函数的单调性与导数教案
函数的单调性与导数教案
![函数的单调性与导数教案](https://img.taocdn.com/s3/m/a827bc15bf1e650e52ea551810a6f524ccbfcb2a.png)
函数的单调性与导数教案一、教学目标1. 让学生理解函数的单调性的概念,能够判断函数的单调性。
2. 让学生掌握导数的定义,能够计算常见函数的导数。
3. 让学生理解导数与函数单调性的关系,能够利用导数判断函数的单调性。
二、教学内容1. 函数的单调性定义:如果函数f(x)在区间I上,对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≤f(x2),则称f(x)在区间I上为增函数;如果对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≥f(x2),则称f(x)在区间I上为减函数。
2. 导数的定义定义:函数f(x)在点x处的导数定义为函数在点x处的切线斜率,记作f'(x),即f'(x) =lim┬(h→0)〖(f(x+h)-f(x))/h〗。
3. 常见函数的导数(1)常数函数f(x) = c,其导数为f'(x) = 0。
(2)幂函数f(x) = x^n,其导数为f'(x) = nx^(n-1)。
(3)指数函数f(x) = a^x,其导数为f'(x) = a^x ln(a)。
(4)对数函数f(x) = ln(x),其导数为f'(x) = 1/x。
4. 导数与函数单调性的关系(1)如果f'(x) > 0,则f(x)在区间(-∞, +∞)上为增函数。
(2)如果f'(x) < 0,则f(x)在区间(-∞, +∞)上为减函数。
(3)如果f'(x) = 0,则f(x)可能在某点处改变单调性。
三、教学方法1. 采用讲解法,讲解函数的单调性和导数的定义及计算方法。
2. 采用案例分析法,分析导数与函数单调性的关系。
3. 采用练习法,让学生通过练习巩固所学知识。
四、教学步骤1. 导入:回顾函数的概念,引导学生思考函数的单调性。
2. 讲解:讲解函数的单调性的定义,并通过实例演示如何判断函数的单调性。
3. 讲解:引入导数的定义,讲解常见函数的导数计算方法。
数学《函数单调性与导数》教案
![数学《函数单调性与导数》教案](https://img.taocdn.com/s3/m/6439c5b285868762caaedd3383c4bb4cf7ecb72a.png)
数学《函数单调性与导数》教案教学目标:1. 知道函数单调性的定义,掌握判断单调性的方法。
2. 知道导数的定义,掌握求导的方法。
3. 熟练掌握函数单调性与导数的关系,能够应用相关知识解决实际问题。
教学重点:1. 函数单调性与导数的概念及其关系。
2. 求导数的方法和技巧。
3. 应用函数单调性和导数解决实际问题。
教学难点:1. 求高阶导数,各种复杂函数的单调性判断。
2. 应用函数单调性与导数解决实际问题。
教学方法:1. 讲授法:讲解相关知识点,示范演示,点拨解释。
2. 实验法:以具体例子演示如何判断函数的单调性。
3. 问题解决法:提供丰富的例题及作业,引导学生自主思考,解决问题。
教学过程设计:Part 1:函数单调性的引入1. 通过一个具体的例子引入函数单调性的概念,让学生理解函数单调性的含义。
2. 介绍单调递增和单调递减的概念,以及如何判断一个函数的单调性。
3. 引导学生思考,研究不同类型函数单调性的特点和判断方法。
Part 2:导数的定义和求导方法1. 导数的概念:定义导数,解释导数的几何意义和物理意义。
2. 求导方法:讲解求导过程,引导学生掌握基本的求导技巧。
3. 常用函数的导数:讲解常用函数的导数公式,让学生记忆。
Part 3:函数单调性与导数1. 函数单调性与导数的关系:引导学生研究函数单调性与导数之间的关系。
2. 求解函数单调性:利用导数判断函数单调性,让学生掌握方法。
3. 应用导数求解实际问题:让学生通过实际问题应用导数,求解函数单调性问题。
Part 4:案例分析1. 给出一些实际问题,让学生通过函数单调性和导数的方法求解。
2. 分组讨论,展示各自的解题思路和方法,互相学习。
Part 5:练习与总结1. 提供一些例题给学生练习,巩固所学知识。
2. 学生自己整理笔记,总结函数单调性与导数的概念及其应用教具准备:1. 教师演示用的白板或黑板、彩色粉笔或白板笔。
2. 学生实验用的计算器。
3. 相关练习题和例题。
函数的单调性与导数(教学设计)
![函数的单调性与导数(教学设计)](https://img.taocdn.com/s3/m/03b40a88fc0a79563c1ec5da50e2524de518d0fa.png)
函数的单调性与导数(教学设计)教学设计:函数的单调性与导数本节课的主要内容是函数的单调性与导数。
在研究本节课之前,学生已经研究了导数、函数及函数单调性等概念,对导数的几何意义与函数单调性有了一定的感性和理性的认识。
函数的单调性是高中数学中极为重要的一个知识点。
在以前的研究中,学生已经研究了如何利用函数单调性的定义和函数的图像来研究函数的单调性。
而在研究了导数之后,学生可以利用导数来研究函数的单调性,这是导数在研究处理函数性质问题中的一个重要应用。
学好本课时的知识对接下来要研究利用导数研究函数的极值奠定知识基础,因此,研究本节内容具有承上启下的作用。
在本节课之前,学生已经研究了导数的概念、导数的几何意义和导数的四则运算,研究了用导数求曲线的切线方程。
因此,本节课应着重让学生通过探究来研究利用导数判定函数的单调性。
本节课的教学目标包括以下几点:1.知识与能力:1) 理解函数单调性与导数的关系:函数f(x)在区间(a,b)内可导,若f'(x)>0,则f(x)在区间(a,b)内单调递增;若f'(x)<0,则f(x)在区间(a,b)内单调递减。
2) 探究函数的单调性与导数的关系,利用导数与函数单调性的关系求函数的单调区间、画函数的简单图像。
2.过程与方法:通过利用导数研究单调性问题的研究过程,引导学生养成自主研究的研究惯,体会知识的类比迁移,体会从特殊到一般的、数形结合的研究方法。
3.情感态度与价值观:1) 通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,认识到数学是一个有机整体。
2) 通过导数研究单调性,使学生知道用导数判断函数的单调性比用单调性的定义更容易,知道导数作为研究函数的工具的实用价值。
本节课的教学重点是利用导数判断函数的单调性,并求函数的单调区间。
教学难点在于如何将导数与函数的单调性联系起来。
本节课的教学方法为启发引导式,课时安排为1课时。
教学准备包括多媒体平台和课件。
函数的单调性与导数教案
![函数的单调性与导数教案](https://img.taocdn.com/s3/m/a542114ddaef5ef7bb0d3c8a.png)
函数的单调性与导数教案函数的单调性与导数教案一、目标知识与技能:了解可导函数的单调性与其导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。
过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、重点难点教学重点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间教学难点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间三、教学过程:函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.四、学情分析我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。
需要教师指导并借助动画给予直观的认识。
五、教学方法发现式、启发式新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
提问1.判断函数的单调性有哪些方法?(引导学生回答“定义法”,“图象法”。
)2.比如,要判断y=x2的单调性,如何进行?(引导学生回顾分别用定义法、图象法完成。
)3.还有没有其它方法?如果遇到函数:y=x3-3x判断单调性呢?(让学生短时间内尝试完成,结果发现:用“定义法”,作差后判断差的符号麻烦;用“图象法”,图象很难画出来。
)4.有没有捷径?(学生疑惑,由此引出课题)这就要用到咱们今天要学的导数法。
以问题形式复习相关的旧知识,同时引出新问题:三次函数判断单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。
函数单调性与导数教案
![函数单调性与导数教案](https://img.taocdn.com/s3/m/07fc48a983d049649a66581f.png)
一、教材分析1.教材背景“函数的单调性和导数”这节新知在教材是选修2—1,本节计划两个课时完成。
首先明确考纲的要求了解函数的单调性和导数的关系;能利用导数研究函数的单调性;会求函数的单调区间(其中多项式函数一般不超过三次)。
在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。
其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。
激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。
2.本课的地位和作用本节课的主要教学内容是导数在研究函数中的应用(1)—函数的单调性与导数。
在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。
例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。
培养学生数形结合思想、转化思想、分类讨论的数学思想。
二、重难点分析根据新课程标准及对教材的分析,确定本节课重难点如下:教学重点:利用导数研究函数的单调性、求函数的单调区间。
探求含参数函数的单调性的问题。
三、目标分析(一)知识与技能目标:1、能探索并应用函数的单调性与导数的关系求单调区间;2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。
(二)过程与方法目标:1、通过本节的学习,掌握用导数研究函数单调性的方法。
2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。
(三)情感、态度与价值观目标:1、通过在教学过程中让学生多动手、多观察、勤思考、善总结,2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。
四、学情分析学生经过复习对基本初等函数掌握较扎实,前面复习了函数的单调性的基本概念,判断方法、导数的概念,以及导数的计算,为综合应用导数与函数单调性作好充分的准备。
高中数学-函数的单调性与导数教学设计学情分析教材分析课后反思
![高中数学-函数的单调性与导数教学设计学情分析教材分析课后反思](https://img.taocdn.com/s3/m/19520083caaedd3382c4d3b3.png)
《函数的单调性与导数》教学设汁【教学目标】知识与技能:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求函数的单调区间过程与方法:i.通过本巧的学习,掌握用导数研究单调性的方法2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想、分类讨论思想。
情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。
【教学的重点和难点】教学重点:探索并应用函数的单调性与导数的关系求单调区间。
教学难点:探索函数的单调性与导数的关系。
性问题.内容讲授例题讲解例1 : 求函数f(x) = x3-3x2的单调区间,并画出函数的大致图像.分析:根据上面结论,我们知道函数的单调性与函数导数的符号有关。
因此,可以通过分析导数的符号求出函数的单调区间.解:引导学生回答问题并同时板书.根据单调性的结论画出函数的图像.学生思考回答思路.学生利用导数知识解决函数的单调性问题.明确利用导数是求函数单调区间的最简单的方法.加深对单调性的理解,体会数形结合的思想.加强学生对利用导数求函数单调性的方法进一步熟练掌握,特别是单调区间满足在定义域内.学生总结并回答问题加深记忆.练习1求函数/(x ) = — lnx 的单调区间.函数的导数值大 于零时,其函数为 单调递增;函数的 导数值小于零时, 其函数为单调递 从函数的单调性 和导数的正负关 系的讨论环节中, 不断的比较了函 数和导函数的图 像,因此设置该 题,从熟悉的函数 到该题,题LI 更容 易解决.1求定义域;2求函数/(X )的导数, 3讨论单调区间,解不等式 广(力>°,解集为增区间;4解不等式广(切<°,解集为减区间.山学生共同回答.例2函数图像如下图,导函数图像可能为哪'一木讨论函数单调性的一般步骤 是什么教师根据一个学 生的作图进行讲 解.学生对所学知识 进一步巩固和熟 练掌握.【板书设计】参与课堂的学生为高二年级理科的学生,学生基础参差不齐,差别较大,而单调性的槪念是在髙一第一学期学过的,因此对于单调性槪念的理解不够准确,同时导数是髙中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点.在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表而上•本节课应着重让学生通过探究来研究利用导数判左函数的单调性.效果分析本节课教师运用了多种教学手段,创设了丰富的教学情境,成功的激发了学生的学习兴趣:教学目标简明扼要,便于实施,注重数学思想、能力的培养,广度和深度都符合数学课程标准的要求,符合学生的实际情况。
利用导数研究函数的单调性教案
![利用导数研究函数的单调性教案](https://img.taocdn.com/s3/m/2e321f5e6ad97f192279168884868762caaebbd0.png)
利用导数研究函数的单调性教案教案:利用导数研究函数的单调性一、教学目标1.了解函数的单调性概念,以及单调递增和单调递减的定义;2.掌握利用导数研究函数的单调性的方法;3.能够通过导数的正负性分析函数的单调区间,并作出相应的图像。
二、教学准备1.教师准备:书本、黑板、白板、彩色粉笔、计算器、实例练习题;2.学生准备:笔记本、课本。
三、教学过程1.引入导入(10分钟)导师通过提问等方式,引导学生回顾函数的增减性、最值点等概念,为接下来的学习做铺垫。
2.学习讲解(25分钟)1)导师先通过实例展示导数与函数单调性之间的关系,比如分别给出函数f(x)=x^2和函数g(x)=-x^2的导数,并解释导数大于零时函数单调递增,导数小于零时函数单调递减。
2)导师详细讲解如何利用导数分析函数的单调性:首先,对函数f(x)求导,得到它的导函数f'(x);其次,求出f'(x)的零点,即导数为零的点。
这些点将把函数f(x)的定义域划分为若干个开区间;然后,对每个开区间分别求取f'(x)的正负性,从而得到导数f'(x)在各开区间的取值范围;最后,结合导数f'(x)的正负性来分析函数f(x)的单调性。
3.实例训练(35分钟)导师通过多个实例进行讲解和学生训练,帮助学生熟悉和掌握利用导数研究函数单调性的方法。
4.小结提问(10分钟)导师通过提问进行小结,确保学生对函数的单调性及利用导数分析函数单调性的方法有一个深入的理解。
五、作业布置给定函数f(x)=2x^3+3x^2-12x+1,设置一个问题,让学生利用导数分析函数的单调性,并解决问题。
六、板书设计函数的单调性单调递增:导数大于零单调递减:导数小于零怎样利用导数研究函数的单调性?1.求导函数2.导函数的零点3.导函数的正负性导函数的正负性与函数的单调性的关系七、教学反思通过本堂课的教学,学生基本能够理解函数的单调性概念,知道如何利用导数研究函数的单调性。
函数的单调性与导数 说课稿 教案 教学设计
![函数的单调性与导数 说课稿 教案 教学设计](https://img.taocdn.com/s3/m/11a3e42e2e3f5727a5e962fd.png)
函数的单调性与导数教学目标:1.了解可导函数的单调性与其导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次.教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;教学难点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 教学过程设计(一)、情景引入,激发兴趣。
【教师引入】黑暗中,你是怎样通过远处汽车自身的灯光判断该车是上坡还是下坡的?(二)、探究新知,揭示概念探究1.问题:图1.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1) 运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.探究2.2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图1.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.猜想:导数与函数的单调性有什么联系呢?在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增; 在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减.(三)、分析归纳,抽象概括 函数的单调性与导数的关系曲线 切线斜率k >0 上升函数()y f x = ()0f x '> ? 递增()x I ∈在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增; 如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.(2)“某区间”指的是定义域的子集,研究函数单调性问题“定义域优先”. (四)、知识应用,深化理解例1.已知导函数'()f x 的下列信息: 当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增; 当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示. 例2.判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以, '22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示. 注:(3)、(4)生练课堂练习1.求下列函数的单调区间1.f (x )=2x 3-6x 2+7 2.f (x )=x1+2x3. f (x )=sin x , x ]2,0[π∈4. y=xlnx(五)、归纳小结、布置作业。
函数的单调性与导数 说课稿 教案 教学设计
![函数的单调性与导数 说课稿 教案 教学设计](https://img.taocdn.com/s3/m/968d783784868762cbaed5b1.png)
4.教学情境设计
问题
设计意图
师生活动
备注
(1)回顾函数的单调性与其导函数的正负的关系。
(1)让学生认识到判断函数的单调性,就是判断导函数的正负,
(2)让学生产生进一步学习的需求,即如何利用函数的单调性证明不等式。
组织学生复习回顾。
此问题的设计基于学生在学习了函数的单调性与其导函数的正负的关系后的复习。
迁移的基础是两个问题具有共同的特征。
(7)证明不等式
ex≥x+1
(1)使学生更进一步熟练构造函数,证明不等式的方法。
(2)体会指数函数与一次函数的交汇。
(3)体会曲线的切线。
教师引导,学生证明。引导学生认识不等式的代数特征与几何特征。
数形结合是数学中的重要方法。
(8)不等式ex≥x+1还有那些变形?它与不等式lnx≤x-1有什么内在的联系?
导数在研究函数中应用——构造函数,证明不等式
1.教学任务分析
本节课的中心任务是利用导数工具证明函数不等式,通过本节课的教学,使学生形成两方面的能力:
(1)借助函数图象,直观认识函数不等式。
(2)会构造恰当的函数,通过判断函数的单调性已及函数的极值,证明不等式。
2.教学重点、难点
构造具体的函数,利用导数工具,求函数的单调区间及极值,证明不等式。
注意对学生的个别指导
(10)归纳小结
教师引导学生从以下几个方面进行归纳小结:
(1)证明函数不等式问题,可转化为判断函数的单调性问题。
(2)构造函数,证明不等式时,一定要注意函数的定义域。
(3)研究问题的步骤--------提出问题、寻求想法、确定想法、实施操作、发现规律。
(4)数形结合的数学思想方法。
函数的单调性与导数(获奖教案
![函数的单调性与导数(获奖教案](https://img.taocdn.com/s3/m/a498579cac51f01dc281e53a580216fc710a5312.png)
函数的单调性与导数(获奖教案
一、概念介绍
1.单调性
单调性是一种函数的性质,即函数在其中一区间内的值单调增加或单调减少,不存在最大值和最小值,数学上称为函数的单调性。
函数的单调性是一种函数的微分性质,即函数在其中一区间内的值只有一个方向上有变化,也就是说,在其中一点之后,它的值只会减少或者增加,不会出现拐点的现象。
2.导数
导数是一种多元函数的微分性质,即函数在多元空间内的值只有一个方向上有变化,若函数y=f(x)的x方向的变化只影响y的变化,则可以称其为一阶导数,即为f'(x)。
一般情况下,导数也是函数的单调性,只不过是在多元空间中。
二、单调性和导数的关系
1.单调性和导数的关系
2.单调性的定理
单调性的定理是:当函数在其中一区间内的值单调增加时,其导数大于等于0;当函数在其中一区间内的值单调减少时,其导数小于等于0。
即:
若函数f(x)为单调递增的函数,则f'(x)>=0;
若函数f(x)为单调递减的函数,则f'(x)<=0。
从定义来看,单调性可以用导数的正负性来判定,如果函数的导数的正负性是一致的。
函数的单调性与导数(说课)
![函数的单调性与导数(说课)](https://img.taocdn.com/s3/m/7bcf6e4fcd1755270722192e453610661ed95a2b.png)
05 课程总结
本节课的收获
01
理解了函数的单调性与导数的关系
通过本节课的学习,学生们能够理解函数的单调性与其导数之间的关系,
掌握利用导数判断函数单调性的方法。
02
掌握了求导的基本法则
学生们学会了使用求导的基本法则,如链式法则、乘积法则、商的求导
法则等,能够熟练地求出函数的导数。
03
增强了数学思维能力
04 导数与函数的单调性
导数与单调性的关系
01
02
03
导数大于零
函数在该区间内单调递增。
导数小于零
函数在该区间内单调递减。
导数等于零
函数可能存在拐点或极值 点。
单调性判定定理的应用
判断函数单调性
通过求导数并分析导数的 正负来判断函数的单调性。
确定极值点
通过导数为零的点来确定 可能的极值点,并结合单 调性判断是否为极值点。
通过本节课的学习,学生们不仅掌握了相关的数学知识,更重要的是培
养了他们的数学思维能力,如逻辑推理、抽象思维和归纳演绎等。
课程中的不足与改进
部分学生对于求导法则的运用还不够熟练
在练习过程中,发现部分学生对于求导法则的运用还不够熟练,需要在课后加强练习和巩固。
部分学生对单调性与导数的关系理解不够深入
在讨论单调性与导数的关系时,发现部分学生对其理解不够深入,需要在后续课程中加强这方面的讲解和练习。
详细描述
基本初等函数的导数公式包括指数函数、对数函数、幂函数、三角函数和反三 角函数的导数。复合函数的导数法则涉及到内外函数的导数计算,以及链式法 则的应用。
导数的几何意义
总结词
导数的几何意义是函数图像在某一点处的切线斜率。
函数的单调性与导数教案第二课时
![函数的单调性与导数教案第二课时](https://img.taocdn.com/s3/m/93dc938631b765ce040814c9.png)
《函数的单调性与导数》教案第二课时一、教学目标了解可导函数的单调性与其导数的关系.掌握利用导数判断函数单调性的方法.二、教学重点利用导数判断一个函数在其定义区间内的单调性.教学难点:判断复合函数的单调区间及应用;利用导数的符号判断函数的单调性.三、教学过程(一)复习1.确定下列函数的单调区间:(1)y =x 3-9x 2+24x ;(2)y =x -x 3.(3)f (x )=2x 3-9x 2+12x -32.讨论二次函数y =ax 2+bx +c (a >0)的单调区间.3.在区间(a , b )内f'(x )>0是f (x )在(a , b )内单调递增的 ( A )A .充分而不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件(二)举例例1.求下列函数的单调区间(1) f (x )=x -ln x (x >0);(2)(3) .(4)(b>0)(5)判断的单调性.分三种方法:(定义法)(复合函数)(导数) 例2.(1)求函数的单调减区间.(2)讨论函数的单调性. )253log()(2-+=x x x f 32)1)(12(x x y --=)3ln()(b x x f -=)lg()(2x x x f -=3223211()32y x a a x a x a =-+++2()(11,0)1bx f x x b x =-<<≠-(3)设函数f (x ) = ax – (a + 1) ln (x + 1),其中a ≥–1,求f (x )的单调区间.(1)解:y ′ = x 2 – (a + a 2) x + a 3 = (x – a ) (x – a 2),令y ′<0得(x – a ) (x – a 2)<0.(1)当a <0时,不等式解集为a <x <a 2此时函数的单调减区间为(a , a 2);(2)当0<a <1时,不等式解集为a 2<x <a 此时函数的单调减区间为(a 2, a );(3)当a >1时,不等式解集为a <x <a 2此时函数的单调减区间为(a , a 2);(4)a = 0,a = 1时,y ′≥0此时,无减区间.综上所述:当a <0或a >1时的函数的单调减区间为(a , a 2); 当0<a <1时的函数的单调减区间为(a 2, a ); 当a = 0,a = 1时,无减区间.(2)解:∵,∴f (x )在定义域上是奇函数. 在这里,只需讨论f (x )在(0, 1)上的单调性即可.当0<x <1时,f ′ (x ) ==. 若b >0,则有f ′ (x )<0,∴函数f (x )在(0, 1)上是单调递减的; 若b <0,则有f ′ (x )>0,∴函数f (x )在(0, 1)上是单调递增的. 由于奇函数在对称的两个区间上有相同的单调性,从而有如下结论: 当b >0时,函数f (x )在(–1, 1)上是单调递减的;当b <0时,函数f (x )在(–1, 1)上是单调递增的.(3)解:由已知得函数f (x )的定义域为 (–1, +∞),且(a ≥–1). (1)当–1≤a ≤0时,f ′ (x )<0,函f (x )在(–1, +∞)上单调递减.(2)当a >0时,由f ′ (x ) = 0,解得.f ′ (x )、f (x )随x 的变化情况如下表:3223211()32y x a a x a x a =-+++3223211()32y x a a x a x a =-+++22()()()11bx bx f x f x x x --==-=----2222222221(1)21()1(1)(1)x x x x x x b b b x x x '-----'==---2221(1)x b x +--1()1ax f x x -'=+从上表可知, 当x ∈时,f ′ (x )<0,函数f (x )在上单调递减. 当x ∈时,f ′(x )>0,函数f (x )在上单调递增. 综上所述,当–1≤a ≤0时,函数f (x )在(–1, +∞)上单调递减; 当a >0时,函数f (x )在上单调递减,函数f (x )在上单调递增.1(1,)a -1(1,)a -1(,)a +∞1(,)a +∞1(1,)a -1(,)a +∞。
【数学】3.3.1《函数的单调性和导数》教案(新人教A版选修1-1)
![【数学】3.3.1《函数的单调性和导数》教案(新人教A版选修1-1)](https://img.taocdn.com/s3/m/abb18b186bd97f192279e9b9.png)
§3.3.1函数的单调性与导数【成功细节】严俏华谈导数的计算的方法本节主要是用函数的导数研究函数的单调性,学习过程中要深刻理解相关的结论以及方法,要学好本节内容,我认为应注意以下几个细节入手:(1)函数在某点处的单调性与该点处的切线的斜率(即函数在该点处的导数值)的符号相关;若导数值大于零,则函数在此处为增函数;(2)若函数在某个闭区间上的导数值恒为零,则该函数为常数函数;(3)在求函数的单调区间时,可直接解关于导数的不等式;(4)深刻理解函数的单调性与函数的导数之间的关系,包括连个方面:导数的符号说明函数的单调性,某区间内,导数值为正,则函数为增函数;导数绝对值得大小反映了函数图象的变化速度,绝对值越大,函数图象越陡峭。
如 这个题主要考查导数的基本运算以及应用导数解决函数的单调性,是一个简单题,可直接求解即可.1()ln ln 1f x x x x x'=+⨯=+,令()0f x '>可解得1x e>,所以函数的单调递增区间是1(,)e +∞.【高效预习】(核心栏目)“要养成学生阅读书籍的习惯就非教他们预习不可”。
——叶圣陶【精读·细化】1.用10分钟的时间阅读教材89~91页, 函数的单调性与导函数正负之间有怎样关系?某个区间内函数的平均变化率的几何意义与导数之间的联系呢?如果在某个区间恒有()f x '=0,那么函数有什么特征?细节提示:把握住单调性定义中y 的变化量与x 的变化量的比值与导数的定义之间的关系。
【提升·解决】1.在某个开区间内,导数值大于零,则函数在这个区间内单调递增,导数值小于零,则函数在这个区间内单调递减;若函数在某个区间内恒有导数值等于零,则函数为常数函数.【关注·思考】2.阅读课本92~93页,理解函数变化的快慢程度与函数导数值的绝对值的大小之间的关系.细节提示:函数图象,不仅体现函数的增减,还可以体现函数值变化的快慢.【提炼·发现】2.函数导数的绝对值较大,则函数在这个范围内变化得快,函数的图象就比较“陡峭”,反之就“平缓”一些.(2007年广东 文12)函数()ln (0)f x x x x =>的单调递增区间是____. 2007年广东省文科状元严俏华【学习细节】(核心栏目)A .基础知识导数的应用知识点1 函数的单调性与导数之间的关系【情景引入】函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系吗?【思考】 如图(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.86.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?【引导】 随着时间的变化,运动员离水面的【探究】通过观察图像,我们可以发现:(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.【思考】 导数的几何意义是函数在该点处的切线的斜率,函数图象上每个点处的切线的斜率都是变化的,那么函数的单调性与导数有什么关系呢? 【引导】可先分析函数的单调性与导数的符号之间的关系.【探究】函数的单调性可简单的认为是:若2121()()f f x x xx-->0则函数f(x)为增函数.可把2121()()f f x x x x--看作y x∆∆=2121()()f f x x x x--.说明函数的变化率可以反映函数的单调性.即函数的导数与函数的单调性有着密切的联系.观察下面函数的图象,探讨函数的单调性与其导数正负的关系.(1)函数y x =的定义域为R ,并且在定义域上是增函数,其导数10y '=>; (2)函数2y x =的定义域为R ,在(,0)-∞上单调递减,在(0,)+∞上单调递增; 而2()2y x x ''==,当0x <时,0y '<;当0x >时,0y '>;当0x =时,0y '=。
函数的单调性与导数教案
![函数的单调性与导数教案](https://img.taocdn.com/s3/m/870ed379dc36a32d7375a417866fb84ae55cc358.png)
函数的单调性与导数教案一、教学目标1. 理解函数单调性的概念,能够判断函数的单调性。
2. 掌握导数的定义和计算方法,能够运用导数判断函数的单调性。
3. 能够运用函数的单调性和导数解决实际问题。
二、教学内容1. 函数单调性的定义和判断方法。
2. 导数的定义和计算方法。
3. 运用导数判断函数的单调性。
4. 实际问题中的应用。
三、教学重点与难点1. 函数单调性的判断方法。
2. 导数的计算方法。
3. 运用函数的单调性和导数解决实际问题。
四、教学方法与手段1. 采用讲授法,讲解函数单调性和导数的定义及计算方法。
2. 利用多媒体演示函数的单调性和导数的应用。
3. 引导学生通过小组讨论和练习,巩固所学知识。
五、教学过程1. 引入:通过举例说明函数的单调性,引导学生思考如何判断函数的单调性。
2. 讲解:讲解函数单调性的定义和判断方法,引导学生理解并掌握。
3. 练习:布置练习题,让学生独立完成,巩固对函数单调性的理解。
4. 引入:讲解导数的定义和计算方法,引导学生理解并掌握。
5. 练习:布置练习题,让学生独立完成,巩固对导数的理解。
6. 讲解:讲解如何运用导数判断函数的单调性,引导学生理解并掌握。
7. 练习:布置练习题,让学生独立完成,巩固对导数判断函数单调性的理解。
8. 应用:讲解如何运用函数的单调性和导数解决实际问题,引导学生思考并实践。
9. 练习:布置综合练习题,让学生独立完成,巩固对函数单调性和导数的应用。
10. 总结:对本节课的内容进行总结,强调重点和难点,提醒学生加强练习。
教学反思:在教学过程中,要注意引导学生理解函数单调性和导数的概念,并通过练习题让学生巩固所学知识。
要关注学生的学习情况,及时解答学生的疑问,提高教学效果。
在实际问题中的应用环节,要引导学生将所学知识与实际相结合,提高学生的应用能力。
六、教学评价1. 评价目标:通过评价学生对函数单调性和导数的理解,以及运用导数判断函数单调性的能力。
2. 评价方法:a) 课堂练习:观察学生在课堂练习中的表现,判断其对函数单调性和导数的理解和运用能力。
函数单调性与导数教案
![函数单调性与导数教案](https://img.taocdn.com/s3/m/b321fc0bf11dc281e53a580216fc700aba685203.png)
函数单调性与导数教案一、教学目标:1. 让学生理解函数单调性的概念,能够判断简单函数的单调性。
2. 引导学生掌握导数的定义和计算方法,能够利用导数判断函数的单调性。
3. 培养学生运用函数单调性和导数解决实际问题的能力。
二、教学内容:1. 函数单调性的定义和判断方法。
2. 导数的定义和计算方法。
3. 利用导数判断函数的单调性。
4. 函数单调性和导数在实际问题中的应用。
三、教学重点与难点:1. 教学重点:函数单调性的判断方法,导数的计算方法,利用导数判断函数的单调性。
2. 教学难点:导数的计算方法,利用导数判断函数的单调性。
四、教学方法:1. 采用讲解法,引导学生理解函数单调性和导数的概念。
2. 采用案例分析法,让学生通过实际例子掌握函数单调性和导数的应用。
3. 采用练习法,巩固学生对函数单调性和导数的理解和掌握。
五、教学过程:1. 引入:通过生活中的例子,引导学生思考函数单调性的概念。
2. 讲解:讲解函数单调性的定义和判断方法,引导学生掌握函数单调性的基本概念。
3. 案例分析:分析实际例子,让学生通过计算导数判断函数的单调性。
4. 练习:布置练习题,让学生巩固对函数单调性和导数的理解和掌握。
5. 总结:对本节课的内容进行总结,强调函数单调性和导数在实际问题中的应用。
6. 作业布置:布置课后作业,让学生进一步巩固对本节课内容的理解和掌握。
六、教学评估:1. 通过课堂提问,检查学生对函数单调性和导数概念的理解程度。
2. 通过课堂练习,评估学生对函数单调性和导数计算方法的掌握情况。
3. 通过课后作业,评估学生对函数单调性和导数应用能力的掌握。
七、教学拓展:1. 探讨函数单调性与导数在实际问题中的应用,如经济领域、物理领域等。
2. 引入更复杂的函数单调性和导数问题,如多变量函数的单调性、隐函数的导数等。
八、教学资源:1. 教学PPT:展示函数单调性和导数的定义、判断方法、计算示例等。
2. 练习题库:提供丰富的练习题,帮助学生巩固函数单调性和导数知识。
函数的单调性与导数教学设计
![函数的单调性与导数教学设计](https://img.taocdn.com/s3/m/177bd53758fafab069dc02bb.png)
《函数的单调性与导数》教学设计教材分析1、内容分析导数是微积分的核心概念之一,是高中数学教材新增知识,在研究函数性质时有独到之处,体现了现代数学思想.本节的教学内容属导数的应用,是在学习了导数的概念、运算和几何意义的基础上学习的内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打下了基础.由于学生在高一已经掌握了函数单调性的定义,并会用定义判定函数在给定区间上的单调性.通过本节课的学习应使学生体验到,用导数判断函数的单调性比用定义要简捷的多(尤其对于三次和三次以上的多项式函数,或图像难以画出的函数而言),充分展示了导数的优越性.2、学情分析在必修一中,学生学习了单调函数的定义,并会用定义判断或证明函数在给定区间上的单调性,在前几节,学生学习了导数的概念、几何意义及运算法则,已经掌握了利用导数研究函数单调性的必备知识.用定义证明函数在给定区间的单调性的方法是作差、变形、判断符号.而对大部分函数而言,变形环节是非常繁琐,甚至是无法做到的,并且不清楚“给定区间”是如何给出的,这就要求同学们积极探索更好的方法来判断函数的单调性和探求函数的单调区间,以此来激发学生的学习兴趣.教学目标依据新课标纲要和学生已有的认知基础和本节的知识特点,我制定了以下教学目标:1、知识与技能目标:借助于函数的图象了解函数的单调性与导数的关系;培养学生的观察能力、归纳能力,增强数形结合的思维意识.2、过程与方法目标:会判断具体函数在给定区间上的单调性;会求具体函数的单调区间.3、情感、态度与价值观目标:通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯。
教学重点、难点教学重点:1、利用导数判断函数的单调性.2、会求不超过三次的多项式的单调区间。
教学难点:1、函数的单调性与导数的关系2、提高灵活应用导数法解决有关函数单调性问题的能力.教学重难点的解决方法通过问题激发学生求知欲,使学生主动参与教学实践活动,在教师的指导下发现、分析和解决问题;通过几何画板的动态演示,使抽象的知识直观化、形象化,以促进学生的理解.教法设计:1、自主探究法:让学生自己发现问题,自己归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力.2、比较法:对同一个问题,采用不同的方法,从中体会导数法的优越性.教学媒体根据本节课的教学要求及学生学习的需要,我对本节课的教学媒体设计如下1:多媒体辅助教学:制作直观,有效地多媒体课件,可以节省课堂时间,也给学生直观认识和感觉;2:投影仪的辅助教学:利用投影把学生的解题过程及方法及时展示,可以提高学生学习数学的兴趣.课型:新授课教学过程教学过程设计意图 创 设 情境 复 习 1、回顾函数单调性的定义; 2、判断函数 的单调性.解法一:单调性的定义:设x 1x 2引导学生回顾判断函数单调性的基本方法: (1)“定义法” (2)“图象法”引入则=因为x1x2,,当时;当时所以函数在区间上单调递减,在区间上单调递增解法二:图像法探求新知形成概念问题:如何确定函数f(x)=2x3-6x2+7的单调区间?导数的几何意义是函数在该点处的切线的斜率,函数图象上每个点处的切线的斜率都是变化的,那么能否用导数来研究函数的单调性呢?前面我们用定义和图像已经知道二次函数的单调性及单调区间,下面我用几何画板来展示曲线上任何一点的导数的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性与导数教案
一、目标
知识与技能:了解可导函数的单调性与其导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。
过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、重点难点
教学重点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间
教学难点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间
三、教学过程:
函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.
四、学情分析
我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。
需要教师指导并借助动画给予直观的认识。
五、教学方法
发现式、启发式
新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:
1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
提问
1.判断函数的单调性有哪些方法?
(引导学生回答“定义法”,“图象法”。
)
2.比如,要判断y=x2的单调性,如
何进行?(引导学生回顾分别用定义法、图象法完成。
)
3.还有没有其它方法?如果遇到函数:
y=x3-3x判断单调性呢?(让学生短时
间内尝试完成,结果发现:用“定义法”,
作差后判断差的符号麻烦;用“图象法”,图象很难画出来。
) 4.有没有捷径?(学生疑惑,由此引出课题)这就要用到咱们今天要学的导数法。
以问题形式复习相关的旧知识,同时引出新问题:三次函数判断单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。
(二)情景导入、展示目标。
设计意图:步步导入,吸引学生的注意力,明确学习目标。
(探索函数的单调性和导数的关系)问:函数的单调性和导数有何关系呢?
教师仍以y=x2为例,借助几何画板动态演示,让学生记录结果在课前发的表格第二行中:
函数及图象单调性切线斜率k的正负导数的正负
问:有何发现?(学生回答)
问:这个结果是否具有一般性呢?
(三)合作探究、精讲点拨。
我们来考察两个一般性的例子:
(教师指导学生动手实验:把准备的牙签放在表中曲线y=f(x)的图象上,作为曲线的切线,移动切线并记录结果在上表第三、四行中。
)
问:能否得出什么规律?
让学生归纳总结,教师简单板书:
在某个区间(a,b)内,
若f'(x)>0,则f(x)在(a,b)上是增函数;
若f'(x)<0,则在f(x)(a,b)上是减函数。
教师说明:
要正确理解“某个区间”的含义,它必需是定义域内的某个区间。
1.这一部分是后面利用导数求函数单调区间的理论依据,重要性不言而喻,而学生又只学习了导数的意义和一些基本运算,要想得到严格的证明是不现实的,因此,只要求学生能借助几何直观得出结论,这与新课标中的要求是相吻合的。
2.教师对具体例子进行动态演示,学生对一般情况进行实验验证。
由观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体。
3.得出结论后,教师强调正确理解“某个区间”的含义,它必需是定义域内的某个区间。
这一点将在例1的变式3具体体现。
4.考虑到本节课堂容量较大,这里没有提到函数在个别点处导数为零不影响单调性的情况(如y=x3在x=0处),这一问题将在后
续课程中给学生补充。
应用导数求函数的单调区间
例1.求函数y=x2-3x的单调区间。
(引导学生得出解题思路:求导→
令f'(x)>0,得函数单调递增区间,令f'(x)<0,得函数单调递减区间→下结论)
变式1:求函数y=3x3-3x2的单调区间。
(竞赛活动:将全班同学分成两大组指定分别用单调性的定义,和用求导数的方法解答,每组各推荐一位同学的答案进行投影。
)求单调区间是导数的一个重要应用,也是本节重点,为此,设计了例1及三个变式:
设计例1可引导学生得出用导数法求单调区间的解题步骤
设计变式1及竞赛活动可以激发学生的学习热情,让他们学会比较,并深刻体验导数法的优越性。
巩固提高
变式2:求函数y=3ex-3x单调区间。
(学生上黑板解答)
变式3:求函数的单调区间。
设计变式2且让学生上黑板解答可以规范解题格式,同时使学生了解用导数法可以求更复杂的函数的单调区间。
设计变式3是可使学生体会考虑定义域的必要性
例1及三个变式,依次涉及二次,三次函数,含指数的函数、反比例函数,这样一题多变,逐步深化,从而让学生领会:如何应用及哪类单调性问题该应用“导数法”解决。
多媒体展示探究思考题。
在学生分组实验的过程中教师巡回观察指导。
(课堂实录),
(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。
(课堂实录)
(五)发导学案、布置预习。
设计意图:布置下节课的预习作业,并对本节课巩固提高。
教师课后及时批阅本节的延伸拓展训练。
九、板书设计
例1.求函数y=3x2-3x的单调区间。
变式1:求函数y=3x3-3x2的单调区间。
变式2:求函数y=3ex-3x单调区间。
变式3:求函数的单调区间。
十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。
课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!。