最新高中数学新课程标准考试模拟试卷及答案(三套)

合集下载

数学新课程标准下普通高中试题(答案包含)

数学新课程标准下普通高中试题(答案包含)

数学新课程标准下普通高中试题(答案包含)第一部分:选择题(共10题,每题4分,共40分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,请问汽车行驶的路程是多少?(A)120公里(B)160公里(C)180公里(D)200公里2. 已知函数$f(x)=2x^2-3x+1$,求$f(2)$的值是多少?(A)$-1$ (B)$1$ (C)$3$ (D)$5$3. 若$a=2$,$b=-3$,则$ab$的值是多少?(A)$-6$ (B)$-5$ (C)$5$ (D)$6$4. 等差数列的前四项依次是$2$,$5$,$8$,$11$,则它的公差是多少?(A)$1$ (B)$2$ (C)$3$ (D)$4$5. 已知$\triangle ABC$中,$\angle A=90^\circ$,$\angleB=30^\circ$,则$\angle C$的大小是多少?(A)$30^\circ$ (B)$45^\circ$ (C)$60^\circ$ (D)$90^\circ$6. 已知集合$A=\{1,2,3\}$,$B=\{3,4,5\}$,则$A\cup B$的元素个数是多少?(A)$3$ (B)$4$ (C)$5$ (D)$6$7. 在一个矩形中,长是宽的$2$倍,如果矩形的周长是$24$,则它的长和宽分别是多少?(A)$4$和$2$ (B)$6$和$3$ (C)$8$和$4$ (D)$10$和$5$8. 若$a+b=5$,$a-b=1$,则$a$和$b$的值分别是多少?(A)$a=3$,$b=2$ (B)$a=3$,$b=4$ (C)$a=2$,$b=3$ (D)$a=4$,$b=3$9. 若$3x+2=8$,则$x$的值是多少?(A)$x=2$ (B)$x=3$ (C)$x=4$ (D)$x=5$10. 若$y=2x^2+3x-1$,则当$x=1$时,$y$的值是多少?(A)$y=2$ (B)$y=3$ (C)$y=4$ (D)$y=5$第二部分:填空题(共5题,每题4分,共20分)1. 若$a=3$,$b=4$,则$a+b$的结果是\_\_\_\_。

高中数学《课程标准》考试试题(四套)

高中数学《课程标准》考试试题(四套)

高中数学《课程标准》考试试题(一)一、选择题(20个题,每题1.5分,共30分)1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是( )A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是( )A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括3.高中数学新课程习题设计需要( )A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.下面关于高中数学课程结构的说法正确的是( )A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程可分为必修与选修两类5.在教学中激发学生的学习积极性方法说法正确的是( )A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义6.要实现数学课程改革的目标,关键是依靠( )A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是( )A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是( )①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋;③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。

(完整版)新课标高三数学文科综合测试题与参考答案(三)

(完整版)新课标高三数学文科综合测试题与参考答案(三)

新课程高三年级文科数学综合测试题与参考答案试题(三)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U 则 ( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2. 复数 22121,2,1z z i z i z 则 ( )A .i 5452 B .i 5452 C .i 5452 D .i 5452 3.函数2()ln f x x x的零点所在的大致区间是( )A .(1,2)B .(2,)eC .(,3)eD .(3,) 4.函数)4(2cosx y 是( ).A .周期为 的奇函数B .周期为 的偶函数C .周期为2 的奇函数D .周期为2 的偶函数5. 抛物线)0(42a ax y 的焦点坐标是( ).A .(a , 0)B .(-a, 0)C .(0, a )D .(0, - a )6. 不等式10x x成立的充分不必要条件是( ) A .10x 或1x B .1x 或01x C .1xD . 1x7.已知直线l 、m ,平面 、,则下列命题中假命题是 ( ) A .若 //, l ,则 //l B .若 //, l ,则 lC .若 //l , m ,则m l //D .若 ,l , m ,l m ,则 m 8.动点在圆122y x 上移动时,它与定点B (3,0)连线的中点的轨迹方程是 ( )A .4)3(22y xB .1)3(22y xC .14)32(22y xD .21)23(22y x 9.已知21,x x 是方程)(0)53()2(22R k k k x k x 的两个实根,则2221x x 的最大值为( )A 、18B 、19C 、955D 、不存在10.某班50名学生在一次百米测试中,成绩全部介于13秒与19 秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为 ( )A .0.9,35B .0.9,45C .0.1,35D .0.1,45二、填空题:(本大题共5小题,每小题5分,其中11-13为必做题,14-15为选做题,14-15题只需选做2小题.共20分.)11.已知函数|3|)( x x f ,以下程序框图表示的是给定x 值,求其相应函数值的算法,请将该程度框图补充完整。

普通高中新数学课程标准题库(含答案)

普通高中新数学课程标准题库(含答案)

普通高中新数学课程标准题库(含答案)普通高中新数学课程标准题库(含答案)1. 课程标准题库的目的和意义普通高中新数学课程标准题库的建设是为了帮助教师和学生更好地理解和掌握新数学课程标准中的知识和能力要求。

通过提供一系列符合课程标准的题目和答案,可以帮助学生进行针对性的练习和复习,提高数学学科的学习效果。

2. 题库的组成和结构普通高中新数学课程标准题库主要包括选择题、填空题、计算题和证明题等多种题型。

每个题型都根据课程标准中的知识点和能力要求设计,涵盖全面而有针对性。

题库的结构按照课程标准的章节和知识点进行划分,每个章节下包含若干相关的题目。

每个题目都标注了难度级别,以帮助学生有针对性地选择适合自己的练习题目。

同时,每个题目都有详细的答案和解析,方便学生进行自我评估和纠正。

3. 使用题库的建议- 学生可以根据自己的学习进度和需求选择相应章节和题目进行练习。

建议从易到难地进行练习,逐渐提升自己的解题能力和思维能力。

- 在做题过程中,可以参考题目的答案和解析,了解解题思路和方法。

如果遇到困难或疑惑,可以向老师或同学寻求帮助。

- 做完一套题后,可以进行自我评估,查漏补缺。

对于有错误的题目,可以重新理解和解答,直到完全掌握。

- 建议学生定期使用题库进行练习,巩固和提高数学知识和技能。

4. 题库的更新和维护为了保持题库的时效性和准确性,建议定期对题库进行更新和维护。

根据教育部发布的最新数学课程标准,对题库中的题目进行修订和调整,删除过时的内容,增加新的知识点。

同时,鼓励教师和学生积极参与题库的建设和完善,提供有针对性的题目和解析,共同促进数学教育的发展。

结论普通高中新数学课程标准题库的建设对于提高学生的数学学习效果和能力水平具有重要意义。

通过合理使用题库,学生可以有针对性地进行练习和复习,提高解题能力和思维能力。

同时,题库的更新和维护也需要教师和学生的共同努力,为数学教育的发展做出贡献。

参考资料:- 教育部. (年份). 《普通高级中学数学课程标准》. 中国教育出版社.。

2020高中数学新课标测试模拟试卷及答案(两套)

2020高中数学新课标测试模拟试卷及答案(两套)

高中数学新课标测试模拟试卷(一)一、填空题(本大题共 10 道小题,每小题 3 分,共 30 分)1、数学是研究()的科学,是刻画自然规律和社会规律的 科学语言和有效工具。

2、数学教育要使学生掌握数学的基本知识、()、基本思想。

3、高中数学课程应具有多样性和(),使不同的学生在数学上得到不同的发展。

)能力。

4、高中数学课程应注重提高学生的数学(5、高中数学选修 2-2 的内容包括:导数及其应用、(复数的引入。

)、数系的扩充与 6、高中数学课程要求把数学探究、(块和专题内容之中。

)的思想以不同的形式渗透在各个模 7、选修课程系列 1 是为希望在( )等方面发展的学生设置的, 系列 2 是为希望在理工、经济等方面发展的学生设置的。

8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与( 的一种工具。

)。

)10、数学探究即数学(学习的过程。

)学习,是指学生围绕某个数学问题,自主探究、 二、判断题(本大题共 5 道小题,每小题 2 分,共 10 分)1、高中数学课程每个模块 1 学分,每个专题 2 学分。

() 2、函数关系和相关关系都是确定性关系。

( 3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依 据。

( 4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。

) )( )5、教师应成为学生进行数学探究的领导者。

()三、简答题(本大题共4道小题,每小题7分,共28分)1、高中数学课程的总目标是什么?2、高中数学新课程设置的原则是什么?3、评价学生在数学建模中的表现时,评价内容应关注哪几个方面?4、请简述《必修三》中《算法初步》一章的内容与要求。

四、论述题(本大题共2道小题,第一小题12分,第二小题20分)1、请完成《等差数列前n项和》第一课时的教学设计。

2、请您结合自己的教学经验,从理论和实践两个方面谈谈如何改善课堂教学中的教与学的方式,能使学生更主动地学习?答案一、填空题1、空间形式和数量关系2、基本技能3、选择性4、思维5、推理与证明6、数学建模7、人文、社会科学8、情感、态度、价值观9、三角函数10、探究性课题二、判断题1、错,改:高中数学课程每个模块2 学分,每个专题1 学分。

新课标高中数学题及答案

新课标高中数学题及答案

新课标高中数学题及答案新课标高中数学题目:1. 已知函数f(x) = 2x^2 - 4x + 3,求函数的顶点坐标。

答案:首先找到函数的对称轴,对称轴的x坐标为x = -b/2a =2/(2*2) = 1/2。

将x = 1/2代入函数得到顶点的y坐标:f(1/2) =2(1/2)^2 - 4(1/2) + 3 = 3/2。

所以顶点坐标为(1/2, 3/2)。

2. 已知数列{an}满足a1 = 1,an+1 = 2an + 1,求数列的前5项。

答案:根据递推关系,我们可以得到数列的前5项如下:a1 = 1a2 = 2a1 + 1 = 2*1 + 1 = 3a3 = 2a2 + 1 = 2*3 + 1 = 7a4 = 2a3 + 1 = 2*7 + 1 = 15a5 = 2a4 + 1 = 2*15 + 1 = 31所以数列的前5项为1, 3, 7, 15, 31。

3. 已知圆的方程为(x - 2)^2 + (y + 3)^2 = 16,求圆心坐标和半径。

答案:圆的标准方程为(x - h)^2 + (y - k)^2 = r^2,其中(h, k)是圆心坐标,r是半径。

对比给定的方程,我们可以得到圆心坐标为(2, -3),半径为4。

4. 已知三角形ABC的三个顶点坐标分别为A(1, 2),B(4, 6),C(7, 10),求三角形ABC的面积。

答案:首先计算向量AB和向量AC:向量AB = (4 - 1, 6 - 2) = (3, 4)向量AC = (7 - 1, 10 - 2) = (6, 8)使用向量叉乘公式计算三角形面积:面积 = (1/2) * |AB x AC| = (1/2) * |3*8 - 4*6| = (1/2) * |24- 24| = 0由于计算结果为0,说明三角形ABC的面积为0,这是不可能的。

因此,题目中给出的三个点可能不构成一个三角形。

5. 已知函数f(x) = x^3 - 3x^2 + 4,求函数的极值点。

高中数学《课程标准》考试试题(四套)

高中数学《课程标准》考试试题(四套)

高中数学《课程标准》考试试题(一)一、选择题(20个题,每题1.5分,共30分)1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是( )A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是( )A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括3.高中数学新课程习题设计需要( )A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.下面关于高中数学课程结构的说法正确的是( )A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程可分为必修与选修两类5.在教学中激发学生的学习积极性方法说法正确的是( )A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义6.要实现数学课程改革的目标,关键是依靠( )A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是( )A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是( )①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋;③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。

数学新课程标准下普通高中试题(答案包含)

数学新课程标准下普通高中试题(答案包含)

数学新课程标准下普通高中试题(答案包含)一、选择题1. 设集合 $A = \{x | x^2 - 2x - 3 < 0\}$,$B = \{x | x > 1\}$,则$A \cap B$ 等于A. $\{x | x > 2\}$B. $\{x | 1 < x < 3\}$C. $\{x | x \leq 1\}$D. $\{x | x \geq 3\}${答案:B}2. 若 $i$ 是虚数单位,则 $(1+i)(1-i)$ 的值为A. 2B. 0C. -2D. 1{答案:A}3. 函数 $y = \sqrt{x-1}$ 的定义域为A. $\{x | x \geq 1\}$B. $\{x | x > 1\}$C. $\{x | x \leq 1\}$D. $\{x | x < 1\}${答案:B}4. 已知函数 $f(x) = x^3 - 3x$,则 $f'(x)$ 的值为A. $3x^2 - 3$B. $3x^2 + 3$C. $3x^2 - 6x$D. $6x - 3${答案:A}5. 平行四边形的一条对角线将平行四边形分成两个面积相等的三角形,这条对角线所对的角是A. $45^\circ$B. $90^\circ$C. $135^\circ$D. $180^\circ${答案:B}二、填空题1. 若 $a$,$b$ 是不为零的实数,且 $a^2 + b^2 = 25$,则$ab$ 的取值范围是____{答案:$-10 \leq ab \leq 10$}2. 函数 $y = \ln x$ 的反函数是____{答案:$y = e^x$}3. 若 $n$ 是正整数,则 $n!$ 表示____{答案:$n(n-1)(n-2)\cdots(2)(1)$}三、解答题1. 已知函数 $f(x) = x^3 - 3x$,求 $f'(x)$。

{答案:$f'(x) = 3x^2 - 3$}2. 解不等式 $2x - 5 > x + 3$。

高中数学模拟试题及答案

高中数学模拟试题及答案

高中数学模拟试题及答案一、选择题(每小题4分,共40分。

每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母填在题后的括号内。

)1. 若函数\( f(x) = x^2 - 4x + 3 \),则\( f(2) \)的值为()A. 1B. 3C. -1D. -32. 下列不等式中,不正确的是()A. \( 2 > 1 \)B. \( 0 < -1 \)C. \( 3 \leq 3 \)D. \( -4 \geq -5 \)3. 已知集合\( A = \{1, 2, 3\} \),\( B = \{2, 3, 4\} \),则\( A \cap B \)为()A. \( \{1\} \)B. \( \{2, 3\} \)C. \( \{2, 3, 4\} \)D. \( \{1, 2, 3, 4\} \)4. 函数\( y = \log_{2}(x) \)的反函数是()A. \( y = 2^x \)B. \( y = \log_{10}(x) \)C. \( y = \sqrt{x} \)D. \( y = x^2 \)5. 若\( \sin(\alpha) = \frac{1}{2} \),则\( \cos(2\alpha) \)的值为()A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{1}{4} \)D. \( -\frac{1}{4} \)6. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),则\( xy \)的值为()A. \( \frac{1}{5} \)B. \( \frac{1}{25} \)C. \( 5 \)D. \( 25 \)7. 直线\( y = 2x + 1 \)与\( y = -x + 4 \)的交点坐标为()A. \( (1, 3) \)B. \( (3, 1) \)C. \( (-1, 3) \)D. \( (-3, 1) \)8. 函数\( f(x) = x^3 - 3x + 1 \)在\( x = 1 \)处的导数为()A. 1B. -1C. 3D. -39. 圆的方程为\( (x - 2)^2 + (y - 3)^2 = 9 \),则圆心坐标为()A. \( (2, 3) \)B. \( (-2, -3) \)C. \( (0, 0) \)D. \( (3, 2) \)10. 等比数列\( \{a_n\} \)的首项\( a_1 = 2 \),公比\( q = 3 \),则\( a_5 \)的值为()A. 162B. 486C. 729D. 243二、填空题(每小题4分,共20分。

高中数学新课标测试题及答案精选全文

高中数学新课标测试题及答案精选全文

可编辑修改精选全文完整版新课程标准考试数学试题一、填空题(本大题共10道小题,每小题3分,共30分)1、数学是研究(空间形式和数量关系)的科学,是刻画自然规律和社会规律的科学语言和有效工具。

2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。

3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。

4、高中数学课程应注重提高学生的数学(思维)能力。

5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。

6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。

7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。

8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。

9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与(三角函数)的一种工具。

10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。

二、判断题(本大题共5道小题,每小题2分,共10分)1、高中数学课程每个模块1学分,每个专题2学分。

(错,改:高中数学课程每个模块2学分,每个专题1学分。

)2、函数关系和相关关系都是确定性关系。

(错,改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。

)3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。

(对)4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。

(对)5、教师应成为学生进行数学探究的领导者。

(错,改:教师应成为学生进行数学探究的组织者、指导者和合作者。

)三、简答题(本大题共4道小题,每小题7分,共28分)1、高中数学课程的总目标是什么?答:使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

高中数学模拟试题(附答案及解析)

高中数学模拟试题(附答案及解析)

高中数学模拟试题(附答案及解析)一、选择题(共10小题)1.(2014•衡阳三模)复数z=1+i,为z的共轭复数,则=()A.﹣2i B.﹣i C.i D.2i2.(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]3.(2014•广西模拟)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D﹣ABC的体积为()A.B.C.D.4.(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P 做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f (x)在[0,π]的图象大致为()A.B.C.D.5.(2014•包头一模)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称6.(2014•太原一模)复数的共轭复数是()A.B.C.﹣i D.i7.(2014•广西)已知双曲线C的离心率为2,焦点为F 1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.8.(2014•上海二模)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.39.(2014•重庆)已知函数f(x)=,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A.(﹣,﹣2]∪(0,]B.(﹣,﹣2]∪(0,]C.(﹣,﹣2]∪(0,]D.(﹣,﹣2]∪(0,]10.(2013•铁岭模拟)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.5二、填空题(共5小题)(除非特别说明,请填准确值)11.(2014•乌鲁木齐二模)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于_________.12.(2014•湖南)如图所示,正方形ABCD与正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则=_________.13.(2014•云南一模)已知圆C过双曲线﹣=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是_________.14.(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为_________.15.(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为_________.三、解答题(共6小题)(选答题,不自动判卷)16.(2014•江西)如图,四棱锥P﹣ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P﹣ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.17.(2014•江西模拟)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.18.(2014•四川)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(2014•天津)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.20.(2014•陕西)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.21.(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.参考答案与试题解析一、选择题(共10小题)1.(2014•衡阳三模)复数z=1+i,为z的共轭复数,则=()A.﹣2i B.﹣i C.i D.2i考点:复数代数形式的混合运算.专题:计算题.分析:求出复数z的共轭复数,代入表达式,求解即可.解答:解:=1﹣i,所以=(1+i)(1﹣i)﹣1﹣i﹣1=﹣i故选B点评:本题是基础题,考查复数代数形式的混合运算,考查计算能力,常考题型.2.(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]考点:分段函数的应用.专题:函数的性质及应用.分析:当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决.解答:解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x++a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.点评:本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.3.(2014•广西模拟)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D﹣ABC的体积为()A.B.C.D.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:取AC的中点O,连接DO,BO,求出三角形DOB的面积,求出AC 的长,即可求三棱锥D﹣ABC的体积.解答:解:O是AC中点,连接DO,BO△ADC,△ABC都是等腰直角三角形DO=B0==,BD=a△BDO也是等腰直角三角形DO⊥AC,DO⊥BO DO⊥平面ABC DO就是三棱锥D﹣ABC的高S△ABC=a2三棱锥D﹣ABC的体积:故选D.点评:本题考查棱锥的体积,是基础题.4.(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.考点:抽象函数及其应用.专题:三角函数的图像与性质.分析:在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.解答:解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.点评:本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.5.(2014•包头一模)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称考点:正弦函数的对称性;正弦函数的单调性.专题:计算题;压轴题.分析:利用辅助角公式(两角和的正弦函数)化简函数f(x)=sin(2x+)+cos(2x+),然后求出对称轴方程,判断y=f(x)在(0,)单调性,即可得到答案.解答:解:因为f(x)=sin(2x+)+cos(2x+)=sin(2x+)=cos2x.它的对称轴方程可以是:x=;所以A,C错误;函数y=f(x)在(0,)单调递减,所以B错误;D正确.故选D点评:本题是基础题,考查三角函数的化简,三角函数的性质:对称性、单调性,考查计算能力,常考题型.6.(2014•太原一模)复数的共轭复数是()A.B.C.﹣i D.i考点:复数代数形式的混合运算.专题:计算题.分析:复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式,然后求出共轭复数,即可.解答:解:复数===i,它的共轭复数为:﹣i.故选C点评:本题是基础题,考查复数代数形式的混合运算,共轭复数的概念,常考题型.7.(2014•广西)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.解答:解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===,故选:A.点评:本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.8.(2014•上海二模)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.3考点:棱柱、棱锥、棱台的体积.专题:计算题;压轴题.分析:设出底面边长,求出正四棱锥的高,写出体积表达式,利用求导求得最大值时,高的值.解答:解:设底面边长为a,则高h==,所以体积V=a2h=,设y=12a4﹣a6,则y′=48a3﹣3a5,当y取最值时,y′=48a3﹣3a5=0,解得a=0或a=4时,体积最大,此时h==2,故选C.点评:本试题主要考查椎体的体积,考查高次函数的最值问题的求法.是中档题.9.(2014•重庆)已知函数f(x)=,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A.(﹣,﹣2]∪(0,]B.(﹣,﹣2]∪(0,]C.(﹣,﹣2]∪(0,]D.(﹣,﹣2]∪(0,]考点:分段函数的应用.专题:函数的性质及应用.分析:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),作出两个函数的图象,利用数形结合即可得到结论.解答:解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),分别作出函数f(x)和y=g(x)=m(x+1)的图象如图:由图象可知f(1)=1,g(x)表示过定点A(﹣1,0)的直线,当g(x)过(1,1)时,m═此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤,当g(x)过(0,﹣2)时,g(0)=﹣2,解得m=﹣2,此时两个函数有两个交点,当g(x)与f(x)相切时,两个函数只有一个交点,此时,即m(x+1)2+3(x+1)﹣1=0,当m=0时,x=,只有1解,当m≠0,由△=9+4m=0得m=﹣,此时直线和f(x)相切,∴要使函数有两个零点,则﹣<m≤﹣2或0<m≤,故选:A点评:本题主要考查函数零点的应用,利用数形结合是解决此类问题的基本方法.10.(2013•铁岭模拟)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.5考点:等差数列的前n项和.专题:计算题.分析:先由等差数列前n项和公式求得S k+2,S k,将S k+2﹣S k=24转化为关于k的方程求解.解答:解:根据题意:S k+2=(k+2)2,S k=k2∴S k+2﹣S k=24转化为:(k+2)2﹣k2=24∴k=5故选D点评:本题主要考查等差数列的前n项和公式及其应用,同时还考查了方程思想,属中档题.二、填空题(共5小题)(除非特别说明,请填准确值)11.(2014•乌鲁木齐二模)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.考点:球内接多面体.专题:计算题;压轴题.分析:通过已知体积求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.解答:解:在△ABC中AB=AC=2,∠BAC=120°,可得,由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π点评:本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.12.(2014•湖南)如图所示,正方形ABCD与正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则=.考点:直线与圆锥曲线的关系.专题:计算题.分析:可先由图中的点与抛物线的位置关系,写出C,F两点的坐标,再将坐标代入抛物线方程中,消去参数p后,得到a,b的关系式,再寻求的值.解答:解:由题意可得,,将C,F两点的坐标分别代入抛物线方程y2=2px中,得∵a>0,b>0,p>0,两式相比消去p得,化简整理得a2+2ab﹣b2=0,此式可看作是关于a的一元二次方程,由求根公式得,取,从而,故答案为:.点评:本题关键是弄清两个正方形与抛物线的位置关系,这样才能顺利写出C,F的坐标,接下来是消参,得到了一个关于a,b的齐次式,应注意根的取舍与细心的计算.13.(2014•云南一模)已知圆C过双曲线﹣=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是.考点:双曲线的简单性质.专题:计算题.分析:由双曲线的几何性质易知圆C过双曲线同一支上的顶点和焦点,所以圆C的圆心的横坐标为4.故圆心坐标为(4,±).由此可求出它到双曲线中心的距离.解答:解:由双曲线的几何性质易知圆C过双曲线同一支上的顶点和焦点,所以圆C的圆心的横坐标为4.故圆心坐标为(4,±).∴它到中心(0,0)的距离为d==.故答案为:.点评:本题考查双曲线的性质和应用,解题时注意圆的性质的应用.14.(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2].考点:分段函数的应用;真题集萃.专题:分类讨论;函数的性质及应用.分析:可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.解答:解:当a>2时,f(2)=2≠4,不合题意;当a=2时,f(2)=22=4,符合题意;当a<2时,f(2)=22=4,符合题意;∴a≤2,故答案为:(﹣∞,2].点评:本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.15.(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为(﹣∞,2].考点:分段函数的应用.专题:函数的性质及应用.分析:分别由f(0)=a,x≥2,a≤x+综合得出a的取值范围.解答:解:当x=0时,f(0)=a,由题意得:a≤x+,又∵x+≥2=2,∴a≤2,故答案为:(﹣∞,2].点评:本题考察了分段函数的应用,基本不等式的性质,是一道基础题.三、解答题(共6小题)(选答题,不自动判卷)16.(2014•江西)如图,四棱锥P﹣ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P﹣ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.考点:二面角的平面角及求法.专题:空间角;空间向量及应用.分析:(1)要证AD⊥PD,可以证明AB⊥面PAD,再利用面面垂直以及线面垂直的性质,即可证明AB⊥PD.(2)过P做PO⊥AD得到PO⊥平面ABCD,作OM⊥BC,连接PM,由边长关系得到BC=,PM=,设AB=x,则V P﹣ABCD=,故当时,V P﹣ABCD取最大值,建立空间直角坐标系O﹣AMP,利用向量方法即可得到夹角的余弦值.解答:解:(1)∵在四棱锥P﹣ABCD中,ABCD为矩形,∴AB⊥AD,又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴AB⊥面PAD,∴AB⊥PD.(2)过P做PO⊥AD,∴PO⊥平面ABCD,作OM⊥BC,连接PM∴PM⊥BC,∵∠BPC=90°,PB=,PC=2,∴BC=,PM==,BM=,设AB=x,∴OM=x∴PO=,∴V P﹣ABCD=×x××=当,即x=,V P﹣ABCD=,建立空间直角坐标系O﹣AMP,如图所示,则P(0,0,),D(﹣,0,0),C(﹣,,0),M(0,,0),B(,,0)面PBC的法向量为=(0,1,1),面DPC的法向量为=(1,0,﹣2)∴cosθ===﹣.点评:本题考查线面位置关系、线线位置关系、线面角的度量,考查分析解决问题、空间想象、转化、计算的能力与方程思想.17.(2014•江西模拟)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.考点:数列递推式;等比关系的确定.专题:综合题.分析:(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.解答:解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.由S n+1=4a n+2,①则当n≥2时,有S n=4a n﹣1+2,②①﹣②得a n+1=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),又b n=a n+1﹣2a n,所以b n=2b n,所以{b n}是﹣1以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)点评:本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.18.(2014•四川)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.考点:二面角的平面角及求法;直线与平面平行的判定;用空间向量求平面间的夹角.专题:空间向量及应用.分析:(1)用线面垂直的性质和反证法推出结论,(2)先建空间直角坐标系,再求平面的法向量,即可求出二面角A﹣NP﹣M的余弦值.解答:解:(1)由三棱锥A﹣BCD及其侧视图、俯视图可知,在三棱锥A﹣BCD中:平面ABD⊥平面CBD,AB=AD=BD=CD=CB=2设O为BD的中点,连接OA,OC于是OA⊥BD,OC⊥BD 所以BD⊥平面OAC⇒BD⊥AC因为M,N分别为线段AD,AB的中点,所以MN∥BD,MN⊥NP,故BD⊥NP假设P不是线段BC的中点,则直线NP与直线AC是平面ABC内相交直线从而BD⊥平面ABC,这与∠DBC=60°矛盾,所以P为线段BC的中点(2)以O为坐标原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系,则A(0,0,),M(,O,),N(,0,),P(,,0)于是,,设平面ANP和平面NPM的法向量分别为和由,则,设z1=1,则由,则,设z2=1,则cos===所以二面角A﹣NP﹣M的余弦值点评:本题考查线线的位置关系,考查二面角知识的应用,解题的关键是掌握用向量的方法求二面角大小的步骤,属于中档题.19.(2014•天津)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:(Ⅰ)对f(x)求导,讨论f′(x)的正负以及对应f(x)的单调性,得出函数y=f(x)有两个零点的等价条件,从而求出a的取值范围;(Ⅱ)由f(x)=0,得a=,设g(x)=,判定g(x)的单调性即得证;(Ⅲ)由于x1=a,x2=a,则x2﹣x1=lnx2﹣lnx1=ln,令=t,整理得到x1+x2=,令h(x)=,x∈(1,+∞),得到h(x)在(1,+∞)上是增函数,故得到x1+x2随着t的减小而增大.再由(Ⅱ)知,t随着a的减小而增大,即得证.解答:解:(Ⅰ)∵f(x)=x﹣ae x,∴f′(x)=1﹣ae x;下面分两种情况讨论:①a≤0时,f′(x)>0在R上恒成立,∴f(x)在R上是增函数,不合题意;②a>0时,由f′(x)=0,得x=﹣lna,当x变化时,f′(x)、f(x)的变化情况如下表:x l f′(x)f(x)∴f(x)的单调增区间是(﹣∞,﹣lna),减区间是(﹣lna,+∞);∴函数y=f(x)有两个零点等价于如下条件同时成立:(i)f(﹣lna)>0,(ii)存在s1∈(﹣∞,﹣lna),满足f(s1)<0,(iii)存在s2∈(﹣lna,+∞),满足f(s2)<0;由f(﹣lna)>0,即﹣lna﹣1>0,解得0<a<e﹣1;取s1=0,满足s1∈(﹣∞,﹣lna),且f(s1)=﹣a<0,取s2=+ln,满足s2∈(﹣lna,+∞),且f(s2)=(﹣)+(ln﹣)<0;∴a的取值范围是(0,e﹣1).(Ⅱ)证明:由f (x)=x﹣ae x=0,得a=,设g(x)=,由g′(x)=,得g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,并且,当x∈(﹣∞,0)时,g(x)≤0,当x∈(0,+∞)时,g(x)≥0,x1、x2满足a=g (x1),a=g(x2),a∈(0,e﹣1)及g(x)的单调性,可得x1∈(0,1),x2∈(1,+∞);对于任意的a1、a2∈(0,e﹣1),设a1>a2,g(X1)=g(X2)=a i,其中0<X1<1<X2;g(Y1)=g(Y2)=a2,其中0<Y1<1<Y2;∵g(x)在(0,1)上是增函数,∴由a1>a2,得g (X i)>g(Y i),可得X1>Y1;类似可得X2<Y2;又由X、Y>0,得<<;∴随着a的减小而增大;(Ⅲ)证明:∵x1=a,x2=a,∴lnx1=lna+x1,lnx2=lna+x2;∴x2﹣x1=lnx2﹣lnx1=ln,设=t,则t>1,∴,解得x1=,x2=,∴x1+x2=…①;令h(x)=,x∈(1,+∞),则h′(x)=;令u(x)=﹣2lnx+x﹣,得u′(x)=,当x∈(1,+∞)时,u′(x)>0,∴u(x)在(1,+∞)上是增函数,∴对任意的x∈(1,+∞),u(x)>u(1)=0,∴h′(x)>0,∴h(x)在(1,+∞)上是增函数;∴由①得x1+x2随着t的减小而增大.由(Ⅱ)知,t随着a的减小而增大,∴x1+x2随着a的减小而增大.点评:本题考查了导数的运算以及利用导数研究函数的单调性与极值问题,也考查了函数思想、化归思想、抽象概括能力和分析问题、解决问题的能力,是综合型题目.20.(2014•陕西)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.考点:利用导数研究函数的极值;函数恒成立问题;函数的零点.专题:导数的综合应用.分析:(Ⅰ)m=e时,f(x)=lnx+,利用f′(x)判定f(x)的增减性并求出f(x)的极小值;(Ⅱ)由函数g(x)=f′(x)﹣,令g(x)=0,求出m;设φ(x)=m,求出φ(x)的值域,讨论m的取值,对应g(x)的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h(x)=f(x)﹣x在(0,+∞)上单调递减;h′(x)≤0,求出m的取值范围.解答:解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x≥0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上是增函数,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b >a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).点评:本题考查了导数的综合应用问题,解题时应根据函数的导数判定函数的增减性以及求函数的极值和最值,应用分类讨论法,构造函数等方法来解答问题,是难题.21.(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.考点:三角函数中的恒等变换应用;导数的运算.专题:函数的性质及应用;三角函数的求值.分析:(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.解答:解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵f n(x)为f n﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kf k﹣1(x)+xf k (x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k(k>1且k∈N*)时.等式也成立,由①②得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nf n﹣1()+f n()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nf n()+f n﹣1()|=都成立.点评:本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧菁优网 ©2010-2014 菁优网 妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.。

高三数学模拟考试卷及答案

高三数学模拟考试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 函数f(x) = 2x^3 - 3x^2 + 4x + 1在区间[1, 2]上的零点个数为:A. 0B. 1C. 2D. 32. 若复数z满足|z-1| = |z+1|,则复数z在复平面内的几何意义是:A. 实部为0B. 虚部为0C. 到原点的距离为2D. 到x轴的距离为23. 下列各式中,正确的是:A. sin^2x + cos^2x = 1B. tan^2x + 1 = sec^2xC. cot^2x + 1 = csc^2xD. sin^2x + cot^2x = 14. 已知等差数列{an}的前n项和为Sn,若S3 = 9,S5 = 21,则首项a1为:A. 2B. 3C. 4D. 55. 已知函数f(x) = ax^2 + bx + c(a≠0)的图象开口向上,且与x轴的两个交点分别为(-1, 0)和(3, 0),则a、b、c的关系是:A. a + b + c = 0B. a - b + c = 0C. -a + b + c = 0D. -a - b + c = 06. 若平面α上的直线l与平面β所成的角为θ,平面α与平面β所成的角为β,则下列关系式中正确的是:A. θ = βB. θ + β = 90°C. θ = 90° - βD. θ = 90° + β7. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,则下列关系式中正确的是:A. a^2 = b^2 + c^2 - 2bccosAB. b^2 = a^2 + c^2 - 2accosBC. c^2 = a^2 + b^2 - 2abcosCD. a^2 = b^2 + c^2 + 2bccosA8. 下列函数中,在区间(0, +∞)上单调递减的是:A. y = 2^xB. y = log2xC. y = x^2D. y = x^39. 已知向量a = (2, -1),向量b = (-3, 2),则向量a·b的值为:A. 5B. -5C. 0D. 710. 下列不等式中,正确的是:A. log2(3) > log2(2)B. log3(3) < log3(2)C. log2(2) < log2(3)D. log3(2) < log2(3)二、填空题(本大题共5小题,每小题10分,共50分)11. 若函数f(x) = x^3 - 3x^2 + 2x + 1的导数f'(x) = 0的解为x1、x2,则f(x)的极值点为______。

高中数学《新课程标准》考试试题及答案(三)

高中数学《新课程标准》考试试题及答案(三)

高中数学《新课程标准》考试试题及答案(三)C.准备、研制、试行、推广D.准备、研制、试行、推广、改进9.在教学过程中,教师应该注意的是(B)A.以教材为中心,按部就班地讲解B.以学生为中心,注重启发式教学C.以考试为中心,注重应试技巧的培养D.以自己为中心,注重展示自己的才华10.教师应该注重启发式教学,启发式教学的特点是(C)A.教师讲解为主,学生听讲为主B.强调记忆,注重应试技巧的培养C.注重启发学生的思维,引导学生自主探究D.强调教材的完整性,注重知识点的串联11.在高中数学教学中,教师应该注重(A)A.培养学生的数学思维能力和解决问题的能力B.注重应试技巧和知识点的记忆C.以教材为中心,按部就班地讲解D.以自己为中心,注重展示自己的才华12.在数学研究中,学生应该注重(A)A.培养数学思维能力和解决问题的能力B.注重应试技巧和知识点的记忆C.以教材为中心,按部就班地研究D.以老师为中心,听从老师的指导13.高中数学教学应该注重(B)A.应试技巧的培养B.数学思维能力和解决问题的能力的培养C.记忆知识点D.老师的讲解14.在数学研究中,学生应该注重(A)A.自主研究和自主思考B.应试技巧的培养C.记忆知识点D.老师的讲解15.在数学研究中,以下哪些方法是有效的(C)A.死记硬背B.只注重应试技巧的培养C.多做题、多思考、多交流、多实践D.只听老师讲解16.在高中数学教学中,教师应该注重(B)A.讲解知识点B.引导学生思考和探究,培养学生的数学思维能力C.强调应试技巧的培养D.强调记忆知识点17.在数学研究中,学生应该注重(B)A.应试技巧的培养B.自主研究和自主思考,培养数学思维能力C.记忆知识点D.听从老师的指导18.高中数学教学应该注重(B)A.只注重应试技巧的培养B.培养学生的数学思维能力和解决问题的能力C.记忆知识点D.老师的讲解19.在数学研究中,学生应该注重(B)A.只注重应试技巧的培养B.自主研究和自主思考,培养数学思维能力C.记忆知识点D.听从老师的指导20.在数学研究中,以下哪些方法是无效的(A)A.死记硬背B.多做题、多思考、多交流、多实践C.注重应试技巧的培养D.听从老师的指导高中数学《新课程标准》考试试题及答案(三)一、选择题(共20题,每题1.5分,共30分)1.高中数学课程的基础性是指(B)A。

2024高中数学课程标准考试模拟练习卷附答案

2024高中数学课程标准考试模拟练习卷附答案

2024小学高中数学课程标准考试模拟练习卷附答案一、填空题1.高中数学课程应注重提高学生的数学__________,发展学生的数学思维能力。

2.数学是研究__________和空间形式的科学。

3.高中数学课程内容包括必修课程、选择性必修课程和__________课程。

4.必修课程是全体学生必须修习的课程,体现了数学课程的__________。

5.选择性必修课程是供学生选择的课程,旨在为学生提供更多的数学发展空间,满足学生的__________需求。

6.数学学科核心素养包括数学抽象、逻辑推理、数学建模、直观想象、__________和数据分析。

7.数学教学应引导学生积极主动地参与学习过程,开展__________学习、合作学习和探究学习。

8.数学课程评价应注重评价的多元性、过程性和__________。

9.高中数学课程应重视信息技术的运用,将信息技术作为学生学习数学和解决问题的__________。

10.数学文化是数学的重要组成部分,应将数学文化融入数学教学中,培养学生的__________精神和创新意识。

二、选择题1.高中数学课程的目标包括()。

A.获得必要的数学基础知识和基本技能B.发展数学思维能力和创新意识C.提高数学应用能力和解决问题的能力D.以上都是2.数学学科核心素养中的数学抽象是指()。

A.从具体事物中抽象出数学概念和规律B.进行逻辑推理和证明C.建立数学模型解决实际问题D.利用图形直观理解数学问题3.必修课程的内容主要包括()。

A.函数、几何与代数、统计与概率B.数列、不等式、立体几何C.解析几何、向量、复数D.以上都是4.选择性必修课程的设置目的是()。

A.满足学生的兴趣爱好和个性化发展需求B.提高学生的数学考试成绩C.完成教学大纲的要求D.培养学生的数学专业素养5.数学教学中应注重培养学生的()。

A.记忆能力B.计算能力C.思维能力D.模仿能力6.数学课程评价的主要方式有()。

新课程高中数学测试题组全套含答案

新课程高中数学测试题组全套含答案

(数学2必修)第三章 直线与方程[基础训练A 组]一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=, 则,a b 满足( ) A .1=+b a B .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是( ) A .045,1B .0135,1-C .090,不存在D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________;3. 若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。

4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

高中数学新课程标准期末试题(含答案)

高中数学新课程标准期末试题(含答案)

高中数学新课程标准期末试题(含答案)一、选择题(每题5分,共25分)1. 下列选项中,哪一个不是高中数学新课程标准中所提倡的核心素养?A. 逻辑推理B. 数据分析C. 空间想象D. 生活应用答案:D2. 已知函数f(x) = 2x + 3,那么f(f(x)) = ?A. 4x + 9B. 4x + 3C. 2x + 9D. 2x + 3答案:A3. 已知三角形ABC中,∠A = 60°,AB = 3,BC = 4,则AC 的长度为?A. 2B. 3C. 4D. 5答案:D4. 下列哪个数是等差数列{2n, n∈N*}的通项公式?A. an = 2nB. an = n^2C. an = 2n^2D. an = n^3答案:A5. 已知平面上的点A(2,3)、B(4,5)、C(6,7),那么线段BC的中点坐标为?A. (4,5)B. (4,6)C. (4,4)D. (4,3)答案:B二、填空题(每题5分,共25分)1. 若函数f(x) = ax^2 + bx + c的图像开口向上且顶点在x轴上,则有______。

答案:b^2 - 4ac = 02. 三角形ABC中,若∠A = 30°,AB = 4,AC = 6,则BC的长度为______。

答案:8√33. 已知数列{an}是等比数列,且a1 = 2,公比q = 2,则第10项a10的值为______。

答案:10244. 平面直角坐标系中,点P(x,y)关于原点对称的点Q的坐标为______。

答案:(-x,-y)5. 若直线y = kx + b与圆x^2 + y^2 = 1相切,则k和b的关系为______。

答案:k^2 + 1 = b^2三、解答题(每题10分,共30分)1. 已知函数f(x) = x^3 - 6x + 9,求f(x)的导数f'(x)。

答案:f'(x) = 3x^2 - 62. 解方程组:x + y = 52x - 3y = -7答案:x = 3, y = 23. 已知等差数列{an}的首项a1 = 2,公差d = 3,求第10项a10的值。

2024高中数学课程标准考试模拟试卷附答案(三套)

2024高中数学课程标准考试模拟试卷附答案(三套)

2024高中数学课程标准考试(一)一、填空题(每题2分,共40分)1.高中数学课程应具有基础性、__________和发展性。

2.数学学科核心素养包括数学抽象、逻辑推理、数学建模、直观想象、__________和数据分析。

3.高中数学课程分为必修课程、选择性必修课程和__________课程。

4.必修课程面向全体学生,构建共同基础;选择性必修课程、选修课程充分考虑学生的不同成长需求,提供__________发展的课程。

5.高中数学教学活动应注重启发式、互动式、__________教学。

6.数学教学要重视过程,处理好__________与结果的关系。

7.数学课程内容应反映社会发展的需要、数学学科的特征和__________的需求。

8.数学建模活动是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的过程,主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、建立模型,__________,得到结果,检验结果,改进模型。

9.直观想象是指借助几何直观和__________感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题的素养。

10.数据分析是指针对研究对象获取数据,运用__________方法对数据进行整理、分析和推断,形成关于研究对象知识的素养。

11.数学课程目标包括获得“四基”即基础知识、基本技能、基本思想、__________。

12.数学课程目标还包括发展“四能”即发现问题的能力、提出问题的能力、__________的能力、解决问题的能力。

13.高中数学课程内容体现现代社会发展的需求、数学学科的特征、高中学生的认知规律,依据数学课程目标,特别是数学学科核心素养,按照__________、几何与代数、概率与统计三条主线选择和安排课程内容。

14.数学学科核心素养是数学课程目标的集中体现,是在数学学习的过程中逐步形成的,具有数学学科本质特征的思维品质、关键能力和__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中教师数学新课程标准考试模拟试卷(一)附答案一、填空题(每小题4分,共40分)1. 数学教育在学校教育中占有特殊的地位,它使学生掌握数学的____________,___________, ______________, 使学生表达清晰、思考有条理,使学生具有_____________,______________________, 使学生会用数学的思考方式__________、____________。

2.高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的___________、_____________,提高提出问题、分析和解决问题的能力, 形成___________, 发展_____________________具有基础性的作用。

3. 高中数学课程标准最突出的特点就是体现了_______、________和_________。

4. 高中数学课程应力求通过各种不同形式的__________、____________, 让学生体验数学___________________的历程, 发展他们的____________。

5, 高中数学课程应注重提高学生的数学思维能力,这是数学教育的基本目标之一。

人们在学习数学和运用数学解决问题时,不断地经历__________、_________、_________、___________、_________、__________、__________、__________、___________、___________等思维过程。

6, 为了适应信息时代发展的需要,高中数学课程应增加______的内容,把最基本的________、________等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服"_________"的倾向。

7, 普高中数学课程的总目标是:___________________________________________________________ ________。

8, 课程目标要求学生具有一定的数学视野, 逐步认识数学的_________、__________和____________, 形成批判性的思维习惯, 崇尚数学的___________, 体会数学的_________, , 从而进一步树立_______________________________________世界观。

9, 算法是一个全新的课题, 己经成为_____________的重要基础, 它在____________和_______________中起着越来起重要的作用。

10, 数学学习的评价既要重视结果,也要重视过程。

对学生数学学习过程的评价,包括学生参加数学活动的_______________、数学学习的________________________________等方面。

二、简答题(共5小题,每题10分)1, 高中数学课程如何为不同的学生提供不同的课程内容?2, 高中数学课程要求教师如何培养学生的应用意识?3, 高中数学课程要求教师如何培养学生的创新精神?4, 高中数学如何体现数学的人文价值?5, 高中数学课程标准在课程目标上有哪些新变化?三、问答题(本题10分)请你谈谈新课程中教师的教学行为将发生哪些变化?参考答案:一、1. 基础知识、基本技能、基本思想,实事求是的态度、锲而不舍的精神,解决问题、认识世界。

2. 科学价值、文化价值,理性思维;智力和创新意识3. 基础性、多样性和选择性。

4. 自主学习, 探究活动.发现和创造, 创新意识。

5, 直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构6, 算法数据处理统汁知识双基异化7, 使学生在九年义务教育数学课程的基础上, 进一步提高作为未来公民所必要的数学素养, 以满足个人发展与社会进步的需要。

8, 科学价值、应用价值、文化价值理性精神美学意义辩证唯物主义和历史唯物主义9, 计算机科学科学技术社会发展10, 兴趣和态度、自信、独立思考的习惯、合作交流的意识、数学认知的发展水平二、1, 对希望在人文社会科学方面发展的学生,可选修演绎和合情推理;逻辑证明.和实验验证;直接证明和间接证明、框图等;对数学有兴趣并希望获得较高数学素养的学生,设置了E, F系列课程。

2, 体现知识的来龙去脉;介绍数学内容和其它学科、日常生活的联系;亲自用数学解决一些实际问题;拓宽学生视野、增长见识。

3, 鼓励学生提出问题,鼓励学生从多种角度寻求解决问题的方法;给学生思考的空间;课程具有开放性,为学士营造一个积极思考、探索创新的气氛;处理如基础与创新的关系。

4, 注重学生情感、态度、价值观的培养。

把情感、态度的培养作为一个基本理念融入课程目标、内容与要求、实施建议中;把数学文化价值渗透到课程内容中,使学生感受数学历史的发展,数学对人类发展的作用,数学在社会发展中的地位和今后发展趋势。

5, 高中数学课程标准在课程目标上的新变化体现在⑴知识领域:要求学生获得必要的基础知识、基本技能的同时要了解它们的来龙去胍,体会其中的思想方法。

⑵在数学思维、解决问题的能力及培养数学意识方面,强调提倡数学地提出、分析和解决问题的能力;数学表达和交流能力;独立获得数学知识的能力;发展数学应用意识和创新意识。

⑶在情感、态度、价值观等方面要求学习数学的兴趣、信心、锲而不舍的钻研精神,具有一定的数学视野,对数学有较为全面的认识,逐步形成批判性的思维习惯。

三、1. 在对待师生关系上, 新课程强调尊重、赞赏;2. 在对待教学关系上, 新课程强调帮助、引导;3. 在对待自我上, 新课程强调反思;4. 在对待与其他教育者的关系上, 新课程强调合作。

高中教师数学新课程标准考试模拟试卷(二)附答案一、填空题(本大题共10道小题,每小题3分,共30分)1、数学是研究(空间形式和数量关系)的科学,是刻画自然规律和社会规律的科学语言和有效工具。

2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。

3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。

4、高中数学课程应注重提高学生的数学(思维)能力。

5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。

6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。

7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。

8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。

9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与(三角函数)的一种工具。

10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。

二、判断题(本大题共5道小题,每小题2分,共10分)1、高中数学课程每个模块1学分,每个专题2学分。

(错)改:高中数学课程每个模块2学分,每个专题1学分。

2、函数关系和相关关系都是确定性关系。

(错)改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。

3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。

(对)4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。

(对)5、教师应成为学生进行数学探究的领导者。

(错)改:教师应成为学生进行数学探究的组织者、指导者和合作者。

三、简答题(本大题共4道小题,每小题7分,共28分)1、高中数学课程的总目标是什么?使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

2、高中数学新课程设置的原则是什么?必修课内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要的数学准备;选修课内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。

3、评价学生在数学建模中的表现时,评价内容应关注哪几个方面?评价内容应关注以下几个方面:创新性——问题的提出和解决的方案有新意。

现实性——问题来源于学生的现实。

真实性——确实是学生本人参与制作的,数据是真实的。

合理性——建模过程中使用的数学方法得当,求解过程合乎常理。

有效性——建模的结果有一定的实际意义。

4、请简述《必修三》中《算法初步》一章的内容与要求。

四、论述题(本大题共2道小题,第一小题12分,第二小题20分)1、请完成《等差数列前n项和》第一课时的教学设计。

2、请您结合自己的教学经验,从理论和实践两个方面谈谈如何改善课堂教学中的教与学的方式,能使学生更主动地学习?参考答案:一、填空题1、空间形式和数量关系2、基本技能3、选择性4、思维5、推理与证明6、数学建模7、人文、社会科学8、情感、态度、价值观9、三角函数10、探究性课题二、判断题1、错,改:高中数学课程每个模块2学分,每个专题1学分。

2、错,改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。

3、对。

4、对。

5、错,改:教师应成为学生进行数学探究的组织者、指导者和合作者。

三、简答题1、答:使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

2、答:必修课内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要的数学准备;选修课内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。

3、答:评价内容应关注以下几个方面:创新性——问题的提出和解决的方案有新意。

现实性——问题来源于学生的现实。

真实性——确实是学生本人参与制作的,数据是真实的。

合理性——建模过程中使用的数学方法得当,求解过程合乎常理。

有效性——建模的结果有一定的实际意义。

高中教师数学新课程标准考试模拟试卷(二)附答案2016年高中数学《课程标准》考试试题一、选择题(20个题,每题1.5分,共30分)1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是( )A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是( )A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括3.高中数学新课程习题设计需要( )A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.下面关于高中数学课程结构的说法正确的是( )A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程可分为必修与选修两类5.在教学中激发学生的学习积极性方法说法正确的是( )A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义6.要实现数学课程改革的目标,关键是依靠( )A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是( )A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是( )①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋;③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。

相关文档
最新文档