长沙市一中教案_高二理科数学《选修2-2第一章导数及其应用练习卷》

合集下载

新人教版选修22第一章导数及其应用测试题及答案

新人教版选修22第一章导数及其应用测试题及答案

(数学选修2-2) 第一章 导数及其应用一、选择题1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+D .2sin α2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( )3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是( )A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(-4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( )A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +>5.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( )x ?abxy)(f y =OA .1个B .2个C .3个D .4个二、填空题1.若函数2f xx x c 在2x =处有极大值,则常数c 的值为_________;2.函数x x y sin 2+=的单调增区间为 。

3.设函数())(0)f x ϕϕπ=+<<,若()()f x f x '+为奇函数,则ϕ=__________ 4.设321()252f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。

【高中数学选修2-2:第一章-导数及其应用-单元测试题

【高中数学选修2-2:第一章-导数及其应用-单元测试题

数学选修2-2第一章单元测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )的图像如图所示,则函数f (x )在开区间(a ,b )有极小值点( )A .1个B .2个C .3个D .4个2.在区间[12,2]上,函数f (x )=x 2+px +q 与g (x )=2x +1x 2在同一点处取得相同的最小值,那么f (x )在[12,2]上的最大值是( )A.134 B.54 C .8D .43.点P 在曲线y =x 3-x +23上移动,设点P 处的切线的倾斜角为α,则α的取值围是( )A .[0,π2]B .[0,π2]∪[34π,π)C .[34π,π)D .[π2,34π]4.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值围是( )A .m ≥32B .m >32C .m ≤32D .m <325.函数f (x )=cos 2x -2cos 2x2的一个单调增区间是( )A.⎝ ⎛⎭⎪⎫π3,2π3B.⎝ ⎛⎭⎪⎫π6,π2C.⎝⎛⎭⎪⎫0,π3D.⎝ ⎛⎭⎪⎫-π6,π66.设f (x )在x =x 0处可导,且lim Δx →0f x 0+3Δx -f x 0Δx=1,则f ′(x 0)等于( )A .1B .0C .3D.137.经过原点且与曲线y =x +9x +5相切的切线方程为( )A .x +y =0B .x +25y =0C .x +y =0或x +25y =0D .以上皆非8.函数f (x )=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b <0时,f (x )是( )A .增函数B .减函数C .常数D .既不是增函数也不是减函数9.若a >2,则方程13x 3-ax 2+1=0在(0,2)上恰好有( )A .0个根B .1个根C .2个根D .3个根10.一点沿直线运动,如果由始点起经过t s 后距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( ) A .1 s 末 B .0 s C .4 s 末D .0,1,4 s 末11.设f (x )=⎩⎪⎨⎪⎧x 2, x ∈[0,1],2-x ,x ∈1,2],则⎠⎜⎛2f(x)d x 等于( )A .34B .45C .56D .不存在12.若函数f(x)=sin xx,且0<x 1<x 2<1,设a =sin x 1x 1,b =sin x 2x 2,则a ,b 的大小关系是( )A .a>bB .a<bC .a =bD .a 、b 的大小不能确定二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若f(x)=13x 3-f ′(1)x 2+x +5,则f ′(1)=________.14.已知函数f(x)满足f(x)=f(π-x),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f(x)=x +sin x ,设a =f(1),b =f(2),c =f(3),则a 、b 、c 的大小关系是________.15.已知函数f(x)为一次函数,其图像经过点(2,4),且⎠⎜⎛01f(x)d x =3,则函数f(x)的解析式为________. 16.(2010·卷)函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.三、解答题(本大题共6小题,共70分,解答应出写文字说明、证明过程或演算步骤)17.(10分)如图,直线y =kx 分抛物线y =x -x 2与x 轴所围成图形为面积相等的两部分,求k 的值.18.(12分)已知函数f(x)=x4-4x3+ax2-1在区间[0,1]上单调递增,在区间[1,2)上单调递减.(1)求a的值;(2)若点A(x0,f(x0))在函数f(x)的图像上,求证:点A关于直线x=1的对称点B也在函数f(x)的图像上.19.(12分)设x=-2与x=4是函数f(x)=x3+ax2+bx的两个极值点.(1)求常数a,b;(2)试判断x=-2,x=4是函数f(x)的极大值还是极小值,并说明理由.20.(12分)已知f(x)=ax3-6ax2+b,x∈[-1,2]的最大值为3,最小值为-29,求a,b的值.21.(12分)(2010·卷)已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数.(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值与最小值.22.(12分)已知函数f (x )=ln(ax +1)+1-x1+x ,x ≥0,其中a >0.(1)若f (x )在x =1处取得极值,求a 的值; (2)求f (x )的单调区间;(3)若f (x )的最小值为1,求a 的取值围.参考答案 1.答案 A解析 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f (x )在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b )上递减,因此,x 1、x 3是极大值点,只有x 2是极小值点.2.答案 D3.答案 B4.答案 A解析 因为函数f (x )=12x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2.令f ′(x )=0,得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272.不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32. 5.答案 A解析 f (x )=cos 2x -cos x -1,∴f ′(x )=-2sin x ·cos x +sin x =sin x ·(1-2cos x ). 令f ′(x )>0,结合选项,选A. 6.答案 D 7.答案 D 8.答案 A 9.答案 B解析 设f (x )=13x 3-ax 2+1,则f ′(x )=x 2-2ax =x (x -2a ),当x ∈(0,2)时,f ′(x )<0,f (x )在(0,2)上为减函数,又f (0)f (2)=1⎝ ⎛⎭⎪⎫83-4a +1=113-4a <0, f (x )=0在(0,2)上恰好有一个根,故选B.10.答案 D 11.答案 C解析 数形结合,如图.⎠⎜⎛02f(x)d x =⎠⎜⎛01x 2d x +⎠⎜⎛12(2-x)d x =⎪⎪⎪13x 31⎪⎪⎪+2x -12x 221=13+(4-2-2+12)=56,故选C . 12.答案 A解析 f ′(x)=x cos x -sin xx 2,令g(x)=x cos x -sin x ,则g ′(x)=-x sin x +cos x -cos x =-x sin x.∵0<x<1,∴g ′(x)<0,即函数g(x)在(0,1)上是减函数,得g(x)<g(0)=0,故f ′(x)<0,函数f(x)在(0,1)上是减函数,得a>b ,故选A .13.答案 23解析 f ′(x)=x 2-2f ′(1)x +1,令x =1,得f ′(1)=23.14.答案 c<a<b解析 f(2)=f(π-2),f(3)=f(π-3),因为f ′(x)=1+cos x ≥0,故f(x)在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,∵π2>π-2>1>π-3>0,∴f(π-2)>f(1)>f(π-3),即c<a<b.15.答案 f(x)=23x +83解析 设函数f(x)=ax +b(a ≠0),因为函数f(x)的图像过点(2,4),所以有b =4-2a.∴⎠⎜⎛01f(x)d x =⎠⎜⎛01 (ax +4-2a)d x =[12ax 2+(4-2a)x] |10=12a +4-2a =1.∴a =23.∴b =83.∴f(x)=23x +83.16.答案 21解析 ∵y ′=2x ,∴过点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x-a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.17.解析 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形面积S =⎠⎜⎛01(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 22-x 3310=12-13=16. 又⎩⎪⎨⎪⎧y =x -x 2,y =kx ,由此可得抛物线y =x -x 2与y =kx 两交点的横坐标x 3=0,x 4=1-k ,所以S 2=⎠⎜⎛01-k (x -x 2-kx)d x =⎪⎪⎪⎝⎛⎭⎪⎫1-k 2x 2-x 331-k=16(1-k)3. 又S =16,所以(1-k)3=12,∴k =1-342.18.解析 (1)由函数f(x)=x4-4x3+ax2-1在区间[0,1]单调递增,在区间[1,2)单调递减,∴x =1时,取得极大值,∴f ′(1)=0. 又f ′(x)=4x3-12x2+2ax ,∴4-12+2a =0⇒a =4.(2)点A(x0,f(x0))关于直线x =1的对称点B 的坐标为(2-x0,f(x0)),f(2-x0)=(2-x0)4-4(2-x0)3+4(2-x0)2-1 =(2-x0)2[(2-x0)-2]2-1 =x40-4x30+ax20-1=f(x0),∴A 关于直线x =1的对称点B 也在函数f(x)的图像上. 19.解析 f ′(x)=3x2+2ax +b. (1)由极值点的必要条件可知:f ′(-2)=f ′(4)=0,即⎩⎪⎨⎪⎧12-4a +b =0,48+8a +b =0,解得a =-3,b =-24.或f ′(x)=3x2+2ax +b =3(x +2)(x -4) =3x2-6x -24, 也可得a =-3,b =-24. (2)由f ′(x)=3(x +2)(x -4).当x <-2时,f ′(x)>0,当-2<x <4时,f ′(x)<0. ∴x =-2是极大值点,而当x >4时,f ′(x)>0, ∴x =4是极小值点.20.解析 a ≠0(否则f(x)=b 与题设矛盾), 由f ′(x)=3ax2-12ax =0及x ∈[-1,2],得x =0. (1)当a >0时,列表:由上表知,f(x)在[-1,0]上是增函数,f(x)在[0,2]上是减函数.则当x =0时,f(x)有最大值,从而b =3.又f(-1)=-7a +3,f(2)=-16a +3,∵a >0,∴f(-1)>f(2).从而f(2)=-16a +3=-29,得a =2.(2)当a <0时,用类似的方法可判断当x =0时f(x)有最小值. 当x =2时,f(x)有最大值.从而f(0)=b =-29, f(2)=-16a -29=3,得a =-2.综上,a =2,b =3或a =-2,b =-29.21.解析 (1)由题意得f ′(x )=3ax 2+2x +b .因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b .因为函数g (x )是奇函数,所以g (-x )=-g (x ),即对任意实数x ,有a (-x )3+(3a +1)(-x )2+(b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ],从而3a +1=0,b=0,解得a =-13,b =0,因此f (x )的解析式为f (x )=-13x 3+x 2. (2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2. 令 g ′(x )=0,解得x 1=-2,x 2=2,则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,-2],[2,+∞)上是减函数;当-2<x <2时, g ′(x )>0,从而g (x )在[-2,2]上是增函数.由前面讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得,而g (1)=53,g (2)=423,g (2)=43.因此g (x )在区间[1,2]上的最大值为g(2)=423,最小值为g(2)=43.22.分析解答本题,应先正确求出函数f(x)的导数f′(x),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域围求解.解析(1)f′(x)=aax+1-21+x2=ax2+a-2ax+11+x2,∵f(x)在x=1处取得极值,∴f′(1)=0,即a·12+a-2=0,解得a=1.(2)f′(x)=ax2+a-2ax+11+x2,∵x≥0,a>0,∴ax+1>0.①当a≥2时,在区间[0,+∞)上,f′(x)>0,∴f(x)的单调增区间为[0,+∞).②当0<a<2时,由f′(x)>0,解得x> 2-a a.由f′(x)<0,解得x< 2-a a.∴f(x)的单调减区间为(0, 2-aa),单调增区间为(2-aa,+∞).(3)当a≥2时,由(2)①知,f(x)的最小值为f(0)=1;当0<a<2,由(2)②知,f(x)在x=2-aa处取得最小值,且f( 2-aa)<f(0)=1.综上可知,若f(x)的最小值为1,则a的取值围是[2,+∞).。

最新人教版高中数学选修2-2第一章《导数及其应用》教学设计

最新人教版高中数学选修2-2第一章《导数及其应用》教学设计

教学设计第一章导数及其应用复习课本章知识网络知识点精析(一)求函数的导数1.导数的基本概念、变化率;2.记住基本初等函数的导数公式;3.记住导数的四则运算法则;4.理解复合函数的求导,即[f(φ(x))]′=f′(φ(x))φ′(x).(二)导数的应用1.求函数的单调区间与极值步骤:①求出函数的定义域,求导数;②求出导数为0的点或导数不存在点;③列表讨论;④总结.2.求函数的最大值与最小值①闭区间[a,b]上连续函数f(x)一定能取到最大值与最小值,且最大值点与最小值点一定包含在区间内部导数值为0的点或内部导数不存在点或端点之中.②实际应用问题的最大与最小值.设所求的量为y,设与y有关量为x,建立y=f(x),x∈D,求f(x)的最大值或最小值.注意:若f(x0)为唯一极值,若f(x0)为极大值,则f(x0)为最大值;若f(x0)为极小值,则f(x0)为最小值.3.关于证明题(1)证明方程根的存在性;(2)证明不等式.(三)定积分1.定积分的概念(四个步骤、本质)(求曲边梯形的面积、变速直线运动的路程).2.微积分基本定理:一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),b f(x)dx=F(b)-F(a).那么⎠⎛a这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.3.应用定积分求面积的基本步骤和注意事项.整体设计教材分析导数是高中数学新教材中新增的知识之一,体现了现代数学思想,在研究函数的性质时,有独到之处.纵观近几年各地的新课程试卷,内容主要是与单调性、最值、切线这三方面有关.作为新教材的新增内容,复习中注重导数在解决科技、经济、社会中的某些实际问题中的应用.课时分配2课时.第1课时教学目标知识与技能目标1.复习巩固导数与积分的基础知识,理清知识网络.2.理解和掌握导数与积分及其有关概念,会求一些实际问题的最大值与最小值.过程与方法目标提高学生综合、灵活运用导数的知识解决有关函数问题的能力,注意数形结合、分类讨论、函数等思想的应用.情感、态度与价值观在解决问题的过程中,培养学生独立思考问题、解决问题的能力,增强其学习积极性和提高其数学交流能力.重点难点重点:掌握导数与积分及其有关概念,巩固导数与积分的基础知识. 难点:运用导数的知识解决有关函数问题.教学过程提出问题请同学们解答下列问题:1.函数f(x)的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4)、(2,0)、(6,4),则f(f(0))=________,0lim x ∆→f (1+Δx )-f (1)Δx=__________.2.函数f(x)=13x 3-x 2-3x +6的单调递增区间为__________单调递减区间为__________.3.函数y =x 4-4x +3在区间[-2,3]上的最小值为( ) A .72 B .36 C .12 D .0 答案:1.2 -2基础知识聚焦:函数在某一点处的导数的定义为f ′(x 0)=0lim x ∆→f (x 0+Δx )-f (x 0)Δx及其变形,特别注意函数值的增量与自变量的增量.f ′(x 0)的几何意义表示曲线在点(x 0,f(x 0))处的切线的斜率.2.(-∞,-1),(3,+∞) (-1,3)评析:函数的单调递增区间是两个区间(-∞,-1),(3,+∞),但是不能写成(-∞,-1)∪(3,+∞).有关函数单调区间的合并主要依据是函数f(x)在(a ,b)内单调递增,在(b ,c)内单调递增,又知函数在x =b 处连续,因此f(x)在(a ,c)内单调递增.3.D 解析:y ′=4x 3-4,令y ′=0,即4x 3-4=0,所以x =1. 当x<1时,y ′<0;当x>1时,y ′>0.所以y 极小值=y|x =1=0,而端点的函数值y|x =-2=27,y|x =3=72,因此y min =0. 基础知识聚焦:考查利用导数求最值.典型示例类型一 导数的概念例1(1)用导数的定义求函数f(x)=1x在x =1处的导数; (2)用导数的定义求函数f(x)=1x +2的导数.思路分析:用导数的定义求导数时,先求平均变化率,再求极限. 解:(1)Δy Δx =f (1+Δx )-f (1)Δx =11+Δx -1Δx=1-1+Δx Δx 1+Δx=1-(1+Δx )Δx 1+Δx (1+1+Δx )=-ΔxΔx (1+Δx +1+Δx )=-11+Δx +1+Δx,所以f ′(1)=0lim x ∆→ ΔyΔx =0lim x ∆→-11+Δx +1+Δx=-12.(2)Δy Δx =f (x +Δx )-f (x )Δx =1x +2+Δx -1x +2Δx =(x +2)-(x +2+Δx )Δx (x +2)(x +2+Δx ) =-1(x +2)(x +2+Δx ),所以f ′(x)=0lim x ∆→ Δy Δx =0lim x ∆→ -1(x +2)(x +2+Δx )=-1(x +2)2.点评:(1)用导数定义求函数的导数,必须把分式Δy Δx 中的分母Δx 这一因子约掉才能求出极限,所以目标就是分子中出现Δx ,从而对分子、分母约分.(2)第(1)小题中用到的技巧是“分子有理化”,“有理化”是处理根式问题常用的方法. (3)注意在某点处的导数与导数定义式的区别.变式练习:设函数f(x)在x 0处可导,则下列极限等于f ′(x 0)的是( ) A. 0lim x ∆→f (x 0-Δx )-f (x 0)Δx B. 0lim x ∆→ f (x 0+3Δx )-f (x 0)ΔxC. 0lim x ∆→f (x 0)-f (x 0+Δx )Δx D. 0lim x ∆→ f (x 0)-f (x 0-Δx )Δx答案:D类型二 导数的基本运算例2求导:(1)y =(x +1)(x 2+2x);(2)y =cos(2x 2+1);(3)y =sinxx. 思路分析:运用求导公式及导数运算法则求导.解:(1)y ′=3x 2+6x +2;(2)y ′=-4xsin(2x 2+1);(3)y ′=xcosx -sinxx 2. 点评:要熟记常见函数的求导公式及导数运算法则.在求复合函数的导数时,关键是分清函数的复合关系,逐步求导直到最后,把中间变量转变为自变量的函数.变式练习:求y =sin 2(3x +1)的导数.解:y ′=[sin 2(3x +1)]′=2sin(3x +1)[sin(3x +1)]′=2sin(3x +1)cos(3x +1)(3x +1)′=6sin(3x +1)cos(3x +1)=3sin(6x +2). 类型三 导数的几何意义例3若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为…( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=0 思路分析:导数值对应函数在该点处的切线斜率.解析:设与直线x +4y -8=0垂直的直线l 为4x -y +m =0,即y =x 4在某一点的导数为4,而y ′=4x 3,所以y =x 4在(1,1)处的导数为4,此点的切线方程为4x -y -3=0,故选A.答案:A点评:有关导数几何意义的题目一般有两类:一类是求曲线的切线方程,这类题目要注意审好题,看到底是“在某点处的切线”还是“过某点的切线”;第二类是已知曲线的切线求字母参数.变式练习:过点(-1,0)作抛物线y =x 2+x +1的切线,则其中一条切线为( ) A .2x +y +2=0 B .3x -y +3=0 C .x +y +1=0 D .x -y +1=0解析:y ′=2x +1,设切点坐标为(x 0,y 0),则切线的斜率为2x 0+1,且y 0=x 20+x 0+1,于是切线方程为y -x 20-x 0-1=(2x 0+1)(x -x 0).因为点(-1,0)在切线上,可解得x 0=0或x 0=-2,代入可验证知D 正确,选D.答案:D类型四 定积分的计算 例4计算下列定积分的值.(1)∫3-1(4x -x 2)dx ;(2)∫21(x -1)5dx ;(3)∫π20(x +sinx)dx. 解:(1)∫3-1(4x -x 2)dx =(2x 2-x 33)|3-1=(2×32-333)-[2×(-1)2-(-1)33]=203;(2)因为[16(x -1)6]′=(x -1)5,所以∫21(x -1)5dx =16(x -1)6|21=16; (3)∫π20(x +sinx)dx =(x 22-cosx)|π20=[(π2)22-cos π2]-(0-1)=π28+1.变式练习:求∫π2-π2cos 2xdx 的值.解:∫π2-π2cos 2xdx =∫π2-π21+cos2x 2dx =x 2|π2-π2+14sin2x|π2-π2=π2.类型五 求函数的极值与最值例5f(x)=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2 D .4思路分析:本题考查求函数最值,可用导数法先求其极值,再与端点值进行比较. 解析:f ′(x)=3x 2-6x =3x(x -2),令f ′(x)=0,可得x =0或x =2(x =2舍去).当-1≤x<0时,f ′(x)>0;当0<x ≤1时,f ′(x)<0,所以当x =0时,f(x)取得极大值为2.又f(-1)=-2,f(1)=0,所以f(x)在[-1,1]上的最大值为2.选C. 答案:C点评:此题较为基础,求完极值点,要注意与题目已知区间结合起来综合考虑问题. 变式练习:a 为何值时,函数f(x)=asinx +13sin3x 在x =π3处具有极值?是极大值还是极小值?试求此极值.解:a =2,极大值为f(π3)= 3.类型六 求函数的单调区间例6设函数f(x)=-13x 3+2ax 2-3a 2x +b,0<a<1.求函数f(x)的单调区间.思路分析:本题考查用导数法求单调区间,需注意参数a ,有时候需要对其进行讨论. 解:f ′(x)=-x 2+4ax -3a 2=-(x -3a)(x -a), 令f ′(x)=0,得x 1=a ,x 2=3a.列表如下:∴f(x)在(a,3a)上单调递增,在(-∞,a)、(3a ,+∞)上单调递减.点评:本题考查内容为利用导数求单调区间.但涉及到参数问题,参数讨论是难点.本题在0<a<1这个条件下降低了难度,若去掉此条件,难度会加大.变式练习:已知函数f(x)=x 2+alnx.(1)当a =-2时,求函数f(x)的单调区间和极值;(2)若函数g(x)=f(x)+2x在[1,+∞)上是增函数,求实数a 的取值范围.解:(1)函数f(x)的定义域为(0,+∞),当a =-2时,f ′(x)=2x -2x =2(x +1)(x -1)x .当x 变化时,f ′(x),f(x)的变化情况如下:由上表可知,函数f(x)的单调递减区间是(0,1);单调递增区间是(1,+∞); 极小值是f(1)=1.(2)由g(x)=x 2+alnx +2x ,得g ′(x)=2x +a x -2x 2.又函数g(x)=x 2+alnx +2x 在[1,+∞)上是单调增函数,则g ′(x)≥0在[1,+∞)上恒成立,即不等式2x -2x 2+ax ≥0在[1,+∞)上恒成立,也即a ≥2x -2x 2在[1,+∞)上恒成立,又φ(x)=2x -2x 2在[1,+∞)上为减函数,所以[φ(x)]max =φ(1)=0,因此a ≥0.拓展实例:设函数f(x)=2x 3-3(a -1)x 2+1,其中a ≥1. (1)求f(x)的单调区间; (2)讨论f(x)的极值.思路分析:f(x)的单调性取决于f ′(x)的正负,而函数的极值取决于导数值为零的点的两侧的点对应的导数值的符号,即导数值为零的点两侧函数的单调性.解:由已知,得f ′(x)=6x[x -(a -1)],令f ′(x)=0,解得x 1=0,x 2=a -1. (1)当a =1时,f ′(x)=6x 2,f(x)在(-∞,+∞)上单调递增;当a>1时,f ′(x)=6x[x -(a -1)],f ′(x),f(x)随x 的变化情况如下表:从上表可知,函数f(x)在(-∞,0)上单调递增;在(0,a -1)上单调递减;在(a -1,+∞)上单调递增.(2)由(1)知,当a =1时,函数f(x)没有极值;当a>1时,函数f(x)在x =0处取得极大值1;在x =a -1处取得极小值1-(a -1)3. 点评:本小题主要考查利用导数研究函数的极值的基础知识,以及运用数学知识解决问题的能力.变练演编已知f(x)=23x 3-2ax 2-3x(a ∈R ),(1)若f(x)在区间(-1,1)上为减函数,求实数a 的范围; (2)试讨论y =f(x)在区间(-1,1)内极值点的个数.思路分析:(1)已知函数在(-1,1)上单调递减,一般转化为f ′(x)≤0在(-1,1)上恒成立.(2)讨论y =f(x)在区间(-1,1)内极值点的个数,即讨论f ′(x)=0在(-1,1)内变号零点的个数.解:(1)f ′(x)=2x 2-4ax -3,因为f(x)在区间(-1,1)上为减函数,所以f ′(x)≤0在(-1,1)上恒成立,即f ′(x)的最大值小于等于零.只需要满足⎩⎪⎨⎪⎧ f ′(-1)≤0,f ′(1)≤0,即⎩⎪⎨⎪⎧4a -1≤0,-4a -1≤0,所以-14≤a ≤14.(2)方法一:(数形结合法)要讨论y =f(x)在区间(-1,1)内极值点的个数,即讨论f ′(x)=0在(-1,1)内变号零点的个数.f ′(x)=2x 2-4ax -3.若⎩⎪⎨⎪⎧f ′(-1)≤0,f ′(1)≤0时,即-14≤a ≤14时,f(x)在区间(-1,1)上为减函数,无极值点.若⎩⎪⎨⎪⎧f ′(-1)>0,f ′(1)>0时,即⎩⎨⎧a>14,a<-14,此时不成立.若f ′(-1)f ′(1)<0,即(4a -1)(-4a -1)<0,a<-14或a>14时,函数有一个极值点.综上:当a<-14或a>14时,函数有一个极值点;当-14≤a ≤14时,函数无极值点.方法二:(分离参数法)f ′(x)=2x 2-4ax -3,令f ′(x)=0,所以4ax =2x 2-3.因为x =0不可能为方程的根,所以a =2x 2-34x =12x -34x .设g(x)=12x -34x ,则g ′(x)=12+34x 2>0恒成立,所以g(x)在(-1,0)和(0,1)上均为增函数.所以g(x)的值域为(-∞,-14)∪(14,+∞).故当a ∈(-∞,-14)∪(14,+∞)时,函数有一个极值点;当a ∈[-14,14]时,函数无极值点.点评:1.第(1)问中,f ′(x)<0和f ′(x)≤0都不是函数y =f(x)在(-1,1)上为减函数的充要条件,但只要函数不是常数函数,则f ′(x)≤0就是充要条件,故用f ′(x)≤0.2.第(2)问中,求极值点的个数转化为求方程解的个数,研究根的分布问题时,“数形结合法”与“分离参数法”是常用的两种方法.变式练习:上题的第(1)问中,若将区间(-1,1)改为[-1,1]呢?再将其改为(1,3)呢? 解:函数y =f(x)在(-1,1)上为减函数和[-1,1]上为减函数没有区别,故-14≤a ≤14.若将(-1,1)改为(1,3)时,还可以用分离参数法.解法如下:令f ′(x)≤0,所以4ax ≥2x 2-3.因为x ∈(1,3),所以a ≥2x 2-34x =12x -34x .由(2)知函数g(x)=12x -34x 在(1,3)上为增函数,故只需a ≥g(3),所以a ≥54.点评:解决不等式恒成立问题可以用“数形结合法”和“分离参数法”,对这两种方法的选择应按照先“分离参数法”后“数形结合法”的原则.如果“分离参数”时不好分离,可用“数形结合法”.如原题中区间为(-1,1)时,“数形结合法”要分三种情况讨论,不如用“分离参数法”简洁.达标检测1.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( ) A.94e 2 B .2e 2 C .e 2D.e 222.设函数f(x)=ax 2+c(a ≠0),若∫10f(x)dx =f(x 0),0≤x 0≤1,则x 0的值为__________. 答案:1.D 解析:y ′=e x ,曲线在点(2,e 2)处的切线斜率为e 2,因此切线方程为y -e 2=e 2(x -2),则切线与坐标轴交点为A(1,0),B(0,-e 2).所以S △AOB =12×1×e 2=e 22.2.33 解析:∫10f(x)dx =∫10(ax 2+c)dx =(13ax 3+cx)|10=a 3+c.而f(x 0)=ax 20+c ,所以ax 20+c =a 3+c.又0≤x 0≤1,所以x 0=33. 课堂小结1.知识收获:导数作为工具研究函数的相关问题的方法,以及定积分的简单运算. 2.方法收获:数形结合、分类讨论的方法.3.思维收获:数形结合思想、分类讨论思想以及将代数式子视为函数的意识和转化化归的思想.让学生自己小结,这是一个多维整合的过程,是一个高层次的自我认识过程.设计意图布置作业课本本章复习参考题A 组第6、7、16题.补充练习1.函数f(x)=ax 3-x 在(-∞,+∞)内是减函数,则( ) A .a<1 B .a<13C .a<0D .a ≤02.已知f(x)为偶函数,且∫60f(x)dx =8,则∫6-6f(x)dx 等于( )A .0B .4C .8D .163.函数y =lnx -x 在x ∈(0,e]上的最大值为__________. 答案:1.D 2.D 3.-1 拓展练习4.已知函数f(x)=ax 3+bx 2-3x 在x =±1处取得极值. (1)求函数f(x)的解析式;(2)求证:对于区间[-1,1]上任意两个自变量的值x 1,x 2,都有f(x 1)-f(x 2)≤4; (3)若过点A(1,m)(m ≠-2)可作曲线y =f(x)的三条切线,求实数m 的取值范围. 思路分析:本小题主要考查应用导数研究函数的极值,利用导数为工具解决函数与不等式的有关综合问题,运用导数的几何意义来解决函数与解析几何的综合问题,这是高考的热点问题.解:(1)f ′(x)=3ax 2+2bx -3,依题意,得f ′(1)=f ′(-1)=0,即⎩⎪⎨⎪⎧3a +2b -3=0,3a -2b -3=0,解得a =1,b =0.∴f(x)=x 3-3x. (2)证明:∵f(x)=x 3-3x ,∴f ′(x)=3x 2-3=3(x +1)(x -1).当-1<x<1时,f ′(x)<0,故f(x)在区间[-1,1]上为减函数,f(x)max =f(-1)=2,f(x) min=f(1)=-2.∵对于区间[-1,1]上任意两个自变量的值x 1,x 2,都有|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |,∴|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |≤2-(-2)=4.(3)f ′(x)=3x 2-3=3(x +1)(x -1),∵曲线方程为y =x 3-3x ,m ≠-2,∴点A(1,m)不在曲线上.设切点为M(x 0,y 0),则点M 的坐标满足y 0=x 30-3x 0.∵f ′(x 0)=3(x 20-1),故切线的斜率为3(x 20-1)=x 30-3x 0-m x 0-1, 整理得2x 30-3x 20+m +3=0. ∵过点A(1,m)可作曲线的三条切线,∴关于x 0的方程2x 30-3x 20+m +3=0有三个实根.设g(x 0)=2x 30-3x 20+m +3,则g ′(x 0)=6x 20-6x 0,由g ′(x 0)=0,得x 0=0或x 0=1.∴函数g(x 0)=2x 30-3x 20+m +3的极值点为x 0=0,x 0=1.∴关于x 0的方程2x 30-3x 20+m +3=0有三个实根的充要条件是g(1)g(0)<0,即(m +3)(m +2)<0,解得-3<m<-2.故所求实数a 的取值范围是(-3,-2).点评:总的说来,对于这部分知识的复习,要认识到新课程中增加了导数内容,增添了一部分的变量数学,在复习中要明确导数作为一种工具在研究函数的变化率,解决函数的单调性、极值等问题的作用.要全面复习,抓住导数基础知识.注意考题的难度逐年增大,要有意识地与解析几何(特别是切线,最值)、函数的单调性、函数的极值、最值、二次函数、方程、不等式、代数式的证明等知识进行交汇、综合训练,特别是精选一些以导数为工具分析和解决一些函数问题、切线问题进行训练.设计说明本节在设计过程中,注重了两点:一是体现学生的主体地位,注重引导学生思考,让学生学会学习;二是构建知识体系,形成知识网络,总结解题规律、方法,使学生能够见题想法,见题有法,能够做到一题多解,触类旁通.备课资料设a ∈R ,若函数f(x)=e ax +3x ,x ∈R 有大于零的极值点,则( )A .a>-3B .a<-3C .a>-13D .a<-13解析:f ′(x)=3+ae ax ,若函数在x ∈R 上有大于零的极值点,即f ′(x)=3+ae ax =0有正根.当有f ′(x)=3+ae ax =0成立时,显然有a<0,此时x =1a ln(-3a).由x>0,我们就能得到参数a 的范围为a<-3.答案:B点评:本题考查导数、函数、方程的有关知识,考查等价转化、分类讨论的数学思想以及分析问题、解决问题的能力,是试卷中一道以能力考查为主的试题.解决本题的关键是用a表示出x,通过x>0建立关于参数a的不等式,这也是解决参数取值范围问题的一个通用方法,值得仔细体会.(设计者:李锋)第2课时教学目标知识与技能目标1.在复习巩固导数基础知识的基础上,进一步理解利用导数解决函数单调性、极值、最值等问题的处理方法.2.提高学生转化化归意识,体会导数在解决实际问题中的作用.过程与方法目标掌握利用导数解决问题的方法、规律,深化学生对导数知识的理解及把握.情感、态度与价值观培养学生的观察、分析问题的能力,以及转化、化归的数学思想,让学生学会用数学方法认识世界、改造世界.重点难点重点:巩固常见导数题型,并培养学生解决实际问题的能力.难点:运用导数知识解决有关问题的方法.教学过程典型示例类型一求函数的导数例1函数y=x3lnx+2x+cos2x-3e+sinπ的导数为________.思路分析:本题考查函数求导公式及导数运算法则,且搞清变量是x,一般在不做任何说明的情况下,将x视为变量.答案:y′=3x2lnx+x2+2x ln2-2sin2x点评:本题一方面考查了导数求导公式及导数运算法则,另一方面学生容易出现诸如“(sinπ)′=cosπ”的错误,因此本题有助于帮助学生克服思维定势.变式练习1.函数y=e x+x2cosx+lnx的导数为__________.2.下列函数求导运算正确的是()A .(x +1x )′=1+1x 2B .(log 2x)′=1xln2C .(3x )′=3x log 3eD .(x 2sinx)′=2xcosx答案:1.y ′=e x +2xcosx -x 2sinx +1x2.B 类型二 用导数研究函数的性质(单调性、极值和最值)例2设函数f(x)=ln(2x +3)+x 2,(1)讨论f(x)的单调性;(2)求f(x)在区间[-34,14]上的最大值和最小值. 思路分析:f(x)的单调性取决于f ′(x)的正负,而函数的最值取决于函数的极值以及端点函数值的大小.解:f(x)的定义域为(-32,+∞). (1)f ′(x)=22x +3+2x =4x 2+6x +22x +3=2(2x +1)(x +1)2x +3. 当-32<x<-1时,f ′(x)>0;当-1<x<-12时,f ′(x)<0;当x>-12时,f ′(x)>0. 从而,f(x)在区间(-32,-1),(-12,+∞)上单调递增,在区间(-1,-12)上单调递减. (2)由(1)知f(x)在区间[-34,14]上的最小值为f(-12)=ln2+14. 又f(-34)-f(14)=ln 32+916-ln 72-116=ln 37+12=12(1-ln 499)<0. 所以f(x)在区间[-34,14]上的最大值为f(14)=116+ln 72. 点评:(1)对数形式的函数求导一定要注意定义域;(2)注意求闭区间上函数最值的基本方法.变式练习:设函数f(x)=x 3-3ax +b(a ≠0).(1)若曲线y =f(x)在点(2,f(x))处与直线y =8相切,求a ,b 的值;(2)求函数f(x)的单调区间与极值点.思路分析:本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力.解:(1)f ′(x)=3x 2-3a ,∵曲线y =f(x)在点(2,f(x))处与直线y =8相切,∴⎩⎪⎨⎪⎧ f ′(2)=0,f (2)=8,即⎩⎪⎨⎪⎧3(4-a )=0,8-6a +b =8.∴a =4,b =24.(2)∵f ′(x)=3(x 2-a)(a ≠0),当a<0时,f ′(x)>0,函数f(x)在(-∞,+∞)上单调递增,此时函数f(x)没有极值点; 当a>0时,由f ′(x)=0,得x =±a.当x ∈(-∞,-a)时,f ′(x)>0,函数f(x)单调递增,当x ∈(-a ,a)时,f ′(x)<0,函数f(x)单调递减,当x ∈(a ,+∞)时,f ′(x)>0,函数f(x)单调递增.∴此时x =-a 是函数f(x)的极大值点,x =a 是函数f(x)的极小值点.类型三 不等式证明例3当x>0时,证明不等式e x >1+x +12x 2成立. 思路分析:在高中数学学习过程中,我们常遇到一些不等式的证明,看似简单,但却无从下手,很难找到切入点,几种常用的证法都一一尝试,却很难奏效.这时我们不妨变换一下思维角度,从所证不等式的结构和特点出发,结合自己已有知识,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明.用导数方法证明不等式,其步骤一般是:构造可导函数——研究单调性或最值——得出不等关系——整理得出结论.证明:设f(x)=e x -1-x -12x 2,则f ′(x)=e x -1-x. 令g(x)=e x -1-x ,则g ′(x)=e x -1.当x>0时,g ′(x)=e x -1>0.∴g(x)在(0,+∞)上单调递增,而g(0)=0.∴g(x)>g(0)=0.∴g(x)>0在(0,+∞)上恒成立,即f ′(x)>0在(0,+∞)上恒成立.∴f(x)在(0,+∞)上单调递增.又f(0)=0,∴e x -1-x -12x 2>0,即x>0时,e x >1+x +12x 2成立. 点评:利用导数知识证明不等式是导数应用的一个重要方面,也成为命题的一个新热点,其关键是构造合适的函数,通过构造函数转化为研究这个函数的单调性和区间端点值或最值问题,其实质就是利用求导的方法研究函数的单调性,通过单调性证明不等式.变式练习:利用导数证明不等式lnx +1≤x 恒成立.解:设函数f(x)=lnx +1-x(x>0),则f ′(x)=1x-1,则0<x<1时,f ′(x)>0;当x>1时,f ′(x)<0,故f(x)在(0,1)上为增函数,在(1,+∞)上为减函数,故f(x)≤f(1)=0,即lnx +1-x ≤0,即lnx +1≤x.点评:一般地,证明f(x)<g(x),x ∈(a ,b),可以构造函数F(x)=f(x)-g(x),如果F ′(x)<0,则F(x)在(a ,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x ∈(a ,b)时,有F(x)<0,即证明了f(x)<g(x).类型四 微积分基本定理及其应用例4(1)求∫21(1x+x +e x +cosx)dx 的值;(2)求∫2-24-x 2dx. 思路分析:(1)本题考查微积分基本定理,需结合导数公式记忆该定理.(2)本题若用微积分基本定理,不易求解,可考虑几何意义,即半径为2的半圆面积.解:(1)∫21(1x +x +e x +cosx)dx =(lnx +x 22+e x +sinx)|21=ln2+32+e 2-e +sin2-sin1. 点评:求导问题和求微积分问题可以看做互逆的两个过程,因此须牢记求导公式.(2)∫2-24-x 2dx =2π. 点评:对于某些比较难求的积分,可考虑其几何意义,数形结合.变式练习:1.求∫a -aa 2-x 2dx 的值,其中a>0. 2.求由y =1x,y =1,y =2,x =0所围成的图形的面积. 3.物体A 以速度v =6t +1在一直线上运动,同时物体B 在A 的正前方2米处以v =6t 的速度运动,两物体速度方向相同,两物体何时相遇?相遇处与物体A 的出发地距离是多少?答案:1.∫a -a a 2-x 2dx 几何意义为半径为a 的半圆的面积,故其值为πa 22. 2.本题以y 为变量较好,故面积S =∫211ydy =lny|21=ln2-ln1=ln2. 3.解:设在时刻t 0时相遇,则由题意,知∫t 00(6t +1)dt =2+∫t 006tdt ,∴(3t 2+t)|t 00=2+3t 2|t 00.∴3t 2+t =2+3t 2.∴t =2.相遇处与物体A 的出发地距离是s =∫20(6t +1)dt =(3t 2+t)|20=14(米).类型五 导数在实际问题中的应用例5某工厂生产某种产品,已知该产品的月生产量x(吨)与每吨产品的价格p(元/吨)之间的关系式为p =24 200-15x 2,且生产x 吨的成本为R =50 000+200x(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入—成本)思路分析:建立利润函数,利用导数求其最值.解:每月生产x 吨时的利润为f(x)=(24 200-15x 2)x -(50 000+200x) =-15x 3+24 000x -50 000(x ≥0). 由f ′(x)=-35x 2+24 000=0,解得x 1=200,x 2=-200(舍去). 因为f(x)在[0,+∞)内只有一个点x =200使f ′(x)=0,故它就是最大值点,且最大值为f(200)=-15×(200)3+24 000×200-50 000=3 150 000(元). 答:每月生产200吨产品时利润达到最大,最大利润为315万元.点评:此题考查导数的实际应用,注意建立数学模型,将实际问题化为数学问题,最后一定要还原为实际问题来作答.变式练习:某厂生产某种产品的固定成本(固定投入)为2 500元.已知每生产x 件这样的产品需要再增加可变成本C(x)=200x +136x 3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这样的产品?最大利润是多少?解:设生产x 件产品的利润为L(x)元,则L(x)=500x -2 500-C(x)=300x -136x 3-2 500(x 为正整数). ∴L ′(x)=300-112x 2. 令L ′(x)=0,得到x =60(x =-60舍去).当0≤x<60时,L ′(x)>0;当x>60时,L ′(x)<0.∴x =60是L(x)的唯一极大值点.故[L(x)]max =L(60)=9 500.因此,要使利润最大,该厂应生产60件这种产品,最大利润为9 500元.拓展实例1.已知函数f(x)=sin2x -acos2x 的图象关于直线x =π8对称,则a 的值为…( ) A .1 B .0C .-1D .1或-1思路分析:此题方法较多,可以利用定义f(π8+x)=f(π8-x)求解,也可以利用特殊值求解.例如用f(0)=f(π4)求解,若能抓住此类三角函数在对称轴处取到极值,则可利用该点处导数值为零解决.解析:f ′(x)=2cos2x +2asin2x ,因为函数图象关于直线x =π8对称,故f ′(π8)=0,代入得cos π4+asin π4=0,所以a =-1. 答案:C2.已知函数f(x)=sin(2x +π6),求函数的单调递增区间. 解:∵f(x)=sin(2x +π6),∴f ′(x)=2cos(2x +π6). 令f ′(x)>0,得2kπ-π2<2x +π6<2kπ+π2,k ∈Z . 解得kπ-π3<x<kπ+π6,k ∈Z ,∴函数的单调递增区间为[kπ-π3,kπ+π6],k ∈Z . 变练演编1.已知f(x)=xlnx +e x ,则下列关系正确的是( )A .f ′(x)=1+e xB .f ′(1)=1+eC .f(1)>f(2)D .f ′(1)>f ′(2)2.对R 上可导的任意函数f(x),若满足(x -1)f ′(x)≥0,则必有( )A .f(0)+f(2)<2f(1)B .f(0)+f(2)≤2f(1)C .f(0)+f(2)≥2f(1)D .f(0)+f(2)>2f(1)3.已知函数f(x)=f ′(π4)cosx +sinx ,则f(π4)的值为__________. 4.求∫20(4-x 2+|x -1|)dx 的值.5.某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建为x(x ≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积) 6.设函数f(x)=ax 3+bx 2-3a 2x +1(a ,b ∈R )在x =x 1,x =x 2处取得极值,且|x 1-x 2|=2.(1)若a =1,求b 的值,并求f(x)的单调区间;(2)若a>0,求b 的取值范围.答案:1.B 2.C 3.1 4.π+1.5.解:设楼房每平方米的平均综合费用为f(x)元,则f(x)=(560+48x)+2 160×10 0002 000x =560+48x +10 800x(x ≥10,x ∈Z *). f ′(x)=48-10 800x 2,令f ′(x)=0,得x =15. 当x>15时,f ′(x)>0;当0<x<15时,f ′(x)<0.因此,当x =15时,f(x)取最小值f(15)=2 000.答:为了楼房每平方米的平均综合费用最少,该楼房应建为15层.6.解:f ′(x)=3ax 2+2bx -3a 2.①(1)当a =1时,f ′(x)=3x 2+2bx -3.由题意知x 1,x 2为方程3x 2+2bx -3=0的两根,所以|x 1-x 2|=4b 2+363. 由|x 1-x 2|=2,得b =0.从而f(x)=x 3-3x +1,f ′(x)=3x 2-3=3(x +1)(x -1).当x ∈(-1,1)时,f ′(x)<0;当x ∈(-∞,-1)∪(1,+∞)时,f ′(x)>0.故f(x)在(-1,1)上单调递减,在(-∞,-1),(1,+∞)上单调递增.(2)由①式及题意知x 1,x 2为方程3ax 2+2bx -3a 2=0的两根,所以|x 1-x 2|=4b 2+36a 33a. 从而|x 1-x 2|=2=9a 2(1-a),由上式及题设知0<a ≤1.考虑g(a)=9a 2-9a 3,g ′(a)=18a -27a 2=-27a(a -23). 故g(a)在(0,23)内单调递增,在(23,1)内单调递减,从而g(a)在(0,1]上的极大值为g(23)=43. 又g(a)在(0,1]上只有一个极值,所以g(23)=43为g(a)在(0,1]上的最大值,且最小值为g(1)=0.所以b 2∈[0,43],即b 的取值范围为[-233,233]. 达标检测1.函数y =x 3+x 的递增区间是( )A .(0,+∞)B .(-∞,1)C .(-∞,+∞)D .(1,+∞)2.f(x)=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于( )A.193B.163C.133D.1033.当x ≠0时,有不等式( )A .e x <1+xB .当x>0时,e x <1+x ;当x<0时,e x >1+xC .e x >1+xD .当x<0时,e x <1+x ;当x>0时,e x >1+x4.已知f(x)=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为…( )A .-1<a<2B .-3<a<6C .a<-1或a>2D .a<-3或a>65.函数y =x 3+x 2-5x -5的单调递增区间是__________.6.若函数y =-43x 3+bx 有三个单调区间,则b 的取值范围是__________. 7.已知函数f(x)=13x 3+a 2x 2+ax +b ,当x =-1时,函数f(x)的极值为-712,则f(2)=__________.答案:1.C 2.D 3.C 4.D 5.(-∞,-53),(1,+∞) 6.(0,+∞) 7.53课堂小结1.知识收获:导数在解决函数极值与最值、不等式证明以及在解决实际问题中的应用.2.方法收获:转化化归的思想方法.3.思维收获:分类讨论思想以及转化化归的思想.设计意图注重基础,由学生总结导数常见题型,培养学生的总结能力以及对知识的梳理能力,这样可以帮助学生尽快建立完整的知识体系.布置作业1.已知函数f(x)=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g(x)=f ′(x)+6x 的图象关于y 轴对称.(1)求m ,n 的值及函数y =f(x)的单调区间;(2)若a>0,求函数y =f(x)在区间(a -1,a +1)内的极值.2.设函数f(x)=x 3+ax 2+bx 在点x =1处有极值-2,(1)求常数a ,b 的值;(2)求曲线f(x)与x 轴所围成图形的面积.答案:1.解:(1)由函数f(x)的图象过点(-1,-6),得m -n =-3.①由f(x)=x 3+ mx 2+nx -2,得f ′(x)=3x 2+2mx +n ,则g(x)=f ′(x)+6x =3x 2+(2m +6)x +n.而g(x)图象关于y 轴对称,所以-2m +62×3=0.所以m =-3.代入①得n =0, 于是f ′(x)=3x 2-6x =3x(x -2).由f ′(x)>0,得x>2或x<0.故f(x)的单调递增区间是(-∞,0),(2,+∞);由f ′(x)<0,得0<x<2,故f(x)的单调递减区间是(0,2).(2)由(1)得f ′(x)=3x(x -2).令f ′(x)=0,得x =0或x =2.当x 变化时,f ′(x),f(x)的变化情况如下表:由此可得:当0<a<1时,f(x)在(a -1,a +1)内有极大值f(0)=-2,无极小值;当a =1时,f(x)在(a -1,a +1)内无极值;当1<a<3时,f(x)在(a -1,a +1)内有极小值f(2)=-6,无极大值;当a ≥3时,f(x)在(a -1,a +1)内无极值.综上得:当0<a<1时,f(x)有极大值-2,无极小值;当1<a<3时,f(x)有极小值-6.2.解:(1)a =0,b =-3.(2)92. 补充练习1.已知f(x)=2x 3-6x 2+a(a 是常数)在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是( )A .-5B .-11C .-37D .-292.设函数f(x)=x 3+bx 2+cx(x ∈R ),已知g(x)=f(x)-f ′(x)是奇函数,(1)求b 、c 的值;(2)求f(x)在点x 0=1处的切线方程;(3)求g(x)的单调区间与极值.3.若1 N 的力能使弹簧伸长2 cm ,要使弹簧伸长10 cm ,需作多少功?答案:1.C 2.(1)b =3,c =0;(2)y =9x -5;(3)单调增区间(-∞,-2),(0,+∞),单调减区间(-2,0);极大值f(-2)=42,极小值f(2)=-4 2.3.0.25 J.拓展练习4.以长为10的线段为直径作半圆,求它的内接矩形面积的最大值.解:如图所示,设AB =2x ,∴BC =52-x 2=25-x 2.∴面积S(x)=2x 25-x 2(0<x<5).S ′(x)=225-x 2-2x 225-x 2=2(25-2x 2)25-x 2, 令S ′(x)=0,解得x =522(x =-522舍去). 当x ∈(0,522)时,S ′(x)>0;当x ∈(522,5)时,S ′(x)<0, ∴在x =522时,S(x)取得极大值,也是最大值S(522)=25. 因此当x =522时,它的内接矩形面积最大,最大值为25. 设计说明导数是高等数学最为基础的内容,是中学必选的重要知识之一.由于导数应用的广泛性,可为解决所学过的函数问题提供更有效的工具或更一般性的方法,导数方法与初等方法相比,对技巧性的要求有所降低,因此运用导数方法可以简捷地解决相关问题.可以说导数的加入使函数这部分内容更加充实,也显得更加重要.但本部分也是难点,因此设计时尽可能地以小见大,从基础题入手,使学生循序渐近地掌握好本章内容.备课资料已知m ,n 是正整数,且1<m<n ,证明(1+m)n >(1+n)m .分析:要证(1+m)n >(1+n)m 成立,只要证ln(1+m)n >ln(1+n)m ,即要证1m ln(1+m)>1nln(1+n)成立.因为m<n ,所以,设函数f(x)=1xln(1+x),只要证f(x)在[2,+∞)上是减函数即可.证明:设函数f(x)=1x ln(1+x),则f ′(x)=-1x 2ln(1+x)+1x ·11+x, 即f ′(x)=1x 2[x 1+x -ln(1+x)],因为x ≥2,0<x 1+x<1,ln(1+x)≥ln3>1, 所以f ′(x)<0.所以f(x)在[2,+∞)内是减函数,而m<n ,所以f(m)>f(n),即1m ln(1+m)>1nln(1+n),从而有(1+m)n >(1+n)m . 评注:这类非明显一元函数式的不等式证明问题,首先变换成某一个一元函数式分别在两个不同点处的函数值的大小比较问题,只要将这个函数式找到了,通过设函数,求导判断它的单调性,就可以解决不等式证明问题.难点在于找这个一元函数式,这就是“构造函数法”.通过这类数学方法的练习,对提高学生分析问题、解决问题的能力是有很大好处的,这也是进一步学习高等数学所需要的.(设计者:李宾)。

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

第一章导数及其应用知识点及练习题知识点1:导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:导数的几何意义及其应用[例题] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为4的曲线的切线方程.[变式训练] 已知函数f(x)=x3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标.知识点2:导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° 5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =知识点3:导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.考点:1.导数在研究函数单调性中的应用2.导数在求函数极值与最值中的应用题型一:导数在研究函数单调性中的应用[例题] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间.[变式训练] 设函数f(x)=xekx(k ≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.题型二:导数在求函数极值与最值中的应用[例题]已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取极小值,当x=23时取极大值.(1)求函数y=f(x)在x=-2时的对应点的切线方程;(2)求函数y=f(x)在[-2,1]上的最大值与最小值.[变式训练] 设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.知识点4:解决实际问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用题型一:导数在切线方程中的运用1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43题型二:导数在单调性中的运用1.函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数 D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数3.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.题型三:导数在最值、极值中的运用1.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.52.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 163.已知函数)0()(3≠++=adcxaxxf是R上的奇函数,当1=x时)(xf取得极值-2.(1)试求a、c、d的值;(2)求)(xf的单调区间和极大值;4.设函数2312)(bxaxexxf x++=-,已知12=-=xx和为)(xf的极值点。

高二数学选修2-2第一章 导数及其应用测试题及答案

高二数学选修2-2第一章 导数及其应用测试题及答案

(数学选修2-2) 第一章 导数及其应用一、选择题1.若()sin cos f x x α=-;则'()f α等于( ) A .sin α B .cos α C .sin cos αα+D .2sin α2.若函数2()f x x bx c =++的图象的顶点在第四象限;则函数'()f x 的图象是( )3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数;则实数a 的取值范围是( )A .),3[]3,(+∞--∞B .]3,3[-C .),3()3,(+∞--∞D .)3,3(-4.对于R 上可导的任意函数()f x ;若满足'(1)()0x f x -≥;则必有( )A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +>5.若曲线4y x =的一条切线l 与直线480x y +-=垂直;则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ;导函数)(x f '在),(b a 内的图象如图所示; 则函数)(x f 在开区间),(b a 内有极小值点( )abxy)(x f y ?=OA .1个B .2个C .3个D .4个二、填空题1.若函数2f xx x c 在2x =处有极大值;则常数c 的值为_________;2.函数x x y sin 2+=的单调增区间为 。

3.设函数())(0)f x ϕϕπ=+<<;若()()f x f x '+为奇函数;则ϕ=__________ 4.设321()252f x x x x =--+;当]2,1[-∈x 时;()f x m <恒成立;则实数m 的 取值范围为 。

【高中数学选修2-2:第一章-导数及其应用-单元测试题

【高中数学选修2-2:第一章-导数及其应用-单元测试题

数学选修2-2第一章单元测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图像如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个2.在区间[12,2]上,函数f (x )=x 2+px +q 与g (x )=2x +1x2在同一点处取得相同的最小值,那么f (x )在[12,2]上的最大值是( )A.134 B.54 C .8D .43.点P 在曲线y =x 3-x +23上移动,设点P 处的切线的倾斜角为α,则α的取值范围是( )A .[0,π2]B .[0,π2]∪[34π,π)C .[34π,π)D .[π2,34π]4.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <325.函数f (x )=cos 2x -2cos 2x2的一个单调增区间是( )A.⎝ ⎛⎭⎪⎫π3,2π3B.⎝ ⎛⎭⎪⎫π6,π2C.⎝⎛⎭⎪⎫0,π3D.⎝ ⎛⎭⎪⎫-π6,π66.设f (x )在x =x 0处可导,且lim Δx→0 错误!=1,则f ′(x 0)等于( )A .1B .0C .3D.137.经过原点且与曲线y =x +9x +5相切的切线方程为( )A .x +y =0B .x +25y =0C .x +y =0或x +25y =0D .以上皆非8.函数f (x )=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b <0时,f (x )是( )A .增函数B .减函数C .常数D .既不是增函数也不是减函数9.若a >2,则方程13x 3-ax 2+1=0在(0,2)上恰好有( )A .0个根B .1个根C .2个根D .3个根10.一点沿直线运动,如果由始点起经过t s 后距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1 s 末B .0 sC .4 s 末D .0,1,4 s 末11.设f (x )=错误!则错误!f(x)d x 等于( ) A .34 B .45 C .56D .不存在12.若函数f(x)=sinx x ,且0<x 1<x 2<1,设a =sinx1x1,b =sinx2x2,则a ,b 的大小关系是( ) A .a>b B .a<bC .a =bD .a 、b 的大小不能确定二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若f(x)=13x 3-f ′(1)x 2+x +5,则f ′(1)=________.14.已知函数f(x)满足f(x)=f(π-x),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f(x)=x +sin x ,设a =f(1),b =f(2),c =f(3),则a 、b 、c 的大小关系是________.15.已知函数f(x)为一次函数,其图像经过点(2,4),且⎠⎛01f(x)d x =3,则函数f(x)的解析式为________.16.(2010·江苏卷)函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.三、解答题(本大题共6小题,共70分,解答应出写文字说明、证明过程或演算步骤)17.(10分)如图,直线y =kx 分抛物线y =x -x 2与x 轴所围成图形为面积相等的两部分,求k 的值.18.(12分)已知函数f(x)=x4-4x3+ax2-1在区间[0,1]上单调递增,在区间[1,2)上单调递减.(1)求a 的值;(2)若点A(x0,f(x0))在函数f(x)的图像上,求证:点A 关于直线x =1的对称点B 也在函数f(x)的图像上.19.(12分)设x =-2与x =4是函数f(x)=x3+ax2+bx 的两个极值点.(1)求常数a ,b ;(2)试判断x =-2,x =4是函数f(x)的极大值还是极小值,并说明理由.20.(12分)已知f(x)=ax3-6ax2+b ,x ∈[-1,2]的最大值为3,最小值为-29,求a ,b 的值.21.(12分)(2010·重庆卷)已知函数f(x)=ax 3+x 2+bx(其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值与最小值.22.(12分)已知函数f (x )=ln(ax +1)+1-x 1+x ,x ≥0,其中a >0.(1)若f (x )在x =1处取得极值,求a 的值; (2)求f (x )的单调区间;(3)若f (x )的最小值为1,求a 的取值范围.参考答案 1.答案 A解析 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f (x )在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b )上递减,因此,x 1、x 3是极大值点,只有x 2是极小值点.2.答案 D3.答案 B4.答案 A解析 因为函数f (x )=12x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2.令f ′(x )=0,得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272.不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32.5.答案 A解析 f (x )=cos 2x -cos x -1,∴f ′(x )=-2sin x ·cos x +sin x =sin x ·(1-2cos x ). 令f ′(x )>0,结合选项,选A. 6.答案 D 7.答案 D 8.答案 A 9.答案 B解析 设f (x )=13x 3-ax 2+1,则f ′(x )=x 2-2ax =x (x -2a ),当x∈(0,2)时,f ′(x )<0,f (x )在(0,2)上为减函数,又f (0)f (2)=1⎝ ⎛⎭⎪⎫83-4a +1=113-4a <0, f (x )=0在(0,2)上恰好有一个根,故选B. 10.答案 D 11.答案 C解析 数形结合,如图.⎠⎜⎛02f(x)d x =⎠⎜⎛01x 2d x +⎠⎜⎛12(2-x)d x =⎪⎪⎪13x310错误!错误! =13+(4-2-2+12) =56,故选C . 12.答案 A解析 f ′(x)=xcosx -sinxx2,令g(x)=x cos x -sin x ,则g ′(x)=-x sin x +cos x -cos x =-x sin x.∵0<x<1,∴g ′(x)<0,即函数g(x)在(0,1)上是减函数,得g(x)<g(0)=0,故f ′(x)<0,函数f(x)在(0,1)上是减函数,得a>b ,故选A .13.答案 23解析 f ′(x)=x 2-2f ′(1)x +1,令x =1,得f ′(1)=23.14.答案 c<a<b解析 f(2)=f(π-2),f(3)=f(π-3),因为f ′(x)=1+cos x ≥0,故f(x)在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,∵π2>π-2>1>π-3>0,∴f(π-2)>f(1)>f(π-3),即c<a<b.15.答案 f(x)=23x +83解析 设函数f(x)=ax +b(a ≠0),因为函数f(x)的图像过点(2,4),所以有b =4-2a.∴⎠⎛01f(x)d x =⎠⎛01 (ax +4-2a)d x =[12ax 2+(4-2a)x] |10=12a +4-2a =1. ∴a =23.∴b =83.∴f(x)=23x +83.16.答案 21解析 ∵y ′=2x ,∴过点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.17.解析 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形面积S =⎠⎜⎛01(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x22-x3310=12-13=16. 又⎩⎪⎨⎪⎧y =x -x2,y =kx ,由此可得抛物线y =x -x 2与y =kx 两交点的横坐标x 3=0,x 4=1-k ,所以S2=⎠⎛01-k (x -x 2-kx)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫1-k 2x2-x331-k 0=16(1-k)3. 又S =16,所以(1-k)3=12,∴k =1-342.18.解析 (1)由函数f(x)=x4-4x3+ax2-1在区间[0,1]单调递增,在区间[1,2)单调递减,∴x =1时,取得极大值,∴f ′(1)=0. 又f ′(x)=4x3-12x2+2ax , ∴4-12+2a =0⇒a =4.(2)点A(x0,f(x0))关于直线x =1的对称点B 的坐标为(2-x0,f(x0)),f(2-x0)=(2-x0)4-4(2-x0)3+4(2-x0)2-1 =(2-x0)2[(2-x0)-2]2-1 =x40-4x30+ax20-1=f(x0),∴A 关于直线x =1的对称点B 也在函数f(x)的图像上. 19.解析 f ′(x)=3x2+2ax +b.(1)由极值点的必要条件可知:f ′(-2)=f ′(4)=0,即⎩⎪⎨⎪⎧12-4a +b =0,48+8a +b =0,解得a =-3,b =-24.或f ′(x)=3x2+2ax +b =3(x +2)(x -4) =3x2-6x -24, 也可得a =-3,b =-24. (2)由f ′(x)=3(x +2)(x -4).当x <-2时,f ′(x)>0,当-2<x <4时,f ′(x)<0. ∴x =-2是极大值点,而当x >4时,f ′(x)>0, ∴x =4是极小值点.20.解析 a ≠0(否则f(x)=b 与题设矛盾), 由f ′(x)=3ax2-12ax =0及x ∈[-1,2],得x =0. (1)当a >0时,列表:f(x)在[0,2]上是减函数.则当x =0时,f(x)有最大值,从而b =3. 又f(-1)=-7a +3,f(2)=-16a +3, ∵a >0,∴f(-1)>f(2). 从而f(2)=-16a +3=-29, 得a =2.(2)当a <0时,用类似的方法可判断当x =0时f(x)有最小值.当x =2时,f(x)有最大值.从而f(0)=b =-29, f(2)=-16a -29=3,得a =-2.综上,a =2,b =3或a =-2,b =-29.21.解析 (1)由题意得f ′(x )=3ax 2+2x +b .因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b .因为函数g (x )是奇函数,所以g (-x )=-g (x ),即对任意实数x ,有a (-x )3+(3a +1)(-x )2+(b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ],从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的解析式为f (x )=-13x 3+x 2. (2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2. 令 g ′(x )=0,解得x 1=-2,x 2=2,则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,-2],[2,+∞)上是减函数;当-2<x <2时, g ′(x )>0,从而g (x )在[-2,2]上是增函数.由前面讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得,而g (1)=53,g (2)=423,g (2)=43.因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43. 22.分析 解答本题,应先正确求出函数f (x )的导数f ′(x ),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.解析 (1)f ′(x )=a ax +1-错误!=错误!, ∵f (x )在x =1处取得极值,∴f′(1)=0,即a·12+a-2=0,解得a=1.(2)f′(x)=错误!,∵x≥0,a>0,∴ax+1>0.①当a≥2时,在区间[0,+∞)上,f′(x)>0,∴f(x)的单调增区间为[0,+∞).②当0<a<2时,由f′(x)>0,解得x> 2-a a.由f′(x)<0,解得x< 2-a a.∴f(x)的单调减区间为(0, 2-aa),单调增区间为(2-aa,+∞).(3)当a≥2时,由(2)①知,f(x)的最小值为f(0)=1;当0<a<2,由(2)②知,f(x)在x=2-aa处取得最小值,且f(2-aa)<f(0)=1.综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞).。

高中数学教案 选修2-2教案 第一章 导数及其应用 《微积分基本定理(二)》教案

高中数学教案 选修2-2教案 第一章 导数及其应用 《微积分基本定理(二)》教案

§15 微积分基本定理(二)【学习目标】1.直观了解微积分基本定理的含义,能运用微积分基本定理计算简单的定积分。

2.通过学习微分与积分的关系,体会数学的博大精深,为进一步学好微积分打好基础。

【学习重点】微积分基本定理的理解;【学习难点】运用微积分基本定理计算简单的定积分。

【学习内容】一、预习提纲1.微积分基本定理:2.定积分公式:(1)=⎰b a cdx (2)=⎰b a n dx x (3)=⎰b a xdx cos (4)=⎰b axdx sin (5))0(___________1>=⎰x dx x b a(6)=⎰b a x dx e (7)=⎰n mx dx a 3.定积分性质(1)⎰⎰=b aba dx x f k dx x kf )()((k 为常数) (2)⎰⎰⎰±=±bab a b a dx x g dx x f dx x g x f )()()]()([ (3),)()()(⎰⎰⎰+=b c c a b a dx x f dx x f dx x f 二、典型例题 例1.计算下列定积分 (1)⎰-21)1(dx x (2)⎰+21)1(dx x e x(3)⎰π0|cos |dx x (4)⎰-302|4|dx x例2.求由曲线3,1362+=+-=x y x x y 围成的封闭区域的面积例3. 已知函数bx ax x x f ++=23)(在1=x 处有极值2-。

(1)求常数b a ,;(2)求曲线)(x f y =与x 轴围成的图形的面积。

三.课堂练习1.计算下列定积分(1)⎰ππ2cos xdx (2)⎰-+11)1(||dx x x2.计算⎰-11)(dx x f ,其中⎪⎩⎪⎨⎧≤>=0,0,)(23x x x x x f3.求由曲线22,x y x y ==围成的图形的面积§15 微积分基本定理(二)课外作业1.计算下列定积分(1)⎰π02cos xdx (2)⎰-212)1(dx xx(3)⎰+4025dx x (4)⎰202sin πxdx2.已知)(x f 是]3,3[-上的偶函数,且16)(30=⎰dx x f ,求⎰--+33]5)([dx x x f 的值。

高中数学选修2-2教案 第一章 导数及其应用(教案)

高中数学选修2-2教案 第一章 导数及其应用(教案)

第一章 导数及其应用(教案)§1.1.1变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。

导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。

导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?hto1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念:1.上述问题中的变化率可用式子 1212)()(x x x f x f --表示,称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)3. 则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212思考:观察函数f (x )的图象 平均变化率=∆∆x f1212)()(x x x f x f --表示什么?yy =f (x )f (x 2)直线AB三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。

【高中数学选修2-2:第一章-导数及其应用-单元测试题

【高中数学选修2-2:第一章-导数及其应用-单元测试题

【高中数学选修2-2:第一章-导数及其应用-单元测试题数学选修2-2第一章单元测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图像如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个2.在区间[12,2]上,函数f (x )=x 2+px +q 与g (x )=2x +1x 2在同一点处取得相同的最小值,那么f (x )在[12,2]上的最大值是( )A.134 B.54 C .8D .43.点P 在曲线y =x 3-x +23上移动,设点P 处的切线的倾斜角为α,则α的取值范围是( )A .[0,π2]B .[0,π2]∪[34π,π)x=1的对称点B也在函数f(x)的图像上.19.(12分)设x=-2与x=4是函数f(x)=x3+ax2+bx的两个极值点.(1)求常数a,b;(2)试判断x=-2,x=4是函数f(x)的极大值还是极小值,并说明理由.20.(12分)已知f(x)=ax3-6ax2+b,x∈[-1,2]的最大值为3,最小值为-29,求a,b的值.21.(12分)(2010·重庆卷)已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数.(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值与最小值.22.(12分)已知函数f(x)=ln(ax+1)+1-x1+x,x≥0,其中a>0.(1)若f(x)在x=1处取得极值,求a的值;(2)求f(x)的单调区间;(3)若f(x)的最小值为1,求a的取值范围.参考答案 1.答案 A解析 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f (x )在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b )上递减,因此,x 1、x 3是极大值点,只有x 2是极小值点.2.答案 D3.答案 B4.答案 A解析 因为函数f (x )=12x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2.令f ′(x )=0,得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272.不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32.5.答案 A解析 f (x )=cos 2x -cos x -1,∴f ′(x )=-2sin x ·cos x +sin x =sin x ·(1-2cos x ). 令f ′(x )>0,结合选项,选A. 6.答案 D 7.答案 D 8.答案 A 9.答案 B解析 设f (x )=13x 3-ax 2+1,则f ′(x )=x 2-2ax =x (x -2a ),当x∈(0,2)时,f ′(x )<0,f (x )在(0,2)上为减函数,又f (0)f (2)=1⎝ ⎛⎭⎪⎫83-4a +1=113-4a <0, f (x )=0在(0,2)上恰好有一个根,故选B. 10.答案 D 11.答案 C解析 数形结合,如图.⎠⎛02f(x)d x =⎠⎛01x 2d x +⎠⎛12(2-x)d x = ⎪⎪⎪13x 310⎪⎪⎪+(2x -12x 2)21=13+(4-2-2+12) =56,故选C . 12.答案 A解析 f ′(x)=x cos x -sin xx 2,令g(x)=x cos x -sin x ,则g ′(x)=-x sin x +cos x -cos x =-x sin x.∵0<x<1,∴g ′(x)<0,即函数g(x)在(0,1)上是减函数,得g(x)<g(0)=0,故f ′(x)<0,函数f(x)在(0,1)上是减函数,得a>b ,故选A .13.答案 23解析 f ′(x)=x 2-2f ′(1)x +1,令x =1,得f ′(1)=23.14.答案 c<a<b解析 f(2)=f(π-2),f(3)=f(π-3),因为f ′(x)=1+cos x ≥0,故f(x)在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,∵π2>π-2>1>π-3>0,∴f(π-2)>f(1)>f(π-3),即c<a<b.15.答案 f(x)=23x +83解析 设函数f(x)=ax +b(a ≠0),因为函数f(x)的图像过点(2,4),所以有b =4-2a.∴⎠⎛01f(x)d x =⎠⎛01 (ax +4-2a)d x=[12ax 2+(4-2a)x] |10=12a +4-2a =1.∴a =23.∴b =83.∴f(x)=23x +83.16.答案 21解析 ∵y ′=2x ,∴过点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.17.解析 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形面积S =⎠⎛01(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 22-x 3310=12-13=16. 又⎩⎨⎧y =x -x 2,y =kx ,由此可得抛物线y =x -x 2与y =kx 两交点的横坐标x 3=0,x 4=1-k ,所以S2=⎠⎛01-k (x -x 2-kx)d x =⎪⎪⎪⎪⎝⎛⎭⎪⎪⎫1-k 2x 2-x 331-k 0=16(1-k)3. 又S =16,所以(1-k)3=12,∴k =1-342.18.解析 (1)由函数f(x)=x4-4x3+ax2-1在区间[0,1]单调递增,在区间[1,2)单调递减,∴x =1时,取得极大值,∴f ′(1)=0. 又f ′(x)=4x3-12x2+2ax , ∴4-12+2a =0⇒a =4.(2)点A(x0,f(x0))关于直线x =1的对称点B 的坐标为(2-x0,f(x0)),f(2-x0)=(2-x0)4-4(2-x0)3+4(2-x0)2-1 =(2-x0)2[(2-x0)-2]2-1 =x40-4x30+ax20-1=f(x0),∴A 关于直线x =1的对称点B 也在函数f(x)的图像上. 19.解析 f ′(x)=3x2+2ax +b. (1)由极值点的必要条件可知:f ′(-2)=f ′(4)=0,即⎩⎨⎧12-4a +b =0,48+8a +b =0,解得a =-3,b =-24.或f ′(x)=3x2+2ax +b =3(x +2)(x -4) =3x2-6x -24, 也可得a =-3,b =-24. (2)由f ′(x)=3(x +2)(x -4).当x <-2时,f ′(x)>0,当-2<x <4时,f ′(x)<0. ∴x =-2是极大值点,而当x >4时,f ′(x)>0, ∴x =4是极小值点.20.解析 a ≠0(否则f(x)=b 与题设矛盾),由f′(x)=3ax2-12ax=0及x∈[-1,2],得x=0.(1)当a>0时,列表:x (-1,0) 0 (0,2)f′(x) +0 -f(x) 增极大值b 减由上表知,f(x)在[-1,0]上是增函数,f(x)在[0,2]上是减函数.则当x=0时,f(x)有最大值,从而b=3.又f(-1)=-7a+3,f(2)=-16a+3,∵a>0,∴f(-1)>f(2).从而f(2)=-16a+3=-29,得a=2.(2)当a<0时,用类似的方法可判断当x=0时f(x)有最小值.当x=2时,f(x)有最大值.从而f(0)=b=-29, f(2)=-16a-29=3,得a=-2.综上,a=2,b=3或a=-2,b=-29.21.解析(1)由题意得f′(x)=3ax2+2x+b.因此g(x)=f(x)+f′(x)=ax3+(3a+1)x2+(b+2)x+b.因为函数g(x)是奇函数,所以g(-x )=-g (x ),即对任意实数x ,有a (-x )3+(3a +1)(-x )2+(b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ],从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的解析式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2.令 g ′(x )=0,解得x 1=-2,x 2=2,则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,-2],[2,+∞)上是减函数;当-2<x <2时, g ′(x )>0,从而g (x )在[-2,2]上是增函数.由前面讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得,而g (1)=53,g (2)=423,g (2)=43.因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43. 22.分析 解答本题,应先正确求出函数f (x )的导数f ′(x ),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.解析 (1)f ′(x )=aax +1-2(1+x )2=ax 2+a -2(ax +1)(1+x )2, ∵f (x )在x =1处取得极值,∴f ′(1)=0,即a ·12+a -2=0,解得a =1. (2)f ′(x )=ax 2+a -2(ax +1)(1+x )2,∵x≥0,a>0,∴ax+1>0.①当a≥2时,在区间[0,+∞)上,f′(x)>0,∴f(x)的单调增区间为[0,+∞).②当0<a<2时,由f′(x)>0,解得x> 2-a a.由f′(x)<0,解得x< 2-a a.∴f(x)的单调减区间为(0, 2-aa),单调增区间为(2-aa,+∞).(3)当a≥2时,由(2)①知,f(x)的最小值为f(0)=1;当0<a<2,由(2)②知,f(x)在x=2-aa处取得最小值,且f(2-aa)<f(0)=1.综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞).。

最新人教版高中数学选修2 2第一章《导数及其应用复习》示范教案

最新人教版高中数学选修2 2第一章《导数及其应用复习》示范教案

最新人教版高中数学选修2 2第一章《导数及其应用复习》示范教案最新人教版高中数学选修2-2第一章《导数及其应用复习》示范教案会议2教学目标知识与技能目标1.在复习和巩固导数基本知识的基础上,进一步了解利用导数解决函数的单调性、极值和最大值问题的处理方法2.提高学生转化化归意识,体会导数在解决实际问题中的作用.过程与方法目标掌握利用导数解决问题的方法和规律,加深学生对导数知识的理解和掌握。

情感、态度和价值观培养学生的观察、分析问题的能力,以及转化、化归的数学思想,让学生学会用数学方法认识世界、改造世界.重点和难点重点:巩固常见导数题型,并培养学生解决实际问题的能力.难点:运用导数知识解决有关问题的方法.教学过程典型示例一型函数的导数例1函数y=x3lnx+2x+cos2x-3e+sinπ的导数为________.思路分析:这个问题考察了函数求导公式和求导算法,明确了变量是X。

通常,X被视为一个变量,没有任何解释答案:y′=3x2lnx+x2+2xln2-2sin2x备注:一方面,本问题考察了导数公式和导数算法。

另一方面,学生容易犯错误,比如“(sinπ)′=cosπ”。

因此,这个问题有助于帮助学生克服思维定势变式练习1.函数y=ex+x2cosx+LNX的导数是__2。

以下函数的推导是正确的()111a、(x+)′=1+2b(log2x)′=xxxln2c.(3x)′=3xlog3ed.(x2sinx)′=2xcosx1回答:1y′=ex+2xcosx-x2sinx+2。

Bx第二类通过导数研究函数的性质(单调性、极值和最大值)。

例2:让函数f(x)=ln(2x+3)+X2,(1)讨论f(x)的单调性;31(2)求区间[-,]上F(x)的最大值和最小值44思维分析:F(x)的单调性取决于F'(x)的正负,函数的最大值取决于函数的极值和端点函数的值3解决方案:F(x)的定义域是(-,+∞)24x2+6x+22?2x+1??x+1?二(1)f′(x)=+2x==.2x+32x+32x+3三百一十一当-0;当-1-时,f′(x)>0.二百二十二311因此,f(x)在区间(-1),(,+∞) 在区间(-1,-)内单调递减2223111(2)从(1)可知,区间[-],中F(x)的最小值为F(-)=LN2+。

高中数学教案选修2-2《第1章 导数及其应用》最新修正版

高中数学教案选修2-2《第1章 导数及其应用》最新修正版

目标定位:1.通过具体背景与实例的抽象,经历导数模型的建构和利用导数解决实际问题的过程,使学生对变量数学的思想方法(无穷小算法数学)有新的感悟.进一步发展学生的数学思维能力,感受和体会数学产生和发展的规律以及人类智慧和文明的传承,促进学生全面认识数学的价值.也为后继进一步学习微积分等课程打好基础.导数与函数、方程、不等式及解析几何等相关内容密切相联.具有“集成”的特点,进而,学习本章节有助于学生从整体上理解和把握数学的结构,灵活运用数学的思想和方法,提高分析问题、解决问题的能力.2.本章具体的教学目标是:(1)经历由平均变化率过渡到瞬时变化率的过程,体会变化率的广阔实际背景(如运动速度、绿地面积增长率、人口增长率、汽油的使用效率等等).认识平均变化率与导数的区别与联系,体会导数的思想及其内涵,知道瞬时变化率就是导数,并通过函数图象直观地理解导数的几何意义.让学生在经历和参与数学发现活动的基础上,体验有限与无限、数形结合的思维过程,以及代数几何相互转化的数学思想方法.(2)能由导数的定义求函数y = c,y = x,y = x2,y = 1x的导数.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.(3)结合实例,探索并了解函数的单调性与导数的关系.并利用导数求不超过三次的多项式函数的极大值、极小值和最大值、最小值.通过实例,初步学会解决生活中的优化问题(如利润最大、用料最省、效率最高).体会导数的实际应用价值.(4)了解有关微积分创立的时代背景和历史意义,体会微积分的建立在人类文化发展中的意义和价值.教材解读:1.本教材《导数及其应用》,侧重于对导数本质的认识,通过大量的实例由浅入深,由表及里,层层展示其数学思想和数学方法.这与传统的运用形式化的极限概念,将导数作为一种规则的设计有很大的不同.全章按:“现实世界中的背景”→“建立数学模型”→“对数学模型进行研究”→“利用数学模型解决问题”的线索而展开.全书的整体结构如下:2.“局部的以直代曲”是微积分的核心所在,本教材通过一系列的“问题串”以及十分形象直观的“放大图形”的朴素方法,逐层深入,将“以直代曲”的本质力图说透.教材按照“问题情境—建立模型—解释·应用与拓展”的程序,让学生经历数学建模的过程.本章的问题情境按二条线索进行设计.线索一为生活中的案例,如“气温变化的快与慢”、“婴儿体重变化的快与慢”、“工厂治污率的比较”、“速度变化的快与慢”、“边际函数”等等.另一条线索则是源于数学内部的背景.如“曲线上一点处的变化趋势”、“曲线上一点处最逼近曲线的直线”、“怎样由割线逼近切线”等等.应指出的是上述两条线索交替呈现,环环相扣.为导数模型的建立和感受微分的基本思想提供了丰富的背景.3.为了让更多的学生能理解“局部以直代曲”的辨证思想,激发他们自主学习的动机,教材通过设置“思考、探究、链接、阅读”等内容,以及信息技术的运用,为教师和学生的活动提供了广阔的空间,以期促进和改进教学方式和学习方式.为了适应学生的个性发展,教材在练习的基础上,将习题分为“感受·理解”、“思考·运用”、“探究·拓展”三个层次.“感受·理解”体现了本章的基本要求.“思考·运用”则帮助学生深化本章知识的理解.“探究·拓展”则为学生有余力的同学提供一些富有挑战性的问题.这样习题便具有一定的弹性,为教学留有足够的空间.也有助于学生良好的学习方式的形成.4.另外,本章节的教学应加强与前期所学必修教材的联系,如必修2的相关习题(圆的周长与圆的面积的关系、圆的面积与球的体积的关系)均为学习本章节作好了铺垫.教学方法与教学建议:1.突出数学模型思想.充分利用章引言中“气温变化”的背景和大量的生活实例以及学生学习数学必修课程所结累的经验,自觉地参与建构模型的活动.教学内容的呈现,应注意反映数学发展的规律,以及人们的认识规律,体现从具体到抽象、特殊到一般的原则.既要让学生领悟到数学的发生和发展具有“一以贯之”的风貌,又要使学生不知不觉地感受到学习的过程“似曾相识”.2. 以问题为中心,以“问题串”为载体.充分发挥理性思维在建构数学模型中的作用.教师要避免“急于表白”和“自说自话”,应努力追求水到渠成.通过问题串,着力揭示建构数学模型的思维过程和数学知识的内在联系,引导学生学会提出问题,学会数学发现.例如,比较变化的快与慢,只考虑Δy行不行?教学中不要直接灌输Δy/Δx,应由生活实际背景,根据学生的生活经验,创设丰富的情境启发学生讨论、探索、感悟和体会,并尽可能由学生自己举例说明.教材在P4、P5、P8、P18分别提出:“用什么样的数学模型来刻画变量变化的快与慢?”、“气温陡增的数学意义是什么呢?”、“如何量化陡峭程度呢?”、“如何精确地刻画曲线上某一点处的变化趋势呢?”、“如何求一个函数的导数?”这一系列问题引导着怎样的“数学思维过程”?“变量变化的快与慢”→“数学地研究:几何化——曲线图”→“数学地研究:数量化—--局部近似(以直代曲),平均变化率()()f t t f tt+∆-∆”→“割线的斜率()()f t t f tt+∆-∆”→“近似向精确逼近——t∆无限趋近于零”→“平均变化率过渡到瞬时变化率,割线的斜率过渡到切线的斜率”→“导数”.可见,在上述环环相扣的问题串的指引下,师生可以真正主动地参与建构数学的活动.通过对这一问题的讨论与发现,可以紧紧扣住数学的本质.在教学中,关键不在给出具体的方法,而在于数学原理的发现,具体方法的程序化表达,只要建立在深刻理解的基础上,学生自己也不难做到.这应该自始至终地贯彻于数学教学过程之中.3. 导数的学习涉及到多个相关知识,应注重不同章节之间的铺垫与呼应,内容上注意承前启后(如函数的图象和性质、球的面积与体积、算法与流程图),方法上注意多样并举.直与曲的对立统一,近似与精确的相互转化,形与数的有机结合,导数的教学应追求集大成的境界,熔几何代数于一炉,呈“中心开花”之态.4.数学理论不是生活的简单复制,必要的形式化训练也是必不可少.在导数概念建立之后,要认真引导学生用定义推导几个初等函数的导数公式,这一阶段特别要注重规范化书写的常规训练,同时,进一步体会导数的思想和内涵及数学理论的自身特点和巨大价值,这其中渗透了算法的基本思想.对于直接给出的其他基本初等函数的导数以及导数的运算法则,一般不要提高要求.另外,应注意作为选修1-1与选修2-2在教学要求上的区别.5.恰当地使用信息技术,有条件应尽量使用计算器(机).如,“割线逼近切线”的动态操作,曲线一点处的局部“放大、放大、再放大”的过程演示,“平均变化率过渡到瞬时变化率”的数值计算,计算曲边梯形面积的Monte Carlo方法等,运用多媒体教学,应注意现场制作,赋予信息技术以鲜活的生命,努力把计算机变成学习的好伙伴.6.微积分的创立是数学发展中的里程碑,它充满着人类智慧的光辉.它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段.在今天的数学课上,我们是先学微分,后学积分.而在历史上积分概念的产生要远早于微分概念之前.积分的萌芽可上溯到公元前3世纪阿基米德的“穷竭法”,而微积分于17世纪中后叶由费马、笛卡尔、牛顿与莱布尼茨等人大体完成.虽然在18世纪,微积分作为伟大的数学工具已得到了广泛的应用.但直到19世纪才由柯西等人运用实数理论、集合论和极限论为微积分构建了牢固的逻辑基础.这与牛顿、莱布尼茨时代又间隔了约150年.微积分的历史,最富有启示意义之处就在于它充分显示了数学是如何取得进步的.周密的思考,逻辑地推演,然后获胜完美而无懈可击的数学结论.数学家们这种正统的观念,正好与历史上微积分创造者们的情形发生了尖锐的冲突.回顾历史,教师们理应深切感悟到,在中学作为“教育形态”而非“学术形态”的微积分可以适当简化和降低理论的严格推导过程,通过形象直观去认识和感受它,这既减少了学生学习的困难,又有利于真正理解导数与定积分的本质.。

选修2-2第1章导数及其应用教学文案

选修2-2第1章导数及其应用教学文案

第1章导数及其应用教材分析本章内容微积分的设计主线是:瞬间速度一变化率一导数一导数应用一定积分,这与传统大学中微积分的设计主线是不同的。

虽然是选修内容,但对绝大部分高中学生来说,它依然是必要的基础性的。

定积分与微积分基本定理的内容,对运算的要求也略有提高,原因主要是理科对数学的实际要求更高。

这部分内容在高中教材中几进几出,除了高考导向的影响外,主要是定位不明确。

鉴于它的教育价值,《标准》给出了明确的定位,同以前相比有较大的不同。

一、内容与课程学习目标1.1导数课程目标⑴理解、掌握平均变化率的定义,会用平均变化率的定义解决一些实际问题.⑵理解瞬时速度,导数的要领掌握导数的要领并会运用导数解决一些实际的问题,会解一些极限的方法.⑶理解并掌握导数的几何意义,并会用导数来求解一些几何的问题.1.2导数的运算课程目标⑴掌握四个公式,理解公式的证明过程和导数的几何意义.⑵学会计算导数的一般方法和步骤.⑶理解函数的和、差、积的求导法则的推导.⑷能正确运用函数的和、差、积、商的求导法则及已有的导数公式求某些简单函数的导数. 1.3导数的应用课程目标⑴通过对实例的观察和研究,发现函数的单调性与导数之间的关系,加深对函数的导数的理解.⑵会利用函数的导数来研究函数的单调性,提高学生运用导数解决实际问题的能力,增强"数形结合”的能力.⑶掌握函数极值的定义,子解可导函数的极值点的必要条件和充分条件.⑷掌握利用导数判别可导函数极值的方法,能较熟练地求出已知函数的极值,能解决与函数极值有关的综合问题.⑸通过对函数极值的研究,提高学生分析和解决问题的能力.1.4定积分与微积分基本定理课程目标⑴通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分.⑵进一步让学生深刻体会”分割、以直代曲、求和、逼近"求曲边梯形的思想方法.⑶让学生深刻理解定积分的几何意义以及微积分的基本定理.⑷初步掌握利用定积分求曲边梯形的几种常见题型及方法.二、内容安排本章包括7节,约需18课时,具体分配如下(仅供参考):1 - 1 1 - 2变化率与导数导数的计算约3课时约3课时1 - 3导数在研究函数中的应用约3课时1 "敞4生活中的优化问题举例约1课时1 - 5定积分的概念约3课时1 - 6微积分基本定理约2课时1 - 7 定积分的简单应用 三、教学要求1.对于极限概念:传统微积分教学中,导数、积分的概念都是用极限定义的,现在讲导 数、积分要避开极限或是“没有极限下的导数”,是不妥的,因为,学生此前没接触过极限 概念,现遇到了极限自然会产生疑问,为了帮助学生理解,教师就得描述、解释、举例、补 充,实践说明,将函数极限知识提前上一些,淡化形式,重在极限思想的描述是可取的。

【高中数学选修2-2:第一章-导数及其应用-单元测试题

【高中数学选修2-2:第一章-导数及其应用-单元测试题

数学选修2-2第一章单元测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图像如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个2.在区间[12,2]上,函数f (x )=x 2+px +q 与g (x )=2x +错误!在同一点处取得相同的最小值,那么f (x )在[错误!,2]上的最大值是( )A 。

错误!B 。

错误!C .8D .43.点P 在曲线y =x 3-x +错误!上移动,设点P 处的切线的倾斜角为α,则α的取值范围是( )A .[0,π2] B .[0,错误!]∪[错误!π,π) C .[错误!π,π)D .[错误!,错误!π]4.已知函数f (x )=错误!x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥错误!B .m >错误!C .m ≤32D .m <错误!5.函数f (x )=cos 2x -2cos 2错误!的一个单调增区间是( ) A 。

错误! B.错误! C.错误!D 。

错误!6.设f (x )在x =x 0处可导,且错误! 错误!=1,则f ′(x 0)等于( ) A .1 B .0 C .3D 。

错误!7.经过原点且与曲线y =错误!相切的切线方程为( ) A .x +y =0 B .x +25y =0C .x +y =0或x +25y =0D .以上皆非8.函数f (x )=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b <0时,f (x )是( )A .增函数B .减函数C .常数D .既不是增函数也不是减函数9.若a >2,则方程错误!x 3-ax 2+1=0在(0,2)上恰好有( ) A .0个根 B .1个根 C .2个根D .3个根10.一点沿直线运动,如果由始点起经过t s 后距离为s =错误!t 4-错误!t 3+2t 2,那么速度为零的时刻是( )A .1 s 末B .0 sC .4 s 末D .0,1,4 s 末11.设f (x )=错误!则错误!f (x)d x 等于( ) A .34 B .错误! C .错误!D .不存在12.若函数f (x )=错误!,且0〈x 1<x 2<1,设a =错误!,b =错误!,则a ,b 的大小关系是( )A .a>bB .a 〈bC .a =bD .a 、b 的大小不能确定二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若f(x )=错误!x 3-f ′(1)x 2+x +5,则f ′(1)=________. 14.已知函数f (x)满足f (x )=f (π-x ),且当x ∈错误!时,f(x )=x +sin x ,设a =f(1),b =f(2),c =f (3),则a 、b 、c 的大小关系是________.15.已知函数f(x)为一次函数,其图像经过点(2,4),且错误!f(x)d x =3,则函数f(x )的解析式为________.16.(2010·江苏卷)函数y =x 2(x >0)的图像在点(a k ,a 错误!)处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *。

选修2-2第一章导数及其应用答案

选修2-2第一章导数及其应用答案

∴ g(x)在[1,2]上是单调递减函数,在 (2,3] 上是单调递增函数.
故 g ( x) min = g (2) = 2 − 2 ln 2 ┉┉┉┉┉┉┉┉12 分 又 g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),∴只需 g(2)<a≤g(3), 故 a 的取值范围是(2-2ln2,3-2ln3) ┉┉┉┉┉┉┉┉14 分
2
22. (本小题 14 分) 设函数 f ( x ) = x − m ln x , h( x) =
x2 − x + a 。
(Ⅰ)当 a=0 时, f ( x ) ≥ h ( x ) 在(1,+∞)上恒成立,求实数 m 的取值范围; (Ⅱ)当
m=2
时,若函数 k ( x ) = f ( x ) − h ( x ) 在[1,3]上恰有两个不同
x
f ′( x ) f ( x)
( −∞, − 2)
− 2
0 极大值
( − 2, 2 )
2
0 极小值
( 2, +∞ )
+ ↗
- ↘
+ ↗
(8 分)∴函数 f ( x ) 的单调递增区间是 ( −∞, − 2) 和 ( 2, +∞ ) , (10 分) ∵ f ( −1) = 10, f ( 2) = −8 2, f (3) = 18 ,∴函数 f ( x ) 在 [ −1, 3] 上的最大值是 18, 最小值是 −8 2 (12 分)
(1)求 a , b, c 的值; (2) 求函数 f ( x ) 的单调递增区间, 并求函数 f ( x ) 在 [ −1, 3] 上的最大值和最小值。 19.解: (1)∵ f ( x ) 为奇函数,∴ f (0) = c = 0, (1 分)

2、选修2-2 第一章 导数(教案教学设计导学案)

2、选修2-2 第一章 导数(教案教学设计导学案)

选修2-2第一章导数测试卷【答案与解析】1.【答案】A【解析】因为极值点左右两边异号,所以是极大值点,是极小值点,选A2.【答案】B【解析】注意单位统一:由于弹簧压缩x cm产生4x N的力,则若弹簧压缩x m产生400x N的力,所以,从自然长度压缩0.05 m做的功为:.3.【答案】A【解析】y′=6x2-6x-12=6(x-2)(x+1),令y′=0,得x=2或x=-1(舍).∵f(0)=5,f(2)=-15,f(3)=-4,∴y max=5,y min=-15,故选A.4.【答案】D【解析】f′(x)=12x2-2ax-2b,由函数f(x)在x=1处有极值,可知函数f(x)在x=1处的导数值为零,12-2a-2b=0,所以a+b=6,由题意知a,b都是正实数,所以ab≤==9,当且仅当a=b=3时取到等号.5.【答案】B【解析】设矩形与半圆直径垂直的一边的长为x,则另一边长为,则(0<x<R),令=0,解得,(舍去)。

当时,;当时,。

所以当时,取最大值,即周长最大的矩形的相邻两边长分别为,。

6.【答案】B【解析】依题意,令得:,当无解;当7.【答案】B【解析】由题意f′(x)=3x2+2bx+c在[-1,2]上,f′(x)≤0恒成立.所以即令b+c=z,b=-c+z,如图过A得z最大,最大值为b+c=-6-=-.故应选B.8.【答案】,【解析】,当且时,,故函数的单调递减区间是,。

9.【答案】【解析】由于函数,则故得到令,解得:,令,解得:,则函数在(0,2)上为增函数,在(2,+∞)上为减函数,故的极大值为。

故答案为:10.【答案】;【解析】,因为,所以极大值为,极小值,解得。

11.【答案】【解析】由题意,则所以所求面积为.12.【解析】(1);(2)∵,即∴;(3)∵函数是奇函数,∴.∵函数是偶函数,∴,∴原式.(4),则(5)13.【解析】(1)由题设得.(2)令,则,∴,∴在上单调递增.故,即.14.【解析】f′(x)=3x(x-2),令f′(x)=0得x=0或x=2.当x变化时,f′(x)、f(x)的变化情况如下表:由此可得:当0<a<1时,f(x)在(a-1,a+1)内有极大值f(0)=-2,无极小值;当a=1时,f(x)在(a-1,a+1)内无极值;当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值;当a≥3时,f(x)在(a-1,a+1)内无极值.综上得:当0<a<1时,f(x)有极大值-2,无极小值;当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长沙一中选修2-2第一章导数及其应用练习卷
一、填空题:
1.函数()ln f x x x =(0)x >的单调增区间是______________________________;
2.已知函数3y ax x =+在(,)-∞+∞上单调递增,则a 的取值范围是__________;
3.函数32()21f x x ax =++在区间(,0)-∞和(2,)+∞内单调递增,且在区间(0,2)内单调递减,则a =_________; 4.已知2(,1)a x x =+ ,(1,)b x t =- ,若函数()f x a b = 在区间[1,1)-内单调递增,则t 的取值范围是_________________;
5.若函数32()33[(2)1]f x x ax a x =++++既有极大值又有极小值,则a 的取值范围是_________________________.
二、解答题:
6.已知函数()ln(1)f x x x =+-,求()f x 的单调区间。

7.已知函数22()(1)x b f x x -=
-,求导函数'()f x ,并确定()f x 的单调区间。

8.已知函数()a
f x x b x =++(0)x ≠,其中a ,b R ∈,讨论函数()f x 的单调性。

9.函数3()65f x x x =-+,.x R ∈
⑴求函数()f x 的单调区间和极值;
⑵若关于x 的方程()f x a =有三个不同的实根,求实数a 的取值范围。

参考答案
1.1[,)e +∞ 2.[0,)+∞ 3.6- 4.[5,)+∞
5.2a >,或1a <-
6.递增区间是(1,0)-;递减区间是(0,)+∞
7.'32[(1)]
()(1)x b f x x --=--;
当2b <时,递增区间是(1,1)b -,递减区间是(,1)b -∞-和(1,)+∞; 当2b >时,递增区间是(1,1)b -,递减区间是(,1)-∞和(1,)b -+∞; 当2b =时,递减区间是(,1)-∞和(1,)+∞,无递增区间。

8.当0a ≤时,()f x 在(,0)-∞与(0,)+∞内单调递增; 当0a >时,()f x 在(,)a -∞-与(,)a +∞内单调递增,在(,0)a -与(0,)a 内单调递减。

9.⑴递减区间是(2,2)-,递增区间是(,2)-∞-与(2,)+∞;当2x =-时,有极大值542+,当2x =时,有极小值542- ⑵542542a -<<+。

相关文档
最新文档