北京市西城区2014 — 2015学年度第一学期期末试卷高一数学普通校(试题)
2014-2015学年北京市西城区高三上期末考试文科数学试卷
2014-2015学年北京市西城区高三上期末考试文科数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.设集合A ={1,2,3,4,5},B ={x|(x−1)(x−4)<0},则A ∩B =( )A 、{1,2,3,4}B 、{2,3}C 、{1,2,3}D 、{2,3,4}2.在实数范围内,下列不等关系不恒成立的是( )A 、x 2≥0B 、a 2+b 2≥2ab C 、x +1>x D 、|x +1|>|x|3.下列函数中,既是偶函数又在(0,+∞)上是单调递增函数的是( )A 、y =lgxB 、y =−x 2+3C 、y =|x|−1D 、y =3x4.命题“存在实数x ,使x >1”的否定是( )A 、对任意实数x ,都有x >1B 、不存在实数x ,使x ≤1C 、对任意实数x ,都有x ≤1D 、存在实数x ,使x ≤15.已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则公差等于( )A 、2B 、4C 、6D 、86.已知a ,b 为不相等的两个正数,且lgab =0,则函数y =a x 和y =b x 的图象之间的关系是( )A 、关于原点对称B 、关于y 轴对称C 、关于x 轴对称D 、关于直线y =x 对称7.已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件8.过曲线C :y =x1(x >0)上一点P (x 0,y 0)作曲线C 的切线,若切线的斜率为−4,则x 0等于( )A 、2B 、21C 、4D 、419.已知函数f (x )=⎪⎩⎪⎨⎧≤+->-12111x a x x x 在R 上满足:对任意x 1≠x 2,都有f (x 1)≠f (x 2),则实数a 的取值范围是( )A 、(−∞,2]B 、(−∞,−2]C 、[2,+∞)D 、[−2,+∞)10.已知函数f (x )=xe x ,给出下列结论: ①(1,+∞)是f (x )的单调递减区间;②当k ∈(−∞,e1)时,直线y =k 与y =f (x )的图象有两个不同交点; ③函数y =f (x )的图象与y =x 2+1的图象没有公共点.其中正确结论的序号是( )A 、①②③B 、①③C 、①②D 、②③二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.11.若x ∈R +,则x +x 4的最小值为____________. 12.log 22+lne =____________.13.不等式xx 12->1的解集为____________. 14.已知定义在R 上的奇函数f (x )满足f (x−2)=f (x ),且当x ∈[1,2]时,f (x )=x 2−3x+2,则f (6)=____________;f (21)=____________. 15.函数f (x )=lnx−21x 2的极值是____________. 16.个人取得的劳务报酬,应当交纳个人所得税.每月劳务报酬收入(税前)不超过800元不用交税;超过800元时,应纳税所得额及税率按下表分段计算:(注:应纳税所得额单次超过两万,另有税率计算方法.)某人某月劳务报酬应交税款为800元,那么他这个月劳务报酬收入(税前)为_________元.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.17.设函数f (x )=log 2(x 2−2x−8)的定义域为A ,集合B ={x|(x−1)(x−a )≤0}. (Ⅰ)若a =−4,求A ∩B ;(Ⅱ)若集合A ∩B 中恰有一个整数,求实数a 的取值范围.18.已知数列{a n }是等差数列,S n 为其前n 项和,a 1=−6,S 3=S 4.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =2+4,求数列{b n }的前n 项和.19.已知函数f (x )=x 2−2mx +3.(Ⅰ)当m =1时,求函数f (x )在区间[−2,2]上的最大值和最小值;(Ⅱ)若函数f (x )在区间[1,+∞)上的值恒为正数,求m 的取值范围.20.已知函数f (x )=(a−x )e x +1,其中a >0.(Ⅰ)求函数f (x )的单调区间;(Ⅱ)证明函数f (x )只有一个零点.21.某人销售某种商品,发现每日的销售量y (单位:kg )与销售价格x (单位:元/kg )满足关系式y =⎪⎩⎪⎨⎧≤≤-<<-+-159617796)9(61502x x x x a x ,其中a 为常数.已知销售价格为8元/kg 时,该日的销售量是80kg .(Ⅰ)求a 的值;(Ⅱ)若该商品成本为6元/kg ,求商品销售价格x 为何值时,每日销售该商品所获得的利润最大.22.已知函数f (x )=lnx +x−21mx 2. (Ⅰ)当m =2时,求函数f (x )的极值点;(Ⅱ)若关于x 的不等式f (x )≤mx−1恒成立,求整数m 的最小值.。
北京市西城区2014 — 2015学年高三(文)第一学期期末试卷
北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(文科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1,2{}A -=,2{|}B x x x =>,则集合A B = ( ) (A ){1,0,1}-(B ){1,2}-(C ){0,1,2}(D ){1,1,2}-【答案】B 【解析】“0x ∀>”的否定为“0x ∃>”,“2log 2x x >”的否定为“2log 2x x ≤” 所以,p ⌝为:2log 0,2x x x ∃>≤ 故答案为:B 【考点】全称量词与存在性量词 【难度】 13.在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若A 为锐角,2a b =,sin B =,则( )【答案】B 【解析】{}01B x x x =<>或,所以{}1,2A B =-故答案为:B 【考点】 集合的运算 【难度】 12.设命题p :2log 0,2x x x ∀>>,则p ⌝为( ) (A )2log 0,2x x x ∀>< (B )2log 0,2x x x ∃>≤ (C )2log 0,2x x x ∃>< (D )2log 0,2x x x ∃>≥(A )3A π= (B )6A π=(C)sin 3A =(D )2sin 3A =【答案】A 【解析】由正弦定理得sin sin a b A B =,所以sin 2sin A aB b==,所以sin A =。
因为ABC ∆为锐角三角形,所以3A π=故答案为:A【考点】 正弦定理 【难度】 14.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )7【答案】C【解析】3x =时,328y ==,833<; 4x =时,4216y ==,1643<; 5x =时,5232y ==,3253<;6x =时,6264y ==,6463>,输出6x =。
北京市西城区-第一学期期末考试高三数学理及答案
北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(理科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =( )(A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin 3A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( )(A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b (D )∃平面向量a 和b ,||||||-+≥a b a b5.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面xOy 内一点,若对于区域D内的任一点(,)A x y ,都有1OA OB ⋅≤成立,则a b +的最大值等于( ) (A )2 (B )1 (C )0(D )36.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP ,则实数m 的取值范围是( )(A )(4,8) (B )(4,) (C )(0,4)(D )(8,)侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12. 如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,且2AC AE =,那么AFAB=____;A ∠= _____.13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)2 x3ya321258zE FCB A已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p,16q ,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1B CE ;(Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.B CDA B 1C 1E FA 1 D 1设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=(其中1a 是个位数字,2a 是十位数字,),定义变换A :012()()()()m A n f a f a f a =+++. 并规定(0)0A =.记10()n A n =,21()n A n =,, 1()k k n A n -=,.(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.9614.13注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤,所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . ……………… 9分(Ⅱ)解:如图过点B 作线段BC 垂直于x由题意,得33π4TAC ==,2=BC , 所以2tan 3πBC BAO AC ∠==.16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. ……………… 2分 又因为14p, 所以q =512. ……………… 3分 (Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则CAB AB AB ,且A ,B 独立.由上表可知, 1()2P A ,()P B p .所以()()()()P C P AB P AB P AB ……………… 5分111(1)222p pp1122p . ……………… 6分 因为114()225P C p , 所以35p. ……………… 7分 又因为113p q ,0q ≥,所以23p ≤.所以3253p ≤. ……………… 8分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD 平面1A ECF EC =,平面1111A B C D 平面11A ECF A F =,所以1A F ∥EC . …………………2分 又因为1A F ⊄平面1B CE ,EC ⊂平面1B CE ,所以1A F ∥平面1B CE . …………………4分 (Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C , 所以 1(1,0,2)A E =-,1(2,1,2)AC =-. 设平面1A ECF 的法向量为(,,),m x y z = 由10A E m ⋅=,10AC m ⋅=, 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-. …………………7分 又因为平面DEC 的法向量为(0,0,1)n =, …………………8分所以1cos ,3||||m n m n m n ⋅<>==⋅,由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A B C D ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. ………………14分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分 且()2f x ax b '=-,1()g x x'=, …………………3分 由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) …………………7分因为 10(21)a s s =>-,且0s >, 所以 12s >. …………………8分 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………9分 令()0F x '= ,解得1x =或14x =(舍). …………………10分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <. 因此,当且仅当1x =时()0F x =.所以方程(*)有且仅有一解1s =.于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分) (Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为 ||21||42FA AP m ==-, 所以 8m =. ………………5分(Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N .由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分 因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分 )8)(8()8)(2()8)(2(211221----+--=x x x x k x x k )8)(8(32)(102212121--++-=x x k x x k x kx 0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k , 所以 MPF NPF ∠=∠. ……………… 12分 因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分 所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. ……………… 3分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++,所以 ()20A n m ≤. ……………… 6分 令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增.故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分 (Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…………………14分。
北京市西城区2014-2015学年度高二上学期期末考试数学试题(文科)
北京市西城区2014 —2015学年度第一学期期末试卷高二数学2015.1(文科)试卷满分:150分考试时间:120分钟一、选择题:本大题共10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项是符合要求的.二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上. 11. 抛物线24y x =的准线方程为_______________.12. 命题“2,20x x x ∃∈-<R ”的否定是_____________________. 13. 右图是一个四棱锥的三视图,则该四棱锥的 体积为_______.14. 圆心在直线y x =上,且与x 轴相切于点(2,0) 的圆的方程为____________________.15. 已知F 为双曲线22:14y C x -=的一个焦点, 则点F 到双曲线C 的一条渐近线的距离为__________. 16. “降水量”是指从天空降落到地面上的液态或固态(经融 化后)降水,未经蒸发、渗透、流失而在水平面上积聚的 深度.降水量以m m 为单位.为了测量一次降雨的降水量,一个同学使用了如图所 示的简易装置:倒置的圆锥. 雨后,用倒置的圆锥接到的 雨水的数据如图所示,则这一场雨的降水量为 m m .三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分13分)如图,四边形ABCD 为矩形,AD ⊥平面ABE ,90AEB ∠=o,F 为CE 上的点. (Ⅰ)求证://AD 平面BCE ; (Ⅱ)求证:AE ⊥BF .正(主)视图 侧(左)视图俯视图AEBCD F18.(本小题满分13分)已知△ABC 三个顶点的坐标分别为(0,0)A ,(4,0)B ,(3,1)C . (Ⅰ)求△ABC 中AC 边上的高线所在直线的方程; (Ⅱ)求△ABC 外接圆的方程.19.(本小题满分14分)如图,已知直三棱柱111ABC A B C -中,AB BC =,E 为AC 中点. (Ⅰ)求证:1//AB 平面1BC E ; (Ⅱ)求证:平面1BC E ⊥平面11ACC A .20.(本小题满分13分)如图,,A B 是椭圆22:13x W y +=的两个顶点,过点A 的直线与椭圆W 交于另一点C .(Ⅰ)当AC 的斜率为31时,求线段AC 的长; (Ⅱ)设D 是AC 的中点,且以AB 为直径的圆恰过点D . 求直线AC 的斜率.AB CEA 1B 1C 121.(本小题满分13分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,且3PD PC BC ===,CD =E 为PB 中点.(Ⅰ)求三棱锥P BCD -的体积; (Ⅱ)求证:CE ⊥平面PBD ;(Ⅲ)设M 是线段CD 上一点,且满足2DM MC =,试在线段PB 上确定一点N ,使得//MN 平面PAD ,并求出BN 的长.22.(本小题满分14分)已知,A B 是抛物线24y x =上的不同两点,弦AB (不平行于y 轴)的垂直平分线与x 轴交于点P .(Ⅰ)若直线AB 经过抛物线24y x =的焦点,求,A B 两点的纵坐标之积;(Ⅱ)若点P 的坐标为(4,0),弦AB 的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.PABCDE M·北京市西城区2014 — 2015学年度第一学期期末试卷高二数学(文科)参考答案及评分标准2015.1一、选择题:本大题共10小题,每小题4分,共40分.1.B2.B3.D4. C5. D6.D7.A8. A9.C 10. C 二、填空题:本大题共6小题,每小题5分,共30分.11. 1x =- 12. 2,20x x x ∀∈-≥R 13.8314. 22(2)(2)4x y -+-= 15. 2 16. 1三、解答题:本大题共6小题,共80分. 17. (本小题满分13分)(Ⅰ)证明:因为四边形ABCD 为矩形,所以//AD BC . ………………2分 又因为BC ⊂平面BCE ,AD ⊄平面BCE , ………………4分所以//AD 平面BCE . ………………5分 (Ⅱ)证明:因为AD ⊥平面ABE ,BC AD //,所以BC ⊥平面ABE ,则BC AE ⊥ . ………………7分 又因为90AEB ∠=o,所以AE BE ⊥. ………………9分 所以AE ⊥平面BCE . ………………11分 又BF ⊂平面BCE , ………………12分 所以AE BF ⊥. ………………13分18. (本小题满分13分)解:(Ⅰ)因为(0,0)A ,(3,1)C ,所以直线AC 的斜率为13k =, ………………2分 又AC 边上的高所在的直线经过点(4,0)B ,且与AC 垂直,所以所求直线斜率为3-, ………………4分 所求方程为03(4)y x -=--,即 3120x y +-=. ………………5分(Ⅱ)设△ABC 外接圆的方程为220x y Dx Ey F ++++=, ………………6分AEBCDF因为点(0,0)A ,(4,0)B ,(3,1)C 在圆M 上,则2220,440,3130.F D F D E F =⎧⎪++=⎨⎪++++=⎩………………9分解得4D =-,2E =,0F =. ………………12分所以△ABC ∆外接圆的方程为22420x y x y +-+=. ………………13分19. (本小题满分14分)(Ⅰ)证明:连结1CB ,与1BC 交于点F ,连结EF . ………………1分因为三棱柱111ABC A B C -是直三棱柱, 所以四边形11BCC B 是矩形,点F 是1B C 中点. ………………3分又E 为AC 中点,所以1//EF AB . …………5分 因为EF ⊂平面1BC E ,1AB ⊄平面1BC E ,所以1//AB 平面1BC E . ………………7分 (Ⅱ)证明:因为AB BC =,E 为AC 中点,所以BE AC ⊥. ………………9分 又因为三棱柱111ABC A B C -是直三棱柱,所以1CC ⊥底面ABC ,从而1CC BE ⊥. ………………11分 所以BE ⊥平面11ACC A . ………………12分 因为BE ⊂平面1BC E , ………………13分 所以平面1BC E ⊥平面11ACC A . ………………14分20. (本小题满分13分) 解:(Ⅰ)由已知(0,1)A -,直线AC 的方程为13y x 1=-. ………………1分 由221,313y x x y 1⎧=-⎪⎪⎨⎪+=⎪⎩ 得2230x x -=, ………………2分 解得32x =或0x =(舍), ………………3分所以点C 的坐标为31(,)22-, ………………4分所以2AC ==. ………………5分ABCEA 1B 1C 1F(Ⅱ)依题意,设直线AC 的方程为1y kx =-,0k ≠.由221,13y kx x y =-⎧⎪⎨+=⎪⎩ 得22(31)60k x kx +-=, ………………7分 解得2631kx k =+或0x =(舍), ………………8分所以点C 的横坐标为2631kk +,设点D 的坐标为00(,)x y ,则02331kx k =+, ………………9分0021131y kx k -=-=+, ………………10分因为以AB 为直径的圆恰过点D ,所以1OD =,即222231()()13131k k k -+=++. ………………11分 整理得23k 1=, ………………12分所以k =. ………………13分21. (本小题满分13分)(Ⅰ)解:由已知3PD PC ==,CD =△PCD 是等腰直角三角形,90CPD ∠=o. ………………1分因为平面PCD ⊥平面ABCD ,底面ABCD 为矩形,BC CD ⊥,所以BC ⊥平面PCD . ………………2分 三棱锥P BCD -的体积1119()3322PCD V S BC PC PD BC ∆=⨯=⨯⨯⨯=. ………………4分(Ⅱ)证明:由(Ⅰ)知,BC ⊥平面PCD , 所以BC ⊥PD .因为90CPD ∠=o,即PD PC ⊥,所以PD ⊥平面PBC . ………………5分 因为CE ⊂平面PBC ,所以PD CE ⊥. ………………6分 因为PC BC =,E 为PB 中点,所以CE PB ⊥, ………………7分 因为PD PB P =I ,所以CE ⊥平面PBD . ………………8分(Ⅲ)解:在面PCD 上,过M 作//MF PD 交PC 于F .在面PBC 上,过F 作//FN BC 交PB 于N ,连结MN . ………………9分 因为//MF PD ,MF ⊄平面PAD ,PD ⊂平面PAD ,PABCDE M· FN所以//MF 平面PAD .因为////FN BC AD ,FN ⊄平面PAD ,AD ⊂平面PAD , 所以//FN 平面PAD .所以平面//MNF 平面PAD . ………………10分 从而,//MN 平面PAD . ………………11分由所作可知,△CMF 为等腰直角三角形,CM =所以1CF =,2PF =. ………………12分△PNF ,△PBC 均为等腰直角三角形,所以PN =PB =所以N 为线段PB 上靠近点B 的三等分点,且BN =. ………………13分22. (本小题满分14分)解:(Ⅰ)抛物线24y x =的焦点为(1,0)F , ………………1分依题意,设直线AB 方程为(1)y k x =-,其中0k ≠. ………………2分将24y x =代入直线方程,得2(1)4y y k =-, 整理得2440ky y k --=, ………………4分 所以4A B y y =-,即,A B 两点的纵坐标之积为4-. ………………5分 (Ⅱ)设:(0)AB y kx b k =+≠,11(,)A x y ,22(,)B x y .由24,y x y kx b⎧=⎨=+⎩ 得222(24)0k x kb x b +-+=. ………………6分 由222241616416160k b kb k b kb ∆=+--=->,得1kb <. ………………7分所以12242kb x x k -+=,2122b x x k=. ………………8分设AB 中点坐标为00(,)x y ,则120222x x kb x k +-==, 002y kx b k=+=, ………………9分 所以弦AB 的垂直平分线方程为2212()kby x k k k--=--, 令0y =,得222kbx k -=+. ………………10分由已知2224kb k-+=,即222k kb =-. ………………11分AB ======……………12分当2112k =,即k =AB 的最大值为6. ………………13分当k =b =;当k =b =均符合题意.所以弦AB 的长度存在最大值,其最大值为6. ………………14分。
【数学】北京市西城区(普通校)2014-2015学年高一上学期期末考试
北京市西城区2014 — 2015学年度第一学期期末试卷高一数学试卷满分:150分 考试时间:120分钟 A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知(0,2π)α∈,且sin 0<α,cos 0>α,则角α的取值范围是( ) (A )π(0,)2(B )π(,π)2(C )3π(π,)2(D )3π(,2π)22.已知向量(2,8)=a ,(4,2)=-b .若2=-c a b ,则向量=c ( ) (A )(0,18)(B )(8,14)(C )(12,12)(D )(4,20)-3.已知角α的终边经过点(3,4)P -,那么sin =α( ) (A )35(B )45-(C )34(D )34-4.在△ABC 中,D 是BC 的中点,则AD =( )(A )1()2AB AC + (B )1()2AB AC - (C )1()2AB BC +(D )1()2AB BC -5.函数2(sin cos )y x x =-的最小正周期为( ) (A )2π(B )3π2(C )π(D )π26.如果函数cos()y x =+ϕ的一个零点是3π,那么ϕ可以是( ) (A )6π (B )6π-(C )3π(D )3π-7.如图,在矩形ABCD 中,2AB =,BC =, E 是CD 的中点,那么AE DC ⋅=( )(A )4(B )2(C (D )18.当[0,π]x ∈时,函数()cos f x x x =的值域是( )(A )[2,1]-(B )[1,2]-(C )[1,1]-(D )[-9.为得到函数πcos()6y x =+的图象,只需将函数sin y x =的图象( ) (A )向左平移π3个单位 (B )向右平移π3个单位(C )向左平移2π3个单位 (D )向右平移2π3个单位10.已知a ,b 为单位向量,且m ⋅=a b ,则||t +a b ()t ∈R 的最小值为( )(A (B )1(C )||m(D二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11.若向量(1,2)=a 与向量(,1)=-λb 共线,则实数=λ_____. 12.已知α是第二象限的角,且5sin 13α=,则cos =α_____. 13.若(,)22ππ∈-θ,且tan 1>θ,则θ的取值范围是_____. 14.已知向量(1,3)=a ,(2,1)=-b ,(1,1)=c .若(,)=∈R c a +b λμλμ,则=λμ_____. 15.函数2()sin sin cos f x x x x =+⋅的最大值是_____. 16.关于函数()sin(2)()6f x x x π=-∈R ,给出下列三个结论:① 对于任意的x ∈R ,都有2()cos(2)3f x x π=-; ② 对于任意的x ∈R ,都有()()22f x f x ππ+=-;③ 对于任意的x ∈R ,都有()()33f x f x ππ-=+.其中,全部正确结论的序号是_____.三、解答题:本大题共3小题,共36分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知tan 2=-α,其中(,)2π∈πα. (Ⅰ)求πtan()4-α的值; (Ⅱ)求sin 2α的值. 18.(本小题满分14分)已知向量(cos ,sin )=ααa,1(2=-b ,其中α是锐角. (Ⅰ)当30︒=α时,求||+a b ; (Ⅱ)证明:向量+a b 与-a b 垂直; (Ⅲ)若向量a 与b 夹角为60︒,求角α. 19.(本小题满分10分)已知函数()sin cos f x a x b x =+,其中a ∈Z ,b ∈Z .设集合{|()0}A x f x ==,{|(())0}B x f f x ==,且A B =.(Ⅰ)证明:0b =; (Ⅱ)求a 的最大值.B 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分. 把答案填在题中横线上. 1.已知集合{,}A a b =,则满足{,,}AB a b c =的不同集合B 的个数是_____.2.若幂函数y x =α的图象过点(4,2),则=α_____.3.函数2lg ,0,()4,0,x x f x x x >⎧=⎨-<⎩的零点是_____.4.设()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是减函数.若()(2)f m f >,则实数m 的取值范围是_____.5.已知函数()f x 的定义域为D .若对于任意的1x D ∈,存在唯一的2x D ∈,使得M =成立,则称函数()f x 在D 上的几何平均数为M .已知函数()31([0,1])g x x x =+∈,则()g x 在区间[0,1]上的几何平均数为_____.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数()(2)()f x x x a =-+,其中a ∈R . (Ⅰ)若()f x 的图象关于直线1x =对称,求a 的值; (Ⅱ)求()f x 在区间[0,1]上的最小值. 7.(本小题满分10分)已知函数()23x x f x a b =⋅+⋅,其中,a b 为常数. (Ⅰ)若0ab >,判断()f x 的单调性,并加以证明; (Ⅱ)若0ab <,解不等式:(1)()f x f x +>. 8.(本小题满分10分)定义在R 上的函数()f x 同时满足下列两个条件: ① 对任意x ∈R ,有(2)()2f x f x +≥+;② 对任意x ∈R ,有(3)()3f x f x +≤+.设()()g x f x x =-.(Ⅰ)证明:(3)()(2)g x g x g x +≤≤+; (Ⅱ)若(4)5f =,求(2014)f 的值.北京市西城区2014 — 2015学年度第一学期期末试卷高一数学参考答案及评分标准 2015.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.D ;2.B ;3.B ;4.A ;5.C ;6.A ;7.B ;8.A ;9.C ; 10.D. 二、填空题:本大题共6小题,每小题4分,共24分.11.12-; 12.1213-; 13. (,)42ππ; 14.32;15.12+; 16. ① ② ③. 注:16题,少解不给分.三、解答题:本大题共3小题,共36分. 17.(本小题满分12分) (Ⅰ)解:因为 tan 2=-α,所以 πtan tanπ4tan()π41tan tan 4--=+⋅ααα 【 3分】 3=. 【 6分】(Ⅱ)解:由π(,π)2∈α,tan 2α=-, 得sin α=, 【 8分】cos α=. 【10分】 所以 4sin 22sin cos 5==-ααα. 【12分】 18.(本小题满分14分) (Ⅰ)解:当30︒=α时,1)2=a , 【 1分】所以+a b =, 【 2分】所以||+=a b = 【 4分】(Ⅱ)证明:由向量(cos sin )αα=,a,1(,22=-b ,得 1(cos ,sin 22+=-+ααa b ,1(cos ,sin 22-=+-ααa b , 由 π(0,)2∈α,得向量+a b ,-a b 均为非零向量. 【 5分】因为 222213()()||||(sin cos )()044+⋅-=-=+-+=ααa b a b a b , 【 7分】所以向量+a b 与-a b 垂直. 【 8分】 (Ⅲ)解:因为||||1==a b ,且向量a 与b 夹角为60︒,所以 1||||cos 602︒⋅=⋅=a b a b . 【10分】所以 11cos 22-=αα, 即 π1sin()62-=α. 【12分】 因为 π02<<α, 所以 πππ663-<-<α, 【13分】 所以 ππ66-=α, 即3π=α. 【14分】 19.(本小题满分10分) (Ⅰ)证明:显然集合A ≠∅.设 0x A ∈,则0()0f x =. 【 1分】 因为 A B =,所以 0x B ∈, 即 0(())0f f x =,所以 (0)0f =, 【 3分】 所以 0b =. 【 4分】 (Ⅱ)解:由(Ⅰ)得()sin f x a x =,a ∈Z .① 当0a =时,显然满足A B =. 【 5分】 ② 当0a ≠时,此时{|sin 0}A x a x ==;{|sin(sin )0}B x a a x ==, 即{|sin ,}B x a x k k ==π∈Z . 【 6分】 因为 A B =,所以对于任意x ∈R ,必有sin a x k ≠π (k ∈Z ,且0)k ≠成立. 【 7分】 所以对于任意x ∈R ,sin k x a π≠,所以 1k aπ>, 【 8分】 即 ||||a k <⋅π,其中k ∈Z ,且0k ≠.所以 ||a <π, 【 9分】 所以整数a 的最大值是3. 【10分】B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1. 4;2.12; 3. 2-,1; 4. (2,2)-; 5. 2. 注:3题,少解得2分,有错解不给分. 二、解答题:本大题共3小题,共30分. 6.(本小题满分10分)(Ⅰ)解法一:因为2()(2)()(2)2f x x x a x a x a =-+=+--, 所以,()f x 的图象的对称轴方程为22ax -=. 【 2分】 由212a-=,得0a =. 【 4分】 解法二:因为函数()f x 的图象关于直线1x =对称,所以必有(0)(2)f f =成立, 【 2分】 所以 20a -=, 得0a =. 【 4分】 (Ⅱ)解:函数()f x 的图象的对称轴方程为22ax -=. ① 当202a-≤,即 2a ≥时, 因为()f x 在区间(0,1)上单调递增,所以()f x 在区间[0,1]上的最小值为(0)2f a =-. 【 6分】 ② 当2012a-<<,即 02a <<时,因为()f x 在区间2(0,)2a -上单调递减,在区间2(,1)2a-上单调递增, 所以()f x 在区间[0,1]上的最小值为222()()22a a f -+=-. 【 8分】 ③ 当212a-≥,即 0a ≤时, 因为()f x 在区间(0,1)上单调递减,所以()f x 在区间[0,1]上的最小值为(1)(1)f a =-+. 【10分】 7.(本小题满分10分)(Ⅰ)解:当0,0a b >>时,()f x 在R 上是增函数;当0,0a b <<时,()f x 在R 上是减函数; 【 1分】 证明如下:当0,0a b >>时,任取12,x x ∈R ,且12x x <,则210x x x ∆=->, 则 212121()()(22)(33)x x x x y f x f x a b ∆=-=-+-.因为 122122,0(22)0x x x x a a <>⇒->;又122133,0(33)0x x x xb b <>⇒->, 所以 21()()0y f x f x ∆=->,所以,当0,0a b >>时,()f x 在R 上是增函数.当0,0a b <<时,同理可得,()f x 在R 上是减函数. 【 5分】 (Ⅱ)解:由(1)()2230x xf x f x a b +-=⋅+⋅>,得 32()2xb a >-. (*) 【 6分】① 当0,0a b <>时,(*)式化为3()22xa b->, 解得32log ()2ax b>-.【 8分】 ② 当0,0a b ><时,(*)式化为3()22xa b-<, 解得32log ()2ax b<-.【10分】 8.(本小题满分10分)(Ⅰ)证明:因为()()g x f x x =-,所以(2)(2)2g x f x x +=+--,(3)(3)3g x f x x +=+--.由条件①,②可得(2)(2)2()22()()g x f x x f x x f x x g x +=+--≥+--=-=;③ 【 2分】 (3)(3)3()33()()g x f x x f x x f x x g x +=+--≤+--=-=. ④ 【 4分】 所以(3)()(2)g x g x g x +≤≤+. (Ⅱ)解:由③得 (2)()g x g x +≥,所以(6)(4)(2)()g x g x g x g x +≥+≥+≥. 【 6分】由④得 (3)()g x g x +≤,所以(6)(3)()g x g x g x +≤+≤. 【 7分】 所以必有(6)()g x g x +=,即()g x 是以6为周期的周期函数. 【 8分】 所以(2014)(33564)(4)(4)41g g g f =⨯+==-=. 【 9分】 所以(2014)(2014)20142015f g =+=. 【10分】。
2014—2015学年度北京市西城区第一学期数学期中试题(附答案)
APNMO北京市西城区2014—2015学年度第一学期数学期中试题(附答案)第Ⅰ卷(选择题 共30分)一、选择题(本题共30分,每小题3分) 1.下列因式分解结果正确的是( )。
A .3221055(2)a a a a a +=+B .249(43)(43)x x x -=+- C .2221(1)a a a --=- D .256(6)(1)x x x x --=-+2.如图,OP 平分∠MON,PA⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为( )。
A. 1 B.2 C.3 D. 43.下列分式中,无论x 取何值,分式总有意义的是( )。
A .211x +B .21x x +C .311x - D .5x x -4.若分式2aa b+中的a 、b 的值同时扩大到原来的10倍,则分式的值( )。
A .是原来的20倍 B .是原来的10倍C .是原来的110D .不变 5.在数学活动课上,小明提出这样一个问题:如右图, ∠B =∠C = 90︒,E 是BC 的中点, DE 平分∠ADC, ∠CED = 35︒, 则∠EAB 的度数是 ( )。
A .65︒B .55︒C .45︒D .35︒6.某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x 棵,那么下面所列方程中,正确的是( )。
A .x x 45050600=- B .x x 45050600=+ C .50450600+=x x D .50450600-=x x 7.若分式112--x x 的值为0,则x 的值为( )。
A .1B .-1C .0D . 1±8.如果一个等腰三角形的两边长分别是4cm 和8cm ,那么此三角形的周长是( )。
A. 12cm B.16cm C. 20cm D. 16cm 或20cm 9.如图,在△ABC 中,BD 、CE 分别是AC 、AB 边上的中线,分别延长BD 、CE 到F 、G ,使DF =BD ,EG =CE ,则下列结论:①GA =AF ,②GA ∥BC ,③AF ∥BC ,④G 、A 、F 在一条直线上, ⑤A 是线段GF 的中点,其中正确的有( )。
北京市西城区2013-2014学年高一上学期期末考试数学试题(普通校试题
北京市西城区2013 — 2014学年度第一学期期末试卷高一数学 2014.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.若sin 0<α,且cos 0>α,则角α是( ) (A )第一象限的角 (B )第二象限的角 (C )第三象限的角(D )第四象限的角2.已知向量1(1,0)=e ,2(0,1)=e ,那么122|+=|e e ( )(A )1(B (C )2(D 3.若角α的终边经过点(1,2)P -,则tan =α( )(A (B ) (C )2- (D )12-4.已知正方形ABCD 的边长为1,则AB AC ⋅=( )(A (B )1(C (D )25.在平面直角坐标系xOy 中,函数2sin()6y x π=-的图象( ) (A )关于直线6x π=对称 (B )关于直线6x π=-对称 (C )关于点(,0)6π对称(D )关于点(,0)6π-对称 6.已知非零向量,OA OB 不共线,且13BM BA =,则向量OM =( ) (A )1233OA OB +(B )2133OA OB +(C )1233OA OB -(D )1433OA OB -7.已知函数1()cos 22f x x x =+,则()12f π=( )(A )2(B )2(C )1(D 8.设a ,b 是两个非零向量,且+=-a b a b ,则a 与b 夹角的大小为( ) (A )120︒(B )90︒(C )60︒(D )30︒9.已知函数()sin cos f x x x =ωω在区间[,]63ππ-上单调递增,则正数ω的最大值是( ) (A )32(B )43(C )34 (D )2310.已知函数()cos(sin )f x x =,则下列结论中正确的是( ) (A )()f x 的定义域是[1,1]- (B )()f x 的值域是[1,1]- (C )()f x 是奇函数(D )()f x 是周期为π的函数二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. sin()6π-=______.12. 若sin =α,且(0,)∈πα,则α=______. 13. 已知向量(1,3)=a ,(2,)k =-b .若向量a 与b 共线,则实数k =_____. 14. 若tan 2=α,且32π∈(π,)α,则sin()2π+=α______. 15. 已知向量(cos ,sin )αα=a ,(cos ,sin )ββ=b .若π,3〈〉=a b ,则c o s ()-=αβ_____. 16. 定义在R 上的非常值函数()f x 同时满足下述两个条件:① 对于任意的x ∈R ,都有2()()3f x f x π+=; ② 对于任意的x ∈R ,都有()()66f x f x ππ-=+.则其解析式可以是()f x =_____.(写出一个满足条件的解析式即可)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知3tan 4=-α. (Ⅰ)求πtan()4-α的值;(Ⅱ)求2sin 3cos 3sin 2cos --αααα的值.18.(本小题满分12分)已知函数2()sin 22cos2f x x x x =⋅. (Ⅰ)求()f x 的最小正周期;(Ⅱ)若[,]84x ππ∈,求()f x 的最大值与最小值.19.(本小题满分12分)如图,正六边形ABCDEF 的边长为1.,M N 分别是,BC DE 上的动点,且满足BM DN =.(Ⅰ)若,M N 分别是,BC DE 的中点,求AM AN ⋅的值; (Ⅱ)求AM AN ⋅的取值范围.B 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 1. 已知集合2{|430}A x x x =-+>,{|02}B x x =<≤,那么A B =_____.2. 已知2log 3a =,32b=,21log 3c =.将,,a b c 按从小到大排列为_____. 3. 若函数2()2f x x x =-在区间(,)a +∞上是增函数,则a 的取值范围是_____. 4. 函数12()|21|xf x x =--的零点个数为_____.5. 给定数集A .若对于任意,a b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合.给出如下四个结论:① 集合{4,2,0,2,4}A =--为闭集合; ② 集合{|3,}A n n k k ==∈Z 为闭集合; ③ 若集合12,A A 为闭集合,则12AA 为闭集合;④ 若集合12,A A 为闭集合,且1A R Ø,2A R Ø,则存在c ∈R ,使得12()c A A ∉.其中,全部正确结论的序号是_____.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数()log (2)1a f x x =+-,其中1a >.(Ⅰ)若()f x 在[0,1]上的最大值与最小值互为相反数,求a 的值; (Ⅱ)若()f x 的图象不经过第二象限,求a 的取值范围.7.(本小题满分10分)已知函数()|2|f x x x =-. (Ⅰ)解不等式()3f x <;(Ⅱ)设0a >,求()f x 在区间[0,]a 上的最大值.8.(本小题满分10分)设函数()f x ,()g x 的定义域分别为f g D D ,,且f g D D Ø.若对于任意f x D ∈,都有()()g x f x =,则称()g x 为()f x 在g D 上的一个延拓函数.给定2() 1 (01)f x x x =-<≤.(Ⅰ)若()h x 是()f x 在[1,1]-上的延拓函数,且()h x 为奇函数,求()h x 的解析式; (Ⅱ)设()g x 为()f x 在(0,)+∞上的任意一个延拓函数,且()g x y x=是(0,)+∞上的单调函数.(ⅰ)判断函数()g x y x=在(0,1]上的单调性,并加以证明; (ⅱ)设0s >,0t >,证明:()()()g s t g s g t +>+.北京市西城区2013 —2014学年度第一学期期末试卷一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.D;3.C;4.B;5.C;6.A;7.A;8.B;9.C;10.D.二、填空题:本大题共6小题,每小题4分,共24分.11.12-;12.3π,或32π;13.6-;14.5-;15.12;16.sin3x等(答案不唯一).注:12题,得出一个正确的结论得2分.三、解答题:本大题共3小题,共36分.17.(Ⅰ)解:因为3 tan4=-α,所以πtan tanπ4tan()π41tan tan4--=+⋅ααα【3分】7=-. 【6分】(Ⅱ)解:因为3 tan4=-α,所以2sin3cos2tan33sin2cos3tan2--=--αααααα【9分】1817=. 【12分】18.(Ⅰ)解:1cos4()2cos22xf x x x-=⋅1cos4422xx-=+【2分】1sin(4)62xπ=-+.【4分】因为242Tππ==,所以()f x的最小正周期是2π.【6分】(Ⅱ)解:由(Ⅰ)得,1 ()sin(4)62f x xπ=-+.因为84x ππ≤≤, 所以 54366x πππ≤-≤, 【 8分】 所以 1sin(4)126x π≤-≤, 【 9分】所以 131sin(4)622x π≤-+≤. 【10分】所以,当6x π=时,()f x 取得最大值32;当4x π=时,()f x 取得最小值1.【12分】19.(本小题满分12分)(Ⅰ)解:如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系. 【 1分】因为ABCDEF 是边长为1的正六边形,且,M N 分别是,BC DE 的中点,所以 5(,)44M ,1(2N , 【 3分】所以 5311848AM AN ⋅=+=. 【 4分】 (Ⅱ)解:设BM DN t ==,则[0,1]t ∈.【 5分】所以(1,)22t M +,(1N t -. 【 7分】 所以3(1)(1)22t AM AN t t ⋅=+⋅-+2112t t ++=-213(1)22t =--+ 【10分】 当0t =时,AM AN ⋅取得最小值1; 【11分】 当1t =时,AM AN ⋅取得最大值32. 【12分】一、填空题:本大题共5小题,每小题4分,共20分.1.{|01}x x <<;2.c b a <<;3. [1,)+∞;4. 2;5.②④. 注:5题,选出一个正确的序号得2分,有错选不给分.6.(Ⅰ)解:函数()log (2)1a f x x =+-的定义域是(2,)-+∞. 【 1分】因为 1a >,所以 ()log (2)1a f x x =+-是[0,1]上的增函数. 【 2分】 所以 ()f x 在[0,1]上的最大值是(1)log 31a f =-;最小值是(0)log 21a f =-.【 4分】 依题意,得 log 31(log 21)a a -=--, 【 5分】 解得a =【 6分】 (Ⅱ)解:由(Ⅰ)知,()log (2)1a f x x =+-是(2,)-+∞上的增函数. 【 7分】在()f x 的解析式中,令0x =,得(0)log 21a f =-, 所以,()f x 的图象与y 轴交于点(0,log 21)a -. 【 8分】 依题意,得(0)log 210a f =-≤, 【 9分】 解得 2a ≥. 【10分】 7.(Ⅰ)解:原不等式可化为22230x x x ≥⎧⎨--<⎩,,(1) 或22230.x x x <⎧⎨-+>⎩,(2) 【 1分】解不等式组(1),得 23x ≤<;解不等式组(2),得2x <. 【 3分】 所以原不等式的解集为{|3}x x <. 【 4分】(Ⅱ)解:222,2,()|2|2, 2.x x x f x x x x x x ⎧-≥⎪=-=⎨-+<⎪⎩ 【 5分】① 当01a <<时,()f x 是[0,]a 上的增函数,此时()f x 在[0,]a 上的最大值是2()2f a a a =-+. 【 6分】② 当12a ≤≤时,()f x 在[0,1]上是增函数,在[1,]a 上是减函数,此时()f x 在[0,]a 上的最大值是(1)1f =. 【 7分】③ 当2a >时,令()(1)(2)10f a f a a -=-->,解得1a >. 所以,当21a <≤此时()(1)f a f ≤,()f x 在[0,]a 上的最大值是(1)1f =;当1a >此时()(1)f a f >,()f x 在[0,]a 上的最大值是2()2f a a a =-.【 9分】记()f x 在区间[0,]a 上的最大值为()g a ,所以222,01,()1,112,1a a a g a a a a a ⎧-+<<⎪⎪=≤≤+⎨⎪->+⎪⎩ 【10分】8.(Ⅰ)解:当0x =时,由()h x 为奇函数,得(0)0h =. 【 1分】任取[10)x ∈-,,则(01]x -∈,, 由()h x 为奇函数,得22()()[()1]1h x h x x x =--=---=-+, 【 2分】所以()h x 的解析式为221,01,()0,0,1,10.x x h x x x x ⎧-<≤⎪==⎨⎪-+-≤<⎩【 3分】(Ⅱ)解:(ⅰ)函数()g x y x=是(0,1]上的增函数. 【 4分】证明如下:因为()g x 为()f x 在(0,)+∞上的一个延拓函数,所以当(01]x ∈,时,2()()1g x f x x ==-. 记()()1()g x f x k x x x x x===-,其中(0,1]x ∈. 任取12,(0,1]x x ∈,且12x x <,则210x x x ∆=->, 因为211221212112()(1)11()()()0x x x x y k x k x x x x x x x -+∆=-=---=>, 所以函数()g x y x=是(0,1]上的增函数. 【 6分】 (ⅱ)由()g x y x = 是(0,)+∞上的单调函数,且(0,1]x ∈时,()g x y x =是增函数,从而得到函数()g x y x= 是(0,)+∞上的增函数. 【 7分】因为 0s >,0t >, 所以 s t s +>,s t t +>, 所以()()g s t g s s t s+>+, 即 ()()()s g s t s t g s ⋅+>+⋅. 【 8分】 同理可得:()()()t g s t s t g t ⋅+>+⋅.将上述两个不等式相加,并除以s t +,即得 ()()()g s t g s g t +>+. 【10分】。
北京市西城区2014-2015学年度第一学期期末试卷高三数学(文科)
北京市西城区2014-2015学年度第一学期期末试卷高三数学(文科)一、选择题(共8小题;共40分)1. 设集合,,则集合 ______A. B. C. D.2. 设命题,,则为______A. ,B. ,C. ,D. ,3. 在锐角中,角,,所对的边分别为,,,若,,则______A. B. C. D.4. 执行如图所示的程序框图,输出的值为______A. B. C. D.5. 设函数的定义域为,则“ ”是“函数为奇函数”的______A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00 至17:00,设甲在当天13:00至 18:00 之间任何时间去银行的可能性相同,那么甲去银行且恰好能办理业务的概率是______A. B. C. D.7. 设抛物线的焦点为,过的直线与相交于,两点,记点到直线的距离为,则有______A. B.C. D.8. 如图,在空间四边形中,两条对角线,互相垂直,且长度分别为和,平行于这两条对角线的平面与边,,,分别相交于点,,,,记四边形的面积为,设,则______A. 函数的值域为B. 函数的最大值为C. 函数在上单调递减D. 函数满足二、填空题(共6小题;共30分)9. 复数,则 ______10. 设平面向量,满足,,,那么,的夹角 ______.11. 一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为______.12. 设,为双曲线:的左、右焦点,且直线为双曲线的一条渐近线,点为上一点,如果,那么双曲线的方程为______;离心率为______.13. 某小学教师准备购买一些签字笔和铅笔盒作为奖品,已知签字笔每支元,铅笔盒每个元,花费总额不能超过元,为了便于学生选择,购买签字笔和铅笔盒的个数均不能少于个,那么该教师有______种不同的购买奖品方案.14. 设函数(1)如果,那么实数 ______;(2)如果函数有且仅有两个零点,那么实数的取值范围是______.三、解答题(共6小题;共78分)15. 已知函数, .(1)求函数 的最小正周期; (2)判断函数 在区间 上是否为增函数?并说明理由.16. 已知数列 满足 ,且其前 项和 .(1)求 的值和数列 的通项公式;(2)设数列 为等比数列,公比为 ,且其前 项和 满足 ,求 的取值范围.17. 如图,在四棱柱 中, 底面 , . ,且, .点 在棱 上,平面 与棱 相交于点 .(1)求证: 平面 ;(2)求证: 平面 ;(3)写出三棱锥 体积的取值范围.(结论不要求证明)18. 最近,张师傅和李师傅要将家中闲置资金进行投资理财.现有两种投资方案,且年后投资盈亏的情况如下:(i )投资股市:投资结果获利不赔不赚亏损概率(ii )购买基金:投资结果获利不赔不赚亏损概率(1)当时,求 的值;(2)已知"购买基金"亏损的概率比"投资股市"亏损的概率小,求 的取值范围;(3)已知张师傅和李师傅两人都选中了"购买基金"来进行投资,假设三种投资结果出现的可能性相同,求一年后他们两人中至少有一人获利的概率.19. 已知椭圆的右焦点为 ,右顶点为 ,离心率为 ,点 满足条件.(1)求 的值;(2)设过点 的直线 与椭圆 相交于 , 两点,记 和 的面积分别为 , ,若 ,求直线 的方程.20. 对于函数,,如果它们的图象有公共点,且在点处的切线相同,则称函数和在点处相切,称点为这两个函数的切点.设函数(),.(1)当,时,判断函数和是否相切?并说明理由;(2)已知,,且函数和相切,求切点的坐标;(3)设,点的坐标为,问是否存在符合条件的函数和,使得它们在点处相切?若点的坐标为呢?(结论不要求证明)答案第一部分1. B2. B3. A4. C5. B6. D7. A8. D第二部分9.10.11.12. ;13.14. 或;第三部分15. (1)因为所以函数的最小正周期.(2)结论:函数在区间上是增函数.理由如下:由,解得所以函数的单调递增区间为,.当时,知在区间上单调递增.所以函数在区间上是增函数.16. (1)由题意,得,,因为,,所以.解得.所以.当时,由,得.验证知时,符合上式,所以,.(2)由(1),得.因为,所以,解得.又因为,所以的取值范围是.17. (1)因为是棱柱,所以平面 平面.又因为平面平面,平面平面,所以.又平面,平面.所以 平面.(2)在四边形中,因为,,且,,,所以,.所以,所以,即,因为平面,平面.所以.因为在四棱柱中,,所以.又因为平面,,所以平面.(3)三棱锥的体积的取值范围是.18. (1)因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立,所以.又因为,所以.(2)由“购买基金”亏损的概率比“投资股市”亏损的概率小,得,因为,所以,解得.又因为,,所以.所以.(3)记事件为“一年后张师傅和李师傅两人中至少有一人获利”.用,,分别表示一年后张师傅购买基金“获利”、“不赔不赚”、“亏损”,用,,分别表示一年后李师傅购买基金“获利”、“不赔不赚”、“亏损”,则一年后张师傅和李师傅购买基金,所有可能的投资结果有种,它们是,,,,,,,,,所以事件包含的结果有种,它们是,,,,,因此一年后张师傅和李师傅两人中至少有一人获利的概率.19. (1)因为椭圆的方程为,所以,,,则,,.因为.所以.(2)若直线的斜率不存在,则有,不合题意.若直线的斜率存在,设直线的方程为,,.由得.可知恒成立,且,,因为和的面积分别为,.所以,即,所以,,则即,即,解得.所以直线的方程为或.20. (1)结论:当,时,函数和不相切.理由如下:由条件知,由,得又因为,,所以当时,,,所以对于任意的,,当,时,函数和不相切.(2)若,则,.设切点坐标为,其中.由题意,得由,得,代入,得因为,且.所以.设函数,,则.令,解得或(舍).当变化时,与的变化情况如下表所示.所以当时,取到最大值,且当时,.因此,当且仅当时.所以方程有且仅有一解.于是.因此切点的坐标为.(3)当点的坐标为时,存在符合条件的函数和,使得它们在点处相切;当点的坐标为时,不存在符合条件的函数和,使得它们在点处相切.。
北京市西城区2014-2015学年度高三第一学期期末试数学文
北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(文科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1,2{}A -=,2{|}B x x x =>,则集合AB =( )(A ){1,0,1}- (B ){1,2}- (C ){0,1,2} (D ){1,1,2}- 2.设命题p :2log 0,2x x x ∀>>,则p ⌝为( ) (A )2log 0,2x x x ∀>< (B )2log 0,2x x x ∃>≤ (C )2log 0,2x x x ∃>< (D )2log 0,2x x x ∃>≥3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π=(B )6A π= (C)sin A = (D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )75.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6. 某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是( ) (A )13 (B )34 (C )58 (D )457. 设抛物线2:4W y x =的焦点为F ,过F 的直线与W 相交于A ,B 两点,记点F 到直线l :1x =-的距离为d ,则有( )(A )2||d AB ≥ (B )2||d AB = (C )2||d AB ≤ (D )2||d AB <8. 如图,在空间四边形ABCD 中,两条对角线,AC BD 互相垂直,且长度分别为4和6,平行于这两条对角线的平面与边,,,AB BC CD DA 分别相交于点,,,E F G H ,记四边形EFGH 的面积为y ,设BEx AB=,则( )(A )函数()y f x =的值域为(0,4] (B )函数()y f x =的最大值为8(C )函数()y f x =在2(0,)3上单调递减(D )函数()y f x =满足()(1)f x f x =-第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数i1iz =+,则||z =______.10.设平面向量,a b 满足||3=a ,||2=b ,3⋅=-a b ,那么,a b 的夹角θ=____.11.一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为_____.12.设12,F F 为双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点,且直线2y x =为双曲线C 的一条渐近线,点P 为C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为_____.13. 某小学教师准备购买一些签字笔和铅笔盒作为奖品,已知签字笔每支5元,铅笔盒每个6元,花费总额不能超过50元. 为了便于学生选择,购买签字笔和铅笔盒的个数均不能少于3个,那么该教师有_______种不同的购买奖品方案.侧(左)视图正(主)视图俯视图A BE CD GH F14. 设函数3||, 1,()log , 1.x a x f x x x -⎧=⎨>⎩≤(1)如果(1)3f =,那么实数a =___;(2)如果函数()2y f x =-有且仅有两个零点,那么实数a 的取值范围是___.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()12sin ()4f x x =--,x ∈R .(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)判断函数()f x 在区间ππ[,]66-上是否为增函数?并说明理由.16.(本小题满分13分)已知数列{}n a 满足25a =,且其前n 项和2n S pn n =-. (Ⅰ)求p 的值和数列{}n a 的通项公式;(Ⅱ)设数列{}n b 为等比数列,公比为p ,且其前n 项和n T 满足55T S <,求1b 的取值范围.17.(本小题满分14分)如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面A B C D ,90BAD ∠=,BC AD //,且122A A AD BC ===,1AB =. 点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)求证:1A F ∥平面1BCE ; (Ⅱ)求证: AC ⊥平面11CDD C ;(Ⅲ)写出三棱锥11B A EF -体积的取值范围. (结论不要求证明)B CA 1 D 1 DA B 1C 1E F最近,张师傅和李师傅要将家中闲置资金进行投资理财. 现有两种投资方案,且一年后投资盈亏的情况如下:(1) 投资股市:(2) 购买基金:(Ⅰ)当2p =时,求q 的值; (Ⅱ)已知“购买基金”亏损的概率比“投资股市”亏损的概率小,求p 的取值范围;(Ⅲ)已知张师傅和李师傅两人都选择了“购买基金”来进行投资,假设三种投资结果出现的可能性相同,求一年后他们两人中至少有一人获利的概率.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)Pmm >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,若122S S =,求直线l 的方程.对于函数(),()f x g x ,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数()f x 和()g x 在点P 处相切,称点P 为这两个函数的切点. 设函数2()(0)f x ax bx a =-≠,()ln g x x =.(Ⅰ)当1a =-,0b =时, 判断函数()f x 和()g x 是否相切?并说明理由; (Ⅱ)已知a b =,0a >,且函数()f x 和()g x 相切,求切点P 的坐标;(Ⅲ)设0a >,点P 的坐标为1(,1)e-,问是否存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切?若点P 的坐标为2(e ,2)呢?(结论不要求证明)北京市西城区2014 — 2015学年度第一学期期末高三数学(文科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.B 3.A 4.C 5.B 6.D 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9.2 10.2π3 11. 12.221416x y -=13.9 14.2-或4 (1,3]- 注:第12,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为2π()12sin ()4f x x =--πcos 2()4x =- ……………… 3分sin 2x =, ……………… 5分所以函数()f x 的最小正周期2ππ2T ==.……………… 7分 (Ⅱ)解:结论:函数()f x 在区间ππ[,]66-上是增函数. ……………… 9分理由如下:由ππ2π22π22k x k -+≤≤, 解得ππππ44k x k -+≤≤,所以函数()f x 的单调递增区间为ππ[π,π]44k k -+,()k ∈Z .……………… 12分 当0=k 时,知)(x f 在区间ππ[,]44-上单调递增, 所以函数()f x 在区间ππ[,]66-上是增函数. ……………… 13分16.(本小题满分13分)(Ⅰ)解:由题意,得11S p =-,242S p =-,因为 25a =,212S a a =+, 所以 24215S p p =-=-+,解得 2p =. ……………… 3分所以 22n S n n =-.当2n ≥时,由1n n n a S S -=-, ……………… 5分得 22(2)[2(1)(1)]43n a n n n n n =-----=-. ……………… 7分 验证知1n =时,1a 符合上式,所以43n a n =-,*n ∈N . ……………… 8分(Ⅱ)解:由(Ⅰ),得11(12)(21)12n n n b T b -==--. ……………… 10分 因为 55T S <,所以 521(21)255b -<⨯-,解得 14531b <. ……………… 12分 又因为10b ≠,所以1b 的取值范围是45(,0)(0,)31-∞. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D . 又因为平面ABCD 平面1A ECF EC =,平面1111A BC D 平面11A ECF A F =,B CA 1 D 1DA B 1C 1E F所以 1A F ∥CE . …………………3分 又 1A F ⊄平面1BCE ,CE ⊂平面1BCE , 所以 1A F ∥平面1BCE . …………………6分 (Ⅱ)证明:在四边形ABCD 中,因为 90BAD ∠=,BC AD //,且BC AD 2=,2AD =,1AB =, 所以 222112AC =+=,222112CD =+=. 所以 222AC CD AD +=,所以 90ACD ∠=,即AC CD ⊥. …………………7分 因为 1A A ⊥平面ABCD AC ⊂,平面ABCD , 所以 1A A AC ⊥.因为在四棱柱1111D C B A ABCD -中,11//A A C C ,所以 1C C AC ⊥. …………………9分 又因为 1,CD C C ⊂平面11CDD C ,1CDC C C =,所以 AC ⊥平面11CDD C . …………………11分(Ⅲ)解:三棱锥11B A EF -的体积的取值范围是12[,]33. …………………14分18.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种 且三种投资结果相互独立,所以 p +13+q =1. ……………… 2分又因为 12p =, 所以 q =61. ……………… 3分(Ⅱ)解:由“购买基金”亏损的概率比“投资股市”亏损的概率小, 得 38q <, ……………… 4分因为 p +13+q =1,所以 2338q p =-<,解得 724p >. ……………… 7分 又因为 113p q ++=,0q ≥, 所以 23p ≤. 所以72243p ≤<. ……………… 8分 (Ⅲ)解:记事件A 为 “一年后张师傅和李师傅两人中至少有一人获利”, ………… 9分用a ,b ,c 分别表示一年后张师傅购买基金“获利”、“不赔不赚”、“亏损”,用x ,y ,z 分别表示一年后李师傅购买基金“获利”、“不赔不赚”、“亏损”,则一年后张师傅和李师傅购买基金,所有可能的投资结果有339⨯=种, 它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)b y ,(,)b z ,(,)c x ,(,)c y ,(,)c z , ……………10分所以事件A 的结果有5种,它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)c x .…………… 11分 因此这一年后张师傅和李师傅两人中至少有一人获利的概率5()9P A =. …………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c , ………………2分则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为 ||21||42FA AP m ==-,所以 8m =. ………………5分 (Ⅱ)解:若直线l 的斜率不存在,则有 21S S =,不合题意. ………………6分若直线l 的斜率存在,设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N .由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分因为PMF ∆和PNF ∆的面积分别为111||||2S PF y =⋅,221||||2S PF y =⋅,所以2||||212121=-==y yy y S S . ……………… 9分 即 212y y -=.所以 221y y y -=+,2212221)(22y y y y y +-=-=, ……………… 11分则 22121)]2()2([2)2()2(-+--=-⋅-x k x k x k x k , 即 2212121)4(24)(2-+-=++-x x x x x x ,即 2222222)43416(2434162344816-+-=++⋅-+-k k k k k k , 解得 25±=k . ……………… 13分所以直线l 的方程为 )2(25-=x y 或 )2(25--=x y . ……………… 14分20.(本小题满分13分)(Ⅰ)解:结论:当1a =-,0b =时,函数()f x 和()g x 不相切. …………………1分 理由如下:由条件知2()f x x =-, 由()ln g x x =,得0x >,又因为 ()2f x x '=-,1()g x x'=, …………………2分 所以当0x >时,()20f x x '=-<,1()0g x x '=>,所以对于任意的0x >,()()f x g x ''≠.当1a =-,0b =时,函数()f x 和()g x 不相切. …………………3分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ①·11· 12as a s -=, ② …………………4分 由②,得 1(21)a s s =-, 代入①,得 1ln 21s s s -=-. (*) …………………5分 因为 10(21)a s s =>-,且0s >, 所以 12s >. 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………6分 令()0F x '= ,解得1x =或14x =(舍). …………………7分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………8分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <. 因此,当且仅当1x =时()0F x =.所以方程(*)有且仅有一解1s =.于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………9分 (Ⅲ)解:当点P 的坐标为1(,1)e-时,存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切; …………………11分当点P 的坐标为2(e ,2)时,不存在符合条件的函数()f x 和()g x ,使得它们在点P 处相 切. …………………13分。
2014-2015学年北京市西城区七年级上学期期末考试数学试题(含答案)
5.若 x 1 ( y 2)2 0 ,则 (xy)2015 的值为( ) 2
A. 1
B. 1
C. 2015
D. 2015
6.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何
体是( )
A
B
C
D
7.如图,将一个直角三角板 AOB 的顶点 O 放在直线 CD 上,
点
M,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是
A.点 M
B.点 N
C.点 P
D.点 Q
10.小明制作了一个正方体包装盒,他在这个正方体包装盒的上面设计
了一个“ ”标志,并在正方体的每个表面都画了黑色粗线,如右图
所示.在下列图形中,是这个正方体包装盒的表面展开图的是
A
B
C
D
二、填空题(本题共 20 分,第 11~14 题每小题 3 分,第 15~18 题每小题 2 分)
解:
22. 8 (12) 1 (2)3 (8) 3
59
5
解:
四、先化简,再求值(本题 5 分) 23. 2(3ab2 a3b) 3(2ab2 a3b) ,其中 a 1 , b 4 .
2 解:
五、解下列方程或方程组(本题共 10 分,每小题 5 分)
24. 4x 1 1 3x 1 .
1.1883 年,德国数学家引入位于一条线段上的一些点的集合,他的做法如下:
取一条长度为 1 的线段,将它三等分,去掉中间一段,余下两条线段,达到第 1 阶段;
将剩下的两条线段再分别三等分,各去掉中间一段,余下四条线段,达到第 2 阶段;
再将剩四条线段,分别三等分,分别去掉中间一段,余下八条线段,达到第 3 阶段;
北京市西城区2014-2015学年度高二上学期期末考试数学试题(理科)
北京市西城区2014 —2015学年度第一学期期末试卷高二数学2015.1(理科)试卷满分:150分考试时间:120分钟一、选择题:本大题共10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项是符合要求的.角角60角二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上.11. 命题“2,20x x x ∃∈-<R ”的否定是_______________.12. 空间向量(1,1,2)=--a ,(1,2,1)=--b ,(,,2)x y =-n ,且//n b . 则⋅a n =_______.13. 右图是一个四棱锥的三视图,则该四棱锥的 体积为_______. 14. 已知F 为双曲线22:13xC y -=的一个焦点, 则点F 到双曲线C 的一条渐近线的距离为_______.15. 由直线y x =上一点向圆22(4)1x y -+=引切线,则切线长的最小值为 . 16 .已知点(3,0)M 和点(3,0)N -,直线PM ,PN 的斜率乘积为常数a (0a ≠),设点P 的轨迹为C .给出以下几个命题:①存在非零常数a ,使C 上所有点到两点(4,0),(4,0)-距离之和为定值; ②存在非零常数a ,使C 上所有点到两点(0,4),(0,4)-距离之和为定值; ③不存在非零常数a ,使C 上所有点到两点(4,0),(4,0)-距离差的绝对值为定值; ④不存在非零常数a ,使C 上所有点到两点(0,4),(0,4)-距离差的绝对值为定值. 其中正确的命题是________.(填出所有正确命题的序号)三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分13分)如图,四边形ABCD 为矩形,AD ⊥平面ABE ,90AEB ∠=o , F 为CE 上的点.(Ⅰ)求证://AD 平面BCE ; (Ⅱ)求证:AE ⊥BF .正(主)视图 侧(左)视图俯视图AEBCDF18.(本小题满分13分)已知三个点(0,0)A ,(4,0)B ,(3,1)C ,圆M 为△ABC 的外接圆. (Ⅰ)求圆M 的方程;(Ⅱ)设直线1y kx =-与圆M 交于,P Q两点,且PQ =k 的值.19.(本小题满分14分)在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 为直角梯形,//AD BC ,AD AB ⊥,2PA AD ==,1AB BC ==,Q 为PD 中点.(Ⅰ)求证:PD BQ ⊥;(Ⅱ)求直线BQ 与平面PCD 所成角的正弦值.20.(本小题满分14分)已知椭圆22:14x W y +=,直线l 过点(0,2)-与椭圆W 交于两点,A B ,O 为坐标原点.(Ⅰ)设C 为AB 的中点,当直线l 的斜率为32时,求线段OC 的长; (Ⅱ)当△OAB 面积等于1时,求直线l 的斜率.PAB CDQ21.(本小题满分13分)在如图所示的几何体中,四边形ABCD 是矩形,24AB BC ==,四边形CDEF 是等腰梯形,//EF DC ,2EF =,且平面ABCD ⊥平面CDEF ,AF CF ⊥. (Ⅰ)过BD 与AF 平行的平面与CF 交于点G . 求证:G 为CF 的中点; (Ⅱ)求二面角B AF D --的余弦值.22.(本小题满分13分)如图,曲线E 是由抛物线弧1E :x y 42=(203x ≤≤)与椭圆弧2E :12222=+by a x (a x ≤≤32)所围成的封闭曲线,且1E 与2E 有相同的焦点.(Ⅰ)求椭圆弧2E 的方程;(Ⅱ)设过点(1,0)F 的直线与曲线E 交于,A B 两点,1||r FA =,2||r FB =,且α=∠AFx (0α≤≤π),试用αcos 表示1r ;并求21r r的取值范围.ABCDE F G北京市西城区2014 — 2015学年度第一学期期末试卷高二数学(理科)参考答案及评分标准2015.1一、选择题:本大题共10小题,每小题4分,共40分.1.A2.D3.C4. D5. A6. B7.A8. C9.C 10. A 二、填空题:本大题共6小题,每小题5分,共30分.11. 2,20x x x ∀∈-≥R 12. 2- 13.38 14. 116. ②④ 注:16题,仅选出②或④得3分;错选得0分. 三、解答题:本大题共6小题,共80分. 17. (本小题满分13分)(Ⅰ)证明:因为四边形ABCD 为矩形,所以//AD BC . ………………2分 又因为BC ⊂平面BCE ,AD ⊄平面BCE ,………………4分所以//AD 平面BCE . ………………5分 (Ⅱ)证明:因为AD ⊥平面ABE ,BC AD //,所以BC ⊥平面ABE ,则BC AE ⊥ . ………………7分 又因为90AEB ∠=o,所以AE BE ⊥. ………………9分 所以AE ⊥平面BCE . ………………11分 又BF ⊂平面BCE ,所以AE BF ⊥. ………………13分 18. (本小题满分13分)(Ⅰ)设圆M 的方程为 220x y Dx Ey F ++++=, ………………1分因为点(0,0)A ,(4,0)B ,(3,1)C 在圆M 上,则2220,440,3130.F D F D E F =⎧⎪++=⎨⎪++++=⎩………………4分解得4D =-,2E =,0F =. ………………6分所以ABC ∆外接圆的方程为22420x y x y +-+=. ………………7分 (Ⅱ)由(Ⅰ)圆M 的圆心为(2,1)-AEBCDF又PQ =所以圆M 的圆心到直线1y kx =-的距离为2.………………9分 所以=………………11分 解得215k =. k =. ………………13分19. (本小题满分14分)(Ⅰ)证明:因为PA ⊥平面ABCD ,所以PA AB ⊥PA AD ⊥,又AD AB ⊥,如图,建立以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴的空间直角坐标系. ………………2分由已知,2PA AD ==,1AB BC ==,//AD BC所以,(0,0,0)A ,(1,0,0)B ,(1,1,0)C ,(0,2,0)D ,(0,0,2)P ………………4分又Q 为PD 中点,所以(0,1,1)Q . 所以(0,2,2)PD =-,(1,1,1)BQ =-, 所以0PD BQ ⋅=, ………………6分 所以PD BQ ⊥. ………………7分 (注:若第一问不用空间向量,则第一问4分) (Ⅱ)解:设平面PCD 的法向量为(,,)a b c =n ,则0PD ⋅=n ,0CD ⋅=n .又(1,1,0)CD =-,所以220b c a b -=⎧⎨-+=⎩, ………………9分令1c =,得1a b ==,所以(1,1,1)=n . ………………11分因此cos ,3BQ BQ BQ ⋅1〈〉===n n n, ………………13分 所以直线BQ 与平面PCD 所成角的正弦值为31. ………………14分 20.(本小题满分14分)解:(Ⅰ)当直线l 的斜率为32时,直线l 的方程为22y x 3=-. ………………1分 由222,214y x x y 3⎧=-⎪⎪⎨⎪+=⎪⎩ 得251260x x -+=, ………………2分 设11(,)A x y ,22(,)B x y ,00(,)C x y .则12125x x +=, ………………3分所以点C 的坐标065x =,0031225y x =-=-, ………………4分所以OC ==. ………………5分 (Ⅱ)设直线:2l y kx =-,由221,42x y y kx ⎧+=⎪⎨⎪=-⎩得22(14)16120k x kx +-+=, ………………6分 所以222(16)48(14)16(43)k k k ∆=-+=- ………………7分1221614k x x k +=+,1221214x x k =+. ………………8分AB ===. ………………10分原点O 到直线l的距离d =. ………………11分所以△OAB 面积为1122AB d ==. 因为△OAB 面积等于1,1=, ………………12分 解得k=, ………………13分带入判别式检验,符合题意,所以2k =±. ………………14分21. (本小题满分13分)(Ⅰ)证明:连接AC 交BD 于点H ,ABCD 为矩形,则H 为AC 中点,连接GH . ………………1分因为//AF 平面BDG ,平面ACF平面BDG GH =, ………………2分所以//AF HG . ………………3分 所以G 为CF 的中点. ………………4分 (Ⅱ)解:在平面CDEF 上作FO CD ⊥,垂足为O ,由于平面CDEF 为等腰梯形,所以1OC =, 因为且平面ABCD ⊥平面DCFE ,所以FO ⊥平面ABCD , ………………5分 在平面ABCD 中,作OM CD ⊥,交AB 于M , 所以FO OM ⊥,如图,以O 为原点建立空间直角坐标系O xyz -. ………………6分 则(2,3,0)A -,(2,1,0)B ,(0,1,0)C ,(0,3,0)D -. 设(0,0,)F h (0h >). 因为AF CF ⊥,所以0AF CF ⋅=,即(2,3,)(0,1,)0h h -⋅-=,所以2030h -+=,解得h =………………7分 设平面ABF 的法向量为(,,)a b c =n ,而(AF =-,(0,4,0)AB =,由0,0AF AB ⎧⋅=⎪⎨⋅=⎪⎩n n得230,40.a b b ⎧-++=⎪⎨=⎪⎩令2c =,解得a =0b =.所以(3,0,2)=n . (9)分由于(2,0,0)AD =-,(0,1CF =-, 所以0AD CF ⋅=,CF AD ⊥, 又CF AF ⊥,所以CF ⊥平面ADF ,所以CF 为平面ADF 的法向量, ………………11分cos ,CF 〈〉===n . ………………12分 由图知,二面角的平面角为钝角,所以二面角B AF D --的余弦值为7-. ………………13分22. (本小题满分13分)解:(Ⅰ)抛物线弧1E :x y 42=的焦点为(1,0),且23x =时,283y =, 所以2(3为椭圆上一点,又椭圆的焦点为(1,0),-(1,0), ………………2分 所以752433a ==+=. ………………3分 所以2a =,2213b a =-=, ………………4分 所以椭圆2E 的方程为22143x y +=(223x ≤≤). ………………5分 (Ⅱ)曲线E 由两部分曲线1E 和2E 组成,所以按A 在抛物线弧1E 或椭圆弧2E 上加以分类,由曲线E 的对称性,不妨设A 在x 轴上方(或x 轴上).当32=x 时,362±=y ,此时35=r ,51cos -=α; 当1cos 51≤≤-α时,A 在椭圆弧2E 上,由题设知)sin ,cos 1(11ααr r A +,将A 点坐标代入13422=+y x 得,012)sin (4)cos 1(32121=-++ααr r , 整理得09cos 6)cos 4(1212=-+-ααr r ,解得αcos 231+=r 或2cos 31-=αr (舍去). ………………6分当51cos 1-≤≤-α时,A 在抛物线弧1E 上,由抛物线定义可得αcos 211r r +=,所以αcos 121-=r , ………………7分综上,当51c o s 1-≤≤-α时,αcos 121-=r ;当1c o s 51≤≤-α时,αcos 231+=r .相应地,22(1cos(),sin())B r r αα++π+π,当1cos 15α≤≤时,B 在抛物线弧1E 上, 所以222cos()r r α=++π,221cos r α=+, ………………8分当11cos 5α-≤≤时,B 在椭圆弧2E 上,根据图形的对称性,232cos r α=-. ………………9分所以,当51cos 1-≤≤-α时A 在抛物线弧1E 上,B 在椭圆弧2E 上,]911,1[)cos 111(323cos 2cos 1221∈-+=-⋅-=αααr r ; ………………10分 当1cos 51≤≤α时A 在椭圆弧2E 上,B 在抛物线弧1E 上,]1,119[)cos 211(232cos 1cos 2321∈+-=+⋅+=αααr r ; ………………11分 当51cos 51<<-α时A 、B 在椭圆弧2E 上,)911,119(cos 2cos 23cos 2cos 2321∈+-=-⋅+=ααααr r ; ………………12分 综上,21r r 的取值范围是]911,119[. ………………13分。
北京市西城区2014-2015学年度第一学期期末高一数学(普通校试题)
北京市西城区2014 — 2015学年度第一学期期末试卷高一数学 2015.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知(0,2π)α∈,且sin 0<α,cos 0>α,则角α的取值范围是( ) (A )π(0,)2(B )π(,π)2(C )3π(π,)2(D )3π(,2π)22.已知向量(2,8)=a ,(4,2)=-b .若2=-c a b ,则向量=c ( ) (A )(0,18)(B )(8,14)(C )(12,12)(D )(4,20)-3.已知角α的终边经过点(3,4)P -,那么sin =α( ) (A )35(B )45-(C )34(D )34-4.在△ABC 中,D 是BC 的中点,则AD =( )(A )1()2AB AC + (B )1()2AB AC - (C )1()2AB BC +(D )1()2AB BC -5.函数2(sin cos )y x x =-的最小正周期为( ) (A )2π(B )3π2(C )π(D )π26.如果函数cos()y x =+ϕ的一个零点是3π,那么ϕ可以是( ) (A )6π (B )6π-(C )3π(D )3π-7.如图,在矩形ABCD 中,2AB =,BC , E 是CD 的中点,那么AE DC ⋅=( )(A )4(B )2(C (D )18.当[0,π]x ∈时,函数()cos f x x x =的值域是( )(A )[2,1]-(B )[1,2]-(C )[1,1]-(D )[-9.为得到函数πcos()6y x =+的图象,只需将函数sin y x =的图象( ) (A )向左平移π3个单位 (B )向右平移π3个单位(C )向左平移2π3个单位 (D )向右平移2π3个单位10.已知a ,b 为单位向量,且m ⋅=a b ,则||t +a b ()t ∈R 的最小值为( )(A (B )1(C )||m(D二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11.若向量(1,2)=a 与向量(,1)=-λb 共线,则实数=λ_____. 12.已知α是第二象限的角,且5sin 13α=,则cos =α_____. 13.若(,)22ππ∈-θ,且tan 1>θ,则θ的取值范围是_____. 14.已知向量(1,3)=a ,(2,1)=-b ,(1,1)=c .若(,)=∈R c a +b λμλμ,则=λμ_____. 15.函数2()sin sin cos f x x x x =+⋅的最大值是_____.16.关于函数()sin(2)()6f x x x π=-∈R ,给出下列三个结论:① 对于任意的x ∈R ,都有2()cos(2)3f x x π=-; ② 对于任意的x ∈R ,都有()()22f x f x ππ+=-;③ 对于任意的x ∈R ,都有()()33f x f x ππ-=+.其中,全部正确结论的序号是_____.三、解答题:本大题共3小题,共36分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知tan 2=-α,其中(,)2π∈πα. (Ⅰ)求πtan()4-α的值; (Ⅱ)求sin 2α的值.18.(本小题满分14分)已知向量(cos ,sin )=ααa ,1(2=-b ,其中α是锐角. (Ⅰ)当30︒=α时,求||+a b ; (Ⅱ)证明:向量+a b 与-a b 垂直; (Ⅲ)若向量a 与b 夹角为60︒,求角α.19.(本小题满分10分)已知函数()sin cos f x a x b x =+,其中a ∈Z ,b ∈Z .设集合{|()0}A x f x ==,{|(())0}B x f f x ==,且A B =.(Ⅰ)证明:0b =; (Ⅱ)求a 的最大值.B 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分. 把答案填在题中横线上. 1.已知集合{,}A a b =,则满足{,,}AB a b c =的不同集合B 的个数是_____.2.若幂函数y x =α的图象过点(4,2),则=α_____.3.函数2lg ,0,()4,0,x x f x x x >⎧=⎨-<⎩的零点是_____.4.设()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是减函数.若()(2)f m f >,则 实数m 的取值范围是_____.5.已知函数()f x 的定义域为D .若对于任意的1x D ∈,存在唯一的2x D ∈,使得M =成立,则称函数()f x 在D 上的几何平均数为M .已知函数()31([0,1])g x x x =+∈,则()g x 在区间[0,1]上的几何平均数为_____.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.6.(本小题满分10分)已知函数()(2)()f x x x a =-+,其中a ∈R . (Ⅰ)若()f x 的图象关于直线1x =对称,求a 的值; (Ⅱ)求()f x 在区间[0,1]上的最小值. 7.(本小题满分10分)已知函数()23xxf x a b =⋅+⋅,其中,a b 为常数. (Ⅰ)若0ab >,判断()f x 的单调性,并加以证明; (Ⅱ)若0ab <,解不等式:(1)()f x f x +>.8.(本小题满分10分)定义在R 上的函数()f x 同时满足下列两个条件: ① 对任意x ∈R ,有(2)()2f x f x +≥+;② 对任意x ∈R ,有(3)()3f x f x +≤+.设()()g x f x x =-.(Ⅰ)证明:(3)()(2)g x g x g x +≤≤+; (Ⅱ)若(4)5f =,求(2014)f 的值.北京市西城区2014 — 2015学年度第一学期期末试卷高一数学参考答案及评分标准 2015.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.D ;2.B ;3.B ;4.A ;5.C ;6.A ;7.B ;8.A ;9.C ; 10.D . 二、填空题:本大题共6小题,每小题4分,共24分.11.12-; 12.1213-; 13. (,)42ππ; 14.32; 1516. ① ② ③. 注:16题,少解不给分.三、解答题:本大题共3小题,共36分. 17.(本小题满分12分) (Ⅰ)解:因为 tan 2=-α,所以 πtan tanπ4tan()π41tan tan 4--=+⋅ααα 【 3分】 3=. 【 6分】(Ⅱ)解:由π(,π)2∈α,tan 2α=-, 得sin α=, 【 8分】cos α=. 【10分】所以 4sin 22sin cos 5==-ααα. 【12分】18.(本小题满分14分) (Ⅰ)解:当30︒=α时,1)2=a , 【 1分】 所以+a b =, 【 2分】 所以||+=a b = 【 4分】(Ⅱ)证明:由向量(cos sin )αα=,a ,1(,22=-b , 得 1(cos ,sin )22+=-+ααa b ,1(cos ,sin )22-=+-ααa b , 由 π(0,)2∈α,得向量+a b ,-a b 均为非零向量. 【 5分】 因为 222213()()||||(sin cos )()044+⋅-=-=+-+=ααa b a b a b , 【 7分】 所以向量+a b 与-a b 垂直. 【 8分】 (Ⅲ)解:因为||||1==a b ,且向量a 与b 夹角为60︒, 所以 1||||cos 602︒⋅=⋅=a b a b . 【10分】所以 11cos sin 222-+=αα, 即 π1sin()62-=α. 【12分】 因为 π02<<α, 所以 πππ663-<-<α, 【13分】 所以 ππ66-=α, 即3π=α. 【14分】19.(本小题满分10分) (Ⅰ)证明:显然集合A ≠∅.设 0x A ∈,则0()0f x =. 【 1分】 因为 A B =,所以 0x B ∈, 即 0(())0f f x =,所以 (0)0f =, 【 3分】 所以 0b =. 【 4分】 (Ⅱ)解:由(Ⅰ)得()sin f x a x =,a ∈Z .① 当0a =时,显然满足A B =. 【 5分】 ② 当0a ≠时,此时{|sin 0}A x a x ==;{|sin(sin )0}B x a a x ==, 即{|sin ,}B x a x k k ==π∈Z . 【 6分】因为 A B =,所以对于任意x ∈R ,必有sin a x k ≠π (k ∈Z ,且0)k ≠成立. 【 7分】所以对于任意x ∈R ,sin k x a π≠,所以 1k aπ>, 【 8分】 即 ||||a k <⋅π,其中k ∈Z ,且0k ≠.所以 ||a <π, 【 9分】 所以整数a 的最大值是3. 【10分】B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1. 4;2.12; 3. 2-,1; 4. (2,2)-; 5. 2. 注:3题,少解得2分,有错解不给分. 二、解答题:本大题共3小题,共30分. 6.(本小题满分10分)(Ⅰ)解法一:因为2()(2)()(2)2f x x x a x a x a =-+=+--, 所以,()f x 的图象的对称轴方程为22ax -=. 【 2分】 由212a-=,得0a =. 【 4分】 解法二:因为函数()f x 的图象关于直线1x =对称,所以必有(0)(2)f f =成立, 【 2分】 所以 20a -=, 得0a =. 【 4分】 (Ⅱ)解:函数()f x 的图象的对称轴方程为22ax -=. ① 当202a-≤,即 2a ≥时, 因为()f x 在区间(0,1)上单调递增,所以()f x 在区间[0,1]上的最小值为(0)2f a =-. 【 6分】② 当2012a-<<,即 02a <<时, 因为()f x 在区间2(0,)2a -上单调递减,在区间2(,1)2a-上单调递增, 所以()f x 在区间[0,1]上的最小值为222()()22a a f -+=-. 【 8分】 ③ 当212a-≥,即 0a ≤时, 因为()f x 在区间(0,1)上单调递减,所以()f x 在区间[0,1]上的最小值为(1)(1)f a =-+. 【10分】7.(本小题满分10分)(Ⅰ)解:当0,0a b >>时,()f x 在R 上是增函数;当0,0a b <<时,()f x 在R 上是减函数; 【 1分】 证明如下:当0,0a b >>时,任取12,x x ∈R ,且12x x <,则210x x x ∆=->, 则 212121()()(22)(33)x x x xy f x f x a b ∆=-=-+-.因为 122122,0(22)0x x x x a a <>⇒->;又122133,0(33)0x x x xb b <>⇒->, 所以 21()()0y f x f x ∆=->,所以,当0,0a b >>时,()f x 在R 上是增函数.当0,0a b <<时,同理可得,()f x 在R 上是减函数. 【 5分】 (Ⅱ)解:由(1)()2230x x f x f x a b +-=⋅+⋅>,得 32()2xb a >-. (*) 【 6分】 ① 当0,0a b <>时,(*)式化为3()22xa b->, 解得32log ()2ax b>-. 【 8分】 ② 当0,0a b ><时,(*)式化为3()22xab-<, 解得32log ()2ax b<-. 【10分】8.(本小题满分10分)(Ⅰ)证明:因为()()g x f x x =-,所以(2)(2)2g x f x x +=+--,(3)(3)3g x f x x +=+--.由条件①,②可得(2)(2)2()22()()g x f x x f x x f x x g x +=+--≥+--=-=; ③ 【 2分】 (3)(3)3()33()()g x f x x f x x f x x g x +=+--≤+--=-=. ④ 【 4分】 所以(3)()(2)g x g x g x +≤≤+. (Ⅱ)解:由③得 (2)()g x g x +≥,所以(6)(4)(2)()g x g x g x g x +≥+≥+≥. 【 6分】由④得 (3)()g x g x +≤,所以(6)(3)()g x g x g x +≤+≤. 【 7分】 所以必有(6)()g x g x +=,即()g x 是以6为周期的周期函数. 【 8分】 所以(2014)(33564)(4)(4)41g g g f =⨯+==-=. 【 9分】 所以(2014)(2014)20142015f g =+=. 【10分】。
北京市西城区2015届高三第一学期期末数学(文)试题(含答案)(word版)
北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(文科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1,2{}A -=,2{|}B x x x =>,则集合A B =( )(A ){1,0,1}-(B ){1,2}-(C ){0,1,2}(D ){1,1,2}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :2log 0,2x x x ∀>>,则p ⌝为( ) (A )2log 0,2x x x ∀>< (B )2log 0,2x x x ∃>≤ (C )2log 0,2x x x ∃>< (D )2log 0,2x x x ∃>≥5.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6. 某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天 13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是( )(A )13 (B )34 (C )58 (D )458. 如图,在空间四边形ABCD 中,两条对角线,AC BD 互相垂直,且长度分别为4和6,平行于这两条对角线的平面与边,,,AB BC CD DA 分别相交于点,,,E F G H ,记四边形EFGH 的面积为y ,设BEx AB=,则( ) (A )函数()y f x =的值域为(0,4] (B )函数()y f x =的最大值为8(C )函数()y f x =在2(0,)3上单调递减(D )函数()y f x =满足()(1)f x f x =-7. 设抛物线2:4W y x =的焦点为F ,过F 的直线与W 相交于A ,B 两点,记点F 到直线l :1x =-的距离为d ,则有( )(A )2||d AB ≥ (B )2||d AB = (C )2||d AB ≤ (D )2||d AB <A BE CD GH F。
北京市西城区2013—2014学年度高一年级第一学期期末数学试卷(普通校试题)
北京市西城区2013 — 2014学年度第一学期期末试卷高一数学 2014.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.若sin 0<α,且cos 0>α,则角α是( ) (A )第一象限的角 (B )第二象限的角 (C )第三象限的角(D )第四象限的角2.已知向量1(1,0)=e ,2(0,1)=e ,那么122|+=|e e ( )(A )1(B(C )2(D3.若角α的终边经过点(1,2)P -,则tan =α( )(A (B ) (C )2- (D )12-4.已知正方形ABCD 的边长为1,则AB AC ⋅=( )(A )2(B )1(C(D )25.在平面直角坐标系xOy 中,函数2sin()6y x π=-的图象( ) (A )关于直线6x π=对称 (B )关于直线6x π=-对称 (C )关于点(,0)6π对称 (D )关于点(,0)6π-对称6.已知非零向量,OA OB 不共线,且13BM BA =,则向量OM = ( )(A )1233OA OB + (B )2133OA OB +(C )1233OA OB - (D )1433OA OB -7.已知函数1()cos 22f x x x =+,则()12f π=( )(A )2 (B )2(C )1(D8.设a ,b 是两个非零向量,且+=-a b a b ,则a 与b 夹角的大小为( ) (A )120︒(B )90︒(C )60︒(D )30︒9.已知函数()sin cos f x x x =ωω在区间[,]63ππ-上单调递增,则正数ω的最大值是( ) (A )32(B )43(C )34 (D )2310.已知函数()cos(sin )f x x =,则下列结论中正确的是( ) (A )()f x 的定义域是[1,1]- (B )()f x 的值域是[1,1]- (C )()f x 是奇函数(D )()f x 是周期为π的函数二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. sin()6π-=______.12. 若sin 2=α,且(0,)∈πα,则α=______. 13. 已知向量(1,3)=a ,(2,)k =-b .若向量a 与b 共线,则实数k =_____. 14. 若tan 2=α,且32π∈(π,)α,则sin()2π+=α______. 15. 已知向量(cos ,sin )αα=a ,(cos ,sin )ββ=b .若π,3〈〉=a b ,则cos()-=αβ_____. 16. 定义在R 上的非常值函数()f x 同时满足下述两个条件:① 对于任意的x ∈R ,都有2()()3f x f x π+=; ② 对于任意的x ∈R ,都有()()66f x f x ππ-=+.则其解析式可以是()f x =_____.(写出一个满足条件的解析式即可)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知3tan 4=-α. (Ⅰ)求πtan()4-α的值; (Ⅱ)求2sin 3cos 3sin 2cos --αααα的值.18.(本小题满分12分)已知函数2()sin 22cos 2f x x x x =⋅. (Ⅰ)求()f x 的最小正周期;(Ⅱ)若[,]84x ππ∈,求()f x 的最大值与最小值.19.(本小题满分12分)如图,正六边形ABCDEF 的边长为1.,M N 分别是,BC DE 上的动点,且满足BM DN = .(Ⅰ)若,M N 分别是,BC DE 的中点,求AM AN ⋅的值; (Ⅱ)求AM AN ⋅的取值范围.B 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 1. 已知集合2{|430}A x x x =-+>,{|02}B x x =<≤,那么A B = _____. 2. 已知2log 3a =,32b=,21log 3c =.将,,a b c 按从小到大排列为_____. 3. 若函数2()2f x x x =-在区间(,)a +∞上是增函数,则a 的取值范围是_____. 4. 函数12()|21|xf x x =--的零点个数为_____.5. 给定数集A .若对于任意,a b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合.给出如下四个结论:① 集合{4,2,0,2,4}A =--为闭集合; ② 集合{|3,}A n n k k ==∈Z 为闭集合; ③ 若集合12,A A 为闭集合,则12A A 为闭集合;④ 若集合12,A A 为闭集合,且1A R Ø,2A R Ø,则存在c ∈R ,使得12()c A A ∉ . 其中,全部正确结论的序号是_____.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数()log (2)1a f x x =+-,其中1a >.(Ⅰ)若()f x 在[0,1]上的最大值与最小值互为相反数,求a 的值; (Ⅱ)若()f x 的图象不经过第二象限,求a 的取值范围.7.(本小题满分10分)已知函数()|2|f x x x =-. (Ⅰ)解不等式()3f x <;(Ⅱ)设0a >,求()f x 在区间[0,]a 上的最大值.8.(本小题满分10分)设函数()f x ,()g x 的定义域分别为f g D D ,,且f g D D Ø.若对于任意f x D ∈,都有()()g x f x =,则称()g x 为()f x 在g D 上的一个延拓函数.给定2() 1 (01)f x x x =-<≤.(Ⅰ)若()h x 是()f x 在[1,1]-上的延拓函数,且()h x 为奇函数,求()h x 的解析式; (Ⅱ)设()g x 为()f x 在(0,)+∞上的任意一个延拓函数,且()g x y x=是(0,)+∞上的单调函数.(ⅰ)判断函数()g x y x=在(0,1]上的单调性,并加以证明; (ⅱ)设0s >,0t >,证明:()()()g s t g s g t +>+.北京市西城区2013 — 2014学年度第一学期期末试卷高一数学参考答案及评分标准 2014.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.D ;2.D ;3.C ;4.B ;5.C ;6.A ;7.A ;8.B ;9.C ; 10.D . 二、填空题:本大题共6小题,每小题4分,共24分.11.12-; 12. 3π,或32π; 13.6-; 14.15.12; 16.sin3x 等(答案不唯一). 注:12题,得出一个正确的结论得2分. 三、解答题:本大题共3小题,共36分. 17.(本小题满分12分) (Ⅰ)解:因为 3tan 4=-α, 所以 πtan tanπ4tan()π41tan tan 4--=+⋅ααα 【 3分】 7=-. 【 6分】(Ⅱ)解:因为3tan 4=-α, 所以2sin 3cos 2tan 33sin 2cos 3tan 2--=--αααααα 【 9分】 1817=. 【12分】18.(本小题满分12分)(Ⅰ)解:1cos 4()2cos 22xf x x x -=⋅1cos 442x x -=+ 【 2分】 1sin(4)62x π=-+. 【 4分】因为 242T ππ==, 所以()f x 的最小正周期是2π. 【 6分】 (Ⅱ)解:由(Ⅰ)得,1()sin(4)62f x x π=-+.因为 84x ππ≤≤,所以 54366x πππ≤-≤, 【 8分】所以 1sin(4)126x π≤-≤, 【 9分】所以 131sin(4)622x π≤-+≤. 【10分】所以,当6x π=时,()f x 取得最大值32;当4x π=时,()f x 取得最小值1.【12分】19.(本小题满分12分)(Ⅰ)解:如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系. 【 1分】因为ABCDEF 是边长为1的正六边形,且,M N 分别是,BC DE 的中点,所以 5(4M ,1(2N , 【 3分】 所以 5311848AM AN ⋅=+= . 【 4分】(Ⅱ)解:设BM DN t ==,则[0,1]t ∈.【 5分】所以(1,)22t M +,(1N t -. 【 7分】 所以3(1)(1)22t AM AN t t ⋅=+⋅-+2112t t ++=-213(1)22t =--+ 【10分】当0t =时,AM AN⋅取得最小值1; 【11分】当1t =时,AM AN ⋅取得最大值32. 【12分】B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1.{|01}x x <<;2.c b a <<;3. [1,)+∞;4. 2;5.②④. 注:5题,选出一个正确的序号得2分,有错选不给分. 二、解答题:本大题共3小题,共30分.6.(本小题满分10分)(Ⅰ)解:函数()log (2)1a f x x =+-的定义域是(2,)-+∞. 【 1分】因为 1a >,所以 ()log (2)1a f x x =+-是[0,1]上的增函数. 【 2分】 所以 ()f x 在[0,1]上的最大值是(1)log 31a f =-;最小值是(0)log 21a f =-. 【 4分】 依题意,得 log 31(log 21)a a -=--, 【 5分】 解得a =. 【 6分】 (Ⅱ)解:由(Ⅰ)知,()log (2)1a f x x =+-是(2,)-+∞上的增函数. 【 7分】在()f x 的解析式中,令0x =,得(0)log 21a f =-, 所以,()f x 的图象与y 轴交于点(0,log 21)a -. 【 8分】 依题意,得(0)log 210a f =-≤, 【 9分】 解得 2a ≥. 【10分】7.(本小题满分10分) (Ⅰ)解:原不等式可化为22230x x x ≥⎧⎨--<⎩,,(1) 或22230.x x x <⎧⎨-+>⎩,(2) 【 1分】解不等式组(1),得 23x ≤<;解不等式组(2),得2x <. 【 3分】 所以原不等式的解集为{|3}x x <. 【 4分】(Ⅱ)解:222,2,()|2|2, 2.x x x f x x x x x x ⎧-≥⎪=-=⎨-+<⎪⎩ 【 5分】① 当01a <<时,()f x 是[0,]a 上的增函数,此时()f x 在[0,]a 上的最大值是2()2f a a a =-+. 【 6分】 ② 当12a ≤≤时,()f x 在[0,1]上是增函数,在[1,]a 上是减函数,此时()f x 在[0,]a 上的最大值是(1)1f =. 【 7分】③ 当2a >时,令()(1)(2)10f a f a a -=-->,解得1a >. 所以,当21a <≤此时()(1)f a f ≤,()f x 在[0,]a 上的最大值是(1)1f =;当1a >时,此时()(1)f a f >,()f x 在[0,]a 上的最大值是2()2f a a a =-.【 9分】 记()f x 在区间[0,]a 上的最大值为()g a ,所以222,01,()1,112,1a a a g a a a a a ⎧-+<<⎪⎪=≤≤⎨⎪->+⎪⎩【10分】8.(本小题满分10分)(Ⅰ)解:当0x =时,由()h x 为奇函数,得(0)0h =. 【 1分】任取[1 0)x ∈-,,则(01]x -∈,,由()h x 为奇函数,得22()()[()1]1h x h x x x =--=---=-+, 【 2分】所以()h x 的解析式为221,01,()0,0,1,10.x x h x x x x ⎧-<≤⎪==⎨⎪-+-≤<⎩【 3分】(Ⅱ)解:(ⅰ)函数()g x y x=是(0,1]上的增函数. 【 4分】 证明如下:因为()g x 为()f x 在(0,)+∞上的一个延拓函数, 所以当(01]x ∈,时,2()()1g x f x x ==-. 记()()1()g x f x k x x x x x===-,其中(0,1]x ∈. 任取12,(0,1]x x ∈,且12x x <,则210x x x ∆=->,因为211221212112()(1)11()()()0x x x x y k x k x x x x x x x -+∆=-=---=>, 所以函数()g x y x=是(0,1]上的增函数. 【 6分】 (ⅱ)由()g x y x = 是(0,)+∞上的单调函数,且(0,1]x ∈时,()g x y x =是增函数,从而得到函数()g x y x= 是(0,)+∞上的增函数. 【 7分】因为 0s >,0t >, 所以 s t s +>,s t t +>, 所以()()g s t g s s t s+>+, 即 ()()()s g s t s t g s ⋅+>+⋅. 【 8分】 同理可得:()()()t g s t s t g t ⋅+>+⋅.将上述两个不等式相加,并除以s t +,即得 ()()()g s t g s g t +>+. 【10分】。
北京市西城区2013-2014学年高一上学期期末考试数学试卷(普通校试卷)Word版含答案
北京市西城区2013 — 2014学年度第一学期期末试卷高一数学 2014.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.若sin 0<α,且cos 0>α,则角α是( ) (A )第一象限的角 (B )第二象限的角 (C )第三象限的角(D )第四象限的角2.已知向量1(1,0)=e ,2(0,1)=e ,那么122|+=|e e ( )(A )1(B(C )2(D3.若角α的终边经过点(1,2)P -,则tan =α( )(A (B ) (C )2- (D )12-4.已知正方形ABCD 的边长为1,则AB AC ⋅=( )(A (B )1(C(D )25.在平面直角坐标系xOy 中,函数2sin()6y x π=-的图象( ) (A )关于直线6x π=对称 (B )关于直线6x π=-对称 (C )关于点(,0)6π对称(D )关于点(,0)6π-对称 6.已知非零向量,OA OB 不共线,且13BM BA =,则向量OM =( ) (A )1233OA OB +(B )2133OA OB +(C )1233OA OB - (D )1433OA OB -7.已知函数1()cos 2f x x x =+,则()12f π=( )(A (B (C )1(D8.设a ,b 是两个非零向量,且+=-a b a b ,则a 与b 夹角的大小为( ) (A )120︒(B )90︒(C )60︒(D )30︒9.已知函数()sin cos f x x x =ωω在区间[,]63ππ-上单调递增,则正数ω的最大值是( ) (A )32(B )43(C )34 (D )2310.已知函数()cos(sin )f x x =,则下列结论中正确的是( ) (A )()f x 的定义域是[1,1]- (B )()f x 的值域是[1,1]- (C )()f x 是奇函数(D )()f x 是周期为π的函数二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. sin()6π-=______.12. 若sin =α,且(0,)∈πα,则α=______. 13. 已知向量(1,3)=a ,(2,)k =-b .若向量a 与b 共线,则实数k =_____. 14. 若tan 2=α,且32π∈(π,)α,则sin()2π+=α______. 15. 已知向量(cos ,sin )αα=a ,(cos ,sin )ββ=b .若π,3〈〉=a b ,则cos()-=αβ_____. 16. 定义在R 上的非常值函数()f x 同时满足下述两个条件:① 对于任意的x ∈R ,都有2()()3f x f x π+=; ② 对于任意的x ∈R ,都有()()66f x f x ππ-=+.则其解析式可以是()f x =_____.(写出一个满足条件的解析式即可)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知3tan 4=-α. (Ⅰ)求πtan()4-α的值; (Ⅱ)求2sin 3cos 3sin 2cos --αααα的值.18.(本小题满分12分)已知函数2()sin 22cos 2f x x x x =+⋅. (Ⅰ)求()f x 的最小正周期;(Ⅱ)若[,]84x ππ∈,求()f x 的最大值与最小值.19.(本小题满分12分)如图,正六边形ABCDEF 的边长为1.,M N 分别是,BC DE 上的动点,且满足BM DN =.(Ⅰ)若,M N 分别是,BC DE 的中点,求AM AN ⋅的值; (Ⅱ)求AM AN ⋅的取值范围.B 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 1. 已知集合2{|430}A x x x =-+>,{|02}B x x =<≤,那么A B =_____.2. 已知2log 3a =,32b =,21log 3c =.将,,a b c 按从小到大排列为_____. 3. 若函数2()2f x x x =-在区间(,)a +∞上是增函数,则a 的取值范围是_____. 4. 函数12()|21|xf x x =--的零点个数为_____.5. 给定数集A .若对于任意,a b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合.给出如下四个结论:① 集合{4,2,0,2,4}A =--为闭集合; ② 集合{|3,}A n n k k ==∈Z 为闭集合; ③ 若集合12,A A 为闭集合,则12A A 为闭集合;④ 若集合12,A A 为闭集合,且1A R Ø,2A R Ø,则存在c ∈R ,使得12()c A A ∉.其中,全部正确结论的序号是_____.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数()log (2)1a f x x =+-,其中1a >.(Ⅰ)若()f x 在[0,1]上的最大值与最小值互为相反数,求a 的值; (Ⅱ)若()f x 的图象不经过第二象限,求a 的取值范围.7.(本小题满分10分)已知函数()|2|f x x x =-. (Ⅰ)解不等式()3f x <;(Ⅱ)设0a >,求()f x 在区间[0,]a 上的最大值.8.(本小题满分10分)设函数()f x ,()g x 的定义域分别为f g D D ,,且f g D D Ø.若对于任意f x D ∈,都有()()g x f x =,则称()g x 为()f x 在g D 上的一个延拓函数.给定2() 1 (01)f x x x =-<≤. (Ⅰ)若()h x 是()f x 在[1,1]-上的延拓函数,且()h x 为奇函数,求()h x 的解析式; (Ⅱ)设()g x 为()f x 在(0,)+∞上的任意一个延拓函数,且()g x y x=是(0,)+∞上的单调函数.(ⅰ)判断函数()g x y x=在(0,1]上的单调性,并加以证明; (ⅱ)设0s >,0t >,证明:()()()g s t g s g t +>+.北京市西城区2013 —2014学年度第一学期期末试卷高一数学参考答案及评分标准2014.1A卷[必修模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.D;3.C;4.B;5.C;6.A;7.A;8.B;9.C;10.D.二、填空题:本大题共6小题,每小题4分,共24分.11.12-;12.3π,或32π;13.6-;14.15.12;16.sin3x等(答案不唯一).注:12题,得出一个正确的结论得2分.三、解答题:本大题共3小题,共36分.17.(本小题满分12分)(Ⅰ)解:因为3 tan4=-α,所以πtan tanπ4tan()π41tan tan4--=+⋅ααα【3分】7=-. 【6分】(Ⅱ)解:因为3 tan4=-α,所以2sin3cos2tan33sin2cos3tan2--=--αααααα【9分】1817=. 【12分】18.(本小题满分12分)(Ⅰ)解:1cos 4()2cos 22xf x x x -=+⋅1cos 442x x -=+ 【 2分】1sin(4)62x π=-+. 【 4分】因为 242T ππ==,所以()f x 的最小正周期是2π. 【 6分】(Ⅱ)解:由(Ⅰ)得,1()sin(4)62f x x π=-+.因为 84x ππ≤≤,所以 54366x πππ≤-≤, 【 8分】所以 1sin(4)126x π≤-≤, 【 9分】所以 131sin(4)622x π≤-+≤. 【10分】所以,当6x π=时,()f x 取得最大值32;当4x π=时,()f x 取得最小值1.【12分】19.(本小题满分12分)(Ⅰ)解:如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系. 【 1分】因为ABCDEF 是边长为1的正六边形,且,M N 分别是,BC DE 的中点,所以 5(4M ,1(2N , 【 3分】 所以 5311848AM AN ⋅=+=. 【 4分】 (Ⅱ)解:设BM DN t ==,则[0,1]t ∈.【 5分】所以(1)2t M +,(1N t -. 【 7分】所以3(1)(1)22t AM AN t t ⋅=+⋅-+2112t t ++=-213(1)22t =--+ 【10分】当0t =时,AM AN ⋅取得最小值1; 【11分】 当1t =时,AM AN ⋅取得最大值32. 【12分】B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1.{|01}x x <<;2.c b a <<;3. [1,)+∞;4. 2;5.②④. 注:5题,选出一个正确的序号得2分,有错选不给分. 二、解答题:本大题共3小题,共30分.6.(本小题满分10分)(Ⅰ)解:函数()log (2)1a f x x =+-的定义域是(2,)-+∞. 【 1分】因为 1a >,所以 ()log (2)1a f x x =+-是[0,1]上的增函数. 【 2分】 所以 ()f x 在[0,1]上的最大值是(1)log 31a f =-;最小值是(0)log 21a f =-. 【 4分】 依题意,得 log 31(log 21)a a -=--, 【 5分】解得 a =【 6分】(Ⅱ)解:由(Ⅰ)知,()log (2)1a f x x =+-是(2,)-+∞上的增函数. 【 7分】在()f x 的解析式中,令0x =,得(0)log 21a f =-, 所以,()f x 的图象与y 轴交于点(0,log 21)a -. 【 8分】 依题意,得(0)log 210a f =-≤, 【 9分】解得 2a ≥. 【10分】7.(本小题满分10分)(Ⅰ)解:原不等式可化为22230x x x ≥⎧⎨--<⎩,, (1) 或22230.x x x <⎧⎨-+>⎩,(2) 【 1分】解不等式组(1),得 23x ≤<;解不等式组(2),得2x <. 【 3分】 所以原不等式的解集为{|3}x x <. 【 4分】(Ⅱ)解:222,2,()|2|2, 2.x x x f x x x x x x ⎧-≥⎪=-=⎨-+<⎪⎩ 【 5分】① 当01a <<时,()f x 是[0,]a 上的增函数,此时()f x 在[0,]a 上的最大值是2()2f a a a =-+. 【 6分】 ② 当12a ≤≤时,()f x 在[0,1]上是增函数,在[1,]a 上是减函数,此时()f x 在[0,]a 上的最大值是(1)1f =. 【 7分】③ 当2a >时,令()(1)(2)10f a f a a -=-->,解得1a >+. 所以,当21a <≤+时,此时()(1)f a f ≤,()f x 在[0,]a 上的最大值是(1)1f =;当1a >时,此时()(1)f a f >,()f x 在[0,]a 上的最大值是2()2f a a a =-.【 9分】 记()f x 在区间[0,]a 上的最大值为()g a ,所以222,01,()1,112,1a a a g a a a a a ⎧-+<<⎪⎪=≤≤⎨⎪->+⎪⎩【10分】8.(本小题满分10分)(Ⅰ)解:当0x =时,由()h x 为奇函数,得(0)0h =. 【 1分】任取[1 0)x ∈-,,则(01]x -∈,,由()h x 为奇函数,得22()()[()1]1h x h x x x =--=---=-+, 【 2分】所以()h x 的解析式为221,01,()0,0,1,10.x x h x x x x ⎧-<≤⎪==⎨⎪-+-≤<⎩【 3分】(Ⅱ)解:(ⅰ)函数()g x y x=是(0,1]上的增函数. 【 4分】 证明如下:因为()g x 为()f x 在(0,)+∞上的一个延拓函数, 所以当(01]x ∈,时,2()()1g x f x x ==-. 记()()1()g x f x k x x x x x===-,其中(0,1]x ∈. 任取12,(0,1]x x ∈,且12x x <,则210x x x ∆=->, 因为211221212112()(1)11()()()0x x x x y k x k x x x x x x x -+∆=-=---=>, 所以函数()g x y x=是(0,1]上的增函数. 【 6分】 (ⅱ)由()g x y x = 是(0,)+∞上的单调函数,且(0,1]x ∈时,()g x y x =是增函数,从而得到函数()g x y x= 是(0,)+∞上的增函数. 【 7分】因为 0s >,0t >, 所以 s t s +>,s t t +>, 所以()()g s t g s s t s+>+, 即 ()()()s g s t s t g s ⋅+>+⋅. 【 8分】 同理可得:()()()t g s t s t g t ⋅+>+⋅.将上述两个不等式相加,并除以s t +,即得 ()()()g s t g s g t +>+. 【10分】。
2014 — 2015西城区学年度第一学期期末试卷高三【数学理】
北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(理科)2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合,,则集合( )1,0,1{}A -=2{|2}B x x x =-<A B = (A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若,,则∆2a b=sin B =( )(A )3A π=(B )6A π=(C)sin A =(D )2sin 3A =2.设命题:平面向量和,,则为( )p ∀a b ||||||-<+a b a b p ⌝ (A )平面向量和,∀a b ||||||-+≥a b a b (B )平面向量和,∃a b ||||||-<+a b a b (C )平面向量和,∃a b ||||||->+a b a b (D )平面向量和,∃a b ||||||-+≥a b a b4.执行如图所示的程序框图,输出的x 值为( ) (A )4(B )5(C )6(D )75.设函数,,则“”是“函数为奇函数”的( )()3cos f x x b x =+x ∈R 0b =()f x (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件6.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( )(A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形(D )侧面四个三角形都是直角三角形7. 已知抛物线,点,O 为坐标原点,若在抛物线C 上存在一点,使得2:4C y x =(,0)P m Q ,则实数m 的取值范围是()90OQP Ð= (A )(4,8)(B )(4,)+¥侧(左)视图正(主)视图俯视图8. 设D 为不等式组表示的平面区域,点为坐标平面内一点,若对于区域D1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤(,)B a b xOy 内的任一点,都有成立,则的最大值等于( )(,)A x y 1OA OB ⋅≤a b +(A )2(B )1(C )0(D )3第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 复数,则 _____.2i12iz -=+||z =10.设为双曲线C :的左、右焦点,点P 为双曲线C 上一点,如果12,F F 2221(0)16x y a a -=>,那么双曲线C 的方程为____;离心率为____.12||||4PF PF -=11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么______.x y z ++=12. 如图,在中,以为直径的半圆分别交,于ABC ∆BC AB AC 点,,且,那么____; _____.E F 2AC AE =AFAB =A ∠=13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小(C )(0,4)(D )(8,)+¥2x3ya321258z品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能θ0<θ<2π与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数, x ∈R 的部分图象如图所示.()cos cos 442x x xf x =+(Ⅰ)求函数的最小正周期和单调递增区间;()f x (Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求的值.BAO ∠tan 16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下:(1)投资股市:投资结果获利40%不赔不赚亏损20%概 率121838(2)购买基金:投资结果获利20%不赔不赚亏损10%概 率p13q(Ⅰ)当时,求q 的值;14p =(Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于,求的取值范围; 45p(Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知,,那么丙选择哪种投资方案,才能使得一年后投资收益的数学12p =16q =期望较大?给出结果并说明理由.17.(本小题满分14分)如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,,BC AD //,且90BAD ∠= ,点E 在棱AB 上,平面与棱相交于点F .122A A AB AD BC ====1A EC 11C D (Ⅰ)证明:∥平面;1A F 1B CE (Ⅱ)若E 是棱AB 的中点,求二面角的余弦值;1A EC D --(Ⅲ)求三棱锥的体积的最大值.11B A EF -18.(本小题满分13分)已知函数和的图象有公共点P ,且在点P 处的切线相同.2()(0)f x ax bx a =->()ln g x x =(Ⅰ)若点P 的坐标为,求的值;1(,1)e-,a b (Ⅱ)已知,求切点P 的坐标.a b =19.(本小题满分14分)已知椭圆C :的右焦点为F ,右顶点为A ,离心率为e ,点满足条件2211612x y +=(,0)(4)P m m >B D 1.||||FA e AP =(Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记和的面积分别为,PMF ∆PNF ∆1S ,求证:.2S 12||||S PM S PN =20.(本小题满分13分)设函数,对于任意给定的位自然数(其中是个位数字,()(9)f x x x =-m 0121m m n a a a a -= 1a 2a 是十位数字,),定义变换:. 并规定.记 A 012()()()()m A n f a f a f a =+++ (0)0A =10()n A n =,,, ,.21()n A n = 1()k k n A n -= (Ⅰ)若,求;02015n =2015n (Ⅱ)当时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<;3m ≥ (Ⅲ)如果,写出的所有可能取值.(只需写出结论)*010(,3)m n m m <∈≥N m n 北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C2.D3.A4.C5.C 6.D 7.B 8.A二、填空题:本大题共6小题,每小题5分,共30分. 9. 10.1221416x y -=11.12.17412π313.14.9613注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+……………… 2分cos 22x x=+=,……………… 4分π2sin()26x +所以 .2π4π12T ==故函数的最小正周期为. ……………… 6分()f x 4π由题意,得,πππ2π2π2262x k k -++≤≤解得,4π2π4π4π+33k x k -≤≤所以函数的单调递增区间为. ……………… 9分()f x 4π2π[4π,4π+],()33k k k -∈Z (Ⅱ)解:如图过点作线段垂直于B BC x 由题意,得,,33π4TAC ==2=BC 所以.2tan 3πBC BAO AC ∠==16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以++=1. ……………… 2分p 13q又因为, 14p = 所以=. ……………… 3分q 512(Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事 件C 为“一年后甲、乙两人中至少有一人投资获利”,……………… 4分则,且A ,B 独立. C AB AB AB = 由上表可知, ,. 1()2P A =()P B p = 所以 ……………… 5分()()()()P C P AB P AB P AB =++111(1)222p p p =´-+´+ . ……………… 6分1122p =+ 因为,114()225P C p =+> 所以.……………… 7分35p > 又因为,,113p q ++=0q ≥ 所以.23p ≤ 所以.……………… 8分3253p ≤<(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量的分布列为:X X402 P121838…………… 9分则. ……………10 分113540(2)2884EX =⨯+⨯+-⨯=假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量的分布列为:Y Y201-P121316…………… 11分 则. …………… 12分111520(1)2366EY =⨯+⨯+-⨯= 因为,EX EY >所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面平面.ABCD ∥1111A B C D 又因为平面平面,平面平面,ABCD 1A ECF EC =1111A B C D 11A ECF A F =所以∥. …………………2分1A F EC 又因为平面,平面,1A F ⊄1B CE EC ⊂1B CE 所以∥平面. …………………4分1A F 1B CE (Ⅱ)解:因为⊥底面ABCD ,,1AA 90BAD ∠= 所以,,两两垂直,以A 为原点,以,,分别为轴、轴和1AA AB AD AB AD 1AA x y z 轴,如图建立空间直角坐标系. …………………5分则,,,1(0,0,2)A (1,0,0)E (2,1,0)C 所以 ,.1(1,0,2)A E =- 1(2,1,2)AC =- 设平面的法向量为(,,),m x y z =1A ECF由,,10A E m ⋅= 10AC m ⋅= 得20,220.x z x y z -=⎧⎨+-=⎩令,得. …………………7分1z =(2,2,1)m =-又因为平面的法向量为, …………………8分DEC (0,0,1)n =所以,1cos ,3||||m n m n m n ⋅<>==⋅由图可知,二面角的平面角为锐角,1A EC D --所以二面角的余弦值为. …………………10分(Ⅲ)1A EC D --13解:过点F 作于点,11FM A B ⊥M 因为平面⊥平面,平面,11A ABB 1111A B C D FM ⊂1111A B C D 所以平面,FM ⊥11A ABB 所以 …………………12分11111113B A EF F B A E A B E V V S FM --∆==⨯⨯.1222323FM FM ⨯=⨯⨯=因为当F 与点重合时,取到最大值2(此时点E 与点B 重合),1D FM 所以当F 与点重合时,三棱锥的体积的最大值为. ………………14分1D 11B A EF -4318.(本小题满分13分)(Ⅰ)解:由题意,得, …………………1分21(1e e ea bf =-=- 且,, …………………3分()2f x ax b '=-1()g x x'=由已知,得,即,11()(e ef g ''=2e eab -=解得,. …………………5分22e a =3e b =(Ⅱ)解:若,则,,a b =()2f x ax a '=-1()g x x'=设切点坐标为 ,其中,(,)s t 0s >由题意,得 , ①2ln as as s -= , ②…………………6分12as a s -= 由②,得 ,其中,1(21)a s s =-12s ≠代入①,得 .(*) …………………7分1ln 21s s s -=- 因为 ,且,1(21)a s s =>-0s > 所以 . …………………8分12s >设函数 ,,1()ln 21x F x x x -=--1(,)2x ∈+∞ 则 .…………………9分2(41)(1)()(21)x x F x x x ---'=- 令 ,解得或(舍).…………………10分()0F x '=1x =14x =当变化时,与的变化情况如下表所示,x ()F x '()F x x1(,1)21(1,)+∞()F x '+0-()F x ↗↘…………………12分所以当时,取到最大值,且当时.1x =()F x (1)0F =1(,1)(1,)2x ∈+∞ ()0F x < 因此,当且仅当时. 1x =()0F x = 所以方程(*)有且仅有一解.1s = 于是 ,ln 0t s ==因此切点P 的坐标为.…………………13分(1,0)19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 ,2211612x y +=所以 ,,, ………………2分4a=b=2c ==则 ,,. ………………3分12c e a ==||2FA =||4AP m =-因为,||21||42FA AP m ==-所以 . ………………5分8m =(Ⅱ)解:若直线l 的斜率不存在, 则有 ,,符合题意. …………6分21S S =||||PM PN =若直线l 的斜率存在,则设直线l 的方程为,,.)2(-=x k y ),(11y x M ),(22y x N 由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 , ……………… 7分2222(43)1616480k x k x k +-+-= 可知 恒成立,且 ,. ……………… 8分0>∆34162221+=+k k x x 3448162221+-=k k x x 因为 ……………… 10分8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM)8)(8()8)(2()8)(2(211221----+--=x x x x k x x k)8)(8(32)(102212121--++-=x x kx x k x kx,0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k 所以 . ……………… 12分MPF NPF ∠=∠ 因为和的面积分别为,PMF ∆PNF ∆11||||sin 2S PF PM MPF =⋅⋅∠, ……………… 13分21||||sin 2S PF PN NPF =⋅⋅∠ 所以. ……………… 14分12||||S PM S PN =20.(本小题满分13分)(Ⅰ)解:,,,,114082042n =+++=2201434n =+=3182038n =+=418826n =+=,,……5141832n =+=6181432n =+= 所以 .……………… 3分201532n =(Ⅱ)证明:因为函数,2981()(9)(24f x x x x =-=--+所以对于非负整数,知.(当或5时,取到最大值)… 4分x ()(9)20f x x x =-≤4x = 因为 , 12()()()()m A n f a f a f a =+++ 所以 . ……………… 6分()20A n m ≤ 令 ,则.1()1020m g m m -=-31(3)102030g -=-⨯> 当时,,3m ≥11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯-> 所以 ,函数,(,且)单调递增.(1)g()0g m m +->()g m m ∈N 3m ≥ 故 ,即.g()g(3)0m >≥11020()m m A n ->≥ 所以当时,对于任意的位自然数均有.…………………9分3m ≥m n 1()10m A n -<(Ⅲ)答:的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.m n …………………14分。
北京市西城区2014-2015学年七年级(上)期末考试数学试题及答案
北京市西城区2014— 2015学年度第一学期期末试卷七年级数学 2015.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在1, 0,1-,2-这四个数中,最小的数是( )A. 2-B. 1-C. 0D. 12.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数 约为13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为 A . 13.1×106B .1.31×107C .1.31×108D .0.131×1083.下列计算正确的是( )A. 235a b ab +=B. 325a a a +=C. 2222a a a --=-D. 22271422a b a b a b -= 4.已知关于x 的方程225x m +=的解是2x =-,则m 的值为( ).A.12 B. 12- C. 92 D. 92- 5.若21(2)02x y -++=,则2015()xy 的值为( ) A. 1 B. 1- C.2015- D. 20156.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )A B CD7.如图,将一个直角三角板AOB 的顶点O 放在直线CD 上, 若∠AOC =35°,则∠BOD 等于 A .155°B .145°C .65°D . 55°8.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x 支,则可列得的一元一次方程为( ) A .0.8 1.20.92(60)87x x ⨯+⨯-= B .0.8 1.20.92(60)87x x ⨯+⨯+= C .0.920.8 1.2(60)87x x ⨯+⨯+= D . 0.920.8 1.2(60)87x x ⨯+⨯-= 9.如图,四个有理数在数轴上的对应点M ,P ,N , Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是A .点MB .点NC .点PD .点Q10.小明制作了一个正方体包装盒,他在这个正方体包装盒的上面设计了一个“ ”标志,并在正方体的每个表面都画了黑色粗线,如右图所示.在下列图形中,是这个正方体包装盒的表面展开图的是A BC D二、填空题(本题共20分,第11~14题每小题3分,第15~18题每小题2分) 11.4-的倒数是 .12. “m 与n 的平方差”用式子表示为 .14.已知多项式22x y +的值是3,则多项式224x y ++的值是 . 15.写出一个只含有字母x ,y 的三次单项式 .16.如图,已知线段AB =10cm ,C 是线段AB 上一点,D 的中点,E 是线段BC 的中点,则DE 的长是 cm .17.如图,把一个圆平均分为若干份,然后把它们全部剪开,拼成一个近似的平行四边形.若这个平行四边形的周长比圆的周长增加了4cm ,则这个圆的半径是 cm ,拼成的平行四边形的面积是 cm 2.18.观察下列等式:12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52× = ×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b ≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是.三、计算题(本题共16分,每小题4分)19. 3011(10)(12)-+--- 20.51(3)()(1)64-⨯-÷-解: 解:21.21[1(10.5)][10(3)]3--⨯⨯-+- 22.312138()(2)(8)595⨯--⨯-+-⨯解: 解:四、先化简,再求值(本题5分)23.23232(3)3(2)ab a b ab a b ---,其中12a =-,4b =.解:五、解下列方程或方程组(本题共10分,每小题5分)24.4131163x x --=-. 25.32105.x y x y +=⎧⎨-=⎩, 解: 解:六、解答题(本题6分)26. 如图,∠A +∠B =90°,点D 在线段AB 上,点E 在线段AC 上,DF 平分∠BDE ,DF 与BC 交于点F .(1)依题意补全图形;(2)若∠B +∠BDF =90°,求证:∠A =∠EDF . 证明:∵∠A +∠B =90°,∠B +∠BDF =90°,∴ (理由: ) . 又∵ ,∴∠BDF =∠EDF (理由: ) . ∴∠A =∠EDF .七、列方程或方程组解应用题(本题5分)27.电子商务的快速发展逐步改变了人们的购物方式,网购已悄然进入千家万户.李阿姨在某网店买了甲、乙两件商品,已知甲商品的价格比乙商品价格的2倍多108元,乙商品的价格比甲、乙两件商品总价的14少3元.问甲、乙两件商品的价格各多少元?解:八、解答题(本题8分)28.已知A,B,C三点在同一条数轴上.(1)若点A,B表示的数分别为-4,2,且12BC AB=,则点C表示的数是;(2)点A,B表示的数分别为m,n,且m<n.①若AC-AB=2,求点C表示的数(用含m,n的式子表示);②点D是这条数轴上的一个动点,且点D在点A的右侧(不与点B重合),当2AD AC=,14BC BD=,求线段AD的长(用含m,n的式子表示).解:(1)点C表示的数是;(2)①②北京市西城区2014— 2015学年度第一学期期末试卷七年级数学附加题2015.1试卷满分:20分一、填空题(本题共7分,第1题5分,第2题2分)1.1883年,德国数学家格奥尔格·康托尔引入位于一条线段上的一些点的集合,他的做法如下:取一条长度为1的线段,将它三等分,去掉中间一段,余下两条线段,达到第1阶段;将剩下的两条线段再分别三等分,各去掉中间一段,余下四条线段,达到第2阶段;再将剩四条线段,分别三等分,分别去掉中间一段,余下八条线段,达到第3阶段;……;这样的操作一直继续下去,在不断分割舍弃过程中,所形成的线段数目越来越多,把这种分形,称做康托尔点集.下图是康托尔点集的最初几个阶段,当达到第5个阶段时,余下的线段的长度..之和为;当达到第n个阶段时(n为正整数),余下的线段的长度..之和为.2.如图,足球的表面是由若干块黑皮和白皮缝合而成的,其中黑皮为正五边形,白皮为正六边形.已知黑皮和白皮共有32块,每块黑皮周围有5块白皮,每块白皮周围有3块黑皮,设缝制这样一个足球需要x块黑皮,y块白皮,那么根据题意列出的方程组是.二、解答题(本题共4分)3.(1)如图1,D 是线段BC 的中点,三角形ABC 的面积与三角形ABD 的面积比为 ; (2)如图2,将网格图中的梯形ABCD 分成三个三角形,使它们的面积比是1:2:3.4.设x 是有理数,我们规定:(0)0(0)x x x x +≥⎧=⎨<⎩,0(0)(0)x x x x ->⎧=⎨≤⎩.例如:33+=,(2)0+-=;30-=, (2)2--=-.解决如下问题: (1)填空: 1()2+= , (1)--= ,x x +-+= ; (2)分别用一个含||,x x 的式子表示x +,x -.解:(1)1()2+= , (1)--= ,x x +-+= ; (2)北京市西城区2014— 2015学年度第一学期期末试卷七年级数学参考答案及评分标准 2015.1一、选择题(本题共30分,每小题3分)三、计算题(本题共16分,每小题4分) 19.3011(10)(12)-+---解:3011(10)(12)-+---=30111012--+ ···························································································· 1分 =4221- ········································································································· 3分 =21 ················································································································· 4分20. 51(3)()(1)64-⨯-÷-解:51(3)()(1)64-⨯-÷-55364=-⨯÷ ···································································································· 2分 =54365-⨯⨯ ····································································································· 3分=2- ················································································································· 4分21. 21[1(10.5)][10(3)]3--⨯⨯-+-解:21[1(10.5)][10(3)]3--⨯⨯-+-=11[1(1)](109)23--⨯⨯-+ ······················································································ 1分 =5(1)(1)6-⨯- ··········································································································· 3分 =16- ·························································································································· 4分22.312138()(2)(8)595⨯--⨯-+-⨯ 解:312138()(2)(8)595⨯--⨯-+-⨯=1213888595-⨯+⨯-⨯ ···················································································· 2分=12388()559-++ ····························································································· 3分=8249-+=1239- ············································································································ 4分四、先化简,再求值(本题5分)23.23232(3)3(2)ab a b ab a b ---,其中12a =-,4b =.解:23232(3)3(2)ab a b ab a b ---=23236263ab a b ab a b --+ ·············································································· 2分 =3a b ··············································································································· 3分当12a =-,4b =时,原式31()42=-⨯ ···························································································· 4分12=- ······································································································· 5分五、解下列方程或方程组(本题共10分,每小题5分) 24.4131163x x --=-解: 去分母,得 (41)62(31x x -=--. ························································ 1分去括号,得 41662x x -=-+. ····························································· 2分 移项,得 46621x x +=++. ································································· 3分合并同类项,得 109x =. ······································································· 4分 系数化1,得910x =. ················································································ 5分 25.32105.x y x y +=⎧⎨-=⎩,解:由②得 5x y =+.③ ················································································ 1分把③代入①,得 3(5)210y y ++=. ··························································· 2分 解得 1y =-. ······························································································· 3分 把1y =-代入③,得 5(1)4x =+-=. ····················································· 4分① ②所以,原方程组的解为 41.x y =⎧⎨=-⎩,································································ 5分六、解答题(本题6分)26.解:(1)补全图形,如图; ···································· 2分(2)证明:∵∠A +∠B =90°,∠B +∠BDF =90°, ∴ ∠A =∠BDF (理由: 同角的余角相等 ) . ·················································································· 4分 又∵ DF 平分∠BDE , ······················· 5分 ∴∠BDF =∠EDF (理由: 角平分线定义 ) . ·················································································· 6分 ∴∠A =∠EDF .七、列方程或方程组解应用题(本题6分)27.解:设甲商品的价格x 元,乙商品价格y 元. ···················································· 1分由题意,得2108,1() 3.4x y y x y =+⎧⎪⎨=+-⎪⎩········································································ 3分 解得300,96.x y =⎧⎨=⎩································································································ 5分答:甲商品的价格为300元, 乙商品的价格为96元. ····························· 6分八、解答题(本题共8分)28.解:(1)﹣1,5; ·································································································· 2分(2) 设点C 表示的数为x ,由m <n ,可得:点A 在点B 的左侧.AB n m =-.①由AC -AB =2,得AC >AB .以下分两种情况:ⅰ) 当点C 在点B 的右侧时,如图1所示,此时AC = x -m .∵AC -AB =2, ∴(x -m ) -(n -m ) =2. 解得2x n =+.∴点C 表示的数为2n +. ····················································· 4分 ⅱ) 当点C 在点A 的左侧时,如图2所示,此时,AC =m -x .∵AC -AB =2,∴(m -x )-(n -m ) =2解得22x m n =--.∴点C 表示的数为22m n --.综上,点C 表示的数为2n +,22m n --. ························ 6分AB CEDBA 图1图2②由2AD AC =,可得:点C 为线段AD 上或点C 在点A 的左侧. 当动点D 在线段AB 上时,无论点C 在何位置均不合题意; 当动点D 在点B 的右侧时,以下分三种情况:ⅰ)当点C 在线段BD 的延长线上时,点C 为线段AD 的中点,当点C 在线段BD 上时,如图3所示. ∴33AD n m =-.ⅱ)当点C 在线段AB 上时,如图4所示.∴5533AD n m =-.ⅲ)当点C 在点A 左侧时,不合题意.综上所述,线段AD 的长为33n m -或5533n m -. ···························· 8分北京市西城区2014— 2015学年度第一学期期末试卷七年级数学附加题参考答案及评分标准 2015.1一、填空题(本题共7分,第1题5分,第2题2分)1.523⎛⎫⎪⎝⎭; ··················································································································· 3分23n⎛⎫⎪⎝⎭. ················································································································· 5分 2.32,53.x y x y +=⎧⎨=⎩·············································································································· 2分二、解答题(本题共13分,第3题6分,第4题7分)3.解:(1)2:1; ·········································································································· 3分 (2)答案不唯一,如:···························································· 6分4.解:(1)1122+⎛⎫= ⎪⎝⎭,()111--=-,x x x +-+=; ················································ 3分(2)当x ≥0时,x x +=,x x =,∴2x xx ++=. CB DA 图4图3DBC当x <0时,0x +=, ∴2x xx ++=. 综上所述,当x 为有理数时,2x xx ++=. 当x ≥0时, 0x -=,∴2x xx --=. 当x <0时,x x -=,x x =-∴2x xx --=; 综上所述,当x 为有理数时,2x xx --=. ············································ 7分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2014 — 2015学年度第一学期期末试卷
高一数学 2015.1
试卷满分:150分 考试时间:120分钟
A 卷 [必修 模块4] 本卷满分:100分
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有
一项是符合要求的.
1.已知(0,2π)α∈,且sin 0<α,cos 0>α,则角α的取值范围是( ) (A )π(0,)2
(B )π(,π)2
(C )3π(π,
)2
(D )3π
(
,2π)2
2.已知向量(2,8)=a ,(4,2)=-b .若2=-c a b ,则向量=c ( ) (A )(0,18)
(B )(8,14)
(C )(12,12)
(D )(4,20)-
3.已知角α的终边经过点(3,4)P -,那么sin =α( ) (A )
35
(B )45
-
(C )
34
(D )34
-
4.在△ABC 中,D 是BC 的中点,则AD =( )
(A )
1
()2AB AC + (B )
1
()2AB AC - (C )1
()2
AB BC +
(D )1
()2
AB BC -
5.函数2
(sin cos )y x x =-的最小正周期为( ) (A )2π
(B )
3π2
(C )π
(D )
π2
6.如果函数cos()y x =+ϕ的一个零点是3
π
,那么ϕ可以是( ) (A )6
π (B )6
π-
(C )3
π
(D )3
π-
7.如图,在矩形ABCD 中,2AB =,BC , E 是CD 的中点,那么AE DC ⋅=( )
(A )4
(B )2
(C (D )1
8.当[0,π]x ∈时,函数()cos f x x x =的值域是( )
(A )[2,1]-
(B )[1,2]-
(C )[1,1]-
(D )[-
9.为得到函数π
cos()6
y x =+
的图象,只需将函数sin y x =的图象( ) (A )向左平移π3个单位 (B )向右平移π
3个单位
(C )向左平移2π3个单位 (D )向右平移2π
3
个单位
10.已知a ,b 为单位向量,且m ⋅=a b ,则||t +a b ()t ∈R 的最小值为( )
(A (B )1
(C )||m
(D
二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11.若向量(1,2)=a 与向量(,1)=-λb 共线,则实数=λ_____. 12.已知α是第二象限的角,且5
sin 13
α=,则cos =α_____. 13.若(,)22
ππ
∈-
θ,且tan 1>θ,则θ的取值范围是_____. 14.已知向量(1,3)=a ,(2,1)=-b ,(1,1)=c .若(,)=∈R c a +b λμλμ,则
=λ
μ
_____. 15.函数2
()sin sin cos f x x x x =+⋅的最大值是_____.
16.关于函数()sin(2)()6
f x x x π=-∈R ,给出下列三个结论:
① 对于任意的x ∈R ,都有2()cos(2)3
f x x π=-; ② 对于任意的x ∈R ,都有()()22f x f x ππ
+=-;
③ 对于任意的x ∈R ,都有()()33
f x f x ππ
-=+.
其中,全部正确结论的序号是_____.
三、解答题:本大题共3小题,共36分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)
已知tan 2=-α,其中(,)2
π
∈πα. (Ⅰ)求πtan()4
-α的值; (Ⅱ)求sin 2α的值.
18.(本小题满分14分)
已知向量(cos ,sin )=ααa ,1(2=-b ,其中α是锐角. (Ⅰ)当30︒
=α时,求||+a b ; (Ⅱ)证明:向量+a b 与-a b 垂直; (Ⅲ)若向量a 与b 夹角为60︒
,求角α.
19.(本小题满分10分)
已知函数()sin cos f x a x b x =+,其中a ∈Z ,b ∈Z .设集合{|()0}A x f x ==,
{|(())0}B x f f x ==,且A B =.
(Ⅰ)证明:0b =; (Ⅱ)求a 的最大值.
B 卷 [学期综合] 本卷满分:50分
一、填空题:本大题共5小题,每小题4分,共20分. 把答案填在题中横线上. 1.已知集合{,}A a b =,则满足{,,}A
B a b c =的不同集合B 的个数是_____.
2.若幂函数y x =α的图象过点(4,2),则=α_____.
3.函数2lg ,0,
()4,0,x x f x x x >⎧=⎨-<⎩
的零点是_____.
4.设()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是减函数.若()(2)f m f >,则 实数m 的取值范围是_____.
5.已知函数()f x 的定义域为D .若对于任意的1x D ∈,存在唯一的2x D ∈
,使得
M =成立,则称函数()f x 在D 上的几何平均数为M .已知函数
()31([0,1])g x x x =+∈,则()g x 在区间[0,1]上的几何平均数为_____.
二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.
6.(本小题满分10分)
已知函数()(2)()f x x x a =-+,其中a ∈R . (Ⅰ)若()f x 的图象关于直线1x =对称,求a 的值; (Ⅱ)求()f x 在区间[0,1]上的最小值. 7.(本小题满分10分)
已知函数()23x
x
f x a b =⋅+⋅,其中,a b 为常数. (Ⅰ)若0ab >,判断()f x 的单调性,并加以证明; (Ⅱ)若0ab <,解不等式:(1)()f x f x +>.
8.(本小题满分10分)
定义在R 上的函数()f x 同时满足下列两个条件: ① 对任意x ∈R ,有(2)()2f x f x +≥+;② 对任意x ∈R ,有(3)()3f x f x +≤+
.
设()()g x f x x =-.
(Ⅰ)证明:(3)()(2)g x g x g x +≤≤+; (Ⅱ)若(4)5f =,求(2014)f 的值.。