数学北师大版初中二年级下册 14.2乘法公式——平方差公式
初中数学 什么是平方差公式
初中数学什么是平方差公式
平方差公式是初中数学中一个重要的公式,用于计算两个数的平方差。
它的一般形式可以表示为:
(a + b)(a - b) = a^2 - b^2
其中,a和b是任意实数。
平方差公式的推导可以通过展开左边的乘积来得到。
具体步骤如下:
1. 将(a + b)(a - b)展开:
(a + b)(a - b) = a(a - b) + b(a - b)
= a^2 - ab + ab - b^2
= a^2 - b^2
在这个过程中,我们可以看到中间的两项-ab和ab相互抵消,最终得到了平方差公式的形式。
平方差公式的应用非常广泛,可以帮助我们简化复杂的计算,解决各种数学问题。
一些常见的应用包括:
1. 因式分解:
平方差公式可以用于因式分解,特别是当我们需要将一个差的平方进行因式分解时,可以直接应用平方差公式得到因式分解形式。
2. 简化计算:
平方差公式可以帮助我们简化各种数学计算。
例如,当需要计算一个数的平方与另一个数的平方之差时,可以直接应用平方差公式,避免繁琐的计算步骤。
3. 解方程:
平方差公式可以用于解一些特殊的方程。
例如,当我们需要解一个二次方程时,可以通过平方差公式将其转化为两个一次方程,从而求得方程的解。
总之,平方差公式是初中数学中一个重要的工具,可以帮助我们简化计算,解决各种数学问题。
通过掌握平方差公式,我们可以更好地理解和运用数学知识。
14乘法公式——平方差公式
2.辨别下列两个多项式相乘,哪些可以使用平方差公式? (1)(b 2a)(2a b) ; (2)(2m 3n)(3n 2m) ; (3)(4a 1)(4a 2) ; (4)(3x y)(3x y) ;
6.运用平方差公式计算: (1)(3x 2)(3x 2) ;
(2)(b 2a)(2a b) ;
(3)( x 2 y )( x 2 y ) ;
(4)102 98 ;
第 2/6 页
人教版·七年级·数学·教与学
2014/2015 学年度第一学期
№ 第 14 课时/共 19 时/第 2 章 编写 王雪梅 审核 XXX 执教 XXX
(5)( y 2)( y 2) ( y 1)( y 5) ; (6)(a b)(a b)(a2 b2 ) .
7.你认为运用(乘法的)平方差公式有何好处? 试写出一些能用 (乘法的) 平方差公式进行计算的两个多项式相乘的式子.
四、 【练习】 1.下面各式的计算对不对?如果不对,应当怎样改正?
3 x ;
(3)若 (9 x 2 )( x 3) ( ( ). A x3 ; 2.填空题: B 3 x ;
C
D x9.
(1) (5x 3 y)(______) 25x2 9 y 2 ; (2) (mn 5)(mn 5) ________ ; (3) (_____ 3a)(_____ 3a) 4b2 9a2 ; (4)如果 x 2 y 2 10 ,且 x y 5 ,则 x y 的值为______________. 3.计算: (1) (2 5 x)(2 5 x) ;
14.2 乘法公式 课件 人教版数学八年级上册
(-3y-4x)(3y-4x)=(-4x-3y)(-4x+3y) =(-4x)2-(3y)2=16x2-9y2.
知1-练
感悟新知
知1-练
1-1. 下列各式中,可以用平方差公式进行计算的是( B ) A. (a-1)(1-a) B. (-a+2)(-a-2) C. (a+2)(2+a) D. (a-b)(-a+b)
知2-练
(1)1022;
解:原式=(100+2)2=10 000+400+4=10 404;
(2)99.82;
原式=(100-0.2)2=10 000-40+0.04=9 960.04;
2
(3)
60
1 60
.
原式=60+6102=3
600+2+3
6100=3
6023
1 600.
感悟新知
知识点 3 添括号
为2 023.
2 022×2 024-2 0232=(2 023-1)×(2 023+1)-2 0232
=2 0232-12-2 0232=-1.
感悟新知
2-1. 运用平方差公式进行简便计算:
知1-练
(1)9.8×10.2;
解:原式=(10-0.2)×(10+0.2)=;
(2)(-4a+5b)2;
知2-练
括号不能漏掉.
(-4a+5b)2 =(5b-4a)2 =(5b)2-2·(5b)·(4a)+(4a)2 =25b2-40ab+16a2;
不 能 漏 掉 “ 2ab” 项 且 符 号 与完全平方中的符号一致.
感悟新知
(3)(-2m-n)2;
知2-练
解:(-2m-n)2 =(2m+n)2
感悟新知
知3-讲
特别解读 1. 添括号只是一个变形,不改变式子的值. 2. 添括号时,如果括号前面是负号,括号里的各项都要改
14.2.2第1课时完全平方公式 课件 2024-—2025学年人教版数学八年级上册
课堂训练
4.(2021•台湾)利用乘法公式判断,下列等式何者成立?( C )
A.2482+248×52+522=3002 B.2482-248×48-482=2002 C.2482+2×248×52+522=3002 D.2482-2×248×48-482=2002
课堂训练
5.(2021•衡水模拟)若(2x+4y)2=4x2-2(m-1)xy+16y2,则m的值 为 -7 . 【解析】(2x+4y)2=4x2+16xy+16y2,∴-2(m-1)=16,解得m=-7.故
2
解:原式=x2-6x+9+x2-9+4x-2x2
=-2x.
当x=
1 2
时,原式=-2×(
1 2
)=1.
课堂训练
8.利用乘法公式计算:982-101×99.
解:原式=(100-2)2-(100+1)(100-1) =1002-400+4-1002+1 =-395.
课堂训练
9.(1)已知x+y=8,xy=12,求x2-xy+y2的值. 解:∵x+y=8,xy=12,x2-xy+y2=(x+y)2-3xy ∴x2-xy+y2=82-3×12=64-36=28.
第十四章 整式的乘法与因式分解
14.2 乘法公式
14.2.2 完全平方公式
第1课时 完全平方公式
学习目标-新课导入-新知探究-课堂小结-课堂训练
学习目标
1.了解并掌握完全平方公式及其结构特征.(重点) 2.理解完全平方公式的探索及推导过程,灵活应用完全平方公 式进行计算和解决实际问题.(难点)
初一奥数专题讲义——完全平方公式与平方差公式
完全平方公式与平方差公式一.知识要点1.乘法公式就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式完全平方公式:(a±b)2=a2±2ab+b22 23(1(24由(由5(a+b(a-a n-b n能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。
二.例题精选例1.已知x、y满足x2+y2+54=2x+y,求代数式xyx y的值。
例2.整数x,y满足不等式x2+y2+1≤2x+2y,求x+y的值。
例3.同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:•第一次提价的百分率为a,第二次提价的百分率为b; 乙商场:两次提价的百分率都是2a b+(a>0,•b>0); 丙商场:第一次提价的百分率为b,第二次提价的百分率为a,•则哪个商场提价最多?说明理由. 例4.计算:(1)6(7+1)(72+1)(74+1)(78+1)+1;(2)1.345×0.345×2.69-1.3453-1.345×0.3452.例5222()例6例7例8数.12A.x 3A 45(2)19492-19502+19512-19522+……+19972-19982+19992=_________。
6.已知a+1a=5,则=4221a a a ++=_____。
7.已知两个连续奇数的平方差为•2000,•则这两个连续奇数可以是______.8.已知a 2+b 2+4a -2b+5=0,则a ba b +-=_____.9.若代数式b x x +-62可化为1)(2--a x ,则b ﹣a 的值是. 10.已知a 、b 、c 均为正整数,且满足a 2+b 2=c 2,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数. 参考答案: 一.例题精选例1.提示:由已知得(x-1)2+(y-12)2=0,得x=1,y=12,原式=13例2.原不等式可化为(x-1)2+(y-1)2≤1,且x 、y 为整数,(x-1)2≥0,(y-1)2≥0,•10x -=11x -=±10x -=解得x y =⎧⎨⎩例3例4.(2)设例5. 例6.P <Q ;差值法:P -例7.例8因(x 12+x 22+…+x 102)-(y 12+y 22…+y 102)=(x 12-y 12)+(x 22-y 22)+…+(x 102-y 102) =(x 1+y 1)(x 1-y 1)+(x 2+y 2)(x 2-y 2)+…+(x 10+y 10)(x 10-y 10) =9[(x 1+x 2+…+x 10)-(y 1+y 1+…+y 10)]=0二.同步练习9.121)(222-+-=--a ax x a x ,这个代数式于b x x +-62相等,因此对应的系数相等,即﹣2a =﹣6,解得a =3,b a =-12,将a =3代入得b =8,因此b ﹣a =5. 10.解:(1)因(c+b)(c-b)=a 2,又c+b 与c-b 同奇同偶,c+b>c-b,故a•不可能为偶质数2,a应为奇质数,c+b与c-b同奇同偶,b与c必为一奇一偶.(2)c+b=a2,c-b=1,两式相减,得2b=a2-1,于是2(a+b+1)=2a+2b+2=2a+a2-1+2=(a+1)2,为一完全平方数.。
初中数学《公式法-平方差公式》教学设计及说课稿模板
初中数学《公式法-平方差公式》教学设计及说课稿模板《公式法-平方差公式》教学设计一、教学目标【知识与技能】理解和掌握公式(平方差)的结构特征,会运用公式法(1)因式分解。
【过程与方法】培养观察、分析能力,深化逆向思维能力和数学应用意识,渗透整体思想。
【情感态度价值观】让学生在自主学习的过程中探究新知,体验获取新知的喜悦,增强学习数学的兴趣和信心。
二、教学重难点【教学重点】会运用公式法(1)因式分解。
【教学难点】准确理解和掌握公式的结构特征,并灵活运用公式法因式分解。
三、教学过程(一)引入新课提问:1.我们学过哪些因式分解的方法?2.我们学过哪些整式乘法的公式?(二)探索新知课件展示以下问题,由学生独立完成:1.还记得七年级学过的整式的乘法公式吗?2.你能用数学语言描述平方差公式吗?3.如果将平方差公式反过来,就可以得到一个什么样的公式:这种因式分解的方法叫做公式法。
请用数学语言描述这一公式。
4.思考:什么样的多项式可以用这一公式因式分解?(1)公式有什么结构特征?(二次二项式)(2)两个平方项的符号有什么特点?(3)公式中的字母a、b可以表示什么?小组内三分钟内交流答案,把解决不了的难点归纳总结出来由老师帮忙解决。
(三)课堂练习让学生自己尝试完成书上的例1和例2。
(四)小结作业提问:今天学到了什么?本节课的课后作业我设计为:完成书后练习题。
四、板书设计《栽蒜苗(二)-折线统计图》说课稿尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《公式法-平方差公式》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。
今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材首先谈谈我对教材的理解,《公式法-平方差公式》是北师大版-初中数学-八年级下册-第四章-第3节-《公式法》的内容,因式分解是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。
新版北师大初中数学教材目录
新版北师大初中数学教材目录七年级上册第一章丰富的图形世界1.生活中的立体图形 2.展开与折叠3.截一个几何体 4.从三个不同方向看物体的形状第二章有理数及其运算1.有理数 2.数轴 3.绝对值4.有理数的加法 5.有理数的减法6.有理数的加减混合运算 7.有理数的乘法8.有理数的除法 9.有理数的乘方 10.科学计数法11.有理数的混合运算 12.用计算器进行运算第三章整式及其加减1.字母表示数 2.代数式 3.整式4.整式的加减 5.探索与表达规律第四章基本平面图形1.线段、射线、直线 2.比较线段的长短3.角 4.角的比较 5.多边形和圆的初步认识第五章一元一次方程1.认识一元一次方程 2.求解一元一次方程3.应用一元一次方程——水箱变高了4.应用一元一次方程——打折销售5.应用一元一次方程——“希望工程”义演6.应用一元一次方程——追赶小明第六章数据的收集与整理1.数据的收集 2.普查和抽样调查3.数据的表示 4.统计图的选择七年级下册第一章整式的乘除1.同底数幂的乘法 2.幂的乘方与积的乘方3.同底数幂的除法 4.整式的乘法5.平方差公式 6.完全平方公式 7.整式的除法第二章相交线与平行线1.两条直线的位置关系 2.探索直线平行的条件3.平行线的性质 4.用尺规作角第三章三角形1.认识三角形 2.图形的全等 3.探索三角形全等的条件4.用尺规作三角形 5.利用三角形全等测距离第四章变量之间的关系1.用表格表示的变量间关系 2.用关系式表示的变量间关系3.用图像表示的变量间关系第五章生活中的轴对称1.轴对称现象 2.探索轴对称的性质3.简单轴对称图形 4.利用轴对称进行设计第六章频率与概率1.感受可能性 2.频率的稳定性 3.等可能事件的概率八年级上册第一章勾股定理1.探索勾股定理 2.一定是直角三角形吗 3.勾股定理的应用第二章实数1.认识无理数 2.平方根 3.立方根 4.估算5.用计算器开方 6.实数 7.二次根式第三章位置与坐标1.确定位置 2.平面直角坐标系 3.轴对称与坐标变化第四章一次函数1.函数 2.一次函数与正比例函数 3.一次函数的图象4.一次函数的应用第五章二元一次方程组1.认识二元一次方程组 2.求解二元一次方程组3.应用二元一次方程组——鸡兔同笼4.应用二元一次方程组——增收节支5.应用二元一次方程组——里程碑上的数6.二元一次方程与一次函数7.用二元一次方程组确定一次函数表达式8.三元一次方程组第六章数据的分析1.平均数 2.中位数与众数3.从统计图分析数据的集中趋势 4.数据的离散程度第七章平行线的证明1.为什么要证明 2.定义与命题 3.平行线的判定4.平行线的性质 5.三角形内角和定理八年级下册第一章证明(二)1.等腰三角形 2.直角三角形 3.线段的垂直平分线 4.角平分线第二章一元一次不等式和一元一次不等式组1.不等关系 2.不等式的基本性质3.不等式的解集 4.一元一次不等式5.一元一次不等式与一次函数 6.一元一次不等式组第三章图形的平移与旋转1.图形的平移 2.图形的旋转 3.中心对称 4.简单的图案设计第四章因式分解1.因式分解 2.提公因式法 3.运用公式法第五章分式1.认识分式 2.分式的乘除法 3.分式的加减法 4.分式方程第六章平行四边形1.平行四边形的性质 2.平行四边形的判别3.三角形的中位线 4.多边形的内角和与外角和九年级上册第一章特殊的平行四边形1.菱形的性质与判定 2.矩形的性质与判定 3.正方形的的性质与判定第二章一元二次方程1.认识一元二次方程 2.配方法 3.公式法4.因式分解法 5.一元二次方程的应用第三章相似图形1.成比例线段 2.平行线分线段成比例 3.相似多边形4.相似三角形的判定 5.黄金分割 6.测量旗杆的高度7.相似三角形的性质 8.图形的放大与缩小第四章视图与投影1.投影 2.视图第五章反比例函数1.反比例函数 2.反比例函数的图象与性质 3.反比例函数的应用第六章对概率的进一步研究1.游戏公平吗 2.投针试验 3.生日相同的概率九年级下册第一章直角三角形的边角关系1.从梯子的倾斜程度谈起 2.特殊角的三角函数值3.三角函数的有关计算 4.船有触礁的危险吗 5.测量物体的高度第二章二次函数1.二次函数所描述的关系 2.二次函数的图像与性质 3.确定二次函数的表达式4.最大面积是多少 5.何时获得最大利润 6.二次函数与一元二次方程第三章圆1.圆 2.圆的对称性 3.垂径定理 4.圆周角与圆心角的关系5.确定圆的条件 6.直线和圆的位置关系 7.切线长定理8.圆内接正多边形 9.弧长及扇形的面积第四章统计与概率1.视力的变化 2.生活中的概率 3.统计与概率的应用。
人教版数学八年级上册第14章第8课14.2乘法公式(教案)
在今天的乘法公式教学中,我尝试了多种方法来帮助学生理解和掌握完全平方公式和平方差公式。从学生的反馈来看,我发现以下几个问题需要关注和改进。
首先,乘法公式的推导过程对部分学生来说仍然较为困难。在今后的教学中,我应更加注重引导学生通过实际操作、图示等方法来理解公式背后的原理。这样既能激发学生的学习兴趣,也有助于提高他们的逻辑推理能力。
2.教学难点
(1)理解乘法公式的推导过程:学生对乘法公式的推导过程可能存在理解困难,需要通过具体实例、图示等方法帮助学生理解。
(2)灵活运用乘法公式:学生在实际运用乘法公式时,可能难以迅速找到合适的应用场景来自需要通过典型例题和练习进行巩固。
(3)因式分解中的乘法公式应用:对于一些复杂的因式分解问题,学生可能不知道如何运用乘法公式,这是本节课的一个难点。
3.运用乘法公式解决实际问题,如代数式的乘法运算、因式分解等;
4.通过典型例题,让学生掌握乘法公式的应用技巧,提高解题能力。
二、核心素养目标
培养学生以下数学核心素养:
1.理解乘法公式的推导过程,提高逻辑推理和抽象思维能力;
2.学会运用乘法公式解决实际问题,增强数学运算和问题解决能力;
3.通过乘法公式的学习,培养严谨、细致的数学学习态度,提高数学素养;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解乘法公式的基本概念。乘法公式是解决代数式中乘法运算和因式分解的有效工具。其中,完全平方公式和平方差公式尤为重要。
2.案例分析:接下来,我们来看一个具体的案例:计算(2x+3y)(2x-3y)。这个案例展示了平方差公式在实际中的应用,以及它如何帮助我们解决问题。
同时,我也注意到,在实践活动和小组讨论中,学生的表现有很大的差异。有些学生能够迅速掌握乘法公式并灵活运用,而另一些学生则显得较为吃力。针对这种现象,我将在课后加强对学生的个别辅导,帮助他们弥补知识漏洞,提高学习效果。
14.2.1 乘法公式—平方差公式
解 : 原式 (x y )(x y )(x4+y4)
2 2 2 2
4 4 x y ( ) (x +y ) 8 8 x y
4 4
1.已知x2-y2=8,x-y=4,求x+y的值。 2.有两个正方形的周长之和为36cm,面 积之差为72cm2,你能求出这两个正方形 的边长吗? 3.(2+1)(22+1)(24+1)能否用平 方差公式进行计算?如能,还需创造什 么条件?
(4) (a−b)(a+b) ;
(5) (2x+y)(y−2x). (不能)
典 例2 计算: 例 分 (1) 102×98; 析 (2) (y+2)(y-2)–(y-1)(y+5) .
解: (1) 102×98
=(100+2)(100-2)
= 1002-22 =10 000 – 4 = 9 996.
a
b
请问你有几种方法求红色部分面积?
自主探究
a
a
b
a
2
b b2
a
b
长方形的面积=(a+b)(a-b)
剩下的面积=a2-b2
典 例 例1 运用平方差公式计算: 分 (1) (3x+2) (3x-2); (2) (b+2a)(2a-b); 析 (3) (-x+2y) (-x-2y).
分析:在(1)中,可以把3x看成a,2看成b,即
= (-x)2-(2y)2
2 2 =x -4y .
=4a2-b2
拓展练习
下列式子可用平方差公式计算吗? 为什么? 如果能够, 怎样计算?
(1) (a+b)(a−b) ; (不能) (第一个数不完全一样 )
平方差公式
《平方差公式》是在学习了有理数运算、列代数式、一元一次方程整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后自然过渡到具有特殊形式的多项式的乘法,是从一般——特殊——一般”的认知规律的典型范例对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法平方差公式是初中阶段的第一个公式对整个教材起着承上启下的作用,在初中阶段占有很重要的地位。
在本节课的教学中,应培养学生的数感和符号感,真正理解公式的来源、本质和应用,更为今后的学习打下坚实的基础.一、教材的地位与作用。
《平方差公式》是青岛版《数学》七年级(下)第十二章《乘法公式与因式分解》第一节的内容。
平方差公式是特殊的乘法公式,它既是已学知识“多项式乘多项式”的应用,也是后继知识如因式分解,分式约分等的基础,对整个教科书也起到了承上启下的作用,在初中阶段占有很重要的地位。
本节课主要研究的是平方差公式的探索和应用。
它是学生在已经掌握单项式乘法、多项式乘法基础上的拓展,一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,通过乘法公式的学习可以简化某些整式的运算、培养学生的解题思维。
二、教学重难点、关键:1.重点:平方差公式的探索和应用。
2.难点:理解平方差公式的结构特征,准确运用公式。
3.关键:准确找到a,b。
三、目标分析:学生在前一节课中已经学习了多项式乘以多项式,容易推导出等式(a+b)(a-b)=a2-b2,但理解和掌握公式的结构特征,准确运用公式是难点,所以应该进一步发展学生的观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
因此我觉得本节课应关注学生对公式的探索过程,让学生经历从一般到特殊再到一般的认知过程,有意识的培养学生的推理能力,数感和符号意识,真正理解公式的来源、特点和应用。
14.2.2乘法公式—完全平方公式(2)
(2)(a + b +c ) 2. (a + b + c ) 2 解: = [ (a+b) +c ]2 = (a+b)2 +2 (a+b)c +c2 = a2+2ab +b2 +2ac +2bc +c2 = a2+b2+c2 +2ab+2bc +2ac.
练习
2.运用乘法公式计算: (1) (a + 2b – 1 ) 2 ; (2) (2x +y +z ) (2x – y – z )
遇加不变遇减变
练习
1.在等号右边的括号内填上适当的项:
(1) a + b + c = a + ( b + c ); (2) a – b – c = a – ( b + c ) ;
(3) a - b + c = a – ( b - c );
(4) a + b + c = a - ( -b - c ).
能否用去括号 法则检查添括 号是否正确?
例 运用乘法公式计算: (1)( x +2y-3) (x- 2y +3) ; (2) (a + b +c ) 2. 解: (1) ( x +2y-3) (x- 2y +3) = [ x+ (2y – 3 )] [ x- (2y-3) ] = x2- (2y- 3)2 = x2- ( 4y2-12y+9) = x2-4y2+12y-9.
出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形
(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是 ( )
北师大版初二数学下册知识点归纳
【导语】学会整合知识点。
把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡⽚,会让你的⼤脑、思维条理清醒,⽅便记忆、温习、掌握。
同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。
这样能够促进理解,加深记忆。
下⾯是为您整理的《北师⼤版初⼆数学下册知识点归纳》,仅供⼤家参考。
北师⼤版初⼆数学下册知识点归纳篇⼀ 第⼀章分式 1分式及其基本性质分式的分⼦和分母同时乘以(或除以)⼀个不等于零的整式,分式的只不变 2分式的运算 (1)分式的乘除乘法法则:分式乘以分式,⽤分⼦的积作为积的分⼦,分母的积作为积的分母除法法则:分式除以分式,把除式的分⼦、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分⼦相加减;异分母分式相加减,先通分,变为同分母的分式,再加减 3整数指数幂的加减乘除法 4分式⽅程及其解法 第⼆章反⽐例函数 1反⽐例函数的表达式、图像、性质 图像:双曲线 表达式:y=k/x(k不为0) 性质:两⽀的增减性相同; 2反⽐例函数在实际问题中的应⽤ 第三章勾股定理 1勾股定理:直⾓三⾓形的两个直⾓边的平⽅和等于斜边的平⽅ 2勾股定理的逆定理:如果⼀个三⾓形中,有两个边的平⽅和等于第三条边的平⽅,那么这个三⾓形是直⾓三⾓形。
第四章四边形 1平⾏四边形 性质:对边相等;对⾓相等;对⾓线互相平分。
判定:两组对边分别相等的四边形是平⾏四边形; 两组对⾓分别相等的四边形是平⾏四边形; 对⾓线互相平分的四边形是平⾏四边形; ⼀组对边平⾏⽽且相等的四边形是平⾏四边形。
推论:三⾓形的中位线平⾏第三边,并且等于第三边的⼀半。
2特殊的平⾏四边形:矩形、菱形、正⽅形 (1)矩形 性质:矩形的四个⾓都是直⾓; 矩形的对⾓线相等; 矩形具有平⾏四边形的所有性质 判定:有⼀个⾓是直⾓的平⾏四边形是矩形;对⾓线相等的平⾏四边形是矩形; 推论:直⾓三⾓形斜边的中线等于斜边的⼀半。
第3讲 平方差公式-七年级数学下册同步精品讲义(北师大版)(学生版)
第3讲 平方差公式1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯.知识点公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式. 因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【知识拓展1】平方差公式1.运用乘法公式计算(4+x )(x ﹣4)的结果是( ) A .x 2﹣16B .x 2+16C .16﹣x 2D .﹣x 2﹣162.已知x +y =12,x ﹣y =6,则x 2﹣y 2= . 3.下列算式中不能利用平方差公式计算的是( ) A .(x +y )(x ﹣y ) B .(x ﹣y )(﹣x ﹣y )C .(x ﹣y )(﹣x +y )D .(x +y )(y ﹣x )4.计算(x +y )(x ﹣y )+16= . 5.(8x 2+4x )(﹣8x 2+4x )= . 6.若x 2﹣y 2=16,x +y =8,则x ﹣y = . 7.若x +y =5,x ﹣y =1,则x 2﹣y 2= .知识精讲目标导航8.若a=20170,b=2015×2017﹣20162,c=(﹣)2016×()2017,比较a,b,c大小(用“<”连接):.9.(3y+2x)(2x﹣3y)=.10.化简:(a+2)(a2+4)(a4+16)(a﹣2)=.11.下列各式,不能用平方差公式计算的是()A.(a+b﹣1)(a﹣b+1)B.(﹣a﹣b)(﹣a+b)C.(a+b2)(b2﹣a)D.(2x+y)(﹣2x﹣y)12.若a2﹣b2=10,a﹣b=2,则a+b的值为()A.5B.2C.10D.无法计算13.若a2﹣b2=﹣,a+b=﹣,则a﹣b的值为.14.若a2﹣b2=18,a+b=6,则a﹣b=.15.若m2﹣n2=10,且m﹣n=2,则m+n=.16.计算:(3x+2)(3x﹣2)+x(x﹣2).17.化简:(2x﹣y)(y+2x)﹣y(x﹣y)﹣(2x)2.18.观察:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,据此规律,当(x﹣1)(x5+x4+x3+x2+x+1)=0时,代数式x2021﹣1的值为()A.1B.0C.1或﹣1D.0或﹣2【知识拓展2】平方差公式的几何背景19.从边长为a的正方形中剪掉一个边长为b的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.b(a﹣b)=ab﹣b2D.a2﹣b2=(a+b)(a﹣b)20.探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是(用式子表示),即乘法公式中的公式.(2)运用你所得到的公式计算:①10.3×9.7;②(x+2y﹣3z)(x﹣2y﹣3z).21.如图,在边长分别为a,b的两个正方形组成的图形中,剪去一个边长为(a﹣b)的正方形,通过用两种不同的方法计算剪去的正方形的面积,可以验证的乘法公式是()A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b222.如图,阴影部分是边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼的方式形成新的图形,给出四种割拼方法,其中能够验证平方差公式的有()个.A.1B.2C.3D.423.为庆祝中国共产党的百年华诞,某校要进行美化校园,各班同学设计热爱祖国的板报.八年一班学生在设计板报时,在黑板中间画一个半径为R的大圆,然后挖去半径为r的四个小圆,分别作为热爱中国共产党、热爱人民、认同中华文化和继承革命传统四个学习区域.请计算当R=7.8cm,r=1.1cm时剩余部分的面积.(结果保留π)24.将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1=,S2=;(不必化简)(2)由(1)中的结果可以验证的乘法公式是;(3)利用(2)中得到的公式,计算:20212﹣2020×2022.25.如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)写出根据上述操作利用阴影部分的面积关系得到的等式:.(2)请应用(1)中的等式,解答下列问题:①已知4a2﹣b2=24,2a+b=6,则2a﹣b=;②计算:2002﹣1992+1982﹣1972+…+42﹣32+22﹣12.26.数学中,常对同一个量用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”[探究一]如图1,在边长为a的正方形纸片上剪去一个边长为b(b<a)的正方形,你能表示图中阴影部分的面积吗?阴影部分的面积是;如图2,也可以把阴影部分沿着虚线AB剪开,分成两个梯形,阴影部分的面积是;用两种不同的方法计算同一个阴影部分的面积,可以得到等式.[探究二]如图3,一条直线上有n个点,请你数一数共有多少条线段呢?方法1:一路往右数,不回头数.以A1为端点的线段有A1A2、A1A3、A1A4、A1A5、…、A1A n,共有(n﹣1)条;以A2为端点的线段有A2A3、A2A4、A2A5、…、A2A n,共有(n﹣2)条;以A3为端点的线段有A3A4、A3A5、…、A3A n,共有(n﹣3)条;…以A n﹣1为端点的线段有A n﹣1A n,共有1条;图中线段的总条数是;方法2:每一个点都能和除它以外的(n﹣1)个点形成线段,共有n个点,共可形成n(n﹣1)条线段,但所有线段都数了两遍,所以线段的总条数是;用两种不同的方法数线段,可以得到等式.[应用]运用探究一、探究二中得到的等式解决问题.计算:992﹣982+972﹣962+952﹣942+…+32﹣22+12.[迁移]某篮球队共有8名实力相当的队员,现要随机派3名队员参加联队比赛,共有种不同的选择方案.能力拓展类型一、公式法——平方差公式例1、分解因式:(1)2()4x y +-; (2)2216()25()a b a b --+; (3)22(2)(21)x x +--.【变式】将下列各式分解因式:(1)()()22259a b a b +--; (2)()22234x y x --(3)33x y xy -+; (4)32436x xy -;例2、分解因式: (1)2128x -+; (2)33a b ab -; (3)516x x -; (4)2(1)(1)a b a -+-【变式】先化简,再求值:(2a+3b )2﹣(2a ﹣3b )2,其中a=.类型二、平方差公式的应用 例3、2222211111111......1123420112012⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭例4、阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=(28﹣1).根据上式的计算方法,请计算:(1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.分层提分题组A 基础过关练一.选择题(共4小题)1.已知a+b=﹣3,a﹣b=1,则a2﹣b2的值是()A.8B.3C.﹣3D.102.下列各式中,能用平方差公式计算的是()A.(a+b)(﹣a﹣b)B.(a+b)(a﹣b)C.(a+b)(a﹣d)D.(a+b)(2a﹣b)3.下列运算正确的是()A.(5﹣m)(5+m)=m2﹣25B.(1﹣3m)(1+3m)=1﹣3m2C.(﹣4﹣3n)(﹣4+3n)=﹣9n2+16D.(2ab﹣n)(2ab+n)=4ab2﹣n24.如图,从边长为acm的正方形纸片中剪去一个边长为(a﹣3)cm的正方形(a>3),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为()A.6a cm2B.(6a+9)cm2C.(6a﹣9)cm2D.(a2﹣6a+9)cm2二.填空题(共4小题)5.已知x+y=12,x﹣y=6,则x2﹣y2=.6.已知m﹣n=3,则m2﹣n2﹣6n的值.7.若(2m+5)(2m﹣5)=15,则m2=.8.已知m2﹣n2=24,m比n大8,则m+n=.三.解答题(共5小题)9.化简:(a﹣b)(a+b)﹣a(a+b).10.计算:(1)(a+9)(a+1);(2)20192﹣2017×2021.11.若(x﹣2)(x2+ax﹣8b)的展开式中不含x的二次项和一次项.(1)求b a的值;(2)求(a+1)(a2+1)(a4+1)…(a32+1)+1的值.12.请阅读以下材料:[材料]若x=12349×12346,y=12348×12347,试比较x,y的大小.解:设12348=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2,y=a(a﹣1)=a2﹣a.因为x﹣y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0,所以x<y.我们把这种方法叫做换元法.请仿照例题比较下列两数大小:x=997657×997655,y=997653×997659.13.如图,从边长为(a+4)cm的正方形纸中减去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙).(1)拼成的长方形的周长是多少?(2)拼成的长方形的面积是多少?题组B 能力提升练一.选择题(共5小题)1.化简(2+1)(22+1)(24+1)(28+1)(216+1)的结果是()A.232﹣1B.232+1C.(216+1)2D.(216﹣1)22.如果一个正整数能表示为两个正整数的平方差,那么这个正整数就称为“智慧数”,例如:5=32﹣22,5就是一个智慧数,则下列各数不是智慧数的是()A.2020B.2021C.2022D.20233.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32.即8,16均为“和谐数”),在不超过200的正整数中,所有的“和谐数”之和为()A.2700B.2701C.2601D.26004.下列各数中,可以写成两个连续奇数的平方差的()A.520B.502C.250D.2055.在下列计算中,不能用平方差公式计算的是()A.(m﹣n)(﹣m+n)B.(x3﹣y3)(x3+y3)C.(﹣a﹣b)(a﹣b)D.(c2﹣d2)(d2+c2)二.填空题(共5小题)6.小丽在计算3×(4+1)×(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式进行计算.用类似方法计算:(1+)×(1+)×(1+)×(1+)+=.7.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,…根据规律可得:(x﹣1)(x2021+x2020+…+x+1)=.8.计算:20212﹣2020×2022=.9.若m2﹣n2=40,且m﹣n=5.则m+n=.10.如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是.三.解答题(共4小题)11.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,根据规律(x﹣1)(x n﹣1+x n﹣2+…+x2+x+1)=.(其中n为正整数);(1)计算:(﹣2)2019+(﹣2)2018+(﹣2)2017+…+(﹣2)3+(﹣2)2+(﹣2)1+1;(2)计算:22018+22016+22014+…+24+22+2.12.如图1所示,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.(1)请直接用含a和b的代数式表示S1=,S2=;写出利用图形的面积关系所得到的公式:(用式子表达).(2)应用公式计算:.(3)应用公式计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1.13.在化简整式(x﹣2)■(x+2)+▲中,“■”表示运算符号“﹣”“×”中的某一个,“▲”表示一个整式.(1)计算(x﹣2)﹣(x+2)+(﹣2+y);(2)若(x﹣2)(x+2)+▲=3x2+4,求出整式▲;(3)已知(x﹣2)■(x+2)+▲的计算结果是二次单项式,当▲是常数项时,直接写出■表示的符号及▲的值.14.观察下列各式(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(1)(x﹣1)(x n﹣1+x n﹣2+…+x+1)=(其中n为正整数);(2)(2﹣1)•(299+298+…+2+1)=;(3)计算:350+349+348+…+32+3+1的值.题组C 培优拔尖练一.选择题(共1小题)1.(2020秋•鼓楼区校级期中)如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255024B.255054C.255064D.250554二.填空题(共6小题)2.(2017春•张掖月考)乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是(写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式)小题3:比较图1,图2的阴影部分面积,可以得到乘法公式(用式子表达)小题4:应用所得的公式计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)3.已知a﹣b=3,a2﹣b2=9,则a=,b=.4.如图,小刚家有一块“L”形的菜地,要把这块菜地按图示那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是xm,下底都是ym,高都是(y﹣x)m,请你帮小刚家算一算菜地的面积是平方米.当x=20m,y=30m时,面积是平方米.5.计算:(5+1)(52+1)(54+1)(58+1)(516+1)+=.6.小明在计算时,找不到计算器,去向小华借,小华看了看题说根本不用计算器,而且很快说出了答案.你知道答案是多少吗,请将答案填在横线上.7.(2021春•锦江区校级期中)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”.例如,16=52﹣32,16就是一个智慧数.在正整数中,从1开始,第2021个智慧数是.三.解答题(共6小题)8.(2021春•鼓楼区期中)有些同学会想当然地认为(x﹣y)3=x3﹣y3.(1)举出反例说明该式不一定成立;(2)计算(x﹣y)3;(3)直接写出当x、y满足什么条件时,该式成立.9.(2021春•婺城区校级期末)乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:公式2:(4)运用你所得到的公式计算:10.3×9.7.10.(2021春•淮北期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).11.(2021春•罗湖区校级期中)已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.12.(2019春•漳浦县期中)你能化简(a﹣1)(a99+a98+a97+…+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a﹣1)(a+1)=;(a﹣1)(a2+a+1)=;(a﹣1)(a3+a2+a+1)=;…由此猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)=(2)利用这个结论,你能解决下面两个问题吗?①求2199+2198+2197+…+22+2+1的值;②若a5+a4+a3+a2+a+1=0,则a6等于多少?13.(2018秋•沙坪坝区期末)一个个位不为零的四位自然数n,如果千位与十位上的数字之和等于百位与个位上的数字之和,则称n为“隐等数”,将这个“隐等数“反序排列(即千位与个位对调,百位与十位对调)得到一个新数m,记D(n)=.(1)请任意写出一个“隐等数”n,并计算D(n)的值;(2)若某个“隐等数“n的千位与十位上的数字之和为6,D(n)为正数,且D(n)能表示为两个连续偶数的平方差,求满足条件的所有“隐等数”n.。
初中课件-八上数学八年级数学第十四章14.2.2乘法公式(完全平方公式)_ppt课件
比一比 赛一赛
回答下列问题: (1) (a+2y)2是哪两个数的和的平方? (a+2y)2 =( a ) 2+2( a )( 2y )+( 2y ) 2 (2) (2x−5y)2是哪两个数的差的平方? (2x -5y)2 =( 2x ) 2 -2(2x)( 5y )+( 5y ) 2
3、多项式的乘法法则是什么? 用一个多项式的每一项乘以 另一个多项式的每一项,再把所得的 积相加.
(a+b) (m+n)= am+an + bm+bn
4、探究 计算下列各式,你能发现什么规律?
2+2p+1 (1) (p+1)2 = (p+1) (p+1) = P ______ 2+4m+4 2 m (m+2) = _________;
(2x−5y)2可以看成哪两个数的和的平方?
(2x−5y)2可以看成2x与 −5y的和的平方.
例1、运用完全平方公式计算:
2 (1)(4m+n)
解: (4m+n)2=(4m)2 +2•(4m) •n +n2
(a
2 +b) = 2 a
+
2ab
+
2 b
2 =16m
+8mn +n2
2 (2)(x-2y)
= a2-ab-ab+b2
=a2-2ab+b2 .
14.2.2完全平方公式
完全平方公式的数学表达式:
(a+b)2= a2 +2ab+b2
八年级数学上册教学课件《平方差公式》
探究新知
知识点 平方差公式
14.2 乘法公式
多项式与多项式是如何相乘的?
(a+b)(m+n) =am +an +bm +bn
(x + 3)( x+5)
=x2 +5x +3x +15 =x2 +8x +15.
探究新知
面积变了吗?
a米
a米 5米
相等吗?
14.2 乘法公式
数学 八年级 上册
14.2 乘法公式
14.2 乘法公式
14.2.1 平方差公式
导入新知
观察与思考
14.2 乘法公式
某同学在计算97×103时将其变成(100–3)(100+3) 并很快得出结果,你知道他运用了什么知识吗?这 节课,我们就来一起探讨上述计算的规律.
素养目标
14.2 乘法公式
2. 了解平方差公式的几何意义,体会数 形结合的思想方法.
14.2 乘法公式
(2)(3x+4)(3x–4)–(2x+3)(3x–2) . (2) 原式=(3x)2–42–(6x2+5x–6)
= 9x2–16–6x2–5x+6 = 3x2–5x–10.
探究新知
14.2 乘法公式
素养考点 3 利用平方差公式进行化简求值
例3 先化简,再求值:(2x–y)(y+2x)–(2y+x)(2y–x), 其中x=1,y=2.
14.2 乘法公式
探究新知
素养考点 1 利用平方差公式计算
14.2 乘法公式
例1 计算:(1) (3x+2 )( 3x–2 ) ;
(2)(–x+2y)(–x–2y). 解: (1)原式=(3x)2–22
平方差公式
14.2.1平方差公式本节课为人教版《义务教育教科书·数学》八年级上册“14.2乘法公式”(第一课时)的内容。
一、教材分析平方差公式是在学习了有理数的运算、简单的代数式、整式的加减以及整式的乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,体现了教材从一般到特殊的认知规律。
对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数的学习等内容奠定了基础,同时也为完全平方公式的学习提供了方法。
因此,平方差公式在教材中具有承上启下的作用,是初中阶段的一个重要公式。
义务教育课程标准的要求是学生要能够推导平方差公式,了解公式的几何背景,并能利用公式进行简单的计算。
二、教学问题诊断分析学生在学习平方差公式之前已经学习了幂的运算、整式的加减以及整式的乘法等知识,掌握了多项式乘法的法则,也经历过对幂的乘法、多项式乘法的推导过程,有了一定的逻辑思维,能够有条理的分析问题,但在进行多项式乘法运算时,常常会出现弄错某些项的符号及漏项等问题。
学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛含义的理解。
因此,在本节课的教学中要引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解。
对于公式的推导,利用学生的好奇心,设置小故事来激起学生的求知欲,通过简单的道具制作,让学生生动形象的理解公式的几何意义,体会数形结合的思想。
三、教学目标1、知识与技能:通过经历探索平方差公式的过程,学会推导平方差公式,掌握平方差公式及其结构特征,并能运用公式进行简单的运算。
2、过程与方法:在探究平方差公式的过程中,体会从“特殊到一般”的研究数学问题的方法,提高推理归纳的能力;通过对平方差公式的几何意义的了解,体会代数与几何内在统一的思想。
3、情感态度与价值观:通过拼图、解题等活动,感受数学学习的乐趣,体验巧妙运用公式解题的过程,体会数学的简捷美。
14.2 乘法公式的应用1小时学案
14.2.1 平方差公式1、两项和与两项差的积等于这两项的 ,其中 项的平方作为被减数; 项的平方作为减数。
2、()()33-+x x = ;()()=+-33x x 。
3、=--+-)3)(3(x x ;()()=---33x x 。
4、(a+ )(a- )=a 2-0.255、计算:=---)23)(23(22y x y x 。
6、运用公式计算: ①2002⨯1998 ②2010200820092⨯-7、先化简,后求值:()()()9332++-a a a ,其中1=a8、先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-.●体验中考1、(2009年内江) 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .2222)(b ab a b a ++=+B .2222)(b ab a b a +-=-C .))((22b a b a b a -+=-D .222))(2(b ab a b a b a -+=-+2.(2009年嘉兴市)化简:)8(21)2)(2(b a b b a b a ---+.a图甲14.2.2 完全平方公式1、两项和(或差)的平方,等于它们的 加上(或减去)它们乘积的2倍,公式为()=±2b a 。
2、化简:①.=-2)32(y x ②.22009=3、如果92++kx x 是一个完全平方式,则k 的值为:4、用乘法公式计算:① 2)32(--y x ②)1)(1(-+++y x y x5、先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.6.已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2 (2)a 2+b 2●体验中考1、(2009年台州市)下列运算正确的是 ( )A .134=-a aB .9)3(22-=-a a C .22))((b a b a b a -=-+ D.222)(b a b a +=+ 2.(18年抚顺)下列运算正确的是( )A .2x+3y=5xyB .(x+3)2=x 2+9C .(xy 2)3=x 3y 6D .x 10÷x 5=x 24.(18年新疆)下列计算正确的是( )A .a 2•a 3=a 6B .(a+b )(a ﹣2b )=a 2﹣2b 2C .(ab 3)2=a 2b 6D .5a ﹣2a=35.(18年樊城模拟)下列计算正确的是( )A 、-2x -2y 3·2x 3y=-4x -6y 3;B 、(-2a 2)3=-6a 6;C 、(2a+1)(2a-1)=2a 2-1;D 、35x 3y 2÷5x 2y=7xy ;6.(17年佳木斯)下列运算中,计算正确的是( )A .(a 2b )3=a 5b 3B .(3a 2)3=27a 6C .x 6÷x 2=x 3D .(a+b )2=a 2+b 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 2 计算: (1)(-1-2y)(1-2y)-(y+1)(4y-3)
解决
(2)2002×1998.
[活动 3]课堂小结 (1)通过本节课的学习你知道了什么?会做什么? (2)平方差公式的结构特征是什么? (3)应用平方差公式时要注意什么 [活动 4]作业布置 必做题:教科书习题 14.2 第 1 题
个数的差的积,等于这 究 问
两个数的平方差。
题的
让学生运用公式表示 方法
规律:
2 问题:已知四边形 ABCD 是边长 a 为的正方形,四边形 (a b)(a b) a2 b2 EFNC 是边长为 b 正方形,你能根据图中图形的面积说明平
方差公式吗?
A
a M
b
B
DG
F EH
Nb C
a
学生先观察式子,偿试 独立计算。教师了解学 生的计算过程,对有困 难的学生可采取如下 的引导: 计算的式子分别是哪 两个的和与差的积? 对照公式
(a b)(a b) a 2 b2
什么是 a,什么是 b.? 教师最后板书运算过 程。学生再修改自已的 运算过程。
练习 1:下面各式的计算对不对?如果不对,应当怎样改 正?
课题:14.2 乘法公式——平方差公式
教学目标: 1 理解平方差公式,能运用平方差公式进行计算。
2.在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,从利
用图形验证平方差公式的过程中,感知数形结合的思想。
教学重点: 探究乘法的平方差公式及运用乘法的平方差公式进行运算。
教学难点: 平方差公式的变式运用
完成后,教师引导学生 总结:运用平方差公式 解决问题时应注意什 么?(1)在运用平方 差公式之前,一定要看 是否具备公式
的结构特征; (2)一定要找准哪个 数或式相当于公式中 的 a,哪个
数或式相当于公 式中的 b; (3)一般地,“第一 个数”a 的符号相同, “第二个数”b 的符号 相反; (4)公式中的字母 a ,b 可以是具体的数、单项 式、多
;
学生计算填空后,教师 让 学 关注学生能否发现平 生 经
方差公式。对有困难的 历 探
(2)(m+2)(m-2) =
;
同学可采取如下方式 究 的
引导:
过
(3)(2x+1)(2x-1)=
.
上面各等式中等号的 程 ,
左边都可看作:
从中
感悟
右边都是:
从具
体到
学生分组讨论总结规 抽 象
律:两个数的和与这两 地 研
选做题:.1 计算: 2009×2007-20082 2 化简:(x-y)(x+y)(x2+y2)(x4+y4)
开始 的引 出问 题
学生先自已整理,再小 组交流。小组代表发 言。教师评价,总结。
板书设计:
14.2 乘法公式——平方差公式
一,引入新知
三,运用新知 例 1 运用平方小组代表发 言。小组间评析。教师 参与评析。关注学生对 (5)能否正确运用平 方差公式进行计算。
。
练习 2:下列多项式乘法中,能用平方差公式计算的是
(1)(-a+b)(a-b); (2)(x2-y)(x+y2); (3)(-a-b)(a-b);(4)(c2-d2)(d2+c2).
(1) (a 4b)(a 4b) a 2 4b2
(2) (x+2)(x-2)=x2 -2
(3)(2a-3b)(2a-3b)=(2a)2 -(3b)2
(4) (x y z)( x y z) (x y)2 z 2
(5) (-3a-2)(3a-2)=9a2 -4
二,探究平方差公式
四,随堂练习
b
学生观察图形,先独立 思考,代表发言。师生 共同评价分析。
教师总结;从图形也能 得到平方差公式
(a b)(a b) a 2 b2
[活动 3]运用新知 例 1 运用平方差公式计算: (1) (3x+2)(3x-2) (2) (-x+2y)(-x-2y)
让学 生感 知数 形结 合的 思 想。
课前准备: 课件
教学过程:
问题情境
师生行为
设计
意图
[活动 1]引入新知
教师出示问题,要求学 激 发
问题:比一比看谁算的快
生口答。针对学生有困 学 生
2002×1998=
难,教师引入本节课的 的 求
学习。
知
欲。
[活动 2]探究平方差公式
1 探究:计算下列多项式的积,你能发现什么规律?
(1)(x+1)(x-1)=