2010年小满镇中心学校八年级数学第二学期期中考试试卷

合集下载

2010学年度第二学期初二数学期中试卷

2010学年度第二学期初二数学期中试卷

(第8题图)2010学年度第二学期初二数学期中试卷(答卷时间90分钟,满分100分) 2011.4一、选择题:(本大题共4题,每题3分,满分12分)1、下列函数关系中表示一次函数的有………………………………………………( )①12+=x y ②xy 1=③ 21+=x y ④t s 60= ⑤x y 25100-= (A )1个 (B )2个 (C )3个 (D )4个2、若函数4-=kx y ,y 随x 增大而减小的图像大致是…………………………( )3、下列方程中,有实数解的是……………………………………………………( ) (A )0236=+x (B )55-=-x x (C )012=+-x (D )222-=-x x x 4、若多边形的每一个内角都等于150°,则从此多边形一个顶点引出的对角线有( ) (A)7条 (B)8条 (C)9条 (D)10条 二、填空题(本大题共15题,每题2分,满分30分) 5、直线x y 23-=在y 轴上的截距是6、已知函数32+-=x y ,当x 时,该图像在x 轴的上方。

7、若点P (,2-m )、点Q (2,n )是直线b x m y ++=)1(2(b 为常数)上的两点,则n m ,大小关系是8、如图,直线y ax b =+经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 9、方程08133=+x 的根是 10、方程25=-x 的根是11、如果分式4162--x x 的值是0,则=x学校 班级 学 姓名 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------C12、方程组⎩⎨⎧==+158xy y x 的解是13、将二次方程44422=+-y xy x 化成两个一次方程是 和 14、若方程11-=-m x 没有实数根,则m 的取值范围是15、某企业的年产值从2006年的2亿元增长到2009年的7亿元,如果这三年的年平均增长率相同,均为x ,那么可以列出方程为 .16、用换元法解分式方程3)1(2122=+++x x x x 时,如果设y x x =+12,那么原方程化为整式方程为17、使分式方程9292-=--x k x x 产生增根的k 的值是 18、如果一个多边形的内角和为01440,那么这个多边形的边数是19、已知□ABCD 的对角线AC 与BD 相交于点O ,这个平行四边形的周长是16,且AOB ∆的周长比BOC ∆的周长小2,则边=AB ,=BC 三、(本大题共6题,每题6分,满分36分)20、解关于x 的方程:x x m 21)1(-=- 21、解方程:311922-+=-x x x22、解方程:42=--x x 23、解方程组:⎩⎨⎧=--=--020122y xy x y x24、一个多边形的内角和与外角和的差是︒1080,求这个多边形的边数.25、某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜2元,结果比用原价多买了5瓶,求原价每瓶多少元? 四、(本大题共2题,每题7分,满分14分) 26、在直角坐标平面XOY 中,直线1l 经过点)5,1(和点)1,2(--,将直线1l 向下平移4个单位,得到直线2l 。

八年级下学期期中考试数学试题(含答案)

八年级下学期期中考试数学试题(含答案)

八年级下学期期中考试数学试题(含答案)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式不是分式的是()A.B.C.D.2.(3分)函数y=自变量的取值范围是()A.x≥﹣3B.x<3C.x≤﹣3D.x≤3 3.(3分)在平面直角坐标系中,点(a2+1,﹣1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.5.(3分)平行四边形具有的特征是()A.四个角都是直角B.对角线相等C.对角线互相平分D.四边相等6.(3分)如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD ,BC 于点E ,F ,连接AF ,若△ABF 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .247.(3分)已知a =2﹣2,b =(π﹣2)0,c =(﹣1)3,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a8.(3分)在同一坐标系中(水平方向是x 轴),函数y =和y =kx +3的图象大致是( )A .B .C .D .9.(3分)如图,已知双曲线y =(k <0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(﹣8,4),则△AOC 的面积为( )A .6B .12C .18D .2410.(3分)观察下列等式:a 1=n ,a 2=1﹣,a 3=1﹣,…;根据其蕴含的规律可得( )A .a 2013=nB .a 2013=C .a 2013=D .a 2013=二、填空题(共6小题,每小题3分,满分18分)11.(3分)甲型H 1N 1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为.12.(3分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=.13.(3分)如图,已知▱ABCD中,∠B=50°,依据尺规作图的痕迹,则∠DAE=.14.(3分)将直线y=2x﹣3平移,使之经过点(1,4),则平移后的直线解析式是.15.(3分)若关于x的方程=6+有增根,则m=.16.(3分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.三、解答题(共9小题,满分0分)17.计算:|﹣5|+(π﹣3.1)0﹣()﹣1+.18.先化简,再求值.,其中a=2.19.解方程=+2.20.为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?21.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:△ACE≌△DBF;(2)求证:四边形BFCE是平行四边形.22.阅读下列解题过程,然后解题:题目:已知(a、b、c互不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a),∴x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,∴x+y+z=0.依照上述方法解答下列问题:已知:,其中x+y+z≠0,求的值.23.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1)(1)求一次函数与反比例函数的解析式;(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.24.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)25.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.2017-2018学年福建省泉州五中八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式不是分式的是()A.B.C.D.【分析】根据分式的定义即可求出答案.【解答】解:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子就叫做分式,故选:C.【点评】本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.2.(3分)函数y=自变量的取值范围是()A.x≥﹣3B.x<3C.x≤﹣3D.x≤3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由y=,得3﹣x<0,解得x<3,故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3.(3分)在平面直角坐标系中,点(a2+1,﹣1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平方数非负数的性质判断出点的横坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵a2≥0,∴a2+1≥1,∴点(a2+1,﹣1)一定在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5.(3分)平行四边形具有的特征是()A.四个角都是直角B.对角线相等C.对角线互相平分D.四边相等【分析】根据平行四边形的性质即可判断.【解答】解:平行四边形的对角线互相平分.故选:C.【点评】本题考查平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考常考题型.6.(3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD,BC于点E,F,连接AF,若△ABF的周长为6,则▱ABCD的周长为()A.6B.12C.18D.24【分析】根据线段垂直平分线的性质可得AF=FC,那么由△ABF的周长为6可得AB+BC =6,再根据平行四边形的性质可得AD=BC,DC=AB,进而可得答案.【解答】解:∵对角线AC的垂直平分线分别交AD,BC于点E,F,∴AF=CF,∵△ABF的周长为6,∴AB+BF+AF=AB+BF+CF=AB+BC=6.∵四边形ABCD是平行四边形,∴AD=BC,DC=AB,∴▱ABCD的周长为2(AB+BC)=12.故选:B.【点评】此题主要考查了平行四边形的性质和线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等,平行四边形对边相等.7.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【分析】将各数化简后即可比较大小.【解答】解:由题可知:a =,b =1,c =﹣1∴b >a >c ,故选:B .【点评】本题考查零指数幂以及负整数指数幂的意义,解题的关键是正确理解零指数幂以及负整数指数幂的意义,本题属于基础题型.8.(3分)在同一坐标系中(水平方向是x 轴),函数y =和y =kx +3的图象大致是( )A .B .C .D .【分析】根据一次函数及反比例函数的图象与系数的关系作答.【解答】解:A 、由函数y =的图象可知k >0与y =kx +3的图象k >0一致,故A 选项正确;B 、因为y =kx +3的图象交y 轴于正半轴,故B 选项错误;C 、因为y =kx +3的图象交y 轴于正半轴,故C 选项错误;D 、由函数y =的图象可知k >0与y =kx +3的图象k <0矛盾,故D 选项错误. 故选:A .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.9.(3分)如图,已知双曲线y =(k <0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(﹣8,4),则△AOC 的面积为( )A.6B.12C.18D.24【分析】由点D为线段OA的中点可得出D点的坐标,将点D的坐标代入双曲线解析式中解出k值,即可得出双曲线的解析式,再令x=﹣8可得点C的坐标,根据边与边的关系结合三角形的面积公式即可得出结论.【解答】解:∵点D为线段OA的中点,且点A的坐标为(﹣8,4),∴点D的坐标为(﹣4,2).将点D(﹣4,2)代入到y=(k<0)中得:2=,解得:k=﹣8.∴双曲线的解析式为y=﹣.令x=﹣8,则有y=﹣=1,即点C的坐标为(﹣8,1).∵AB⊥BO,∴点B(﹣8,0),AC=4﹣1=3,OB=8,∴△AOC的面积S=AC•OB=×3×8=12.故选:B.【点评】本题考查了反比例函数系数k的几何意义、中点坐标公式以及三角形的面积公式,解题的关键是找出点C、D的坐标.解决该题型题目时,求出点的坐标由待定系数法求出反比例函数解析式是关键.10.(3分)观察下列等式:a1=n,a2=1﹣,a3=1﹣,…;根据其蕴含的规律可得()A.a2013=n B.a2013=C.a2013=D.a2013=【分析】归纳总结得到一般性规律,即可得到结果.【解答】解:由a1=n,得到a2=1﹣=1﹣=,a3=1﹣=1﹣=﹣=,a4=1﹣=1﹣(1﹣n)=n,以n,,为循环节依次循环,∵2013÷3=671,∴a2013=.故选:D.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为8.1×10﹣8.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 081=8.1×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=120°.【分析】利用平行四边形的邻角互补,和已知∠A﹣∠B=60°,就可建立方程求出两角.【解答】解:在平行四边形ABCD中,∠A+∠B=180°,又有∠A﹣∠B=60°,把这两个式子相加相减即可求出∠A=∠C=120°,故答案为:120°.【点评】本题考查了平行四边形的性质:邻角互补,对角相等,建立方程组求解.13.(3分)如图,已知▱ABCD中,∠B=50°,依据尺规作图的痕迹,则∠DAE=80°.【分析】依据尺规作图的痕迹,可得EF是AB的垂直平分线,根据线段垂直平分线的性质得出EA=EB,根据等边对等角得到∠EAB=∠B=50°,利用三角形内角和定理求出∠AEB=180°﹣∠EAB﹣∠B=80°,再根据平行四边形的对边平行以及平行线的性质求出∠DAE=∠AEB=80°.【解答】解:∵EF是AB的垂直平分线,∴EA=EB,∴∠EAB=∠B=50°,∴∠AEB=180°﹣∠EAB﹣∠B=80°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB=80°.故答案为80°.【点评】本题考查了平行四边形的对边平行的性质,线段垂直平分线的性质,等边对等角的性质,三角形内角和定理以及平行线的性质.求出∠AEB的度数是解题的关键.14.(3分)将直线y=2x﹣3平移,使之经过点(1,4),则平移后的直线解析式是y=2x+2.【分析】根据平移不改变k的值,可设平移后直线的解析式为y=2x+b,然后将点(1,4)代入即可得出直线的函数解析式.【解答】解:设平移后直线的解析式为y=2x+b.把(1,4)代入直线解析式得4=2×1+b,解得b=2.∴平移后直线的解析式为y=2x+2.故答案为:y=2x+2.【点评】本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y =kx+b(k≠0)平移时,k的值不变是解题的关键.15.(3分)若关于x的方程=6+有增根,则m=6.【分析】把所给方程转换为整式方程,进而把可能的增根代入求得m 的值即可.【解答】解:最简公分母为x ﹣6,当x ﹣6=0时,x =6,去分母得:x =6(x ﹣6)+m ,因为方程有增根,所以增根为x =6当x =6时,m =6,故答案为:6【点评】本题考查增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 16.(3分)如图,平面直角坐标系中,已知直线y =x 上一点P (1,1),C 为y 轴上一点,连接PC ,线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线y =x 交于点A ,且BD =2AD ,连接CD ,直线CD 与直线y =x 交于点Q ,则点Q 的坐标为 (,) .【分析】过P 作MN ⊥y 轴,交y 轴于M ,交AB 于N ,过D 作DH ⊥y 轴,交y 轴于H ,∠CMP =∠DNP =∠CPD =90°,求出∠MCP =∠DPN ,证△MCP ≌△NPD ,推出DN =PM ,PN =CM ,设AD =a ,求出DN =2a ﹣1,得出2a ﹣1=1,求出a =1,得出D 的坐标,在Rt △DNP 中,由勾股定理求出PC =PD =,在Rt △MCP 中,由勾股定理求出CM =2,得出C 的坐标,设直线CD 的解析式是y =kx +3,把D (3,2)代入求出直线CD 的解析式,解由两函数解析式组成的方程组,求出方程组的解即可.【解答】解:过P 作MN ⊥y 轴,交y 轴于M ,交AB 于N ,过D 作DH ⊥y 轴,交y 轴于H ,∠CMP =∠DNP =∠CPD =90°,∴∠MCP +∠CPM =90°,∠MPC +∠DPN =90°,∴∠MCP =∠DPN ,∵P (1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴DN=2a﹣1,则2a﹣1=1,a=1,即BD=2.∵直线y=x,∴AB=OB=3,在Rt△DNP中,由勾股定理得:PC=PD==,在Rt△MCP中,由勾股定理得:CM==2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,即方程组得:,即Q的坐标是(,),②当点C在y轴的负半轴上时,作PN⊥AD于N,交y轴于H,此时不满足BD=2AD,故答案为:(,).【点评】本题考查了用待定系数法求出一次函数的解析式,全等三角形的性质和判定,解方程组,勾股定理,旋转的性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但是有一定的难度.三、解答题(共9小题,满分0分)17.计算:|﹣5|+(π﹣3.1)0﹣()﹣1+.【分析】分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=5+1﹣2+2=6.【点评】本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、绝对值的性质是解答此题的关键.18.先化简,再求值.,其中a=2.【分析】先把除法运算转化为乘法运算以及把各分式的分子和分母因式分解得到原式=•﹣,约分后得到原式=﹣,再通分得,接着把a=2代入计算.【解答】解:原式=•﹣=﹣=,当a=2时,原式==2.【点评】本题考查了分式的化简求值:先把除法运算转化为乘法运算和把各分式的分子或分母因式分解,然后进行约分得到最简分式或整式,最后把满足条件的字母的值代入进行计算.19.解方程=+2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3+4x﹣4,移项合并得:2x=1,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.20.为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?【分析】关键描述语是:“这两个小组的每一名学生就要比原计划多做4面彩旗”.等量关系为:实际每个学生做的彩旗数﹣原来每个学生做的旗数=4.【解答】解;设每个小组有x名学生,根据题意得:,解之得x=10,经检验,x=10是原方程的解,且符合题意.答:每组有10名学生.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.21.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:△ACE≌△DBF;(2)求证:四边形BFCE是平行四边形.【分析】(1)证出AC=BD,由SAS证明△ACE≌△DBF即可;(2)由全等三角形的性质得出CE=BF,∠ACE=∠DBF,得出CE∥BF,即可得出结论.【解答】(1)证明:∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACE和△DBF中,,∴△ACE≌△DBF(SAS)).(2)证明:∵△ACE≌△DBF,∴CE=BF,∠ACE=∠DBF,∴CE∥BF,∴四边形BFCE是平行四边形.【点评】此题主要考查了平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.22.阅读下列解题过程,然后解题:题目:已知(a、b、c互不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a),∴x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,∴x+y+z=0.依照上述方法解答下列问题:已知:,其中x+y+z≠0,求的值.【分析】根据提示,先设比值为k,再利用等式列出三元一次方程组,即可求出k的值是2,然后把x+y=2z代入所求代数式.【解答】解:设===k,则:,(1)+(2)+(3)得:2x+2y+2z=k(x+y+z),∵x+y+z≠0,∴k=2,∴原式===.【点评】本题主要考查分式的基本性质,重点是设“k”法.23.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1)(1)求一次函数与反比例函数的解析式;(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.【分析】(1)利用待定系数法即可解决问题;(2)分三种情形讨论①当PA=PB时,可得(n+1)2+4=(n﹣2)2+1.②当AP=AB时,可得22+(n+1)2=(3)2.③当BP=BA时,可得12+(n﹣2)2=(3)2.分别解方程即可解决问题;【解答】解:(1)把A(﹣1,2)代入y=,得到k2=﹣2,∴反比例函数的解析式为y=﹣.∵B(m,﹣1)在y=﹣上,∴m=2,由题意,解得,∴一次函数的解析式为y=﹣x+1.(2)∵A(﹣1,2),B(2,﹣1),∴AB=3,AP2=22+(n+1)2,BP2=12+(n﹣2)2,∵△ABP为等腰三角形①当PA=PB时,(n+1)2+4=(n﹣2)2+1,∴n=0,②当AP=AB时,∴AP2=AB2,∴22+(n+1)2=(3)2,∴n=﹣1±.③当BP=BA时,∴BP2=BA2,∴12+(n﹣2)2=(3)2,∴n=2±.综上所述,P(0,0)或(﹣1+,0)或(﹣1﹣,0)或(2+,0)或(2﹣,0).【点评】本题是反比例函数综合题,主要考查了一次函数的性质、待定系数法、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.24.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)【分析】(1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;(2)根据利润=(售价﹣成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;(3)分别根据5≤x≤10和10<x≤17两个范围的最大日销售利润,对比可得结论.【解答】解:(1)当1≤x≤10时,设AB的解析式为:y=kx+b,把A(1,300),B(10,120)代入得:,解得:,∴AB:y=﹣20x+320(1≤x≤10),当10<x≤30时,同理可得BC:y=14x﹣20,综上所述,y与x之间的函数表达式为:;(2)当1≤x≤10时,w=(10﹣6)(﹣20x+320)=﹣80x+1280,当w=1040元,﹣80x+1280=1040,x=3,∵﹣80<0,∴w随x的增大而减小,∴日销售利润不超过1040元的天数:3,4,5,6,7,8,9,10,一共8天;当10<x≤30时,w=(10﹣6)(14x﹣20)=56x﹣80,56x﹣80=1040,x=20,∵56>0,∴w随x的增大而增大,∴日销售利润不超过1040元的天数:11,12,13,14,15,16,17,18,19,20,一共10天;综上所述,日销售利润不超过1040元的天数共有18天;=﹣80×5+1280=880,(3)当5≤x≤10时,当x=5时,w大=56×17﹣80=872,当10<x≤17时,当x=17时,w大∴若5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.【点评】本题考查了一次函数的应用、待定系数法一次函数解析式以及解一元一次方程,解题的关键是:(1)利用待定系数法求AB和BC的解析式;(2)熟练掌握一次函数的增减性;(3)分5≤x≤10和10<x≤17时,确定各分段函数的最大值.25.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.【分析】(1)先根据非负数的性质求出a、b的值,故可得出A、B两点的坐标,设D (1,t),由DC∥AB,可知C(2,t﹣2),再根据反比例函数的性质求出t的值即可;(2)由(1)知k =4可知反比例函数的解析式为y =,再由点P 在双曲线y =上,点Q 在y 轴上,设Q (0,y ),P (x ,),再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF =NH =NT ,故∠NTF =∠NFT =∠AHN ,∠TNH =∠TAH =90°,MN =HT 由此即可得出结论.【解答】解:(1)∵+(a +b +3)2=0,∴,解得:,∴A (﹣1,0),B (0,﹣2), ∵E 为AD 中点, ∴x D =1, 设D (1,t ), 又∵DC ∥AB , ∴C (2,t ﹣2), ∴t =2t ﹣4, ∴t =4, ∴k =4;(2)∵由(1)知k =4,∴反比例函数的解析式为y =,∵点P 在双曲线上,点Q 在y 轴上,∴设Q (0,y ),P (x ,), ①当AB 为边时:如图1,若ABPQ 为平行四边形,则=0,解得x =1,此时P 1(1,4),Q 1(0,6);如图2,若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3,当AB为对角线时,AP=BQ,且AP∥BQ;∴,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2);(3)的值不发生改变,理由:如图4,连NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN,∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TNH=360°﹣180°﹣90°=90°.∴MN=HT,∴.【点评】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,难度较大,解本题(1)的关键是求出a,b的值,解(2)的关键是分类讨论,解(3)的关键是判断出△BFN≌△BHN.八年级下册数学期中考试试题(含答案)一、选择题(本大题共16个小题,1-10小题,每小题3分:11-16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)若+=0,则x与y()A.同为正数B.相等C.互为相反数D.都等于03.(3分)下列计算正确的是()A.﹣=B.3×2=6C.(2)2=16D.=14.(3分)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°5.(3分)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于()A.2B.4C.6D.86.(3分)如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A .AB 中点 B .BC 中点C .AC 中点D .∠C 的平分线与AB 的交点7.(3分)在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且(a +b )(a ﹣b )=c 2,则( ) A .∠A 为直角 B .∠C 为直角 C .∠B 为直角D .不是直角三角形8.(3分)如图,4×4的方格中每个小正方形的边长都是1,则S 四边形ABCD与S四边形ECDF的大小关系是( )A .S 四边形ABDC =S 四边形ECDFB .S 四边形ABDC <S 四边形ECDF C .S 四边形ABDC =S 四边形ECDF +1D .S 四边形ABDC =S 四边形ECDF +29.(3分)如图,平行四边形ABCD 的对角线交于点O ,且AB =5,△OCD 的周长为23,则平行四边形ABCD 的两条对角线的和是( )A .18B .28C .36D .4610.(3分)甲、乙、丙、丁四位同学到工厂实习,工人师傅拿一把尺子要他们帮助检测一个四边形构件是否为正方形,他们各自做了如下检测,其中正确的是( ) A .甲量得构件四边都相等B.乙量得构件的两条对角线相等C.丙量得构件的一组邻边相等D.丁量得构件四边相等且两条对角线也相等11.(2分)满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:512.(2分)如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB 重合,点A落在点A′处,折痕为DE,则A′E的长是()A.1B.C.D.213.(2分)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为()A.3cm2B.4cm2C.12cm2D.4cm2或12cm214.(2分)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S2 15.(2分)已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内的一点,且PB=PD=2,则AP的长是()A.2B.3C.4或2D.216.(2分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7二、填空题(本大题共3个小题,共10分.17~18小题各3分;19小题4分.把答案写在题中横线上)17.(3分)写出一个与的积为正整数的数.18.(3分)如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为.19.(4分)如图,点E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下面四个结论:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB =S四边形DEOF,其中正确结论的序号是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)计算:①+﹣5②÷﹣+③()(2)21.(9分)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.22.(9分)阅读材料并解决问题:===﹣1,像上述解题过程中,+1与﹣1相乘的积不含二次根式,我们可以将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化.(1)将下列式子进行分母有理化:①=;②=;(2)化简:+.23.(9分)如图,▱ABCD中,BD⊥AB,AB=12cm,AC=26cm,求AD、BD长.24.(10分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.25.(10分)如图,在▱ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE =CG,AH=CF,且EG平分∠HEF.(1)求证:△AEH≌△CGF;(2)求证:四边形EFGH是菱形.26.(12分)如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P、Q分别从A、C同时出发点P以每秒3cm的速度向B移动,一直达到B止,点Q以每秒2cm的速度向D 移动.(1)P、Q两点出发后多少秒时,四边形PBCQ的面积为36cm2;(2)P、Q两点出发后多少秒时,四边形PBCQ是矩形;(3)是否存在某一时刻,使四边形PBCQ为正方形?。

2010学年第二学期八年级期中测试卷答案

2010学年第二学期八年级期中测试卷答案

2010学年第二学期八年级期中测试卷答案一、 填空题1、22、303、y=3x+64、a>b5、166、0,-3,-127、12310,4,3x x x ==-=- 8、m<1 9、2 10、6y 2-4y+1=0 11、6 12、40 13、8 14、-1或-2 15、2二、选择题16、A 17、B 18、B 19、D 三、解方程20、解:由2220x xy y --=得(x+y )(x-2y )=0......................................1分 原方程组可化为(1){2250x y x y +=+=和(2){22520x y x y +=-=....................................2分 解(1)得{11x y =={22x y ==解(2)得{3321x y =={4421x y =-=-.........................2分 ∴原方程组的解为{11x y =={22x y =={3321x y =={4421x y =-=-...................................1分 21、解:方程两边同时乘以x 2-4,原方程可转化为2(2)(2)8x x x -++=....................................................2分 解整式方程得121440,1080x x ==-....................................................................2分经检验当x=-2时,x 2-4=0为增根.......................................................1分 ∴原方程的解为x=1..............................................................................1分22、解:(x+2)(x-4)(x+3)(x-5)=44(228x x --)(2215x x --)=44.................................................1分令22x x y -=,原方程可转化为(y-8)(y-15)=44.................1分 解得124,19y y ==............................................................................1分当y=4时,解224x x -=得1211x x ==.............................1分当y=19时,解2219x x -=得3411x x =+=-.......................1分∴原方程的解为1211x x ==3411x x =+=-...........1分23、解:23(x 2x-1)+38++=,原方程可转化为23250y y +-=.......................1分 解得1251,3y y ==-............................................................................1分当y=-53时, 53=-无解.....................................................1分当y=1时, 1=解得1211x x =-=-分 经检验1211x x =-=-是原方程的根.................................... 1分 ∴原方程的解为1211x x =-=-.............................................1分24、解:设该厂实际每天生产x 顶帐篷,则原计划每天生产x-720顶......1分 由题意得72007200(120%)4720x x⨯+=+-......................................................2分 解得121440,1080x x ==-(不合题意舍)..............................................3分 答:该厂实际每天生产1440顶帐篷...................................................1分25、解:∵,AE BC AF CD ⊥⊥,30EAF ∠=∴ 60,30G DCG ∠=∠= ................................................................2分 又∵在ABCD 中,30B D DCG ∠=∠=∠= ....................................1分∴ 在Rt AEB 中,AE=3cm ,AB=6cm在Rt AFD 中,AF=2cm ,AD=4cm.......................................2分 C ABCD =2(AB+AD )=2(6+4)=20(cm )............................1分 ∴ABCD 的周长为20cm...............................................................1分26、解:(1)令2112,k y k x y x==...........................................................................1分 将x=8,y=6代入得12348,4y x y x==..................................................1分 (2)由图知令48 1.6x =解得x=30..........................................................1分 ∴至少需要进过30分钟后,学生才能回到教室..........................1分(3)有效................................................................................................1分 ∵当11334y x ==时,解得14x =......................................................1分 当22483y x ==时,解得216x =.....................................................1分 ∴211210x x -=>,有效.................................................................1分27、解:(1)∵点A 在直线y= 12x 上, 将x=4代入解得A (4,2)..............................................1分又∵点A 在双曲线y=k x 上将A 点坐标代入得 2= 4k ∴k=8.......................................................................2分 (2) ∵点C 在双曲线y= k x上, ∴C(1,8)........................................1分 连接AC 延长交y 轴于点D可求得直线AC 的方程为y=-2x+10,则点D 为(0,10) 1分 AOC AOD COD S S S =- =11110(41)15222A C DO x DO x -=⨯-= .............................2分(3)由题意知点P 与Q ,点A 与B 关于原点对称............ 1分 ∴PA QB 且PA=QB ,四边形PAQB 为424APQB AOP S S == ...................................................................1分 同理(2)令P (a ,8a )得直线PA 为282y x a a =-++交y 轴于点E (0,82a +)....................................................................1分 当点P 在点A 左侧时,AOP AOE POE S S S =- 解得P (2,4)当点P 在点A 右侧时,AOP POE AOE S S S =- 解得P (8,1)综上所述,点12(2,4),(8,1)P P ....................................................2分 附加题。

2010年八年级下数学期中试卷及答案

2010年八年级下数学期中试卷及答案

彩香中学2009~2010学年第二学期初二数学期中试卷参考答案及评分建议二、填空题(本大题共有10小题,每空2分,共28分) 11. a -3,1; 12.2; 13. -2; 14. 3,-1; 15. 2;16. 3-2x ; 17. >3; 18.87-; 19. 9,1∶9; 20. 1. 三、解答题(本大题共有10小题,共82分.解答必须写出必要的文字说明、推理步骤或证明过程) 21.(1)解:原式=23(3)(3)(3)(3)a aa a a a +-+-+-=2(3)(3)(3)a a a a -++-=3(3)(3)a a a -+-=13a +(3分)(2)解:原式=22111x x x x --++=11x +(3分)22.解:原式=222442(2)(2)a a aa a ⎛⎫--+⨯ ⎪--⎝⎭=2a a -(3分)当2=a212+===--2分)23.(1)解:原式==分) (2)解:原式=0=(3分) (3)解:原式==(4分) (4)解:原式=20-18―2=36-分) 24.(1)解:最简公分母:x (x -1) (2)解:最简公分母:x -2去分母得:x -1+2x =5去分母得: x -1-2x +4=1x =2(3分)x =2(3分)检验:x =2时,x (x -1)≠0检验:x =2时,x-2=0∴x =2是原方程的解(1分)∴x =2是增根,原方程无解(1分)25.(1)45;34;1;1.(4分)(2)1;证明:2222222111()()111111x x x f x f x x x x x +=+=+=++++(2分) 2分)(2)2分)2分)(4)2009(2分)27.解:设采用新工艺前每小时加工x个零件,根据题意得:12001200101.5x x=+(3分)解得x=40 (2分)经检验x=40是原方程的解40×1.5=60答:采用新工艺前每小时加工40个零件,采用新工艺后每小时加工60个零件.(1分)28.(1)证明:∵正方形AEFG和正方形ABCD中∠AEH=∠ADC=∠EDH=90°∴∠AED+∠DEH=90°∠AED+∠DAE=90°∴∠DEH=∠DAE∴△AED∽△EHD(4分)(2)解:∵正方形ABCD的边长为4∴AD=CD=4∵E为CD的中点∴DE=2∵△AED∽△EHD∴AD DEDE DH=∴422HD=∴DH=1.(3分)29.解:∵矩形DEFG中DG//EF∴∠ADG=∠B,∠AGD=∠C∴△ADG∽△ABC∴DG AMBC AH=(2分)若DE为宽,则804010080DG-=,∴DG=50,此时矩形的面积是2000平方米.若DG为宽,则408010080DE-=,∴DE=48,此时矩形的面积是1920平方米.(答对一个得3分,答对两个得5分)30.解:△MPO中,CA//PO,得MA CAMO PO=∴1.6208MAMA=+∴MA=5(3分)同理可得NB BDNO PO=∴1.668NBNB=+∴NB=1.5(3分)∴MA-NB=3.5∴身影的长度是变短了,变短了3.5米.(1分)31.(1)解:由题意得t秒时,AP=2t cm,DQ=t cm,∴AQ=(6-t)cm,当AP=AQ时,即2t=6-t,即t=2,△QAP为等腰三角形.(2分)(2)解:∵∠QAP=∠B=90°∴当AQ APBC AB=时,即62612t t-=,即t=3,△P AQ∽△ABC或者,当AQ APAB BC=,即62126t t-=,即t=1.2,△QAP∽△ABC.答:t=3或1.2时,以点Q、A、P为顶点的三角形和△ABC相似.(6分)。

最新部编版 2019-2010学年第二学期八年级数学期中考试卷

最新部编版 2019-2010学年第二学期八年级数学期中考试卷

2019-2020学年第二学期期中质量检测八年级 数 学(满分:150分; 考试时间: 120分钟)友情提示:本卷满分150分,所有答案必须填写在答题卡相应的位置上,请同学们注意整洁和书写规范。

一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1...,则x 的取值范围是( ) A . 2x > B .2x ≥ C .2x <D .2x ≤2、若一直角三角形两边长分别为12和5,则第三边长为( ) A.13B.13或119C.13或15D.153、下列选项中,平行四边形不一定...具有的性质是( ). A .两组对边分别平行 B .两组对边分别相等 C .对角线互相平分 D .对角线相等4、 下列计算正确的是( )A.=5、若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是( )A.30°B.45°C.60°D.75° 6、下列二次根式中,属于最简二次根式的是( )A .B .C .D .7、若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点( ) A.(-3,2)B.(,-1)C.(,-1)D.(-,1)8、由线段a 、b 、c 组成的三角形不.是直角三角形的是( ) A.a=7,b=24,c=25; B.a=13,b=14,c=15;C.a=54,b=1,c=34;b=4,c=5; 9、关于函数y =2x ,下列结论中正确的是( ) A .函数图象都经过点(2,1) B .函数图象都经过第二、四象限C .y 随x 的增大而增大D .不论x 取何值,总有y >010、如图,正方形ABCD 中,点E 在BC 上,且CE=14BC ,点F 是CD 的中点,延长AF 与BC 的延长线交于点M 。

以下结论:①AB=CM ; ②AE=AB+CE ;③S △AEF =ABCF S 31四边形;④∠AFE=90°, 其中正确结论的个数有( )A.1个B.2个C.3个D.4个 二、填空题:本题共6小题,每小题4分,共24分.11、请写出一个y 随x 增大而增大的正比例函数表达式,y = 12、在□ABCD 中, ∠A=120°,则∠D=.13、如图所示,在数轴上点A 所表示的数为a ,则a 的值为 14、如果最简二次根式与可以合并,那么a= .15、在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E(如图所示保留了作图痕迹).若BF=6,AB=5.则AE 的长为16、如图圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内离杯底5cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁A ,离杯口上沿4cm 与蜜蜂相对的点A 处,则蚂蚁到达蜂蜜的最短距离为_______________cm 。

八年级下期中试卷及答案.doc

八年级下期中试卷及答案.doc

2009—2010学年八年级第二学期期中数学、(16—18章)考生注意:1.本卷共6页,总分120分,考试时间90分钟。

2.答题前请将密封线左侧的项目填写清楚。

3.答案请用蓝、黑色钢笔或圆珠笔填写。

一、单项选择题(本大题共12个小题;每小题2分,共24分)1、下面的函数是反比例函数的是( )A 、31y x =+B 、22y x x =+C 、2xy = D 、2y x =2.函数ky x =的图象经过点(1,一2),则k 的值为( )A .0.5B .一0.5C .2D .一23.23(3)2x x -的结果是( )A .56x -B .53x -C .52xD 、56x4.如果把分式中x 和y 都扩大10倍,那么分式52x yx +的值( )A 、扩大10倍B .缩小10倍C .扩大2倍D .不变5、2244xy yx x --+的结果是 ( )A .2x x +B .2x x -C .2y x +D .2yx -6.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )A .13B .26C .47D .947.方程11222x x x -+=--的解为 ( )A .x=2B .x=4C .x=3D .无解8.如图,四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为16,则BE=( )A .2B .3C .4D .59.已知三角形的面积一定,则它底边a 上的高h 与底边a 之间的函数关系的图象大致是10.如图,正比例函数(0)y kx k =>与反比例函数4y x =的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于 ( )A .2B .4C .6D .811.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度p(单位:kg /m 3)是体积y(单位:m 3)的反比例函数,它的图象如图所示,当V=10m 3时,气体的密度是 ( )A .5kg /m 3B .2kg /m 3C .100k / m 3D .1kg / m 312.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 ( )A .16040018(120%)x x +=+ B 、16040016018(120%)x x -+=+C .1604001601820%x x -+= D 、40040016018(120%)x x -+=+二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.当x=________时,分式21xx -无意义.14、点P(2m 一3,1)在反比例函数1y x =的图象上,则m=________.15.对于函数7y x =-,y 的值随x 的增大而________.16、如图,等腰△ABC 中,AB=AC ,AD 是底边上的高,若AB=5cm ,BC=6cm .则AD=________cm 。

八年级第二学期期中考试(数学)试题含答案

八年级第二学期期中考试(数学)试题含答案

八年级第二学期期中考试(数学)(考试总分:100 分)一、单选题(本题共计10小题,总分30分)1.(3分)1.若分式有意义,则实数x的取值范围是()A.x≥1且x≠﹣2B.x≥1C.x>1D.x≥1且x≠02.(3分)2.直角三角形的两条边长为5和12,它的斜边长为()A.13B.C.13或D.13或123.(3分)3.计算的结果是()A.B.C.D.4.(3分)4.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法错误的是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形C.如果∠A:∠B:∠C=1:2:3,则△ABC是直角三角形D.如果a2+b2≠c2,则△ABC不是直角三角形5.(3分)5.如图,长方形ABCD中,AB=4,AD=1,AB在x轴上.若以点A为圆心,对角线AC的长为半径作弧交x轴的正半轴于M,则点M的坐标为()A.(3,0)B.(+1,0)C.(﹣1,0)D.(,0)6.(3分)6.如图,点P是Rt△ABC中斜边AC(不与A,C重合)上一动点,分别作PM⊥AB于点M,作PN⊥BC于点N,连接BP、MN,若AB=6,BC=8,则MN的最小值是()A.1.5B.2C.4.8D.2.47.(3分)7.下列说法中,错误的是()A.有一条对角线平分一个内角的平行四边形是菱形B.对角线互相垂直且平分的四边形是菱形C.一条对角线平分另一条对角线的四边形是平行四边形D.三角形的一条中位线与第三边上的中线互相平分8.(3分)8.如图,已知△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AB=8,MN=2,则AC的长为()A.12B.11 C.10D.99.(3分)9.如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论,其中,所有正确的结论是()①△FPD是等腰直角三角形;②AP=EF=PC;③AD=PD;④∠PFE=∠BAP.A.①②B.①④C.①②④D.①③④10.(3分)10.如图,在正方形ABCD中,点E,F分别是边AD,CD上的点,且AE=DF,AF与BE交于点G,取BF中点H,连接GH,则下列结论:①AF=BE;②BF=2GH;③△ABG与四边形EGFD面积相等,正确结论的序号是()A.①②B.①③C.②③D.①②③二、填空题(本题共计5小题,总分20分)11.(4分)11.若,则m的取值范围是.12.(4分)12.已知:如图,在一块三角形土地上,准备规划出阴影所示部分作为绿地,若规划图设计中∠ADC=90°,AD=4,CD=3,AB=13,BC=12.求绿地的面积.(第12题)13.(4分)13.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为.14.(4分)14.如图,AC是菱形ABCD的对角线,P是AC上的一个动点,过点P分别作AB和BC的垂线,垂足分别是点F和E,若菱形的周长是12cm,面积是15cm2,则PE+PF的值是cm.15.(4分)15. 平行四边形ABCD中,AB=4,对角线AC=3,另一条对角线BD的取值范围是.三、解答题(本题共计8小题,总分50分)16.(8分)16.(8分,每小题4分)计算:(1)(2).17.(5分)17.(5分)已知y=﹣+9x,求的平方根.18.18.(5分)(5分)已知实数a、b在数轴上的对应点如图,化简+|a+b|+|﹣a|﹣.19.(5分)19.(5分)在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)20.(5分)20.(5分)如图,在平行四边形ABCD中,E、F是对角线A、C上的两点,且AE=CF,求证:四边形BFDE是平行四边形.21.(6分)21.(6分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)求证:四边形AEBO是矩形;(2)若CD=3,求OE的长.22.(8分)22.(8分)如图,四边形ABCD是平行四边形对角线AC,BD交于点O,BD=2AB,AE∥BD,OE∥AB.(1)求证:四边形ABOE是菱形;(2)若AO=2,S四边形ABOE=4,求BD的长.23.(8分)23.(8分) 如图(1),已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE.(2)连接DM,ME,猜想∠A与∠DME之间的关系,并证明猜想.答案一、单选题(本题共计10小题,总分30分)1.(3分)B2.(3分)D3.(3分)A4.(3分)D5.(3分)C6.(3分)C7.(3分)C8.(3分)A9.(3分)C10.(3分)D二、填空题(本题共计5小题,总分20分)11.(4分)(11)m≤4,12.(4分)(12)24 ,13.(4分)(13)8,14.(4分)(14)5 ,15.(4分)(15)5<BD<11三、解答题(本题共计8小题,总分50分)16.(8分)16.(8分)解:(1)原式=﹣1+1﹣×4----------- 2分=﹣1+1﹣=0;----------------------------------- 2分(2)原式=9﹣6+5+5﹣1 -------------------------- 2分=18﹣6------------------------------------ 2分17.(5分)17.(5分)解:由题意得,3x﹣1≥0,1﹣3x≥0,解得,x=,则y=3 ------------------- 2分=2,-------------- 1分则的平方根是±.---------2分18.(5分)18.解:由数轴可知a<b<0,且|a|>|b|,∴a+b<0,∵>0,∴﹣a>0、b﹣<0,------------ 1分则原式=|a|﹣(a+b)+﹣a﹣|b﹣|=﹣a﹣a﹣b+﹣a+(b﹣)------------------ 2分=﹣3a﹣b++b﹣=﹣3a.----------------------------- 2分19.(5分)19.(5分)解:∵在Rt△ABC中,∠CAB=90°,BC=13m,AC=5m,∴(m),————2分∵此人以0.5m/s的速度收绳,10s后船移动到点D的位置,∴CD=13﹣0.5×10=8(m),∴(m),————- 2 分∴)(m).答:船向岸边移动了)m.————1分20.(5分)20.(5分)证明:连接DB,交AC于点O,∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,------------------------------2 分又∵AE=CF,∴EO=FO,∴四边形BFDE是平行四边形。

2010第二学期八年级数学下册期中试卷(附答案)

2010第二学期八年级数学下册期中试卷(附答案)

2010学年第二学期八年级数学学科期中试卷 时间:90分钟 闭卷 满分:100分班级 姓名 学号 题号一 二 三 总分 得分一、选择题(12小题,每小题3分,共36分)1、代数式xx 、n m n m 、a 、x 232-+中,分式有( ) A 、4个 B 、3个 C 、2个 D 、1个2、若分式392+-x x 的值为0,则x 的值是( ) A 、-3 B 、3 C 、±3 D 、03、以下是分式方程1211=-+xx x 去分母后的结果,其中正确的是( ) A 、112=--x B 、112=+-x C 、x x 212=-+ D 、x x 212=+-4、若关于x 的方程1331--=--x m x x 无解,则m 的值为( ) A 、-3 B 、-1 C 、2 D 、-25、若(x-2)0=1,则x 不等于( )A 、 -2B 、2C 、 3D 、06、对于反比例函数xy 2=,下列说法不正确的是( ) A 、点(-2,-1)在它的图象上。

B 、它的图象在第一、三象限。

C 、当x>0时,y 随x 的增大而增大。

D 、当x<0时,y 随x 的增大而减小7、如右图,点A 是函数xy 4=图象上的任意一点, A B ⊥x 轴于点B ,A C ⊥y 轴于点C ,则四边形OBAC 的面积为( )A 、2B 、4C 、8D 、无法确定8、已知反比例函数xy 2=经过点A (x 1,y 1)、B (x 2,y 2),如果x 1<x 2<0,那么y 1与y 2的大小关系是( )A 、y 1>y 2>0B 、y 2>y 1>0C 、y 2<y 1<0D 、y 1<y 2<09、已知下列四组线段:①5,12,13 ; ②15,8,17 ; ③15,20,25 ; ④43145,,。

其中能构成直角三角形的有( )A 、四组B 、三组C 、二组D 、一组10、为了迎接新年的到来,同学们做了许多用来布置教室的拉花,准备召开新年晚会,昊昊搬来了一架高为2.5m 的木梯,准备把拉花挂到高2.4m 的墙上,则梯脚与墙角的距离应为( )A 、 0.7mB 、0.8mC 、0.9mD 、1m二、填空题(10小题,每小题2分,共20分)11、写出一个图象位于第一、三象限的反比例函数的表达式: 。

人教版八下数学期中考试卷.doc

人教版八下数学期中考试卷.doc

12-3-210-13A 2010~2011学年度第二学期期中八年级数学科试卷一、 选择题(每小题4分,共32分)1.在式子2xy π、2334a b c 、56x +、78x y+、109x y +中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个 2.若分式33x x -+的值为0,则x 的值为( ) A 、-3 B 、3或-3 C 、3 D 、0 3.如果把分式中x 和y 都扩大10倍,那么分式52x yx+的值( ) A 、扩大10倍 B .缩小10倍 C .扩大2倍 D .不变 4. 当路程s 一定时,速度v 与时间t 之间的函数关系是( )A .正比例函数B .反比例函数C .一次函数D . 以上都不是 5. 反比例函数)0(≠=k xky 的图象经过点(2-,3),则它还经过点( ) A. (6,1-) B. (1-,6-) C. (3,2) D.(2-,3.1)6. 下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( ) A . a=1.5, b=2, c=3 B . a=5, b=12, c=13 C . a=6, b=8, c=10 D. a=3, b=4, c=5 7.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上 B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小8. 如图所示:数轴上点A 所表示的数为a ,则a 的值是( )A .5+1B .-5+1C .5-1D .5 二、填空题(每小题4分,共20分)9. 有一种病毒的直径为0.000043米,用科学记数法可表示为 米.10. 当x 时,分式22-+x x 有意义。

11. 若分式方程11-=-x mx x 无解,则m 的值为 . 12. 反比例函数xm y 1-=的图象在第一、三象限,则m 的取值范围是 .13. 如图由于台风的影响,一棵树在离地面m 6处折断,树顶落在离 树干底部m 8处,则这棵树在折断前(不包括树根)长度是 m.三、解答题(每小题7分,共35分)↑↓← →m6m 8 班级___________________ 姓名___________________座号_____________14.计算:231)2010(41-+⎪⎭⎫⎝⎛--+- 15.计算: 2224369a a a a a --÷+++ 16.解方程:1233xx x=+-- 17.如图,在Rt △ABC 中,∠C=90°, D 是BC 边上一点, 且BD=AD=8, ∠ADC=60°,求AC 。

(完整版)人教版八年级下册数学期中试卷及答案.docx

(完整版)人教版八年级下册数学期中试卷及答案.docx

彩香中学 2009~2010学年第二学期初二数学期中试卷一、选择题(本大题共有 10 小题,每小题 2 分,共 20 分)1.下列各式中最简分式是( )A .8aB . 2xC .x15a 12b3D .4x 13xa2.下列各式中正确的是 ()A .a a m1 1 a bbb mB .babaC .a 2b 2ba 2b 2a ba b aD .ab3.解分式方程x x 2 ,去分母后正确的是 ()x 1x 211A . x( x 1) x 2 1B . x( x 1) x 2 x 2 1.x( x 1)x 2 1. x( x 1) x 2 x 2 1CD4.下列式子中,一定有意义的是()A .x 2B . xC . x 22D . x 225 .下列各式中,是最简二次根式的是()A . 18B . a 2 bC . a 2b 2D .236 .下列运算正确的是 ()2B . 3222A .3 3 3 C .3 3D .337 .下列四组线段中,不构成比例线段的一组是()A .1cm , 3cm, 3cm , 9cmB . 2cm , 3cm , 4cm , 6cmC . 1cm , 2 cm , 3 cm ,6 cmD . 1cm , 2cm , 3cm , 4cm8.下面图形中一定相似的是()A .两个锐角三角形B .两个直角三角形C .两个等腰三角形D .两个等边三角形9.如图:在打网球时,要使球恰好能打过网,而且落在离网5 米的位置上,则球拍击球的高度 h 应为 ( )A . 2.7mB .1.8mC .0.9mB D .6mPAC(第 9 题图)(第10题图)10.如图, P 是 Rt△ ABC的斜边 BC 上异于 B, C 的一点,过P 点作直线截△ ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()条.A.1B.2C.3D.4二、填空题(本大题共有10 小题,每空 2 分,共 28 分)11.化简:a 29a b.a3a3,b aa b12.计算:25533 3 =,3a2 b ?8b2 c (a>0,b>0,c>0)=.13.若分式x2的值为0,则x 的值为.x24x 41m2 有增根,则增根是x=, m=.14.若33xx15.如果最简二次根式3a 3与72a 是同类二次根式,那么 a 的值是.16.若 1< x<2,则化简( x2) 2(1 x)2=.17.当 x__________时,式子1有意义.x 3a2a2b.18.若,则a3bb319.如图:已知 DE∥ BC, AD=1, DB= 2, DE= 3,则 BC= ___________,△ ADE和△ ABC的面积之比为.A A DD E FB C B EC (第 19 题图)(第 20 题图)20.如图:已知矩形ABCD中, AB= 2, BC= 3, F 是 CD的中点,一束光线从 A 点出发,通过 BC 边反射,恰好落在 F 点,那么反射点 E 与 C点的距离为.三、解答题(本大题共有10 小题,共82 分)21.(本题满分 6 分)化简分式:2a1( 2)x2( 1)9a3x 1a2x 1a 2 4 a 22.(本题满分 5 分)先化简,再求值:2 a 2 4a 4,其中 a2 .aa 223.(本题满分 14 分)计算:( 1)148 61 3 5 1( 2) 27x - 5 3x + 12x212 3(3 ) (2 12 3 1 ) 6 (4 ) ( 25 3 2) 2- 3(2 5 3 2)( 2 5 3 2)24.(本题满分 8 分)解分式方程:( 1)12 5 ( 2)1x21 xx 1 x 2 x2 xx 225.(本题满分 6 分)对于正数 x ,规定 f ( x x 2,)=x 21( 1)计算 f ( 2)=;f ( 3)=;f ( 2)+ f ( 1)=.; f (3)+ f ( 1)=.23( 2)猜想 f ( x) f ( 1) =;请予以证明.x26.(本分 8 分)下面料:11( 21)2 1 ;12(21)(21)13232;32(3 2 )( 3 2 )1525 2 .52(52)(52)求:(1)1的;( 2)1的;(3)1(n 正整数)的763217n 1n;( 4 )(1+1+⋯⋯ +1+1)·( 1+122320082009200920102010 ).27.(本分 6 分)某加工加工同多的零件就少用了件?1200 个零件后,采用了新工,工作效率是原来的 1.5 倍,10 小.采用新工前、后每小分加工多少个零28.(本分7 分)如,正方形 AD 的延交 EF于 H 点.AEFG的点 E 在正方形ABCD的CD上,A B(1)明:△ AED∽ △ EHD.(2)若 E CD 的中点,正方形 ABCD的 4,G求的 DH .DE CHF29.(本题满分 7 分)如图,是一块三角形土地,它的底边BC长为 100 米,高 AH 为 80 米,某单位要沿着底边BC 修一座底面是矩形DEFG的大楼, D、 G 分别在边AB、 AC 上,若大楼的宽是40 米,求这个矩形的面积.AD M GB E H F C30.(本题满分 7 分)如图,路灯( P 点)距地面 8 米,身高 1.6 米的小明从距离路灯的底部( O 点)20 米的 A 点,沿 AO 所在的直线行走 14 米到 B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?PD CO B N A M31.(本题满分8 分)如图,在矩形ABCD中, AB= 12cm,BC= 6cm,点 P 沿 AB 边从点A 开始向点B 以 2cm/ s 的速度移动,点 Q 沿 DA 边从点 D 开始向点 A 以 1cm/s 的速度移动.如果点 P、Q 同时出发,用t(s)表示移动的时间(0≤ t ≤ 6),那么(1)当 t 为何值时,△ QAP 为等腰三角形?(2)当 t 为何值时,以点 Q、A、P 为顶点的三角形和△ ABC相似 ?D CQA P B彩香中学 2009~2010学年第二学期初二数学期中试卷参考答案及评分建议一、选择题(本大题共有10 小题,每小题 2 分,共 20 分)题号12345678910选项B D D C C B D D A C二、填空题(本大题共有10 小题,每空 2 分,共28 分)11.a- 3, 1;12.54 3 , 2ab6bc ;13.- 2;14.3,- 1;15.2;16.3- 2x;17.>3;18.8;19. 9, 1∶ 9;20.1.7三、解答题(本大题共有10 小题,共 82分.解答必须写出必要的文字说明、推理步骤或证明过程)21.(1)解:原式=2a3)(a a3=2a(a3)=a3=1(3(a3)(a3)(a3)( a 3)( a3)( a3)(a 3)a3分)(2)x2x21=1(3 分 )解:原式=1x1xx122.解:原式=a244a2a(3 分)( a 2) 2( a 2) 2=a 2a当 a 2 时,原式=22(22)22212(2 分)2( 2 2)( 2 2)2223. (1)解:原式=233433(3 分)(2) 解:原式=3 3x53x23x0 (3 分 )(3)解:原式=1223292(4分 ) (4) 解:原式= 20- 1210 +18―2=36-1210(4 分)24.(1)解:最简公分母: x(x-1)(2)解:最简公分母: x- 2去分母得: x-1+ 2x= 5去分母得:x- 1- 2x+ 4= 1x= 2(3 分 )x= 2(3 分 )检验: x= 2 时, x(x-1)≠ 0检验: x= 2 时, x- 2=0∴ x= 2 是原方程的解(1 分 )∴ x=2是增根,原方程无解(1 分 )431x21x21;;1;1.( 4 分) (2)1;证明:x225.(1)4 f ( x) f ( x) 1 x21 1 x2x2 1151x2(2 分)26. (1)76(2分)(2)3217(2分)(3)n 1n(2分)(4)2009(2分)27.解:设采用新工艺前每小时加工x 个零件,根据题意得:1200120010(3 分)x 1.5x解得 x= 40(2 分)经检验 x=40 是原方程的解40× 1.5= 60答:采用新工艺前每小时加工40 个零件,采用新工艺后每小时加工60 个零件.( 1 分)28.(1)证明:∵正方形 AEFG和正方形 ABCD中∠ AEH=∠ ADC=∠ EDH= 90°∴∠ AED+∠ DEH= 90° ∠ AED+∠ DAE=90°∴∠ DEH=∠ DAE∴ △ AED∽ △ EHD(4 分)(2)解:∵正方形 ABCD的边长为 4∴ AD= CD= 4 ∵E 为 CD 的中点∴ DE= 2∵△ AED∽△ EHD ∴ADDE∴42∴ DH=1.( 3 分)DE DH2HD29. 解:∵矩形DEFG 中 DG// EF ∴∠ ADG=∠ B,∠ AGD=∠ C ∴△ ADG∽△ ABC∴DG AM BC ( 2 分)AH若 DE 为宽,则DG8040,∴ DG= 50,此时矩形的面积是 2000 平方米.若 DG 为宽,10080则 4080DE,∴ DE= 48,此时矩形的面积是1920 平方米.(答对一个得 3 分,答对10080两个得 5 分)30. 解:△ MPO 中, CA// PO,得MACA ∴MA1.6∴ MA=5( 3 分)MO PO MA208同理可得NBBD ∴NB1.6∴NB= 1.5( 3 分)NO PO NB 68∴ MA- NB=3.5∴身影的长度是变短了,变短了 3.5 米.( 1 分)31. (1)解:由题意得 t 秒时, AP = 2t cm , DQ = t cm ,∴ AQ =(6- t) cm ,当 AP = AQ 时,即 2t = 6- t ,即 t =2 ,△ QAP 为等腰三角形. (2 分)AQAP 6 t 2t (2)解:∵∠ QAP =∠ B =90°∴当时,即6,即 t = 3,△ PAQ ∽△ ABCBCAB12或者,当AQAP ,即 6 t 2t ,即 t = 1.2, △ QAP ∽ △ ABC . ABBC12 6答: t = 3 或 1.2 时,以点 Q 、 A 、 P 为顶点的三角形和 △ ABC 相似.( 6 分)新安中学 2009 ~ 2010 学年度第二学期期中考试八年级数学试题一、选择题( 10 小题,共 30 分)1. 以下列各组线段的长为边,能够组成直角三角形的是()A.6 8 10B. 15 31 39C. 12 35 37D. 12 18 322. 下列计算正确的是()A.22B. ( 2 )22( 2)C.9 3D.623423. 下列二次根式中,是最简二次根式的是()A.16aB.3bC.bD.0.5a4. 如果 (x 2+y 2) 2+3(x 2+y 2)- 4=0 ,那么 x 2+y 2 的值为()A. 1B. - 4C. 1或- 4D.- 1 或 35.方程 2x 25x 3 0 根的情况是()A. 方程有两个不相等的实根B.方程有两个相等的实根C.方程没有实根D.无法判断6. 某型号的手机连续两次降价, 每台售价由原来的 1185 元降到 580 元,设平均每次的降价的百分率 x ,则列出的方程正确的是( )A. 580(1 x) 21185 B.1185(1 x) 2580C. 580(1 x) 21185D.1185(1 x) 25807. 在△ ABC 中,AB15,AC 13 ,BC 上的高 AD 长为 12,则△ ABC 的面积为()A. 84B. 24C. 24 或 84D. 42 或 848. 如果 x0 ,则化简 1 xx 2 的结果为()A.1 2x B.2x 1 C. 1D. 19.若方程 ax 2bxc 0(a 0) ,满足 a b c 0 ,则方程必有一根为()、A. 0B. 1C.1D.110. 请估计321).20 的运算结果应在(2A . 6到 7 之间B . 7到 8 之间C . 8到 9 之间D . 9到 10 之间二、耐心填一填( 6 小题,共 18 分)11.化简24 =_________。

2010-2011学年第二学期八年级数学学科期中试卷(附答案)

2010-2011学年第二学期八年级数学学科期中试卷(附答案)

(第11题图)FC DEBA 2010学年第二学期八年级数学学科期中试卷(附答案)(本试题满分100分,时间90分钟)一、填空题(本大题共14题,每题2分,满分28分)1.下列函数中:12)1(+=x y,11)2(+=xy ,xy -=)3(,是常数)、b k b kx y()4(+=,一次函数有 (填序号).2.已知直线x kx y +=是一次函数,则k 的取值范围是 . 3.直线42-=x y 的截距是 .4.已知函数1-3-x y =,y 随着x 的增大而 .5.若直线21y x =+向下平移n 个单位后,所得的直线在y 轴上的截距是3-,则n 的值是___________. 6.已知直线3+-=m x y 图像经过第一、三、四象限,则m 的取值范围是_________. 7.已知点A (a ,2),B (b ,4)在直线5-x y =上,则a 、b 的大小关系是a b .8.某市为鼓励市民节约用水和加强对节水的管理,制订了以下每月每户用水的收费标准:(1)用水量不超过83m 时,每立方米收费1元;(2)超出83m 时,在(1)的基础上,超过83m 的部分,每立方米收费2元.设某户一个月的用水量为x 3m ,应交水费y 元. 则当x >8时,y 关于x 的函数解析式是 . 9.八边形的内角和是 度.10. 已知□ABCD 中,已∠A :∠D =3:2,则∠C = 度.11.如图,AC 是□ABCD 的对角线,点E 、F 在AC 上,要使四边形BFDE 是平行 四边形,还需要增加的一个条件是 (只要填写一种情况). 12.菱形的两对角线长分别为10和24,则它的面积为 . 13.填空:CD BC AB ++ = .14.如图,正方形ABCD 中,E 在BC 上,BE =2,CE =1. 点P 在BD 上,则PE 与PC 的和的最小值为 .二、选择题(本大题共4题,每题3分,满分12分)15.已知直线3-x y =,在此直线上且位于x 轴的上方的点,它们的横坐标的取值范围是 ( )学校___________________班级_____________姓名________________学号___________请不要在装订线内答题请不要在装订线内答题请不要在装订线内答题(A )3≥x ; (B )3≤x ; (C )3>x ; (D )3<x . 16.已知一次函数的图像不经过三象限,则k 、b 的符号是 ( ) (A)k <0,b ≥0;(B)k <0,b ≤0 ;(C)k <0,b >0; (D)k <0,b <0.17.已知四边形ABCD 是平行四边形,下列结论中不正确的 ( ) (A )当AB=BC 时,它是菱形; (B )当AC ⊥BD 时,它是菱形; (C )当∠ABC =90︒时,它是矩形; (D )当AC=BD 时,它是正方形.18.如图,在矩形纸片ABCD 中,AB =3cm ,BC =4cm ,现将纸片折叠压平,使A 与C 重合,如果设折痕为EF ,那么重叠部分△AEF 的面积等于( ) (A )873; (B )875; (C )1673; (D )1675.三、解答题:(本大题共5题,每题6分,满分30分)19.已知一次函数b kx y +=的图像平行于直线x y 3-=,且经过点(2,-3). (1)求这个一次函数的解析式;(2)当y =6时,求x 的值.20.已知一次函数图像经过点A (-2,-2)、B (0,-4).(1) 求k 、b 的值;(2)求这个一次函数与两坐标轴所围成的面积.21.若直线221+=x y分别交x 轴、y 轴于A 、C 两点,点P 是该直线上在第一象限内的一点,PB ⊥x 轴,B 为垂足,且S ⊿ABC = 6.(1)求点B 和P 的坐标 .(2)过点B 画出直线BQ ∥AP ,交y 轴于点Q ,并直接写出点Q 的坐标.22.某人因需要经常去复印资料,甲复印社按A 4纸每10页2元计费,乙复印社则按A 4纸每10页1元计费,但需按月付一定数额的承包费. 两复印社每月收费情况如图所示,根据图中提供的信息解答下列问题: (1)乙复印社要求客户每月支付的承包费是 元. (2)当每月复印 页时,两复印社实际收费相同. (3)如果每月复印页在250页左右时, 应选择哪一个复印社?请简单说明理由.23.已知:如图,在梯形A B C D 中,BC AD //,8==DC AB ,︒=∠60B ,12=BC .若F E 、分别是A B D C 、的中点,联结EF ,求线段EF 的长.装FEAB C DO (第24题图)A四、几何证明(本大题共3题, 6分+7分+7分,满分20分)24.已知:如图,矩形ABCD 的对角线AC 和BD 相交于点O , AC =2AB .求证:︒=∠120AOD .25.已知:如图,在⊿ABC 中,AB =AC ,D 、E 、F 分别是BC 、AB 、AC 边的中点.求证:四边形AEDF 是菱形.____请不要在装订线GF EDCBA(第26题图)PMDA26.已知:如图,点E 、G 在平行四边形ABCD 的边AD 上,EG =ED ,延长CE 到点F ,使得EF =EC . 求证:AF ∥BG .五、(本大题共1题,第1小题6分,第2小题4分,满分10分)27.已知:如图,矩形纸片ABCD 的边AD =3,CD =2,点P 是边CD 上的一个动点(不与点C 重合,把这张矩形纸片折叠,使点B 落在点P 的位置上,折痕交边AD 与点M ,折痕交边BC 于点N . (1)写出图中的全等三角形. 设CP =x ,AM =y ,写出y 与x 的函数关系式;(2)试判断∠BMP 是否可能等于90°. 如果可能,请求出此时CP 的长;如果不可能,请说明理由.八年级数学期中答案一、填空题(本大题共14题,每题2分,满分28分)1.(1),(3);2.1-m;>≠k;3.-4;4.减小;5.4;6.3 7.<;8.8y;9.1080°;10.108°;11.AE=CF等;=x2-12.120;13.AD;14.13.二、选择题(本大题共4题,每题3分,满分12分)15.C;16.A;17.D;18.D.三、简答题(本大题共5题,每题6分,满分30分)19.解: (1)由题意 k=-3 ………………………………………1′∴y=-3x+b 把点(2,-3)代入∴-3= -3×2+k ………………………………………1′ b=3 ………………………………………1′∴y=-3x+3 ………………………………………1′(2) 当y=6时-3x+3=6 ………………………………………1′ x =-1 ………………………………………1′ 20.解:(1)设y=kx+b(k≠0) ………………………………………1′ 把A(-2,-2),B(0,-4)代入⎩⎨⎧=-+-=-bb k 422 ………………………………………1′⎩⎨⎧-=-=41b k ………………………………1′+ 1′∴y=-x-4(2)一次函数与x 轴的交点坐标为(-4,0)一次函数与y 轴的交点坐标为(0,-4) ……………………1′ ∴S=21×4×4=8 ………………………………………1′21.解:(1)A (-4,0),C (0,2) ………………………………………1′由题意 设点P 的坐标为(221,+a a )且a >0∵PB ⊥x 轴∴B (a ,0) ∴AB=a +4 ∵S ⊿ABC =662)4(21=⨯+a ………………………………………1′∴a =2∴B(2,0),P(2,3) ……………………………………1′+1′ (2)图略; ………………………………………1′ )1,0(-Q ………………………………………1′ 22.(1) 18; ………………………………………2′(2) 150; ………………………………………2′ (3) 选择乙. ………………………………………1′ 当复印页超过150页时,乙的收费较低. …………………………1′23.解:过点D 作DE ∥AB,交BC 于点G (1)∵AD ∥BC, DE ∥AB∴四边形ABCD 为平行四边形 (平行四边形定义) ………………………1 ∴AD=BG,AB=DG (平行四边形对边相等) ………………………………1 ∵AB=DC=8 ∴DG=8 ∴DG=DC ∵∠B=60°∵∠DGC=∠B=60°∴⊿DGC 是等边三角形 ……………………………………1 ∴GC=8 ∵BC=12 ∴BG=4∴AD=4 ………………………………………1 ∵EF 分别是AB 、DC 的中点 ∴)(21BC AD EF+==8)124(21=+ (1)(梯形的中位线等于两底和的一半)24.证明:∵矩形ABCD∴︒=∠90ABC (矩形的四个角都是直角) (1)中ABC Rt ∆,AC =2AB∴︒=∠30ACB (1)∵AC =BD (矩形的对角线相等) ………………………………………1 ∴BO =BD21,CO =AC21∵AB =CD(矩形的对角线互相平分) (1)∴BO=CO ∴OCB OBC ∠=∠ …………………………………1 ∵︒=∠+∠+∠180OCB OBC BOC∴︒=∠120BOC (1)25.证明:⊿ABC 中,E 、D 分别是AB, BC 的中点∴ED =AC21(三角形的中位线等于第三边的一半) ………………1 同理 FD=AB21 (1)∵ AE=AB21,AF =AC21 (1)∴ AE=AF=ED=FD ....................................1 ∴ 四边形AEDF 是菱形 ....................................1 (四条边相等的四边形是菱形) (1)26.联结FG,FD,GC ………………………………1 ∵EG=ED,EF=EC∴四边形FGCD 是平行四边形 ………………………………1 (对角线互相平分的四边形是平行四边形)……………………………1 ∴FG ∥DC, FG = DC(平行四边形对边相等且平行) ………………………………1 同理AB ∥DC,AB=DC∴AB ∥FG,AB=FG ………………………………1 ∴四边形ABCD 是平行四边形 ………………………………1 (一组对边平行且相等的四边形是平行四边形)∴AF ∥BG (平行四边形的定义) ....................................1 27.(1) ⊿MBN ≌⊿MPN (1)∵⊿MBN ≌⊿MPN ∴MB=MP ,∴22MP MB = ∵矩形ABCD∴AD=CD (矩形的对边相等)∴∠A=∠D=90°(矩形四个内角都是直角) ………………………………1 ∵AD=3, CD=2, CP=x, AM=y∴DP=2-x, MD=3-y ………………………………1 Rt ⊿ABM 中,42222+=+=yAB AM MB同理 22222)2()3(x y PDMDMP-+-=+= (1)222)2()3(4x y y-+-=+ (1)∴6942+-=x xy (1)(3)︒=∠90BMP ………………………………1 当︒=∠90BMP 时,可证DMP ABM ∆≅∆ ………………………………1 ∴ AM=CP ,AB=DM∴1y (1)-=y3,2=∴1=xx (1)-,21=∴当CM=1时,︒BMP∠90=。

八年级(下)期中考试数学试题(含答案)

八年级(下)期中考试数学试题(含答案)

八年级(下)期中考试数学试题(含答案)一、选择题(本大题共10小题,共20.0分)1.下列根式不是最简二次根式的是()A. B. C. D.2.正方形的面积是4,则它的对角线长是()A. 2B.C.D. 43.能判定四边形ABCD为平行四边形的题设是()A. ,B. ,C. ,D. ,4.下列计算正确的是()A. B.C. D.5.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A. B. C. D.6.矩形具有而一般的平行四边形不一定具有的特征()A. 对角相等B. 对角线相等C. 对角线互相平分D. 对边相等7.若=a,=b,则=()A. B. C. D.8.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A. B. C. D.9.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A. 34B. 26C.D.10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A. 7B. 9C. 10D. 11二、填空题(本大题共8小题,共24.0分)11.若有意义,则x的取值范围是______.12.如图,已知OA=OB,那么数轴上点A所表示的数是______.13.如图,▱ABCD中,AB的长为8,∠DAB的角平分线交CD于E,若DE:EC=3:1,则BC的长为______ .14.计算:= ______ .15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为______.16.如图,矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°,则AC= ______ cm.17.如图,菱形ABCD的边长是4cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为______cm2.18.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来______.三、计算题(本大题共2小题,共20.0分)19.计算:(1)(-4)-(3-2)(2).20.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?四、解答题(本大题共4小题,共36.0分)21.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图甲,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图乙所示的分割线,拼出如图丙所示的新的正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的小正方形,排列形式如图丁,请把它们分割后拼接成一个新的正方形.要求:在图丁中画出分割线,并在图戊的正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.22.如图,▱ABCD中,点E,F分别在BC,AD上,且AF=CE,求证:AE=CF.23.如图所示,在矩形ABCD中,对角线AC,BD相交于点O,∠BOC=120°,AC=6,求:(1)AB的长;(2)矩形ABCD的面积.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=______cm时,四边形CEDF是矩形;②当AE=______cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)答案和解析1.【答案】D【解析】解:=.故选D根据最简二次根式的判断标准即可得到正确的选项.此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.【答案】C【解析】解:设正方形的对角线为x,∵正方形的面积是4,∴边长的平方为4,∴由勾股定理得,x==2.故选C.设正方形的对角线为x,然后根据勾股定理列式计算即可得解.本题考查了勾股定理,正方形的性质,熟记定理和性质是解题的关键.3.【答案】B【解析】解:A、AB∥CD,AD=BC不能判定四边形ABCD为平行四边形,故此选项错误;B、AB=CD,AD=BC判定四边形ABCD为平行四边形,故此选项正确;C、∠A=∠B,∠C=∠D不能判定四边形ABCD为平行四边形,故此选项错误;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形,故此选项错误;故选:B.根据两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形可得答案.此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.4.【答案】C【解析】解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.A、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.5.【答案】C【解析】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.6.【答案】B解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选:B.举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.本题考查了对矩形的性质和平行四边形的性质的理解和掌握,主要检查学生是否能掌握矩形和平行四边形的性质,此题比较典型,但是一道容易出错的题目.7.【答案】C【解析】解:=====,故ABD错误,C正确.故选C.先将被开方数0.9化成分数,观察四个选项,再化简为,开方,注意要把化为,代入即可.本题考查了二次根式的性质和化简,注意被开方数是小数的要化成分数计算,且保证分母是完全平分数,根据=|a|进行化简..8.【答案】B【解析】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2,故选:B.设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x 的值,最后根据菱形的面积公式求出面积的值.本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.9.【答案】D【解析】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.10.【答案】D【解析】解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选:D.根据勾股定理求出BC的长,根据三角形的中位线定理得到HG=BC=EF,EH=FG=AD,求出EF、HG、EH、FG的长,代入即可求出四边形EFGH的周长.本题主要考查对勾股定理,三角形的中位线定理等知识点的理解和掌握,能根据三角形的中位线定理求出EF、HG、EH、FG的长是解此题的关键.11.【答案】x≥【解析】解:要是有意义,则2x-1≥0,解得x≥.故答案为:x≥.根据二次根式的定义可知被开方数必须为非负数,列不等式求解.本题主要考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.12.【答案】-【解析】解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是-.故答案为:-.首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是-.本题主要考查了勾股定理的应用,解题的关键在于熟练运用勾股定理并注意根据点的位置以确定数的符号.13.【答案】6【解析】【分析】利用平行四边形的性质,首先证明△ADE是等腰三角形,求出DE即可解决问题.本题考查平行四边形的性质,等腰三角形的判定、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=8,AD=BC,∴∠DEA=∠EAB,∵∠DAE=∠EAB,∴∠DAE=∠DEA,∴AD=DE,∵DE:EC=3:1,∴DE=6,∴BC=AD=DE=6.故答案为6.14.【答案】【解析】【分析】除以一个数相当于乘以这个数的倒数,按照顺序运算.主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.【解答】解:=××=.故答案为.15.【答案】25解:由图可看出,A,B的面积和等于其相邻的直角三角形的斜边的平方,即等于最大正方形上方的三角形的一个直角边的平方;C,D的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A,B,C,D四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是25,即正方形A,B,C,D的面积的和为25.故答案为25.根据题意仔细观察可得到正方形A,B,C,D的面积的和等于最大的正方形的面积,已知最大的正方形的边长则不难求得其面积.此题结合正方形的面积公式以及勾股定理发现各正方形的面积之间的关系.16.【答案】8【解析】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OD=OB,∴OA=OB,∵∠AOB=60°,∴△ABO是等边三角形,∴OA=AB=4cm,∴AC=2OA=8cm,故答案为8.根据等边三角形的性质首先证明△AOB是等边三角形即可解决问题.本题考查矩形的性质、等边三角形的判定等知识,解题的关键是发现△AOB是等边三角形,属于基础题,中考常考题型.17.【答案】8解:∵四边形ABCD是菱形,∴AD=AB=4,∵AE=EB=2,∵DE⊥AB,∴∠AED=90°在Rt△ADE中,DE==2,∴菱形ABCD的面积=AB•DE=4•2=8,故答案为8.利用勾股定理求出DE,根据菱形ABCD的面积=AB•DE计算即可.本题考查菱形的性质,勾股定理,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.18.【答案】【解析】解:=(1+1)=2,=(2+1)=3,=(3+1)=4,…,故答案为:.根据所给例子,找到规律,即可解答.本题考查了实数平方根,解决本题的关键是找到规律.19.【答案】解:(1)原式=4--+=3;(2)原式=(2+4)(-2)-(2-2+3)=2(+2)(-2)-(5-2)=2×(2-12)-5+2=-20-5+2=-25+2.【解析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把各二次根式化为最简二次根式,然后利用平方差公式和完全平方公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25-x)2,x=10.故:E点应建在距A站10千米处.【解析】关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt△CBE中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.21.【答案】解:如图所示:.【解析】由10个小正方形拼成的一个大正方形面积为10,边长为,由=画分割线.本题考查了作图的运用及设计作图.根据作图前后,图形的面积保持不变,根据矩形及正方形的面积计算公式,设计作图方法.22.【答案】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE.又∵AF=CE,∴四边形AECF是平行四边形,∴AE=CF.【解析】由四边形ABCD是平行四边形,可得AF∥CE,又AF=CE,所以四边形AECF是平行四边形.则该平行四边形的对边相等:AE=CF.本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.23.【答案】解:(1)∵四边形ABCD是矩形,∴OB=OC,∠ABC=90°,又∵∠BOC=120°,∴∠OBC=∠OCB=30°,∴AB=AC=×6=3;(2)∵AB2+BC2=AC2,∴BC==3,∴矩形ABCD的面积=AB×BC=3×3=9.【解析】(1)根据OB=OC,∠ABC=90°,以及∠BOC=120°,可得出∠OBC=∠OCB=30°,进而得到AB=AC=3;(2)根据勾股定理即可得出BC==3,进而得出矩形ABCD的面积.本题主要考查了矩形的性质以及勾股定理的运用,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.24.【答案】3.5 2【解析】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.八年级下册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.化简16的值为(A)A.4 B.-4 C.±4 D.22.要使二次根式4+x有意义,x的取值范围是(D)A.x≠-4 B.x≥4 C.x≤-4 D.x≥-43.下列各组数中,以a,b,c为边的三角形不是直角三角形的是(C)A.a=2 2,b=2 3,c=2 5 B.a=32,b=2,c=52C.a=6,b=8,c=10 D.a=5,b=12,c=13 4.下列二次根式中,化简后不能与3进行合并的是(C)A.13 B.27 C.32 D.125.顺次连接四边形ABCD各边的中点,若得到的四边形EFGH为菱形,则四边形ABCD一定满足(A)A.对角线AC=BD B.四边形ABCD是平行四边形C.对角线AC⊥BD D.AD∥BC6.下列各式计算正确的是(B)A.3 3-3=3 B.8×2=8×2C.323×4 3=6 3 D.215+2 3= 57.如图,在△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE 的长度是(C)A.5 B.5.5 C.6 D.6.5,第7题图),第9题图),第10题图)8.已知菱形的周长为20,一条对角线长为6,则菱形的面积为(B)A.48 B.24 C.18 D.129.如图,把菱形ABCD沿AH折叠,点B落在BC边上的点E处.若∠BAE=40°,则∠EDC 的大小为(B)A.10°B.15°C.18°D.20°10.如图,点E,G分别是正方形ABCD的边CD,BC上的点,连接AE,AG,分别交对角线BD于点P,Q.若∠EAG=45°,BQ=4,PD=3,则正方形ABCD的边长为(A) A.6 2 B.7 C.7 2 D.5二、填空题(每小题3分,共18分)11.化简:50-72=.12.在Rt△ABC中,∠C=90°,AC=4 cm,BC=3 cm,AB边上的高是______cm.13.计算:(6-2 3)2=.14.如图,点E,F是正方形ABCD内两点,且BE=AB,BF=DF,∠EBF=∠CBF,则∠BEF的度数为__45°__.,第14题图),第15题图),第16题图)15.如图,在矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,CB′的长为.16.如图,在菱形ABCD中,对角线AC=6,BD=8,点E是边AB的中点,点F,P分别是BC,AC上的动点,则PE+PF的最小值是______.三、解答题(共72分)17.(8分)计算:4 12-1318.【解析】原式=22-2= 2.18.(8分)如图,在▱ABCD中,对角线AC与BD交于点O,经过点O的直线交AB于点E,交CD于点F,连接DE,BF.(1)求证:四边形DEBF是平行四边形;(2)当EF与BD满足条件__EF⊥BD__时,四边形DEBF是菱形.【解析】(1)∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,∠DFO=∠OEB,在△DOF和△BOE中.∠FDO=∠EBO,∠DFO=∠BEO,OD=OB,∴△DOF≌△BOE(AAS).∴OE=OF.又∵OD=OB,∴四边形DEBF是平行四边形.19.(8分)计算(7+4 3)(2-3)2-(2+3)(2-3)+3的值.【解析】原式=1-1+3= 3.20.(8分)如图,在▱ABCD中,点E是BC的中点.连接AE并延长,交DC的延长线于点F,且AF=AD,连接BF.求证:四边形ABFC是矩形.【解析】∵四边形ABCD为平行四边形,∴AD=BC,AB∥DC.∴∠ABE=∠ECF.又∵E 为BC的中点,∴BE=CE.在△ABE和△FCE中,∠ABE=∠ECF,BE=CE,∠AEB=∠FEC,∴△ABE≌△FCE(ASA),∴AB=CF.又∵AB∥DC,∴四边形ABFC为平行四边形.∵BC=AD,AF=AD,∴BC=AF.∴四边形ABFC为矩形.21.(8分)如图,在四边形ABCD中,AB=3,BC=4,CD=5,AD=5 2,∠ABC=90°.求对角线BD的长.【解析】连接AC,作DE⊥BC于点E.由勾股定理,得AC=5.由勾股定理逆定理,得△ACD 为直角三角形.易证:△ABC≌△CED,∴AB=CE=3,BC=DE=4.∴BE=7.在Rt△BED中,由勾股定理,得BD=65.22.(10分)如图①,△ACB和△ECD都是等腰直角三角形,其中CA=CB,CE=CD,并且△ACB的顶点A在△ECD的斜边DE上.(1)求证:AE2+AD2=2AC2;(2)如图②,若AE=2,AC=2 5,点F是AD的中点,直接写出CF的长是.【解析】(1)如图,连接BD,∵△DEC与△ABC都是等腰直角三角形,∴∠ECD=∠ACB,∴∠ECA=∠DCB.又∵EC=DC,AC=BC,∴△ECA≌△DCB.∴AE=BD,∠E=∠BDC=45°.∴∠ADB=90°,∴BD2+AD2=AB2,∴AE2+AD2=AB2=2AC2.23.(10分)如图,正方形ABCD中,点E为BC边上一动点,作AF⊥DE分别交DE,DC 于点P,F,连接PC.(1)若点E为BC的中点,求证:点F为DC的中点;(2)若点E为BC的中点,PE=6,PC=4 2,求PF的长;(3)若正方形的边长为4,直接写出PC的最小值为.【解析】(1)易证△ADF≌△DCE,∴DF=CE.∵点E为BC的中点,∴BC=2CE.又∵BC=DC,∴CD=2CE=2DF.∴点F为DC的中点.(2)如图,延长PE到点N,使得EN=PF,连接CN,∵∠AFD=∠DEC,∴∠CFP=∠CEN.又∵E,F分别是BC,DC的中点,∴CE=CF.∵在△CEN和△CFP中,CE=CF,∠CEN=∠CFP,EN=PF,∴△CEN≌△CFP(SAS).∴CN=CP,∠ECN=∠PCF.∵∠PCF+∠BCP=90°,∴∠ECN+∠BCP=∠NCP=90°.∴△NCP是等腰直角三角形.∴PN=PE+NE=PE+PF=2PC,∴PF=2PC-PE=8-6=2.(3)提示:取AD中点M,连接CM,PM,由两点之间线段最短,易得PC≥CM-PM.24.(12分)如图①,在平面直角坐标系中,正方形ABCO的顶点C、A分别在x轴、y轴上,A(0,6),E(0,2),点H、F分别在边AB、OC上,以H,E,F为顶点作菱形EFGH.(1)当点H坐标为(-2,6)时,求证:四边形EFGH为正方形;(2)若点F坐标为(-5,0),求点G的坐标;(3)如图②,点Q为对角线BO上一动点,D为边OA上一点,DQ⊥CQ,点Q从点B出发,沿BO方向移动.若点Q移动的路径长为3,直接写出CD的中点M移动的路径长为________.图①图②【解析】(1)证明:∵H(-2,6),∴AH =OE =2,∠HAE =∠EOF =90°.∵四边形EFGH 为菱形,∴HE =EF.在Rt △HAE 与Rt △EOF 中,EH =EF ,AH =OE ,∴Rt △HAE ≌Rt △EOF(HL),∴∠FEO =∠EHA ,∵∠EHA +∠HEA =90°∴∠FEO +∠HEA =90°,∴∠HEF =90°,∴四边形EFGH 为正方形.(2)如图①,作GT ⊥直线AB 于点T ,连接HF.∵AB ∥OC ,GH ∥EF ,∴∠THF =∠HFO ,∠GHF =∠HFE.∴∠THG =∠EFO.∵∠T =∠EOF =90°,HG =FE ,∴△GTH ≌△EOF(AAS).∴HT =OF ,GT =OE.∵EF =OF 2+OE 2=29,∴EH =EF =29.AE =6-2=4,∴AH =EH 2-AE 2=13.∴G(-5-13,4).(3)提示:如图②,作QG ⊥BC 于点G ,延长GQ 交AO 于点K.当点Q 在点B 处时,点D 与点A 重合,CD 的中点即为CA 的中点,即对角线的交点P ,则CD 的中点M 移动的路径长为PM 的长.连接QA ,如图所示,△BGQ 是等腰直角三角形,∴AK =BG =22BQ =322.由正方形的对称性,得CQ =QA.易证△CQD 是等腰直角三角形,∴CQ =AQ =QD.∴AD =2AK =3 2.∵点P 是AC 的中点,点M 是CD 的中点,∴PM =12AD =322.最新人教版八年级(下)期中模拟数学试卷(含答案)一、选择题(共10小题,每小题3分,共30分)下列各题均有四个备选选项,其中有且只有一个正确,请在答题卷上将正确答案的字母涂黑.1x 的取值范围是A .1x ≥B . 1x > C. 1x ≤ D .1x < 2.下列计算错误..的是A.B.C. ÷D. 3.下列各组数是三角形的三边,不能组成直角三角形的一组数是 A. 3,4,5 B. 6,8,10 C. 1,1,2D.,, 4.点(3,-1)到原点的距离为A .B .3C .1D 5.已知实数x 、y ()210y +=,则x ﹣y 等于A. 3B. ﹣3C. 1D. ﹣16.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠A BE 为EA. 100B.150C.200D. 2507.()21计算的结果为A .28-.10-28-.10-8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为A 1)B .(2,1)C .(2D.(19.如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A .当E ,F ,G ,H 是各边中点,且AC=BD 时,四边形EFGH 为菱形B .当E ,F ,G ,H 是各边中点,且AC ⊥BD 时,四边形EFGH 为矩形 C .当E ,F ,G ,H 不是各边中点时,四边形EFGH 可以为平行四边形 D .当E ,F ,G ,H 不是各边中点时,四边形EFGH 不可能为菱形10.如图,三个相同的正方形拼成一个矩形ABCD ,点E 在BC 上,BE=2,EC=10,FM ⊥AE 交AB 于F ,交CD的延长线于M ,则FM 的长为A .58B .56C .262D .372二、填空题(共6小题,每小题3分,共18分)11= .12.在实数范围内分解因式:52-x = .13.在菱形ABCD 中,对角线AC =2,BD =4, 则菱形ABCD 的周长是 . 14.如图,在矩形ABCD 中,∠DAC=65°,点E 是CD 上一点,BE 交AC 于点F ,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C ′处,则∠AFC ′= .15.AD 是△ABC 的高,AB=4,AC=5,BC=6,则BD= .16.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则ADBC 的值为__________.三、解答题(共8小题,共72分) 17.(本题8分)计算:(1) (2))(8381412---.18.(本题8分)已知:1a =,1b =.求:(1)a b -的值;(2)ab 的值;(3)a bb a+的值.19.(本题8分)如图,某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行163n mile,“海天”号每小时航行 4n mile.它们离开港口一个半小时后分别位于点Q 、R 处,且相ABCD第15题图距10n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?20.(本题8分)已知:如图,在ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.21.(本题8分)如图,每个小正方形的边长都为1. (1)请直接写出:四边形ABCD 的面积是 ; (2)求点B 到AD 的距离.22.(本题10分)如图,在矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(1)若PCD ∆是等腰三角形时,求AP 的长;CBDAABODFCE(2)求证:PC⊥CF.24.(本题12分)已知点E ,F ,M ,N 分别在矩形ABCD 的边DA ,AB ,BC ,CD 上. (1)如图1,若EM 垂直平分BD ,求证:四边形BMDE 是菱形; (2)如图2,若∠MAN=∠NMC=45°,求证:MC 2=ND 2+BM 2;(3)如图3,若四边形EFMN 是平行四边形,AB=4,BC=8,求四边形EFMN 周长的最小值.2017∼2018学年度下学期八年级期中考试数学参考答案1 .A 2.B 3.D 4.D 5.A 6.B 7.C 8.C 9.D 10.B11.2 12.(x x 13. 14. 40︒ 15.941617.(1)解:原式=2632⨯⨯=. (4分)(2)解:原式=(8分)18.(1) 解:原式)11-=2-. (2分)(2) 解:原式=)11=1. (4分)(3)解:原式2211(8分)19.根据题意,161.58,4 1.56,10.3PQ PR QR =⨯==⨯==(2分)222228610,P QP RQ R +=∴+=.(4分) 90QPR ∴∠=︒.(6分)由"远航"号沿东北方向航行可知,45,45NPQ RPN ∠=︒∴∠=︒.(7分) 答:"海天"号沿西北方向航行.(8分)20.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,(2分)∴∠F =∠E ,∠DCA =∠CAB ,(4分) ∵AB =CD ,FD =BE ,∴CF =AE ,(5分) ∴△COF ≌△AOE ,(7分) ∴OE =OF .(8分)(方法二:连接FA 、CE,证四边形FAEC 是平行四边形,也可.)21 . 解:(1)14.5 (4分)(2)连BD ,设B 到AD 的距离为d ,可求90BCD ∠=︒ , AD ==5分)152B C D S=⨯=(6分) 114.552ABD S h ∆∴=-=(7分) h ∴=(8分)22.解:(1)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°, ∴DC=AB=6,;(1分)要使△PCD 是等腰三角形,有如下三种情况: ①当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2分)②当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD =∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3分) ③当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC =185= ,∴PC=2CQ =365,∴AP=AC-PC=145 .(6分)综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145.(2)连接PF 、DE ,记PF 与DE 的交点为O ,连接OC , 四边形ABCD 是矩形,190,,2BCD OE OD OC ED ∴∠=︒=∴=(7分)在矩形PEFD中,PF DE =,∴12OC PF =,(8分)12OP OF PF ==,OC OP OF ∴==, OCF OFC ∴∠=∠,OCP OPC ∠=∠(9分)又180OPC OFC PCF ∠+∠+∠=︒,22180O C P O C F ∴∠+∠=︒,90PCF ∴∠=︒(10分),ACB ∠=O A 又OM AC ⊥ ②证明:取AB 的中点E ,AC 的中点F ;连接EF,DF ,过P 作PH AQ ⊥于H ,在Rt APH ∆中 2AP t = 30A ∠=︒, AH ∴=又CQ =, AF=CFHF QF ∴=(7分) 又∵D 是PQ 的中点 DF PH ∴PH AC ⊥90ACB ∠=︒PH BC ∴DF BC ∴(8分) ∵E 、F 分别是AB 、AC 的中点 EF BC ∴(9分)∴D 在△ABC 的中位线EF 上.(10分)24.证明:(1)∵EM 垂直平分BD 90EOD MOB ∴∠=∠=︒ OB=OD ∵四边形ABCD 是平行四边形 AD BC ∴ ADB CBD ∴∠=∠ ∴△DOE ≌△BOM ∴OE=OM(2分)又OB=OD EM ⊥BD ∴四边形BMDE 是菱形(3分)(2)延长MN 分别交AB 、AD 的延长线于点E 、F ,作M A F M A E'∠=∠,截取AM AM '=,连接,M N M F '',则有45AFN FND CNM CMN BME E ∠=∠=∠=∠=∠=∠=︒, 45M AN M AF FAN MAE FAN MAN ''∠=∠+∠=∠+∠=︒=∠,又∵AM AM '=AN AN =,MAN ∴∆≌M AN '∆(4分) M N MN '∴=,45MFA E ︒∠=∠= AF AE ∴=又∵AM AM '= MAFMAE '∠=∠MAF '∴∆≌MAE ∆(5分) ∴M F ME '= M FA E '∠=∠ 则90M FN '∠=︒, 在Rt M FN '∆中,222M N FN M F ''=+,(6分)在Rt MBE ∆中,222ME MB =, 在Rt FDN ∆中,222FN DN =, 在Rt MCN ∆中,222MN MC =,2222222M C M N M NB M D N '∴===+,222MC BM DN ∴=+(8分)(3)在矩形ABCD 及四边形EFMN 是平行四边形可证明AF=CN, (9分)如图,延长DC 至N ’,截CN ’=CN,连接FN ’交BC 于M ’,连接MN ’、AC.则有MN ’=MN, 由三角形中两边之和大于第三边易知,无论F 点在什么位置,点M 在M ’处时 FM+MN=FN ’=AC=, (11分) 故四边形EFMN周长的最小值为.(12分)人教版八年级数学下册期中考试试题【含答案】 一.选择(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个正确选项) 1.(4分)要使代数式有意义,则下列关于x 的描述正确的是( ) A .最小值是1B .最大值是1C .最小值是﹣1D .最大值是﹣12.(4分)以下列数组作为三角形的三条边长,其中能构成直角三角形的是( ) A .1,,3B .,,5C .1.5,2,2.5D .,,3.(4分)下列等式成立的是( ) A .=B .3+C .2D .=34.(4分)如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB =BC 时,它是菱形B .当AC =BD 时,它是正方形 C .当∠ABC =90°时,它是矩形A D FB N图3C MEN ’ MD.当AC⊥BD时,它是菱形5.(4分)设路程为s(km),速度为v(km/h),时间为t(h),当s=60时,v=,在这个函数关系式中()A.s是常量,t是s的函数B.v是常量,t是v的函数C.t是常量,v是t的函数D.s是常量,t是自变量,v是t的函数6.(4分)如图,平面直角坐标系中,点A是y轴上一点,B(6,0),C是线段AB中点,且OC=5,则点A的坐标是()A.(0,8)B.(8,0)C.(0,10)D.(10,0)7.(4分)已知菱形ABCD的对角线AC与BD交于点O,则下列结论正确的是()A.点O到顶点A的距离大于到顶点B的距离B.点O到顶点A的距离等于到顶点B的距离C.点O到边AB的距离大于到边BC的距离D.点O到边AB的距离等于到边BC的距离8.(4分)如图:正方形ABCD的面积是1,E、F分别是BC、DC的中点,则以EF为边的正方形EFGH的周长是()A.+1B.C.2+1D.29.(4分)厦门的各所初高中学校,都有部分同学骑自行车上下学,骑行安全成为各校安全教育的常规,若骑行速度超过300米/分钟,就超越了安全限度.周六刘明骑自行车到学校自习,当他骑了一段时间后,想到需先选购一本参考书,于是折回刚经过的新华书。

小满镇中心学校八年级数学第二学期期中考试测试卷(七)

小满镇中心学校八年级数学第二学期期中考试测试卷(七)

小满镇中心学校八年级数学第二学期期中考试测试卷(七)1、1、在x 1、21、212+x 、πxy 3、y x +3、m a 1+中分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个2、如图,用不等式表示数轴上所示的解集,正确的是( ) A .<x D .31≤<-x 3、已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值范围是( ) A .2>x B .2<x C .2->x D . 2-<x 4、小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本( )本 A .7 B .6 C .5 D .4 5、下列各式中从左到右的变形,是因式分解的是( ) (A)(a +3)(a -3)=a 2-9 (B)x 2+x -5=(x -2)(x +3)+1 (C)a 2b +ab 2=ab (a +b ) (D)x 2+1=x (x +x 1) 6、下列多项式中不能用平方差公式分解的是( ) (A)-a 2+b 2 (B)-x 2-y 2 (C)49x 2y 2-z 2 (D)16m 4-25n 2p 2 7、下列分解因式错误的是( )。

A 、15a 2+5a=5a(3a+1) B 、-x 2-y 2=-(x 2-y 2)=-(x+y)(x-y) C 、k(x+y)+x+y=(k+1)(x+y) D 、1-a 2-b 2+2ab=(1+a-b)(1-a+b) 8、当x 为任意实数时,下列分式一定有意义的是( ) (A )212-x ; (B )112+x ; (C )||1x ; (D )21+x . 9、若2249y kxy x +-是一个完全平方式,则k 的值为( )A 、6B 、±6C 、12D 、±1210、把分式b a a+2中的a 、b 都扩大2倍,则分式的值是( )。

八年级数学第二学期期中考试试卷

八年级数学第二学期期中考试试卷

八年级数学第二学期期中考试试卷考生注意:1、本卷考试时间120分钟,满分150分;2、请在密封线内填写清楚班级、姓名、学号;3、请不要在密封线内填写答案;一、精心选一选(本大题共12题,每小题3分,计36分 )在每小题给出的四个选项中,只有一个是符合题目要求的。

请把正确的选项的字母代号填入下表中相应的题号下面。

1.如果a >b ,下列各式中不正确...的是 ( ) A .a -3>b -3 B .-2a <-2b C .2a >2b D . a 1<b12.下列分式中是最简分式的是 ( )A.122+x x B.x 24 C.112--x x D.11--x x 3.下列不等式解法正确的是 ( )A .如果221>-x ,那么1-<x . B. 如果x x 3223->,那么0<x . C .如果33-<x ,那么1->x . D. 如果0311<-x ,那么0>x4.的取值范围是则x x x ,6556-=- ( ) A .65>x B.65<x C.65≤x D.65≥x 5.若分式yx xy-中的x 、y 的值都变为原来的3倍,则此分式的值 ( ) A.不变 B.是原来的3倍 C.是原来的13 D.是原来的166.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 ( ) A.(-a ,-b ) B.(a ,-b ) C.(-a ,b ) D.(0,0)7.下列不等式组中,无解的是 ( )A.2x+3<03x+2>0⎧⎨⎩B. 3x+2<02x+3>0⎧⎨⎩C. 3x+2>02x+3>0⎧⎨⎩D. 2x+3<03x+2<0⎧⎨⎩8.一根蜡烛经凸透镜成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u +1v = 1f.若u =12㎝,f =3㎝,则v 的值为 ( ) A .8㎝ B .6㎝ C .4㎝ D .2㎝ 9.如果反比例函数xky =的图像经过点(-3,-4),那么函数的图像应在( ) A. 第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限 10.不等式组⎩⎨⎧>-<+-mx x x 62的解集是4>x ,那么m 的取值范围是 ( )A .4≥mB .4≤mC .4<mD .4=m11.若分式231-+x x 的值为零,则x 等于 ( )A.0B.1C.32D.-112. 如图,点P 是x 轴上的一个动点,过点P 作x 轴的垂线PQ交双曲线于点Q,连结OQ, 当点P 沿x 轴正半方向运动时,Rt △QOP 面积 ( ) A.逐渐增大 B.逐渐减小 C.保持不变 D.无法确定二、细心填一填(本大共8题,每小题4分,计32分) 13.写出一个不等式,使它的解集是x>-3:14.当x 时,式子121x -有意义。

小满镇中心学校八年级数学第二学期期中考试测试卷(三)

小满镇中心学校八年级数学第二学期期中考试测试卷(三)

小满镇中心学校八年级数学第二学期期中考试测试卷(三)一、精心选一选(每题3分,共30分)1.不等式22->x的解集是 ( )A x>2B x<-4C x>-2D x>-4 2、分解因式2242x y xy xy +--的结果是( )A 、224(2)x y xy xy +--B 、(421)xy x y --+-C 、(421)xy x y --+D 、(42)xy x y -- 3、若5ax ≥,则正确的结论是 ( )A 、5x a≥ B 、5x a≤ C 、5x a> D 、以上结论均不对4、若不等式组{3x x n ><有解,则n ( )A 、n ≥3B 、n ≤3C 、 n>3D 、n<3 5、要使分式1(1)(2)x x x ---有意义,则x 应满足的条件是( )A 、x ≠1B 、x ≠2C 、x ≠1且x ≠2D 、x ≠1或x ≠2 6、下列各式从左边到右边的变形,属分解因式的是( ) A 、3353()5x y x y +-=+- B 、2(1)(1)1x x x +-=- C 、2111()()422x x x -=+- D 、(1)x x y x y+=+ (x ≠0)7、多项式26x x +提取公因式后,剩下的因式是 ( ) A 、31x - B 、3x C 、4x D 、41x -8、下列命题中正确的是 ( ) A 、所有等腰三角形都相似 B 、所有直角三角形都相似C 、所有等边三角形都相似D 、所有矩形都相似 9、如果方程243(3)x x x x x =+--出现增根,那么增根一定是( ) A 、0 B 、3 C 、0或3 D 、110、不等式-3x +6>0的正整数解有 ( ) A 、1个 B 、2个 C 、3个 D 、无数多个 二、耐心填一填(每题3分,共30分)11、当x 时,分式15x x +-有意义;当x 时,分式242x x -+的值为0.12、x+y =6,xy=4,则22x y xy +的值为 . 13、2x -( )+225y =( )2 14、已知234xy z ==,则2x y z x++= . 15、不等式02>-x 的解集是_____。

小满镇中心学校八年级数学第二学期期中考试测试卷(四)

小满镇中心学校八年级数学第二学期期中考试测试卷(四)

第 1 页 共 2 页小满镇中心学校八年级数学第二学期期中考试测试卷(四)(考试时间100分钟,满分120分)姓 名 班 级 座 号 得分一、选择题:(每题3分,共39分,)1、不等式x 4316+>的正整数解的个数是( )(A) 1个 (B) 3个 (C) 4个 (D) 无数个2、下列说法正确的是( ) (A) 如果1>a ,则110<<a(B) 如果1<a ,则11>a(C) 如果02>a ,则0>a (D) 如果01<<-a ,则12>a3、如果线段a 、b 满足3b 2a =,那么bba +的值是( )A 、35 B 、52 C 、32 D 、37 4.、下列运算正确的是( )(A )ab ab 22= (B )a bc a c b =++ (C )1y x y x -=+-- (D )a 2d b a d a b +=+ 5、某县计划在一定时间造林m 公顷,原计划每月造林a 公顷,现每月多造林b 公顷,则可比原计划少用( )月。

(A )b a m + (B )b a m a m +- (C )bm (D )a mb a m -+6、下列各式的因式分解中正确的是( )(A)-a 2+ab -ac =-a (a +b -c ) (B)9xyz -6x 2y 2=3xyz (3-2xy )(C)3a 2x -6bx +3x =3x (a 2-2b ) (D)21xy 2+21x 2y =21xy (x +y )7. 如图,1l 反映的是某公司产品的销售收入与销售量的关系,2l 反映的该公司产品的销售成本与销售量的关系,根据图象判断该公司盈利时销售量为( ) (A).小于4件; (B). 等于4件;(C). 大于4件; (D) 大于或等于4件. 8. 解关于x 的方程113-=--x mx x 产生增根,则常数m 的值等于( ) (A) -1 (B) -2 (C) 1 (D) 2.9.有旅客m 人,如果每n 个人住一间客房,还有一个人无房间住,则客房的间数为( )(A)n m 1-; (B)n m 1+; (C).n m - 1; (D). n m+ 1. 10若将abba +(a 、b 均为正数)中的字母a 、b 的值分别扩大为原来的3倍,则分式的值( )(A)扩大为原来的3倍 ; (B)缩小为原来的91; (C)不变; (D) 缩小为原来的31.11使分式1122+-x x 有意义的x 的取值为( )(A)x≠±1 ;(B )x≠1; (C) x≠-1;(D) x 为任意实数 .12已知关于x 的不等式2x-a >-3的解如图所示,则a 的值等于( ) (A)-1 (B)0 (C)1(D) 2. 13、. 如果(m+1)x > m+1的解集为x < 1,则m 的取值范围是( )(A)m<0 ; (B) m<-1; (C)m>-1;(D)m 是任意实数二、填空题(每空3分共33分)14、两地相距350千米,在1﹕10000000的地图上相距 厘米15、已知31b b a 2=-,那么b a的值为______. 16、在实数范围内分解因式:x 3 -2x=__________________. 17、用“>”,“<”或“=”号填空:(1)4÷(-6)____5÷(-6);(2)a <b <0,则a 2____ab 。

八级第二学期期中考试数学试卷及答案

八级第二学期期中考试数学试卷及答案

八年级数学下学期期中测试(时间:120分钟 总分:120分)一、选择题(每小题3分,共30分)1.在式子a 1,π xy 2,2334a b c ,x + 65, 7x +8y ,9 x +y 10 ,xx 2 中,分式的个数是( )A .5B .4C .3D .2 2. 下列各式,正确的是( )A .1)()(22=--a b b a B .b a b a b a +=++122C .b a b a +=+111D .x x ÷2=2 3. 下列关于分式的判断,正确的是( )A .当x =2时,21-+x x 的值为零B .无论x 为何值,132+x 的值总为正数 C .无论x 为何值,13+x 不可能得整数值 D .当x ≠3时,x x 3-有意义4. 把分式)0,0(22≠≠+y x yx x中的分子分母的x 、y 都同时扩大为原来的2倍,那么分式的值将是原分式值的( ) A .2倍 B .4倍 C .一半 D .不变 5. 下列三角形中是直角三角形的是( )A .三边之比为5∶6∶7B .三边满足关系a +b =cC .三边之长为9、40、41D .其中一边等于另一边的一半6.如果△ABC 的三边分别为12-m ,m 2,12+m ,其中m 为大于1的正整数,则( )A .△ABC 是直角三角形,且斜边为12-m B .△ABC 是直角三角形,且斜边为m 2C .△ABC 是直角三角形,且斜边为12+m D .△ABC 不是直角三角形7.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为( )A. 20 B .22 C . 24 D . 26 8.已知函数xky =的图象经过点(2,3),下列说法正确的是( ) A .y 随x 的增大而增大B.函数的图象只在第一象限C .当x <0时,必有y <0 D.点(-2,-3)不在此函数的图象上9.在函数xky =(k >0)的图象上有三点A 1(x 1, y 1 )、A 2(x 2, y 2)、A 3(x 3, y 3 ),已知x 1<x 2<0<x 3,则下列各式中,正确的是( )A.y 1<y 2<y 3B.y 3<y 2<y 1C. y 2<y 1<y 3D.y 3<y 1<y 210.如图,函数y =k (x +1)与xky =(k <0)在同一坐标系中,图象只能是下图中的( )二、填空题(每小题2分,共20分)11.不改变分式的值,使分子、分母的第一项系数都是正数,则________=--+-yx yx . 12.化简:3286aba =________; 1111+--x x =___________. 13.已知a 1 -b 1 =5,则bab a bab a ---2232+ 的值是.14.正方形的对角线为4,则它的边长AB =.15.如果梯子的底端离建筑物9M ,那么15M 长的梯子可以到达建筑物的高度是______M.16.一艘帆船由于风向的原因先向正东方向航行了160km ,然后向正北方向航行了120km ,这时它离出发点有____________km.17.如下图,已知OA =OB ,那么数轴上点A 所表示的数是____________.18.某食用油生产厂要制造一种容积为5升(1升=1立方分M )的圆柱形油桶,油桶的底面面积s 与桶高h 的函数关系式为.第14题图19.如果点(2,3)和(-3,a )都在反比例函数xky =的图象 上,则a =.20.如图所示,设A 为反比例函数xky =图象上一点,且矩形ABOC 的面积为3,则这个反比例函数解读式为. 三、解答题(共70分)21.(每小题4分,共16分)化简下列各式: (1)422-a a +a -21 (2))()()(3222aba b b a -÷-⋅-(3))252(423--+÷--x x x x(4)(y x x - -y x y -2 )·yx xy 2- ÷(x 1 +y 1 ).22.(每小题4分,共8分)解下列方程: (1)223-x +x -11 =3.(2)482222-=-+-+x x x x x .第20题图23.(6分)比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16M 的银杏树下参加探讨环境保护问题的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度.24.(6分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 相距50M ,结果他在水中实际游的路程比河的宽度多10M ,求该河的宽度AB 为多少M ?25.(6分)如图,一个梯子AB 长2.5 M ,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5M ,梯子滑动后停在DE 的位置上,测得BD 长为0.5M ,求梯子顶端A 下落了多少M ?B C A26.(8分)某空调厂的装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调.(1)从组装空调开始,每天组装的台数m (单位: 台/天)与生产的时间t (单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?27.(10分)如图,正方形OABC 的面积为9,点O 为坐标原点,点B 在函数x k y =(k >0,x >0)的图象上,点P (m 、n )是函数xk y =(k >0,x >0)的图象上任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S . (1)求B 点坐标和k 的值;(2)当S =92 时,求点P 的坐标;(3)写出S 关于m 的函数关系式.28.(10分)如图,要在河边修建一个水泵站,分别向张村A 和李庄B 送水,已知张村A 、李庄B 到河边的距离分别为2km 和7km ,且张、李二村庄相距13km .(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;(2)如果铺设水管的工程费用为每千M1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?期中综合测试AB河边l1.B 2.A 3.B 4.C 5.C 6.C 7.C 8.C 9.C 10.B 11.yx yx +- 12.a b 43,122-x 13.114.2415.12 16.20017.5-18.h s 5=19.-2 20. x y 3-= 21.(1)21+a ;(2)32b a ;(3))3(21+-x ;(4)2222xy y x - 22.(1)67=x ;(2)2-=x 不是原方程的根,原方程无解 23.蜗牛神的速度是每小时6M ,蚂蚁王的速度是每小时24M 24.1200M 25.先用勾股定理求出AC=2M ,CE=1.5M ,所以AE=0.5M26.(1)m = 9000t ;(2)180 27.(1)B (3,3),k =9;(2)(32 ,6),(6,32 );(3)S = 9- 27m 或S = 9-3m 28.(1)作点A 关于河边所在直线l 的对称点A ′,连接A ′B交l 于P ,则点P 为水泵站的位置,此时,P A +PB 的长度之和最短,即所铺设水管最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小满镇中心学校八年级数学第二学期期中考试测试卷
一.选择题(每小题3分,共30分) 1、分式
ax
1 , bx c 3- , 351cx 的最简公分母是 ( )
A 、3
5cx B 、abcx 15 C 、3
15abcx - D 、3
15abcx
2、当x 为任意实数时,下列分式一定有意义的是( )
A 、
212-x B 、112
+x C 、|
|1
x D 、21+x 3、下列各式从左到右,是因式分解的是 ( ) A 、(y -1)(y +1)=2y -1 B 、1)(122-+=-+y x xy xy y x
C 、(x -2)(x -3)=(3-x )(2-x )
D 、22)2(44-=+-x x x 4、代数式
m n ;y x -2 ; πh
2 ;y
x +15中,是分式的有几个 ( ) A 、1个 B 、2个 C 、3个 D 、4个 5、如果把分式
b
a ab
+中的a 、b 都扩大2倍,那么分式的值一定 ( ) A 、是原来的2倍 B 、是原来的4倍 C 、是原来的2
1 D 、不变
6
、如果不等式组
m
x x x >-<+1
48 的解集是x>3,则m 的取值范围是 ( )
A 、m ≥3
B 、m ≤3
C 、m =3
D 、m <3
7、完成某项工程,甲单独做需a 天,乙单独做需b 天,甲乙两人合作完成这项工程 的天数是 ( )
A 、
天ab b a + B 、天b a ab + C 、天2b a + D 、天b
a +1
8、下列各式中,一定成立的是 ( )
A 、1-=---b a a b
B 、b a b a b a +=++22
C 、x y y
x xy y x -=---122
2 D 、()2
222a b b ab a +=+- 9.一元一次不等式组⎩⎨⎧-≤-3
312 x x 的解集在数轴上表示正确的是 ( )
A
2
B
-3
C
-3
D
10.下列各多项式中,能用完全平方公式分解因式的是( ) A.412+
-a a B.13922++xy y x C.444
12+-x x D.963
6--x x 二.填空题(每题3分,共30分)
11.不等式2x -7<0的正整数解是 。

12、当x 时,分式242+-x x 的无意义;当x 时,分式2
4
2+-x x 值为零;
13.若b a ,则3____3--b a ,
4
___4--b
a 。

14、约分:223
912y
x xy - ;
=--m m
m 12 。

15、一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此
商品最多打 折。

16、分解因式4m 2 - 36n 2= 。

考场 学号 班级 姓名
密 封 线 内 不 要 答 题
17、已知z y x 4
32==,则x z y x 2++=_______________。

18、计算:b a a b 25222⋅ = 。

19、若16
1
2
++kx x 是一个完全平方式,则k = __________.
20、改善生态环境,防止水土流失,某村拟定在荒坡上种植960棵树,由于青年志愿者
的支持,每日比原计划多种20棵,结果提前4天完成任务。

原计划每天种多少棵?设原计划每天种x 棵,由题意得方程:_________________________________; 三、解答题 (第21、22、23、24题各6分,第25、26题各8分,共40分) 21、解不等式
312
5
->+-x x ,并把它的解集在数轴上表示出来。

22、解不等式组 ⎪⎩⎪
⎨⎧--≥++<-1312215)1(315x x x x 23、 因式分解 9(m +n)2-(m -n)2
24、解方程 221242-=+-x x x x 25、计算:⎪⎭
⎫ ⎝⎛--+x x 111
26、先化简,再求值:a a a a a
112132-⋅
⎪⎭⎫ ⎝⎛+--,其中3=a
四、实际应用题(第27题8分,第28题12分,共20分)
27、沿山精密铸钢厂加工1200个零件后,采用了新工艺,工效是原来的
4
5
倍,这样加工同样多的零件就少用12h 。

采用新工艺前、后每小时分别加工多少个零件?
28、 如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时
间变化的图像.根据图像解答下列问题: (1)在轮船快艇中,哪一个的速度较大? (2)分别写出路程y 与时间x 关系式。

(3)当时间x 在什么范围内时,快艇在轮船的后面?当时间x 在什么范围内时,快艇在轮船的前面?。

相关文档
最新文档