图的深度遍历源代码
图的深度优先遍历(DFS)c++非递归实现
图的深度优先遍历(DFS)c++⾮递归实现深搜算法对于程序员来讲是必会的基础,不仅要会,更要熟练。
ACM竞赛中,深搜也牢牢占据着很重要的⼀部分。
本⽂⽤显式栈(⾮递归)实现了图的深度优先遍历,希望⼤家可以相互学习。
栈实现的基本思路是将⼀个节点所有未被访问的“邻居”(即“⼀层邻居节点”)踹⼊栈中“待⽤”,然后围绕顶部节点猛攻,每个节点被访问后被踹出。
读者可以⾃⼰画图分析⼀下,难度并不⼤。
代码写的⽐较随意,仅供参考。
~#include <iostream>#include <stack>using namespace std;#define MaxNode 20#define MAX 2000#define StartNode 1int map[MaxNode+1][MaxNode+1];void dfs_stack(int start, int n){int visited[MaxNode],s_top;for(int i = 0;i <= MaxNode; i++){visited[i] = 0;}visited[start] = 1;stack <int> s;cout<<start<<"";for(int i = 1; i <= n; i++){if(map[i][start] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}while(!s.empty()){s_top = s.top();visited[s_top] = 1;cout<<s_top<<"";s.pop();for(int i = 1; i <= n; i++){if(map[i][s_top] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}}}int main(int argc, const char * argv[]) {int num_edge,num_node;int x,y;cout<<"Input number of nodes and edges >"<<endl;cin>>num_node>>num_edge;for(int i =0;i<num_node;i++){for(int j=0;j<num_node;j++){map[i][j] = 0;}}for(int i = 1; i <= num_edge; i++){cin>>x>>y;map[x][y] = map[y][x] = 1;}dfs_stack(StartNode, num_node);return0;}。
深度优先搜索示例代码
深度优先搜索示例代码深度优先搜索(Depth First Search,DFS)是一种用于遍历或搜索树或图的算法。
它通过从根节点或某个指定节点开始,尽可能深地探索每个分支,直到找到目标节点或到达叶子节点为止。
本文将给出一个深度优先搜索的示例代码,帮助读者理解算法的实现过程。
示例代码如下:```class Graph:def __init__(self):self.graph = {}def add_edge(self, vertex, edge):if vertex in self.graph:self.graph[vertex].append(edge)else:self.graph[vertex] = [edge]def dfs(self, start):visited = set()self.dfs_helper(start, visited)def dfs_helper(self, vertex, visited):visited.add(vertex)print(vertex)if vertex in self.graph:for neighbor in self.graph[vertex]:if neighbor not in visited:self.dfs_helper(neighbor, visited)```在示例代码中,首先定义了一个`Graph`类,用于表示图结构。
`Graph`类包含了两个方法:`add_edge`用于添加边,`dfs`用于执行深度优先搜索。
`add_edge`方法用于向图中添加边,其中`vertex`表示起始节点,`edge`表示目标节点。
`dfs`方法用于执行深度优先搜索,其中`start`表示搜索的起始节点。
在深度优先搜索的实现中,我们使用了一个`visited`集合来记录已经访问过的节点,避免重复访问。
`dfs_helper`方法用于递归地进行深度优先搜索,其中`vertex`表示当前访问的节点,`visited`表示已访问节点的集合。
dfs和bfs算法代码
dfs和bfs算法代码深度优先搜索(DFS)和广度优先搜索(BFS)是常用的图遍历算法,它们可以帮助我们解决很多实际问题。
本文将详细介绍这两种算法的实现原理和应用场景。
一、深度优先搜索(DFS)深度优先搜索是一种递归的搜索算法,它从图的某个顶点开始,沿着一条路径尽可能深地搜索,直到无法继续为止,然后回溯到上一级节点,继续搜索其他路径。
DFS一般使用栈来实现。
DFS的代码实现如下:```def dfs(graph, start):visited = set() # 用一个集合来记录已访问的节点stack = [start] # 使用栈来实现DFSwhile stack:node = stack.pop() # 取出栈顶元素if node not in visited:visited.add(node) # 将节点标记为已访问neighbors = graph[node] # 获取当前节点的邻居节点stack.extend(neighbors) # 将邻居节点入栈return visited```DFS的应用场景很多,比如迷宫问题、拓扑排序、连通分量的计算等。
在迷宫问题中,我们可以使用DFS来寻找从起点到终点的路径;在拓扑排序中,DFS可以用来确定任务的执行顺序;在连通分量的计算中,DFS可以用来判断图是否连通,并将图分割成不同的连通分量。
二、广度优先搜索(BFS)广度优先搜索是一种逐层遍历的搜索算法,它从图的某个顶点开始,先访问该顶点的所有邻居节点,然后再访问邻居节点的邻居节点,依次进行,直到遍历完所有节点。
BFS一般使用队列来实现。
BFS的代码实现如下:```from collections import dequedef bfs(graph, start):visited = set() # 用一个集合来记录已访问的节点queue = deque([start]) # 使用队列来实现BFSwhile queue:node = queue.popleft() # 取出队首元素if node not in visited:visited.add(node) # 将节点标记为已访问neighbors = graph[node] # 获取当前节点的邻居节点queue.extend(neighbors) # 将邻居节点入队return visited```BFS的应用场景也很广泛,比如寻找最短路径、社交网络中的人际关系分析等。
深度优先遍历算法实现及复杂度分析
深度优先遍历算法实现及复杂度分析深度优先遍历算法(Depth First Search, DFS)是一种常用的图遍历算法,用于查找或遍历图的节点。
本文将介绍深度优先遍历算法的实现方法,并进行对应的复杂度分析。
一、算法实现深度优先遍历算法的基本思想是从图的某个节点出发,沿着深度方向依次访问其相邻节点,直到无法继续下去,然后返回上一层节点继续遍历。
下面是深度优先遍历算法的伪代码:```1. 初始化访问标记数组visited[],将所有节点的访问标记置为false。
2. 从某个节点v开始遍历:- 标记节点v为已访问(visited[v] = true)。
- 访问节点v的相邻节点:- 若相邻节点w未被访问,则递归调用深度优先遍历算法(DFS(w))。
3. 遍历结束,所有节点都已访问。
```二、复杂度分析1. 时间复杂度深度优先遍历算法的时间复杂度取决于图的存储方式和规模。
假设图的节点数为V,边数为E。
- 邻接表存储方式:对于每个节点,需要访问其相邻节点。
因此,算法的时间复杂度为O(V+E)。
- 邻接矩阵存储方式:需要检查每个节点与其他节点的连通关系,即需要遍历整个邻接矩阵。
因此,算法的时间复杂度为O(V^2)。
2. 空间复杂度深度优先遍历算法使用了一个辅助的访问标记数组visited[]来记录每个节点的访问状态。
假设图的节点数为V。
- 邻接表存储方式:访问标记数组visited[]的空间复杂度为O(V)。
- 邻接矩阵存储方式:访问标记数组visited[]的空间复杂度同样为O(V)。
综上所述,深度优先遍历算法的时间复杂度为O(V+E),空间复杂度为O(V)。
三、应用场景深度优先遍历算法在图的遍历和搜索问题中广泛应用。
以下是一些典型的应用场景:1. 连通性问题:判断图中两个节点之间是否存在路径。
2. 非连通图遍历:对于非连通图,深度优先遍历算法可以用于遍历所有连通分量。
3. 寻找路径:在图中寻找从起始节点到目标节点的路径。
图的遍历的实验报告
图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。
图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。
图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。
本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。
二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。
2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。
(2)接下来,我们实现深度优先搜索算法。
深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。
(3)然后,我们实现广度优先搜索算法。
广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。
(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
其中,V表示图中的节点数,E表示图中的边数。
五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。
(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。
但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。
图的深度优先遍历详解
图的深度优先遍历详解图的深度优先遍历详解说明1. 深度优先遍历,即先向纵深处挖掘遍历,等这条路⾛不通再回溯2. 设置要开始遍历的第⼀个顶点,然后寻找该顶点的第⼀个邻接顶点,如果第⼀个邻接顶点存在,则从第⼀个邻接顶点⼜重新开始深度优先,寻找它的第⼀个邻接顶点,直到他们的第⼀个邻接顶点不存在或者第⼀个邻接顶点已经被访问,那么寻找它的下⼀个邻接顶点,直到寻找完所有的顶点3. 很明显需要使⽤递归4. 当没有通路的最后⼀个邻接顶点相连的所有顶点全部遍历完时,则回溯判断上⼀个顶点的下⼀个邻接顶点,直到遍历完然后再回溯5. 直到遍历完所有的顶点6. 说明:当当前顶点的第⼀个邻接顶点已经被访问过时,才遍历它的下⼀个邻接顶点7. 源码见下源码及分析深度优先核⼼代码//深度优先算法实现/*** @param isVisited 判断当前顶点是否已经遍历过* @param v 从遍历的当前顶点下标*/public void dfs(boolean[] isVisited, int v) {//先输出当前顶点信息System.out.print(getValueByIndex(v) + "-->");//将当前节点设置为已经访问过isVisited[v] = true;//获取当前节点的第⼀个节点int w = getFirstNeighbor(v);//如果当前顶点存在,则递归遍历while (w != -1) {//依旧需要判断当前顶点是否访问过if (!isVisited[w]) {dfs(isVisited, w);}//如果w节点已经被访问过w = getNextNeighbor(v, w);}}//对dfs进⾏重载,遍历所有的顶点public void dfs() {for (int i = 0; i < getNumOfVertex(); i++) {if (!isVisited[i]) {dfs(isVisited, i);}}}}深度优先遍历代码实现package algorithm.datastructor.graph;import java.util.ArrayList;import java.util.Arrays;/*** @author AIMX_INFO* @version 1.0*/public class Graph {//使⽤邻接矩阵表⽰图//使⽤集合存储图的顶点private ArrayList<String> vertexList;//使⽤⼆维数组即矩阵描述顶点之间的关系private int[][] edges;//边的个数private int numOfEdges;//定义变量判断是否访问过private boolean[] isVisited;//测试public static void main(String[] args) {int n = 5;String[] vertexs = {"A", "B", "C", "D", "E"};//创建图Graph graph = new Graph(n);//添加顶点for (String vertex : vertexs) {graph.insertVertex(vertex);}//连接顶点graph.insertEdge(0, 1, 1);graph.insertEdge(0, 2, 1);graph.insertEdge(1, 2, 1);graph.insertEdge(1, 3, 1);graph.insertEdge(1, 4, 1);//显⽰图graph.showGraph();System.out.println("深度优先遍历");graph.dfs();}//n为顶点的个数public Graph(int n) {edges = new int[n][n];vertexList = new ArrayList<>(n);numOfEdges = 0;isVisited = new boolean[n];}//插⼊顶点public void insertVertex(String vertex) {vertexList.add(vertex);}/*** 添加边** @param v1 顶点在集合中存储的下标* @param v2 顶点在集合中的下标* @param weight 两个顶点之间的权值,0或者1,表⽰是否相连 */public void insertEdge(int v1, int v2, int weight) {edges[v1][v2] = weight;edges[v2][v1] = weight;numOfEdges++;}//返回节点的个数public int getNumOfVertex() {return vertexList.size();}//返回边的个数public int getNumOfEdges() {return numOfEdges;}//返回下标 i 对应的数public String getValueByIndex(int i) {return vertexList.get(i);}//返回v1和v2的权值public int getWeigh(int v1, int v2) {return edges[v1][v2];}//显⽰矩阵public void showGraph() {for (int[] link : edges) {System.out.println(Arrays.toString(link));}}//获取与当前顶点连接的第⼀个邻接顶点public int getFirstNeighbor(int v) {for (int i = 0; i < vertexList.size(); i++) {if (edges[v][i] > 0) {return i;}}return -1;}//根据前⼀个邻接顶点获取下⼀个邻接节点的下标 /*** @param v1 当前顶点* @param v2 当前顶点的第⼀个顶点* @return 返回下⼀个邻接顶点*/public int getNextNeighbor(int v1, int v2) {for (int i = v2 + 1; i < vertexList.size(); i++) { if (edges[v1][i] > 0) {return i;}}return -1;}//深度优先算法实现/*** @param isVisited 判断当前顶点是否已经遍历过 * @param v 从遍历的当前顶点下标*/public void dfs(boolean[] isVisited, int v) {//先输出当前顶点信息System.out.print(getValueByIndex(v) + "-->"); //将当前节点设置为已经访问过isVisited[v] = true;//获取当前节点的第⼀个节点int w = getFirstNeighbor(v);//如果当前顶点存在,则递归遍历while (w != -1) {//依旧需要判断当前顶点是否访问过if (!isVisited[w]) {dfs(isVisited, w);}//如果w节点已经被访问过w = getNextNeighbor(v, w);}}//对dfs进⾏重载,遍历所有的顶点public void dfs() {for (int i = 0; i < getNumOfVertex(); i++) {if (!isVisited[i]) {dfs(isVisited, i);}}}}。
数据结构课设——有向图的深度、广度优先遍历及拓扑排序
数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。
功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。
按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。
深度优先搜索算法详解及代码实现
深度优先搜索算法详解及代码实现深度优先搜索(Depth-First Search,DFS)是一种常见的图遍历算法,用于遍历或搜索图或树的所有节点。
它的核心思想是从起始节点开始,沿着一条路径尽可能深入地访问其他节点,直到无法继续深入为止,然后回退到上一个节点,继续搜索未访问过的节点,直到所有节点都被访问为止。
一、算法原理深度优先搜索算法是通过递归或使用栈(Stack)的数据结构来实现的。
下面是深度优先搜索算法的详细步骤:1. 选择起始节点,并标记该节点为已访问。
2. 从起始节点出发,依次访问与当前节点相邻且未被访问的节点。
3. 若当前节点有未被访问的邻居节点,则选择其中一个节点,将其标记为已访问,并将当前节点入栈。
4. 重复步骤2和3,直到当前节点没有未被访问的邻居节点。
5. 若当前节点没有未被访问的邻居节点,则从栈中弹出一个节点作为当前节点。
6. 重复步骤2至5,直到栈为空。
深度优先搜索算法会不断地深入到图或树的某一分支直到底部,然后再回退到上层节点继续搜索其他分支。
因此,它的搜索路径类似于一条深入的迷宫路径,直到没有其他路径可走后,再原路返回。
二、代码实现以下是使用递归方式实现深度优先搜索算法的代码:```pythondef dfs(graph, start, visited):visited.add(start)print(start, end=" ")for neighbor in graph[start]:if neighbor not in visited:dfs(graph, neighbor, visited)# 示例数据graph = {'A': ['B', 'C'],'B': ['A', 'D', 'E'],'C': ['A', 'F'],'D': ['B'],'E': ['B', 'F'],'F': ['C', 'E']}start_node = 'A'visited = set()dfs(graph, start_node, visited)```上述代码首先定义了一个用于实现深度优先搜索的辅助函数`dfs`。
图的各种算法(深度、广度等)
vex next 4 p
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^
^
4 ^
top
4
输出序列:6 1
1 2 3 4 5 6
in link 0 2 ^ 1 0 2 0
vex next 4 p
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^
^
4 ^
top 4
输出序列:6 1
1 2 3 4 5 6
in link 0 2 ^ 1 0 2 0
c a g b h f d e
a
b h c d g f
e
在算法中需要用定量的描述替代定性的概念
没有前驱的顶点 入度为零的顶点 删除顶点及以它为尾的弧 弧头顶点的入度减1
算法实现
以邻接表作存储结构 把邻接表中所有入度为0的顶点进栈 栈非空时,输出栈顶元素Vj并退栈;在邻接表中查找 Vj的直接后继Vk,把Vk的入度减1;若Vk的入度为0 则进栈 重复上述操作直至栈空为止。若栈空时输出的顶点个 数不是n,则有向图有环;否则,拓扑排序完毕
^
4
^
top
输出序列:6 1 3 2 4
1 2 3 4 5 6
in link 0 0 ^ 0 0 0 0
vex next 4
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^ p
^
4
^topBiblioteka 5输出序列:6 1 3 2 4
1 2 3 4 5 6
in link 0 0 ^ 0 0 0 0
vex next 4
w2 w1 V w7 w6 w3
图的深度广度优先遍历C语言程序
scanf("%d",&L->num);
printf("请输入各顶点的信息(单个符号):");
for(i=0;i<L->num;i++)
{
fflush(stdin);
scanf("%c",&L->vexs[i]);
}
printf("请输入边权矩阵的信息:");
{ *e=sq.data[(sq.front)]; return 1;}
}
/*******************************************************************பைடு நூலகம்*********/
int QueueIn (SEQQUEUE *sq,DATATYPE x)
for(v2=0;v2<g.num;v2++)
{
if(g.arcs[v1][v2]!=0&&mark[v2]==0)
{
QueueIn(&q,v2);
mark[v2]=1;
printf("%c ",g.vexs[v2]);
}
}
//如果顺序循环队列sq为空,成功返回1,否则返回0
{
if (sq.rear==sq.front)
return(1);
else
return(0);
}
/*****************************************************************************/
深度遍历和广度遍历例题
深度遍历和广度遍历例题深度遍历(Depth-First Search,DFS)和广度遍历(Breadth-First Search,BFS)是图遍历算法中常用的两种方法。
下面我将为你提供一个例题,并从多个角度进行全面的回答。
例题,给定一个无向图,使用深度遍历和广度遍历两种方法遍历该图,并输出遍历的结果。
首先,我们需要明确一下图的表示方式。
常用的图表示方法有邻接矩阵和邻接表,这里我们选择使用邻接表表示图。
假设我们有如下无向图:A./ \。
B---C.\ /。
D.邻接表表示如下:A: B, C.B: A, C, D.C: A, B, D.D: B, C.接下来,我们来进行深度遍历。
深度遍历的基本思想是从起始节点开始,尽可能深地访问每个节点,直到无法继续深入为止,然后回溯到上一个节点,继续访问其他未访问的节点。
从节点A开始进行深度遍历,访问顺序为A-B-C-D。
具体步骤如下:1. 将节点A标记为已访问。
2. 访问与节点A相邻的未被访问的节点,即节点B和节点C。
3. 选择其中一个节点(这里选择节点B),将其标记为已访问,并继续深度遍历该节点。
4. 对节点B进行相同的操作,访问与节点B相邻的未被访问的节点,即节点A、节点C和节点D。
5. 选择其中一个节点(这里选择节点C),将其标记为已访问,并继续深度遍历该节点。
6. 对节点C进行相同的操作,访问与节点C相邻的未被访问的节点,即节点A、节点B和节点D。
7. 选择其中一个节点(这里选择节点D),将其标记为已访问,并继续深度遍历该节点。
8. 由于节点D没有未被访问的相邻节点,回溯到节点C。
9. 由于节点C也没有未被访问的相邻节点,回溯到节点B。
10. 由于节点B还有一个未被访问的相邻节点(节点A),将其标记为已访问,并继续深度遍历该节点。
11. 由于节点A没有未被访问的相邻节点,回溯到节点B。
12. 由于节点B没有未被访问的相邻节点,回溯到节点A。
13. 完成深度遍历。
邻接矩阵和邻接表 深度遍历和广度遍历原理
邻接矩阵和邻接表是图论中用于表示图结构的两种常见方式,而深度遍历和广度遍历则是图论中常用的两种图遍历算法。
本文将从简介、原理和应用三个方面探讨这四个主题。
一、邻接矩阵和邻接表1.邻接矩阵邻接矩阵是一种使用二维数组来表示图中顶点之间关系的方法。
如果图中有n个顶点,那么对应的邻接矩阵就是一个n*n的矩阵,其中元素a[i][j]表示顶点i和顶点j之间是否有边,通常用0和1表示。
邻接矩阵适用于稠密图,其存储结构简单,可以直观地展示图的结构,但对于稀疏图来说可能会造成存储空间的浪费。
2.邻接表邻接表是一种使用链表来表示图中顶点之间关系的方法。
对于图中的每一个顶点,都维护一个相邻顶点的列表,图中所有顶点的列表再组合成一个链表,用于表示整个图的结构。
邻接表适用于稀疏图,其存储结构灵活,可以有效地节省存储空间,但查找任意两个顶点之间的关系可能会比较耗时。
二、深度遍历和广度遍历原理1.深度遍历深度遍历是一种用于遍历或搜索图中节点的算法,其原理是从图的某一顶点出发,沿着一条路径不断向下遍历直到末端,然后回溯到上一个节点继续遍历。
深度遍历使用栈来实现,可以通过递归或迭代来进行。
2.广度遍历广度遍历是一种用于遍历或搜索图中节点的算法,其原理是从图的某一顶点出发,依次访问其所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推。
广度遍历使用队列来实现。
三、深度遍历和广度遍历的应用1.深度遍历的应用深度遍历常用于求解图的连通分量、拓扑排序、解决迷宫问题等。
在连通分量中,深度遍历可以帮助我们找到图中的所有连通分量,并对其进行标记,用于进一步的算法运算。
在拓扑排序中,深度遍历可以帮助我们找到一个合理的顺序,用以处理依赖关系问题。
在解决迷宫问题时,深度遍历可以帮助我们找到一条从起点到终点的路径。
2.广度遍历的应用广度遍历常用于求解最短路径、解决迷宫问题等。
在求解最短路径中,广度遍历可以帮助我们找到起点到终点的最短路径,从而解决了许多实际问题。
图的遍历算法程序
else{
visited[k]=true;
printf("%c ",G.vexs[k]); //访问第k个顶点
for(i=FirstVex(G,k);i>=0;i=NextVex(G,k,i))
if(!visited[i]) DFS(G,i); //对k的尚未访问的邻接顶点i递归调用DFS
#define MAX_VEX 20 //最大顶点个数
#define QUEUE_SIZE (MAX_VEX+1) //队列长度
using namespace std;
bool *visited; //访问标志数组
//图的邻接矩阵存储结构
typedef struct{
char *vexs; //顶点向量
if(i>=0 && i<G.vexnum && j>=0 && j<G.vexnum){ //i,j合理
for(int k=j+1;k<G.vexnum;k++)
if(G.arcs[i][k]!=INFINITY) return k;
}
return -1;
}
}
//主函数
void main(){
int i;
Graph G;
CreateUDN(G);
visited=(bool *)malloc(G.vexnum*sizeof(bool));
printf("\n广度优先遍历: ");
for(i=0;i<G.vexnum;i++)
图的遍历动态演示
图的遍历动态演示程序摘要:图是一种复杂的数据结构,具有较高的学习难度。
本文讲述了对图的动态演示程序的操作和程序的具体实现过程,使得我们对图的认识更深刻,学习更容易。
本软件以Visual Studio 2008作为开发工具,使用邻接表法,用MFC类库实现了对图的可视化创建和图的遍历的动态演示。
本文首先讲解了图的遍历动态演示程序的实现框架和设计思路,然后深入讲解了对图中结点和弧的创建、插入和删除,最后着重讲解了图的深度优先遍历和广度优先遍历动态演示的具体实现。
关键词:图; 遍历; 动态演示The dynamic demonstrative program of traverse graph Abstract:Graph is a complex data structure, which is hard to learn. This thesis tells people the manipulate of the dynamic demonstrate of traverse graph and the specific realization progress of the program. This study give us a deeper understanding of graph, as well as make it easier to learn it. This software realizes the visual creation of graph and the dynamic demonstration of traverse graph by using adjacent table, MFC library and Visual Studio 2008. This thesis firstly explains the realization of the dynamic demonstrate of traverse graph program, the go into the depth of the creation, insertion, deleting of node and arc, at last explains emphatically the actual realization of the Depth-First traverse of graph and the Breadth-First traverse of graph.Key Words:graph, traverse, dynamic demonstrative目录1 引言 (1)1.1 开发背景 (1)1.2 开发的目的以及意义 (1)2 需求分析 (1)2.1 功能概述 (1)2.2 功能需求分析 (2)2.2.1 结点的操作 (2)2.2.2 弧的操作 (2)2.2.3 自动生成图的支持 (2)2.2.4 支持图的销毁 (3)2.2.5 图的遍历类型 (3)2.2.6 图的存储结构 (3)2.2.7 图的遍历代码 (3)2.2.8 支持图的遍历次序显示和中间辅助队列的进出队情况显示 (3)2.2.9 支持对遍历速度的设置 (3)2.2.10 支持暂停和单步 (3)2.2.11 支持对图的实现代码的查看和运行 (4)2.2.12 支持对版本和帮助的显示 (4)3 总体设计 (4)3.1 程序框架的搭建 (4)3.1.1 工程项目的创建 (4)3.1.2 窗口的显示 (4)3.2 菜单的制作 (6)3.2.1 创建图 (6)3.2.2 设置演示速度 (8)3.2.3 查看源代码的实现 (8)3.2.4 运行此程序菜单的实现 (9)3.2.5 打开此文件菜单和帮助菜单的实现 (10)3.2.5 版本菜单的实现 (10)3.2.6 退出菜单功能的实现 (10)3.3图的创建和遍历核心算法的设计与实现 (10)3.3.1 算法的设计 (10)3.3.2 核心算法的实现 (16)4 测试与总结 (28)谢辞 (29)参考文献 (30)1 引言在纷繁复杂的社会生活中,很多东西都涉及到图的应用问题。
无向图的深度优先遍历序列
#include <stdio.h>#define MAXVERTEXNUM 20#define TRUE 1#define FALSE 0typedef char VertexType;typedef int VRType;typedef int Status;typedef int InfoType;typedef enum {DG,DN,UDG,UDN} GraphKind;typedef struct ArcCell { // 弧的定义VRType adj; // VRType是顶点关系类型。
// 对无权图,用1或0表示相邻否;// 对带权图,则为权值类型。
InfoType *info;} ArcCell,AdjMatrix[MAXVERTEXNUM][MAXVERTEXNUM]; typedef struct { // 图的定义VertexType vexs[MAXVERTEXNUM]; // 顶点信息 AdjMatrix arcs; // 弧的信息int vexnum, arcnum; // 顶点数,弧数GraphKind kind; // 图的种类标志} MGraph;int visited[MAXVERTEXNUM];int LocateVex(MGraph G, VertexType v){int i;for(i=0; i<G.vexnum; i++)if(G.vexs[i]==v)return i;return -1;}void CreateMGraph(MGraph &G){ //建立无向图int i,j,k;char v1,v2;printf("\n输入顶点数和边数(用逗号隔开) : ");scanf("%d,%d",&G.vexnum, &G.arcnum);getchar();for (i=0 ; i< G.vexnum; ++i){printf("输入顶点 %d 的值 : ",i+1);scanf("%c",&G.vexs[i]);getchar();}for (i=0 ; i< G.vexnum; ++i)for(j=0 ; j< G.vexnum; ++j)G.arcs[i][j].adj=0;for(k=1;k<=G.arcnum;k++){printf("输入第 %d 条边的起始顶点和终止顶点(用逗号隔开): ",k); scanf("%c,%c",&v1,&v2);i=LocateVex(G,v1) ; j= LocateVex(G,v2) ;G.arcs[i][j].adj=1;G.arcs[j][i].adj=1;getchar();}} //ENDvoid DFS(MGraph G,int i);void DFSTraverse(MGraph G){ // 对图 G 作深度优先遍历。
深度优先遍历算法和广度优先遍历算法实验小结
深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。
深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。
它们在解决图的连通性和可达性等问题上具有重要的应用价值。
本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。
二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。
深度优先遍历算法通常使用栈来实现。
以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。
广度优先遍历算法通常使用队列来实现。
以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。
具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。
C语言深度优先遍历图算法程序实现
C语言深度优先遍历图算法程序实现/*建立邻接表算法*//*邻接表,顺序存储与链式存储相结合的方法*/#define Maxvertexnum 30#define False 0#define True 1#include"stdio.h"#include"stdlib.h"int count=1;typedef struct node /*链表(表节点)信息*/{int adjvertex;/*定点序号,存放顶点下标*/int info; /*与边或弧相关的信息,对于网图来说*/ struct node *next; /* 指向下一个临接点的指针域*/}Node;typedef struct vnode /*顶点节点*/{char vertex[3]; /*顶点域*/Node *firstedge; /*表节点头指针*/}Vnode;typedef struct{Vnode adjlist[Maxvertexnum];/*邻接表*/int vnum;egnum;/*顶点数和边数*/}Algraph;Algraph Creat() /*建立有向图的邻接表存储*/{Algraph G;int i,j,k;Node *p;printf("Input vnum and egnum:\n");scanf("%d%d",&(G.vnum),&(G.egnum));for(i=0;i<G.vnum;i++){getchar();/*屏蔽回车*/printf("Input vode information:\n");scanf("%s",&(G.adjlist[i].vertex));/*读入顶点信息*/G.adjlist[i].firstedge=NULL;/*表节点头节点均设为空*/ }for(k=0;k<G.egnum;k++){getchar();/*屏蔽回车*/printf("Input edge <vi,vj>:\n");scanf("%d%d",&i,&j);p=(Node*)malloc(sizeof(Node));p->adjvertex=j; /*邻接点序号为j*/p->next=G.adjlist[i].firstedge;/*将新边表节点插入到顶点vi的链表头部*/G.adjlist[i].firstedge=p;}return (G);}int visited[Maxvertexnum];void DFS(Algraph G,int x) /*从第v个顶点出发深度优先遍历图G*/ {Node *p;int w;printf("Node num:%d\tNode infor:%s\n",count,G.adjlist[x].vertex);count++;visited[x]=True;/*访问第v个顶点,并把标志位置0*/for(p=G.adjlist[x].firstedge;p!=NULL;p=p->next){w=p->adjvertex;if(visited[x]!=1)DFS(G,w);/*对v尚未访问的节点调用DFS*/}}void Dfstrave(Algraph G)/*深度优先遍历邻接表表示的图G*/{int v;for(v=0;v<G.vnum;v++)visited[v]=False;/*标志向量初始化*/for(v=0;v<G.vnum;v++)if(visited[v]!=1)DFS(G,v);}void main(){Algraph A;A=Creat();Dfstrave(A);getch();}。
二叉树的先序,中序,后序遍历代码
二叉树的先序,中序,后序遍历代码一、二叉树的先序、中序和后序遍历1、先序遍历先序遍历是根节点、左子树、右子树的顺序访问二叉树的一种遍历方法。
在先序遍历中,先访问根节点,然后递归访问左子树,最后递归访问右子树。
具体的代码如下:(1)//先序遍历法PreOrder(Tree T){if(T!=NULL){Visit(T);//访问根节点PreOrder(T->Left);//遍历左子树PreOrder(T->Right);//遍历右子树}}2、中序遍历中序遍历是左子树、根节点、右子树的顺序访问二叉树的一种遍历方法。
在中序遍历中,先递归访问左子树,然后访问根节点,最后递归访问右子树。
具体的代码如下:(2)//中序遍历法InOrder(Tree T){if(T!=NULL){InOrder(T->Left);//遍历左子树Visit(T);//访问根节点InOrder(T->Right);//遍历右子树}}3、后序遍历后序遍历是左子树、右子树、根节点的顺序访问二叉树的一种遍历方法。
在后序遍历中,先递归访问左子树,然后递归访问右子树,最后访问根节点。
具体的代码如下:(3)//后序遍历法PostOrder(Tree T){if(T!=NULL){PostOrder(T->Left);//遍历左子树PostOrder(T->Right);//遍历右子树Visit(T);//访问根节点}}二、先序、中序和后序遍历的应用(1)构造二叉树先序序列和中序序列是完全可以解决构造出一颗二叉树的,必要的条件是中序和先序的元素的个数必须相同。
后序序列无法实现这一点,只能确定根节点的位置。
(2)深度优先搜索深度优先搜索是一种图遍历算法,它使用栈来帮助用户访问一棵树,也就是深度优先算法。
先序遍历是先从根节点访问,中序遍历是在访问左子树后再访问根节点,而后序遍历是在访问右子树后再访问根节点。
(3)计算二叉树深度根据先序遍历和后序遍历可以知道二叉树的深度。
图的深度优先遍历算法及运用
5 结 语
通 过上述探 讨 ,基 本理清 了 图的深度优 先遍历 算法 的学
出 2者 的关系 ,如果没有直系关系 ,请输出一 。
分析 :这道题 目可 以建模 为树模 型 ,但 这里 用 图的深度 优先遍历算法加 以变化来实现 。 思想 :由于要求 的问题有两种情况 :A是 B的 *hl A ci d或 是 B的 * aet p rn;为 了表示 方 向性 ,邻 接矩 阵元素值 为 1 表示
l odds( t 1 v i f i nu
{
, / 标记该结点 已访问
mak d [】 = t e re u r ; u
fr( t o i n v=0 v<V; + ) ; V +
/ / 探测与 U相连且未被访 问的结点
i ma U 【] = re&& mak d 【】 = a e f( t[】 v =t u r e v =fl ) s
一
4 深度优 先 思想 运用
深度优先思想 主要体现在 重要 的算法策 略—— 回溯法 中。 回溯法被称 为万能 的解题方法 。它主要 通过 在解空 间 中使 用 深度优先思想来完成约束满足问题和路径求解 问题的实现。
其核 心代码 非常类似 深度优先遍 历算 法的代码 。通 常可 以用 该方法解决小规模的 N C问题。 P 这些 更为深 入的学 习和思考 I I 够扩大 知识 面 ,提高 解  ̄ I I 决 问题 的能力 。这就是数据结构课程学习的第三个阶段 :思。
辈 ,则在关 系上加一 个 get 。输入包 含多 组测试 用例 , ra一 每
组用例首先包含 2个整数 n (< n = 6 0 = < 2 )和 m (< 5 ), 0 m< 0 分
别 表示 有 n个亲属关 系和 m个问题, 然后 接下来 是 n行的形式 如 A C的字符串 ,表示 A的父母亲分别是 B和 C B ,如果 A的 父母 亲信息不全 ,则用一 代替 ,例如 A C,再 然后 是 m行形式 — 如F A的字符 串 ,表示 询 问 F和 A的关 系 。当 n和 m 为 0时 结束输 入 。如果询 问的 2个人 是直 系亲属 ,请按 题 目描述输
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图的深度遍历源代码.txt38当乌云布满天空时,悲观的人看到的是“黑云压城城欲摧”,乐观的人看到的是“甲光向日金鳞开”。
无论处在什么厄运中,只要保持乐观的心态,总能找到这样奇特的草莓。
#include <stdio.h>
#include <malloc.h>
#define INFINITY 32767
#define MAX_VEX 20 //最大顶点个数
bool *visited; //访问标志数组
//图的邻接矩阵存储结构
typedef struct{
char *vexs; //顶点向量
int arcs[MAX_VEX][MAX_VEX]; //邻接矩阵
int vexnum,arcnum; //图的当前顶点数和弧数
}Graph;
//图G中查找元素c的位置
int Locate(Graph G,char c){
for(int i=0;i<G.vexnum;i++)
if(G.vexs[i]==c) return i;
return -1;
}
//创建无向网
void CreateUDN(Graph &G){
int i,j,w,s1,s2;
char a,b,temp;
printf("输入顶点数和弧数:");
scanf("%d%d",&G.vexnum,&G.arcnum);
temp=getchar(); //接收回车
G.vexs=(char *)malloc(G.vexnum*sizeof(char)); //分配顶点数目
printf("输入%d个顶点.\n",G.vexnum);
for(i=0;i<G.vexnum;i++){ //初始化顶点
printf("输入顶点%d:",i);
scanf("%c",&G.vexs[i]);
temp=getchar(); //接收回车
}
for(i=0;i<G.vexnum;i++) //初始化邻接矩阵
for(j=0;j<G.vexnum;j++)
G.arcs[i][j]=INFINITY;
printf("输入%d条弧.\n",G.arcnum);
for(i=0;i<G.arcnum;i++){ //初始化弧
printf("输入弧%d:",i);
scanf("%c %c %d",&a,&b,&w); //输入一条边依附的顶点和权值
temp=getchar(); //接收回车
s1=Locate(G,a);
s2=Locate(G,b);
G.arcs[s1][s2]=G.arcs[s2][s1]=w;
}
}
//图G中顶点k的第一个邻接顶点
int FirstVex(Graph G,int k){
if(k>=0 && k<G.vexnum){ //k合理
for(int i=0;i<G.vexnum;i++)
if(G.arcs[k][i]!=INFINITY) return i;
}
return -1;
}
//图G中顶点i的第j个邻接顶点的下一个邻接顶点
int NextVex(Graph G,int i,int j){
if(i>=0 && i<G.vexnum && j>=0 && j<G.vexnum){ //i,j合理
for(int k=j+1;k<G.vexnum;k++)
if(G.arcs[i][k]!=INFINITY) return k;
}
return -1;
}
//深度优先遍历
void DFS(Graph G,int k){
int i;
if(k==-1){ //第一次执行DFS时,k为-1
for(i=0;i<G.vexnum;i++)
if(!visited[i]) DFS(G,i); //对尚未访问的顶点调用DFS
}
else{
visited[k]=true;
printf("%c ",G.vexs[k]); //访问第k个顶点
for(i=FirstVex(G,k);i>=0;i=NextVex(G,k,i))
if(!visited[i]) DFS(G,i); //对k的尚未访问的邻接顶点i递归调用DFS }
}
//主函数
void main(){
int i;
Graph G;
CreateUDN(G);
visited=(bool *)malloc(G.vexnum*sizeof(bool)); printf("\n深度优先遍历: ");
for(i=0;i<G.vexnum;i++)
visited[i]=false;
DFS(G,-1);
printf("\n程序结束.\n");
}
输出结果为(红色为键盘输入的数据,权值都置为1):
输入顶点数和弧数:8 9
输入8个顶点.
输入顶点0:a
输入顶点1:b
输入顶点2:c
输入顶点3:d
输入顶点4:e
输入顶点5:f
输入顶点6:g
输入顶点7:h
输入9条弧.
输入弧0:a b 1
输入弧1:b d 1
输入弧2:b e 1
输入弧3:d h 1
输入弧4:e h 1
输入弧5:a c 1
输入弧6:c f 1
输入弧7:c g 1
输入弧8:f g 1
深度优先遍历: a b d h e c f g
程序结束.。