中若函数y =f (x )的定义域为R ,且为单调增函数,f (1-a )<f (2a -1),则a 的取值范围又是什么?1.函数y =f (x )在区间[-2,2]上的图象如图所示,则此函数的单调增区间是________.2.函数y =6x的单调减区间是________.3.在下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是________.(填序号)①f (x )=x 2;②f (x )=1x ;③f (x )=|x |;④f (x )=2x +1. 4.给出下列说法:①若定义在R 上的函数f (x )满足f (3)>f (2),则函数f (x )在R 上为单调增函数; ②若定义在R 上的函数f (x )满足f (3)>f (2),则函数f (x )在R 上不可能为单调减函数;③函数f (x )=-1x 在(-∞,0)∪(0,+∞)上为单调增函数;④函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-x 2+1,x <0在定义域R 上为单调增函数.其中说法正确的是________.(填序号)5.若函数f (x )在R 上是单调减函数,且f (|x |)>f (1),则x 的取值范围是________.1.若f (x )的定义域为D ,A ⊆D ,B ⊆D ,f (x )在A 和B 上都为单调减函数,未必有f (x )在A ∪B 上为单调减函数.2.对单调增函数的判断,对任意x 1<x 2,都有f (x 1)<f (x 2),也可以用一个不等式来替代: (x 1-x 2)[f (x 1)-f (x 2)]>0或f (x 1)-f (x 2)x 1-x 2>0.对单调减函数的判断,对任意x 1<x 2,都有f (x 1)>f (x 2),相应地也可用一个不等式来替代:(x 1-x 2)·[f (x 1)-f (x 2)]<0或f (x 1)-f (x 2)x 1-x 2<0.3.熟悉常见的一些函数的单调性,包括一次函数,二次函数,反比例函数等.4.若f (x ),g (x )都是单调增函数,h (x )是单调减函数,则:①在定义域的交集(非空)上,f (x )+g (x )为单调增函数,f (x )-h (x )为单调增函数,②-f (x )为单调减函数,③1f (x )为单调减函数(f (x )≠0).5.对于函数值恒正(或恒负)的函数f (x ),证明单调性时,也可以作商f (x 1)f (x 2)与1比较.答案精析问题导学 知识点一思考 两函数的图象如下:函数f (x )=x 的图象由左到右是上升的;函数f (x )=x 2的图象在y 轴左侧是下降的,在y 轴右侧是上升的. 知识点二思考 f (x )=x 2的单调减区间可以写成(-∞,0),而f (x )=1x 的单调减区间(-∞,0)不能写成(-∞,0],因为0不属于f (x )=1x 的定义域.题型探究例1 解 y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5],其中y =f (x )在区间[-5,-2],[1,3]上是单调减函数,在区间[-2,1],[3,5]上是单调增函数.跟踪训练1 解 先画出f (x )=⎩⎪⎨⎪⎧x 2-2x -3,x <-1或x >3,-(x 2-2x -3),-1≤x ≤3的图象,如图.所以y =|x 2-2x -3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中单调减区间是(-∞,-1],[1,3];单调增区间是[-1,1],[3,+∞). 例2 证明 f (x )=x 的定义域为[0,+∞).设x 1,x 2是定义域[0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1-x 2 =(x 1-x 2)(x 1+x 2)x 1+x 2=x 1-x 2x 1+x 2.∵0≤x 1<x 2,∴x 1-x 2<0,x 1+x 2>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )=x 在定义域[0,+∞)上是单调增函数.跟踪训练2 证明 设x 1,x 2是实数集R 上的任意实数,且1≤x 1<x 2, 则f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2)=(x 1-x 2)+(1x 1-1x 2)=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)(1-1x 1x 2)=(x 1-x 2)(x 1x 2-1x 1x 2).∵1≤x 1<x 2,∴x 1-x 2<0,1<x 1x 2, ∴x 1x 2-1x 1x 2>0,故(x 1-x 2)(x 1x 2-1x 1x 2)<0,即f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )=x +1x在区间[1,+∞)上是单调增函数.例3 证明 方法一 设x 1,x 2是实数集上的任意两个实数,且x 1>x 2.令x +y =x 1,y =x 2,则x =x 1-x 2>0.f (x 1)-f (x 2)=f (x +y )-f (y )=f (x )+f (y )-1-f (y )=f (x )-1. ∵x >0,∴f (x )>1,f (x )-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴函数f (x )在R 上是单调增函数.方法二 设x 1>x 2,则x 1-x 2>0,从而f (x 1-x 2)>1,即f (x 1-x 2)-1>0.f (x 1)=f [x 2+(x 1-x 2)]=f (x 2)+f (x 1-x 2)-1>f (x 2),故f (x )在R 上是单调增函数.跟踪训练3 证明 ∵对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),令m =1,n =0,可得f (1)=f (1)·f (0),∵当x >0时,0<f (x )<1,∴f (1)≠0,∴f (0)=1.令m =x <0,n =-x >0,则f (m +n )=f (0)=f (-x )·f (x )=1,∴f (x )f (-x )=1,又∵-x >0时,0<f (-x )<1,∴f (x )=1f (-x )>1. ∴对任意实数x ,f (x )恒大于0.设任意x 1<x 2,则x 2-x 1>0,∴0<f (x 2-x 1)<1,∴f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)f (x 1)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0,∴f (x )在R 上是单调减函数.例4 [18,13) 解析 要使f (x )在R 上是单调减函数,需满足:⎩⎪⎨⎪⎧ 3a -1<0,-a <0,(3a -1)·1+4a ≥-a ·1,解得18≤a <13. 跟踪训练4 (-∞,1]∪[2,+∞)解析 由于二次函数开口向上,故其单调增区间为[a ,+∞),单调减区间为(-∞,a ],而f (x )在区间[1,2]上单调,所以[1,2]⊆[a ,+∞)或[1,2]⊆(-∞,a ],即a ≤1或a ≥2.例5 解 f (1-a )<f (2a -1)等价于⎩⎪⎨⎪⎧ -1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23, 即所求a 的取值范围是0<a <23. 跟踪训练5 解 ∵y =f (x )的定义域为R ,且为单调增函数,f (1-a )<f (2a -1),∴1-a <2a -1,即a >23, ∴所求a 的取值范围是(23,+∞). 当堂训练1.[-2,1] 2.(-∞,0),(0,+∞)3.②4.②④解析 由单调增函数的定义,可知①错误;由单调减函数的定义,可知②正确;因为函数f (x )=-1x 在(-∞,0)和(0,+∞)上为单调增函数,所以③错误;作出函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-x 2+1,x <0的图象,如图所示,由图象可知④正确.5.(-1,1)。
函数的单调性与最值导学案
学案5 函数的单调性与最值导学目标: 1.理解函数的单调性、最大值、最小值及其几何意义.2.会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值.自主梳理1.单调性(1)定义:一般地,设函数y =f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是______________.(2)单调性的定义的等价形式:设x 1,x 2∈[a ,b ],那么(x 1-x 2)(f (x 1)-f (x 2))>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是________;(x 1-x 2)(f (x 1)-f (x 2))<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是________. (3)单调区间:如果函数y =f (x )在某个区间上是增函数或减函数,那么说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的__________.(4)函数y =x +a x(a >0)在 (-∞,-a ),(a ,+∞)上是单调________;在(-a ,0),(0,a )上是单调______________;函数y =x +a x(a <0)在______________上单调递增. 2.最值一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M (f (x )≥M );②存在x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的____________.自我检测1.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是 ) A .增函数 B .减函数C .先增后减D .先减后增2.设f (x )是(-∞,+∞)上的增函数,a 为实数,则有 ( )A .f (a )<f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)>f (a )3.下列函数在(0,1)上是增函数的是 ( )A .y =1-2xB .y =x -1C .y =-x 2+2xD .y =54.设(a ,b ),(c ,d )都是函数f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是 ( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定5.当x ∈[0,5]时,函数f (x )=3x 2-4x +c 的值域为 ( )A .[c,55+c ]B .[-43+c ,c ] C .[-43+c,55+c ] D .[c,20+c ] 探究点一 函数单调性的判定及证明例1 设函数f (x )=x +a x +b(a >b >0),求f (x )的单调区间,并说明f (x )在其单调区间上的单调性.变式迁移1 已知f (x )是定义在R 上的增函数,对x ∈R 有f (x )>0,且f (5)=1,设F (x )=f (x )+1f (x ),讨论F (x )的单调性,并证明你的结论.探究点二 函数的单调性与最值例2 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.变式迁移2 已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,求实数a 的取值范围.探究点三 抽象函数的单调性例3 已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.变式迁移3 已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.分类讨论及数形结合思想 例 (12分)求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值.【(满分:75分)一、选择题(每小题5分,共25分)1“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x , x ≥0,4x -x 2, x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是 ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为( )A .4B .5C .6D .74.若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是 A .(-1,0)∪(0,1) B .(-1,0)∪(0,1]C .(0,1)D .(0,1]5.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( )A .一定大于0B .一定小于0C .等于0D .正负都有可能题号 1 2 3 4 5答案 6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号).①y =[f (x )]2是增函数;②y =1f (x )是减函数; ③y =-f (x )是减函数;④y =|f (x )|是增函数.8.设0<x <1,则函数y =1x +11-x的最小值是________. 三、解答题(共38分)9.(12分)(湖州模拟)已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围.10.(12分)已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围.11.)已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b >0成立.(1)判断f (x )在[-1,1]上的单调性,并证明它;(2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.。
函数的单调性教案(获奖)
函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。
举例说明函数单调性的两种类型:单调递增和单调递减。
1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。
通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。
第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。
引导学生学会识别函数图像中的单调区间。
2.2 导数法介绍导数与函数单调性的关系。
教授如何利用导数的正负来判断函数的单调性。
第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。
通过例题让学生掌握求解极值的方法。
3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。
通过例题让学生理解最值的求解过程。
第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。
通过例题展示导数在单调区间判断中的应用。
4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。
通过实际例子让学生学会如何运用单调性解决实际问题。
第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。
引导学生学会如何运用所学知识来解决问题。
5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。
提供一些拓展问题,激发学生的学习兴趣和思考能力。
第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。
通过例题展示函数单调性在其他数学领域的应用。
6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。
通过实际例子让学生学会如何运用函数单调性来解决优化问题。
高中数学同步学案 单调性的定义与证明
3.1.2 函数的单调性第1课时 单调性的定义与证明学 习 目 标核 心 素 养1.理解函数的单调性及其几何意义,能运用函数图像理解和研究函数的单调性.(重点)2.会用函数单调性的定义判断(或证明)一些函数的单调性,会求一些具体函数的单调区间.(重点、难点)3.理解函数的最大值和最小值的概念,能借助函数的图像和单调性,求一些简单函数的最值.(重点、难点)1.借助单调性判断与证明,培养数学抽象、逻辑推理、直观想象素养.2.利用求单调区间、最值、培养数学运算素养.3.利用函数的最值解决实际问题,培养数学建模素养.1.增函数与减函数的定义条件一般地,设函数y =f(x)的定义域为A,且M ⊆A :如果对任意x 1,x 2∈M ,当x 1>x 2时都有f(x 1)>f(x 2)都有f(x 1)<f(x 2)结论y =f(x)在M 上是增函数(也称在M 上单调递增)y =f(x)在M 上是减函数(也称在M 上单调递减)图示12提示:定义中的x 1,x 2有以下3个特征(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般; (2)有大小,通常规定x 1>x 2; (3)属于同一个单调区间. 2.函数的单调性与单调区间如果函数y =f(x)在M 上单调递增或单调递减,那么就说函数y =f(x)在M 上具有单调性(当M 为区间时,称M 为函数的单调区间,也可分别称为单调递增区间或单调递减区间).思考2:函数y =1x在定义域上是减函数吗?提示:不是.y =1x 在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y =1x 在(-∞,0)∪(0,+∞)上递减.3.函数的最值 最大值最小值条件 一般地,设函数f(x)的定义域为D :且x 0∈D ,如果对任意x∈D都有f(x)≤f(x 0) 都有f(x)≥f(x 0)结论 称f(x)的最大值为f(x 0),记作f ma x =f(x 0),而x 0称为f(x)的最大值点 称f(x)的最小值为f(x 0),记作f min =f(x 0),而x 0称为f(x)的最小值点统称 最大值和最小值统称为最值最大值点和最小值点统称为最值点1.函数y =f(x)的图像如图所示,其增区间是( )A .[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4]C [由题图可知,函数y =f(x)的单调递增区间为[-3,1],选C.] 2.下列函数中,在区间(0,+∞)上是减函数的是( ) A .y =-1xB .y =xC .y =x 2D .y =1-xD [函数y =1-x 在区间(0,+∞)上是减函数,其余函数在(0,+∞)上均为增函数,故选D.] 3.函数y =f(x)在[-2,2]上的图像如图所示,则此函数的最小值、最大值分别是( ) A .-1,0 B .0,2 C .-1,2D.12,2C [由题图可知,f(x)的最大值为f(1)=2,f(x)的最小值为f(-2)=-1.] 4.函数f(x)=x 2-2x +3的单调减区间是________.(-∞,1] [因为f(x)=x 2-2x +3是图像开口向上的二次函数,其对称轴为x =1,所以函数f(x)的单调减区间是(-∞,1].]定义法证明(判断)函数的单调性【例1】 证明:函数f(x)=x +1x 在(0,1)上是减函数.[思路点拨] 设元任取x 1,x 2∈(0,1)且x 1>x 2―→ 作差:f (x 1)-f (x 2)――→变形判号:f (x 2)>f (x 1)――→结论减函数[证明] 设x 1,x 2是区间(0,1)上的任意两个实数,且x 1>x 2,则f(x 1)-f(x 2)=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-1x 1x 2=(x 1-x 2)(-1+x 1x 2)x 1x 2, ∵0<x 2<x 1<1,∴x 1-x 2>0,0<x 1x 2<1,则-1+x 1x 2<0, ∴(x 1-x 2)(-1+x 1x 2)x 1x 2<0,即f(x 1)<f(x 2),∴f(x)=x +1x在(0,1)上是减函数.利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1>x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f (x 1)-f (x 2)的符号.(4)结论:根据f (x 1)-f (x 2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.1.证明:函数y =xx +1在(-1,+∞)上是增函数.[证明] 设x 1>x 2>-1,则y 1-y 2=x 1x 1+1-x 2x 2+1=x 1-x 2(x 1+1)(x 2+1).∵x 1>x 2>-1,∴x 1-x 2>0,x 1+1>0,x 2+1>0, ∴x 1-x 2(x 1+1)(x 2+1)>0,即y 1-y 2>0,y 1>y 2,∴y=xx +1在(-1,+∞)上是增函数.求函数的单调区间【例2】(1)f(x)=-1x ;(2)f(x)=⎩⎪⎨⎪⎧2x +1,x≥1,5-x ,x<1;(3)f(x)=-x 2+2|x|+3.[解] (1)函数f(x)=-1x 的单调区间为(-∞,0),(0,+∞),其在(-∞,0),(0,+∞)上都是增函数.(2)当x≥1时,f(x)是增函数,当x<1时,f(x)是减函数,所以f(x)的单调区间为(-∞,1),[1,+∞),并且函数f(x)在(-∞,1)上是减函数,在[1,+∞)上是增函数.(3)因为f(x)=-x 2+2|x|+3=⎩⎪⎨⎪⎧ -x 2+2x +3,x≥0,-x 2-2x +3,x<0.根据解析式可作出函数的图像如图所示,由图像可知,函数f(x)的单调区间为(-∞,-1],(-1,0),[0,1),[1,+∞).f(x)在(-∞,-1],[0,1)上是增函数,在(-1,0),[1,+∞)上是减函数.(3)因为f(x)=-x 2+2|x|+3=⎩⎪⎨⎪⎧-x 2+2x +3,x≥0,-x 2-2x +3,x<0.根据解析式可作出函数的图像如图所示,由图像可知,函数f(x)的单调区间为(-∞,-1],(-1,0),[0,1),[1,+∞).f(x)在(-∞,-1],[0,1)上是增函数,在(-1,0),[1,+∞)上是减函数.求函数单调区间的方法(1)利用已知函数的单调性求函数的单调区间. (2)利用函数图像求函数的单调区间.提醒:(1)若所求出函数的单调增区间或单调减区间不唯一,函数的单调区间之间要用“,”隔开. (2)理清“单调区间”和“在区间上单调”的区别与联系.2.根据如图所示,写出函数在每一单调区间上是增函数还是减函数.[解] 函数在[-1,0],[2,4]上是减函数,在[0,2],[4,5]上是增函数. 3.写出y =|x 2-2x -3|的单调区间. [解] 先画出f(x)=⎩⎪⎨⎪⎧x 2-2x -3,x<-1或x>3,-(x 2-2x -3),-1≤x≤3的图像,如图.所以y =|x 2-2x -3|的单调减区间为(-∞,-1],[1,3];单调增区间为[-1,1],[3,+∞).函数单调性的应用[探究问题]1.若函数f(x)是其定义域上的增函数,且f(a)>f(b),则a,b 满足什么关系.如果函数f(x)是减函数呢?提示:若函数f(x)是其定义域上的增函数,那么当f(a)>f(b)时,a>b ;若函数f(x)是其定义域上的减函数,那么当f(a)>f(b)时,a<b.2.决定二次函数f(x)=ax 2+bx +c 单调性的因素有哪些? 提示:开口方向和对称轴的位置,即字母a 的符号及-b2a的大小. 【例3】 (1)若函数f(x)=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.(2)已知函数y =f(x)是(-∞,+∞)上的增函数,且f(2x -3)>f(5x -6),则实数x 的取值范围为________.[思路点拨] (1)分析f (x )的对称轴与区间的关系数形结合,建立关于a 的不等式――→求a 的范围 (2)f (2x -3)>f (5x -6)f(x)在(-∞,+∞)上是增函数,建立关于x 的不等式――→ 求x 的范围 (1)(-∞,-4] (2)(-∞,1) [(1)∵f(x)=-x 2-2(a +1)x +3的图像开口向下,要使f(x)在(-∞,3]上是增函数,只需-(a +1)≥3,即a≤-4. ∴实数a 的取值范围为(-∞,-4].(2)∵f(x)在(-∞,+∞)上是增函数,且f(2x -3)>f(5x -6), ∴2x-3>5x -6,即x<1.∴实数x 的取值范围为(-∞,1).]1.(变条件)若本例(1)的函数f(x)在(1,2)上是单调函数,求a 的取值范围. [解] 由题意可知-(a +1)≤1或-(a +1)≥2,即a≤-3或a≥-2. 所以a 的取值范围为(-∞,-3]∪[-2,+∞).2.(变条件)若本例(2)的函数f(x)是定义在(0,+∞)上的减函数,求x 的取值范围. [解] 由题意可知, ⎩⎪⎨⎪⎧2x -3>0,5x -6>0,2x -3<5x -6,解得x>32.∴x 的取值范围为⎝ ⎛⎭⎪⎫32,+∞.函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a,b]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.求函数的最值(值域)【例4】 已知函数f(x)=2x +1x +1. (1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论; (2)求该函数在区间[2,4]上的最大值和最小值.[解] (1)f(x)在(-1,+∞)上为增函数,证明如下:任取-1<x 1<x 2, 则f(x 1)-f(x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0, 所以f(x 1)-f(x 2)<0⇒f(x 1)<f(x 2), 所以f(x)在(-1,+∞)上为增函数. (2)由(1)知f(x)在[2,4]上单调递增, 所以f(x)的最小值为f(2)=2×2+12+1=53, 最大值为f(4)=2×4+14+1=95.1.利用单调性求函数的最大(小)值的一般步骤 (1)判断函数的单调性. (2)利用单调性求出最大(小)值. 2.函数的最大(小)值与单调性的关系(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间[a,b]上的最小(大)值是f(a),最大(小)值是f(b).(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个.提醒:(1)求最值勿忘求定义域.(2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错误,求解时一定注意.4.已知函数f(x)=⎩⎪⎨⎪⎧x 2,-1<x≤1,1x,x>1,求(1)f(x)的最大值、最小值;(2)f(x)的最值点.[解] (1)作出函数f(x)的图像(如图).由图像可知,当x =1时,f(x)取最大值为f(1)=1.当x =0时,f(x)取最小值f(0)=0, 故f(x)的最大值为1,最小值为0.(2)f(x)的最大值点为x 0=1,最小值点为x 0=0.1.定义单调性时应强调x 1,x 2在其定义域内的任意性,其本质是把区间上无限多个函数值的大小比较转化为两个任意值的大小比较.2.证明函数的单调性(利用定义)一定要严格遵循设元、作差、变形、 定号、结论的步骤,特别在变形上,一定要注意因式分解、配方等技巧的运用,直到符号判定水到渠成才可.3.求函数的最值与求函数的值域类似,常用的方法是:(1)图像法,即画出函数的图像,根据图像的最高点或最低点写出最值; (2)单调性法,一般需要先确定函数的单调性,然后根据单调性的意义求出最值; 4.通过函数最值的学习,渗透数形结合思想,树立以形识数的解题意识.1.思考辨析(1)若函数y =f(x)在定义域上有f(1)<f(2),则函数y =f(x)是增函数.( )(2)若函数y =f(x)在区间[1,3]上是减函数,则函数y =f(x)的单调递减区间是[1,3].( ) (3)任何函数都有最大(小)值.( )(4)函数f(x)在[a,b]上的最值一定是f(a)(或f(b)).( ) [答案] (1)× (2)× (3)× (4)× 2.下列函数中,在(0,2)上是增函数的是( ) A .y =1xB .y =2x -1C .y =1-2xD .y =(2x -1)2B [对于A,y =1x 在(-∞,0),(0,+∞)上单调递减;对于B,y =2x -1在R 上单调递增;对于C,y =1-2x 在R 上单调递减;对于D,y =(2x -1)2在⎝ ⎛⎭⎪⎫-∞,12上单调递减,在⎝ ⎛⎭⎪⎫12,+∞上单调递增.故选B.]3.函数y =x 2-2x,x∈[0,3]的值域为________.[-1,3] [∵函数y =x 2-2x =(x -1)2-1,x∈[0,3],∴当x =1时,函数y 取得最小值为-1, 当x =3时,函数取得最大值为3,故函数的值域为[-1,3].]4.试用函数单调性的定义证明:f(x)=2xx -1在(1,+∞)上是减函数.[证明] f(x)=2+2x -1,设x 1>x 2>1,则f(x 1)-f(x 2)=2x 1-1-2x 2-1=2(x 2-x 1)(x 1-1)(x 2-1).因为x 1>x 2>1,所以x 2-x 1<0,x 1-1>0,x 2-1>0, 所以f(x 1)<f(x 2),所以f(x)在(1,+∞)上是减函数.。
函数的概念与图象,函数的表示方法,函数的单调性(一) (学案)机构绝密资料
精锐教育学科教师辅导学案学员编号: 年 级:高一 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师:授课类型 T 函数的概念与图象(4) T函数的表示方法T函数的单调性(一)授课日期及时段教学内容函数的概念与图象(4)[学习目标]1.会运用描点法作出一些简单函数的图象,从“形”的角度进一步加深对函数概念的理解;2.通过对函数图象的描绘和研究,培养数形结合的意识,提高运用数形结合的思想方法解决数学问题的能力. [知识要点]1.函数图象的概念将自变量的一个值0x 作为横坐标,相应的函数值()0f x 作为纵坐标,就得到坐标平面上的一个点()()0,0x f x .当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点.所有这些点组成的集合(点集)为()(){},,x f x x A ∈即()(){},,x y y f x x A =∈,所有这些点组成的图形就是函数()y f x =的图象.2.函数图象的画法画函数的图象,常用描点法,其基本步骤是:⑴列表;⑵描点;⑶连线.在画图过程中,一定要注意函数的定义域和值域.3.会作图,会读(用)图[例题讲解]例1.画出下列函数的图象,并求值域:(1)y =13-x ,∈x [1,2]; (2)y = (1-)x,∈x {0,1,2,3}; (3)y =x ; 变题:1y x =-; (4)y =2x 22--x例2.直线y =3与函数y =|x 2-6x |图象的交点个数为 ( ) (A )4个 (B )3个 (C )2个 (D )1个例3.下图中的A. B. C. D 四个图象中,用哪三个分别描述下列三件事最合适,并请你为剩下的一个图象写出一件事。
离开家的距离(m) 离开家的距离(m)时间(min ) 时间(min ) A B离开家的距离(m) 离开家的距离(m)时间(min ) 时间(min )C D(1) 我离开家不久,发现自己把作业本忘在家里了,停下来想了一会还是返回家取了作业本再上学; (2) 我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3) 我出发后,心情轻松,缓缓行进,后来为了赶时间加快了速度。
高中数学《函数的单调性与奇偶性》针对练习及答案
第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+2.下列函数中,是奇函数且在()0,∞+上为增函数的是( )A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-4.下列函数是偶函数且在(0,+∞)是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( )A .2x x -B .2x x --C .2x x -+D .2x x +15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( ) A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A.5()(2f f f π⎛⎫>> ⎪⎝⎭B.5(()2f f f π⎛⎫>> ⎪⎝⎭C.5(()2f f f π⎛⎫>> ⎪⎝⎭D.5()(2f f f π⎛⎫>> ⎪⎝⎭23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤129.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭30.已知(32)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( ) A .1 B .-1 C .13D .232.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .1- B .13C .0D .333.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-234.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .235.若函数()(21)()xf x x x a =+-为奇函数,则a =( )A .12 B .23C .34D .1第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+【答案】B 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断 【详解】对于A ,因为()()cos()cos ()f x x x x x f x -=--=-=-,所以cos y x x =是奇函数,但不单调,所以A 错误;对于B ,因为()66(66)()x x x x f x f x ---=-=--=-,所以66x x y -=-是奇函数,因为6x y =是增函数,6x y -=是减函数,所以66x x y -=-是增函数,所以B 正确;对于C ,因为22()()33()f x x x f x -=-+=+=,所以23y x =+是偶函数,所以C 错误; 对于D ,因为()()()11f x x x x x f x f x -=--+=-+≠-≠,所以1y x x =+是非奇非偶函数,所以D 错误. 故选:B2.下列函数中,是奇函数且在()0,∞+上为增函数的是( ) A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+【答案】A 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断即可 【详解】对于A ,定义域为{}0x x ≠,因为()()11f x f x x x-=-==--,所以函数是奇函数,任取12,(0,)x x ∈+∞,且12x x <,则2121211211()()x xf x f x x x x x --=-+=,因为12,(0,)x x ∈+∞,且12x x <,所以21()()0f x f x ->,即21()()f x f x >,所以()f x 在()0,∞+上为增函数,所以A 正确,对于B ,因为定义域为{}0x x ≥,所以函数()f x 为非奇非偶函数,所以B 错误, 对于C ,因为定义域为R ,因为()()f x x x f x -=-==,所以()f x 为偶函数,所以C 错误,对于D ,因为定义域为R ,因为()()3311()()f x x x f x f x -=-+=-+≠≠-,所以函数()f x 为非奇非偶函数,所以D 错误, 故选:A3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-【答案】D 【解析】对于基本初等函数,直接判断其奇偶性和单调性. 【详解】选项A: sin y x =-为偶函数,故A 错误; 选项B: cos 2y x =为偶函数,故B 错误;选项C: tan y x =为奇函数但是在,22k k ππππ⎛⎫-++ ⎪⎝⎭上单增,故C 错误;选项D: 3y x =-既是奇函数又是R 上单调递减. 故选:D4.下列函数是偶函数且在(0,是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭【答案】B 【解析】 【分析】根据指数函数、二次函数、幂函数的性质进行判断即可. 【详解】因为指数函数不具有奇偶性,所以排除A 、D ,因为幂函数12y x =的定义域为非负实数集,不关于原点对称,所以不具有奇偶性,故排除, 二次函数2yx 图象关于纵轴对称,所以该二次函数是偶函数,它又在(0,+∞)单调递增, 故选:B5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-【答案】C 【解析】利用奇函数的定义和减函数的定义,再结合基本函数的性质求解即可 【详解】解:对于A ,D ,由指数函数和对数函数的性质可知其为非奇非偶函数,所以A ,D 不符合题意,对于B ,由反比例函数的性质可知,其为奇函数,在(,0)-∞和(0,)+∞上为减函数,所以不符合题意,对于C ,由于33()2()2()f x x x f x -=--==-,所以3()2f x x =-为奇函数,任取12,x x R ∈,且12x x <,则120x x -<332121()()2(2)f x f x x x -=---33122()x x =- 221211222()()x x x x x x =-++222121232()[()]024x x x x x =-++< 所以21()()f x f x <,所以3()2f x x =-为R 上的减函数,所以C 符合题意, 故选:C针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,【答案】B 【解析】 【分析】利用图象判断函数单调性的方法直接写出函数()f x 单调递减区间. 【详解】观察函数()f x 的图象,可知函数()f x 的单调递减区间为[]1,1-. 故选:B 7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数【答案】C 【解析】 【分析】分离常数,作出函数图象,观察即可得出结果. 【详解】1111()1111111x x x f x xxxxx,函数的定义域为(,1)(1,)-∞⋃+∞, 其图象如下:由图象可得函数在(,1)-∞和(1,)+∞上是增函数. 故选:C8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数【答案】A 【解析】配方得二次函数的对称轴,然后判断. 【详解】2()(1)2f x x =--+,对称轴为1x =,二次项系数为10-<,因此()f x 在(,1]-∞上递增,在[1,)+∞上递减, 故选:A .9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,【答案】C 【解析】根据解析式,先求出函数的定义域;再令22t x x =-+,结合二次函数单调性,以及. 【详解】因为22172024x x x ⎛⎫-+=-+> ⎪⎝⎭显然恒成立,所以函数()f x =R ;令22t x x =-+,则22t x x =-+是开口向上的二次函数,且对称轴为12x =,所以22t x x =-+在12⎛⎤-∞ ⎥⎝⎦,上单调递减,在12⎡⎫+∞⎪⎢⎣⎭,上单调递增; 根据复合函数单调性的判定方法可得,()f x 12⎡⎫+∞⎪⎢⎣⎭,. 故选:C. 【点睛】本题主要考查求根式型复合函数的单调区间,属于基础题型.10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】利用复合函数的单调性求解即可. 【详解】由题得函数的定义域为{|12}x x -≤≤,设函数u u 在1]2[-1,单调递增,在1[2]2,单调递减, 因为函数1()2uv =在定义域上单调递减,所以函数12y ⎛= ⎪⎝⎭1[2]2,单调递增. 故选D 【点睛】和分析推理能力.针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+【答案】D 【解析】 【分析】根据题意,设0x <,则0x ->,由函数的解析式可得()21x f x ---=,结合函数的奇偶性分析可得答案. 【详解】根据题意,设0x <,则0x ->, 则()21x f x ---=,又由()f x 为奇函数,则()()21x f x f x -=-=-+-, 故选:D12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -【答案】A 【解析】设0x <,则0x ->,可得()23f x x -=--,利用偶函数的定义()()f x f x -=即可求解. 【详解】设0x <,则0x ->, 所以()23f x x -=--,又()f x 为偶函数,所以()()f x f x -=, 所以()()230f x x x =--<. 故选:A.13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x【答案】C 【解析】 【分析】直接利用代入法求函数解析式. 【详解】当0x >时,0x -<,所以()()2f x x f x -=+=-,所以()2f x x =--. 故选:C .14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( ) A .2x x - B .2x x -- C .2x x -+ D .2x x +【答案】D 【解析】 【分析】利用奇函数的等式()()f x f x -=-求解.【详解】因为()f x 是定义在R 上的奇函数, 所以()()f x f x -=-,x ∈R .当0x >时,0x -<,()()()()22f x f x x x x x ⎡⎤=--=----=+⎣⎦. 故选:D.15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-【答案】A 【解析】根据奇函数的定义求函数值. 【详解】 ∵()f x 是奇函数,∵()()ln 1f e f e e -=-=-=-. 故选:A .针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】首先判断出函数为偶函数,再判断出函数的单调性,根据单调性可得21x x -<,解绝对值不等式即可求解. 【详解】||()x f x e =,则()()xxf x ee f x --===,函数为偶函数,当0x ≥时,()x f x e =,所以函数在[)0,+∞单调递增, 所以函数在(),0-∞上单调递减, 若(21)()f x f x -<,则21x x -<,即23410x x -+<,解得113x <<,所以不等式的解集为1,13⎛⎫ ⎪⎝⎭.故选:A17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞【答案】A 【解析】由函数y =f (x )在R 上单调递增,将2(1)(1)f m f m +<-+可化为211m m +<-+,解不等式可得答案 【详解】解:因为函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+, 所以211m m +<-+,解得10m -<<, 故选:A18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >【答案】A 【解析】由偶函数的性质将不等式(1)(2)f a f -<转化为(1)(2)f a f -<,再由其在[0,)+∞是单调增函数,可得12a -<,从而可求出a 的取值范围 【详解】解:因为()f x 是定义在实数集R 上的偶函数,且(1)(2)f a f -<, 所以(1)(2)f a f -<,因为函数()f x 在区间[0,)+∞是单调增函数, 所以12a -<,解得13a -<<, 故选:A19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( )A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-【答案】A 【解析】根据单调性可得29m m >+,解出即可. 【详解】解:∵()y f x =在R 上为增函数,且(2)(9)f m f m >+, ∵29m m >+,解得9m >, 故选:A . 【点睛】本题主要考查根据函数的单调性解不等式,属于基础题. 20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】首先判断()f x 的单调性和奇偶性,由此化简不等式313(log )(log )2(1)f a f a f +≤,并求得a 的取值范围. 【详解】()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.当0x >时,21()ln(1)1f x x x =+-+,2ln(1)y x =+和11y x=-+在()0,∞+上递增,所以()f x 在()0,∞+上递增,而()f x 是偶函数,故()f x 在(),0-∞上递减.依题意313(log )(log )2(1)f a f a f +≤,即33(log )(log )2(1)f a f a f +-≤,即332(log )2(1)(log )(1)f a f f a f ≤⇔≤,所以331log 11log 133a a a ≤⇔-≤≤⇔≤≤,所以a 的取值范围是1,33⎡⎤⎢⎥⎣⎦故选:D 【点睛】本小题主要考查解函数不等式,属于基础题.针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【解析】 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【详解】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误;C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确;D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A .5()(2f f f π⎛⎫>> ⎪⎝⎭B .5(()2f f f π⎛⎫>> ⎪⎝⎭C .5(()2f f f π⎛⎫>> ⎪⎝⎭D .5()(2f f f π⎛⎫>> ⎪⎝⎭【答案】C 【解析】根据偶函数的性质可得(f f =,由函数的单调性可得函数值的大小关系. 【详解】根据偶函数的性质可知,(f f =当[)0,x ∈+∞时,()f x 是减函数,因为5π2<,所以5()2f f f π⎛⎫>> ⎪⎝⎭故选:C. 【点睛】思路点睛:在比较函数值大小的题目中,主要根据函数的单调性进行判断.当自变量不在同一单调区间时,可以结合偶函数的性质将自变量x 转化为同一单调区间,再进行判断即可.23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-【答案】A 【解析】由(1)(1)f f -=,结合单调性得出()()1(2)3f f f ->>. 【详解】因为函数()f x 是偶函数,所以(1)(1)f f -= 又()f x 在区间[0,3]上单调递减,且123<< 所以(1)(2)(3)f f f ∴>>,即()()1(2)3f f f ->> 故选:A24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-【答案】A 【解析】首先判断出函数的单调性,再根据函数为偶函数即可求解. 【详解】对任意的()1212,(,0]x x x x ∈-∞≠,()()()21210x x f x f x -->⎡⎤⎣⎦,所以函数在(,0]-∞上为增函数,又因为函数()f x 在R 上的偶函数,所以函数在[)0,+∞上为减函数,且()()f n f n -=, 因为11n n n -<<+,所以(1)()(1)f n f n f n ->>+. 所以(1)()(1)f n f n f n ->->+. 故选:A25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<< D .(3)(1)(2)f f f <<-【答案】B 【解析】由偶函数的性质将自变量转化到[)0+∞,上,再由函数在[)0+∞,上是减函数可比较大小 【详解】解:因为()f x 是定义在R 上的偶函数, 所以(2)(2)f f -=,因为()f x 在[)0+∞,上是减函数,且321>>, 所以(3)(2)(1)f f f <<,即(3)(2)(1)f f f <-<, 故选:B 【点睛】此题考查利用函数的奇偶性和单调性比较大小,属于基础题针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+是R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-【答案】A 【解析】函数()()12f x a x b =-+是R 上的增函数,则120a ->,可得答案. 【详解】函数()()12f x a x b =-+是R 上的增函数,则120a ->,即12a < 故选:A27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】直接由抛物线的对称轴和区间端点比较大小即可. 【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m =- 函数221y x mx =++在[2,)+∞单调递增,则2m -≤,解得2m ≥-. 故选:A.28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤1【答案】C 【解析】利用用一次函数的单调性得到210a -<,再由二次不等式的解法,即可得解. 【详解】函数()()212f x a x =-+为R 上的减函数,则210a -<, 解得11a -<<; 故选:C.29.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭【答案】C 【解析】由2121()()0f x f x x x ->-可得函数()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,从而可求出a 的取值范围 【详解】解:因为()f x 对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,所以()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,解得513a <≤,所以a 的取值范围为51,3⎛⎤⎥⎝⎦,故选:C 30.已知(32)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1 B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】根据题设条件可以得到()f x 为R 上的减函数,根据各自范围上为减函数以及分段点处的高低可得实数a 的取值范围. 【详解】因为任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,所以对任意的12x x <,总有()()12f x f x >即()f x 为R 上的减函数,所以01320720a a a <<⎧⎪-<⎨⎪-≥⎩,故2273a ≤<,故选D.【点睛】分段函数是单调函数,不仅要求各范围上的函数的单调性一致,而且要求分段点也具有相应的高低分布,我们往往容易忽视后者.针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( )A .1B .-1C .13 D .2【答案】C【解析】【分析】若()y f x =,由奇偶性的性质有()()f x f x =-即可求参数a .【详解】若()y f x =,则()f x 23(13)x a x a =+--为偶函数,∵()()f x f x =-,即223(13)3()(13)()x a x a x a x a +--=-+---,∵2(13)0a x -=恒成立,可得13a =.故选:C32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .1-B .13 C .0 D .3【答案】B【解析】【分析】根据()f x 的奇偶性求得,a b ,从而求得a b +.【详解】由于()f x 是偶函数,所以0b =,且111233a a a a b -=-⇒=⇒+=.故选:B33.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-2【答案】B【解析】【分析】利用函数为奇函数可得()()f x f x -=-,代入即可求解.【详解】取0x >,则0x -<,因为函数为奇函数,则()()f x f x -=-,即()()()222x m x x x -+-=--+, 整理可得2mx x -=-,即2m =.故选:B34.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .2【答案】C【解析】【分析】 根据奇函数的性质()00f =求解即可【详解】∵()f x 为R 上的奇函数,∵()00f =得a =1.验证满足题意.故选:C35.若函数()(21)()x f x x x a =+-为奇函数,则a =( ) A .12B .23C .34D .1 【答案】A【解析】【分析】根据奇函数性质取1和-1分别代入,函数值和为0,即可求得.【详解】 ∵()(21)()x f x x x a =+-为奇函数,∵(1)(1)0f f -+=,得12a =. 故选:A.。
202新数学复习第二章函数导数及其应用2.2函数的单调性与最值学案含解析
第二节函数的单调性与最值课标要求考情分析1。
理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质。
1。
主要考查函数单调性的判定、求单调区间、比较大小、解不等式、求最值及不等式恒成立问题.2.题型以选择题、填空题为主,若与导数交汇命题则以解答题的形式出现,属中高档题.知识点一函数的单调性1.增函数、减函数的定义定义:一般地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D上的任意两个自变量x1,x2:(1)增函数:当x1〈x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;(2)减函数:当x1〈x2时,都有f(x1)〉f(x2),那么就说函数f(x)在区间D上是减函数.2.单调性、单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y =f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.注意以下结论1.对∀x1,x2∈D(x1≠x2),错误!>0⇔f(x)在D上是增函数,错误!<0⇔f(x)在D上是减函数.2.对勾函数y=x+错误!(a〉0)的增区间为(-∞,-错误!]和[错误!,+∞),减区间为[-错误!,0)和(0,错误!].3.在区间D上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.4.函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减”.知识点二函数的最值1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]〉0,则函数f(x)在区间D上是增函数.(√)(2)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(3)对于函数y=f(x),若f(1)<f(3),则f(x)为增函数.(×)(4)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)解析:(2)此单调区间不能用并集符号连接,取x1=-1,x2=1,则f(-1)〈f(1),故应说成单调递减区间为(-∞,0)和(0,+∞).(3)应对任意的x1<x2,f(x1)〈f(x2)成立才可以.(4)若f(x)=x,f(x)在[1,+∞)上为增函数,但y=f(x)的单调递增区间是R.2.小题热身(1)下列函数中,在区间(0,+∞)内单调递减的是(A)A.y=错误!-x B.y=x2-xC.y=ln x-x D.y=e x(2)函数f(x)=-x+错误!在区间错误!上的最大值是(A)A.错误!B.-错误!C.-2 D.2(3)设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为[-1,1]和[5,7].(4)函数f(x)=错误!的值域为(-∞,2).(5)函数f(x)=错误!在[2,6]上的最大值和最小值分别是4,错误!.解析:(1)对于A,y1=错误!在(0,+∞)内是减函数,y2=x在(0,+∞)内是增函数,则y=1x-x在(0,+∞)内是减函数;B,C选项中的函数在(0,+∞)上均不单调;选项D中,y=e x 在(0,+∞)上是增函数.(2)∵函数y=-x与y=错误!在x∈错误!上都是减函数,∴函数f(x)=-x+错误!在错误!上是减函数,故f(x)的最大值为f(-2)=2-错误!=错误!.(3)由图可知函数的增区间为[-1,1]和[5,7].(4)当x≥1时,f(x)=log错误!x是单调递减的,此时,函数的值域为(-∞,0];x<1时,f(x)=2x是单调递增的,此时,函数的值域为(0,2).综上,f(x)的值域是(-∞,2).(5)函数f(x)=错误!=错误!=2+错误!在[2,6]上单调递减,所以f(x)min=f(6)=错误!=错误!。
单调性 教案学案
教案教师学生上课时间学科高中数学年级课题名称教学目标重点难点知识分析教学过程函数单调性3≤设)(x f 为定义在(0,82x x ⎪∴>⎨⎪-⎩(2)(4)f (2)3f ∴=1m ∴-<<例11.已知函数答案:(1)当2=a ,]3,0[∈x 时,⎪⎩⎪⎨⎧<≤+-≥=+-⋅=.20,4;2,2|2|)(22x x x x x x x x x f …(2分)作函数图像(图像略),可知函数)(x f 在区间]3,0[上是增函数,所以)(x f 的最大值为9)3(=f .(2)⎪⎩⎪⎨⎧<++-≥-+=.,)2(,,)2()(22a x x a x a x x a x x f①当时,4)2(22)(22--⎪⎭⎫ ⎝⎛--=a a x x f , 因为2>a ,所以a a <-22, 所以)(x f 在),[∞+a 上单调递增.②当a x <时,4)2(22)(22++⎪⎭⎫ ⎝⎛+--=a a x x f , 因为2>a ,所以a a <+22,所以)(x f 在⎥⎦⎤ ⎝⎛+∞-22,a 上单调递增,在⎥⎦⎤⎢⎣⎡+a a ,22上单调递减. 综上,函数)(x f 的单调递增区间是⎥⎦⎤⎝⎛+∞-22,a 和),[∞+a , 单调递减区间是⎥⎦⎤⎢⎣⎡+a a ,22. (3)①当22≤≤-a 时,022≤-a ,022≥+a ,所以)(x f 在),(∞+-∞上是增函数,关于x 的方程)()(a f t x f ⋅=不可能有三个不相等的实数解.②当42≤<a 时,由(1)知)(x f 在⎥⎦⎤ ⎝⎛+∞-22,a 和),[∞+a 上分别是增函数,在⎥⎦⎤⎢⎣⎡+a a ,22上是减函数,当且仅当4)2()(22+<⋅<a a f t a 时,方程)()(a f t x f ⋅=有三个不相等的实数解.即⎪⎭⎫⎝⎛+4+=+<<4818)2(12a a a a t . 令aa a g 4)(+=,)(a g 在]4,2(∈a 时是增函数,故5)(max =a g . 所以,实数t 的取值范围是⎪⎭⎫ ⎝⎛89,1. a x ≥1.函数21y x x =+-的最小值_________. 答案:令1x t -=.则0t ≥.21x t =+所以22115222()48y t t t =++=++.在0t ≥时是增函数,当0t =时,2,y =故函数的最小值为2.2.函数25---=a x x y 在),1(+∞-上单调递增,则a 的取值范围是( )A .3-=aB .3<aC .3-≤aD .3-≥a 答案:C 3.函数()()110,0.f x a x a x=->> (1)判断()f x 在()0,+∞上的单调性;(2)若函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为1,2m ⎡⎤⎢⎥⎣⎦,求,a m 的值。
导学案007(函数的单调性)
函数的单调性编号:007一、考纲要求:函数的基本性质二、复习目标:1.理解函数的单调性2.能判断或证明函数的单调性三、重点难点:判断或证明函数的单调性四、要点梳理:1.函数的单调性(1)单调函数的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.2.函数的最值一个防范函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y =1x分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接. 两种形式设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么 ①f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数. 两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值. 四种方法 函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数. (3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性.五、基础自测:1.判断下列说法是否正确:(1)若定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 是R 上的单调增函数; (2)若定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 在R 上不是单调减函数; (3)若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间[0,)+∞上是单调增函数,则函数()f x 在R 上是单调增函数;(4)若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上是单调增函数,则函数()f x 在R 上是单调增函数.2、下列函数 (1)2()(1)f x x =- (2)()x f x e = (3)()ln(1)f x x =+ (4) 111y x =-- (5)||y x x =在(,0)x ∈-∞是减函数的序号是_________________ 4.六、典例精讲:例1 (1)判断函数()f x = (2)判断函数1()ln 1xf x x-=+的单调性,并证明你的结论.例2(1) 函数32()15336f x x x x =--+的单调递增区间为 . (2) 函数20.7log (32)y x x =-+的单调减区间是____________________例3.已知函数()f x 对任意x ,y ∈R ,总有()()()f x f y f x y +=+,且当0x >时,()0f x <, ,求证:()f x 是R 上的减函数.七、千思百练:1.函数1()f x x x=-的单调增区间为 . 2、设函数()f x 是减函数,且()0f x >,下列函数中为增函数的是_________(1)1()y f x =-(2)12log ()y f x = (3)()2f x y = (4)[]2()y f x =(5)32()y x f x =-3.函数()f x 是R 上的减函数,a ∈R ,记2()m f a =,(1)n f a =-,则m ,n 的大小关系是 .4、(必修1第37页第7题)函数21()21x x f x -=+的单调区间是_______________________5、(必修1第55页第12题)对于任意的12,,x x R ∈若函数1()()2xf x =,则1212()()()22f x f x x xf ++与的大小关系是__________________八、反思感悟:1、判断函数单调性的常见方法:(1)图像法 (2)定义法 (3)导数法2、复合函数单调性的判断:同增异减法。
高考数学一轮复习讲义(提高版) 专题2.2 函数的单调性(解析版)
第二讲函数的单调性1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M (3)对于任意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值【套路秘籍】---千里之行始于足下考向一 单调区间求解【例1】(1)下列函数中,定义域是R 且为增函数的是( )A.y =2-xB.y =xC.y =log 2xD.y =-1x(2)函数f (x )=ln (x 2-2x -8) 的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞) (3)求函数f (x )=|x 2-4x +3|的单调区间 . (4)求函数f (x )=x -ln x 的单调区间 .(5)函数33y x x =-的单调增区间为__________. 【答案】见解析【解析】(1)只有y =2-x与y =x 的定义域为R ,且y =2-x是减函数,y =x 是增函数.选B (2)由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,则y =ln t 为增函数. 要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间.∵函数t =x 2-2x -8的单调递增区间为(4,+∞),∴函数f (x )的单调递增区间为(4,+∞).故选D. (3)先作出函数y =x 2-4x +3的图象,由于绝对值的作用,把x 轴下方的部分翻折到上方,可得函数y =|x 2-4x +3|的图象.如图所示.由图可知f (x )在(-∞,1]和[2,3]上为减函数,在[1,2]和[3,+∞)上为增函数,故f (x )的增区间为[1,2],[3,+∞),减区间为(-∞,1],[2,3].(4)由题意,得x >0.y ′=1-1x =x -1x.由y ′=0解得x =1.【修炼套路】---为君聊赋《今日诗》,努力请从今日始列表如下:由上表可知,函数的单调递增区间为(1,+∞),单调递减区间为(0,1).(5)21119033y x x '=->∴-<< ,即单调增区间为11,33⎛⎫- ⎪⎝⎭【举一反三】1.下列函数中,在(0,+∞)上单调递减的是( )A . f(x)=lnxB . f(x)=(x −1)2C . f(x)=2−xD . f(x)=x 3 【答案】C【解析】根据题意,依次分析选项:对于A ,函数f(x)=lnx 为对数函数,在(0,+∞)上为增函数,不符合题意.【套路总结】一.函数单调性的判断方法有 ①定义法; ②图象法;③利用已知函数的单调性; ④导数法.二.复合函数y =f (g (x ))的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.对于B ,函数f(x)=(x −1)2为二次函数,在(−∞,1)上为减函数,在(1,+∞)上为增函数,不符合题意. 对于C ,函数f(x)=2−x =(12)x 为指数函数,在(0,+∞)上单调递减,符合题意.对于D ,函数y =x 3为幂函数,在(0,+∞)上为增函数,不符合题意.故选C . 2.函数f (x )=log 2(4+3x −x 2)的单调递减区间是( ) A . (−∞,32] B . [32,+∞) C . (−1,32] D . [32,4) 【答案】D【解析】函数f (x )=log 2(4+3x-x 2),令t=4+3x-x 2>0,求得-1<x <4,即函数的定义域为(-1,4),且f (x )=log 2t ,即求函数t 在定义域内的减区间.再利用二次函数的性质可得t=4+3x-x 2在定义域内的减区间为[32,4).故选D . 3.函数()| g x x =的单调递增区间是 ( )A . [)0+∞,B . (]0-∞,C . (]2-∞-,D . [)2+-∞, 【答案】A【解析】任取120,x x >> 则120,x x -> ()()()()121212120,g x g x x x x x g x g x ->-=->> ,所以函数()| g x x =的单调递增区间是[)0+∞,,故选A.考向二 单调性的运用一---比较大小【例2】定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3) 【答案】A【解析】 ∵对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,∴f (x )在(-∞,0)上是减函数,又∵f (x )是R 上的偶函数,∴f (x )在(0,+∞)上是增函数,∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A.【举一反三】1.已知f (x )=2x-2-x,117459279,,log 97a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则f (a ),f (b ),f (c )的大小顺序为( ) A.f (b )<f (a )<f (c ) B.f (c )<f (b )<f (a ) C.f (c )<f (a )<f (b ) D.f (b )<f (c )<f (a )【答案】B【解析】易知f (x )=2x -2-x在(-∞,+∞)上是增函数,又a =⎝ ⎛⎭⎪⎫79-14=⎝ ⎛⎭⎪⎫9714>⎝ ⎛⎭⎪⎫9715=b >0,c =log 279<0,∴f (a )>f (b )>f (c ).2.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c【套路总结】(1)比较大小:县判断出函数的单调性,再根据自变量的大小判断出函数值的大小关系。
高一数学【函数的单调性】课堂学案
A.-3 B.13 C.7 D.由m而定的常数
C组:
6Байду номын сангаас研究下列函数的单调区间:
(1) (2) (3)
自我反思:
1.你觉得你本节课的效率怎样?
2.本节课你从知识,方法方面学到了什么?
第4页
1-11在线测学
1.设函数 上的减函数,则有(D)
A、 B、 C、 D、
一、先根据学案上的问题有目的阅读课本,然后可以先做学案再看微课,亦可以先看微课再完成学案
新课导入
1.分别作出下列两个函数图象:
(1) (2) (3)
2.请结合上述几个函数图象,分别观察函数值 随着自变量 的变化,有着怎样的变化?如何用数学符号表达这种变化?
教材自学1:
阅读课本第44页至45页例1之前部分,完成以下内容:
2.画出下列函数的图像,并指出它们的单调区间.
(1)y=|x|-1 (2)y=|x-1|
3.如果函数 在R上是增函数,证明:当 时,函数 在R上也是增函数,当 时,函数 在R上是减函数.
第3页
学 案 内 容
学生笔记(教师点拨)
B组:
4.下列函数中,在区间(0,2)上为增函数的是()
A.y=3-xB.y=x2+1 C.y=-2xD.y=-|x|
应用1.证明函数
应用2.证明函数
思考:
1.函数 在 上的单调性是由哪个量决定的?
2.能否说函数 在其定义域上是减函数?为什么?
微课助学:请观看微课:1-11函数单调性及判断,观看时注意做好笔记.
合作互学:请同学们相互讨论,解决自学过程中的疑问.小组长汇总,将合作讨论中没有解决的问题和新生成的问题提交课代表.
函数的单调性学案
1.3.1 函数的单调性与最值(第1课时)审核签名:编制:顾介远编制时间:9月1日使用:高一(11、12)班【学习目标】1、结合一次函数、二次函数、反比例函数的图象,形象地理解函数的单调性。
2、通过取值、描点,分析函数值的变化规律,体会函数值的变化趋势,并会作出判断。
3、理解增函数、减函数的概念,掌握判断某些函数增减性的方法;4、培养利用数学概念进行判断推理的能力和数形结合的思想,提高辩证思维的能力。
【自主学习】1、画出函数y=2x, y=-x, y=x2+1, y=1的图象,并研究它们的图像有何特征?3、定义:问题1:增函数的定义是什么?问题2:减函数的定义是什么?问题3:如何定义函数的单调性,单调区间及单调函数?由此可知,在上面的函数中y=2x的单调区间是,y=-x的单调区间是,y=x2+1 的单调减区间是,单调增区间是。
跟踪1、如图,已知函数y=f(x),y=g(x)的图象(包括端点),根据图象说出函数的单调区间,以及在每一个区间上,函数是增函数还是减函数。
【合作探究】1、在函数单调性的定义中,所取的两个变量x1,x2应具有什么特征?2、在函数单调性的定义中,提到的是“区间M”,对照引入中大家画的四个函数图象,你能举例说明单调区间M和函数定义域是什么关系吗?是否每个函数都有单调区间?3、简单地说,单调性是先已知区间M上任意的大小,再得到的大小,通过比较两者的大小关系是一致(或相反)来定义了(或)函数。
例题解析例1、证明函数f(x)=1x在区间(-∞,0)和(0,+∞)上分别是减函数。
【巩固拓展】。
1、证明:函数()f x =[0,+∞)上是增函数。
总结提高:1.用定义证明函数单调性的基本步骤是哪些?2.在证明过程中常用到哪些方法将△y 变形?3.函数f(x)= 1x的定义域是 ,单调减区间是 。
例2、画出下列函数的图象,并指出它们的单调区间。
⑴y=|x -1|;⑵y=|x -1| (3)y=x 2-|x|总结提高:1)、若函数f(x)在区间D 上是增函数,则图象在D 上的部分从左到右呈__ 趋势, 若函数f(x)在区间D 上是减函数,则图象在D 上的部分从左到右呈__趋势。
函数的单调性学案
函数的单调性【学习目标】1.理解增函数。
减函数的概念,掌握判断某些函数增减性的方法;2.培养学生的判断推理能力和数形结合,辩证思维的能力。
【课前导学】复习回顾1.函数有哪几个要素?2.函数的定义域怎样确定?怎样表示?3.函数的表示方法常见的有哪几种?各有什么优点?4.区间的表示方法。
前面我们学习了函数的概念。
表示方法以及区间的概念,今天我们来研究函数的另一性质(导入课题,板书课题)。
【学习重难点】运用单调性与奇偶性讨论函数的性质【学习过程】一、建构数学1.引例:观察y=x 2的图像,回答下列问题:问题1:函数y=x 2的图像在y 轴右侧的部分是上升的,说明什么?随着x 的增加,y 值在增加。
⇒问题2:怎样用数学语言表示呢?设x 1.x 2∈[0,+,得y 1=f (x 1), y 2=f (x 2)。
⇒)∞当x 1<x 2时,f (x 1)< f (x 2)。
(学生不一定一下子答得比较完整,教师应抓住时机予以启发)。
结论:这时,说y 1= x 2在[0,+上是增函数。
(同理分析y 轴左侧部分)由此可有:)∞2.定义:一般地,设函数f (x )的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值x 1.x 2,当x 1x 2时都有f (x 1)< f <(x 2)。
那么就说f (x )在这个区间上是增函数(increasing function )。
如果对于属于I 内某个区间上的任意两个自变量的值x 1.x 2,当x 1<x 2时都有f (x 1)>f (x 2)。
那么就是f (x )在这个区间上是减函数(decreasing function )。
如果函数y=f (x )在某个区间是增函数或减函数,那么就说函说y=f (x )在这一区间具有(严格的)单调性,这一区间叫做y=f (x )的单调区间,在单调区间上增函数的图像是上升的,减函数的图像是下降的。
函数的单调性学案
函数的单调性学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2.1.3 函数的单调性自主学习学习目标1.理解单调性的定义.2.运用单调性的定义判断函数的单调性.自学导引1.增函数与减函数一般地,设函数y =f (x )的定义域为A ,区间M ⊆A .如果取区间M 中的________________,改变量Δx =x 2-x 1>0,则当____________________时,就称函数y =f (x )在区间M 上是增函数(如图甲),当____________________时,那么就称函数y =f (x )在区间M 上是减函数(如图乙).2.单调性与单调区间如果一个函数在某个区间M 上是________或是________,就说这个函数在这个区间M 上具有单调性,区间M 称为________________.3.a >0时,二次函数y =ax 2+bx +c 的单调递增区间为__________.4.k >0时,y =kx +b 在R 上是________函数.5.函数y =k x (k >0)的单调递减区间为________________.对点讲练知识点一 利用图象求单调区间例1 求下列函数的单调区间.(1)f (x )=3|x |; (2)f (x )=|x 2+2x -3|.规律方法 函数的单调区间可以是开的,也可以是闭的,也可以是半开半闭的,对于闭区间上的连续函数来说,只要在开区间上单调,它在闭区间上也单调.因此,只要单调区间端点使f (x )有意义,都可以使单调区间包括端点.但要注意,不连续的单调区间必须分开写,不能用“∪”符号连接它们.变式迁移1 写出函数f (x )=ax 2|x |+1(a ≠0)的单调区间.知识点二 利用定义证明函数的单调性例2 证明:函数f (x )=x +1x 在(0,1)上是减函数.规律方法 证明函数的单调性的常用方法是利用函数单调性的定义.其步骤为(1)取值(注意x 1、x 2的任意性);(2)作差变形(目的是便于判断符号);(3)判断差的符号;(4)写出结论.变式迁移 2 利用单调性的定义证明函数y =x -1x 在(0,+∞)上是增函数.知识点三 函数单调性的应用例3 已知函数f (x )=x 2+2x +3x(x ∈[2,+∞)), (1)求f (x )的最小值;(2)若f (x )>a 恒成立,求a 的取值范围.规律方法 运用函数单调性求最值是求函数最值的重要方法,特别是当函数图象不好作或作不出来时,单调性几乎成为首选方法.另外f (x )>a 恒成立,等价于f (x )min >a ,f (x )<a 恒成立,等价于f (x )max <a .变式迁移3 求函数f (x )=x x -1在区间[2,5]上的最大值与最小值;若f (x )<a 在[2,5]上恒成立,求a 的取值范围.1.函数的单调区间必须是定义域的子集.因此讨论函数的单调性时,必须先确定函数的定义域.2.研究函数的单调性,必须注意无意义的特殊点,如函数f (x )=1x 在(-∞,0)和(0,+∞)上都是减函数,但不能说函数f (x )=1x 在定义域上是减函数.3.求单调区间的方法:(1)图象法;(2)定义法;(3)利用已知函数的单调性.4.用单调性的定义证明函数的单调性分四个主要步骤:取值——作差变形——定号——判断.若f (x )>0,则判断f (x )的单调性可以通过作比的方法去解决,即“取值——作比变形——与1比较——判断”.课时作业一、选择题1.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数;②函数y =x 2在R 上是增函数;③函数y =-1x 在定义域上是增函数;④y =1x 的单调区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个2.设(a ,b ),(c ,d )都是函数f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定3.下列函数在区间(2,+∞)上为减函数的为( )A .y =2x -7B .y =-1xC .y =-x 2+4x +1D .y =x 2-4x -34.若函数f (x )=x 2+2(a -2)x +2在区间[4,+∞)上是增函数,则实数a 的取值范围是( )A .a ≤-2B .a ≥-2C .a ≥-6D .a ≤-65.设函数f (x )是(-∞,+∞)上的减函数,则( )A .f (a )>f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a )二、填空题6.已知函数f (x )为区间[-1,1]上的增函数,则满足f (x )<f ⎝ ⎛⎭⎪⎫12的实数x 的取值范围为________.7.函数f (x )=2x 2-3|x |的单调递减区间是____________________________________.8.若函数y =ax 与y =-b x 在(0,+∞)上都是减函数,则函数y=ax 2+bx 在(0,+∞)上是单调______函数.三、解答题9.证明:函数y =x +2x +1在[2,4]上是减函数,并求f (x )在[2,4]上的最值.10.设函数f (x )=x +a x +b(a >b >0),求f (x )的单调区间,并证明f (x )在其单调区间上的单调性.【探究驿站】11.已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ),当x >0时,f (x )>0,试判断f (x )在(0,+∞)上的单调性.2.1.3 函数的单调性 答案自学导引1.任意两个值x 1,x 2 Δy =f (x 2)-f (x 1)>0 Δy =f (x 2)-f (x 1)<0 ①f (x 1)<f (x 2)②增函数 ③f (x 1)>f (x 2) ④减函数2.增函数 减函数 单调区间3.⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 4.增 5.(-∞,0)和(0,+∞)对点讲练例1 解(1)f (x )=3|x |=⎩⎨⎧ 3x , x ≥0,-3x , x <0.图象如图所示. f (x )在(-∞,0]上是减函数,在[0,+∞)上是增函数.(2)令g (x )=x 2+2x -3=(x +1)2-4.先作出g (x )的图象,保留其在x 轴及x 轴上方部分,把它在x 轴下方的图象翻到x 轴上方就得到f (x )=|x 2+2x -3|的图象,如图所示.由图象易得:函数的递增区间是[-3,-1],[1,+∞);函数的递减区间是(-∞,-3],[-1,1].变式迁移1 解 f (x )=⎩⎨⎧ ax +1 (x >0)-ax +1 (x <0)当a >0时,如图①所示,∴单调递增区间为(0,+∞),递减区间为(-∞,0).当a <0时,如图②所示,∴单调递增区间为(-∞,0),递减区间为(0,+∞).① ②例2 证明 设0<x 1<x 2<1,则Δx =x 1-x 2<0Δy =f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2 =(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2 =(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)(x 1x 2-1)x 1x 2, ∵0<x 1<x 2<1,∴x 1-x 2<0,x 1x 2-1<0,x 1x 2>0.∴Δy =f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )=x +1x 在(0,1)上是减函数.变式迁移2 证明 任取x 1,x 2∈(0,+∞),设x 1<x 2,f (x 1)-f (x 2)=(x 1-x 2)-1x 1+1x 2=(x 1-x 2)(1+1x 1x 2) ∵0<x 1<x 2,∴x 1-x 2<0,1+1x 1x 2>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2)∴f (x )在(0,+∞)上是增函数.例3 解 (1)任取x 1,x 2∈[2,+∞),且x 1<x 2,f (x )=x +3x +2则f (x 1)-f (x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫1-3x 1x 2 ∵x 1<x 2,∴x 1-x 2<0又∵x 1≥2,x 2>2,∴x 1x 2>4,1-3x 1x 2>0 ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).故f (x )在[2,+∞)上是增函数.∴当x =2时,f (x )有最小值,即f (2)=112.(2)∵f (x )最小值为f (2)=112,∴f (x )>a 恒成立,只须f (x )min >a ,即a <112.变式迁移3 解 任取2≤x 1<x 2≤5,则f (x 1)=x 1x 1-1,f (x 2)=x 2x 2-1, f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2(x 2-1)(x 1-1), ∵2≤x 1<x 2≤5,∴x 1-x 2<0,x 2-1>0,x 1-1>0.∴f (x 2)-f (x 1)<0.∴f (x 2)<f (x 1).∴f (x )=x x -1在区间[2,5]上是减函数.∴f (x )max =f (2)=22-1=2.f (x )min =f (5)=55-1=54. f (x )<a 恒成立,等价于a >f (x )max ,即a >2.课时作业1.A [函数的单调性的定义是指定义在区间I 上任意两个值x 1,x 2,强调的是任意,从而①不对;②y =x 2在x ≥0时是增函数,x <0时是减函数,从而y =x 2在整个定义域上不具有单调性;③y =-1x 在整个定义域内不是单调递增函数,如-3<5而f (-3)>f (5);④y =1x 的单调递减区间不是(-∞,0)∪(0,+∞),而是(-∞,0)和(0,+∞),注意写法.]2.D [根据单调性定义,所取两个自变量是同一单调区间内的任意两个变量,才能由该区间上的函数单调性来比较出函数值的大小.]3.C [由图象知C 符合.]4.B [对称轴x =2-a ≤4,得a ≥-2.]5.D [由a 2+1-a =⎝ ⎛⎭⎪⎫a -122+34,得a 2+1>a , 又∵f (x )是R 上的减函数,∴f (a 2+1)<f (a ).]6.-1≤x <12解析 由题设得⎩⎪⎨⎪⎧ -1≤x ≤1x <12,即-1≤x <12.7.⎝ ⎛⎦⎥⎤-∞,-34和⎣⎢⎡⎦⎥⎤0,34 8.递减解析 由已知得a <0,b <0,y =ax 2+bx 对称轴为x =-b 2a <0,开口向下,∴y =ax 2+bx 在(0,+∞)上是单调递减函数.9.证明 设x 1>x 2≥2,则Δx =x 1-x 2>0Δy =y 1-y 2=x 1+2x 1+1-x 2+2x 2+1=x 2-x 1(x 1+1)(x 2+1),∵x 1>x 2≥2,∴x 2-x 1<0,x 1+1>0,x 2+1>0, ∴x 2-x 1(x 1+1)(x 2+1)<0.即y 1-y 2<0,∴y 1<y 2,∴y =x +2x +1在[2,4]上是减函数,∴f (x )max =f (2)=43,f (x )min =f (4)=65.10.解 在定义域内任取x 1,x 2,且x 1<x 2,则 f (x 2)-f (x 1)=x 2+a x 2+b -x 1+ax 1+b=(x 2+a )(x 1+b )-(x 2+b )(x 1+a )(x 1+b )(x 2+b )=(b -a )(x 2-x 1)(x 1+b )(x 2+b )∵a >b >0,∴b -a <0,且x 2-x 1>0.只有当x 1<x 2<-b ,或-b <x 1<x 2时,函数才单调. 当x 1<x 2<-b ,或-b <x 1<x 2时,f (x 1)-f (x 2)>0,则f (x 1)>f (x 2).∴y =f (x )在(-∞,-b )上是单调减函数,在(-b ,+∞)上也是单调减函数.函数的单调减区间是(-∞,-b )和(-b ,+∞).11.解 f (x )在(0,+∞)上为增函数.证明如下:∵x ,y ∈R ,∴不妨取y =Δx ,Δx >0,∵f (x +y )=f (x )+f (y ),∴f(x+Δx)=f(x)+f(Δx),∴f(x+Δx)-f(x)=f(Δx).∵Δx>0,∴f(Δx)>0,∴f(x+Δx)-f(x)>0,f(x+Δx)>f(x),∴f(x)在(0,+∞)上为增函数.。
函数的单调性、极值、最值学案
函数的单调性、极值、最值学案一. 基础知识:1.设函数)(x f y =在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各点的值都大(小),则称)(0x f 是函数)(x f y =的一个______.2.如果)(x f y =在某个区间内有导数,则可以这样求它的极值:(1)求导数_____; (2)求方程________的根(可能极值点); (3)如果在根的左侧附近为_,右侧附近为_,则函数)(x f y =在这个根处取得极_值;如果在根的左侧附近为__________,右侧附近为_____________,则函数)(x f y =在这个根处取得极________值.3.设)(x f y =是定义在[a ,b]上的函数,)(x f y =在(a ,b)内有导数,可以这样求最值:(1)求出函数在(a ,b)内的可能极值点(即方程0)(/=x f 在(a ,b)内的根n x x x ,,,21 );(2)比较函数值)(a f ,)(b f 与)(,),(),(21n x f x f x f ,其中最大的一个为最大值,最小的一个为最小值.(注意一定要列表求解) 二.例题例1. 已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =- (1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间。
例2:已知)(x f y =是二次函数,方程0)(=x f 有两个相等实根,且22)(+='x x f .求)(x f 的解析式;例3.设函数x bx ax x f ++=232131)(在1x =1与2x =2处取得极值,试确定a 和b 的值,并问此时函数在1x 与2x 处是取极大值还是极小值?例4:若函数33)(23-++=x x ax x f 在R 上为单调增函数,求a 的取值范围。
函数的单调性、极值、最值作业1.函数()323922y x x x x =---<<有( )A .极大值5,极小值27-B .极大值5,极小值11-C .极大值5,无极小值D .极小值27-,无极大值2.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A .()f x =()g xB .()f x -()g x 为常数函数C .()f x =()0g x =D .()f x +()g x 为常数函数 3.函数xxy ln =的最大值为( ) A .1-e B .e C .2e D .310 4.函数2cos y x x =+在区间[0,]2π上的最大值是 。
2014—2015学年高一数学必修一导学案:2.2.1函数的单调性(2)
3 (2)已知 y f ( x) ,在 [0 , ) 上是减函数,试比较 f ( ) 与 f (a 2 a 1) 的大小 4 关系 .
3、已知函数 f ( x) 2x 2 mx 1 ,在 [2,) 上是增函数,在 (,2] 上是减函数, 则 f ( 2) 是函数 f ( x) 的最 值。
4 、 函 数 f ( x) 2 x 2 mx 1 , 当 x (2,) 时 是 减 函 数, 则 m 的 取 值 范 围 是 。
y 3 2 -1.5 1 -4 -3 -2 -1 O
7 1 2 3 4 5 6 -1 -2 x
三、课堂研讨
例 1. 求下列函数的最值: (1) y x 2 x
2
(2) y
1 , x [1,3] x
2 例 2、已知函数 f ( x) x mx 1, 且 f (1) 3 ,求函数 f ( x) 在区间[2,3]内的最 值。
四、学后反思
2
函数的单调性:第 2 课时 检测案 班级: 【课堂检测】
1、函数 y 2 x 1 在 [1,2] 上的最大值和最小值分别是____ 2、函数 y x 2 x 在 [3,0] 上的最大值和最小值分别是_______ 3、函数 y _____。 ___。
姓名:
学号:
第
学习小组
2 1 在 [1,3] 上的最大值为__________,最小值为_________。 x
4、求函数 f ( x) 2 x 2 3x 1 在 [2,1] 上的最值。
5、已知函数 y f ( x) 在定义 R 域上是单调减函数,且 f (a 1) f (2a) ,求 a 的取 值范围。
苏教版高中数学必修1全册课时作业及答案
苏教版高中数学必修1 全册课时作业目录1.1第1课时集合的含义1.1第2课时集合的表示1.2子集、全集、补集1.3交集、并集2.1.1函数的概念和图象2.1.2习题课2.1.2函数的表示方法2.1.3习题课2.1.3第1课时函数的单调性2.1.3第2课时函数的最大(小)值2.1.3第3课时奇偶性的概念2.1.3第4课时奇偶性的应用2.1.4映射的概念2.2.1函数的单调性(一)2.2.1函数的单调性(二)2.2.1分数指数幂2.2.2 习题课2.2.2习题课2.2.2函数的奇偶性2.2.2指数函数(一)2.2.2指数函数(二)2.2习题课2.3.1第1课时对数的概念2.3.1第2课时对数运算2.3.2习题课2.3.2对数函数(一)2.3.2对数函数(二)2.3映射的概念2.4幂函数2.5.1函数的零点2.5.2用二分法求方程的近似解2.5习题课2.6习题课2.6函数模型及其应用3.1.1分数指数幂3.1.2指数函数(一)3.1.2指数函数(二)3.1习题课3.2.1第1课时对数(一)3.2.1第2课时对数(二)3.2.2对数函数(一)3.2.2对数函数(二)3.2习题课3.3幂函数3.4.1习题课3.4.1第1课时函数的零点3.4.1第2课时用二分法求方程的近似解3.4.2习题课3.4.2函数模型及其应用第1章集合§1.1集合的含义及其表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.一般地,一定范围内某些确定的、不同的对象的全体构成一个________.集合中的每一个对象称为该集合的________,简称______.2.集合通常用________________表示,用____________________表示集合中的元素.3.如果a是集合A的元素,就说a________集合A,记作a____A,读作“a______A”,如果a不是集合A的元素,就说a__________A,记作a____A,读作“a________A”.4.集合中的元素具有________、________、________三种性质.5.实数集、有理数集、整数集、自然数集、正整数集分别用字母____、____、____、____、____或______来表示.一、填空题1.下列语句能确定是一个集合的是________.(填序号)①著名的科学家;②留长发的女生;③2010年广州亚运会比赛项目;④视力差的男生.2.集合A只含有元素a,则下列各式正确的是________.(填序号)①0∈A;②a∉A;③a∈A;④a=A.3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是________.(填序号)①直角三角形;②锐角三角形;③钝角三角形;④等腰三角形.4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是________.(填序号)①1;②-2;③6;④2.5.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为________.6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有________个元素.7.由下列对象组成的集体属于集合的是________.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为________.9.用符号“∈”或“∉”填空-2______R,-3______Q,-1_______N,π______Z.二、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升 12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第1章集合§1.1集合的含义及其表示第1课时集合的含义知识梳理1.集合元素元 2.大写拉丁字母A,B,C…小写拉丁字母a,b,c,… 3.属于∈属于不属于∉不属于4.确定性互异性无序性 5.R Q Z N N*N+作业设计1.③解析①、②、④都因无法确定其构成集合的标准而不能构成集合.2.③解析由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”.3.④解析集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的.4.③解析因A中含有3个元素,即a2,2-a,4互不相等,将各项中的数值代入验证知填③. 5.3解析由2∈A可知:若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A={0,3,2},符合题意.6.2解析 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素. 7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④. 8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的. (2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素. (4)不正确,因为个子高没有明确的标准. 11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3,∴a =-32.12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6; 当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8; 当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A .又∵2∈A ,∴11-2=-1∈A .∵-1∈A ,∴11--1=12∈A .∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11-a,即a 2-a +1=0,方程无解.∴a ≠11-a,∴A 不可能为单元素集.第2课时 集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法将集合的元素____________出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.2.两个集合相等如果两个集合所含的元素____________,那么称这两个集合相等. 3.描述法将集合的所有元素都具有的______(满足的______)表示出来,写成{x |p (x )}的形式. 4.集合的分类(1)有限集:含有________元素的集合称为有限集. (2)无限集:含有________元素的集合称为无限集. (3)空集:不含任何元素的集合称为空集,记作____.一、填空题1.集合{x ∈N +|x -3<2}用列举法可表示为___________________________________. 2.集合{(x ,y )|y =2x -1}表示________.(填序号) ①方程y =2x -1; ②点(x ,y );③平面直角坐标系中的所有点组成的集合; ④函数y =2x -1图象上的所有点组成的集合.3.将集合⎩⎪⎨⎪⎧x ,y |⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法为______________.4.用列举法表示集合{x |x 2-2x +1=0}为________.5.已知集合A ={x ∈N |-3≤x ≤3},则有________.(填序号) ①-1∈A ;②0∈A ;③3∈A ;④2∈A .6.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解集不可表示为________.①{(x ,y )|⎩⎪⎨⎪⎧x +y =3x -y =-1};②{(x ,y )|⎩⎪⎨⎪⎧x =1y =2};③{1,2};④{(1,2)}.7.用列举法表示集合A ={x |x ∈Z ,86-x∈N }=______________________________.8.下列各组集合中,满足P =Q 的为________.(填序号) ①P ={(1,2)},Q ={(2,1)}; ②P ={1,2,3},Q ={3,1,2};③P ={(x ,y )|y =x -1,x ∈R },Q ={y |y =x -1,x ∈R }.9.下列各组中的两个集合M 和N ,表示同一集合的是________.(填序号) ①M ={π},N ={3.141 59}; ②M ={2,3},N ={(2,3)};③M ={x |-1<x ≤1,x ∈N },N ={1};④M ={1,3,π},N ={π,1,|-3|}. 二、解答题10.用适当的方法表示下列集合①方程x (x 2+2x +1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合; ③不等式x -2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是________.①{x |x =1};②{y |(y -1)2=0};③{x =1};④{1}.13.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N 的关系是____________________________________________________.1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示. 2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时 集合的表示知识梳理1.一一列举 2.完全相同 3.性质 条件 4.(1)有限个 (2)无限个 (3)∅ 作业设计 1.{1,2,3,4}解析 {x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}. 2.④解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合. 3.{(2,3)}解析 解方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3.所以答案为{(2,3)}.4.{1}解析 方程x 2-2x +1=0可化简为(x -1)2=0, ∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}. 5.② 6.③解析 方程组的集合中最多含有一个元素,且元素是一对有序实数对,故③不符合. 7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N ,∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}. 8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集. 9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1, ∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N }; ③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ; 集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3, 所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P是抛物线y =x 2+3上的点}. 12.③解析 由集合的含义知{x |x =1}={y |(y -1)2=0} ={1},而集合{x =1}表示由方程x =1组成的集合. 13.x 0∈N解析 M ={x |x =2k +14,k ∈Z },N ={x |x =k +24,k ∈Z },∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数, ∴x 0∈M 时,一定有x 0∈N .§1.2子集、全集、补集课时目标 1.理解子集、真子集的意义,会判断两集合的关系.2.理解全集与补集的意义,能正确运用补集的符号.3.会求集合的补集,并能运用Venn图及补集知识解决有关问题.1.子集如果集合A的__________元素都是集合B的元素(若a∈A则a∈B),那么集合A称为集合B的________,记作______或______.任何一个集合是它本身的______,即A⊆A. 2.如果A⊆B,并且A≠B,那么集合A称为集合B的________,记为______或(______).3.______是任何集合的子集,______是任何非空集合的真子集.4.补集设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的______,记为______(读作“A在S中的补集”),即∁S A={x|x∈S,且x∉A}.5.全集如果集合S包含我们所要研究的各个集合,这时S可以看做一个______,全集通常记作U.集合A相对于全集U的补集用Venn图可表示为一、填空题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是________.2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是________.3.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=________.4.已知全集U=R,集合M={x|x2-4≤0},则∁U M=________.5.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是_____________________________.6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是________.7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=________,∁U B=______,∁B A=________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.二、解答题10.设全集U={x∈N*|x<8},A={1,3,5,7},B={2,4,5}.(1)求∁U(A∪B),∁U(A∩B);(2)求(∁U A)∪(∁U B),(∁U A)∩(∁U B);(3)由上面的练习,你能得出什么结论?请结事Venn图进行分析.11.已知集合A={1,3,x},B={1,x2},设集合U=A,求∁U B.能力提升12.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.13.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.2.∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.3.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.§1.2子集、全集、补集知识梳理1.任意一个子集A⊆B B⊇A子集 2.真子集A B B A3.空集空集 4.补集∁S A 5.全集作业设计1.P Q解析∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0},∴P Q.2.7解析M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.{3,9}解析在集合U中,去掉1,5,7,剩下的元素构成∁U A.4.{x|x<-2或x>2}解析∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.5.②解析由N={-1,0},知N M.6.S P=M解析运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S表示成被6整除余1的整数集.7.-3解析∵∁U A={1,2},∴A={0,3},故m=-3.8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁U A={0,1,3,5,7,8},∁U B={7,8},∁B A={0,1,3,5}.9.∁U B∁U A解析画Venn图,观察可知∁U B∁U A.10.解 (1)∵U ={x ∈N *|x <8}={1,2,3,4,5,6,7},A ∪B ={1,2,3,4,5,7},A ∩B ={5},∴∁U (A ∪B )={6},∁U (A ∩B )={1,2,3,4,67}.(2)∵∁U A ={2,4,6},∁U B ={1,3,6,7},∴(∁U A )∪(∁U B )={1,2,3,4,6,7},(∁U A )∩(∁U B )={6}.(3)∁U (A ∪B )=(∁U A )∩(∁U B )(如左下图);∁U (A ∩B )=(∁U A )∪(∁U B )(如右下图).11.解 因为B ⊆A ,因而x 2=3或x 2=x .①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1. 当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1; 当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}. 12.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意.13.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a}.∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2.§1.3交集、并集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.交集(1)定义:一般地,由____________________元素构成的集合,称为集合A与B的交集,记作________.(2)交集的符号语言表示为A∩B=__________.(3)交集的图形语言表示为下图中的阴影部分:(4)性质:A∩B=______,A∩A=____,A∩∅=____,A∩B=A⇔______.2.并集(1)定义:一般地,________________________的元素构成的集合,称为集合A与B的并集,记作______.(2)并集的符号语言表示为A∪B=______________.(3)并集的图形语言(即Venn图)表示为图中的阴影部分:(4)性质:A∪B=______,A∪A=____,A∪∅=____,A∪B=A⇔______,A____A∪B,A∩B____A∪B.一、填空题1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B=________.2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B=________.3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是________.①A⊆B;②B⊆C;③A∩B=C;④B∪C=A.4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N=________. 5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于________.6.集合M={1,2,3,4,5},集合N={1,3,5},则下列关系正确的是________.①N∈M;②M∪N=M;③M∩N=M;④M>N.7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=______,b=______.二、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为________.13.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.对并集、交集概念全方面的感悟(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.拓展交集与并集的运算性质,除了教材中介绍的以外,还有A⊆B⇔A∪B=B,A⊆B⇔A ∩B =A .这种转化在做题时体现了化归与转化的思想方法,十分有效.§1.3 交集、并集知识梳理 1.(1)所有属于集合A 且属于集合B 的 A ∩B (2){x |x ∈A ,且x ∈B } (4)B ∩A A ∅ A ⊆B 2.(1)由所有属于集合A 或属于集合B A ∪B (2){x |x ∈A ,或x ∈B } (4)B ∪A A A B ⊆A ⊆ ⊆ 作业设计1.{0,1,2,3,4} 2.{x |-1≤x <1}解析 由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}. 3.④解析 参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C . 4.{(3,-1)}解析 M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.5.3解析 依题意,由A ∩B ={2}知2a =2, 所以,a =1,b =2,a +b =3. 6.②解析 ∵N M ,∴M ∪N =M . 7.0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3①或t 2-t +1=0②或t 2-t +1=1③①无解;②无解;③t =0或t =1. 8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ), ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3},即方程x 2+px +q =0的两个实根为1,3.∴⎩⎪⎨⎪⎧1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3.11.解 ∵A ∩B =B ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a},∴-1a ∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.12.6解析 x 的取值为1,2,y 的取值为0,2,∵z =xy ,∴z 的取值为0,2,4,所以2+4=6. 13.解 符合条件的理想配集有 ①M ={1,3},N ={1,3}. ②M ={1,3},N ={1,2,3}. ③M ={1,2,3},N ={1,3}. 共3个.第2章 函数 §2.1 函数的概念 2.1.1 函数的概念和图象课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对集合A 中的每一个元素x ,在集合B 中都有惟一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个________,通常记为y =f(x),x ∈A.其中,所有的输入值x 组成的集合A 叫做函数y =f(x)的________. 2.若A 是函数y =f(x)的定义域,则对于A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的________. 3.函数的三要素是指函数的定义域、值域、对应法则.一、填空题1.对于函数y =f(x),以下说法正确的有________个. ①y 是x 的函数;②对于不同的x ,y 的值也不同;③f(a)表示当x =a 时函数f(x)的值,是一个常量; ④f(x)一定可以用一个具体的式子表示出来.2.设集合M ={x|0≤x≤2},N ={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有________.3.下列各组函数中,表示同一个函数的是________.①y =x -1和y =x 2-1x +1;②y =x 0和y =1;③f(x)=x 2和g(x)=(x +1)2;④f(x)=x 2x 和g(x)=xx2. 4.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有________个. 5.函数y =1-x +x 的定义域为________. 6.函数y =x +1的值域为________.7.已知两个函数f(x)和g(x)的定义域和值域都是{1,2,3},其定义如下表:x 1 2 3 f(x) 2 3 1x 1 2 3 g(x) 1 3 2x 1 2 3 g[f(x)]填写后面表格,其三个数依次为:________.8.如果函数f(x)满足:对任意实数a ,b 都有f(a +b)=f(a)f(b),且f(1)=1,则f 2f 1+f 3f 2+f 4f 3+f 5f 4+…+f 2 011f 2 010=________. 9.已知函数f(x)=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________.二、解答题11.已知函数f (1-x1+x)=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度分别是多少? (6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应法则是否为函数,关键是看对于数集A中的任一个值,按照对应法则所对应数集B中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x,只要认清楚对应法则,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f(x)以表格形式给出时,其定义域指表格中的x的集合;②当f(x)以图象形式给出时,由图象范围决定;③当f(x)以解析式给出时,其定义域由使解析式有意义的x的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.第2章函数概念与基本初等函数Ⅰ§2.1函数的概念和图象2.1.1 函数的概念和图象知识梳理1.函数定义域 2.值域作业设计1.2解析①、③正确;②不对,如f(x)=x2,当x=±1时y=1;④不对,f(x)不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示. 2.②③解析 ①的定义域不是集合M ;②能;③能;④与函数的定义矛盾. 3.④解析 ①中的函数定义域不同;②中y =x 0的x 不能取0;③中两函数的对应法则不同. 4.9解析 由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”. 5.{x|0≤x≤1}解析 由题意可知⎩⎪⎨⎪⎧1-x≥0,x≥0,解得0≤x≤1.6.[0,+∞) 7.3 2 1解析 g[f(1)]=g(2)=3,g[f(2)]=g(3)=2,g[f(3)]=g(1)=1. 8.2 010解析 由f(a +b)=f(a)f(b),令b =1,∵f(1)=1,∴f(a+1)=f(a),即f a +1f a=1,由a 是任意实数,所以当a 取1,2,3,…,2 010时,得f 2f 1=f 3f 2=…=f 2 011f 2 010=1.故答案为2 010.9.{-1,1,3,5,7}解析 ∵x=1,2,3,4,5,∴f(x)=2x -3=-1,1,3,5,7.10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x≤1,0≤x+23≤1,得⎩⎪⎨⎪⎧0≤x≤12,-23≤x≤13,即x∈[0,13].11.解 由1-x 1+x =2,解得x =-13,所以f(2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10:30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11:00至12:00他骑了13千米.(5)9:00~10:00的平均速度是10千米/时;10:00~10:30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h)m ,高为h m ,∴水的面积A =[2+2+2h ]h 2=h 2+2h(m 2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)函数图象如下确定.由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.2.1.2 函数的表示方法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.1.函数的三种表示法(1)列表法:用列表来表示两个变量之间函数关系的方法. (2)解析法:用等式来表示两个变量之间函数关系的方法. (3)图象法:用图象表示两个变量之间函数关系的方法. 2.分段函数在定义域内不同部分上,有不同的解析表达式,像这样的函数通常叫做分段函数.一、填空题1.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为________.2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是________.3.如果f (1x )=x1-x,则当x ≠0时,f (x )=________.4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )=__________________________________. 5.已知f (x )=⎩⎪⎨⎪⎧ x -5 x ≥6f x +2x <6,则f (3)=_________________________________. 6.已知f (x )=⎩⎪⎨⎪⎧x -3 x ≥9f [f x +4] x <9,则f (7)=________________________________.7.一个弹簧不挂物体时长12 cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3 kg 物体后弹簧总长是13.5 cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________.8.已知函数y =f (x )满足f (x )=2f (1x)+x ,则f (x )的解析式为____________.9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为________. 二、解答题 10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d 是车速v (公里/小时)的平方与车身长S (米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(其中S 为常数).13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应法则f 的本质与特点(对应法则就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法). 3.分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集. 分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.1.2 函数的表示方法作业设计1.y =50x(x>0)解析 由x +3x2·y=100,得2xy =100.∴y =50x (x>0).2.1解析 由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.3.1x -1解析 令1x =t ,则x =1t ,代入f(1x )=x1-x,则有f(t)=1t 1-1t=1t -1.4.2x -1解析 由已知得:g(x +2)=2x +3, 令t =x +2,则x =t -2, 代入g(x +2)=2x +3,则有g(t)=2(t -2)+3=2t -1. 5.2解析 ∵3<6,∴f(3)=f(3+2)=f(5)=f(5+2)=f(7)=7-5=2. 6.6解析 ∵7<9,∴f(7)=f[f(7+4)]=f[f(11)]=f(11-3)=f(8). 又∵8<9,∴f(8)=f[f(12)]=f(9)=9-3=6. 即f(7)=6.7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k +12,k =12. 所以所求的函数解析式为y =12x +12.8.f(x)=-x 2+23x(x≠0)解析 ∵f(x)=2f(1x)+x ,①∴将x 换成1x ,得f(1x )=2f(x)+1x .②由①②消去f(1x ),得f(x)=-23x -x3,即f(x)=-x 2+23x (x≠0).9.f(x)=2x +83或f(x)=-2x -8解析 设f(x)=ax +b(a≠0),则f(f(x))=f(ax +b)=a 2x +ab +b.∴⎩⎪⎨⎪⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎪⎨⎪⎧a =-2b =-8.10.解 设f(x)=ax 2+bx +c(a≠0). 由f(0)=f(4)知⎩⎪⎨⎪⎧f 0=c ,f 4=16a +4b +c ,f 0=f 4,得4a +b =0.①又图象过(0,3)点, 所以c =3.②设f(x)=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca.所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a )2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f(x)=x 2-4x +3.11.解 因为函数f(x)=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 …y … -5 0 3 4 3 0 -5…连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3, f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.解 根据题意可得d =kv 2S .∵v =50时,d =S ,代入d =kv 2S 中,解得k =12 500.∴d =12 500v 2S .当d =S2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧S 2 0≤v <25212 500v 2S v ≥252.13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1,∴f (x )=x (x +1)+1=x 2+x +1.。
2.2.1 函数的单调性 第1课时 教学案
2.2.1函数的单调性第1课时 函数的单调性 教学案 2012.9.21备课教师:一、教学目标1、通过已接触过的实例,理解函数的单调性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、能够熟练应用定义判断数在某区间上的的单调性。
二、教学重点 判断函数的单调性 三、教学难点函数单调性概念的理解四、上课时间: 五、教学过程(一)、教材·知识·研读 一、问题情景§2.1.1小结开头的第三个问题:下图是某市一天24小时内的气温图:思考:1、说出气温在哪些时间段内是升高的?2、怎样用数学语言刻画“随着时间的增大气温逐步提高”这一特征? 二、学生活动问题1:观察下列三个函数的图象,指出它们图象变化的趋势。
图1 图2 图3图1:在区间 内,函数12+=x y 图象在该区间内呈逐渐 趋势;图2:在区间 内,函数1)1(2--=x y 图象在该区间内呈逐渐 趋势; 在区间 内,函数1)1(2--=x y 图象在该区间内呈逐渐 趋势。
图3:在区间 内,函数xy 1=图象在该区间内呈逐渐 趋势。
三、建构数学函数的这种呈“上升”与“下降”趋势的性质称为函数的单调性。
问题2:如何用数学语言来准确地描述函数的单调性呢?例如,在区间),1(+∞上当x 的值增大时,函数y 的值也增大的事实应当如何表述?能不能由于1=x 时,3=y ;2=x 时,5=y ,就说随着x 的增大,函数值y 也随着增大?1、定义:一般地,设函数)(x f y =的定义域为A ,区间A I ⊆:如果对于区间..I 内的任意..两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间;如果对于区间..I 内的任意..两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1函数的单调性(一)学案(含答案)
2.2函数的简单性质
2.2.1函数的单调性一学习目标
1.理解函数单调性.单调区间等概念.
2.会划分函数的单调区间,判断单调性.
3.会用定义证明函数的单调性知识点一函数的单调性设函数yfx的定义域为A,区间I
A.1如果对于区间I内的任意两个值x1,x2,当x1x2时,都有fx1fx2,那么就说yfx在区间I上是单调增函数,I称为yfx 的单调增区间2如果对于区间I内的任意两个值x1,x2,当x1x2时,都有fx1fx2,那么就说yfx在区间I上是单调减函数,I称为yfx的单调减区间知识点二函数的单调区间如果一个函数在某个区间I上是单调增函数或单调减函数,就说这个函数在这个区间I上具有单调性,单调增区间和单调减区间统称为单调区间提示1单调区间要写成区间形式,不能写成集合或不等式的形式2函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开3单调区间D定义域I.4遵循最简原则,单调区间应尽可能大题型一求单调区间并判断单调性例1求下列函数的单调区间,并指出该函数在其单调区间上是单调增函数还是单调减函数1fx;2fx3fxx22|x|
3.解1函数fx的单调区间为,0,0,,其在,0,0,上都是单调增函数2当x1时,fx是单调增函数,当x1时,fx是单调减函数,所以fx的单调区间为,1,1,,并且函数fx在,1上是单调减函数,在1,上是单调增函数3因为fxx22|x|3根据解析式可作出函数的图象如图所示,由图象可知,函数fx的单调区间为,1,1,0,0,1,1,fx在,1,0,1上是单调增函数,在1,0,1,上是单调减函数反思感悟
1.求函数单调区间的方法1利用常见函数的单调性,如本例1和2,其中分段函数的单调区间要根据函数的自变量的取值范围分段求解;2利用函数的图象,如本例32若所求出函数的单调增区间或单调减区间不唯一,函数的单调区间之间要用“,”隔开,如本例3跟踪训练11根据下图说出函数在每一单调区间上,函数是单调增函数还是单调减函数;2写出y|x22x3|的单调区间解1函数在1,0,2,4上是单调减函数,在0,2,4,5上是单调增函数2先画出fx的图象,如图所以y|x22x3|的单调减区间为,1,1,3;单调增区间为1,1,3,题型二证明单调性例2求证函数fxx在1,上是增函数考点函数的单调性的判定与证明题点定义法证明具体函数的单调性证明设x1,x2是1,上的任意实数,且1x1x2,则fx1fx2x1x1x2x1x2x1x2x1x
2.1x1x2,x1x20,1x1x2,0,故x1x20,即fx1fx20,即
fx1fx2fxx在区间1,上是增函数反思感悟定义法证明或判断函数
单调性的四个步骤跟踪训练2利用定义判断fx在区间0,上的单调性解任取x1,x20,且x1x2,则fx2fx
1.因为x1x2,且x1,x20,,所以x2x10,x130,x230,所以fx2fx10,所以fx在区间0,上是增函数题型三单调性的应用例3若函数fx是定义在R上的减函数,则a的取值范围为
A.
B.
C.
D.考点函数单调性的应用题点已知分段函数单调性求参数范围答案A解析要使fx在R上是减函数,需满足解得a.反思感悟分段函数在定义域上单调,除了要保证各段上单调外,还要接口处不能反超另外,函数在单调区间上的图象不一定是连续不断的跟踪训练3已知函数fx是R上的减函数,则实数a的取值范围是
A0,3B0,3C0,2D0,2答案D解析依题意得实数a满足解得0a
2.例4已知函数yfx的定义域为R,且为单调增函数,
f1af2a1,求a的取值范围解yfx的定义域为R,且为单调增函数,f1af2a1,1a2a1,即a,所求a的取值范围是.反思感悟若已知函数fx的单调性,则由x1,x2的大小关系,可得fx1,fx2的大小关系;由fx1,fx2的大小关系,可得x1,x2的大小关系跟踪训练4已知yfx在定义域1,1上是单调减函数,且f1af2a1,求a的取值范围解由题意可知,f1af2a1等价于解得0a,即所求a的取值范围是.1若fx的定义域为D,AD,BD,fx在A和B上都为单
调减函数,未必有fx在AB上为单调减函数2对单调增函数的判断,对任意x1x2,都有fx1fx2,也可以用一个不等式来替代
x1x2fx1fx20或0.对单调减函数的判断,对任意x1x2,都有
fx1fx2,相应地也可用一个不等式来替代x1x2fx1fx20或0.3熟悉常见的一些函数的单调性,包括一次函数,二次函数,反比例函数等4若fx,gx都是单调增函数,hx是单调减函数,则在定义域的交集非空上fxgx为单调增函数,fxhx为单调增函数,fx为单调减函数,为单调减函数fx05对于函数值恒正或恒负的函数fx,证明单调性时,也可以作商与1比较.1如图所示是定义在区间5,5上的函数yfx,则下列关于函数fx的说法错误的是A函数在区间5,3上是单调增函数B函数在区间1,4上是单调增函数C 函数在区间3,14,5上是单调减函数D函数在区间5,5上没有单调性答案C解析由图可知,fx在区间3,1,4,5上是单调减函数,单调区间不可以用并集“”连接,故选
C.2如果函数fxx22bx2在区间3,上是单调增函数,则b的取值范围为Ab3Bb3Cb3Db3答案C解析函数fxx22bx2的图象是开口向上,且以直线xb为对称轴的抛物线,若函数fxx22bx2在区间3,上是单调增函数,则b3,故选
C.3已知函数fxk0在区间0,上是单调增函数,则实数k的取值范围是________答案,0解析结合反比例函数的单调性可知
k0.4若函数fx在R上是单调减函数,且f|x|f1,则x的取值范围是________答案1,1解析由题意知,|x|1,解得1x1,所以x的
取值范围是1,15证明函数y在1,上是单调增函数证明设
x1x21,则fx1fx
2.x1x21,x1x20,x110,x210,0,即fx1fx20,fx1fx2,y 在1,上是单调增函数.。