热管工作原理示意图
导热管的原理
热管工作原理图·管内吸液芯中的液体受热汽化;·汽化了的饱和蒸汽向冷端流动;·饱和蒸汽在冷端冷凝放出热量;·冷凝液体在吸液芯毛细力作用下回到热端继续吸热汽化。
热管简介热管是一种导热性能极高的被动传热元件。
热管利用相变原理和毛细作用,使得它本身的热传递效率比同样材质的纯铜高出几百倍到数千倍。
热管是一根真空的铜管,里面所注的工作液体是热传递的媒介。
在电子散热领域里,最典型的工作液体就是水。
使用圆柱形铜管制成的热管是最为常见的。
热管壁上有吸液芯结构。
依靠吸液芯产生的毛细力,使冷凝液体从冷凝端回到蒸发端。
因为热管内部抽成真空以后,在封口之前再注入液体,所以,热管内部的压力是由工作液体蒸发后的蒸汽压力决定的。
只要加热热管表面,工作液体就会蒸发。
蒸发端蒸汽的温度和压力都稍稍高于热管的其它部分,因此,热管内产生了压力差,促使蒸汽流向热管内较冷的一端。
当蒸汽在热管壁上冷凝的时候,蒸汽放出汽化潜热,从而将热传向了冷凝端。
之后,热管的吸液芯结构使冷凝后液体再回到蒸发端。
只要有热源加热,这一过程就会循环进行。
1963年,George M. Grover第一个发明并且制造出了热管。
不过,通用汽车早在1935年就申请了类似元件的专利。
直到20世纪60年代,热管才受到人们的重视。
逐渐的,作为一种提高传热效率的元件,热管受到了众多国家实验室和商业实验室的重视,而不再仅仅是实验室的试验品。
令人吃惊的是,第一个将热管作为传热元件而加以接受和运用的主要客户竟然是政府。
因为,热管的第一个商业用途是用于卫星上的系统。
由于热管较高的成本和较小的需求,使得热管进入商业领域的进程非常缓慢。
在当时,大部分的电子元件散热问题,用简单的金属散热块就可以解决。
高端的军用设备是个例外,因为这样的设备需要热管的高性能,而且可以承受较高的成本。
20世纪80年代,作为高端电子产品的散热设备,热管逐渐被市场所接受。
随着热管的普及,增长的需求降低了热管的制造成本。
热管导热原理
热管导热原理
热管是一种利用液体在内部循环传热的高效热传递装置,其导热原理是基于液体的相变和对流传热机制。
热管由内胆、壁面和工作介质组成,内胆内充满一定量的工作介质,通常为低沸点的液态介质。
当热管一端受热时,工作介质在受热端蒸发成为高温高压蒸汽,蒸汽在热管内产生压力,压力差驱动蒸汽向冷却端移动。
在冷却端,蒸汽失去热量凝结成为液态,液态工作介质通过毛细作用返回至受热端,完成热量传递循环。
热管的导热原理可以分为三个阶段,蒸发传热、对流传热和凝结传热。
首先是蒸发传热阶段,当热管一端受热时,工作介质吸收热量并发生相变,从液态转变为蒸汽。
这个过程需要消耗大量热量,从而起到降低受热端温度的作用。
接着是对流传热阶段,蒸汽在热管内产生压力差,驱动蒸汽向冷却端移动。
在这个过程中,蒸汽带走了大量的热量,使得热量得以快速传递。
最后是凝结传热阶段,蒸汽失去热量后在冷却端凝结成为液态工作介质。
这个过程释放出大量潜热,使得冷却端温度升高。
热管导热原理的优点在于高效、快速、无需外部能源驱动。
相比于传统的金属导热方式,热管具有传热效率高、温度均匀、结构简单、可靠性高等优势。
因此,在许多领域得到了广泛的应用,如航空航天、军事装备、电子器件、工业制冷等。
总的来说,热管作为一种高效的热传递装置,其导热原理基于液体的相变和对流传热机制。
通过蒸发、对流和凝结三个阶段的循环传热,实现了高效、快速、无需外部能源驱动的热量传递。
在实际应用中,热管具有传热效率高、温度均匀、结构简单、可靠性高等优势,因此在众多领域得到了广泛的应用。
热管工作原理
热管工作原理引言概述:热管是一种利用液体在内部循环运动传热的热传导器件,具有高效、快速、均匀传热的特点。
本文将详细介绍热管的工作原理及其应用。
一、热管结构1.1 热管壳体:通常为金属材料制成,内部充满工作流体。
1.2 蒸发段:位于热管的一端,液体在此蒸发成气体。
1.3 冷凝段:位于热管的另一端,气体在此冷凝成液体。
二、热管工作原理2.1 蒸发:热管的蒸发段受热后,液体吸收热量蒸发成气体。
2.2 运动:气体在热管内部产生对流运动,将热量传递到冷凝段。
2.3 冷凝:气体在冷凝段散热后,冷凝成液体,完成热量传递循环。
三、热管的应用领域3.1 电子散热:热管可用于电子设备的散热,提高散热效率。
3.2 温度调节:热管可用于调节温度,保持设备稳定工作。
3.3 空调制冷:热管在空调中的应用可提高制冷效果,节能环保。
四、热管的优势4.1 高效传热:热管传热效率高,传热速度快。
4.2 均匀传热:热管能够实现均匀传热,避免局部过热。
4.3 结构简单:热管结构简单,易于创造和维护。
五、热管的发展前景5.1 新材料应用:随着新材料的应用,热管的传热效率将进一步提升。
5.2 智能化应用:热管在智能设备中的应用将更加广泛,提高设备性能。
5.3 绿色环保:热管的节能环保特性将使其在未来得到更广泛的应用。
总结:热管作为一种高效的热传导器件,在电子散热、温度调节、空调制冷等领域具有重要应用价值,其优势在于高效传热、均匀传热和结构简单。
随着新材料和智能化技术的发展,热管的应用前景将更加广阔,为节能环保做出贡献。
重力热管原理图
<2>观测T’1进水温度,T’2出水温度,当其基本稳定 后,记录下T’1 , T’2。
<3>记录进水杯原水量m1,(可推算出原质量),同时 计时,经Δt后,记录进水杯现水量m2。
<4>填写表2,由
p
(m1
m2
)
C
(T2 T1 ) t
计算出其传热
功率。
测量量 测量对象
金属管
热管
表2
T’1 T’2
九、感谢:
本实验原始数据及部分资料由能源动力系统及自动 化专业2005年学生张良波、杨洋提供。
h端盖重力热管原理图热管金属管tttt2tt1t设测量量测量对象热管金属管pwm2tm1t2t1测量量测量对象16032042s360900热管082164min208900金属管tttt2tt1t设测量量测量对象951750g1000g3813min218热管35750g1000g19835min191金属管pwm2m1t2tt1测量量测量对象0560420250真空表读数356430542680冷凝端温度
由于重力热管没有吸液芯,所以不仅结构简单、 成本低廉,而且传热性能优良,工作可靠。
四、实验仪器
本实验仪器包括两部分: RG-1热管原理实验仪,热管原理实验装置。 1、RG-1热管原理实验仪 前端有三个温度显示电表,分别用来显示进水温度、 出水温度、冷凝端或蒸发端温度。 另有一蒸发端温度设置调节旋扭。
2、T’2<57℃,否则管内会形成正压。 3、管中水流不宜过小,否则T’2可能超过57℃, 但也不宜过大,否则会造成T’1 , T’2之差太小,影 响测量。 4、由于整个装置不可能完全绝热,故实际传热功 率大于测量值。 5、管中负压不能太小,可通过增加酒精加以调控。
热管散热器技术原理
热管^热器技术原理现在的CPU、显卡、硬盘,甚至主板芯片组的发热量都大得惊人。
普通风冷散热器已经发展到极限了,要想继续提高散热性能只能寻求新的散热技术。
好在业界早已开发出诸如热管、液冷、半导体制冷等技术。
虽然这些技术里不乏高性能得散热方式,但是最贴合实际应用的还非热管莫数了。
热管应用于PC上还是近几年里的事,真正开始普及也就一年左右。
随着热管技术的成熟和大规模使用,现在的热管散热器已经走下神台,价格也是一落千丈,从最初的500以上,到现在不足百元的售价,的确让很多玩家为止欣喜。
但是,你知道为什么同样的热管散热器价格会有从几千元到几十元这么大的差价么?你知道热管散热器里面的各种技术和制造工艺么?下面我就和大家一起探讨一下关于热管散热器的方方面面。
热管是一种具有极高导热性能的传热元件1964年发明于美国洛斯-阿洛莫斯国家实验氢L os Alamos National Laboratory)并在上世纪60年代末达到理论研究高峰于70年代开始在工业领域大量应用。
它通过在全封闭真空管内工质的汽、液相变来传递热量,具有极高的导热性,高达纯铜导热能力的上百倍,有“热超导体”之美称。
工艺过关、设计出色的热管CPU散热器,将具有普通无热管风冷散热器无法达到的强劲性能。
-TH€RMACOR€ Heat PipeNotu tt dt Iht? watur 打由白hsal 即白will svaporabaatbetow 1 co u C 血白l口iht low pre骷LI怕i •馅i曲tM haalpipd.热管工作状况示意图PC散热器中应用的热管属常温热管,工艺成熟,热管内工质为水。
热管一端为蒸发端,另外一端为冷凝端。
当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体。
液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止。
热量由热管一端传至另外一端,这种循环是快速进行的,热量可以被源源不断地传导开来。
热管的换热基本知识及其换热计算
热管的换热原理及其换热计算一热管简介热管是近几十年发展起来的一种具有高导热性能的传热元件,热管最早应用于航天领域,时至今日,已经从航天、航天器中的均温和控温扩展到了工业技术的各个领域,石油、化工、能源、动力、冶金、电子、机械及医疗等各个部门都逐渐应用了热管技术。
热管一般由管壳、起毛细管作用的通道、以及传递热能的工质构成,热管自身形成一个高真空封闭系统,沿轴向可将热管分为三段,即蒸发段、冷凝段和绝热段。
其结构如图所示:热管的工作原理是:外部热源的热量,通过蒸发段的管壁和浸满工质的吸液芯的导热使液体工质的温度上升;液体温度上升,液面蒸发,直至达到饱和蒸气压,此时热量以潜热的方式传给蒸气。
蒸发段的饱和蒸汽压随着液体温度上升而升高。
在压差的作用下,蒸气通过蒸气通道流向低压且温度也较低的冷凝段,并在冷凝段的气液界面上冷凝,放出潜热。
放出的热量从气液界面通过充满工质的吸液芯和管壁的导热,传给热管外冷源。
冷凝的液体通过吸液芯回流到蒸发段,完成一个循环。
如此往复,不断地将热量从蒸发段传至冷凝段。
绝热段的作用除了为流体提供通道外,还起着把蒸气段和冷凝段隔开的作用,并使管内工质不与外界进行热量传递。
在热管真空度达到要求的情况下,热管的传热能力主要取决于热管吸液芯的设计。
根据热管的不同应用场合,我公司设计有多种不同的热管吸液芯,包括:轴向槽道吸液芯、丝网吸液芯和烧结芯等。
基于热管技术的相变传热原理、热管结构的合理设计以及专业可靠的品质保证,多年实践证明,我公司生产的热管及热管组件正逐渐迈向越来越广阔的市场。
(1) 产品展示(2) 产品参数说明项目技术参数热管长度> 100mm主体材料铜管毛细结构槽沟/烧结芯/丝网管工作介质冷媒设计工作温度30~200℃设计使用倾角> 5°传热功率50~1000w (根据实际产品规格型号) 热阻系数< 0.08℃/W (参考值)传热功率测试原理测试总体要求1)加热功率有功率调节仪控制输入;2)热管保持与水平台面α角度(根据具体应用定);3)管壁上监测点的温度变化在5min内小于0.5℃认为传热达到稳定状态,记录此时传热功率为最大传热功率。
热管的换热基本知识及其换热计算
热管的换热原理及其换热计算一热管简介热管是近几十年发展起来的一种具有高导热性能的传热元件,热管最早应用于航天领域,时至今日,已经从航天、航天器中的均温和控温扩展到了工业技术的各个领域,石油、化工、能源、动力、冶金、电子、机械及医疗等各个部门都逐渐应用了热管技术。
热管一般由管壳、起毛细管作用的通道、以及传递热能的工质构成,热管自身形成一个高真空封闭系统,沿轴向可将热管分为三段,即蒸发段、冷凝段和绝热段。
其结构如图所示:condensation adiabatic section evaporationvapor flowcontainerliquid flow热管的工作原理是:外部热源的热量,通过蒸发段的管壁和浸满工质的吸液芯的导热使液体工质的温度上升;液体温度上升,液面蒸发,直至达到饱和蒸气压,此时热量以潜热的方式传给蒸气。
蒸发段的饱和蒸汽压随着液体温度上升而升高。
在压差的作用下,蒸气通过蒸气通道流向低压且温度也较低的冷凝段,并在冷凝段的气液界面上冷凝,放出潜热。
放出的热量从气液界面通过充满工质的吸液芯和管壁的导热,传给热管外冷源。
冷凝的液体通过吸液芯回流到蒸发段,完成一个循环。
如此往复,不断地将热量从蒸发段传至冷凝段。
绝热段的作用除了为流体提供通道外,还起着把蒸气段和冷凝段隔开的作用,并使管内工质不与外界进行热量传递。
在热管真空度达到要求的情况下,热管的传热能力主要取决于热管吸液芯的设计。
根据热管的不同应用场合,我公司设计有多种不同的热管吸液芯,包括:轴向槽道吸液芯、丝网吸液芯和烧结芯等。
基于热管技术的相变传热原理、热管结构的合理设计以及专业可靠的品质保证,多年实践证明,我公司生产的热管及热管组件正逐渐迈向越来越广阔的市场。
(1)产品展示(2)产品参数说明(3)产品性能测试图例长厘700跡的真空退火管量大传储功率測试TOO6®SOO400S3002001W 图1长度700mm的真空退火管最大传热功率测试图2热管等温性测试曲线二热管技术的原理应用与发展热管传热利用了热传导原理与致冷介质的快速热传递性质,通过热管将发热物体的热量迅速传递到热源外。
热管的工作原理
热管的工作原理熱管 (Heat Pipe) 是在 1963 年為美國加州大學拉斯阿拉摩斯研究所 (Los Alamos Lab.) 的格魯佛氏 (Grover) 所發明,其原始研發目的是為了要解決因機器本身運作時所產生的高溫廢熱問題,並使機器可以維持在正常工作溫度中順利運轉。
在探究熱管的作用原理前,必須先了解「熱傳遞」的基礎概念。
「熱傳遞」是熱能由高溫處體傳到低溫處的現象,傳遞的方式可分為「傳導」 (Conduction)、「對流」(Convection)及「輻射」(Radiation) 三種,以下就三種傳遞方式加以說明。
∙「傳導」:為二個物體相接觸時,熱由高溫物體傳到低溫物體的現象。
∙「對流」:為固體和流體或不同溫度流體相接觸時,熱因流體的流動而傳熱的現象。
∙「輻射」:為二個物體在不相接觸的情形下,熱由電磁波傳熱的現象。
此外,在同種物質的相變化時,亦會產生「熱傳遞」的現象,此意即物體在固態與液態、或液態與氣態間的相態變化時,吸熱與散熱的現象;而當熱能處於液態與氣態間的相變化,即稱為「沸騰」或「冷凝」,其所需相變化的能量稱之為「潛熱」(Latent Heat)。
熱管的工作原理至於熱管的傳熱現象,則可包含「傳導」、「蒸發」、「對流」及「冷凝」等現象的組合,由於其利用到物質相變化時,可吸收或散發高熱能的現象,因此使得熱管成為具備極高的熱傳效率之設備。
熱管的結構十分簡單,基本上,是將液體加在一根細長、中空、二頭封閉的金屬管中,此一管子的內壁則有一層毛細物體 (Wick),而不同的金屬管材料與內加的液體物質則須依據工作環境的實際需要進行不同的操作選擇,金屬管的材料最常見的有黃銅、鎳、不銹鋼、鎢及其他合金等做為外殼,而液體物質種類則相當繁多,可包括鉀、鈉、鋰及其他等等,其必須配合實際的工作溫度需求而定,在此舉出最常見的熱管內部工作液配合工作溫度時的種類選擇如下表。
當熱管的一端置於較高溫處,而另一端處於較低溫處時,則傳熱現象便開始進行,該傳熱的方式為熱由高溫處首先穿過金屬管壁進入毛細物體中,此時毛細物體內的工作液因為受熱則開始產生蒸發的現象。
加热管工作原理
加热管工作原理
加热管,又叫发热管,是一种利用金属管(或其他绝缘材料)作为发热体的电热元件。
在真空状态下,用电阻丝作为发热体,
当通电后,电热管就会产生高温。
因为金属管具有良好的绝缘性
和导热性,因此,金属管还具有良好的散热作用。
在加热器中使用的金属管有很多种。
其中,最常见的是用金
属丝(如银丝)作发热体。
金属丝通电后会产生热量,这些热量
可以通过自身的散热作用散发到空气中去。
另外,金属丝还可以
作为散热片,将部分热量吸收起来,通过热辐射的方法散发到空
气中去。
加热器也是由电阻丝(或其他绝缘材料)、金属外壳、通风
装置等组成的。
加热器里面有加热元件(电热元件)和加热介质(如水)两部分。
加热器在使用前需要接通电源。
通电后电热管就会发热,并
把电能转化为热能。
当电热管发热到一定温度时(一般在200℃
左右)就会产生高热,而此时发热器中的介质却处于低温状态。
这样就会造成发热体温度过高而烧坏发热体,甚至可能引起火灾
等危险现象。
—— 1 —1 —。
热管的结构原理及应用
热管的结构原理及应用1. 热管的定义热管是一种实现热能传递的设备,它由密封的金属管道构成,内部充满了工作介质。
通过热管内储存的相变热来实现高效的热传递。
2. 热管的结构热管主要由以下几个部分组成:•蒸发器:位于热源附近,通过吸热使工作介质蒸发。
•内腔:连接蒸发器和冷凝器,是工作介质在热管内传输的通道。
•冷凝器:位于热源远离位置,将工作介质冷凝成液体,释放吸收的热能。
•连接管:连接蒸发器和冷凝器。
3. 热管的工作原理热管的工作原理可以简单概括为以下几个步骤:1.热管内充入工作介质,在蒸发器部分被热源加热。
2.工作介质吸收热量,发生相变,从蒸发器蒸发成气体。
3.气体沿着内腔流动到达冷凝器部分。
4.在冷凝器部分,气体冷却并凝结成液体,释放吸收的热量。
5.冷凝成液体的工作介质通过重力回流到蒸发器,重新开始循环。
4. 热管的优点•高效热传递:热管通过相变热的利用,能够实现高效的热能传递,比传统的热传导方式更有效。
•平衡温度分布:热管可以平衡温度分布,将热源处的高温均匀分布到整个热管管道上,避免温度集中,提高设备的可靠性。
•节省空间:热管结构紧凑,可以在有限的空间内实现高效的热传递,节省设备体积。
•无需外部动力:热管利用工作介质相变原理进行热传递,无需外部动力,降低了系统能耗。
5. 热管的应用领域热管在许多领域中得到了广泛的应用,包括但不限于以下几个方面:•电子设备散热:热管被广泛应用于电子设备的散热领域,能够高效地将热量从电子元器件传递到散热器中。
•航空航天领域:热管在航空航天设备中具有重要的应用,能够实现高效的热管理,提高设备的性能和可靠性。
•太阳能发电:热管被应用于太阳能发电系统中,实现太阳能热量的收集和传递,提高能量利用效率。
•化工领域:热管被应用于化工过程中的热交换,提高生产效率并节省能源。
6. 总结热管作为一种高效的热传递设备,在许多领域中发挥着重要的作用。
它的结构简单,原理清晰,具有高效热传递、平衡温度分布、节省空间和无需外部动力等优点。
热管工作原理示意图
热管工作原理示意图热管技术是1963年美国洛斯阿拉莫斯(Los Alamos)国家实验室的乔治格罗佛(George Grover)发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
目录基本简介热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
现在常见于cpu的散热器上。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式来看(辐射、对流、传导),其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一端为蒸发端,另外一端为冷凝端,当热管一端受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
热管工作原理及其特点
热管是1964年前后才付诸实用的具有很高热传输性能的元件,它集沸腾与凝结于一身。
一般热管是由管壳、管芯(起毛细管作用的多孔结构物)和工作液组成的一个封闭系统。
图7-15为热管热管原理示意图,其中:
当加热蒸发管时,管内工质蒸发,蒸气从管中心通道流向凝结段散热区,放出其潜热,凝结后借助管芯的毛细力的作用,液体重新返回蒸发段再蒸发,如是形成一个闭合的循环(使液体从凝结段返回蒸发段,还可采用重力,这样凝结段应处于蒸发段的上方),用这种办法,把热从加热区传递到散热区。
可见,热管的工作原理是沸腾鱼凝结两种相变过程巧妙结合。
因沸腾和凝结都是在饱和温度下进行,且具有高表面传热系数,故热管具有如下一些特点:(1)靠蒸气流动传输热量,去传热能力很大,若把它作为导热元件看待,它的导热能力可超过同样形状和大小的铜、银制品的导热能力几倍到几千倍;(2)由于沸腾和凝结是在同一根管内,两者间几乎没有压力差,故加热区和散热区的温度接近相等,整个热管趋于等温,减少了传热时的温差损失;(3)采用不同的工作液,可使热管适应由-200~2200℃的温度范围内工作;(4)在热量传递中,具有变换热流密度的性能,即加热区和散热区热管表面的热流密度可以不同;(5)结构简单,无运动部件,工作可靠,可根据使用对象做成直管、弯管、圆筒等。
热管的基本原理和结构课件
2 热管的基本原理和结构
图1 热管结构示意图
3 热管的分类
由于热管的用途、种类和型式较多,再加上热管在结构、材质和工作液体等方面
各有不同之处,故而对热管的分类也很多,常用的分类方法有一下几种。
(1)按照热管内工作温度区分
低温热管(-273~0℃)、常温热管(0~250℃)、中温热管(250~450℃)和高
外表面的化学清洗,一般由专业清洗公司进行。 B、干冰清洗。干冰即固体二氧化碳,喷射清除表面灰垢,此方法费用较高,
且存在死角。 C、人工清灰
5.1.2.1合理选择热管管外翅片结构
气相换热的热管换热器,管外都采用加肋强化传热,翅片形式多选用穿
片或螺旋型缠绕片,这些翅片的结果紧凑,肋化比高,效果明显,但缺点是极
变截面换热设备能保证其进出口具有相同的自清灰能力,一般认为换热
设备内实际流体流速达到8m/s便可起到自清灰的作用,设计时可取8~12m/s,
对于可能引起严重磨损的部位流体流速可取6~8m/s,以免引起管子快速磨
损而损坏穿孔。
5.2 热管的露点腐蚀及对策
当热管换热器在低温烟气中使用,换热器热管常常会遇到低温露
5 热管应用过程中存在的几个关键的技术问题
在热管技术蓬勃发展的今天,在工业应用中仍然存在一些问题, 这些问题得不到很好的解决,将极大的限制热管技术的使用和深入发 展。因此,有必要对这些问题去研究、去探索,以求找到合理的解决 办法。 5.1热管的积灰问题及对策
在热管余热回收设备中,热管积灰是普遍存在的问题,积灰增加 了受热面热阻,降低设备的传热能力。积灰还可以减少流体的通道面 积,增加流动阻力,降低换热表面温度,造成低温露点腐蚀。不少余 热回收设备由于积灰严重不能正常运行,甚至被迫停用,因此积灰已 成为了节能设备是否能够正常运行的一个主要问题,应给予高度重视。
热管加热原理
热管加热原理
热管是一种传热器件,其工作原理是通过内部的工质在低温端吸热并蒸发,然后通过蒸汽的扩散在高温端释放热量并冷凝。
热管由一个密封的容器组成,内部装有工质(通常是液体或气体)和一个毛细结构。
热管的加热原理如下:
1. 在低温端,热管内的工质受到外部热源的加热,温度升高并蒸发成蒸汽。
蒸汽会在热管内扩散并向高温端移动。
2. 在高温端,蒸汽会与高温环境接触,冷却并冷凝成液体。
液体会通过毛细结构向低温端移动。
3. 冷凝的液体会在低温端释放热量,重新升华成蒸汽并重新回到高温端。
通过这种方式,热管可以将低温端的热量传递到高温端,实现热量的传导,提高热传导效率,并在高温端释放热量。
热管具有高传热效率、无需外部动力、体积小、质量轻、可靠性高等优点,因此在许多领域中得到广泛应用,包括电子散热、航空航天、能源领域等。
热管式集热器工作原理及其示意图
热管式真空管型太阳能集热器一、工作原理热管式集热器由超导热管、铝翼、集热管、联集保温箱、边框等部分组成。
太阳光透过集热管,照射在集热管内管的选择性吸收膜上,膜层将太阳光能转化为热能,热能量通过铝翼传至内置热管上,迅速将热管蒸发段内的工质加热汽化,汽化工质上升至热管冷凝段,从而使冷凝段快速升温,并通过冷凝套管将能量传导、汇集至通过流道管的介质(水、乙二醇等)中;热管工质放出汽化潜热后,冷凝成液体,在重力作用下流回热管蒸发段,接受集热管的热量后,再次上升汽化,再次冷凝回流,循环往复工作。
热管式集热器通过热管内工质的汽—液相变循环过程,连续不断的吸收太阳辐射能为系统提供热能。
二、示意图三、产品的八大优势:一、热管式真空管型太阳能集热器兼有平板型集热器、全玻璃真空管型集热器与玻璃金属封接式集热器的优点,是目前技术含量和应用领域都是最高级的:相变单向传热,启动速度快,集热效率高,得热量大,热损失小,输出温度高,承压运行快,结构强度高,抗冻性强等特点,安装维护方便,使用中无漏水隐患,易实现和建筑结合,具备较长的使用寿命,可广泛应用于各种规模和用途的太阳能集热系统中。
二、用热管传输热量,集热管内不走水,不漏水,不冻管,不结垢,热效率稳定,即使在-40℃的气温条件下仍能正常运行,可避免普通太阳能集热器存在的集热管冬天或晚间结冰问题,三、由于重力辅助热管的“热二极管”的作用,相变单向传热,即热量只能从蒸发段向冷凝段传输,能防止晚上或阴天时的倒流散热。
四、热容量小,启动传热迅速,即使在多云间晴的低日照条件下也能迅速启动, 有效收集热量。
所以即使对于日照条件不太高的地区也可有效使用,应用地区很广。
五、由于被加热的工质不直接流入真空管内,所以系统管路可承受较高工作压力(0.6Mpa以上),承压能力很强。
同时,因管中无水,若一支或几只真空管破损,不会影响整个系统的工作,运行稳定,适用于各类强制循环太阳能集热系统。
六、热管的工质使集热器温度超过工质的临界温度后,热管的传热就停止,不会产生高于蒸发温度或低于冷凝温度的相变温度,热管本身就具有了抗冻防过热的性能,这就彻底解决了其他集热器在无负荷情况下带来的高温问题及在高寒地区的结冰冻裂问题。
热管工作原理示意图
热管工作原理示意图热管技术是1963年美国洛斯阿拉莫斯(Los Alamos)国家实验室的乔治格罗佛(George Grover)发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
目录基本简介热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
现在常见于cpu的散热器上。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式来看(辐射、对流、传导),其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一端为蒸发端,另外一端为冷凝端,当热管一端受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
热管工作原理
热管工作原理图·管内吸液芯中的液体受热汽化;·汽化了的饱和蒸汽向冷端流动;·饱和蒸汽在冷端冷凝放出热量;·冷凝液体在吸液芯毛细力作用下回到热端继续吸热汽化。
热管简介热管是一种导热性能极高的被动传热元件。
热管利用相变原理和毛细作用,使得它本身的热传递效率比同样材质的纯铜高出几百倍到数千倍。
热管是一根真空的铜管,里面所注的工作液体是热传递的媒介.在电子散热领域里,最典型的工作液体就是水。
使用圆柱形铜管制成的热管是最为常见的。
热管壁上有吸液芯结构.依靠吸液芯产生的毛细力,使冷凝液体从冷凝端回到蒸发端。
因为热管内部抽成真空以后,在封口之前再注入液体,所以,热管内部的压力是由工作液体蒸发后的蒸汽压力决定的。
只要加热热管表面,工作液体就会蒸发.蒸发端蒸汽的温度和压力都稍稍高于热管的其它部分,因此,热管内产生了压力差,促使蒸汽流向热管内较冷的一端。
当蒸汽在热管壁上冷凝的时候,蒸汽放出汽化潜热,从而将热传向了冷凝端。
之后,热管的吸液芯结构使冷凝后液体再回到蒸发端。
只要有热源加热,这一过程就会循环进行。
1963年,George M。
Grover第一个发明并且制造出了热管。
不过,通用汽车早在1935年就申请了类似元件的专利。
直到20世纪60年代,热管才受到人们的重视。
逐渐的,作为一种提高传热效率的元件,热管受到了众多国家实验室和商业实验室的重视,而不再仅仅是实验室的试验品。
令人吃惊的是,第一个将热管作为传热元件而加以接受和运用的主要客户竟然是政府。
因为,热管的第一个商业用途是用于卫星上的系统。
由于热管较高的成本和较小的需求,使得热管进入商业领域的进程非常缓慢。
在当时,大部分的电子元件散热问题,用简单的金属散热块就可以解决。
高端的军用设备是个例外,因为这样的设备需要热管的高性能,而且可以承受较高的成本。
20世纪80年代,作为高端电子产品的散热设备,热管逐渐被市场所接受.随着热管的普及,增长的需求降低了热管的制造成本。
热管工作原理
热管工作原理热管是一种高效的热传导器件,它利用液体在低温端蒸发吸热,然后在高温端凝结释放热量的原理,实现热能的传导和传递。
热管由内衬管、蒸发段、冷凝段和工作介质组成。
1. 内衬管:热管的内衬管是由高导热材料制成的,如铜、铝等。
内衬管的作用是提供结构支撑和导热通道。
2. 蒸发段:蒸发段位于热管的低温端,内部充满工作介质。
当蒸发段受热时,工作介质在低温端蒸发吸热,转化为蒸汽。
3. 冷凝段:冷凝段位于热管的高温端,内部充满工作介质的蒸汽。
当冷凝段受冷时,蒸汽在高温端凝结释放热量,转化为液体。
4. 工作介质:热管中的工作介质通常为液体,如水、铵、乙醇等。
工作介质的选择取决于热管的工作温度范围和应用环境。
热管的工作原理如下:1. 启动阶段:当热管处于初始状态时,内部的工作介质均匀分布在整个热管内。
此时,热管处于静止状态。
2. 吸热阶段:当热管的低温端受到热源的加热时,蒸发段的温度升高,工作介质开始蒸发。
蒸发的工作介质形成蒸汽,蒸汽在热管内流动并向高温端传递。
3. 传热阶段:蒸汽在热管内流动时,通过对流和传导的方式将热量从低温端传递到高温端。
热量在热管内的传递速度取决于工作介质的流动速度和热管的结构参数。
4. 释热阶段:当蒸汽达到冷凝段时,由于冷凝段的温度较低,蒸汽开始冷凝成液体,并释放热量。
释放的热量通过冷凝段的内衬管传递到外部环境。
5. 回流阶段:冷凝后的液体由于重力作用和毛细力的作用,沿着内衬管壁向低温端回流。
液体回流到低温端后,再次被加热,重新进入蒸发阶段,循环往复。
热管的工作原理基于液体的蒸发和冷凝过程,利用液体的相变来传递热量。
相比传统的导热方式,热管具有以下优点:1. 高热传导性能:热管内的工作介质在相变过程中,热量的传递速度较快,热管的热传导性能优于传统的导热材料。
2. 无需外部能源:热管不需要外部能源,仅依靠热源提供的热量来驱动工作介质的相变过程,节省能源。
3. 高温度稳定性:热管可以在高温环境下稳定工作,不受温度梯度的限制,适用于各种高温应用场景。
热管及热管原理
热管及热管原理热管是一种导热性能力特别强的导热管元件,它利用相变原理和毛细作用,使得它本身的传热效率比同样材质的纯铜高出数千倍。
热管的工作原理(附图1)热管工作原理说明:热管管内的液体受热汽化;汽化了的饱和蒸汽向冷端流动;饱和蒸汽在冷端冷凝放出热量;冷凝液体回到热端继续吸热汽化。
热管工作状态剖析图(附图2)附图1:热管工作原理图附图2:热管工作状态剖析图热管种类由于热管的用途、种类和型式较多,再中上热管在结构、材质和工作液体等方面各有不同之处,故而对热管的分类也很多,常用的分类方法有以下几种。
1.按照热管管内的工作温度区分,热管可分为低温热管(-273℃~0℃)、常温热管(0℃~250℃)、中温热管(250℃~450℃)、高温热管(450℃~1000℃)等。
2.按照工作液体回流动力区分,热管可分为有芯热管、两相闭式热虹吸管(双称重力热管)、策略辅助热管、旋转热管、电流体动热热管、磁流体动力热管、渗透热管等等。
3.按管壳与工作液体的组合方式划分(这是一种习惯的划分方法)可分为铜-水热管、碳钢-水热管、铜钢复合-水热管、铝-丙酮热管、碳钢-萘热管、不锈钢-钠热管等等。
4.按结构形式区分,可分为普通热管、分离式热管、毛细泵回路热管、微型热管、平板热管、径向热管等等。
5.按热管的功用划分,可分为传输热量的热管、热二极管、热开关管、热控制用热管、仿真热管、制冷热管等等。
热管的相容性及寿命热管的相容性是指热管在预期的设计寿命内,管内工作液体同壳体不发生显著的化学反应或物理变化,或有变化但不足以影响热管的工作性能。
相容性在热管的应用中具有重要的意义。
只有长期相容性良好的热管,才能保证稳定的传热性能,长期的工作寿命及工业应用的可能性。
“赫特”热管正是解决好了此类问题,才使得赫特制造的热管具有高性能、长寿命,才能在和行业应用中得到广泛推广。
影响热管寿命的因素很多,归结起来,造成热管不相容的主要形式有以下三个方面,即,产生不凝性气体;工作液体热物性恶化;管壳材料的腐蚀、溶解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热管工作原理示意图热管技术是1963年美国洛斯阿拉莫斯(Los Alamos)国家实验室的乔治格罗佛(George Grover)发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
目录基本简介热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
现在常见于cpu的散热器上。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式来看(辐射、对流、传导),其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一端为蒸发端,另外一端为冷凝端,当热管一端受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
如此循环不己,热量由热管的一端传至另—端。
热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程:(1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液---汽)分界面;(2)液体在蒸发段内的(液--汽)分界面上蒸发;(3)蒸汽腔内的蒸汽从蒸发段流到冷凝段;(4)蒸汽在冷凝段内的汽.液分界面上凝结:(5)热量从(汽--液)分界面通过吸液芯、液体和管壁传给冷源:(6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。
基本特性热管是依靠自身内部工作液体相变来实现传热的传热元件,具有以下基本特性。
1、很高的导热性热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的导热能力。
与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量。
当然,高导热性也是相对而言的,温差总是存在的,不可能违反热力学第二定律,并且热管的传热能力受到各种因素的限制,存在着一些传热极限;热管的轴向导热性很强,径向并无太大的改善(径向热管除外)。
2、优良的等温性热管内腔的蒸汽是处于饱和状态,饱和蒸汽的压力决定于饱和温度,饱和蒸汽从蒸发段流向冷凝段所产生的压降很小,根据热力学中的方程式可知,温降亦很小,因而热管具有优良的等温性。
3、热流密度可变性热管可以独立改变蒸发段或冷却段的加热面积,即以较小的加热面积输入热量,而以较大的冷却面积输出热量,或者热管可以较大的传热面积输入热量,而以较小的冷却面积输出热量,这样即可以改变热流密度,解决一些其他方法难以解决的传热难题。
4、热流方向酌可逆性一根水平放置的有芯热管,由于其内部循环动力是毛细力,因此任意一端受热就可作为蒸发段,而另一端向外散热就成为冷凝段。
此特点可用于宇宙飞船和人造卫星在空间的温度展平,也可用于先放热后吸热的化学反应器及其他装置。
5、热二极管与热开关性能热管可做成热二极管或热开关,所谓热二极管就是只允许热流向一个方向流动,而不允许向相反的方向流动;热开关则是当热源温度高于某一温度时,热管开始工作,当热源温度低于这一温度时,热管就不传热。
6、恒温特性(可控热管)普通热管的各部分热阻基本上不随加热量的变化而变,因此当加热量变化时,热管备部分的温度亦随之变化。
但人们发展了另一种热管——可变导热管,使得冷凝段的热阻随加热量的增加而降低、随加热量的减少而增加,这样可使热管在加热量大幅度变化的情况下,蒸汽温度变化极小,实现温度的控制,这就是热管的恒温特性。
7、环境的适应性热管的形状可随热源和冷源的条件而变化,热管可做成电机的转轴、燃气轮机的叶片、钻头、手术刀等等,热管也可做成分离式的,以适应长距离或冲热流体不能混合的情况下的换热;热管既可以用于地面(重力场),也可用于空间(无重力场)。
相关曲线图左图表示了热管管内汽-液交界面形状,蒸气质量流量,压力以及管壁温度T w 和管内蒸气温度 T v 沿管长的变化趋势.沿整个热管长度,汽-液交界处的汽相与液相之间的静压差都与该处的局部毛细压差相平衡。
△ Pc(毛细压头—是热管内部工作液体循环的推动力,用来克服蒸汽从蒸发段流向冷凝段的压力降△ Pv,冷凝液体从冷凝段流回蒸发段的压力降△Pl和重力场对液体流动的压力降(△Pg可以是正值,是负值或为零,视热管在重力场中的位置而定)。
因此,△ Pc ≥ △Pl +△ P v +△ Pg是热管正常工作的必要备件。
由于热管的用途、种类和型式较多,再加上热管在结构、材质和工作液体等方面各有不同之处,故而对热管的分类也很多,常用的分类方法有以下几种:(1)按照热管管内工作温度区分热管可分为低温热管(—273---0℃)、常温热管(0—250℃)、中温热管[250---450℃)、高温热管(450一1000℃)等。
[2)按照工作液体回流动力区分热管可分为有芯热管、两相闭式热虹吸管(又称重力热管)、重力辅助热管、旋转热管、电流体动力热管、磁流体动力热管、渗透热管等等。
(3)按管壳与工作液体的组合方式划分(这是一种习惯的划分方法)可分为铜—水热管、碳钢。
水热管、铜钢复合—水热管、铝—丙酮热管、碳钢·荣热管、不锈钢.钠热管等等。
(4)按结构形式区分可分为普通热管、分离式热管、毛纫泵回路热管、微型热管、平板热管、径向热管等。
(5)按热管的功用划分可分为传输热量的热管、热二极管、热开关、热控制用热管、仿真热管、制冷热管等等。
相容性及寿命热管的相容性是指热管在预期的设计寿命内,管内工作液体同壳体不发生显著的化学反应或物理变化,或有变化但不足以影响热管的工作性能。
相容性在热管的应用中具有重要的意义。
只有长期相容性良好的热管,才能保证稳定的传热性能,长期的工作寿命及工业应用的可能性。
碳钢-水热管正是通过化学处理的方法,有效地解决了碳钢与水的化学反应问题,才使得碳钢—水热管这种高性能、长寿命、低成本的热管得以在工业中大规模推广使用。
影响热管寿命的因素很多,归结起来,造成效管不相容的主要形式有以下三方面,即:产生不凝性气体;工作液体热物性恶化;管壳材料的腐蚀、溶解。
(1)产生不凝性气体由于工作液体与管完材料发生化学反应或电化学反应,产生不凝性气体,在热管工作时,该气体被蒸汽流吹扫到冲凝段聚集起来形成气塞,从而使有效冷凝面积减小,热阻增大,传热性能恶化,传热能力降低甚至失效。
(2)工作液体物性恶化有机工作介质在一定温度下,会逐渐发生分解,这主要是由于有机工作液体的性质不稳定,或与壳体材料发生化学反应,使工作介质改变其物理性能,如甲苯、烷、烃类等有机工作液体易发生该类不相容现象。
(3)管壳材料的腐蚀、溶解工作液体在管壳内连续流动,同时存在着温差、杂质等因素,使管壳材料发生溶解和腐蚀,流动阻力增大,使热管传热性能降低。
当管壳被腐蚀后,引起强度下降,甚至引起管壳的腐蚀穿孔,使热管完全失效。
这类现象常发生在碱金属高温热管中。
热管制造1 热管零部件及其加工热管的主要零部件为管壳、端盖(封头)、吸液芯、腰板(连接密封件)四部分。
不同类型的热管对这些零部件有不同的要求。
2 管壳热管的管壳大多为金属无缝钢管,根据不同需要可以采用不同材料,如铜、铝、碳钢、不锈钢、合金钢等。
管子可以是标准圆形,也可以是异型的,如椭圆形、正方形、矩形、扁平形、波纹管等。
管径可以从2mm到200mm,甚至更大。
长度可以从几毫米到l00米以上。
低温热管换热器的管材在国外大多采用铜、铝作为原料。
采用有色金属作管材主要是为了满足与工作液体相容性的要求。
3 端盖热管的端盖具有多种结构形式,它与热管舶连接方式也因结构形式而异。
端盖外圆尺寸可稍小于管壳内径,配合后,管壳的突出部分可作为氩弧焊的熔焊部分,不必再填焊条,焊口光滑平整质量容易保证。
旋压封头是国内外常采用的一种形式,旋压封头是在旋压机上直接旋压而成,这种端盖形式外型美观,强度好、省材省工,是一种良好的端盖形式。
4 吸液芯结构吸液芯是热管的一个重要组成部分。
吸液芯的结构形式将直接影响到热管和热管换热器的性能。
近年来随着热管技术的发展,各国研究者在吸液芯结构和理论研究方面做了大量工作,下面对一些典型的结构作出简略的介绍。
5 管芯型式5.1 一个性能优良的管芯应具有:(1)足够大的毛细抽吸压力,或较小的管芯有效孔径;(2)较小的液体流动阻力,即有较高的渗透率;(3)良好的传热特性,即有小的径向热阻;(4)良好的工艺重复性及可靠性,制造简单,价格便宜。
5.2 管芯的构造型式大致可分为以下几类:(1)紧贴管壁的单层及多层网芯此类管芯多层网的网层之间应尽量紧贴,网与管壁之间亦应贴合良好,网层数有l至4层或更多,各层网的目数可相同或不同.若网层多,则液体流通截面大,阻力小,但径向热阻大;用细网时毛细抽吸力大但流动阻力亦增加.如在近壁因数层用粗孔网,表面一层用细孔网,这样可由表面细孔网提供较大的毛细抽吸压力,通道内的粗孔网使流动阻力较小,但并不能改善径向热胆大的缺点.网芯式结构的管芯可得到较高的毛细力和较告的毛细提升高度,但因渗透率较低,液体回流阻力较大,热管的轴向传热能力受到限制.此外其径向热阻较大,工艺重复性差又不能适应管道弯曲的情况,故在细长热管中逐渐由其它管芯取代。
(2)烧结粉末管芯由一定目数的金属粉末烧结在管内壁面而形成与管壁一体的烧结粉末管芯,也有用金属丝网烧结在管内壁面上的管芯.此种管芯有较高的毛细抽吸力,并较大地改善了径向热阻,克服了网芯工艺重复性差的缺点,但因其渗透率较差,故轴向传热能力仍较轴向槽道管芯及干道式管芯的小。
(3)轴向槽道式管芯在管壳内壁开轴向细槽以提供毛细压头及液体回流通道,槽的截面形状可为矩形,梯形,圆形及变截面槽道,槽道式管芯虽然毛细压头较小,但液体流动阻力甚小,因此可达到较高的轴向传热能力,径向热阻较小,工艺重复性良好,可获得精确幼儿何参数,因而可较正确地计算毛细限,此种管子弯曲后性能基本不变。