3.2空间向量解决角度问题

合集下载

2020-2021学年高中数学 第三章 空间向量与立体几何 3.2 第3课时 用空间向量解决空间角与

2020-2021学年高中数学 第三章 空间向量与立体几何 3.2 第3课时 用空间向量解决空间角与

2020-2021学年高中数学第三章空间向量与立体几何3.2 第3课时用空间向量解决空间角与距离问题课时跟踪训练新人教A版选修2-1年级:姓名:用空间向量解决空间角与距离问题[A 组 学业达标]1.如图,正四棱柱ABCD ­A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为( ) A.15 B.25 C.35D.45解析:以D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系Dxyz , 设AB =1.则B (1,1,0),A 1(1,0,2),A (1,0,0),D 1(0,0,2),A 1B →=(0,1,-2),AD 1→=(-1,0,2),cos 〈A 1B →,AD 1→〉=A 1B →·AD 1→|A 1B →||AD 1→|=-45×5=-45,∴异面直线A 1B 与AD 1所成角的余弦值为45.答案:D2.二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°解析:由条件,知CA →·AB →=0,AB →·BD →=0, CD →=CA →+AB →+BD →.∴|CD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD → =62+42+82+2×6×8cos〈CA →,BD →〉 =(217)2,∴cos 〈CA →,BD →〉=-12,〈CA →,BD →〉=120°,∴二面角的大小为60°. 答案:C3.把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( ) A .30° B .90° C .120°D .60°解析:OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 答案:C4.正方体ABCD ­A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( )A.23B.33C.23D.63解析:建系如图,设正方体棱长为1, 则BB 1→=(0,0,1). ∵B 1D ⊥面ACD 1,∴取DB 1→=(1,1,1)为面ACD 1的法向量. 设BB 1与平面ACD 1所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪BB 1→·DB 1→|BB 1→||DB 1→|=13=33,∴cos θ=63. 答案:D5.如图所示,在几何体A ­BCD 中,AB ⊥平面BCD ,BC ⊥CD ,且AB =BC =1,CD =2,点E 为CD 中点,则AE 的长为( ) A. 2 B.3 C .2 D.5解析:AE →=AB →+BC →+CE →, ∵|AB →|=|BC →|=1=|CE →|, 且AB →·BC →=AB →·CE →=BC →·CE →=0. 又∵AE →2=(AB →+BC →+CE →)2, ∴AE →2=3, ∴AE 的长为 3. 故选B.答案:B6.如图,在正三棱柱ABC­A1B1C1中,已知AB=1,点D在棱BB1上,且BD=1,则AD与平面AA1C1C所成角的正弦值为________.解析:取AC、A1C1的中点M、M1,连接MM1、BM.过D作DN∥BM,交MM1于点N,则容易证明DN⊥平面AA1C1C.连接AN,则∠DAN就是AD与平面AA1C1C所成的角.在Rt△DAN中,sin∠DAN=ND AD=322=64.答案:647.正方体ABCD­A1B1C1D1中,直线BC1与平面A1BD所成的角的正弦值是________.解析:如图,以DA、DC、DD1分别为x轴,y轴,z轴建立空间直角坐标系,取正方体的棱长为1,则A(1,0,0),B(1,1,0),C1(0,1,1),易证AC1→是平面A1BD的一个法向量.AC1→=(-1,1,1),BC1→=(-1,0,1).。

高中数学选修2-1课件:3.2 第3课时 空间向量与空间角

高中数学选修2-1课件:3.2 第3课时 空间向量与空间角

反思与感悟
解析答案
跟踪训练2 如图,正方形AMDE的边长为2,B,C分别为AM,MD的中
点,在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分
别交于点G,H. (1)求证:AB∥FG;
证明 在正方形AMDE中,因为B是AM的中点,
所以AB∥DE.
又因为AB⊄平面PDE,DE⊂平面PDE,
-1),C→E=(1,t-2,0),
根据数量积的定义及已知得:1+0×(t-2)+0= 2× 1+t-22·cos 60°,
所以t=1,所以点E的位置是AB的中点.
解析答案
题型二 直线与平面所成角的向量求法 例2 已知正三棱柱ABCA1B1C1的底面边长为a ,侧棱长为 2a ,M为 A1B1的中点,求BC1与平面AMC1所成角的正弦值.
D.90°
解析 ∵cos〈m,n〉= 12= 22,
∴二面角的大小为45°或135°.
解析答案
12345
3.在正三棱柱ABC—A1B1C1中,若AB= 2BB1,则AB1与C1B所成角的大 小为( )
A.60°
B.90°
C.105°
D.75°
解析答案
12345
4.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的余弦值为( )
232Fra bibliotekA. 3
B. 3
C.3
6 D. 3
解析答案
12345
5.在长方体ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,则异面直 9
线A1B与B1C所成角的余弦值为_2_5__. 解析 如图,建立空间直角坐标系. 由已知得A1(4,0,0),B(4,4,3),B1(4,4,0),C(0,4,3). ∴A→1B=(0,4,3),B→1C=(-4,0,3), ∴cos〈A—1→B,B—1→C〉=295.

空间向量求角

空间向量求角
3.2.3立体几何中的向量方法 ——空间“角”问题
空间的角常见的有:线线角、线面角、面面角
一、复习引入
用空间向量解决立体几何问题的“三步曲”。
(1)建立立体图形与空间向量的联系,用空间向 量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题;
再次演示课件
法向量法
n1,n2
n2
n1,n2 n2
n1
n1
l
l
cos cos n1, n2 cos cos n1, n2
结论:cos cos n1, n2
注意法向量的方向:同进 同出,二面角等于法向量
夹角的补角;
关键:观察二面角的范围
一进一出,二面角等于法 向量夹角
四3 、实教践学操过作程的设计与实施
问题1:
二面角的平面角AOB 能否转化成向量的夹角?
B
O l
A
AOB OA,OB
二面角 OA,OB
四、教学过程的设计与实施
2 探究方法
二面角 n1, n2
要点梳理
②方向向量法:
将二面角转化为二面角的两个面的方向向量(在 二面角的面内且垂直于二面角的棱)的夹角.
设二面角α-l-β的大小为θ,其中
z
S
O
Cy
B
sin cos OS, n OS n 2 6
OS n 1 6 3
C(0,1,0); O(0,0,0);
S(0,0,1), 于是我们有
SA =(2,0,-1);AB =(-1,1,0);
OB =(1,1,0);OS =(0,0,1);

高中数学 2-1 3.2.3空间向量与空间角 3.2.4空间向量与空间距离 教案

高中数学 2-1 3.2.3空间向量与空间角 3.2.4空间向量与空间距离 教案

3.2.3空间向量与空间角(一)教学目标1.知识与技能:掌握空间立体几何中用向量方法求角度问题2.过程与方法:通过分析、推导让学生掌握空间立体几何中用向量方法求角度问题。

3。

情感、态度与价值观:通过学生对问题的探究思考,广泛参与,提高学习质量,会用空间想像思维解决生活中实际问题。

(二)教学重点与难点重点:掌握空间立体几何中用向量方法求角度问题难点:掌握空间立体几何中用向量方法求角度问题(三)教学过程活动一:创设情景、引入课题问题1:在空间中,用空间向量解决立体几何的步骤? 问题2:空间中的距离有多少种?用空间向量如何解决?今天我们将在前面学习的基础上,进一步学习空间向量来表示并进行解决一些角度的应用.点题:今天我们学习“用空间向量方法求角度问题”活动二:师生交流、进入新知问题3:回忆立体几何中有那些空间角?求空间角有那些步骤?1 异面直线所成的角 范围 0°<θ≤90°方法 ①平移法;②补形法2 直线与平面所成的角 范围 0°≤θ≤90°方法 关键是作垂线,找射影3 二面角方法 ①定义法;②三垂线定理及其逆定理;③垂面法4、空间角的计算步骤 一作、二证、三算问题4:想一想平面向量中两个向量的数量积的定义呢?a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a b a b ⋅⋅,可求两个向量的数量积或夹角问题;新课:三种空间角的向量法计算公式: ⑴线线角:异面直线,a b 所成的角θ:cos cos ,a b θ=<>;⑵线面角:直线a 与平面α(法向量n )所成的角θ:sin cos ,a n θ=<>;⑶二面角:锐二面角θ:cos cos ,m n θ=<>,其中,m n 为两个面的法向量.活动三:合作学习、探究新知利用向量知识求线线角,线面角,二面角的大小。

(1)异面直线a、b所成的角:在空间中任取一点O,过点O分别引/a∥a,/b∥b,则/a,/b所成的锐角(或直角)叫做两条异面直线所成的角。

高中数学 3.2.3用空间向量求空间角课件 新人教A版选修

高中数学 3.2.3用空间向量求空间角课件 新人教A版选修

uuur uuuur x uAuFur1 • uBuDuur1
1 1 4
30
| AF1 || BD1 |
5 3 10
42
30
所以 BD与1 A所F1成角的余弦值为 10
[悟一法] 利用向量求异面直线所成的角的步骤为: (1)确定空间两条直线的方向向量; (2)求两个向量夹角的余弦值; (3)确定线线角与向量夹角的关系;当向量夹角为锐角时, 即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向 量夹角的补角.
z
(1)求证: 直线B1O 面MAC;
(2)求二面角
uuur
Bu1uur
MA
uuuur
C
的余弦值.
D1
①证明:以 DA、DC、DD1为正交基底, A1 建立空间直角坐标系如图。则可得
M
uuur
uuuur
所以MA (2,0,1),MC (0,2,1),
uuur B1O (1,1, 2)
D O
A(2,0,0),C(0,2,0),M (0,0,1), A
xB
3
AD与平面ANM所成角的正弦值是3 34 34
Dy
C
[悟一法] 利用向量法求直线与平面所成角的步骤为: (1)确定直线的方向向量和平面的法向量; (2)求两个向量夹角的余弦值; (3)确定线面角与向量夹角的关系:向量夹角为锐角 时,线面角与这个夹角互余;向量夹角为钝角时,线面角 等于这个夹角减去90°.
①向量法
D1
C1 ② 传统法
A1
B1
O
D A
C B
练习:在长方体 ABCD A1B1C1D1中, AB 6, AD 8,
AA1 6, M为B1C1上的一点,且B1M 2, 点N在线段A1D上,

立体几何中的向量方法空间角

立体几何中的向量方法空间角

点 A 到平面 MNC 的距离为 a . 2
P
N
D
C
M
A
B
4. 异面直线间旳距离
已知a,b是异面直线, CD为a,b旳公垂线,
n是直线CD的方向向量,
A,B分别在直线a,b上
b
n
C A
DB a
n AB d CD
n
例.已知:直三棱柱ABC A1B1C1的侧棱AA1 4, 底面ABC中, AC BC 2, BCA 900, E为AB的中点。求CE与AB1的距离。
由(1)知D(0,0,0),P(0,0,1),
z P
B(1,1,0),E(0,1 ,1) 22
E
y
PD (0,0,1),EB (1,1 , 1)
C
B
22
x
G
00 1
cos PD,EB
2
D
6
A
13
6
2
所以EB与底面ABCD所成旳角旳正弦值为 6
6
所以EB与底面ABCD所成旳角旳正切值为
5 5
练习5: 如图,在四棱锥P-ABCD中,底面ABCD是 正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC旳中 点,作EF⊥PB交PB于点F.
|
6 3
即所求二面角得余弦值是 6 3
1. 三棱锥P-ABC PA⊥ABC,PA=AB=AC,
BAC 900,E为PC中点 ,则PA与BE所成角旳
余弦值为____6_____ . 6
2. 直三棱柱ABC-A1B1C1中, A1A=2, BAC 900 AB=AC=1, 则AC1与截面BB1CC1所成 角旳余弦值为__31_01_0_____ .
x

3.2立体几何中的向量方法 第3课时 空间向量与空间角 课件

3.2立体几何中的向量方法 第3课时 空间向量与空间角 课件

研一研· 问题探究、课堂更高效
3.2 第3课时
例 2 如图所示,已知直角梯形 ABCD,其中 AB=BC=2AD,AS⊥平面 ABCD, AD∥BC, AB⊥BC, 且 AS=AB.求直线 SC 与底面 ABCD 的夹角 θ 的余弦值.

由题设条件知,以点 A 为坐标原点,
分别以 AD、AB、AS 所在直线为 x 轴、y 轴、z 轴建立空间直角坐标系(如图所示). 设 AB=1,则 A(0,0,0),B(0,1,0), 1 C(1,1,0),D2,0,0,S(0,0,1). → → ∴AS=(0,0,1),CS=(-1,-1,1).
3.2 第3课时

建立如图所示的空间直角坐标系,则
O(0,0,0),O1(0,1, 3),A( 3,0,0), A1( 3,1, 3),B(0,2,0), → → ∴A1B=(- 3,1,- 3),O1A=( 3,-1,- 3). → → → → |A1B· O1A| ∴|cos〈A1B,O1A〉|= → → |A1B|· |O1A| |- 3,1,- 3· 3,-1,- 3| 1 = =7. 7· 7 1 ∴异面直线 A1B 与 AO1 所成角的余弦值为 . 7
3.2 第3课时
∴PB⊥AD. 又∵PB⊥DM,DM∩AD=D, ∴PB⊥平面 ADMN, → 即PB为平面 ADMN 的一个法向量. → → 因此〈PB,DB〉的余角即是 BD 与平面 ADMN 所成的角. → → PB· DB 4 1 → → ∵cos〈PB,DB〉= = = , → → 2 2×2 2 2 |PB||DB| π π → → ∴〈PB,DB〉=3,∴BD 和平面 ADMN 所成的角为6.
研一研· 问题探究、课堂更高效
3.2 第3课时

3.2空间向量运算的坐标表示及应用(模与夹角)课件高二上学期数学北师大版选择性

3.2空间向量运算的坐标表示及应用(模与夹角)课件高二上学期数学北师大版选择性

例 1 如图,在直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°, 棱AA1=2,M,N分别是AA1,CB1的中点. (2)求△BMN的面积.
解答:以C为原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图.
例 2 在棱长为1的正方体ABCD-A1B1C1D1中,E,F,G分别是DD1, BD,BB1的中点. (1)求证:EF⊥CF;
向量夹角的坐标表示
一一对应
向量的运算
a+b =(x1+x2,y1+y2,z1+z2) a-b =(x1-x2,y1-y2,z1-z2) λa =(λx1,λy1,λz1)
a·b =x1x2+y1y2+z1z2
向量的平行与垂直
环节一
空间向量长度和 夹角的坐标表示
1、空间向量长度和夹角的坐标表示
回顾:在平面向量中我们如何求向量的长度?
求模先平方 求模小勾股
求模先平方 求模小勾股
1、空间向量长度和夹角的坐标表示
求向量的模首先要用坐标表示出该向量!
推广:
1、空间向量长度和夹角的坐标表示
求哪两个向量的夹角的余弦值,用哪两个向量的数量积除以 它们的模积
例 1 若向量a=(1,-1,2),b=(2,1,-3),则|a+b|=
( D)
A.
B.2
C.3
D.例2A.3源自°B.60°C.120°
C D.150°
例 3 已知向量a=(2,-3,1),b=(2,0,3),c=(0,2,2).求: (1)|a+b-2c|; (2)cos<a-b,b-c>.
环节二
空间向量 的综合应用
例 1 如图,在直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°, 棱AA1=2,M,N分别是AA1,CB1的中点. (1)求BM,BN的长;

高中数学_3.2 空间向量在立体几何中的应用教学设计学情分析教材分析课后反思

高中数学_3.2 空间向量在立体几何中的应用教学设计学情分析教材分析课后反思

专题七 立体几何第2课时 空间关系与空间角命题人: 审核人: 时间:教学班级行政班级 姓名 学号 面批时间课前自学案【考情分析】立体几何是高考的重点内容之一,从近几年高考试题来看,主要是考查线面位置关系的判断与证明;三是考查空间向量的应用,尤其空间向量法求空间角(特别是二面角)是考查的热点之一.主要问题类型:(1)空间线面关系的证明;(2)空间角的求法;(3)存在性问题的处理方法.求解时应注意的问题:(1)利用空间向量求异面直线所成的角时,应注意角的取值范围; (2)利用空间向量求二面角的平面角时,应注意观察二面角是钝角还是锐角. 【要点梳理】1.平行关系及垂直关系的转化2.空间角的求解(1)异面直线所成的角:若异面直线l 1和l 2的方向向量分别为v 1和v 2,它们所成的角为θ(0<θ≤π2),则cos θ=|cos 〈v 1,v 2〉|.(2)线面角:设直线l 与平面α所成的角为θ(0≤θ≤π2),直线l 的方向向量为a ,平面α的法向量为μ,则sin θ=|cos 〈a ,μ〉|=|a ·μ||a ||μ|. (3)二面角:设二面角大小为θ(0≤θ≤π),两个面的法向量分别为μ和v ,则|cos θ|=|cos 〈μ,v 〉|=|μ·v ||μ||v |.易错警示:①求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,是线面角的正弦,容易误以为是线面角的余弦.②求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析.编号012【课前自测】1.(2013年高考卷理 4)已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面积是边长为 3的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 ( )(A ) 512π (B )3π (C ) 4π (D ) 6π2.(2009年高考卷理5)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件课内探究案【考点突破】考点一:空间位置关系的判定例1.(1)(2013年高考广东卷理科6)设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥(2)平面α∥平面β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α变式训练:(1) (2014年高考广东卷理 7)若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是( )A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定(2)设m 、n 是不同的直线,α、β是不同的平面,有以下四个命题:①若α⊥β,m ∥α,则m ⊥β ②若m ⊥α,n ⊥α,则m ∥n ③若m ⊥α,m ⊥n ,则n ∥α ④若n ⊥α,n ⊥β,则β∥α 其中真命题的序号为( )A .①③B .②③C .①④D .②④ 考点二:空间位置关系的证明例2.(2013广东卷文)如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三图 4GEF ABCD图 5DGBFCAE棱锥A BCF -,其中22BC =.(1) 证明:DE //平面BCF ;(2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.考点三:空间角的求解例3.(12理18)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB=60°,FC ⊥平面ABCD ,AE ⊥BD ,CB=CD=CF. (Ⅰ)求证:BD ⊥平面AED ;(Ⅱ)求二面角F -BD -C 的余弦值.【当堂检测】1. 【2014全国2高考理第11题】直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.3010D.22 2. 已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为_____________.3. 【2014高考全国1第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B AB 1⊥.(Ⅰ)证明:1AB AC =;(Ⅱ)若1AC AB ⊥,︒=∠601CBB ,BC AB =,求二面角111C B A A --的余弦值.专题七 立体几何编号第2课时 空间关系与空间角命题人: 审核人: 时间:教学班级 行政班级 姓名 学号 面批时间课后拓展案A 组1. 【2014高考卷第17题】如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点. (Ⅰ)求证:111//C M A ADD ;(Ⅱ)若1CD 垂直于平面ABCD 且13CD =,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.2.【2014高考天津第17题】如图,在四棱锥PABCD 中,PA 底面ABCD ,AD AB ,//AB DC ,2AD DC AP ,1AB ,点E 为棱PC 的中点.(Ⅰ)证明:BE DC;(Ⅰ)求直线BE与平面PBD所成角的正弦值;(Ⅰ)若F为棱PC上一点,满足BF AC,求二面角F AB P的余弦值.B组3.(2013年高考北京卷理科17)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面AB C⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求二面角A1-BC1-B1的余弦值;(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求1BDBC的值.4.【2014高考全国2第18题】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,3求三棱锥E-ACD的体积.反思:这节课不满意的几点:(1) 题量的安排。

3.2.3空间的角的计算

3.2.3空间的角的计算
问题情境
我们知道,两个平面所成的角是用二面角的平面角来度 量.这就是说,空间的二面角最终可以通过转化,用两条相交 直线所成的角来度量.
如何用向量的方法来求空间二面角的大小呢?
1
建构数学
在定义了平面的法向量之后,我们就可以用平面的法向量来求两个 平面所成的角.
方法一:转化为分别是在二面角的两个半平面内且与棱都垂直的两 条直线上的两个向量的夹角(注意:要特别关注两个向量的方向).
如图:二面角 α-l-β 的大小为 θ,A,B∈l,AC α,BD β, AC⊥l,
BD⊥l ,则 θ=< AC , BD >=< CA , DB >.
l
A
ቤተ መጻሕፍቲ ባይዱ
C
B D
2
数学应用
例 3 在正方体 ABCD A1B1C1D1 中, 求二面角 A1 BD C1 的大小.
3
练一练
如图,在三棱锥 P-ABC 中,PA⊥底面 ABC,PA=AB,∠ABC=60°, ∠BCA=90°,点 D,E 分别在棱 PB 和 PC 上,且 DE//BC.
①求证:BC⊥平面 PAC; ②当 D 为 PB 的中点时,求 AD 与平面 PAC 所成的角的大小; ③是否存在点 E,使得二面角 A-DE-P 为直二面角?并说明理由.
4
回顾小结
本节课学习了以下内容: 1.用向量方法解决二面角的计算问题. 2.注重数形结合,注重培养我们的空间想象能力.
5

3.2.3空间角分解

3.2.3空间角分解


1

2
2
(0 1

1 2 2
,0 2 )
n B
而利用 cos 2 从而再求出
2 AB n
AB n
可求
2 ,

A
2
1
1
n
2. 线面角
设直线l的方向向量为 a ,平面 的法向量为 直线 l 与平面 所成的角为 ( 0 ≤ ≤ ),则
空间“角度”问题
复习引入
用空间向量解决立体几何问题的“三步曲”。
(1)建立立体图形与空间向量的联系,用空间向
量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题; (化为向量问题) (2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题; (进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。 (回到图形)

2
), 则
cos
ab a b
l
l
a


a b
m
例1 Rt ABC中,BCA 90 , 现将 ABC沿着
0
平面ABC的法向量平移到A1B1C1位置,已知
求BD1与AF1所成的角的余弦值.
F1
取A1B1、AC BC CA CC1, 1 1的中点D 1、F 1,
2
u ,且
a u

sin
au a u
a

l


u
3.二面角的平面角
①方向向量法 如图(2),设二面角 l 的大 小为 其中AB l , AB , CD l , CD

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3向量法解决空间角和距离问题省公开课一等奖

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3向量法解决空间角和距离问题省公开课一等奖

则点 P0 到直线 l 的距离 d= =|1a| |P→P0|·|a|2-|P→P0·a|2.
|P→P0|2-P→P|a0|·a2
11/64
(2)点到平面距离 用空间向量法求点到平面距离详细步骤以下: 先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面 的法向量上的射影长.如图,设 n=(a,b,c)是平面 α 的一个法向量, P0(x0,y0,z0)为 α 外一点,P(x,y,z)是平面 α 内
答案 解析
A. 2
√B. 3
C. 5
D.3
以O为坐标原点,建立如图所表示空间直角坐标系.
由题意可知A(1,0,0),B(0,2,0),C(0,0,2),
∴A→B=(-1,2,0),B→C=(0,-2,2),
|A→B|=
1+4+0=
→→ 5,|AB→·BC|=
2.
|BC|
∴点 A 到直线 BC 的距离 d= 5-2= 3.
∠O1OB=60°,∠AOB=90°,且OB=OO1=2,OA= 3,求异面直线
A1B与AO1所成角余弦值大小.
解答
14/64
反思与感悟
在处理立体几何中两异面直线所成角问题时,若能构建空间直角坐标系, 则建立空间直角坐标系,利用向量法求解.但应用向量法时一定要注意向 量所成角与异面直线所成角区分.
√D.
615或-
15 6
0,-1,3·2,2,4 由 1+9× 4+4+16 =
-2+12 10× 24=
615,
知这个二面角的余弦值为 615或- 615,故选 D.
1 2 3 4 555/64
2.已知三棱锥O-ABC,OA⊥OB,OB⊥OC,OC⊥OA,且OA=1,OB

3.2 向量法解决角度问题

3.2  向量法解决角度问题

解 由(1)知OC⊥AB,OA1⊥AB. 又平面ABC⊥平面AA1B1B,交线为AB, 所以OC⊥平面AA1B1B, 故OA,OA1,OC两两垂直,以O为坐标原点, 建立如图所示的空间直角坐标系Oxyz.
设 AB=2,则 A(1,0,0),A1(0, 3,0),C(0,0, 3),B(-1,0,0), 则B→C=(1,0, 3),B→B1=A→A1=(-1, 3,0), A→1C=(0,- 3, 3).
证明 取AB的中点O,连接OC,OA1,A1B. 因为CA=CB,所以OC⊥AB. 由于AB=AA1,∠BAA1=60°, 故△AA1B为等边三角形,所以OA1⊥AB. 因为OC∩OA1=O,所以AB⊥平面OA1C. 又A1C⊂平面OA1C,故AB⊥A1C.
(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正 弦值.
3,1,-
3· 7×
3,-1,- 7
3|=17.
∴异面直线 A1B 与 AO1 所成角的余弦值为17.
反思感悟 求异面直线夹角的方法 (1)传统法:作出与异面直线所成角相等的平面角,进而构造三角形求解. (2)向量法:在两异面直线 a 与 b 上分别取点 A,B 和 C,D,则A→B与C→D可分
30 C. 30
15 D. 15
解析 建立如图所示的空间直角坐标系,设正方体的棱长为2,
则B1(2,2,2),M(1,1,0),D1(0,0,2),N(1,0,0), ∴B→1M=(-1,-1,-2),
D→1N=(1,0,-2),
∴cos〈B→1M,D→1N〉=
-1+4 1+1+4×
= 1+4
30 10 .
所以 O(0,0,0),B1( 3,0,2),C1(0,1,2),

高中数学选修2-1第三章3.2立体几何的向量方法(3)——空间角

高中数学选修2-1第三章3.2立体几何的向量方法(3)——空间角

C
D CA, DB
进行向量运算
d2

2
AB

( AC

CD

DB)2
A
图3
2
2
2
AB CD BD 2(AC CD AC DB CD DB)
a2 c2 b2 2AC DB
a2 c2 b2 2CA DB
于是,得 2CA DB a2 b2 c2 d 2
3.2立体几何的向量方法(3)
• 空间向量与空间角
例 1、如图,在正方体 ABCD A1B1C1D1中,M、N 分别是
棱 CD、CC1的中点,则异面直线 A1M 与 DN 所成的角
的大小是
.
法二 以 D 为原点,DA、DC、DD1所在直线为坐标轴建立 空间直角坐标系,设 AB=1,
则 D(0,0,0),N0,1, 1 ,
15
例2:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B
处。从A,B到直线 l(库底与水坝的交线)的距离AC和BD分别为
a 和 b ,CD的长为 c, AB的长为d。求库底与水坝所成二面角的余弦值。
解:如图,AC a,BD b,CD c,AB d.
化为向量问题

B
根据向量的加法法则 AB AC CD DB
a, b), 1 a2 b2
2

0
C1(0, 0, b),
z C1
2
∵ CC1B在坐标平面yoz中
C
∴ 可取 n=(1,0,0)为面CC1B的法向量 x
D
设面 C1BD 的一个法向量为 m ( x, y, z)

3.2利用空间向量求二面角

3.2利用空间向量求二面角
AD (1,
SD. 得n (2, 1,1)
0, 0)是平面SAB的法向量,
cos AD, n AD n 6 | AD || n | 3
4.求两法向量夹角
所求二面角的余弦值为: 6 3
5.定值
巩固练习1: 正方体ABCD—A1B1C1D1的棱长为2,点Q 是BC的中点,求二面角A—DQ—A1的余弦 值.
3.2利用空间向量求二面角
温故知新
已学习:二面角及二面角的平面角的概念
会:建立空间直角坐标系 进行向量坐标运算 求平面的法向量
已掌握:用向量求解线线角、线面角的方法
温故知新 1.二面角的定义
从一条直线出发的两个半平面所组成的图形叫做二面角。
2.二面角的范围: [0, ]
O
探究方法
问题1:
求直线和平面所成的角可转化成直线的方向向量与 平面的法向量的夹角,那么二面角的大小与两个半 平面的法向量有着怎样的关系呢?
高考链接
(2019.18)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4, AB=2,∠BAD=60°,E,M,N 分别是BC,BB1,A1D 的中点.
(1)证明:MN∥平面C1DE; (2)求二面角A-MA1-N的正弦值.
z
【点睛】
本题考查线面平行关系的证明、空
间向量法求解二面角的问题.求解二
面角的关键是能够利用垂直关系建
立空间直角坐标系,从而通过求解
O
法向量夹角的弦值来得到二面角
的正弦值,属于常规题型.
x
y
n
a
n1 n2
l
探究方法
问题2:二面角的大小与两个平面法向量夹角的关系?
n1,n2
n1,n2

高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。

3.2立体几何中的向量方法第3课时 空间向量与空间角 教案(人教A版选修2-1)

3.2立体几何中的向量方法第3课时 空间向量与空间角 教案(人教A版选修2-1)

第3课时空间向量与空间角●三维目标1.知识与技能(1)理解直线与平面所成角的概念.(2)能够利用向量方法解决线线、线面、面面的夹角求法问题.(3)体会空间向量解决立体几何问题的三步曲.2.过程与方法经历规律方法的形成推导过程、解题的思维过程,体验向量的指导作用.3.情感、态度与价值观通过学习向量及其运算由平面向空间推广的过程,逐步认识向量的科学价值、应用价值和文化价值,提高学习数学的兴趣,树立学好数学的信心.●重点难点重点:向量法求解线线、线面、面面的夹角.难点:线线、线面、面面的夹角与向量夹角的关系.(教师用书独具)●教学建议按照传统方法解立体几何题,需要有较强的空间想象能力、演绎推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量法处理立体几何问题,实现了几何问题代数化,把对空间图形的研究从“定性推理”转化为“定量计算”,即将复杂的几何论证转化为代数运算,从而避免了几何作图,减少了逻辑推理,降低了难度,学生易于操作,容易接受.本节课宜采取的教学方法:(1)诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.(2)分组讨论法:有利于学生进行交流,及时发现问题,解决问题,培养学生的互相合作精神.(3)讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.学法方面,自主探索、观察发现、类比猜想、合作交流.建构主义学习理论认为,学习是学生积极主动的建构知识的过程,学习应该与学生熟悉的背景相联系.在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、归纳、思考、探索、交流、反思、参与学习,认识和理解数学知识、学会学习,发展能力.●教学流程创设问题情境,提出空间中两条异面直线的夹角、直线与平面的夹角、二面角的取值范围各是多少?⇒通过引导学生回答问题,分析空间角大小与向量夹角的关系,并进一步得出用向量求空间角的方法.⇒通过例1及其变式训练,使学生掌握利用向量求异面直线所成角的方法及注意事项.⇒通过例2及其变式训练,使学生掌握利用向量求直线与平面所成的角.⇒通过例3及其变式训练,解决利用向量求二面角问题.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.课标解读1.理解直线与平面所成角的概念.(重点)2.会用向量法求线线、线面、面面夹角.(重点、难点)3.正确区分向量夹角与所求线线角、面面角的关系.(易错点)空间角的向量求法【问题导思】1.空间中两条异面直线所成角的范围是多少?【提示】(0,π2].2.直线与平面的夹角是怎样定义的?夹角的范围是多少?【提示】 平面外一条斜线与它在该平面内的射影所成的角叫斜线与平面所成的角,其取值范围为[0,π2].3.怎样作出二面角α-l -β的平面角?其平面角的取值范围是多少?【提示】 在二面角α-l -β的棱l 上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 就是二面角α-l -β的平面角.它的取值范围是[0,π].角的分类向量求法范围 两异面直线l 1与l 2所成的角θ设l 1与l 2的方向向量为a ,b ,则cos θ=|cos a ,b|=|a·b ||a ||b |(0,π2]直线l 与平面α所成的角θ设l 的方向向量为a ,平面α的法向量为n ,则sin θ=|cos a ,n|=|a·n ||a ||n |[0,π2]二面角α-l -β的平面角θ设平面α,β的法向量为n 1,n 2,则|cos θ|=|cos n 1,n 2|=|n 1·n 2||n 1|·|n 2|[0,π]求异面直线所成的角图3-2-17如图3-2-17,在三棱锥V -ABC 中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x 轴、y 轴、z 轴上,D 是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.【自主解答】 由于AC =BC =2,D 是AB 的中点, 所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0)当θ=π3时,在Rt △VCD 中,CD =2,∴V (0,0,6),∴AC →=(-2,0,0),VD →=(1,1,-6), ∴cos 〈AC →,VD →〉=AC →·VD →|AC →||VD →|=-22×22=-24.∴异面直线AC 与VD 所成角的余弦值为24.1.几何法求异面直线的夹角时,需要通过作平行线将异面直线的夹角转化为平面角,再解三角形来求解,过程相当复杂;用向量法求异面直线的夹角,可以避免复杂的几何作图和论证过程只需对相应向量运算即可.2.由于两异面直线夹角θ的范围是(0,π2],而两向量夹角α的范围是[0,π],故应有cosθ=|cos α|,求解时要特别注意.在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,求异面直线A 1B 与B 1C 所成角的余弦值.【解】 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),得A 1B →=(0,4,-3),B 1C →=(-4,0,-3).设A 1B →与B 1C →的夹角为θ,则cos θ=A 1B →·B 1C →|A 1B →||B 1C →|=925,故A 1B →与B 1C →的夹角的余弦值为925,即异面直线A 1B 与B 1C 所成角的余弦值为925.求线面角图3-2-18(2013·泰安高二检测)如图3-2-18所示,三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 所成角的大小. 【思路探究】 (1)怎样建立坐标系?(2)向量CM →与SN →满足什么关系时有CM ⊥SN 成立? (3)SN →的坐标是多少?平面CMN 的一个法向量怎么求?SN →与平面CMN 的法向量的夹角就是SN 与平面CMN 所成的角吗?【自主解答】 设P A =1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系(如图).则P (0,0,1),C (0,1,0),B (2,0,0),又AN =14AB ,M 、S 分别为PB 、BC 的中点,∴N (12,0,0),M (1,0,12),S (1,12,0),(1)CM →=(1,-1,12),SN →=(-12,-12,0),∴CM →·SN →=(1,-1,12)·(-12,-12,0)=0,因此CM ⊥SN .(2)NC →=(-12,1,0),设a =(x ,y ,z )为平面CMN 的一个法向量,∴CM →·a =0,NC →·a =0.则⎩⎨⎧x -y +12z =0,-12x +y =0.∴⎩⎪⎨⎪⎧x =2y ,z =-2y . 取y =1,则得a =(2,1,-2). 因为cos a ,SN →=-1-123×22=-22.∴〈a ,SN →〉=34π.所以SN 与平面CMN 所成角为34π-π2=π4.1.本题中直线的方向向量SN →与平面的法向量a 的夹角并不是所求线面角θ,它们的关系是sin θ=|cos 〈SN →,a 〉|.2.若直线l 与平面α的夹角为θ,利用法向量计算θ的步骤如下:如图3-2-19,正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,求BE 与平面B 1BDD 1所成角的余弦值.图3-2-19【解】 如图,建立空间直角坐标系,设正方体的棱长为2,则B (2,2,0),B 1(2,2,2),E (0,2,1),BD →=(-2,-2,0),BB 1→=(0,0,2),BE →=(-2,0,1).AC →=(-2,2,0)即平面B 1BDD 1的一个法向量,设n =(-1,1,0). cos 〈n ,BE →〉=n ·BE →|n ||BE →|=105.设BE 与平面B 1BD 所成角为θ,cos θ=sin 〈n ,BE →〉=155,即BE 与平面B 1BD 所成角的余弦值为155.求二面角图3-2-20如图3-2-20,若正方形ACDE所在的平面与平面ABC垂直,M是CE和AD 的交点,AC⊥BC,且AC=BC,求二面角A-EB-C的大小.【思路探究】(1)根据已知条件,你能建立空间直角坐标系吗?A、B、C、E、M的坐标分别为多少?(2)怎样用法向量法求二面角A-EB-C的大小?【自主解答】∵四边形ACDE是正方形,∴EA⊥AC.又∵平面ACDE⊥平面ABC,∴EA⊥平面ABC.以点A为坐标原点,以过A点平行于BC的直线为x轴,分别以直线AC,AE为y轴、z轴,建立如图所示的空间直角坐标系Axyz.设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2).∵M是正方形ACDE的对角线的交点,∴M(0,1,1).设平面EAB的法向量为n=(x,y,z),则n⊥AE→且n⊥AB→,从而有n·AE→=0且n·AB→=0.又∵AE →=(0,0,2),AB →=(2,2,0),∴⎩⎪⎨⎪⎧ (x ,y ,z )·(0,0,2)=0,(x ,y ,z )·(2,2,0)=0,即⎩⎪⎨⎪⎧z =0,x +y =0.取y =-1,则x =1,则n =(1,-1,0). 又∵AM →为平面EBC 的一个法向量, 且AM →=(0,1,1),∴cos 〈n ,AM →〉=n ·AM →|n ||AM →|=-12.设二面角A -EB -C 的平面角为θ,则cos θ=12,即θ=60°.故二面角A -EB -C 为60°.用向量法求二面角的大小,可以避免作出二面角的平面角这一难点,转化为计算两半平面法向量的夹角问题,具体求解步骤如下:(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量; (3)求两个法向量的夹角;(4)判断所求二面角的平面角是锐角还是钝角; (5)确定二面角的大小.图3-2-21已知正三棱柱ABC -A 1B 1C 1的各条棱长均为a ,D 是侧棱CC 1的中点,求平面AB 1D 与平面ABC 所成二面角(锐角)的大小.【解】 以B 为原点,过点B 与BC 垂直的直线为x 轴,BC 所在的直线为y 轴,BB 1所在直线为z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),C (0,a,0),B 1(0,0,a ),C 1(0,a ,a ),A (-32a ,a 2,0),A 1(-32a ,a2,a ),D (0,a ,a2).故AB 1→=(32a ,-a 2,a ),B 1D →=(0,a ,-a 2).设平面AB 1D 的法向量为n =(x ,y ,z ), 则n ·AB 1→=0,n ·B 1D →=0, 即⎩⎨⎧32ax -a 2y +az =0,ay -a2z =0.得x =-3y ,z =2y .取y =1,则n =(-3,1,2). ∵平面ABC 的法向量是AA 1→=(0,0,a ), ∴二面角θ的余弦值为 cos θ=AA 1→·n |AA 1→||n |=22.∴θ=π4.∴平面AB 1D 与平面ABC 所成二面角(锐角)的大小为π4.对所求角与向量夹角的关系不理解致误正方体ABCD —A 1B 1C 1D 1中,求二面角A -BD 1-C 的大小.【错解】 以D 为坐标原点建立如图所示的空间直角坐标系,设正方体的棱长为1, 则D (0,0,0),A 1(1,0,1),C 1(0,1,1).由题意知DA 1→是平面ABD 1的一个法向量,DA 1→=(1,0,1), DC 1→是平面BCD 1的一个法向量,DC 1→=(0,1,1), 所以cos 〈DA 1→,DC 1→〉=DC 1→·DA 1→|DC 1→|·|DA 1→|=12.所以〈DA 1→,DC 1→〉=60°.即二面角A -BD 1-C 的大小为60°.【错因分析】 用法向量的夹角判断二面角的大小时出现错误,根据法向量的方向可知,二面角为钝角,而不是锐角.【防范措施】 利用法向量求二面角时,要注意法向量的夹角与二面角的大小关系是相等或互补,在求出两向量的夹角后,一定要观察图形或判断法向量的方向来确定所求二面角与其相等还是互补.【正解】 以D 为坐标原点建立如图所示的空间直角坐标系, 设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),C 1(0,1,1).由题意知DA 1→=(1,0,1)是平面ABD 1的一个法向量, DC 1→=(0,1,1)是平面BCD 1的一个法向量.所以cos 〈DA 1→,DC 1→〉=DC 1→·DA 1→|DC 1→|·|DA 1→|=12,所以〈DA 1→,DC 1→〉=60°.所以二面角A -BD 1-C 的大小为120°.利用空间向量求空间角的基本思路是把空间角转化为两个向量夹角的关系,解决方法一般有两种,即坐标法和基向量法,当题目中有明显的线面垂直关系时,尽量建立空间直角坐标系,用坐标法解决.需要注意的是要理清所求角与向量夹角之间的关系,以防求错结果.1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( ) A .30° B .150° C .30°或150° D .以上均不对【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为(0,π2].应选A.【答案】 A2.已知向量m ,n 分别是直线l 与平面α的方向向量、法向量,若cos 〈m ,n 〉=-32,则l 与α所成的角为( )A .30°B .60°C .150°D .120°【解析】 设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=32, ∴θ=60°,应选B. 【答案】 B3.已知平面α的法向量u =(1,0,-1),平面β的法向量v =(0,-1,1),则平面α与β所成的二面角的大小为________.【解析】 cos 〈u ,v 〉=-12·2=-12,∴〈u ,v 〉=23π,而所成的二面角可锐可钝,故也可以是π3.【答案】 π3或23π图3-2-224.如图3-2-22直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =BC =1,CC 1=2,求直线A 1B 与平面BB 1C 1C 所成角的正弦值.【解】 以CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则B (0,1,0),C 1(0,0,2),A 1(1,0,2).则A 1B →=(-1,1,-2),平面BB 1C 1C 的法向量n =(1,0,0). 设直线A 1B 与平面BB 1C 1C 所成角为θ,A 1B →与n 的夹角为φ, 则cos φ=A 1B →·n |A 1B →||n |=-66,∴sin θ=|cos φ|=66.∴直线A 1B 与平面BB 1C 1C 所成角的正弦值为66.一、选择题1.(2013·济南高二检测)已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( )A.52266 B .-52266 C.52222 D .-52222【解析】 AB →=(2,-2,-1),CD →=(-2,-3,-3), ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266,∴直线AB 、CD 所成角的余弦值为52266.【答案】 A2.已知A ∈α,P ∉α,P A →=(-32,12,2),平面α的一个法向量n =(0,-12,-2),则直线P A 与平面α所成的角为( )A .30°B .45°C .60°D .150°【解析】 设直线P A 与平面α所成的角为θ,则sin θ=|cos 〈P A →,n 〉|=|0×(-32)-12×12-2×2|(-32)2+(12)2+(2)2·(-12)2+(-2)2=32.∴θ=60°. 【答案】 C3.正方形ABCD 所在平面外一点P ,P A ⊥平面ABCD ,若P A =AB ,则平面P AB 与平面PCD 的夹角为( )A .30°B .45°C .60°D .90°【解】 如图所示,建立空间直角坐标系,设P A =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD→=(0,1,0).取PD中点为E,则E(0,12,1 2),∴AE→=(0,12,1 2),易知AD→是平面P AB的法向量,AE→是平面PCD的法向量,∴cos AD→,AE→=22,∴平面P AB与平面PCD的夹角为45°.【答案】 B4.(2013·西安高二检测)一个二面角的两个面分别垂直于另一个二面角的两个面,那么这两个二面角()A.相等B.互补C.相等或互补 D.无法确定【解析】举例说明,如图所示两个二面角的半平面分别垂直,则半平面γ绕轴l旋转时,总有γ⊥β,故两个二面角大小无法确定关系.【答案】 D5.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为()A.60°B.90°C.45°D.以上都不对【解析】以点D为原点,分别以DA,DC,DD1所在直线为x轴、y轴、z轴,建立空间直角坐标系,如图.由题意知,A 1(1,0,2),E (1,1,1),D 1(0,0,2),A (1,0,0),所以A 1E →=(0,1,-1),D 1E →=(1,1,-1),EA →=(0,-1,-1).设平面A 1ED 1的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1E →=0,n ·D 1E →=0⇒⎩⎪⎨⎪⎧y -z =0,x +y -z =0.令z =1,得y =1,x =0,所以n =(0,1,1), cos 〈n ,EA →〉=n ·EA →|n ||EA →|=-22·2=-1.所以〈n ,EA →〉=180°.所以直线AE 与平面A 1ED 1所成的角为90°. 【答案】 B 二、填空题6.(2013·荆州高二检测)棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1、BB 1的中点,则异面直线AM 与CN 所成角的余弦值是________.【解析】 依题意,建立如图所示的坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12), ∴AM →=(0,12,1),CN →=(1,0,12),∴cos 〈AM →,CN →〉=1252·52=25,故异面直线AM 与CN 所成角的余弦值为25.【答案】 25图3-2-237.如图3-2-23,在三棱锥O -ABC 中,OA =OB =OC =1,∠AOB =90°,OC ⊥平面AOB ,D 为AB 的中点,则OD 与平面OBC 的夹角为________.【解析】 ∵OA ⊥平面OBC , ∴OA →是平面OBC 的一个法向量. 而D 为AB 的中点,OA =OB , ∴∠AOD =〈OD →,OA →〉=45°.∴OD 与平面OBC 所成的角θ=90°-45°=45°. 【答案】 45°8.在空间中,已知平面α过(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a >0),如果平面α与平面xOy 的夹角为45°,则a =________.【解析】 平面xOy 的法向量为n =(0,0,1),设平面α的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧-3x +4y =0,-3x +az =0, 即3x =4y =az ,取z =1,则u =(a 3,a4,1).而cos 〈n ,u 〉=1a 29+a 216+1=22, 又∵a >0,∴a =125.【答案】125三、解答题图3-2-249.如图3-2-24所示,在四面体ABCD 中,O ,E 分别是BD ,BC 的中点,CA =CB =CD =BD =2,AB =AD = 2.(1)求证AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值.【解】 (1)证明 连结OC ,由题意知BO =DO ,AB =AD ,∴AO ⊥BD . 又BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC 中,由已知可得AO =1,CO =3, 又AC =2,∴AO 2+CO 2=AC 2, ∴∠AOC =90°,即AO ⊥OC . ∵BD ∩OC =O ,∴AO ⊥平面BCD . (2)以O 为坐标原点建立空间直角坐标系, 则B (1,0,0),D (-1,0,0),C (0,3,0),A (0,0,1), E (12,32,0), ∴BA →=(-1,0,1),CD →=(-1,-3,0), ∴cos 〈BA →,CD →〉=BA →·CD →|BA →|·|CD →|=24.∴异面直线AB 与CD 所成角的余弦值为24. 10.四棱锥P —ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AEC ⊥平面PDB ;(2)当PD =2AB 且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.【解】 如图,以D 为原点建立空间直角坐标系Dxyz ,设AB =a ,PD =h ,则 A (a,0,0),B (a ,a,0),C (0,a,0),D (0,0,0),P (0,0,h ), (1)∵AC →=(-a ,a,0),DP →=(0,0,h ),DB →=(a ,a,0), ∴AC →·DP →=0,AC →·DB →=0,∴AC ⊥DP ,AC ⊥DB ,又DP ∩DB =D ,∴AC ⊥平面PDB , 又AC ⊂平面AEC ,∴平面AEC ⊥平面PDB .(2)当PD =2AB 且E 为PB 的中点时,P (0,0,2a ),E (12a ,12a ,22a ),设AC ∩BD =O ,O (a 2,a2,0)连结OE ,由(1)知AC ⊥平面PDB 于O ,∴∠AEO 为AE 与平面PDB 所成的角,∵EA →=(12a ,-12a ,-22a ),EO →=(0,0,-22a ),∴cos ∠AEO =EA →·EO →|EA →|·|EO →|=22,∴∠AEO =45°,即AE 与平面PDB 所成的角的大小为45°.图3-2-2511.如图3-2-25,在长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱BC ,CC 1上的点,CF =AB =2CE ,AB ∶AD ∶AA 1=1∶2∶4.(1)求异面直线EF 与A 1D 所成角的余弦值; (2)证明:AF ⊥平面A 1ED ; (3)求二面角A 1-ED -F 的正弦值.【解】 如图所示,建立空间直角坐标系,点A 为坐标原点,设AB =1,依题意得D (0,2,0),F (1,2,1,)A 1(0,0,4),E (1,32,0).(1)易得EF →=(0,12,1),A 1D →=(0,2,-4).于是cos 〈EF →,A 1D →〉=EF →·A 1D →|EF →||A 1D →|=-35.所以异面直线EF 与A 1D 所成角的余弦值为35.(2)已知AF →=(1,2,1),EA 1→=(-1,-32,4),ED →=(-1,12,0).于是AF →·EA 1→=0,AF →·ED →=0,因此,AF ⊥EA 1,AF ⊥ED ,又EA 1∩ED =E . 所以AF ⊥平面A 1ED .(3)设平面EFD 的法向量u =(x ,y ,z ),则⎩⎪⎨⎪⎧ u ·EF →=0u ·ED →=0,即⎩⎨⎧ 12y +z =0-x +12y =0.不妨令x =1,可得u =(1,2,-1).由(2)可知,AF →为平面A 1ED 的一个法向量.于是cos 〈u ,AF →〉=u ·AF →|u ||AF →|=23, 从而sin 〈u ,AF →〉=53. 所以二面角A 1-ED -F 的正弦值为53.三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)求证AP ⊥BC . (2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【自主解答】 (1)由AB =AC ,D 是BC 的中点得AD ⊥BC ,因为PO ⊥平面ABC , 又BC ⊂平面ABC ,所以PO ⊥BC ,又PO ∩AD =O ,所以BC ⊥平面P AO ,又AP ⊂平面P AO ,所以BC ⊥AP .(2)存在.以O 为坐标原点,以OD ,OP 所在直线分别为y 轴、z 轴,以过O 点且垂直于面POD 的直线为x 轴,建立如图所示的空间直角坐标系,则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4),所以AP →=(0,3,4),BP →=(-4,-2,4),设PM →=λP A →(λ≠1),则PM →=λ(0,-3,-4),所以BM →=BP →+PM →=BP →+λP A →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0),BC →=(-8,0,0),设平面BMC 的一个法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0, 即⎩⎪⎨⎪⎧ -4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0, 令y 1=4-4λ,得⎩⎪⎨⎪⎧ x 1=0,z 1=2+3λ,可取n 1=(0,4-4λ,2+3λ),由题意知平面AMC 与平面APC 是一个平面,∴设平面APC 的一个法向量为n 2=(x 2,y 2,z 2)则⎩⎪⎨⎪⎧AP →·n 1=0AC →·n 2=0即⎩⎪⎨⎪⎧ 3y 2+4z 2=0-4x 2+5y 2=0. 所以⎩⎨⎧ x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由题意得n 1·n 2=0,即4(4-4λ)-3(2+3λ)=0,解得λ=25,故AM =3. 综上所述,存在点M 符合题意,AM =3.。

考点3.2 空间向量与空间角的计算问题(解析版)

考点3.2 空间向量与空间角的计算问题(解析版)

考点3.2 空间向量与空间角的计算问题空间向量与空间角的计算问题是高考重点考查的内容之一,其命题形式多种多样,其中基于问题情境的空间角问题在高考中逐步成为热点。

通过具体的问题背景,考察空间角、空间向量等在问题情境中的应用,以此来检验学生的核心价值,学科素养,关键能力,必备知识。

本专题以单选题,多选题,填空题及解答题等形式体现空间向量与空间角的计算问题的实际应用。

解决基于问题情境的空间向量与空间角的计算问题,常用的解题思路是:审题、建模、研究模型、解决实际问题。

解题要点:根据题目要求,建立立体几何模型,利用几何法或向量法进行实际问题分析求解。

基础知识a ,b ,a ,b >|=a b a b与平面α所成的角为θ,l 的方向向量为a ,平的法向量为n ,则sin θ=|cos<a ,n >|=a n a n的平面角为θ,平面α,β的法向量分别1n ,2n ,则|cos θ|=|cos<1n ,2n >|=1212n n n n空间向量与空间角的计算问题实际应用 (1) 单选题1.(2020山东4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为 ( )A .20︒B .40︒C .50︒D .90︒【答案】B【思路导引】画出截面图,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意可知//m CD 、AB m ⊥. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒,故选:B .2.(2014浙江)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角).若15AB m =,25AC m =,30BCM ∠=︒则tan θ的最大值ABCD【答案】D【解析】作PH BC ⊥,垂足为H ,设PH x =,则CH =,由余弦定理AH =1tan tan(0)PHPAHAH xθ=∠==>,故当1x=tanθ,故选D.3.(2020·山东临沂市·高二期中)如图为某种礼物降落伞的示意图,其中有8根绳子和伞面连接,每根绳子和水平面的法向量的夹角均为60.已知礼物的质量为1kg,每根绳子的拉力大小相同.若重力加速度g取29.8m/s,则降落伞在匀速下落的过程中每根绳子拉力的大小为()A.2.25N B.2.45N C.2.5N D.2.75N【答案】B【分析】根据8根绳子的合力大小与礼物的重力大小相等可构造方程求得结果.【详解】由题意知:8根绳子的合力大小与礼物的重力大小相等,设每根绳子的拉力为T,则8cos6019.8T=⨯,解得: 2.45T=(N).故选:B.4.(2020·济南市·山东省实验中学高二期中)空间直角坐标系O xyz-中,经过点()000,,P x y z,且法向量为(),,m A B C=的平面方程为()()()000A x xB y yC z z-+-+-=,经过点()000,,P x y z且一个方向向量为()(),,0nμυωμυω=≠的直线l的方程为000x x y y z zμυω---==,阅读上面的材料并解决下面问题:现给出平面α的方程为3570x y z-+-=,经过()0,0,0的直线l的方程为321x y z==-,则直线l与平面a 所成角的正弦值为()AB.35CD.7【答案】B【分析】根据题设给出的材料可得平面的法向量和直线的方向向量,利用公式可求直线l 与平面a 所成角的正弦值. 【详解】因为平面α的方程为3570x y z -+-=,故其法向量为()3,5,1n =-, 因为直线l 的方程为321x y z ==-,故其方向向量为()3,2,1m =-, 故直线l 与平面a35==,故选:B. 【点睛】关键点点睛:此题为材料题,需从给定的材料中提炼出平面的法向量和直线的方向向量的求法,这是解决此题的关键.5.(2020·全国高二课时练习)在空间直角坐标系中,定义:平面α的一般方程为0Ax By Cz D +++=(,,,A B C D R ∈,且A ,B ,C 不同时为零),点()000,,P x y z 到平面α的距离d =,则在底面边长与高都为2的正四棱锥P ABCD -中,底面中心O 到侧面PAB 的距离d 等于( ) ABC .2D .5【答案】B 【分析】欲求底面中心O 到侧面的距离,先利用建立空间直角坐标系求出点A ,B ,P 的坐标,及侧面的方程,最后利用所给公式计算即可. 【详解】以底面中心O 为原点,建立空间直角坐标系Oxyz ,如图所示:则(0,0,0),(1,1,0),(1,1,0),(0,0,2)O A B P -,设平面PAB 的方程为0Ax By Cz D +++=,将点A ,B ,P 的坐标代入计算得0A =,B D =-,12C D =-,所以方程可化为102Dy Dz D --+=,即220y z +-=,所以d ==. 故选:B.【点睛】本小题主要考查点、线、面间的距离计算、空间直角坐标系的应用、空间直角坐标系中点到平面的距离等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.(2) 多选题6.(2020·长沙市·湖南师大附中)如图,大摆锤是一种大型游乐设备,常见于各大游乐园.设备启动后,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.今年国庆,小明去某游乐园玩“大摆锤”,他坐在点A 处,“大摆锤”启动后,主轴OB 在平面α内绕点O 左右摆动,平面α与水平地面垂直,OB 摆动的过程中,点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,B β∈.已知6OB AB =,在“大摆锤”启动后,以下结论正确的有( )A .点A 在某个定球面上运动;B .线段AB 在水平地面上的正投影的长度为定值;C .直线OA 与平面α所成角的正弦值的最大值为37D .β与水平地面所成角记为θ,直线OB 与水平地面所成角记为δ,当02πθ<<时,θδ+为定值【答案】ACD 【分析】计算出OA 判断A ,考虑AB 分别与水平面平行和垂直时在水平面上的投影可判断B ,由OA 最大时,得线面角最大,从而得其正弦值判断C ,结合直观图可判断D . 【详解】A.∵OB β⊥,∴OB AB ⊥,∴OA ,∴点A 在以O 的球面运动,A 正确;B .由题意知A 在平面β内绕点B 作圆周运动,当AB 垂直于水平面时,投影长度为0,当AB 平行于水平面时,投影长度为AB ,∴线段AB 在水平地面上的正投影长度范围为[0,]AB ,B 错误;C .当AB α⊥时,直线OA 与平面α的所成的角的正弦值为最大值,此时线面角为AOB ∠,sinAB AOB OA ∠===,C 正确. D .画出该模型的直观图,∵β与水平面所成的角为θ,且02πθ<<,∴DCE θ∠=,∵直线OB 与水平面所成的角为δ,且//FC OB ,∴FCG δ∠=, ∵OB CD ⊥,∴FC CD ⊥,∴2FCG DCE π∠+∠=,即θδ+为定值,定值为2π,D 正确. 故选:ACD . 【点睛】本题考查考查以实际问题为背景的立体几何题,明确线面关系,线面角的求解是解题关键,考查空间想象能力.运算与推理能力.7.(2020·全国高二课时练习)(多选)已知单位向量i ,j ,k 两两的夹角均为0,2πθθπθ⎛⎫<<≠⎪⎝⎭,若空间向量a 满足(,,)a xi y j zk x y z R =++∈,则有序实数组(,,)x y z 称为向量a 在“仿射”坐标系Oxyz (O为坐标原点)下的“仿射”坐标,记作(,,)a x y z θ=,则下列命题是真命题的有( ). A .已知(1,3,2)a θ=-,(4,0,2)b θ=,则0a b ⋅= B .已知(,,0)3a x y π=,(0,0,)3b z π=,其中,,0x y z >,则当且仅当x y =时,向量a ,b 的夹角取得最小值C .已知()111,,a x y z θ=,()222,,b x y z θ=,则()121212,,a b x x y y z z θ+=+++D .已知(1,0,0)3OA π=,(0,1,0)3OB π=,(0,0,1)3OC π=,则三棱锥O ABC -的表面积S =【答案】BC 【分析】根据“仿射”坐标的定义逐项判断即可. 【详解】(1,3,2)(4,0,2)(32)(42)421268412cos a b i j k i k i k i j j k k i θθθ⋅=-⋅=+-⋅+=+⋅+⋅+⋅-⋅-=因为0θπ<<,且2πθ≠,所以0a b ⋅≠,故A 错误;如图所示,设OB b =,OA a =,则点A 在平面xOy 上,点B 在z 轴上,由图易知当x y =时,AOB ∠取得最小值,即向量a 与b 的夹角取得最小值,故B 正确; 根据“仿射”坐标的定义可得,()()()()()()()()111222111222121212121212,,,,,,a b x y z x y z x i y j z k x i y j z k x x i y y j z z k x x y y z z θθθ+=+=+++++=+++++=+++,故C 正确;由已知可得三棱锥O ABC -为正四面体,棱长为1,其表面积214122S =⨯⨯⨯=D 错误. 故选:BC. 【点睛】新定义概念题,考查对新概念的理解能力以及运算求解能力,基础题.8.(2020·江苏南通市·海安高级中学高一月考)平面中两条直线l 和n 相交于O ,对于平面上任意一点M ,若p ,q 分别是M 到直线l 和n 的距离,则称有序非负实数对(p ,q )是点M 的“距离坐标”.则下列说法正确的( )A .若p =q =0,则“距离坐标”为(0,0)的点有且仅有一个B .若pq =0,且p +q ≠0,则“距离坐标”为(p ,q )的点有且仅有2个C .若pq ≠0,则“距离坐标”为(p ,q )的点有且仅有4个D .若p =q ,则点M 的轨迹是一条过O 点的直线 【答案】ABC 【分析】根据“距离坐标”的定义对选项逐一分析,由此确定正确选项. 【详解】首先点到直线的距离是唯一确定的.对于A 选项,由于0p q ==,所以()0,0表示O 点,有且仅有一个,故A 选项正确. 对于B 选项,由于0pq =,且0p q +≠,当00p q =⎧⎨≠⎩或0p q ≠⎧⎨=⎩时,分别表示点()0,q 或(),0p ,有且仅有两个,故B 选项正确.对于C 选项,由于l 和n 相交与O ,所以直线l 和直线n 确定一个平面α,根据对称性可知,在平面α的上方和下方,各有两个“距离坐标”为(),p q 的点.故“距离坐标”为(),p q 的点有且仅有4个,所以C 选项正确. 对于D 选项,设l 和n 相交与O ,直线l 和直线n 相交所形成的两组对角的角平分线上的点,都满足p q =,所以点M 的轨迹不只是一条过O 点的直线,所以D 选项错误. 由于p q =,故选:ABC 【点睛】本小题主要考查空间点与直线的位置关系,考查分析、思考与解决问题的能力,属于基础题.(3) 填空题9.(2016·上海金山区·高三一模)某种游戏中,黑、黄两个“电子狗”从棱长为1的正方体ABCD -A 1B 1C 1D 1的顶点A 出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.黑“电子狗”爬行的路线是AA 1→A 1D 1→ ,黄“电子狗”爬行的路线是AB→BB 1→ ,它们都遵循如下规则:所爬行的第i+2段与第i 段所在直线必须是异面直线(其中i 是正整数).设黑“电子狗”爬完2015段、黄“电子狗”爬完2014段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是________________. 【答案】【解析】试题分析:黑电子狗爬行的路径为111111AA A D DC C C CB BA →→→→→,黄电子狗爬行的路径为111111AB BB B C C D D D DA →→→→→,周期均为6,因此黑“电子狗”爬完2015段即爬完第5段,此时位于B 点,黄“电子狗”爬完2014段即爬完第4段,此时位于1D ,1BD 考点:1.数列周期;2.异面直线;3.空间两点间距离10.(2019·全国高三其他模拟(文))半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形为面组成的多面体.如将正四面体所有棱各三等分,沿三等分点从原几何体割去四个小正四面体(如图所示),余下的多面体就成为一个半正多面体,若这个半正多面体的棱长为4,则这个半正多面体的外接球的半径为__________.【分析】先求出BC ,BG ,BF 的长度,在BFA ,求出正四面体的高AF ,在Rt BFO 中,求BO ;Rt BFA 中,求cos BAF ;EAO 中,由余弦定理求EO 即可. 【详解】 解:正四面体的棱长12BC =,且正四面体与半正多面体的外接球的球心相同,设为O ,F 为底面BCD 的中心,G 是边CD 中点,E 是半正多面体的一个顶点23BG BC BF BG ====AF ∴===设OA OB R ==,OF AF R R =-=在Rt OBF 中,222OB BF OF =+,2248)R R =+,R =Rt ABF中,cos 123AF BAF AB ∠===EAO中,cos cos 3EAO BAF ∠=∠= 由余弦定理,(222222cos 82822OE AE AO AE AO EAO =+-⨯⨯⨯∠=+-⨯⨯=OE =【点睛】考查半正多面体的外接球的半径的求法,中档题.11.(2021·江苏宿迁市·高二期末)自然界中,构成晶体的最基本的几何单元称为晶胞,其形状一般是平行六面体,具体形状大小由它的三组棱长a 、b 、c 及棱间交角α、β、γ(合称为“晶胞参数”)来表征.如图是某种晶体的晶胞,其中2a =,1b c ==,60α=︒,90β=︒,120γ=︒,则该晶胞的对角线1AC 的长为__________.【分析】数形结合以及使用向量的方法,可得11AC AB AD AA =++,然后先平方再开方可得结果.【详解】如图所示:所以1111=+AC AC CC AB AD CC AB AD AA =++=++ 依题可知:1=21AB AA AD ==,, 11=60,90,18060A AB A AD BAD αβγ∠=∠=∠=-== 所以22221111=+2+22AC AB AD AA AB AD AB AA AD AA ++⋅⋅+⋅所以21=411+221cos 60+221cos 60211cos90AC ++⨯⨯⨯⨯⨯⨯+⨯⨯则21=10AC ,故1=10AC12.(2020·全国高三专题练习(理))我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点(3,4)A -,且法向量为(1,2)=-n 的直线方程为1(3)(2)(4)0x y ⨯++-⨯-=,即2110x y -+=.类比以上方法,在空间直角坐标系中,经过点(1,2,3)A ,且法向量为(1,2,1)=--m 的平面的方程为___________.【答案】220x y z +--=【解析】试题分析:根据法向量的定义,若n 为平面α的法向量,则n ⊥α,任取平面α内一点P (x ,y ,z ),则PA ⊥n ,∵PA =(1-x ,2-y ,3-z ),n =(-1,-2,1),∴(x -1)+2(y -2)+(3-z )=0,即x+2y -z -2=0,故答案为x+2y -z -2=0.考点:本题主要考查类比推理的概念和方法,向量的坐标运算.点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).由于平面向量与空间向量的坐标运算类似,因此可以利用求平面曲线方程的办法,通过构造向量,利用向量的运算确定空间平面方程.13.(2020·福建省泉州市泉港区第一中学高二期中)如图所示的正方体是一个三阶魔方(由27个全等的棱长为1的小正方体构成),正方形ABCD 是上底面正中间一个正方形,正方形1111D C B A 是下底面最大的正方形,已知点P 是线段AC 上的动点,点Q 是线段1B D 上的动点,则线段PQ 长度的最小值为_______.【分析】建立空间直角坐标系,写出点的坐标,求出目标PQ 的表达式,从而可得最小值.【详解】以1B 为坐标原点,1111,B C B A 所在直线分别为x 轴,y 轴建立空间直角坐标系,则()()()()10,0,0,1,2,3,2,1,3,2,2,3B A C D ,设11BQ B D λ=,AP AC μ=,[],0,1λμ∈. ()12,2,3B Q λλλ=,()1111,2,3B P B A AP B A AC μμμ=+=+=+-.()1112,22,33QP B P B Q μλμλλ=-=+----,()()()2222122233QP μλμλλ=+-+--+-222215191730221417217234λλμμλμ⎛⎫⎛⎫=-+-+=-+-+ ⎪ ⎪⎝⎭⎝⎭当1517λ=且12μ=时,2QP 取到最小值934,所以线段PQ . 【点睛】本题主要考查空间向量的应用,利用空间向量求解距离的最值问题时,一般是把目标式表示出来,结合目标式的特征,选择合适的方法求解最值.(4) 解答题14.(2018·上海市南洋模范中学高三期末)已知111(,,)a x y z =,222(,,)b x y z =,333(,,)c x y z =,定义一种运算:123231312132213321()a b c x y z x y z x y z x y z x y z x y z ⨯⋅=++---,已知四棱锥P ABCD -中,底面ABCD 是一个平行四边形,(2,1,4)AB =-,(4,2,0)AD =,(1,2,1)AP =-(1)试计算()AB AD AP ⨯⋅的绝对值的值,并求证PA ⊥面ABCD ;(2)求四棱锥P ABCD -的体积,说明()AB AD AP ⨯⋅的绝对值的值与四棱锥P ABCD -体积的关系,并由此猜想向量这一运算()AB AD AP ⨯⋅的绝对值的几何意义.【答案】(1)48,证明见解析;(2)体积为16,()3P ABCD AB AD AP V -⨯⋅=,()AB AD AP ⨯⋅的绝对值表示以,,AB AD AP 为邻边的平行六面体的体积.【分析】(1)根据新定义直接计算,由向量法证明线线垂直,得线面垂直;(2)计算出棱锥体积后,根据数据确定关系.【详解】(1)由题意()AB AD AP ⨯⋅221424(1)(1)0=⨯⨯+⨯⨯+-⨯-⨯202-⨯⨯4(1)1-⨯-⨯(1)24--⨯⨯=48.122(1)140AP AB ⋅=-⨯+⨯-+⨯=,1422100AP AD ⋅=-⨯+⨯+⨯=,∴,AP AB AP AD ⊥⊥,即,AP AB AP AD ⊥⊥.,AB AD 是平面ABCD 内两相交直线,∴AP ⊥平面ABCD .(2)由题意2221,20AB AD ==,24(1)2406AB AD ⋅=⨯+-⨯+⨯=, 222sin ()ABCD S AB AD BAD AB AD AB AD =∠=-⋅== 6AP =∴111633P ABCD ABCD V S PA -==⨯. ∴()3P ABCD AB AD AP V -⨯⋅=,猜想:()AB AD AP ⨯⋅的绝对值表示以,,AB AD AP 为邻边的平行六面体的体积.【点睛】本题考查向量的新定义运算,解题时根据新定义的规则运算即可.考查学生的创新意识,同时考查学生的归纳推理能力.。

第三章 3.2 第二课时 空间向量与空间角、距离

第三章  3.2 第二课时 空间向量与空间角、距离

即xz=-0y.+z=0, 可取 n=(1,1,0).
同理,设 m 是平面 C1BD 的法向量,
m·―B→D =0, 则m·―DC→1=0. 可取 m=(1,2,1).
从而
n,m
=|nn|··|mm|=
3 2.
故二面角 A1-BD-C1 的大小为 30°.
[类题通法] 向量法求二面角(或其某个三角函数值)的四个步骤
设 n=(x,y,z)为平面 PMN 的法向量,
n·―PM→=0, 2y-4z=0,
则n·―PM→=0,

25x+y-2z=0,
可取 n=(0,2,1).
于是|cos〈n,―A→N 〉|=
―→ |n·AN |
―→
=8255.
|n|| AN |
所以直线 AN 与平面 PMN 所成角的正弦值为8255.
[活学活用] (全国甲卷)如图,菱形 ABCD 的对角线 AC 与 BD 交于点 O,AB=5,AC=6,点 E,F 分 别在 AD,CD 上,AE=CF=54,EF 交 BD 于 点 H.将△DEF 沿 EF 折到△D′EF 的位置,OD′= 10. (1)证明:D′H⊥平面 ABCD; (2)求二面角 B-D′A-C 的正弦值.
第二课时 空间向量与空间角、距离
[提出问题] 山体滑坡是一种常见的自然灾害.甲、乙 两名科技人员为了测量一个山体的倾斜程度, 甲站在水平地面上的 A 处,乙站在山坡斜面 上的 B 处,A,B 两点到直线 l(水平地面与山坡的交线)的距离 AC 和 BD 分别为 30 m 和 40 m,CD 的长为 60 m,AB 的长为 80 m.
―→ ―→ = BC + BB1 ,
∴|―E→F |=12|―BB→1 -―B→A |= 22,|―BC→1 |= 2,

3.2(3) 空间向量与空间角、距离

3.2(3) 空间向量与空间角、距离

3.2(3) 空间向量与空间角、距离一【自学目标】1. 掌握利用向量运算解几何题的方法,并能解简单的立体几何问题;2. 掌握向量运算在几何中求两点间距离和求空间图形中的角度的计算方法.二【知识要点】1.空间角及向量求法角的分类向量求法范围异面直线所成的角设两异面直线所成的角为θ,它们的方向向量为a,b,则cos θ=|cos〈a,b〉|=___________(0,π2]直线与平面所成的角设直线l与平面α所成的角为θ,l的方向向量为a,平面α的法向量为n,则sin θ=|cos〈a,n〉|=___________[0,π2]二面角设二面角α-l-β的平面角为θ,平面α、β的法向量为n1,n2,则|cos θ|=|cos〈n1,n2〉|=___________[0,π]2.空间距离的向量求法分类向量求法两点距设A,B为空间中任意两点,则d=AB点面距设平面α的法向量为n,B∉α,A∈α,则B点到平面α的距离d=n nAB•三【预习自测】1.(2012·陕西高考)如图,在空间直角坐标系中有直三棱柱ABC-A 1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为( )A.55B.53C.255D.352.如图,在60°的二面角α-AB-β内,AC⊂β,BD⊂α,AC⊥AB于A,BD⊥AB于B,且AC=AB=BD=1,则CD的长为________.四【课内练习】探究一:求异面直线所成的角例1 如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB的中点,且AC=BC=2,∠VDC=θ.当θ=π3时,求异面直线AC与VD所成角的余弦值.探究二:求线面角例2 正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为2a,求AC1与侧面ABB1A1所成的角.探究三:求二面角例3 PA⊥平面ABC,AC⊥BC,PA=AC=1,BC= 2.求二面角A-PB-C的余弦值.1探究四:用空间向量求距离例4 正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别是C1C,D1A1,AB的中点,求点A到平面EFG的距离五【归纳反思】1.两条异面直线所成角的余弦值一定为非负值,而对应的方向向量的夹角可能为钝角.2.直线的方向向量为u,平面的法向量为n,直线与平面所成角为θ,则sin θ=|cos 〈u,n〉|,不要漏了绝对值符号.3.利用两平面的法向量n1,n2求出cos〈n1,n2〉后,要根据图形判断二面角是锐角还是钝角.4.求点到平面的距离时,关键是建立恰当的空间直角坐标系,求出平面的一个法向量,然后通过公式代入求解.求点到面的距离,还可用等积法求解.六【巩固提高】1.如图所示,三棱柱OAB-O1A1B1中,平面OBB1O 1⊥平面OAB,∠O 1OB=60°,∠AOB=90°,且OB=OO1=2,OA=3,求异面直线A 1B与AO1所成角的余弦值的大小.2.如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.求BD与平面ADMN所成的角θ.3.正方体ABEF-DCE′F′中,M,N分别为AC,BF的中点(如图),求平面MNA与平面MNB所成锐二面角的余弦值.4.四棱锥P-ABCD中,四边形ABCD为正方形,PD⊥平面ABCD,PD=DA=2,F,E分别为AD,PC的中点.(1)证明:DE∥平面PFB;(2)求点E到平面PFB的距离.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y D CD (1, , 0), SD (0, , 1) x 2 2 设平面SCD的法向量n2 ( x, y, z), 由n2 CD, n2 SD, 得:
y x x 0 2 z yz0 2 y 2 y 2
AP (0,0,1), DP ( 3,0,1), DE (m 3,1,0)
设平面PDE的法向量为n ( x, y, z ), 则n DP, n DE ,
A B E C
A (0,0,0), P (0,0,1), D ( 3,0,0), E ( m ,1,0),
3 1 M( , ,0)设N(0,1,m),m 0,2 2 2 3 1 AB1 =( 3,1,2), MN ( , ,m ) 2 2 2 3 cos AB1, MN 得m A 2 4 这与m 0, 2 矛盾
N O B x M C y
3.2立体几何中的向量方法(三)
-----利用向量解决空间的角问题
z
D1 A1 F1 E1 B1 C1
D
O
BCΒιβλιοθήκη yAx一、线线角
异面直线所成角的范围: 0, 2 C D 思考:

A

B
D1
CD, AB 与 的关系?
结论:cos

CD, AB DC , AB 与 的关系? DC, AB | cos CD, AB |
结论:sin
|
cos n, AB |
三、二面角
直线与平面所成角的范围: [0, ]

n1 , n2
结论:二面角的平面角 与法向量成角相等或互补

cos cos n1, n2 或cos cos n1, n2
二、线面角
直线与平面所成角的范围: [0, ] 2 A 思考: n


B

O
n, BA 与 的关系?
直线AB与平面α 所 成的角θ 可看成是向 AB n 量与平面α 的法向量 sin cos AB, n 所成的锐角的余角, AB n 所以有
D
S
M
C
A B
- n1, n2
典例讲解
例1、在正三棱柱ABC—A1B1C1中,所有棱的长度都是2, M是BC边的中点,问:在侧棱CC1上是否存在点N, 使得异面直线AB1和MN所成的角等于45°? z C1 解:建系如图,则 A1 A(0,-1,0) B1( 3,0,2) B1
关键:观察二面角的范围
A
O

n


B
n2


n1

课后练习
1.棱长为1 的正方体中,求B1C1与面AB1C成角的余弦值
A1 B1
A B
z
C1
D1
y
D
x
C
课后练习
2、如图, 四棱锥S-ABCD中,底面ABCD为矩形, SD 底面ABCD ,AD= 2, DC SD 2.点M 在侧 棱SC上,ABM=60. (1)证明 : M 是侧棱SC的中点; (2)求二面角S AM B的余弦值
解:建立空直角坐系A-xyz如所示,S A(0,0,0), C(-1,1,0), D(0, 1 ,0), S (0, 0,1) 2 1 易知面SBA的法向量 n1 AD (0, , 0) 2 1 1 A
z
B
C
n1 n2 6 取n2 (1, 2,1) cos n1 , n2 | n1 || n2 | 3
,
解得m 3 2或m 3 2 (舍),
因此,当BE 3 2时,PA与平面PDE所成角的大小为45 。
例3.如图所示,ABCD是一直角梯形,ABC=900 , 1 SA 平面ABCD, SA AB BC 1, AD , 求面SCD 2 与面SBA所成的锐二面角的余弦值
6
即所求二面角得余弦值是
小结:
1.异面直线所成角: cos |cos CD, AB |
C
D


A

B
D1
2.直线与平面所成角: sin | cos n, AB | 3.二面角: , n | cos | cos n 1 2 cos | cos n1, n2 |
P
y
3 x z 0, z 3 x, D 解得 x x y 0, (m 3) y ( 3 m) x, 令x 1, 得n (1, 3 m, 3),
PA与平面PDE所成角的大小为45 sin 45

3 4 ( 3 m)2
故;棱CC1上不存在N点满足题意
例2.如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥ 底面ABCD,PA=AB=1,AD= ,在线段 3 BC上是否存在一点E, 使PA与平面PDE所成角的大小为450? 若存在,确定点E的位置; Z 若不存在说明理由。 解:建立空间直角坐标系,如图: 设BE=m,则
相关文档
最新文档