高考数学基础达标复习题16

合集下载

高三高考数学基础练习题

高三高考数学基础练习题

高三高考数学基础练习题题一:解方程:3x + 5 = 17解析:将方程式中的5移到等号右侧,得到3x = 17 - 5。

计算出右侧的结果为12。

最后,将方程式两边同时除以3,得到x = 4。

题二:计算:(4a^2b^3)^2解析:根据乘方法则,当一个乘方数被平方时,指数会被乘以2。

所以,根据公式,我们可以将题目转为乘方计算,即(4^2) * (a^2)^2 * (b^3)^2。

计算得到的结果是16 * a^4 * b^6。

题三:计算下列算式的值:log4(16) + log5(125)解析:首先,我们计算指数的值。

log4(16) = 2,表示4的多少次幂等于16。

log5(125) = 3,表示5的多少次幂等于125。

将这两个结果相加,得到2 + 3 = 5。

题四:已知函数f(x) = 2x^2 - 3x + 1,计算f(3)的值。

解析:将x替换为3,得到f(3) = 2(3)^2 - 3(3) + 1。

计算方程右侧的数值,我们得到f(3) = 18 - 9 + 1 = 10。

题五:已知三角形ABC,AB = 5cm,BC = 8cm,AC = 10cm。

计算三角形ABC的面积。

解析:根据海伦公式,我们可以计算三角形的面积。

首先,计算半周长:p = (AB + BC + AC) / 2 = (5 + 8 + 10) / 2 = 11.5cm。

然后,将半周长代入公式,计算面积:S = √(p * (p - AB) * (p - BC) * (p - AC)) = √(11.5 * (11.5 - 5) * (11.5 - 8) * (11.5 - 10))。

最后,计算得到S ≈ √(11.5 * 6.5 * 3.5 * 1.5) ≈ √432.6875 ≈ 20.8cm²。

总结:本文根据“高三高考数学基础练习题”题目,按照练习题的格式,给出了五道数学基础练习题及解析。

希望这些练习题能够帮助您复习和巩固高考数学基础知识,为高考备考提供帮助。

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习一. 基础小题练透篇1.已知(2x +1)n 的展开式中,第三项和第四项的二项式系数相等,则n =( ) A .7 B .6 C .5 D .42.[2023ꞏ上海市月考]在⎝⎛⎭⎫x -1x 7的二项展开式中,系数最大的是第( )项A .3B .4C .5D .63.[2023ꞏ福建省莆田第一中学高三考试]在⎝⎛⎭⎫x -2x 6的展开式中,常数项为( )A .80B .-80C .160D .-160 4.[2023ꞏ福建省福州第八中学高三训练](x +2y )(x -y )5的展开式中的x 3y 3项系数为( ) A .30 B .10 C .-30 D .-105.[2023ꞏ重庆市检测]若(x 2+1)(4x +1)8=a 0+a 1(2x +1)+a 2(2x +1)2+…+a 10(2x +1)10,则a 1+a 2+…a 10等于( )A .2B .1C .54D .-146.[2023ꞏ江西省联考]已知(x +1)4+(x -2)8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,则a 3=( )A .64B .48C .-48D .-647.[2023ꞏ湖南省高三第一次大联考]设(1+2x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 5=a 6,则n =( )A .6B .7C .8D .98.[2023ꞏ云南省昆明市高三检测]若(3x +x )n 的展开式的所有项的系数和与二项式系数和的比值是32,则展开式中x 3项的系数是__________.二. 能力小题提升篇1.[2023ꞏ辽宁省凤城市月考]在(x -1)n 的二项展开式中,仅有第6项的二项式系数最大,则n =( )A .8B .9C .10D .112.[2023ꞏ江苏省常州市高三模拟 ]若(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为21,则a =( )A .-3B .-2C .-1D .13.[2023ꞏ上海市一模]二项式(x +13x)30的展开式中,其中是有理项的项数共有( )A .4项B .7项C .5项D .6项4.[2023ꞏ吉林省吉林市月考]若二项式⎝⎛⎭⎫12-x n 的展开式中所有项的系数和为164 ,则展开式中二项式系数最大的项为( )A .-52 x 3B .154 x 4 C .-20x 3 D .15x 45.[2023ꞏ浙江省高三联考](x-23x)6的展开式的中间一项的系数是__________.(用数字作答).6.[2023ꞏ浙江嘉兴检测]已知⎝⎛⎭⎫3x 2+1x n展开式中的各二项式系数的和比各项系数的和小240,则n =__________;展开式中的系数最大的项是________.三. 高考小题重现篇1.[2020ꞏ北京卷]在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .102.[2019ꞏ全国卷Ⅲ](1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20 D .243.[2022ꞏ新高考Ⅰ卷]⎝⎛⎭⎫1-yx (x +y )8的展开式中x 2y 6的系数为________________(用数字作答).4.[2020ꞏ全国卷Ⅲ]⎝⎛⎭⎫x 2+2x 6的展开式中常数项是______(用数字作答).5.[2021ꞏ上海卷]已知二项式(x +a )5展开式中,x 2的系数为80,则a =________. 6.[2021ꞏ浙江卷]已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________,a 2+a 3+a 4=________.四. 经典大题强化篇1.已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值: (1)a 0+a 1+a 2+…+a 5; (2)|a 0|+|a 1|+|a 2|+…+|a 5|; (3)a 1+a 3+a 5.2.[2023ꞏ江西省景德镇一中考试]已知函数f (n ,x )=⎝⎛⎭⎫2m +m x n (m >0,x >0).(1)当m =2时,求f (7,x )的展开式中二项式系数最大的项;(2)若f (10,x )=a 0+a 1x +a 2x 2 +…+a 10x 10 ,且a 2=180,参考答案一 基础小题练透篇1.答案:C答案解析:因为(2x +1)n的展开式中,第三项和第四项的二项式系数相等,所以C 2n =C 3n ,由组合数的性质可得n =2+3=5.2.答案:C答案解析:在二项式⎝ ⎛⎭⎪⎫x -1x 7 的展开式中,通项公式为T r +1=C r 7 ·x 7-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r C r7 x 7-2r,故第r +1项的系数为(-1)r C r7 ,当r =0,2,4,6时,系数为正,因为C 07 <C 17 =C 67 <C 27 <C 47 ,所以当r =4时,系数最大的项是第5项. 3.答案:D答案解析:由于x ,1x互为倒数,故常数项为第4项,即常数项为C 36 x 3⎝ ⎛⎭⎪⎫-2x 3 =20×(-8)=-160.故选D. 4.答案:B答案解析:因为(x +2y )(x -y )5=x (x -y )5+2y (x -y )5,(x -y )5的通项为:T r +1=C r5 x 5-r (-y )r ,令r =3,则T 4=C 35 x 2(-y )3,令r =2,则T 3=C 25 x 3(-y )2,所以x 3y 3的系数为C 35 (-1)3+2C 25 (-1)2=-10+20=10. 故选B. 5.答案:D答案解析:令x =0,则a 0+a 1+a 2+…+a 10=(0+1)×(0+1)8=1,令x =-12,则a 0=⎝ ⎛⎭⎪⎫14+1 ×(-2+1)8=54 ,∴a 1+a 2+…+a 10=1-54 =-14 . 6.答案:C答案解析:由(x +1)4+(x -2)8=[(x -1)+2]4+[(x -1)-1]8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,得a 3·(x -1)3=C 14 ·(x -1)3·2+C 58 ·(x -1)3·(-1)5,∴a 3=8-C 58 =-48.故选C. 7.答案:C答案解析:(1+2x )n 展开式第r +1项T r +1=C r n (2x )r =C r n 2r x r,∵a 5=a 6,∴C 5n 25=C 6n 26,即C 5n =2C 6n ,∵n !5!(n -5)! =2×n !6!(n -6)! , 整理得n -5=3,∴n =8. 故选C.8.答案:15答案解析:令x =1,得所有项的系数和为4n ,二项式系数和为2n ,所以4n 2n =2n=32,即n =5,(3x +x )5的第r +1项为C r5 ·(3x )5-r·⎝ ⎛⎭⎪⎫x 12 r=C r 5 ·35-r ·x 5-r2 .令5-r2=3,得r =4,所以x 3项的系数是C 45 ×3=15.二 能力小题提升篇1.答案:C答案解析:因为在(x -1)n的二项展开式中,仅有第6项的二项式系数最大,即C 5n 最大,所以n =10.2.答案:C答案解析:(1-x )8展开式第r +1项T r +1=C r 8 18-r (-x )r =(-1)r C r 8 x r,(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 ,所以1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 =21,解方程可得a =-1,故选C.3.答案:D答案解析:二项式(x +13x )30的展开式中,通项公式为C r 30 ·(x )30-r·(13x)r=C r30 ·x15-56r,0≤r ≤30,∴r =0,6,12,18,24,30时满足题意,共6项. 4.答案:A答案解析:令x =1可得⎝ ⎛⎭⎪⎫12-1 n=⎝ ⎛⎭⎪⎫-12 n =164 =⎝ ⎛⎭⎪⎫-12 6 ,所以n =6,展开式有7项,所以二项式⎝ ⎛⎭⎪⎫12-x 6 展开式中二项式系数最大的为第4项T 4=(-1)3C 36 ⎝ ⎛⎭⎪⎫12 6-3x 3=-52x 3. 5.答案:-16027答案解析:由二项式展开式可知,⎝⎛⎭⎪⎪⎫x 3-23x 6的展开式的中间一项的系数为C 36 ⎝ ⎛⎭⎪⎫13 3·(-2)3=-16027. 6.答案:4 108x 5答案解析:⎝ ⎛⎭⎪⎫3x 2+1x n 展开式中,各二项式系数的和比各项系数的和小240,即2n -(3+1)n =-240,化简得22n -2n -240=0,解得2n =16或2n=-15(不合题意,舍去),所以n =4.所以⎝ ⎛⎭3x 2+1x 4=81x 8+4×27x 5+6×9x 2+4×3x +1x4 ,展开式中的系数最大的项是108x 5.三 高考小题重现篇1.答案:C答案解析:由二项式定理得(x -2)5的展开式的通项T r +1=C r 5 (x )5-r (-2)r=C r 5 (-2)rx 5-r2 ,令5-r 2=2,得r =1,所以T 2=C 15 (-2)x 2=-10x 2,所以x 2的系数为-10.2.答案:A答案解析:展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34 +2C 14 =4+8=12.3.答案:-28答案解析:因为⎝⎛⎭⎪⎫1-y x()x +y 8=()x +y 8-y x()x +y 8,所以⎝⎛⎭⎪⎫1-y x()x +y 8的展开式中含x 2y 6的项为C 68 x 2y 6-y xC 58 x 3y 5=-28x 2y 6,⎝ ⎛⎭⎪⎫1-y x ()x +y 8的展开式中x 2y 6的系数为-28. 4.答案:240答案解析:展开式的通项为T r +1=C r6 (x 2)6-r·⎝ ⎛⎭⎪⎫2x r=2r C r 6 x12-3r ,令12-3r =0,解得r =4,故常数项为24C 46 =240.5.答案:2答案解析:(x +a )5的展开式的通项为T r +1=C r 5 x 5-r a r ,令5-r =2,得r =3,则C 35 a 3=80,解得a =2.6.答案:5 10答案解析:(x -1)3展开式的通项T r +1=C r 3 x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4 x 4-k ,则a 1=C 03 +C 14 =1+4=5;a 2=C 13 (-1)1+C 24 =3;a 3=C 23 (-1)2+C 34 =7;a 4=C 33 (-1)3+C 44 =0.所以a 2+a 3+a 4=3+7+0=10.四 经典大题强化篇1.答案解析:(1)令x =1,得a 0+a 1+a 2+…+a 5=1.(2)令x =-1,得-35=-a 0+a 1-a 2+a 3-a 4+a 5.由(2x -1)5的通项T r +1=C r 5 (-1)r ·25-r ·x 5-r, 知a 1,a 3,a 5为负值,所以|a 0|+|a 1|+|a 2|+…+|a 5|=a 0-a 1+a 2-a 3+a 4-a 5=35=243. (3)由a 0+a 1+a 2+…+a 5=1,-a 0+a 1-a 2+…+a 5=-35,得2(a 1+a 3+a 5)=1-35,所以a 1+a 3+a 5=1-352=-121.2.答案解析:(1)当m =2时,f (7,x )=⎝ ⎛⎭⎪⎫1+2x 7 的展开式共有8项,二项式系数最大的项为第四项或第五项,所以T 4=C 37 ⎝ ⎛⎭⎪⎫2x 3 =280x3 或T 5=C 47 ⎝ ⎛⎭⎪⎫2x 4=560x4 .(2)①f (10,x )=⎝ ⎛⎭⎪⎫2m +m x 10 的通项公式为T r +1=C r 10 ⎝ ⎛⎭⎪⎫2m10-r⎝ ⎛⎭⎪⎫m x r=210-r ·m 2r -10·C r 10 x -r ,且f (10,x )=a 0+a 1x+a 2x2 +…+a n xn ,所以1x2 的系数为a 2=28C 210 m -6=180,解得m=2,所以f (10,x )的通项公式为T r +1=C r10 ⎝ ⎛⎭2x r=2r C r 10 x -r ,所以a r =2r C r10 ,当r =0时,a 0=1,令x =1,∑10i =1a i =310-1=59 048, ②设a r =2r C r10 为a i (0≤i ≤10)中的最大值,则⎩⎨⎧2r C r 10 ≥2r -1C r -110 2r C r 10 ≥2r +1C r +110, 解得⎩⎪⎨⎪⎧2(11-r )≥r r +1≥2(10-r ) ,即193 ≤r ≤223 ,r ∈N ,所以r =7,所以(a i )max =a 7=27C 710 =15 360.。

人教版新高考数学二轮复习习题训练--专题突破练16 立体几何中的翻折问题及探索性问题

人教版新高考数学二轮复习习题训练--专题突破练16 立体几何中的翻折问题及探索性问题

专题突破练16立体几何中的翻折问题及探索性问题1.(2021·山东聊城三模)如图,在平面四边形ABCD中,BC=CD,BC⊥CD,AD⊥BD,沿BD将△ABD折起,使点A到达点P的位置,且PC⊥BC.(1)求证:PD⊥CD;(2)若M为PB的中点,二面角P-BC-D的大小为60°,求直线PC与平面MCD所成角的正弦值.2.(2021·湖南师大附中二模)如图,在四棱锥P-ABCD中,AB∥CD,∠ABC=90°,AB=BC=1,△PDC是边长为2的等边三角形,平面PDC⊥平面ABCD,E为线段PC上一点.(1)设平面PAB∩平面PDC=l,求证:l∥平面ABCD.的值;若不存在,请说明理由.(2)是否存在点E,使平面ADE与平面ABCD的夹角为60°?若存在,求CECP3.(2021·山东泰安三模)在三棱柱ABC-A1B1C1中,AB=AC=2,BC=2√2,BB1=2,M为CC1的中点.(1)试确定线段AB1上一点N,使AC∥平面BMN;(2)在(1)的条件下,若平面ABC⊥平面BB1C1C,∠ABB1=60°,求平面BMN与平面BB1C1C的夹角的余弦值.4.(2021·福建泉州二模)如图①,在等腰直角三角形ABC中,CD是斜边AB上的高,沿CD将△ACD折起,使点A到达点P的位置,如图②,∠PBD=60°,E,F,H分别为PB,BC,PD的中点,G为CF的中点.图①图②(1)求证:GH∥平面DEF;(2)求直线GH与平面PBC所成角的正弦值.5.(2021·天津二模)如图,在四棱锥E-ABCD中,平面ABCD⊥平面ABE,AB∥CD,AB⊥BC,AB=2BC=2CD=2,AE=BE=√3,M为BE的中点.(1)求证:CM∥平面ADE.(2)求二面角E-BD-C的正弦值.?若存在,求出AN的(3)在线段AD上是否存在一点N,使直线MD与平面BEN所成角的正弦值为4√621长;若不存在,说明理由.6.(2021·湖南长沙长郡中学一模)如图①,在等边三角形ABC中,D,E分别为边AB,AC上的动点,且满足DE∥BC,记DE=λ.将△ADE沿DE翻折到△MDE的位置,使得平面MDE⊥平面DECB,连接MB,MC,如BC图②所示,N为MC的中点.图①图②(1)当EN∥平面MBD时,求λ的值.(2)随着λ值的变化,二面角B-MD-E的大小是否改变?若是,请说明理由;若不是,请求出二面角B-MD-E的正弦值.专题突破练16 立体几何中的翻折问题及探索性问题1.(1)证明: 因为BC ⊥CD ,BC ⊥PC ,PC ∩CD=C ,所以BC ⊥平面PCD.又PD ⊂平面PCD ,所以BC ⊥PD.由翻折可知PD ⊥BD ,BD ∩BC=B ,所以PD ⊥平面BCD.又CD ⊂平面BCD ,所以PD ⊥CD.(2)解: 因为PC ⊥BC ,CD ⊥BC ,所以∠PCD 为二面角P-BC-D 的平面角,即∠PCD=60°. 在Rt △PCD 中,PD=CD tan 60°=√3CD.取BD 的中点O ,连接OM ,OC ,则OM ∥PD ,OM=12PD. 因为BC=CD ,所以OC ⊥BD.由(1)知PD ⊥平面BCD ,所以OM ⊥平面BCD ,所以OM ,OC ,OD 两两互相垂直.以O 为原点,OC ,OD ,OM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示.设OB=1,则P (0,1,√6),C (1,0,0),D (0,1,0),M (0,0,√62),CP ⃗⃗⃗⃗⃗ =(-1,1,√6),CD ⃗⃗⃗⃗⃗ =(-1,1,0),CM⃗⃗⃗⃗⃗⃗ =(-1,0,√62).设平面MCD 的法向量为n =(x ,y ,z ), 则{n ·CD ⃗⃗⃗⃗⃗ =0,n ·CM ⃗⃗⃗⃗⃗⃗ =0,即{-x +y =0,-x +√62z =0, 令z=√2,则x=√3,y=√3,所以n =(√3,√3,√2)为平面MCD 的一个法向量.设直线PC 与平面MCD 所成的角为θ,则sin θ=|cos <CP ⃗⃗⃗⃗⃗ ,n >|=|CP ⃗⃗⃗⃗⃗⃗·n ||CP ⃗⃗⃗⃗⃗⃗ ||n |=√34,所以直线PC 与平面MCD 所成角的正弦值为√34.2.(1)证明: ∵AB ∥CD ,AB ⊄平面PDC ,DC ⊂平面PDC , ∴AB ∥平面PDC.又平面PAB ∩平面PDC=l ,AB ⊂平面PAB ,∴AB ∥l. 又l ⊄平面ABCD ,AB ⊂平面ABCD ,∴l ∥平面ABCD. (2)解: 设DC 的中点为O ,连接OP ,OA ,则PO ⊥DC.又平面PDC ⊥平面ABCD ,PO ⊂平面PDC ,平面PDC ∩平面ABCD=DC ,∴PO ⊥平面ABCD.∵AB ∥CD ,AB=OC=1,∴四边形ABCO 为平行四边形, ∴OA ∥BC.由题意可知BC ⊥CD ,∴OA ⊥CD. ∴OA ,OC ,OP 两两互相垂直.以O 为原点,OA ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示.则A (1,0,0),D (0,-1,0),C (0,1,0),P (0,0,√3).由PO ⊥平面ABCD ,可知m =(0,0,1)为平面ABCD 的一个法向量.假设存在点E ,使平面ADE 与平面ABCD 的夹角为60°,设CE ⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ (0≤λ≤1),则E (0,1-λ,√3λ),∴DE ⃗⃗⃗⃗⃗ =(0,2-λ,√3λ).设平面ADE 的法向量为n =(x ,y ,z ),DA ⃗⃗⃗⃗⃗ =(1,1,0),则{n ·DA ⃗⃗⃗⃗⃗ =0,n ·DE ⃗⃗⃗⃗⃗ =0,即{x +y =0,(2-λ)y +√3λz =0,取x=1,则y=-1,z=√3λ,∴n =(1,-1,√3λ)为平面ADE的一个法向量.由题意可知|cos <m ,n >|=|m ·n ||m ||n |=2-λ√3λ√12+12+(2-λ√3λ)=12,整理得λ2+4λ-4=0,解得λ=2(√2-1),故存在点E ,使平面ADE 与平面ABCD 的夹角为60°,此时CECP =2(√2-1). 3.解: (1)当AN=13AB 1时,AC ∥平面BMN.证明:如图,设BM ∩B 1C=E ,连接EN ,则CEB 1E =CMBB 1=12.由AN=13AB 1,得ANB 1N =12,∴AC ∥NE.又AC ⊄平面BMN ,NE ⊂平面BMN ,∴AC ∥平面BMN.(2)取BC 的中点O ,连接AO ,B 1O.∵AC=AB=2,∴AO ⊥BC.又BC=2√2,∴AO=BO=√2.∵平面ABC ⊥平面BB 1C 1C ,平面ABC ∩平面BB 1C 1C=BC ,AO ⊂平面ABC ,∴AO ⊥平面BB 1C 1C.∵AB=BB 1=2,∠ABB 1=60°,∴AB 1=2,O B 12=A B 12-AO 2=2,∴OB 1=√2,O B 12+OB 2=B B 12,∴OB 1⊥OB.以O 为原点,OB ,OB 1,OA 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示,则A (0,0,√2),B (√2,0,0),C (-√2,0,0),C 1(-2√2,√2,0),B 1(0,√2,0),M (-3√22,√22,0), ∴BA ⃗⃗⃗⃗⃗ =(-√2,0,√2),AB 1⃗⃗⃗⃗⃗⃗⃗ =(0,√2,-√2),BM ⃗⃗⃗⃗⃗⃗ =(-5√22,√22,0),AN ⃗⃗⃗⃗⃗⃗ =13AB 1⃗⃗⃗⃗⃗⃗⃗ =(0,√23,-√23),BN ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AN⃗⃗⃗⃗⃗⃗ =(-√2,√23,2√23). 设平面BMN 的法向量为n =(x ,y ,z ),则{BN⃗⃗⃗⃗⃗⃗ ·n =0,BM ⃗⃗⃗⃗⃗⃗ ·n =0,即{-√2x +√23y +2√23z =0,-5√22x +√22y =0,解得{y =5x ,z =-x ,令x=1,则y=5,z=-1,∴n =(1,5,-1)为平面BMN 的一个法向量. 由题意可知m =(0,0,1)为平面BB 1C 1C 的一个法向量.设平面BMN 与平面BB 1C 1C 的夹角为θ,则cos θ=|cos <m ,n >|=|m ·n ||m ||n |=√39, 故平面BMN 与平面BB 1C 1C 的夹角的余弦值为√39.4.(1)证明: 如图,连接BH ,交DE 于点M ,连接MF.因为△ABC 是等腰直角三角形,CD 是斜边AB 上的高,所以AD=DB ,即PD=DB. 因为∠PBD=60°,所以△PBD 是等边三角形.因为E ,H 分别为PB ,PD 的中点,所以M 是等边三角形PBD 的中心,所以BM=23BH.因为F 为BC 的中点,G 为CF 的中点,所以BF=23BG. 所以MF ∥GH.又MF ⊂平面DEF ,GH ⊄平面DEF ,所以GH ∥平面DEF. (2)解: 如图,建立空间直角坐标系,设PD=DB=DC=2,则C (0,2,0),B (2,0,0),P (1,0,√3),H (12,0,√32),G (12,32,0),所以BC⃗⃗⃗⃗⃗ =(-2,2,0),BP ⃗⃗⃗⃗⃗ =(-1,0,√3),HG⃗⃗⃗⃗⃗⃗ =(0,32,-√32).设平面PBC 的法向量为n =(x ,y ,z ),则{n ·BC ⃗⃗⃗⃗⃗ =0,n ·BP ⃗⃗⃗⃗⃗ =0,即{-2x +2y =0,-x +√3z =0,令x=√3,则y=√3,z=1,所以n =(√3,√3,1)为平面PBC 的一个法向量. 设直线GH 与平面PBC 所成的角为θ, 则sin θ=|cos <n ,HG ⃗⃗⃗⃗⃗⃗ >|=|n ·HG ⃗⃗⃗⃗⃗⃗⃗||n ||HG ⃗⃗⃗⃗⃗⃗⃗ |=√3√3×√7=√77, 故直线GH 与平面PBC 所成角的正弦值为√77. 5.(1)证明: 取AE 的中点P ,连接MP ,PD (图略).∵P ,M 分别为AE ,BE 的中点,∴PM ∥AB ,PM=12AB. 又CD ∥AB ,CD=12AB ,∴PM ∥CD ,PM=CD ,∴四边形PMCD 为平行四边形,∴CM ∥PD.又CM ⊄平面ADE ,PD ⊂平面ADE ,∴CM ∥平面ADE. (2)解: 取AB 的中点O ,连接OD ,OE. 又CD ∥AB ,CD=12AB ,∴CD ∥OB ,CD=OB ,∴四边形BCDO 为平行四边形,∴OD ∥BC. 又AB ⊥BC ,∴OD ⊥AB.又平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE=AB ,OD ⊂平面ABCD ,∴OD ⊥平面ABE.∵AE=BE ,O 为AB 的中点,∴OE ⊥AB.以O 为坐标原点,OE ,OB ,OD 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示,则E (√2,0,0),B (0,1,0),C (0,1,1),D (0,0,1).设平面BDE 的法向量为m =(x ,y ,z ),BE ⃗⃗⃗⃗⃗ =(√2,-1,0),BD ⃗⃗⃗⃗⃗⃗ =(0,-1,1), 由{m ·BE ⃗⃗⃗⃗⃗ =0,m ·BD⃗⃗⃗⃗⃗⃗ =0,得{√2x -y =0,-y +z =0,取y=√2,则x=1,z=√2,∴m =(1,√2,√2)为平面BDE 的一个法向量. 易知n =(1,0,0)为平面BCD 的一个法向量. 设二面角E-BD-C 的平面角为θ, 则|cos θ|=|cos <m ,n >|=|m ·n ||m ||n |=√55,∴sin θ=√1-cos 2θ=2√55. 故二面角E-BD-C 的正弦值为2√55.(3)解: 假设在线段AD 上存在一点N ,使得直线MD 与平面BEN 所成角的正弦值为4√621. 由(2)知M (√22,12,0),A (0,-1,0),D (0,0,1),BE⃗⃗⃗⃗⃗ =(√2,-1,0),则MD ⃗⃗⃗⃗⃗⃗ =(-√22,-12,1),AD ⃗⃗⃗⃗⃗ =(0,1,1),BA ⃗⃗⃗⃗⃗ =(0,-2,0). 设AN ⃗⃗⃗⃗⃗⃗ =λAD ⃗⃗⃗⃗⃗ =(0,λ,λ),其中0≤λ≤1,∴BN ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AN⃗⃗⃗⃗⃗⃗ =(0,λ-2,λ). 设平面BEN 的法向量为u =(x 1,y 1,z 1), 由{u ·BE ⃗⃗⃗⃗⃗ =0,u ·BN⃗⃗⃗⃗⃗⃗ =0,得{√2x 1-y 1=0,(λ-2)y 1+λz 1=0,取y 1=√2λ,则x 1=λ,z 1=2√2−√2λ,∴u =(λ,√2λ,2√2−√2λ)为平面BEN 的一个法向量.由题意可知|cos <MD ⃗⃗⃗⃗⃗⃗ ,u >|=|MD ⃗⃗⃗⃗⃗⃗⃗⃗·u ||MD ⃗⃗⃗⃗⃗⃗⃗⃗ ||u |=√2-√2λ√72×5λ2-8λ+8=4√621.整理得16λ2-34λ+13=0,解得λ=12或λ=138(舍去).∴AN=√22.11故在线段AD 上存在一点N ,使直线MD 与平面BEN 所成角的正弦值为4√621,此时AN=√22.6.(1)证明: 如图,取MB 的中点P ,连接DP ,PN ,又N 为MC 的中点,所以NP ∥BC ,NP=12BC. 又DE ∥BC ,所以NP ∥DE ,即N ,E ,D ,P 四点共面.又EN ∥平面MBD ,EN ⊂平面NEDP ,平面NEDP ∩平面MBD=DP ,所以EN ∥PD ,即四边形NEDP 为平行四边形,所以NP=DE ,即DE=12BC ,即λ=12.(2)解: 取DE 的中点O ,连接MO ,则MO ⊥DE.又平面MDE ⊥平面DECB ,平面MDE ∩平面DECB=DE ,MO ⊂平面MDE ,所以MO ⊥平面DECB.如图,建立空间直角坐标系,不妨设BC=2,则M (0,0,√3λ),D (λ,0,0),B (1,√3(1-λ),0),所以MD ⃗⃗⃗⃗⃗⃗ =(λ,0,-√3λ),DB⃗⃗⃗⃗⃗⃗ =(1-λ,√3(1-λ),0). 设平面MBD 的法向量为m =(x ,y ,z ),则{MD ⃗⃗⃗⃗⃗⃗ ·m =λx -√3λz =0,DB ⃗⃗⃗⃗⃗⃗ ·m =(1-λ)x +√3(1-λ)y =0,即{x =√3z ,x =-√3y ,令x=√3,则y=-1,z=1,所以m =(√3,-1,1)为平面MBD 的一个法向量. 由题意可知n =(0,1,0)为平面MDE 的一个法向量. 设二面角B-MD-E 的平面角为θ,则|cos θ|=|cos <m ,n >|=|m ·n ||m ||n |=√55,易知θ为钝角,所以二面角B-MD-E 的大小不变.sin θ=√1-cos 2θ=2√55,所以二面角B-MD-E 的正弦值为2√55.。

专题16 平面向量(选填压轴题)(教师版)-2024年高考数学压轴专题复习

专题16 平面向量(选填压轴题)(教师版)-2024年高考数学压轴专题复习

专题16 平面向量(选填压轴题)目录①向量模问题(定值,最值,范围) (1)②向量数量积(定值,最值,范围) (12)③向量夹角(定值,最值,范围) (21)④向量的其它问题 (27)①向量模问题(定值,最值,范围)A .314B .132【答案】C【详解】在ABC V 中,由BAC ∠=4.(2023春·江西赣州·高二统考期中)已知O 为坐标原点,0PA PC ⋅=,则O P 的最大值为( )A .2B .31+C .2【答案】D【详解】因为2O C ≤,所以点C 在圆22:4O x y +=的内部或圆周上,又动点P 满足0PA PC ⋅=,当点C 在圆O 内时,延长AC 交圆则,,M A M P O N A D A M A =⊥<当点C 在圆O 上时,,M N 两点重合,所以AM AN ≤,当且仅当点C 在圆则O P O M M P O M A M ≤+=+因为O M A M O N M N A +≤++222||||||4ON AN OA +==,所以(,)c x y =的终点在以32⎛ ⎝所以1|2|22a c a c -=-,几何意义为由儿何意义可知22a c -=设OC c = ,则,C A a c C B =- 所以C 点在以AB 为直径的圆上运动,由2352c a c =⋅- ,得23()4c a - 因此O C 的终点C 在以点D 直线l ,于是c tb - 是圆D 上的点与直线所以min2c tbEF DE -==-=12.(2023·上海·高三专题练习)已知非零平面向量则b的最小值是【答案】5【详解】AC a = ,AD b =,AB c = )()0a c a ⋅-=r r r ,即CD CB ⋅=uu u r uu r 的中点O ,则有1122OC BD ==2b c +r r,根据三角形的三边关系可知不妨设(1,0),,e OE a OA b OB====,由π,6a e =知,点A 在直线3(3y x x =>由题意π,456b b e e --= ,可知4,5b e b e --记(4,0)C ,(5,0)D ,则π,6BC BD =,②向量数量积(定值,最值,范围)1.(2023春·山东青岛·高一校考期中)如图,在边长为2的等边ABC V 中,点E 为中线B DA .316-B .-【答案】B【详解】由已知,2BA = ,所以cos BA BC BA BC ⋅=∠由ABC ABD ACD S S S =+V V V ,所以1sin2bc 所以2()4bc b c bc =+≥,则16bc ≥π1A .32-【答案】CA.-2B.【答案】B=【详解】由题意,A B A D ===,所以22BC DC BD∠=∠,即AC 所以ACB ACD7.(2023春·江苏徐州·高一统考期中)八边形是数学中的一种图形,由八条线段首尾相连围成的封闭图形,它有八条边、八个角.八边形可分为正八边形和非正八边形.中,点O为正八边形的中心,点P是其内部任意一点,则A.(22,422)-+-C.(2,4)【答案】A【详解】正八边形ABCDEFGHGF=,设OF x=,由余弦定理得,2△中,222OFG+-x x11.(2023春·山东淄博·高一统考期末)圆C ,D ,且2OC OD ⋅= ,则【答案】846+/468+【详解】因为点,C D 在圆O由三角函数定义知(2cos C 则(22cos ,22CA θ=--于是(22cos CA CB θ⋅=- 同理442sin (DA DB θ-⋅=设a MA =,b MB = ,c 若对任意实数x ,y 都有|则B ,C 在以M A 为直径的圆上,过b MB =在OD 上的射影最长为()b c a b AC DE ⋅-=⋅=⋅【答案】2【详解】设AG ADAE mAB λ⎧=⎪⎪=⎨,由向量共线的充要条件不妨设③向量夹角(定值,最值,范围)12OQ BQ BO BC BC μ=-=-= (cos 1OC OA OC OQ AOC OC OA ⋅⋅∠==④向量的其它问题1.(2023·北京西城·统考二模)在坐标平面内,横、纵坐标均为整数的点称为整点.点P 从原点出发,在坐标平面内跳跃行进,每次跳跃的长度都是5且落在整点处.则点P 到达点(33,33)Q 所跳跃次数的最小值是( )A .9B .10C .11D .12【答案】B【详解】每次跳跃的路径对应的向量为()()()()()()()()111122223,4,4,3,5,0,0,5,3,4,4,3,5,0,0,5a b c d a b c d =====--=--=-=-u r u r u r u r u u r u r u r u u r,因为求跳跃次数的最小值,则只取()()()()11113,4,4,3,5,0,0,5a b c d ====u r u r u r u r,设对应的跳跃次数分别为a b c d ,,,,其中,,,a b c d ∈N ,可得()()1111345,43533,33OQ aa bb cc dd a b c a b d =+++=++++=u u u r u r u r u r u r故选:B.3.(2023·河南安阳·安阳一中校考模拟预测)在4.(2023·河南·河南省内乡县高级中学校考模拟预测)已知2a b λ+ 与3a b λ+的夹角是锐角,则【答案】()(,61,-∞-- ()(6.(2023·湖南长沙·周南中学校考三模)的中点,直线A E 和直线C【答案】2【详解】记BA BG BA= ,BH =因为1BG BH ==,则平行四边形因为A 、E 、F 三点共线,则使得AF AE λ= ,即BF BA λ-= 因为E 为B C 的中点,所以,BF。

高考数学一轮复习 题组层级快练16(含解析)

高考数学一轮复习 题组层级快练16(含解析)

题组层级快练(十六)1.函数y =x 2(x -3)的单调递减区间是( ) A .(-∞,0) B .(2,+∞) C .(0,2) D .(-2,2)答案 C解析 y ′=3x 2-6x ,由y ′<0,得0<x <2. 2.函数f (x )=(x -3)e x的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)答案 D解析 f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D. 3.(2015·湖北八校联考)函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A .(0,1a)B .(1a,+∞)C .(-∞,1a)D .(-∞,a )答案 A解析 由f ′(x )=1x -a >0,得0<x <1a.∴f (x )的单调递增区间为(0,1a).4.若函数y =a (x 3-x )的单调递减区间为(-33,33),则实数a 的取值范围是( ) A .a >0 B .-1<a <0 C .a >1 D .0<a <1答案 A解析 y ′=a (3x 2-1),解3x 2-1<0,得-33<x <33. ∴f (x )=x 3-x 在(-33,33)上为减函数. 又y =a (x 3-x )的单调递减区间为(-33,33), ∴a >0.5.(2014·陕西理)如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为( )A .y =1125x 3-35xB .y =2125x 3-45x C .y =3125x 3-xD .y =-3125x 3+15x答案 A解析 设所求函数解析式为y =f (x ),由题意知f (5)=-2,f (-5)=2,且f ′(±5)=0,代入验证易得y =1125x 3-35x 符合题意,故选A.6.若函数f (x )=(x 2-2x )e x在(a ,b )上单调递减,则b -a 的最大值为( ) A .2 B. 2 C .4 D .2 2答案 D解析 f ′(x )=(2x -2)e x +(x 2-2x )e x =(x 2-2)e x, 令f ′(x )<0,∴-2<x < 2.即函数f (x )的单调递减区间为(-2,2). ∴b -a 的最大值为2 2.7.(2015·冀州中学模拟)若函数f (x )的导函数f ′(x )=x 2-4x +3,则使函数f (x -1)单调递减的一个充分不必要条件是x ∈( )A .(0,1)B .[0,2]C .(2,3)D .(2,4)答案 C解析 由f ′(x )<0⇔x 2-4x +3<0, 即1<x <3,∴函数f (x )在(1,3)上单调递减. ∴函数f (x -1)在(2,4)上单调递减. 故D 为充要条件,C 为充分不必要条件.8.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则实数b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1)答案 C解析 f ′(x )=-x +bx +2≤0在(-1,+∞)上恒成立,即b ≤x (x +2)在(-1,+∞)上恒成立.又x (x +2)=(x +1)2-1>-1,∴b ≤-1,故选C.9.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f (12),c =f (3),则( )A .a <b <cB .c <a <bC .c <b <aD .b <c <a答案 B解析 由f (x )=f (2-x )可得对称轴为x =1,故f (3)=f (1+2)=f (1-2)=f (-1). 又x ∈(-∞,1)时,(x -1)f ′(x )<0,可知f ′(x )>0. 即f (x )在(-∞,1)上单调递增,f (-1)<f (0)<f (12),即c <a <b .10.已知函数f (x )(x ∈R )的图像上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 20-1)(x -x 0),那么函数f (x )的单调减区间是( )A .[-1,+∞)B .(-∞,2]C .(-∞,-1)和(1,2)D .[2,+∞)答案 C解析 根据函数f (x )(x ∈R )的图像上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 20-1)(x -x 0),可知其导数f ′(x )=(x -2)(x 2-1)=(x +1)(x -1)(x -2),令f ′(x )<0,得x <-1或1<x <2.因此f (x )的单调减区间是(-∞,-1)和(1,2).11.已知函数y =xf ′(x )的图像如下图所示.下面四个图像中y =f (x )的图像大致是( )答案 C解析 由题意知,x ∈(0,1)时,f ′(x )<0.f (x )为减函数;x ∈(1,+∞)时,f ′(x )>0.f (x )为增函数; x ∈(-1,0)时,f ′(x )<0.f (x )为减函数.12.函数y =x -2sin x 在(0,2π)内的单调增区间为________. 答案 (π3,5π3)解析 ∵y ′=1-2cos x ,∴由⎩⎪⎨⎪⎧y ′>0,0<x <2π,即⎩⎪⎨⎪⎧1-2cos x >0,0<x <2π,得π3<x <5π3. ∴函数y =x -2sin x 在(0,2π)内的增区间为(π3,5π3).13.若函数f (x )的定义域为R ,且满足f (2)=2,f ′(x )>1,则不等式f (x )-x >0的解集为________. 答案 (2,+∞)解析 令g (x )=f (x )-x ,∴g ′(x )=f ′(x )-1. 由题意知g ′(x )>0,∴g (x )为增函数. ∵g (2)=f (2)-2=0, ∴g (x )>0的解集为(2,+∞).14.若函数f (x )=x 3+ax -2在(1,+∞)上是增函数,则实数a 的取值范围是________. 答案 [-3,+∞)解析 f ′(x )=3x 2+a ,f (x )在区间(1,+∞)上是增函数, 则f ′(x )=3x 2+a ≥0在(1,+∞)上恒成立, 即a ≥-3x 2在(1,+∞)上恒成立.∴a ≥-3.15.已知函数f (x )=kx 3+3(k -1)x 2-k 2+1(k >0)的单调递减区间是(0,4). (1)实数k 的值为________;(2)若在(0,4)上为减函数,则实数k 的取值范围是________. 答案 (1)13 (2)0<k ≤13解析 (1)f ′(x )=3kx 2+6(k -1)x ,由题意知f ′(4)=0,解得k =13.(2)由f ′(x )=3kx 2+6(k -1)x ≤0并结合导函数的图像可知,必有-2k -1k ≥4,解得k ≤13.又k >0,故0<k ≤13.16.已知a 是实数,求函数f (x )=x (x -a )的单调区间.答案 ①a >0时,单调递减区间为[0,a 3],单调递增区间为[a3,+∞)②a ≤0时,f (x )单调递增区间为[0,+∞)17.已知函数f (x )=ln x +ke x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.答案 (1)k =1 (2)单调递增区间为(0,1),单调递减区间为(1,+∞)解析 (1)由f (x )=ln x +kex, 得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞).由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )=1x e x(1-x -x ln x ),x ∈(0,+∞). 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x>0,所以x ∈(0,1)时,f ′(x )>0;x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). 18.(2015·山东师大附中)已知函数f (x )=x -ax-ln x ,a >0. (1)讨论函数f (x )的单调性;(2)若f (x )>x -x 2在(1,+∞)上恒成立,求实数a 的取值范围.答案 (1)0<a <14时,单调递增区间为(0,1-1-4a 2),(1+1-4a2,+∞),单调递减区间为(1-1-4a 2,1+1-4a 2);a ≥14时,单调递增区间为(0,+∞)(2)0<a ≤1解析 (1)函数f (x )的定义域为(0,+∞),由于f ′(x )=1+a x 2-1x =x 2-x +ax 2,令m (x )=x 2-x +a ,①当Δ=1-4a ≤0,即a ≥14时,f ′(x )≥0恒成立,所以函数f (x )在(0,+∞)上是增函数;②当Δ=1-4a >0,即0<a <14时,由x 2-x +a >0,得0<x <1-1-4a 2或x >1+1-4a 2.所以f (x )在(0,1-1-4a 2),(1+1-4a 2,+∞)上是增函数,在(1-1-4a 2,1+1-4a2)上是减函数.综上知,当0<a <14时,f (x )在(0,1-1-4a 2),(1+1-4a 2,+∞)上是增函数,在(1-1-4a2,1+1-4a2)上是减函数.当a ≥14时,f (x )在(0,+∞)上是增函数.(2)f (x )>x -x 2,即x 2-ax-ln x >0, 因为x ∈(1,+∞),所以a <x 3-x ln x .令g (x )=x 3-x ln x ,h (x )=g ′(x )=3x 2-ln x -1,h ′(x )=6x -1x =6x 2-1x,在(1,+∞)上h ′(x )>0,得h (x )>h (1)=2,即g ′(x )>0,故g (x )=x 3-x ln x 在(1,+∞)上为增函数,g (x )>g (1)=1,所以0<a ≤1.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围为________.答案 [1,+∞)解析 f ′(x )=mx +1x-2≥0对一切x >0恒成立.m ≥-⎝ ⎛⎭⎪⎫1x 2+2x ,令g (x )=-⎝ ⎛⎭⎪⎫1x 2+2x,则当1x =1时,函数g (x )取得最大值1,故m ≥1.。

函数对称性:高考数学一轮复习基础必刷题

函数对称性:高考数学一轮复习基础必刷题

函数对称性:高考数学一轮复习基础必刷题一、单选题1.函数91()3x x f x +=的图像()A .关于直线1x =对称B .关于y 轴对称C .关于原点对称D .关于x 轴对称2.已知定义域为R 的函数()f x 的图象关于点()1,0成中心对称,且当1≥x 时,()2f x x mx n =++,若()17f -=-,则3m n +=()A .7B .2C .2-D .12-3.设函数()1=+xf x x ,则下列函数中为奇函数的是()A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++4.函数f (x )的图象向左平移一个单位长度,所得图象与y =ex 关于x 轴对称,则f (x )=()A .-ex -1B .-ex +1C .-e -x -1D .-e -x +15.已知函数()f x 的定义域为R ,()2f x +是偶函数,()42f =,()f x 在(),2-∞上单调递增,则不等式()412f x ->的解集为()A .15,44⎛⎫ ⎪⎝⎭B .15,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .()(),117,-∞-⋃+∞D .()1,17-6.我们知道,函数()y f x =的图象关于原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.据此,我们可以得到函数()323f x x x =+图象的对称中心为()A .()1,2-B .()1,2--C .()1,4D .()1,4-7.已知函数2()e e x x f x -=-,则下列说法正确的是()A .()f x 关于直线1x =-对称B .()f x 关于点(1,0)对称C .()f x 关于点(1,0)-对称D .()f x 关于直线1x =对称8.函数()()3ln 33x f x x -=-的部分图象大致为()A .B .C .D .第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题9.已知偶函数()f x 在R 上有四个零点,则这四个零点之和为___________.10.已知()f x 是偶函数,且方程()30f x -=有五个解,则这五个解之和为______.11.已知定义在R 上的函数()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭对称,且满足()32f x fx ⎛⎫=-+ ⎪⎝⎭,又()11f -=,()02f =-,则()()()()1232021f f f f +++⋅⋅⋅+=______.三、解答题12.已知指数函数()y f x =的图象经过点()2,9P ,(1)求函数()f x 的解析式;(2)设函数()()1g x f x =,证明:函数()y f x =的图象与函数()y g x =的图象关于y 轴对称.13.已知函数()2()22f x x a x a =+--,a R ∈.(1)若()f x 的图象关于直线1x =对称,求a 的值;(2)求使()0f x >的自变量x 的取值范围.14.已知函数2()log (2)f x x =+,函数()y g x =的图像与()y f x =的图像关于y 轴对称.(1)求()g x 的解析式;(2)解关于x 的不等式2()(23)f x g x x >-.参考答案:1.B 【解析】【分析】利用分离常数法化简函数式,可知函数()f x 为偶函数,进而判断对称性.【详解】解:因为()()231911333333x xx x x x xxf x -++===+=+,()()33x x f x f x --=+=易知()f x 为偶函数,所以函数()f x 的图象关于y 轴对称.故选:B.2.C 【解析】【分析】由已知结合函数对称性可求出()3f ,进而求得结果.【详解】解:因为定义域为R 的函数()f x 的图象关于点()1,0成中心对称,且当1≥x 时,()2f x x mx n =++,若()17f -=-,则()()317f f =--=.故()23337f m n =++=,即32m n +=-.故选:C.3.A 【解析】【分析】求出函数()f x 图象的对称中心,结合函数图象平移变换可得结果.【详解】因为()1111111x x f x x x x +-===-+++,所以,()()112112121f x f x x x +--=-+-=+--+,所以,函数()f x 图象的对称中心为()1,1-,将函数()f x 的图象向右平移1个单位,再将所得图象向下平移1个单位长度,可得到奇函数的图象,即函数()11f x --为奇函数.故选:A.4.A 【解析】【分析】先求出与y =ex 的图象关于x 轴对称的图象所对函数解析式,再右移一个单位即可得解.【详解】与y =ex 的图象关于x 轴对称的图象所对函数解析式为y =-ex ,将所得图象右移一个单位后的图象所对函数解析式为y =-ex -1,而按上述变换所得图象对应的函数是f (x ),所以f (x )=-ex -1.故选:A 5.A 【解析】【分析】由题意判断出函数()f x 关于2x =对称,结合函数的对称性与单调性求解不等式.【详解】∵()2f x +是偶函数,∴函数()f x 关于2x =对称,∴()()042f f ==,又∵()f x 在(),2-∞上单调递增,∴()f x 在()2,+∞单调递减,∴()412f x ->可化为0414x <-<,解得1544x <<,∴不等式()412f x ->解集为15,44⎛⎫⎪⎝⎭.故选:A6.A 【解析】【分析】依题意设函数()323f x x x =+图象的对称中心为(),a b ,则()()y g x f x a b ==+-为奇函数,再根据奇函数的性质得到方程组,解得即可;【详解】解:依题意设函数()323f x x x =+图象的对称中心为(),a b ,由此可得()()()()()()3232232333363y g x f x a b x a x a b x a x a a x a a b ==+-=+++-=++++++-为奇函数,由奇函数的性质可得3233030a a a b +=⎧⎨+-=⎩,解得12a b =-⎧⎨=⎩,则函数()323f x x x =+图象的对称中心为()1,2-;故选:A 7.B 【解析】【分析】由题可得2(2)e e x x f x --=-,24(2)e e x x f x --+--=-,然后逐项分析即得.【详解】∵2()e e x x f x -=-,∴2(2)e e x x f x --=-,24(2)e e x x f x --+--=-,∴242(2)e e ()e e x x x x f x f x --+-=≠--=--,故A 错误;()22(2)e e e e ()x x x x f x f x --=-=---=-,故B 正确;()242(2)e e ()e e x x x x f x f x --+---=-=--≠-,故C 错误;22(2)e e ()e e x x x x f x f x ---=-=-≠,故D 错误.故选:B.8.C 【解析】【分析】根据给定函数探讨其对称性可排除选项A ,B ;再由4x >时的函数值符号即可判断作答.【详解】函数()()3ln 33x f x x -=-定义域为(,3)(3,)-∞⋃+∞,其图象可由函数3ln ||()(0)x g x x x =≠的图象右移3个单位而得,而3ln ||()()()x g x g x x --==--,即函数3ln ||()x g x x=是奇函数,其图象关于原点对称,因此,函数()f x 图象关于点(3,0)对称,选项A ,B 不满足;又当4x >时,ln |3|0x ->,3(3)0x ->,即有()0f x >,则当4x >时,()f x 图象在x 轴上方,D 不满足,所以函数()()3ln 33x f x x -=-的部分图象大致为C.故选:C 9.0【解析】【分析】根据给定条件利用偶函数的图象关于y 轴对称的性质计算作答.【详解】因函数()f x 是R 上的偶函数,则函数()f x 的图象关于y 对称,而x 轴垂直于y 轴,即x 轴也关于y 轴对称,又函数()f x 在R 上有四个零点,即函数()f x 的图象与x 轴有4个交点,从左到右依次设为:1234(,0),(,0),(,0),(,0)A x B x C x D x ,于是得点A 与D 关于y 轴对称,点B 与C 关于y 轴对称,即14230,0x x x x +=+=,则12340x x x x +++=,所以四个零点之和为0.故答案为:010.15【解析】【分析】根据函数的奇偶性和图象变换,得到函数()3=-y f x 的图象关于3x =对称,进而得出方程其中其中一个解为3x =,另外四个解满足14236x x x x +=+=,即可求解.【详解】由题意,函数()f x 是偶函数,可函数()f x 的图象关于0x =对称,根据函数图象的变换,可得函数()3=-y f x 的图象关于3x =对称,又由方程()30f x -=有五个解,则其中一个解为3x =,不妨设另外四个解分别为1234,,,x x x x 且1234x x x x <<<,则满足2314322x x x x ++==,即14236x x x x +=+=,所以这五个解之和为66315++=.故答案为:15.11.2【解析】【分析】利用()32f x f x ⎛⎫=-+ ⎪⎝⎭可得函数周期3T =,再结合函数()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭对称,即()32f x f x ⎛⎫=--- ⎪⎝⎭,分析可得()()211f f ==,()32f =-,即()()()1230f f f ++=,结合函数周期性,即得解【详解】()32f x f x ⎛⎫=-+ ⎪⎝⎭ ,()()3f x f x ∴=+,周期3T =,又()11f -=,()02f =-,()()121f f ∴-==,()()032f f ==-, 函数()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭对称,()32f x f x ⎛⎫∴=-- ⎪⎝⎭,又()32f x f x ⎛⎫=-+ ⎪⎝⎭,()()113111222f f f f ⎛⎫⎛⎫∴-=--=-+== ⎪ ⎪⎝⎭⎝⎭,()()()1231120f f f ∴++=+-=,202136732=⨯+ ,()()()()()()1232021122f f f f f f ∴+++⋅⋅⋅+=+=.故答案为:2.12.(1)()3xf x =(2)证明见解析【解析】【分析】(1)设指数函数()xy f x a ==(0a >且1)a ≠,由函数图象过点()2,9P 即可求解;(2)任取函数()y f x =的图象上一点()00,P x y ,证明()00,P x y 关于y 轴的对称点为()00,P x y '-在函数()y g x =的图象上即可.(1)解:由题意,设指数函数()xy f x a ==(0a >且1)a ≠,因为函数()y f x =的图象经过点()2,9P ,所以29a =,解得3a =,所以函数()3xf x =;(2)证明:由(1)知()()1133x x y g x f x -====,任取函数()y f x =的图象上一点()00,P x y ,则003xy =,因为()00,P x y 关于y 轴的对称点为()00,P x y '-,且()00033x x y --==,所以()00,P x y '-在函数()y g x =的图象上,所以函数()y f x =的图象与函数()y g x =的图象关于y 轴对称.13.(1)4(2)答案见解析【解析】【分析】(1)先求出函数的对称轴,得到212a x -==,解出即可;(2)分三种情况当2a =-时,当2a >-时,当2a <-时来解不等式.(1)解法一:因为()2()22f x x a x a =+--,所以,()f x 的图象的对称轴方程为22a x -=.由212a -=,得4a =.解法二:因为函数()f x 的图象关于直线1x =对称,所以必有()()02f f =成立,所以284a a -=-,得4a =.(2)不等式()0f x >,即为()2220x a x a +-->,()()20x x a +->,当2a =-时,不等式的解集为{}2,x x x R ≠-∈,当2a >-时,不等式的解集为{}2x x x a <-<或,当2a <-时,不等式的解集为{}2x x x a >-<或.14.(1)2()log (2)g x x =-+(x <2);(2)1{|02x x -<<或12}x <<.【解析】【分析】(1)在函数()y g x =图象上任取点,该点关于y 轴对称点必在()y f x =的图像,代入即可得解;(2)由(1)及所给条件,列出对数不等式,由对数函数单调性等价转化成不等式组并求解即得.【详解】(1)设(,)P x y 为函数()y g x =的图像上任意一点,点P 关于y 轴的对称点为1(,)P x y -,则点1P 必在函数()y f x =的图像上,则2log (2)y x =-+,即2()log (2)g x x =-+,所以()g x 的解析式为2()log (2)g x x =-+(x <2);(2)由2()(23)f x g x x >-及(1)可得222log (2)log (223)x x x +>-+,因为2log y x =是增函数,于是有222022302223x x x x x x +>⎧⎪-+>⎨⎪+>-+⎩,即22202320220x x x x x +>⎧⎪--<⎨⎪->⎩,解得102x -<<或12x <<,所以不等式2()(23)f x g x x >-的解集为1{|02x x -<<或12}x <<.。

(统考版)高考数学二轮专题复习 课时作业16 函数的图象与性质 文(含解析)-人教版高三全册数学试题

(统考版)高考数学二轮专题复习 课时作业16 函数的图象与性质 文(含解析)-人教版高三全册数学试题

课时作业16 函数的图象与性质[A·基础达标]1.已知集合M 是函数y =11-2x的定义域,集合N 是函数y =x 2-4的值域,则M ∩N =( )A .{x |x ≤12}B .{x |-4≤x <12}C .{(x ,y )|x <12且y ≥-4}D .∅2.下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是( ) A .y =2x B .y =xC .y =|x |D .y =-x 2+13.[2020·某某市第一次模拟考试]已知定义在[m -5,1-2m ]上的奇函数f (x ),满足x >0时,f (x )=2x -1,则f (m )的值为( )A .-15B .-7C .3D .154.[2020·某某市质量检测]函数y =x 2e x 的大致图象为( )5.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-26.已知函数f (x )满足:f (-x )+f (x )=0,且当x ≥0时,f (x )=2+m2x-1,则f (-1)=( ) A.32 B .-32 C.12 D .-127.将函数f (x )的图象向右平移一个单位长度后,所得图象与曲线y =ln x 关于直线y =x 对称,则f (x )=( )A .ln(x +1)B .ln(x -1)C .e x +1D .e x -18.已知偶函数f (x )在[0,+∞)上单调递减,f (1)=-1,若f (2x -1)≥-1,则x 的取值X 围为( )A .(-∞,-1]B .[1,+∞)C .[0,1]D .(-∞,0]∪[1,+∞)9.如图,把圆周长为1的圆的圆心C 放在y 轴上,顶点A (0,1),一动点M 从点A 开始逆时针绕圆运动一周,记AM =x ,直线AM 与x 轴交于点N (t,0),则函数t =f (x )的图象大致为( )10.[2020·某某西工大附中3月质检]已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则( )A .sgn f (x )>0B .f (4 0412)=1C .sgn f (2k )=0(k ∈Z )D .sgn f (k )=|sgn k |(k ∈Z ) 11.已知定义在R 上的函数y =f (x )在(-∞,a )上是增函数,且函数y =f (x +a )是偶函数,则当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有( )A .f (x 1)>f (x 2)B .f (x 1)≥f (x 2)C .f (x 1)<f (x 2)D .f (x 1)≤f (x 2)12.定义在R 上的函数y =f (x )满足以下三个条件: ①对于任意的x ∈R ,都有f (x +1)=f (x -1); ②函数y =f (x +1)的图象关于y 轴对称;③对于任意的x 1,x 2∈[0,1],都有[f (x 1)-f (x 2)]·(x 1-x 2)>0.则f ⎝⎛⎭⎫32,f (2),f (3)的大小关系是( )A .f ⎝⎛⎭⎫32>f (2)>f (3)B .f (3)>f (2)>f ⎝⎛⎭⎫32C .f ⎝⎛⎭⎫32>f (3)>f (2)D .f (3)>f ⎝⎛⎭⎫32>f (2)13.若函数f (x )满足f (1-ln x )=1x,则f (2)=________.14.设函数f (x )=⎩⎪⎨⎪⎧x 2+2(x ≥0),2x +2(x <0),若f (t +1)>f (2t -4),则t 的取值X 围是________.15.[2020·某某某某一中模拟]黎曼函数是一个特殊的函数,由德国著名的数学家黎曼发现并提出,在高等数学中有着广泛的应用,其定义为:定义在区间[0,1]上的函数R (x )=⎩⎪⎨⎪⎧1p ,x =q p (p ,q 都是正整数,q p 是既约真分数),0,x =0,1或无理数.若函数f (x )是定义在R 上的奇函数,且对任意x 都有f (2-x )+f (x )=0,当x ∈[0,1]时,f (x )=R (x ),则f ⎝⎛⎭⎫185+f (lg 30)=________.16.[2020·某某市第一次适应性考试]已知函数f (x )=x e x +x +2e x +1+sin x ,则f (-5)+f (-4)+f (-3)+f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)+f (4)+f (5)的值是________.[B·素养提升]1.已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤e ,ln x ,x >e ,则函数y =f (e -x )的大致图象是( )2.已知f (x )=⎩⎪⎨⎪⎧|x -a |+1,x >1,a x +a ,x ≤1(a >0且a ≠1),若f (x )有最小值,则实数a 的取值X 围是( )A.⎝⎛⎭⎫23,1 B .(1,+∞)C.⎝⎛⎦⎤0,23∪(1,+∞)D.⎝⎛⎭⎫23,1∪(1,+∞) 3.[2020·某某某某新都诊断测试]已知定义在R 上的函数f (x )在(0,+∞)上单调递减,且满足对∀x ∈R ,都有f (x )-f (-x )=0,则符合上述条件的函数是( )A .f (x )=x 2+|x |+1B .f (x )=⎝⎛⎭⎫12|x |C .f (x )=ln|x +1|D .f (x )=cos x4.已知定义在R 上的偶函数y =f (x +2),其图象连续不间断,当x >2时,函数y =f (x )是单调函数,则满足f (x )=f ⎝⎛⎭⎫1-1x +4的所有x 之积为( )A .3B .-3C .-39D .395.已知函数f (x )=xx 2+1,关于函数f (x )的性质,有以下四个推断:①f (x )的定义域是(-∞,+∞);②f (x )的值域是⎣⎡⎦⎤-12,12;③f (x )是奇函数;④f (x )是区间(0,2)上的增函数.其中推断正确的个数是( )A .1B .2C .3D .46.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax,x ∈[-4,-1]的值域为________.7.已知定义在R 上的偶函数f (x )满足f (x +4)=f (x )+f (2),且在区间[0,2]上是增函数.给出以下结论:①函数f (x )的一个周期为4;②直线x =-4是函数f (x )图象的一条对称轴;③函数f (x )在[-6,-5)上单调递增,在[-5,-4)上单调递减; ④函数f (x )在[0,100]内有25个零点.其中正确的是________.(把你认为正确结论的序号都填上) 8.如果定义在R 上的函数f (x )满足:对任意的x 1≠x 2,都有x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1),则称f (x )为“H 函数”,给出下列函数:①y =-x 3+x +1;②y =3x -2(sin x -cos x );③y =1-e x ;④f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,0,x <1;⑤y =x x 2+1. 其中是“H 函数”的是________.(写出所有满足条件的函数的序号)在(0,+∞)上单调递减,可知D 正确.故选D.答案:D3.解析:由题意知,(m -5)+(1-2m )=0,解得m =-4.又当x >0时,f (x )=2x -1,则f (m )=f (-4)=-f (4)=-(24-1)=-15.故选A.答案:A4.解析:y =x 2e x ≥0,排除选项C ;函数y =x 2e x 既不是奇函数也不是偶函数,排除选项D ;当x →+∞时,y →+∞,排除选项B.综上,选A.答案:A5.解析:由题中图象可得a (-1)+b =3. ln(-1+a )=0,∴a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1.故f (-3)=2×(-3)+5=-1.答案:C6.解析:∵f (-x )+f (x )=0,∴f (x )为奇函数.又当x ≥0时,f (x )=2+m 2x -1,则f (0)=2+m1-1=0,∴m =-1.∴当x ≥0时,f (x )=12x -1.∴f (-1)=-f (1)=-⎝⎛⎭⎫12-1=12.故选C. 答案:C7.解析:因为y =ln x 关于直线y =x 的对称图形是函数y =e x 的图象,且把y =e x 的图象向左平移一个单位长度后,得到函数y =e x +1的图象,所以f (x )=e x +1.故选C.答案:C8.解析:由题意,得f (x )在(-∞,0]上单调递增,且f (1)=-1,所以f (2x -1)≥f (1),则|2x -1|≤1,解得0≤x ≤1.故选C.答案:C9.解析:当x 由0→12时,t 从-∞→0,且单调递增,当x 由12→1时,t 从0→+∞,且单调递增,所以排除A 、B 、C ,故选D.答案:D10.解析:根据题意得函数f (x )是周期为2的函数,作出函数f (x )的大致图象,如图所示,数形结合易知f (x )∈[0,1],则sgn f (x )=0或sgn f (x )=1,可知A 错误; f ⎝⎛⎭⎫4 0412=f ⎝⎛⎭⎫2 02012=f ⎝⎛⎭⎫12=12,可知B 错误; f (2k )=0(k ∈Z ),则sgn f (2k )=0(k ∈Z ),可知C 正确;当k =2时,sgn(f (2))=sgn(0)=0,|sgn 2|=1,可知D 错误.答案:C11.解析:由函数y =f (x +a )是偶函数,可得其图象关于y 轴对称,因此函数y =f (x )的图象关于直线x =a 对称,又f (x )在(-∞,a )上是增函数,所以函数y =f (x )在(a ,+∞)上是减函数.由于x 1<a ,x 2>a 且|x 1-a |<|x 2-a |,所以x 1到对称轴的距离比x 2到对称轴的距离小,故f (x 1)>f (x 2).答案:A12.解析:对任意的x ∈R ,都有f (x +1)=f (x -1),则f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数;因为函数y =f (x +1)的图象关于y 轴对称,所以函数f (x )的图象关于直线x =1对称;因为对任意的x 1,x 2∈[0,1],都有[f (x 1)-f (x 2)](x 1-x 2)>0,所以该函数在[0,1]上单调递增.因为f (3)=f (1),f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫12,f (2)=f (0),1>12>0,所以f (3)>f ⎝⎛⎭⎫32>f (2),故选D. 答案:D13.解析:方法一 令1-ln x =t ,则x =e 1-t ,于是f (t )=1e 1-t ,即f (x )=1e 1-x ,故f (2)=e.方法二 由1-ln x =2,得x =1e ,这时1x =11e=e ,即f (2)=e.答案:e14.解析:如图,画出函数f (x )=⎩⎪⎨⎪⎧x 2+2(x ≥0),2x +2(x <0)的大致图象,可知函数f (x )是增函数,若f (t +1)>f (2t -4),则只需要t +1>2t -4,解得t <5.答案:(-∞,5)15.解析:由于函数f (x )是定义在R 上的奇函数,且f (x )+f (2-x )=0, 所以f (x )=-f (2-x )=f (x -2),所以2是函数f (x )的周期,则f ⎝⎛⎭⎫185=f ⎝⎛⎭⎫185-4=f ⎝⎛⎭⎫-25=-f ⎝⎛⎭⎫25=-R ⎝⎛⎭⎫25=-15, f (lg 30)=f (lg 3+lg 10)=f (lg 3+1)=f (lg3-1)=-f (1-lg 3)=-R (1-lg 3)=0,所以f ⎝⎛⎭⎫185+f (lg 30)=-15.答案:-1516.解析:f (x )=x e x +x +2e x +1+sin x =x (e x +1)+2e x +1+sin x =2e x+1+x +sin x ,所以f (-x )=2e -x +1-x +sin(-x )=2e x e x +1-x -sin x ,所以f (x )+f (-x )=2e x +1+2e xe x +1=2,所以f (0)+f (0)=2⇒f (0)=1,所以 f (-5)+f (-4)+f (-3)+f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)+f (4)+f (5)=5×2+1=11. 答案:11[B·素养提升]+b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即⎣⎡⎦⎤-2,-12. 答案:⎣⎡⎦⎤-2,-12 7.解析:令x =-2,得f (-2+4)=f (-2)+f (2),得f (-2)=0,由于函数f (x )为偶函数,故f (2)=f (-2)=0,所以f (x +4)=f (x ),所以函数f (x )的一个周期为4,故①正确.由于函数f (x )为偶函数,故f (-4+x )=f (4-x )=f (4-8-x )=f (-4-x ),所以直线x =-4是函数f (x )图象的一条对称轴,故②正确.根据前面的分析,结合函数f (x )在区间[0,2]上是增函数,画出函数图象的大致趋势如图所示.由图可知,函数f (x )在[-6,-4)上单调递减,故③错误.根据图象可知,f (2)=f (6)=f (10)=…=f (98)=0,零点的周期为4,所以f (x )在[0,100]内共有25个零点,故④正确.综上所述,正确的序号有①②④.答案:①②④8.解析:因为x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1),所以f (x 1)(x 1-x 2)-f (x 2)(x 1-x 2)≥0,即[f (x 1)-f (x 2)](x 1-x 2)≥0,分析可得,若函数f (x )为“H 函数”,则函数f (x )为增函数或常函数.对于①,y =-x 3+x +1,则y ′=-3x 2+1,所以y =-x 3+x +1既不是R 上的增函数也不是常函数,故其不是“H 函数”;对于②,y =3x -2(sin x -cos x ),则y ′=3-2(cos x +sin x )=3-22sin ⎝⎛⎭⎫x +π4>0,所以y =3x -2(sin x -cos x )是R 上的增函数,故其是“H 函数”;对于③,y =1-e x是R 上的减函数,故其不是“H 函数”;对于④,f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,0,x <1,当x <1时,是常函数,当x ≥1时,是增函数,故其是“H 函数”;对于⑤,y =x x 2+1,当x ≠0时,y =1x +1x ,不是R 上的增函数也不是常函数,故其不是“H 函数”.所以满足条件的函数的序号是②④.答案:②④。

专题16 复数(习题)-2021届沪教版高考数学一轮复习(上海专用)

专题16 复数(习题)-2021届沪教版高考数学一轮复习(上海专用)

2021届高考数学一轮复习 专题16复数一、填空题1.(2020·上海松江·期末)已知复数z 满足,则2z i -(其中i 是虚数单位)的最小值为____________. 【答案】1 【解析】复数z 满足||1(z i =为虚数单位), 设cos sin z i θθ=+,[0θ∈,2)π.则|2||cos (sin 2)|1z i i θθθ-=+-,当且仅当时取等号.故答案为:1.2.(2020·上海高三其他)若复数z 满足i 12i01z+=,其中i 是虚数单位,则z 的虚部为________ 【答案】1- 【解析】i 12i 01z +=即12(12)0,2iiz i z i i+-+===-,z 的虚部为1-故答案为1- 【点睛】本题考查了行列式的计算,复数的虚部,意在考查学生的计算能力. 3.(2020·上海普陀·高三一模)设i 是虚数单位,若11z ai i=++是实数,则实数a = 【答案】12【解析】依题意,由于z 为实数,故110,22a a -==.4.(2020·上海市建平中学高三月考)已知x C ∈,且,则_____. 【答案】4或-1【解析】由()()54321110x x x x x x -=-++++=,得1x =,或43210x x x x ++++=,进而得到答案.∵x C ∈,且()()54321110x x x x x x -=-++++=,故1x =,或43210x x x x ++++=, 当1x =时,,当43210x x x x ++++=时, , 故,或-1故答案为:4或-1.5.(2020·上海市建平中学高三月考)设复数z 满足||1z =,使得关于x 的方程有实根,则这样的复数z 的和为________ 【答案】32- 【解析】设z a bi =+,(且),将原方程变为,则2220ax ax ++=①且220bx bx -=②;再对b 分类讨论可得;设z a bi =+,(且) 则原方程变为所以2220ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去;从而1a =-,此时1x =-,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得14a =-,b =所以14z =-±综上满足条件的所以复数的和为 故答案为:32-6.(2019·上海市建平中学高三月考)设复数z 满足(4)32i z i -=+(i 是虚数单位),则z 的虚部为_______. 【答案】-3 【解析】试题分析:由题意得:32436iz i i+=+=-+,其虚部为-3 7.(2019·上海市建平中学高三月考)已知复数z 满足(1i)1i z +=-,则Re()z =________ 【答案】0 【解析】因为,所以()Re 0z =. 故答案为0.8.(2020·上海普陀·三模)在复平面内,点()2,1A -对应的复数z ,则1z +=___________【解析】由题意2z i =-+,∴。

高考数学复习知识点讲解课件16--- 隐圆问题

高考数学复习知识点讲解课件16--- 隐圆问题
1234
解析 由题意得|OM|= 5-1=2,所以点 M 在以 O 为圆心,半径为 2 的 圆上. 设 CD 的中点为 N,则 N(2 2,a+1),且|CD|=2. 因为当 A,B 在圆 O 上运动时,始终有∠CMD 为锐角,所以以 O 为圆心, 半径为 2 的圆与以 N(2 2,a+1)为圆心,半径为 1 的圆外离, 所以 2 22+a+12>3,整理得(a+1)2>1,解得 a<-2 或 a>0, 所以实数a的取值范围为(-∞,-2)∪(0,+∞).
A. 6
B. 7
√C. 10
D. 11
1234
解析 设 Q(a,0),M(x,y),所以|MQ|= x-a2+y2, 由 P-12,0,所以|MP|= x+122+y2, 因为||MMQP||=λ 且 λ=2,所以 xx-+a1222++yy22=2, 整理可得 x2+y2+4+32ax=a2-3 1, 又动点M的轨迹是x2+y2=1,
1234
跟踪演练
1.在平面直角坐标系 xOy 中,点 A(-12,0),B(0,6),点 P 在圆 O:x2+y2=
50 上,若P→A·P→B≤20,则点 P 的横坐标的取值范围是
A.[0, 2]
√B.[-5 2,1]
C.[- 2, 2]
D.[-2,0]
1234
解析 设 P(x,y),由P→A·P→B≤20 可得
解析 设M(x,y),由|MA|2+|MO|2=10, 可得x2+(y-1)2=4, ∴M点在圆x2+(y-1)2=4上, 故圆x2+(y-1)2=4和圆(x-a)2+(y-a+2)2=1相交或相切, ∴1≤ a2+a-32≤3,∴0≤a≤3.
1234
4.已知圆 O:x2+y2=5,A,B 为圆 O 上的两个动点,且|AB|=2,M 为弦 AB 的中点,C(2 2,a),D(2 2,a+2).当 A,B 在圆 O 上运动时,始终有 ∠CMD 为锐角,则实数 a 的取值范围为__(-__∞__,__-__2_)_∪__(_0_,__+__∞__) _.

高考数学二轮复习考点十六《直线与圆锥曲线综合问题》课件

高考数学二轮复习考点十六《直线与圆锥曲线综合问题》课件
考点十六 直线与圆锥曲线综合问题
一、选择题(在每小题给出的四个选项中,只有一项符合题目要求) 1.已知双曲线ax22-by22=1(a>0,b>0)的离心率为 3,右焦点到一条渐近 线的距离为 2,则此双曲线的焦距等于( ) A. 3 B.2 3 C.3 D.6
答案 B
|bc+0| 解析 由题意,得焦点 F(c,0)到渐近线 bx+ay=0 的距离为 d= a2+b2 =bcc=b= 2,又ac= 3,c2=a2+b2,解得 c= 3,所以该双曲线的焦距为 2c=2 3,故选 B.
A.若 x1+x2=6,则|PQ|=8 B.以 PQ 为直径的圆与准线 l 相切 C.设 M(0,1),则|PM|+|PP1|≥ 2 D.过点 M(0,1)与抛物线 C 有且仅有一个公共点的直线至多有 2 条 答案 ABC
解析 对于 A,因为 p=2,所以 x1+x2+2=|PQ|,则|PQ|=8,故 A 正 确;对于 B,设 N 为 PQ 的中点,点 N 在 l 上的射影为 N1,点 Q 在 l 上的射 影为 Q1,则由梯形性质可得|NN1|=|PP1|+2 |QQ1|=|PF|+2 |QF|=|P2Q|,故 B 正 确;对于 C,因为 F(1,0),所以|PM|+|PP1|=|PM|+|PF|≥|MF|= 2,故 C 正确;对于 D,显然直线 x=0,y=1 与抛物线只有一个公共点,设过 M 斜 率存在的直线的方程为 y=kx+1,联立yy= 2=k4xx+,1,可得 k2x2+(2k-4)x+1 =0,令 Δ=0,则 k=1,所以直线 y=x+1 与抛物线也只有一个公共点,此 时有三条直线符合题意,故 D 错误.故选 ABC.
三、填空题 9.若直线 2x+4y+m=0 经过抛物线 y=2x2 的焦点,则 m=________.

函数导数、三角函数、不等式(二):高考数学一轮复习基础必刷题

函数导数、三角函数、不等式(二):高考数学一轮复习基础必刷题

函数导数、三角函数、不等式(二):高考数学一轮复习基础必刷题姓名:___________��班级:___________��学号:___________一、单选题1.函数41y x =-的定义域为()A .[)0,1B .()1,+∞C .()()0,11,+∞ D .[)()0,11,+∞ 2.设a >0,b >0,化简2115113366221()()()3a ab a ⋅-÷的结果是()A .2313a -B .233a -C .13a-D .-3a 3.已知不等式240x ax ++ 的解集为,R 则a 的取值范围是()A .[]4,4-B .()4,4-C .][(),44,∞∞--⋃+D .()(),44,-∞-+∞ 4.曲线31y x =+在点(1,)a -处的切线方程为()A .33y x =+B .31y x =+C .31y x =--D .33y x =--5.下列命题中正确的是()A .若0ab >,a b >,则11a b<B .若a b <,则22ac bc <C .若a b >,c d >,则a c b d ->-D .若a b >,c d <,则a b c d>6.下列判断正确的是()A .命题“对顶角相等”的逆命题是真命题B .命题“若1x <,则21x >”的否命题是“21x <,则1x <”C .“1a =”是“函数()22cos sin f x ax ax =-的最小正周期是π”的必要不充分条件D .“0b =”是“函数()2f x ax bx c =++是偶函数”的充要条件7.已知集合{lg(2)}A xy x ==-∣,{}2120B x x x =--<∣,则A B = ()A .()2,4B .()3,4-C .()2,3D .()4,3-8.已知函数21()23ln 2f x x x x =+-,则()f x 的单调递减区间是()A .(3,1)-B .(0,1)C .(,3)(1,)-∞-+∞ D .(1,)+∞9.已知函数f (x )=sin (ωx +2φ)﹣2sinφcos (ωx +φ)(ω>0,φ∈R )的图象的相邻两条对称轴相距2π个单位,则ω=()A .1B .12C .13D .210.公元前6世纪,古希腊毕达哥拉斯学派在研究正五边形和正十边形的作图时,发现了黄金分割数12,其近似值为0.618,这是一个伟大的发现,这一数值也表示为2sin18a =,若24a b +=,则21cos 72a b=-()A .12B .2CD .411.已知不等式5132-≤-x x 的解集为A ,关于x 的不等式2220-+>ax x 的解集为B ,且⊆ A B B ,则实数a 的取值范围为()A .(0,)+∞B .1,16⎛⎫+∞ ⎪⎝⎭C .2,9⎛⎫+∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭12.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .0,2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦二、填空题13.若1tan 3α=-,则3sin 2cos 2sin cos αααα+=-_______.14.已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >,则b 的值为______.15.已知tan 312πα⎛⎫-=- ⎪⎝⎭,则tan 6πα⎛⎫+= ⎪⎝⎭______.16.已知偶函数()f x 在(0,)+∞上是减函数,且(1)0f -=,则()0f x x<的解集__________三、解答题17.已知函数3()395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 在[]3,3-上的最大值和最小值.18.已知312sin ,,,cos ,5213πααπββ⎛⎫=∈=- ⎪⎝⎭是第三象限角,求(1)cos α与sin β的值;(2)cos()αβ-.19.已知函数()()21ln 12f x a x x a x =+-+.(1)求函数f (x )的单调区间;(2)若f (x )≥0对定义域内的任意x 恒成立,求实数a 的取值范围.20.已知函数()ln 2f x x x ax =-+(a 为实数)(1)若2a =,求()f x 在21,e ⎡⎤⎣⎦的最值;(2)若()0f x ≥恒成立,求a 的取值范围.21.在ABC 中,内角,,A B C 的对边分别为,,a b c ,满足cos cos 2cos a B b A c B +=,b .(1)求B ;(2)若2a c -=,求ABC 的面积.22.设函数22()3ln 1f x a x ax x =+-+,其中0a >.(1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.参考答案:1.D 【解析】【分析】由题意列不等式组求解【详解】由题意得2010x x ≥⎧⎨-≠⎩,解得0x ≥且1x ≠,故选:D 2.D 【解析】【分析】由分数指数幂的运算性质可得结果.【详解】因为0a >,0b >,所以2115211115113366326326221()()()333a b a b b a ba +-+-⋅-÷=-⋅=-.故选:D.3.A 【解析】【分析】利用判别式小于等于零列不等式求解即可.【详解】因为不等式240x ax ++ 的解集为,R 所以2Δ4140a =-⨯⨯ ,解得44a -,所以a 的取值范围是[]4,4-,故选:A.4.A 【解析】【分析】求出导函数,进而利用导数的几何意义得到切线的斜率,再求出a 的值,利用点斜式求出切线方程.【详解】()23f x x '=,所以()13f '-=,又当1x =-时,31110a x =+=-+=,所以31y x =+在点(1,)a -处的切线方程为:()31y x =+,即33y x =+故选:A 5.A 【解析】【分析】利用不等式的基本性质可判断A 选项,利用特殊值法可判断BCD 选项.【详解】因为0ab >,a b >,所以a b ab ab >,即11a b<,所以A 正确;若a b <,0c =,则22ac bc =,所以B 错误;取2a c ==,1b d ==,则a c b d -=-,所以C 错误;取2a =,1b =,2c =-,1d =-,则a bc d=,所以D 错误.故选:A.6.D 【解析】【分析】逐项进行判断,根据逆命题、否命题、充分条件、必要条件的定义进行判断即可.【详解】对A ,命题“对顶角相等”的逆命题为:“相等的两个角为对顶角”,假命题,故错;对B ,命题“若1x >,则21x >”的否命题是“1x ≤,则21x ≤”,故错;对C ,()22cos sin sin 2f x ax ax ax =-=,最小正周期为π,所以212a aππ=⇒=±所以“1a =”是“函数()22cos sin f x ax ax =-的最小正周期是π”的充分不必要条件,故错;对D ,函数()2f x ax bx c =++是偶函数,则函数不含有奇次项,所以0b =故“0b =”是“函数()2f x ax bx c =++是偶函数”的充要条件.7.A 【解析】【分析】求出集合,A B 可得A B .【详解】(2,)A =+∞,(3,4)B =-,故(2,4)A B ⋂=,故选:A.8.B 【解析】【分析】利用导数研究()f x 的单调递减区间.【详解】由题设,2323()2x x f x x x x+-'=-+=,又定义域为(0,)+∞,令()0f x '<,则223(3)(1)0x x x x +-=+-<,解得31x -<<,故01x <<,∴()f x 在(0,1)上递减.故选:B.9.D 【解析】【分析】分析角度的关系将sin(2)x ωϕ+展开,再合一变形求得()f x 的解析式,再根据图象的相邻两条对称轴相距2π个单位求得周期再求ω即可.【详解】()sin(2)2sin cos()sin()cos cos()sin 2sin cos ()f x x x x x x ωϕϕωϕωϕϕωϕϕϕωϕ=+-+=+++-+()sin()cos sin cos()sin sin x x x x ωϕϕϕωϕωϕϕω=+-+=+-=⎡⎤⎣⎦.即()f x =sin xω又图象的相邻两条对称轴相距2π个单位,故()f x 的周期为π.故22ππωω=⇒=.故选:D本题主要考查了三角函数的和差角公式以及周期的求法,属于基础题型.10.B 【解析】【分析】根据同角三角函数平方关系可求得24cos 18b = ,利用二倍角公式化简所求式子即可得到结果.【详解】2sin18a = ,()2222444sin 1841sin 184cos 18b a ∴=-=-=-=,22222216sin 18cos 184sin 3621cos 72112sin 362sin 36a b ===--∴+.故选:B.11.B 【解析】【分析】解出不等式5132-≤-x x 可得集合A ,由⊆ A B B 可得A B ⊆,然后可得2220-+>ax x 在(3,7]x ∈上恒成立,然后分离参数求解即可.【详解】由5132-≤-x x 得51032x x --≤-,()7023x x -≤-,解得37x <≤,因为⊆ A B B ,所以A B⊆所以可得2220-+>ax x 在(3,7]x ∈上恒成立,即222->x a x 在(3,7]x ∈上恒成立,故只需2max 22-⎛⎫> ⎪⎝⎭x a x ,222211111111,,2241673-⎛⎫⎡⎫=-+=--+∈ ⎪⎪⎢⎝⎭⎣⎭x x x x x x ,当114x =时,2max 21216-⎛⎫= ⎪⎝⎭x x ,故116a >.故选:B 12.C 【解析】【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即02e <≤;当32b b c->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.13.35-【解析】【分析】利用同角三角函数的基本关系,分子、分母同除以cos α即可求解.【详解】将原式分子、分母同除以cos α3sin 2cos 3tan 212322sin cos 2tan 1513αααααα++-+===-----故答案为:35-【点睛】本题考查了同角三角函数的基本关系、齐次式,属于基础题.14.2【解析】【分析】由题意可得1和b 是方程2320ax x -+=的两个根,由根与系数的关系可得321,1b b a a+=⨯=,从而可求出b 的值【详解】因为关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+=的两个根,所以321,1b b a a+=⨯=,解得1,2a b ==,故答案为:215.12-【解析】【分析】tan tan 6124πππαα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,然后算出即可.【详解】tan tan1124tan tan 612421tan tan 124ππαπππααππα⎛⎫-+ ⎪⎛⎫⎛⎫⎝⎭+=-+==- ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭.故答案为:12-【点睛】本题考查正切函数的和差公式,找出已知角与所求角的关系是解题的关键.16.(1,0)(1,)-È+¥【解析】【分析】分0x >和0x <两种情况讨论x 的范围,根据函数的单调性可得到答案.【详解】因为()f x 是偶函数,且(1)0f -=,所以(1)(1)0f f =-=,又()f x 在(0,)+∞上是减函数,所以()f x 在(,0)-∞上是增函数,①当0x >时,由()0f x x<得()0f x <,又由于()f x 在(0,)+∞上为减函数,且(1)0f =,所以()(1)f x f <,得1x >;②当0x <时,由()0f x x<得()>0f x ,又(1)0f -=,()f x 在(,0)-∞上是增函数,所以()>(1)f x f -,所以10x -<<.综上,原不等式的解集为:(1,0)(1,)-È+¥.故答案为:(1,0)(1,)-È+¥.【点睛】方法点睛:本题主要考查函数相关性质,利用函数性质解不等式,运用函数的奇偶性与单调性的关系是进行区间转换的一种有效手段.奇函数在对称区间上的单调性相同,且()() f x f x -=-.偶函数在对称区间上的单调性相反,且()()() f x f x f x =-=..17.(1)()1,1-;(2)最大值为59,最小值为49-【解析】(1)求出()f x ',令()0f x '<,得到函数()f x 的单调递减区间;(2)求出函数在[]3,3-的单调性,根据极值和端点值,求得最值.【详解】(1)()2999(1)(1)f x x x x =-+-'=,x ∈R令()0f x '<,得11x -<<,所以()f x 的减区间为()1,1-.(2)由(1),令()0f x '>,得1x <-或1x >知:[]3,1x ∈--,()f x 为增函数,[]1,1x ∈-,()f x 为减函数,[]1,3x ∈,()f x 为增函数.()349f -=-,()111f -=,()11f =-,()539f =.所以()f x 在区间[]3,3-上的最大值为59,最小值为49-.【点睛】本题考查了利用导数研究函数的单调性和求函数的最值,属于基础题.18.(1)4cos =5α-,5sin 13β=-;(2)3365【解析】【分析】(1)根据平方关系计算即可得出cos α,sin β;(2)由(1)的结果,结合两角差的余弦公式求解即可.【详解】(1)由3sin 5α=,,2παπ⎛⎫∈ ⎪⎝⎭,得4cos 5α=-.又由12cos 13b =-,β是第三象限角,得5sin 13β===-.(2)由(1)得4123533cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.19.(1)答案见解析(2)12a ≤-【解析】【分析】(1)求导数,然后对a 进行分类讨论,利用导数的正负,可得函数()f x 的单调区间;(2)利用(1)中函数的单调性,求得函数在1x =处取得最小值,即可求实数的取值范围.(1)解:求导可得()(1)()(0)>'--=x a x f x x x①0a ≤时,令()0f x '<可得1x <,由于0x >知01x <<;令()0f x '>,得1x >∴函数()f x 在(0,1)上单调递减,在(1,)+∞上单调递增;②01a <<时,令()0f x '<可得1<<a x ;令()0f x '>,得1x >或x a <,由于0x >知0x a <<或1x >;∴函数()f x 在(,1)a 上单调递减,在(0,),(1,)+∞a 上单调递增;③1a =时,()0f x '≥,函数()y f x =在(0,)+∞上单调递增;④1a >时,令()0f x '<可得1x a <<;令()0f x '>,得x a >或1x <,由于0x >知01x <<或x a>∴函数()f x 在(1,)a 上单调递减,在(0,1),(,)+∞a 上单调递增;(2)由(1)0a ≥时,1(1)02f a =--<,(不符合,舍去)当0a <时,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,故函数在1x =处取得最小值,所以函数()0f x ≥对定义域内的任意x 恒成立时,只需要(1)0f ≥即可∴12a ≤-.综上,12a ≤-.20.(1)最小值为 2e -,最大值为2;(2)(],1ln 2-∞+.【解析】【分析】(1)首先求出函数的导函数,即可得到函数的单调性,从而得到函数的最小值,再求出区间端点的函数值,即可求出函数在区间上的最大值;(2)首先求出函数的定义域,参变分离,即可得到2ln x a x +≥恒成立,令()2 ln =+g x x x ,利用导数研究函数的单调性,即可求出函数的最小值,从而得解;【详解】(1)当2a =时,() ln 22=-+f x x x x ,()ln 1f x x '=-由()0f x '<得0 x e <<,由()0f x '>得x e >,所以()f x 在()0,e 上单调递减,在()e +∞,上单调递增,且() ln 2 2 2=-+=-f e e e e e ,() 1 1ln12 2 0f =-+=,()2222 ln 2 2 2-+==f e e e e 则函数()f x 在区间21,e ⎡⎤⎣⎦上的最小值为 2e -,最大值为2.(2)由题得函数的定义域为()0,∞+,若()0f x ≥恒成立,则ln 20x x ax -+≥,即2ln x a x+≥恒成立,令()2 ln =+g x x x ,则()22122 x g x x x x -'=-=,当02x <<时,()0g x '<;当2x >时,()0g x '>,所以()g x 在()0,2上单调递减,在()2,+∞上单调递增,则()min 21ln 2()==+g x g ,所以1ln 2a ≤+,故a 的取值范围为(],1ln 2-∞+.21.(1)3π;(2【解析】(1)利用正弦定理的边角互化以及两角和的正弦公式可得sin()2sin cos A B C B +=,再利用三角形的内角和性质以及诱导公式即可求解.(2)根据余弦定理求出3ac =,再由三角形的面积公式即可求解.【详解】解:(1)由正弦定理知sin cos sin cos 2sin cos A B B A C B +=,sin()2sin cos A B C B +=,因为,(0,)A B C C ππ+=-∈,所以sin 2sin cos C C B =,由sin 0C ≠,故1cos 2B =.因为(0,)B π∈,所以3B π=.(2)由余弦定理及2a c -=知2222cos b a c ac B =+-.227a c ac ∴+-=,2()7a c ac ∴-+=,47ac ∴+=,3ac ∴=.11sin 32224ABC S ac B ∴==⨯⨯= .22.(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围.【详解】(1)函数的定义域为()0,∞+,又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>,当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化.。

高考数学一轮复习3 (16)

高考数学一轮复习3 (16)
3 a ( 1 - q ) 7 S3= 1 =4, 1 1-q a1= , 4 则 解得 6 a1(1-q ) 63 q=2, S = = , 6 4 1-q
1 7 所以 a8=a1q =4× 2 =32.
7
答案
18
5 (1) 4
(2)32
基础诊断 考点突破
考点二 等比数列的判定与证明 【例2】 设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2. (1)设bn=an+1-2an,证明:数列{bn}是等比数列; (2)求数列{an}的通项公式.
n 项和 TΒιβλιοθήκη .解 (1)因为Sn=2an-a3,
所以an=Sn-Sn-1=2an-2an-1(n≥2),
即an=2an-1(n≥2). 从而a2=2a1,a3=2a2=4a1, 又因为a1,a2+1,a3成等差数列, 即a1+a3=2(a2+1),
∴a1=a1q+3,a1(1+q)=a1q2+3, ∴q2-2q=0,q≠0. 则公比q=2. 答案 2
5
基础诊断
考点突破
4.(必修5P61习题3改编)若等比数列的通项公式为an=4×31-n,则数列{an}是________ 数列(填“递增”或“递减”). 答案 递减
5.(必修5P67习题3改编)设{an}是等比数列,给出下列四个命题:
q 表示 公比 ,通常用字母___ 那么这个数列叫做等比数列,这个常数叫做等比数列的_____
(q≠0).
7
基础诊断
考点突破
2.等比数列的通项公式 a1· qn-1 . 设等比数列{an}的首项为a1,公比为q,则它的通项an=_________
3.等比中项
如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的 等比中项 ____________.

2023年高考数学二轮复习讲练测专题16 函数与导数常见经典压轴小题全归类(原卷版)

2023年高考数学二轮复习讲练测专题16 函数与导数常见经典压轴小题全归类(原卷版)

专题16函数与导数常见经典压轴小题全归类【命题规律】1、导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2、应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.【核心考点目录】核心考点一:函数零点问题之分段分析法模型核心考点二:函数嵌套问题核心考点三:函数整数解问题核心考点四:唯一零点求值问题核心考点五:等高线问题核心考点六:分段函数零点问题核心考点七:函数对称问题核心考点八:零点嵌套问题核心考点九:函数零点问题之三变量问题核心考点十:倍值函数核心考点十一:函数不动点问题核心考点十二:函数的旋转问题核心考点十三:构造函数解不等式核心考点十四:导数中的距离问题核心考点十五:导数的同构思想核心考点十六:不等式恒成立之分离参数、分离函数、放缩法核心考点十七:三次函数问题核心考点十八:切线问题核心考点十九:任意存在性问题核心考点二十:双参数最值问题核心考点二十一:切线斜率与割线斜率核心考点二十二:最大值的最小值问题(平口单峰函数、铅锤距离)核心考点二十三:两边夹问题和零点相同问题核心考点二十四:函数的伸缩变换问题【真题回归】1.(2022·全国·统考高考真题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1-B .12-C .12D .12.(2022·全国·统考高考真题)函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+, 3.(多选题)(2022·全国·统考高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线4.(2022·天津·统考高考真题)设a ∈R ,对任意实数x ,记(){}2min 2,35f x x x ax a =--+-.若()f x 至少有3个零点,则实数a 的取值范围为______.5.(2022·全国·统考高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.6.(2022·全国·统考高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.7.(2022·浙江·统考高考真题)已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是_________.8.(2022·全国·统考高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 9.(2022·北京·统考高考真题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为________;a 的最大值为___________.【方法技巧与总结】1、求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现()()f f a 的形式时,应从内到外依次求值;当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2、含有抽象函数的分段函数,在处理时首先要明确目标,即让自变量向有具体解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响).3、含分段函数的不等式在处理上通常有两种方法:一种是利用代数手段,通过对x 进行分类讨论将不等式转变为具体的不等式求解;另一种是通过作出分段函数的图象,数形结合,利用图象的特点解不等式.4、分段函数零点的求解与判断方法:(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.5、动态二次函数中静态的值:解决这类问题主要考虑二次函数的有关性质及式子变形,注意二次函数的系数、图象的开口、对称轴是否存在不变的性质,二次函数的图象是否过定点,从而简化解题.6、动态二次函数零点个数和分布问题:通常转化为相应二次函数的图象与x 轴交点的个数问题,结合二次函数的图象,通过对称轴,根的判别式,相应区间端点函数值等来考虑.7、求二次函数最值问题,应结合二次函数的图象求解,有三种常见类型: (1)对称轴变动,区间固定; (2)对称轴固定,区间变动; (3)对称轴变动,区间也变动.这时要讨论对称轴何时在区间之内,何时在区间之外.讨论的目的是确定对称轴和区间的关系,明确函数的单调情况,从而确定函数的最值.8、由于三次函数的导函数为我们最熟悉的二次函数,所以基本的研究思路是:借助导函数的图象来研究原函数的图象.如借助导函数的正负研究原函数的单调性;借助导函数的(变号)零点研究原函数的极值点(最值点);综合借助导函数的图象画出原函数的图象并研究原函数的零点…具体来说,对于三次函数()()32 0f x ax bx cx d a =+++>,其导函数为()()232 0f x ax bx c a '=++>,根的判别式()243b ac ∆=-.增区间:(), x -∞,0∆≤恒成立,三次函数()f x 在R 上为增函数,没有极值点,有且只有一个零点;(2)当0∆≥时,()0f x '=有两根1x ,2x ,不妨设12x x <,则1223b x x a+=-,可得三次函数()f x 在()1, x -∞,()2, x +∞上为增函数,在()12, x x 上为减函数,则1x ,2x 分别为三次函数()32f x ax bx cx d=+++的两个不相等的极值点,那么:① 若()()120f x f x ⋅>,则()f x 有且只有1个零点; ② 若()()120f x f x ⋅<,则()f x 有3个零点; ③ 若()()120f x f x ⋅=,则()f x 有2个零点.特别地,若三次函数()()32 0f x ax bx cx d a =+++>存在极值点0x ,且()00f x =,则()f x 地解析式为()()()20f x a x x x m =--.同理,对于三次函数()()32 0f x ax bx cx d a =+++<,其性质也可类比得到.9、由于三次函数()()32 0f x ax bx cx d a =+++≠的导函数()232f x ax bx c '=++为二次函数,其图象变化规律具有对称性,所以三次函数图象也应当具有对称性,其图象对称中心应当为点, 33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,此结论可以由对称性的定义加以证明.事实上,该图象对称中心的横坐标正是三次函数导函数的极值点.10、对于三次函数图象的切线问题,和一般函数的研究方法相同.导数的几何意义就是求图象在该店处切线的斜率,利用导数研究函数的切线问题,要区分“在”与“过”的不同,如果是过某一点,一定要设切点坐标,然后根据具体的条件得到方程,然后解出参数即可.11、恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.12、如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值.13、当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数图象之间的关系,得出答案或列出条件,求出参数的范围.14、两类零点问题的不同处理方法利用零点存在性定理的条件为函数图象在区间[a ,b ]上是连续不断的曲线,且()()0f a f b ⋅<..①直接法:判断-一个零点时,若函数为单调函数,则只需取值证明()()0f a f b ⋅<.②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明()()0f a f b ⋅<.15、利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等. (2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. 16、已知函数零点个数求参数的常用方法(1)分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.【核心考点】核心考点一:函数零点问题之分段分析法模型 【典型例题】例1.(2023·浙江奉化·高二期末)若函数322ln ()x ex mx xf x x -+-=至少存在一个零点,则m 的取值范围为( ) A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎡⎫++∞⎪⎢⎣⎭C .1,e e ⎛⎤-∞+ ⎥⎝⎦D .1,e e ⎡⎫++∞⎪⎢⎣⎭例2.(2023·天津·耀华中学高二期中)设函数()322ln f x x ex mx x =-+-,记()()f xg x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是 A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .210,e e ⎛⎤+ ⎥⎝⎦C .21e ,e ⎛⎫++∞ ⎪⎝⎭D .2211e ,e e e ⎛⎤--+ ⎥⎝⎦例3.(2023·湖南·长沙一中高三月考(文))设函数()22x xf x x x a e=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是( ) A .1(0,1]e+B .1(0,]e e +C .1[,)e e ++∞D .1(,1]e-∞+核心考点二:函数嵌套问题 【典型例题】例4.(2023·全国·高三专题练习)已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为A .3B .1或3C .4或6D .3或4或6例5.(2023·全国·高三专题练习(文))已知函数()||12x f x e =-,()()11,021ln ,0x x g x x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()0g f x m -=有四个不同的解,则实数m 的取值集合为( ) A .ln 20,2⎛⎫ ⎪⎝⎭B .ln 2,12⎛⎫⎪⎝⎭C .ln 22⎧⎫⎨⎬⎩⎭D .()0,1例6.(2023·河南·高三月考(文))已知函数()ln x f x x=,若关于x 的方程()()210f x af x a ++-=⎡⎤⎣⎦有且仅有三个不同的实数解,则实数a 的取值范围是( ) A .()2e,1e --B .()1e,0-C .(),1e -∞-D .()1e,2e -核心考点三:函数整数解问题 【典型例题】例7.(2023·福建宁德·高三)当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的最大值为( ) A .2-B .1-C .0D .1例8.(2023·江苏·苏州大学附属中学高三月考)已知a Z ∈,关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13B .21C .26D .30例9.(2023·江苏宿迁·高一月考)用符号[x ]表示不超过x 的最大整数(称为x 的整数部分),如[﹣1.2]=﹣2,[0.2]=0,[1]=1,设函数f (x )=(1﹣ln x )(ln x ﹣ax )有三个不同的零点x 1,x 2,x 3,若[x 1]+[x 2]+[x 3]=6,则实数a 的取值范围是( ) A .10,e ⎛⎫⎪⎝⎭B .ln 31,3e ⎛⎫⎪⎝⎭ C .ln 21,2e ⎡⎫⎪⎢⎣⎭ D .ln 2ln 3,23⎡⎫⎪⎢⎣⎭ 核心考点四:唯一零点求值问题 【典型例题】例10.(2023·安徽蚌埠·模拟预测(理))已知函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则a =( )A .0B .12-C .1D .2例11.(2023·辽宁沈阳·模拟预测)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()x g x h x e x +=+,若函数()()12216x f x g x λλ-=+--有唯一零点,则正实数λ的值为( )A .12B .13C .2D .3例12.(2023·新疆·莎车县第一中学高三期中)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin xg x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为 A .1-或12B .1或12-C .1-或2D .2-或1核心考点五:等高线问题 【典型例题】例13.(2023·陕西·千阳县中学模拟预测(理))已知函数2()log 1f x x =-,若方程()f x a =(0)a >的4个不同实根从小到大依次为1x ,2x ,3x ,4x ,有以下三个结论:①142x x +=且232x x +=;②当1a =时,12111x x +=且34111x x +=;③21340x x x x +=.其中正确的结论个数为( ) A .0 B .1 C .2 D .3例14.(2023·江苏省天一中学高三月考)已知函数2()(2)x f x x x e =-,若方程()f x a =有3个不同的实根()123123x x x x x x <<,,,则22ax -的取值范围为( ) A .10e⎡⎫-⎪⎢⎣⎭,B.1e⎡-⎢⎣⎭C.()D.(例15.(2023·浙江·高一单元测试)已知函数(){}2max ,32f x x x =-,其中{},max ,,p p q p q q p q ≥⎧=⎨<⎩,若方程()()302f x ax a =+>有四个不同的实根1x 、2x 、3x 、()41234x x x x x <<<,则1423x x x x ++的取值范围是( )A .93,102⎫⎛-- ⎪⎝⎭B .193,102⎫⎛-- ⎪⎝⎭C .39,210⎫⎛- ⎪⎝⎭D .319,210⎫⎛- ⎪⎝⎭核心考点六:分段函数零点问题 【典型例题】例16.(2023·山东青岛·高三期末)已知函数2|ln(1),1()(2),1x x f x x x ⎧+-=⎨+≤-⎩,若方程()0f x m -=有4个不相同的解,则实数m 的取值范围为( ) A .(0,1]B .[0,1)C .(0,1)D .[0,1]例17.(2023·全国·高三专题练习)已知函数2log ,1()11,14x x f x x x >⎧⎪=⎨+≤⎪⎩,()()g x f x kx =-,若函数()g x 有两个零点,则k 的取值范围是( ) A .10,4⎛⎤⎥⎝⎦B .10,ln 2e ⎛⎫ ⎪⎝⎭C .10,e ⎡⎫⎪⎢⎣⎭D .11,42eln ⎡⎫⎪⎢⎣⎭例18.(2023·江苏·高三专题练习)已知函数22,0()log ,0x x f x x x ⎧≤=⎨>⎩,函数()()g x f x x m =++,若()g x 有两个零点,则m 的取值范围是( ). A .[1,)-+∞B .(,1]-∞-C .[0,)+∞D .[1,0)-核心考点七:函数对称问题 【典型例题】例19.(2023·安徽省滁州中学高三月考(文))已知函数()22ln ,03,02x x x x f x x x x ->⎧⎪=⎨--≤⎪⎩的图象上有且仅有四个不同的点关于直线1y =的对称点在10kx y +-=的图象上,则实数k 的取值范围是A .1,12⎛⎫⎪⎝⎭B .13,24⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭例20.(2023·全国·高一课时练习)若直角坐标平面内的两点P ,Q 满足条件:①P ,Q 都在函数()f x 的图象上;②P ,Q 关于原点对称,则称点对[],P Q 是函数()f x 的一个“友好点对”(注:点对[],P Q 与[],Q P 看作同一个“友好点对”).已知函数()22log ,04,0x x f x x x x >⎧=⎨--≤⎩,则此函数的“友好点对”有( )A .0个B .1个C .2个D .3个例21.(2023·福建·厦门一中高一竞赛)若函数y =f (x )图象上存在不同的两点A ,B 关于y 轴对称,则称点对[A ,B ]是函数y =f (x )的一对“黄金点对”(注:点对[A ,B ]与[B ,A ]可看作同一对“黄金点对”)已知函数2229,0()4,041232,4x x f x x x x x x x +<⎧⎪=-+≤≤⎨⎪-+>⎩,则此函数的“黄金点对”有( )A .0对B .1对C .2对D .3对核心考点八:零点嵌套问题 【典型例题】例22.(2023·湖北武汉·高三月考)已知函数2()()(1)()1x x f x xe a xe a =+-+-有三个不同的零点123,,x x x .其中123x x x <<,则3122123(1)(1)(1)x x x x e x e x e ---的值为( )A .1B .2(1)a -C .1-D .1a -例23.(2023·全国·模拟预测(理))已知函数2()e e x x x ax f x a ⎛⎫=+- ⎪⎝⎭有三个不同的零点123,,x x x (其中123x x x <<),则3122312111e e ex x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为 A .1B .1-C .aD .a -例24.(2023·浙江省杭州第二中学高三开学考试)已知函数()()()2ln ln f x ax x x x x =+--,有三个不同的零点,(其中123x x x <<),则2312123ln ln ln 111x x x x x x ⎛⎫⎛⎫⎛⎫---⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为 A .1a - B .1a - C .-1 D .1核心考点九:函数零点问题之三变量问题 【典型例题】例25.(2023·全国·高三)若存在两个正实数x 、y ,使得等式3(24)(ln ln )0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ).A .()0-∞,B .3(0)[)2e-∞⋃+∞,, C .3(0]2e,D .3[)2e+∞, 例26.(2023·山东枣庄·高二期末)对于任意的实数[1,e]x ∈,总存在三个不同的实数y ,使得ln 0ye xy x ay y--=成立,其中e 为自然对数的底数,则实数a 的取值范围是A .2(,)4e -∞-B .2(,0)4e -C .2[,)4e -+∞D .2(,)4e -+∞例27.(2023·四川省新津中学高三月考(理))若存在两个正实数,x y ,使得等式330yx x e ay -=成立,其中e 为自然对数的底数,则实数a 的取值范围为A .2[,)8e +∞B .3(0,]27eC .3[,)27e +∞D .2(0,]8e核心考点十:倍值函数 【典型例题】例28.(河南省郑州市第一中学2022-2023学年高三上学期期中考试数学(理)试题)对于函数()y f x =,若存在区间[],a b ,当[],x a b ∈时的值域为[](),0ka kb k >,则称()y f x =为k 倍值函数.若()2xf x e x =+是k倍值函数,则实数k 的取值范围是( ) A .()1,e ++∞B .()2,e ++∞C .1,e e ⎛⎫++∞ ⎪⎝⎭D .,e e 2⎛⎫++∞ ⎪⎝⎭例29.(2023·四川·内江市教育科学研究所高二期末(文))对于函数()y f x =,若存在区间,a b ,当[],x a b ∈时,()f x 的值域为[],ka kb ,则称()y f x =为k 倍值函数.若()xf x e =是k 倍值函数,则k 的取值范围为( )A .10,e ⎛⎫⎪⎝⎭B .()1,eC .(),e +∞D .1,e ⎛⎫+∞ ⎪⎝⎭例30.(2023·吉林·长春十一高高二期中(理))对于函数()y f x =,若存在区间[],a b ,当[],x a b ∈时,()f x 的值域为[],ka kb ,则称()y f x =为k 倍值函数.若()ln f x x x =+是k 倍值函数,则k 的取值范围为( ) A .10,e ⎛⎫ ⎪⎝⎭B .1,e ⎛⎫+∞ ⎪⎝⎭C .11,1e ⎛⎫+ ⎪⎝⎭D .11,e ⎛⎫++∞ ⎪⎝⎭核心考点十一:函数不动点问题 【典型例题】例31.(2023·广东海珠·高三期末)设函数()f x a R e ∈,为自然对数的底数),若曲线y x x =上存在点00()x y ,使得00()f y y =,则a 的取值范围是( ) A .1e[1]e-, B .1e[e 1]e-+, C .[1e 1]+, D .[1,e]例32.(2023·山西省榆社中学高三月考(理))若存在一个实数t ,使得()F t t =成立,则称t 为函数()F x 的一个不动点.设函数()1(xg x e x a =+-(a R ∈,e 为自然对数的底数),定义在R 上的连续函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.若存在01|()(1)2x x f x f x x ⎧⎫∈+-+⎨⎬⎩⎭,且0x 为函数()g x 的一个不动点,则实数a 的取值范围为( )A .⎛⎫-∞ ⎪ ⎪⎝⎭ B .⎡⎫+∞⎪⎢⎪⎣⎭ C .⎛⎤⎥ ⎝⎦ D .⎛⎫+∞⎪ ⎪⎝⎭例33.(2023·四川自贡·高二期末(文))设函数()()1ln 2=+-∈f x x x a a R ,若存在[]1,b e ∈(e 为自然对数的底数),使得()()f f b b =,则实数a 的取值范围是( ) A .1,122⎡⎤--⎢⎥⎣⎦eB .e 1,ln 212⎡⎤--⎢⎥⎣⎦C .1,ln 212⎡⎤--⎢⎥⎣⎦D .1,02⎡⎤-⎢⎥⎣⎦核心考点十二:函数的旋转问题 【典型例题】例34.(2023·上海市建平中学高三期末)双曲线2213x y -=绕坐标原点O 旋转适当角度可以成为函数f (x )的图象,关于此函数f (x )有如下四个命题,其中真命题的个数为( ) ①f (x )是奇函数;②f (x )的图象过点32⎫⎪⎪⎝⎭或32⎫-⎪⎪⎝⎭; ③f (x )的值域是33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;④函数y =f (x )-x 有两个零点. A .4个B .3个C .2个D .1个例35.(2023·山东青岛·高三开学考试)将函数2([3,3])y x =∈-的图象绕点(3,0)-逆时针旋转(0)ααθ≤≤,得到曲线C ,对于每一个旋转角α,曲线C 都是一个函数的图象,则θ最大时的正切值为( )A .32B .23C .1D 例36.(2023·浙江·高三期末)将函数π2sin 0,22x y x ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的图像绕着原点逆时针旋转角α得到曲线T ,当(]0,αθ∈时都能使T 成为某个函数的图像,则θ的最大值是( )A .π6B .π4C .3π4D .2π3核心考点十三:构造函数解不等式 【典型例题】例37.(2023·江西赣州·高三期中(文))已知函数()()f x x R ∈满足(1)1f =,且()f x 的导数1()2f x '>,则不等式||1(||)22x f x <+的解集为( ) A .(,1)-∞-B .(1,)+∞C .(1,1)-D .(,1][1,)-∞-+∞例38.(2023·全国·高二课时练习)设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +<,()02021f =,则不等式()22019x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0+∞,B .()2019+∞,C .()0-∞,D .()()02019-∞+∞,,例39.(2023·全国·高二课时练习)已知()f x 的定义域为0,,()'f x 为()f x 的导函数,且满足()()f x xf x '<-,则不等式()()()2111f x x f x +>--的解集是( )A .0,1B .2,C .1,2D .1,核心考点十四:导数中的距离问题 【典型例题】例40.(2023春•荔湾区期末)设函数22()()(22)f x x a lnx a =-+-,其中0x >,a R ∈,存在0x 使得04()5f x 成立,则实数a 的值是( ) A .15B .25C .12D .1例41.(2023•龙岩模拟)若对任意的正实数t ,函数33()()()3f x x t x lnt ax =-+--在R 上都是增函数,则实数a 的取值范围是( )A .1(,]2-∞B .(-∞C .(-∞D .(-∞,2]例42.(2023•淮北一模)若存在实数x 使得关于x 的不等式2221()22x e a x ax a -+-+成立,则实数a 的取值范围是( ) A .1{}2B .1{}4C .1[2,)+∞D .1[4,)+∞核心考点十五:导数的同构思想 【典型例题】例43.(2023·全国·高三专题练习)已知关于x 的不等式ln ln(1)0x e mx x m ---+≥在(0,)+∞恒成立,则m 的取值范围是( ) A .(]1,1-B .(]1,1e --C .(]1,1e -D .(]1,e例44.(2023·安徽·合肥一中高三月考(理))设实数0m >,若对任意的()1,x ∈+∞,不等式2ln 20mxxe m-≥恒成立,则实数m 的取值范围是( ) A .1,2e ⎡⎫+∞⎪⎢⎣⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .[)1,+∞D .[),e +∞例45.(2023·宁夏·石嘴山市第一中学高二月考(理))若对任意()0,x ∈+∞,不等式ln 0ax ae x ->恒成立,则实数a 的取值范围为( )A .1,e e ⎛⎫- ⎪⎝⎭B .1,e⎛⎫+∞ ⎪⎝⎭C .1e e ⎛⎫ ⎪⎝⎭,D .(),e +∞核心考点十六:不等式恒成立之分离参数、分离函数、放缩法 【典型例题】例46.(2023·浙江·高三月考)已知函数2()1x f x xe =-,不等式()ln f x mx x ≥+对任意(0,)x ∈+∞恒成立,则实数m 的取值范围是( ) A .(,2]-∞B .[0,2]C .(2,e 1⎤-∞-⎦D .20,1e ⎡⎤-⎣⎦例47.(2023·四川省资中县第二中学高二月考(理))关于x 的不等式()32ln 113x x a x xe x+++-≥对任意0x >恒成立,则a 的取值范围是( ). A .(],1-∞-B .(){},1e -∞⋃C .[],1e --D .(],0-∞例48.(2023·全国·高三专题练习)已知,a b ∈R ,若关于x 的不等式2ln 0x a x a b -+-≥恒成立,则ab 的最大值为_______.核心考点十七:三次函数问题 【典型例题】例49.(2023·全国·高三课时练习)设函数()y f x ''=是()y f x '=的导数,经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠的图象都有对称中心()()00,x f x ,其中0x 满足()00f x ''=,已知函数()3272392f x x x x =-+-,则12320212022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2021 B .20212C .2022D .40212例50.(2023·安徽·东至县第二中学高三月考(理))人们在研究学习过程中,发现:三次整式函数()f x 都有对称中心,其对称中心为00(,())x f x (其中0''()0f x =).已知函数32()345f x x x x =-++.若()4,()10f m f n ==,则m n +=( ) A .1B .32C .2D .3例51.(2023·全国·高三月考(文))已知m ,n ,p ∈R ,若三次函数()32f x x mx nx p =+++有三个零点a ,b ,c ,且满足()()3112f f -=<,()()022f f =>,则111a b c ++的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .11,43⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭核心考点十八:切线问题 【典型例题】例52.(2023·云南红河·高三月考(理))下列关于三次函数32()(0)()f x ax bx cx d a x R =+++≠∈叙述正确的是( )①函数()f x 的图象一定是中心对称图形; ②函数()f x 可能只有一个极值点; ③当03bx a≠-时,()f x 在0x x =处的切线与函数()y f x =的图象有且仅有两个交点; ④当03bx a≠-时,则过点()()00,x f x 的切线可能有一条或者三条. A .①③B .②③C .①④D .②④例53.(2023·江西·南昌二中高三月考(文))若函数2()1f x x =+的图象与曲线C:()21(0)x g x a e a =⋅+>存在公共切线,则实数a 的取值范围为 A .220,e ⎛⎤ ⎥⎝⎦B .240,e ⎛⎤ ⎥⎝⎦C .21,e ⎡⎫+∞⎪⎢⎣⎭D .23,e ⎡⎫+∞⎪⎢⎣⎭例54.(2023·全国·高二单元测试)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a <B .e b a >C .0e b a <<D .0e a b <<核心考点十九:任意存在性问题 【典型例题】例55.(2023·河南·郑州外国语中学高三月考(理))若不等式()()()221212log 1log 3,,13x xa x x ++-≥-∈-∞恒成立,则实数a 的范围是( ) A .[0,)+∞B .[1,)+∞C .(,0]-∞D .(,1]-∞.例56.(2023·全国·高三专题练习)已知函数2()=++f x x px q 对,∀∈p q R ,总有0[1,5]∃∈x ,使()0f x m≥成立,则m 的范围是( ) A .5,2⎛⎤-∞ ⎥⎝⎦B .(,2]-∞C .(,3]-∞D .(,4]-∞例57.(2023·全国·高二课时练习)已知()()1ln f x x x =+,若k ∈Z ,且()()2k x f x -<对任意2x >恒成立,则k 的最大值为( ) A .3B .4C .5D .6核心考点二十:双参数最值问题 【典型例题】例58.(2023·浙江·宁波市北仑中学高三开学考试)已知,a b ∈R ,且0ab ≠,对任意0x >均有()()(ln )0x a b x a x b ----≥,则( ) A .0,0a b <<B .0,0a b <>C .0,0a b ><D .0,0a b >>例59.(2023·山西运城·高三期中(理))已知在函数()()0,0f x ax b a b =+>>,()()ln 2g x x =+,若对2x ∀>-,()()f x g x ≥恒成立,则实数ba的取值范围为( )A .[)0,+∞B .[)1,+∞C .[)2,+∞D .[),e +∞例60.(2023·黑龙江·鹤岗一中高三月考(理))当(1,)x ∈+∞时,不等式ln(1)230(x ax b a --+,b R ∈,0)a ≠恒成立,则ba 的最大值为( )A .1eB .2C .43D .2e核心考点二十一:切线斜率与割线斜率 【典型例题】例61.(2023·广东·佛山一中高三月考)已知函数2()ln (1)1h x a x a x =+-+(0)a < ,在函数()h x 图象上任取两点,A B ,若直线AB 的斜率的绝对值都不小于5,则实数a 的取值范围是( )A .(,0)-∞B .⎛-∞ ⎝⎦C .,⎛-∞ ⎝⎦D .⎫⎪⎪⎝⎭例62.(2023·山西大同·高一期中)已知函数(),()f x g x 是定义在R 上的函数,且()f x 是奇函数,()g x 是偶函数,()()f x g x +=2x ax +,记2()()()g x h x xf x x =+,若对于任意的1212x x <<<,都有()()12120h x h x x x -<-,则实数a 的取值范围为( ) A .1,02⎡⎫-⎪⎢⎣⎭B .(0,)+∞C .(,1]-∞-D .(0,2]例63.(2023·全国·高一课时练习)已知函数(),142,12x a x f x a x x ⎧≥⎪=⎨⎛⎫-+< ⎪⎪⎝⎭⎩,若对任意的1x ,2x ,且12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围是( )A .()1,+∞B .[)1,8C .()4,8D .[)4,8核心考点二十二:最大值的最小值问题(平口单峰函数、铅锤距离) 【典型例题】例64.设二次函数2()(2)32f x a x ax =-++在R 上有最大值,最大值为m (a ),当m (a )取最小值时,(a =) A .0B .1C .12D例65.(2023春•绍兴期末)已知函数2()||||f x x a x b =+++,[0x ∈,1],设()f x 的最大值为M ,若M 的最小值为1时,则a 的值可以是( ) AB .0 CD .1例66.(2023•济南模拟)已知函数2()||2x f x ax b x -=--+,若对任意的实数a ,b ,总存在0[1x ∈-,2],使得0()f x m 成立,则实数m 的取值范围是( ) A .1(,]4-∞B .(-∞,1]2C .(-∞,2]3D .(-∞,1]核心考点二十三:两边夹问题和零点相同问题 【典型例题】例67.(2023春•湖州期末)若存在正实数x ,y 使得不等式22414lnx x lny ln y -++-成立,则(xy += ) ABCD 例68.(2023•上饶二模)已知实数x ,y 满足2(436)326x y ln x y e x y +-+--+-,则x y +的值为( ) A .2B .1C .0D .1-例69.(2023•崇明区期末)若不等式(||)sin()06x a b x ππ--+对[1x ∈-,1]恒成立,则a b +的值等于() A .23B .56C .1D .2核心考点二十四:函数的伸缩变换问题 【典型例题】例70.(2023·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是( ) A .[]2,3 B .[]1,3 C .[]1,4D .[]2,4例71.(2023·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18≥-f x t t恒成立,则实数t 的取值范围是( ) A .(](],10,3-∞-B.((,0,3⎤-∞⎦C .[)[)1,03,-+∞D .))3,⎡⎡+∞⎣⎣例72.(2023届山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为( ) A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤【新题速递】一、单选题1.(2023·广西南宁·南宁二中校考一模)已知函数()2,01,011x x f x x x x ⎧≤⎪=-≤<⎨≥,若函数()()()22231g x m f x mf x =-+,存在5个零点,则m =( ) A .1B .12C .1或12D .1-2.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( )A .1B .3C .4D .53.(2023·江西景德镇·统考模拟预测)已知函数()11,041,0x xf x x x ⎧+<⎪⎪=⎨⎪->⎪⎩,若()()12f x f x =,则12x x -的最小值为( ) A .4B .92C .143D .54.(2023春·内蒙古赤峰·高三统考阶段练习)已知实数0a >,0b >,1a b +=,则下列说法中,正确的是( ). A .114a b+≤B .存在a ,b ,使得223a b +≥C .22log log 1a b ⋅≤D .存在a ,b ,使得直线10ax by 与圆224x y +=相切5.(2023·全国·高三专题练习)已知()0,2A ,()(),00B t t <,动点C 在曲线T :()2401y x x =≤≤上,若△ABC 面积的最小值为1,则t 不可能为( ) A .4-B .3-C .2-D .1-6.(2023·浙江温州·统考模拟预测)已知P 为直线=1y x --上一动点,过点P 作抛物线2:2C x y =的两条切线,切点记为A ,B ,则原点到直线AB 距离的最大值为( ) A .1BCD .27.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知0a >,0b >,直线2e y x b -=+与曲线ln y x a =-相切,则11a b+的最小值是( ) A .16B .12C .8D .48.(2023春·江苏苏州·高三苏州中学校考阶段练习)若关于x 的不等式(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立,则整数k 的最大值为( ) A .-2 B .-1 C .0 D .1二、多选题9.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()e xf x x =-,()lng x x x =-,则下列说法正确的是( )A .()e xg 在()0,∞+上是增函数B .1x ∀>,不等式()()2ln f ax f x ≥恒成立,则正实数a 的最小值为2eC .若()f x t =有两个零点12,x x ,则120x x +>D .若()()()122f x g x t t ==>,且210x x >>,则21ln t x x -的最大值为1e10.(2023春·重庆·高三统考阶段练习)已知函数32()e 3xf x ax =-有三个不同的极值点1x ,2x ,3x ,且123x x x <<,则下列结论正确的是( )A .2e 8a >B .11x <-C .2x 为函数()f x 的极大值点D .()23e 3f x <11.(2023春·福建宁德·高三校考阶段练习)已知函数()3f x x ax b =++,其中a ,b 为实数,则下列条件能使函数()f x 仅有一个零点的是( ) A .3a =-,3b =-B .3a =-,2b =C .0a =,3b =-D .1a =,2b =12.(2023春·山东潍坊·高三统考期中)定义在R 上的函数()f x 的导函数为()f x ',对于任意实数x ,都有2()e ()x f x f x -=,且满足22()()21e x f x f x x -'+=+-,则( )A .函数()e ()x F x f x =为偶函数B .(0)0f =C .不等式e ()e e x xxf x +<的解集为(1,)+∞ D .若方程2()()0f x x a x--=有两个根12,x x ,则122x x a +> 13.(2023·浙江温州·统考模拟预测)若函数()y f x =的图象上存在两个不同的点P ,Q ,使得()f x 在这两点处的切线重合,则称函数()y f x =为“切线重合函数”,下列函数中是“切线重合函数”的是( ) A .sin cos y x x =+ B .(sin c s )o y x = C .sin y x x =+D .2sin y x x =+14.(2023春·江苏南京·高三统考阶段练习)已知双曲线C :224x y -=,曲线E :2y ax x b =++,记两条曲线过点()1,0的切线分别为1l ,2l ,且斜率均为正数,则( ) A .若=0a ,1b =,则C 与E 有一个交点 B .若=1a ,=0b ,则C 与E 有一个交点C .若0a b ,则1l 与E 夹角的正切值为7-D .若==1a b ,则1l 与2l 三、填空题15.(2023·河南郑州·高三阶段练习)正实数a ,b 满足1e 4a a +=+,()ln 3b b +=,则b a -的值为____________. 16.(2023·全国·高三校联考阶段练习)已知函数()234202312342023x x x x f x x =+-+-++,()234202312342023x x x x g x x =-+-+--,设()()()53F x f x g x =+⋅-,且函数()F x 的零点均在区间[](a b a b <,,a ,)b Z ∈内,则b a -的最小值为__________.17.(2023春·广东广州·高三统考阶段练习)方程e 0x ax a -+=有唯一的实数解,实数a 的取值范围为__________.18.(2023春·山东·高三山东省实验中学校考阶段练习)已知函数()()23e ,? 0e ,? 0x x xf x x a x ⎧->=⎨-≤⎩,若()()12f x f x =,且12x x -的最大值为4,则实数a 的值为_______.19.(2023·全国·高三专题练习)若存在0a >,0b >,满足(2e )ln (2e )ln a t b a b t b a a +-=-,其中e 为自然对数的底数,则实数t 的取值范围是___________.20.(2023·四川资阳·统考模拟预测)若2224ln x ax a x ->,则a 的取值范围是______.。

函数的奇偶性:高考数学一轮复习基础必刷题

函数的奇偶性:高考数学一轮复习基础必刷题

函数的奇偶性:高考数学一轮复习基础必刷题一、单选题1.下列函数为奇函数的是()A .2xy =B .cos 6y x =C .22x xy -=+D .22x xy -=-2.下列函数既是偶函数又在()0,∞+上单调递减的是()A .1y x x=+B .3y x =-C .2y x =-D .21y x =-3.已知函数1()2(2xx f x =-,则()f x ()A .是奇函数,且在(0,)+∞上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在(0,)+∞上是减函数D .是偶函数,且在R 上是减函数4.函数()2442x xf x x x --=+-的图象大致为()A .B .C .D .5.已知定义在R 上的函数()f x 满足()()f x f x =-,且在[)0,+∞上是增函数.不等式(2)(1)f ax f +≤-对于[]1,2x ∈恒成立,则a 的取值范围是()A .3,12⎡⎤--⎢⎥⎣⎦B .11,2⎡⎤--⎢⎥⎣⎦C .1,02⎡⎤-⎢⎥⎣⎦D .[]0,16.已知()f x 为偶函数,当0x ≤时,1()e x f x x --=-,则曲线()y f x =在点(1,2)处的切线斜率是()A .1B .2C .eD .2e 1---7.已知函数()3xf x =且()()()f xg xh x =+,其中()g x 为奇函数,()h x 为偶函数.若关于x 的方程()()220ag x h x +=在(]01,上有两个解,则实数a 的取值范围是()A .4124⎡--⎢⎣B .4124⎡--⎢⎣C .4124⎤⎥⎦,D .4124⎤⎥⎦,8.已知定义R 在上的函数()f x ,其导函数为()'f x ,若()()2sin f x f x x =--,且当0x ≥时,()cos 0f x x '+>,则不等式()()sin cos 2f x f x x x π+>+-的解集为()A .(,)2π-∞B .(,)2π+∞C .(,)4π-∞-D .(,)4π-+∞第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题9.若()y f x =是奇函数,当0x >时()()2log 2f x x =+,则()2f -=__________.10.已知函数()y f x =,x ∈R ,()y f x =是奇函数,且当0x ≥时,()3 21xf x x =+-,则0x <时,()f x =______.11.已知偶函数()f x 在(0,)+∞上是减函数,且(1)0f -=,则()0f x x<的解集__________三、解答题12.已知函数()1f x x x=-.(1)判断()f x 在区间()0,∞+上的单调性,并用定义证明;(2)判断()f x 的奇偶性,并求()f x 在区间[]2,1--上的值域.13.定义在R 上的奇函数()f x ,当0x <时2(1)2f x x x =++.(1)求函数()f x 在R 上的表达式;(2)在图中的直角坐标系中画出函数()f x 的大致图象;(3)写出函数()f x 的值域和单调区间.14.已知函数()21()221x f x a =-+为奇函数,其中a 为常数.(1)求函数y =f (x )的解析式;(2)若关于x 的方程()1()212x f x k ++=在[1,1]-上有解,求实数k 的最大值;(3)若关于x 的不等式()1(21)226xf λλ++≤在[2,2]-恒成立,求实数λ的取值范围.15.已知函数()2121x x f x -=+是定义在R 上的奇函数.(1)用定义法证明()f x 为增函数;(2)对任意()1,x ∈+∞,都有22130k f x f kx x x ⎛⎫⎛⎫+++-> ⎪ ⎪⎝⎭⎝⎭恒成立,求实数k 的取值范围.参考答案:1.D 【解析】【分析】利用函数奇偶性的定义判断各选项中函数的奇偶性即可.【详解】由各选项中的函数解析式知:它们的定义域为R ,A ,11()22()xx f x f x --===,非奇非偶函数,不合要求;B ,()cos(6)cos 6()f x x x f x -=-==,偶函数,不合要求;C ,()()2222()x x x x f x f x -----=+=+=,偶函数,不合要求;D ,()()2222()x x x x f x f x -----=--==-,奇函数.故选:D.2.C 【解析】【分析】逐项判断函数奇偶性和单调性,得出答案.【详解】解析:A 项1y x x=+,B 项3y x =-均为定义域上的奇函数,排除;D 项21y x =-为定义域上的偶函数,在(0,)+∞单调递增,排除;C 项2y x =-为定义域上的偶函数,且在(0,)+∞上单调递减.故选:C.3.A 【解析】【分析】根据函数的单调性与奇偶性的定义判断.【详解】()f x 定义域为R ,且()()112222xxxxf x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,()f x \是R 上的奇函数,又2xy = 是R 上的增函数,12xy ⎛⎫= ⎪⎝⎭是R 上的减函数,所以函数1()2()2xx f x =-是R 上的增函数,故选:A.4.D 【解析】【分析】根据函数解析式求得函数定义域,判断函数奇偶性,再取几个特殊值运用排除法得到答案.【详解】由题意知,220x x +-≠,解得1x ≠±,所以()f x 定义域()()(),11,11,-∞-⋃-+∞关于原点对称,又因为()()()224444=22x xx x f x f x x x x x -----==-+--+--,所以此函数为奇函数,图像关于原点对称,排除A.当12x =时,1216201125242f -⎛⎫==-< ⎪⎝⎭+-,排除B.()00f x x =⇒=,函数只有1个零点,排除C.故选:D 5.A 【解析】由已知可判断函数的对称性和单调性,从而可得31a x x-≤≤-在[]1,2上恒成立,进而可求出a 的取值范围.【详解】由题可知,()f x 的图象关于y 轴对称,且()f x 在(),0-∞上单调递减,由(2)(1)f ax f +≤-得121ax -≤+≤在[]1,2上恒成立,得31a x x -≤≤-在[]1,2上恒成立,因为3y x =-和1y x=-单调递增,所以当2x =时,3y x =-取最大值为32-;当1x =时,1y x=-取最小值为1-,所以312a -≤≤-.故选:A.6.B 【解析】【分析】利用偶函数求0x >的解析式再求导,根据导数的几何意义即可求(1,2)处的切线斜率.【详解】设0x >,则0x -<,1()e x f x x --=+,又()f x 为偶函数,∴1()e x f x x -=+,则对应导函数为1()e 1x f x -'=+,∴(1)2f '=,即所求的切线斜率为2.故选:B 7.B 【解析】【分析】由奇偶性求得(),()g x h x ,然后用换元法,令33x x t -=-是增函数,(0,1]x ∈,则8(0,]3t ∈,转化为一元二次方程在区间8(0,]3上有两不等实解,由二次方程根的分布知识求解.【详解】()()()f x g x h x =+①,则()()()f x g x h x -=-+-,即()()()g x h x f x -+=-②,由①②得()()33()22x xf x f xg x ----==,()()33()22x x f x f x h x -+-+==,方程2()(2)0ag x h x +=为2233(33)02x xxxa --+-+=(*),令33x x t -=-是增函数,(0,1]x ∈,则8(0,3t ∈,方程(*)变为2220at t ++=,此方程在8(0,3上有两不等实解,记2()22t t at ϕ=++,则2Δ480803(0)2086416(20393a a a ϕϕ⎧=->⎪⎪<-<⎪⎨=>⎪⎪=++≥⎪⎩,解得4124a -≤<故选:B .8.D 【解析】【分析】令()()sin g x f x x =+,由题意,得出()g x 为定义在R 上的偶函数,且()g x 在[0,)+∞上单调递增,再把不等式()()sin cos 2f x f x x x π+>+-转化为()()2g x g x π+>,利用单调性求解.【详解】令()()sin g x f x x =+,则()()()sin ()sin g x f x x f x x -=-+-=--,又由()()2sin f x f x x =--,所以()sin ()sin f x x f x x +=--.故()()g x g x =-,即()g x 为定义在R 上的偶函数;当0x ≥时,()()cos 0g x f x x ''=+>,所以()g x 在[0,)+∞上单调递增,由(cos ()sin()()sin 222f x x f x x f x x πππ++=+++>+,即()()2g x g x π+>,所以||||2x x π+>,解得4x π>-,所以不等式()()sin cos 2f x f x x x π+>+-的解集为(,)4π-+∞.故选:D.【点睛】关键点点睛:本题关键是根据()cos 0f x x '+>这一信息,构造函数()()sin g x f x x =+,进而利用函数单调性的定义而得解.9.2-【解析】【分析】根据题设条件,利用()()22f f -=-,即可求解.【详解】由题意,函数()y f x =是奇函数,当0x >时()()2log 2f x x =+,所以()()222log (22)2f f -=-=-+=-.故答案为:2-.10.321x x --+.【解析】【分析】当0x <时,0x ->,求出() f x -的表达式,再结合函数的奇偶性即可求出0x <时函数的解析式.【详解】当0x <时,0x ->,所以()()33 2121x x f x x x ---=-+-=-+-,因为()y f x =是奇函数,所以()33212()1()x xx x x f x f ---+=--==--+-.故答案为:321x x --+.11.(1,0)(1,)-È+¥【解析】【分析】分0x >和0x <两种情况讨论x 的范围,根据函数的单调性可得到答案.【详解】因为()f x 是偶函数,且(1)0f -=,所以(1)(1)0f f =-=,又()f x 在(0,)+∞上是减函数,所以()f x 在(,0)-∞上是增函数,①当0x >时,由()0f x x<得()0f x <,又由于()f x 在(0,)+∞上为减函数,且(1)0f =,所以()(1)f x f <,得1x >;②当0x <时,由()0f x x<得()>0f x ,又(1)0f -=,()f x 在(,0)-∞上是增函数,所以()>(1)f x f -,所以10x -<<.综上,原不等式的解集为:(1,0)(1,)-È+¥.故答案为:(1,0)(1,)-È+¥.【点睛】方法点睛:本题主要考查函数相关性质,利用函数性质解不等式,运用函数的奇偶性与单调性的关系是进行区间转换的一种有效手段.奇函数在对称区间上的单调性相同,且()() f x f x -=-.偶函数在对称区间上的单调性相反,且()()() f x f x f x =-=..12.(1)函数()f x 在区间()0,∞+上单调递增,证明见解析(2)函数()f x 为奇函数,()f x 在区间[]2,1--上的值域为3,02⎡⎤-⎢⎥⎣⎦【解析】【分析】(1)利用定义法证明函数单调性;(2)先得到定义域关于原点对称,结合()()f x f x -=-得到函数为奇函数,利用第一问的单调性求出()f x 在区间[]2,1--上的值域.(1)()f x 在区间()0,∞+上单调递增,证明如下:1x ∀,()20,x ∈+∞,且12x x <,有()()()()()121212121212121221121211111x x x x f x f x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫---=---=-+-=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为1x ,()20,x ∈+∞,且12x x <,所以120x x >,120x x -<.于是()12121210x x x x x x -+<,即()()12f x f x <.故()f x 在区间()0,∞+上单调递增.(2)()f x 的定义域为()(),00,∞-+∞U .因为()()1f x x f x x-=-+=-,所以()f x 为奇函数.由(1)得()f x 在区间()0,∞+上单调递增,结合奇偶性可得()f x 在区间(),0∞-上单调递增.又因为()322f -=-,()10f -=,所以()f x 在区间[]2,1--上的值域为3,02⎡⎤-⎢⎥⎣⎦.13.(1)()2221,00,021,0x x x f x x x x x ⎧++<⎪==⎨⎪-+->⎩,(2)见详解;(3)值域为R ;单调递增区间为[)1,0-,(]0,1;单调递减区间为(),1-∞-,()1,+∞.【解析】(1)设0x >,则0x -<,代入解析式,再利用函数为奇函数即可求解.(2)根据作图的步骤即可画出大致图像.(3)根据函数图像即可求解.【详解】(1)当0x <时2(1)2f x x x =++设0x >,则0x -<,所以()()22()2121f x x x x x -=-+-+=-+,又因为函数为奇函数,所以()()f x f x -=-,所以()()22212)1(f x x x x x -=-+-+=-+,即()221f x x x =-+-,所以函数在R 上的表达式:2221,0()0,0,21,0x x x f x x x x x ⎧++<⎪==⎨⎪-+->⎩(2)函数()f x 的大致图象,如下:(3)由(2)中的大致图象可知,函数的值域为R ,单调递增区间为[)1,0-,(]0,1,单调递减区间为(),1-∞-,()1,+∞14.(1)11()212x f x =-+;(2)最大值为14;(3)13,210⎡⎤--⎢⎥⎣⎦.【解析】【分析】(1)根据奇函数的性质可得(0)0f =,代入解析式求出a =2,再根据()()0f x f x -+=验证即可求解.(2)令121xt =+,12,33t ⎡⎤∈⎢⎥⎣⎦,方程转化为2k t t =-在12,33⎡⎤⎢⎥⎣⎦上有解,求出2t t -的取值范围即可求解.(3)将不等式转化为1(21)221x λλ-≤++≤,令2x μ=,1,44μ⎡⎤∈⎢⎥⎣⎦,可得令()(21)2h u u λλ=++,根据函数的单调性可得11141(4)1h h ⎧⎛⎫-≤≤⎪ ⎪⎝⎭⎨⎪-≤≤⎩,解不等式即可求解.【详解】(1)因为函数()21()221x f x a =-+为奇函数,且定义域为R ,所以()021(0)0221f a =-=+,解得a =2.此时11()212x f x =-+,所以1111()()0212212x x f x f x --+=-+-=++,所以函数f (x )为奇函数.所以函数y =f (x )的解析式为11()212x f x =-+.(2)令121x t =+,因为x ∈[-1,1],所以12,33t ⎡⎤∈⎢⎥⎣⎦()1()212x f x k ++=在[-1,1]上有解,()111212122x xk ⇔-++=+在[-1,1]上有解,2k t t ⇔=-在12,33⎡⎤⎢⎥⎣⎦上有解,因为221124k t t t ⎛⎫=-=--+ ⎪⎝⎭,12,33t ⎡⎤∈⎢⎥⎣⎦,所以21,94k ⎡⎤∈⎢⎥⎣⎦,所以实数k 的最大值为14.(3)设12x x <,则()()()()2112121211112202122122121x x x x x x f x f x --=--+=>++++,即f (x 1)>f (x 2),所以函数11()212x f x =-+在R 上单调递减,因为1111(1)2126f --=-=+,1(1)6f =-,所以()()111(21)22(21)22666x x f f λλλλ++≤⇔-≤++≤()(1)(21)22(1)x f f f λλ⇔≤++≤-,1(21)221x λλ⇔-≤++≤(*)令2x μ=,则由x ∈[-2,2],得1,44μ⎡⎤∈⎢⎥⎣⎦,令()(21)22(21)2x h u u λλλλ=++=++,则结合题设及(*),得1,44μ⎡⎤∀∈⎢⎥⎣⎦,1()1h u -≤≤,所以11141(4)1h h ⎧⎛⎫-≤≤⎪ ⎪⎝⎭⎨⎪-≤≤⎩,即21121414(21)21λλλλ+⎧-≤+≤⎪⎨⎪-≤++≤⎩,解得13210λ-≤≤-,所以实数λ的取值范围为13,210⎡⎤--⎢⎥⎣⎦.15.(1)证明见解析(2)()-+∞【解析】【分析】(1)根据函数单调性的定义及指数函数的单调性与值域即可证明;(2)由已知条件,利用函数()f x 的奇偶性和单调性,可得2213k x k x x++>-对1x >恒成立,然后分离参数,利用基本不等式求出最值即可得答案.(1)证明:设12x x <,则()()()()()1212121212222212121212121x x x x x x x x f x f x ----=-=++++,由12x x <,可得1222x x <,即12220x x -<,又1210x +>,2210x +>,所以()()()121222202121x x x x -<++,即()()12f x f x <,则()f x 在R 上为增函数;(2)解:因为任意(1,)x ∈+∞,都有22130k f x f kx x x ⎛⎫⎛⎫+++-> ⎪ ⎪⎝⎭⎝⎭恒成立,且函数()f x 是定义在R 上的奇函数,所以2213k k f x f kx f kx x x x ⎛⎫⎛⎫⎛⎫++>--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭对1x >恒成立,又由(1)知函数()f x 在R 上为增函数,所以2213k x k x x ++>-对1x >恒成立,由11,01x x><<,有10x x -<,所以22131x x k x x ++>-对1x >恒成立,设1,1t x x x=->,由1t x x =-在(1,)+∞递减,可得0t <,所以22213551x t x t t t x x +++==+≤---,当且仅当t =所以k>-k 的取值范围是()-+∞.。

2012年高考数学真题汇编16 选考内容 文(解析版)

2012年高考数学真题汇编16 选考内容 文(解析版)

2012高考试题分类汇编:16:选考内容1.【2012高考陕西文15】(不等式选做题)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 .【答案】42≤≤-a .【解析】不等式3|1|||≤-+-x a x 可以表示数轴上的点x 到点a 和点1的距离之和小于等于3,因为数轴上的点x 到点a 和点1的距离之和最小时即是x 在点a 和点1之间时,此时距离和为|1|-a ,要使不等式3|1|||≤-+-x a x 有解,则3|1|≤-a ,解得42≤≤-a . 2.【2012高考陕西文15】(几何证明选做题)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF DB ⊥,垂足为F ,若6AB =,1AE =,则DF DB ⋅= .【答案】5.【解析】5,1,6=∴==EB AE AB .连接AD ,则AED ∆∽DEB ∆,BEDEDE AE =∴, 5=∴DE , 又DFE ∆∽DEB ∆,DBDEDE DF =∴,即52==⋅DE DB DF . 3.【2012高考陕西文15】(坐标系与参数方程)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .【答案】3.【解析】直线1cos 2=θρ与圆θρcos 2=的普通方程为1)1(1222=+-=y x x 和,圆心到直线的距离为21211=-,所以弦长为3)21(122=-.4.【2012高考天津文科13】如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC的延长线相交于D .过点C 作BD 的平行线与圆交于点E ,与AB 相交于点F ,3AF =,1FB =,32EF =,则线段CD 的长为 .【答案】34 【解析】如图连结BC ,BE ,则∠1=∠2,∠2=∠A1A ∠=∠∴,又∠B=∠B ,CBF ∆∴∽ABC ∆,AC CFAB CB BC BF AB CB ==∴,,代入数值得BC=2,AC=4,又由平行线等分线段定理得FB AF CD AC =,解得CD=34. 5.【2012高考湖南文11】某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃.精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为_______. 【答案】7【解析】用分数法计算知要最少实验次数为7.【点评】本题考查优选法中的分数法,考查基本运算能力.6.【2012高考湖南文10】在极坐标系中,曲线1C :sin )1ρθθ+=与曲线2C :a ρ=(0)a >的一个交点在极轴上,则a =_______.【解析】曲线1C 1y +=,曲线2C 的普通方程是直角坐标方程222x y a +=,因为曲线C 1:sin )1ρθθ+=与曲线C 2:a ρ=(0)a >的一个交点在极轴上,所以1C 与x 轴交点横坐标与a 值相等,由0,2y x ==,知a =2. 【点评】本题考查直线的极坐标方程、圆的极坐标方程,直线与圆的位置关系,考查转化的思想、方程的思想,考查运算能力;题型年年有,难度适中.把曲线1C 与曲线2C 的极坐标方程都转化为直角坐标方程,求出与x 轴交点,即得.7.【2012高考广东文14】(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C的参数方程分别为x y θθ⎧=⎪⎨=⎪⎩(θ为参数,02πθ≤≤)和122x y ⎧=-⎪⎪⎨⎪=-⎪⎩(t为参数),则曲线1C 和2C 的交点坐标为 . 【答案】(2,1)【解析】曲线1C 的方程为225x y +=(0x ≤≤,曲线2C 的方程为1y x =-, 由2251x y y x ⎧+=⇒⎨=-⎩2x =或1x =-(舍去),则曲线1C 和2C 的交点坐标为(2,1). .8【2012高考广东文15】(几何证明选讲选做题)如图3所示,直线PB 与圆O 相切于点B ,D 是弦AC 上的点,PBA DBA ∠=∠. 若AD m =,AC n =,则 AB = .【解析】由弦切角定理得PBA C DBA ∠=∠=∠,则△ABD ∽△ACB ,AB ADAC AB=,则2AB AC AD mn =⋅=,即AB =. 9.【2012高考辽宁文24】(本小题满分10分)选修4-5:不等式选讲已知()|1|()f x ax a R =+∈,不等式()3f x ≤…的解集为{|2x -剎≤1x ≤…}。

高考数学复习题大全

高考数学复习题大全

高考数学复习题大全一、选择题1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = sin(x)D. f(x) = cos(x)2. 已知函数f(x) = 2x - 3,求f(5)的值。

A. 1B. 4C. 7D. 103. 以下哪个选项是二次方程x^2 + 4x + 4 = 0的解?A. x = -2B. x = 2C. x = -1D. x = 14. 一个圆的半径为5,圆心到直线的距离为3,这个直线与圆的位置关系是什么?A. 相切B. 相交C. 相离D. 无法确定5. 已知等差数列的首项为3,公差为2,求第10项的值。

A. 23B. 25C. 27D. 29二、填空题6. 根据等差数列的通项公式,第n项的值为 ________。

7. 若一个函数的导数为f'(x) = 3x^2 - 2x + 1,其原函数f(x)为________。

8. 一个三角形的三个内角分别为α、β、γ,根据三角形内角和定理,α + β + γ = ________。

9. 已知一个直角三角形的两条直角边分别为3和4,其斜边的长度为________。

10. 若一个圆的面积为π,求该圆的半径。

三、解答题11. 解析几何题:已知椭圆方程为\( \frac{x^2}{a^2} +\frac{y^2}{b^2} = 1 \),其中a和b分别为椭圆的长半轴和短半轴。

若椭圆经过点(2,1),且焦点在x轴上,求a和b的值。

12. 函数题:给定函数f(x) = x^3 - 3x^2 + 2x,求其导数f'(x),并找出函数的极值点。

13. 概率统计题:一个袋子里有5个红球和3个蓝球,随机抽取两个球,求至少有一个红球的概率。

14. 向量题:已知向量\( \vec{a} = (2, -3) \)和\( \vec{b} = (4,1) \),求向量\( \vec{a} \)和\( \vec{b} \)的点积。

高考数学 典型例题16 三角函数式的化简与求值 试题

高考数学 典型例题16 三角函数式的化简与求值 试题

卜人入州八九几市潮王学校高考数学典型例题详解三角函数化简与求值三角函数式的化简和求值是高考考察的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍. ●难点磁场(★★★★★)2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________. ●案例探究 [例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.★★★★级题目. 知识依托:熟知三角公式并能灵敏应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进展等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 220°+cos 280°+3sin 220°cos80° =21(1-cos40°)+21(1+cos160°)+3sin20°cos80° =1-21cos40°+21cos160°+3sin20°cos(60°+20°) =1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220° =1-43cos40°-43(1-cos40°)=41 解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,那么x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41. [例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考察三角函数的有界性,对区间的分类易出错. 技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得: f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a a a ∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时, y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5. [例3]函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x(1)求函数f (x )的最小正周期;(2)求f (x )的最小值及获得最小值时相应的x 的值;(3)假设当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值.★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识.错解分析:在求f --1(1)的值时易走弯路.技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos3π+cos x sin 3π)-3sin 2x +sin x cos x =2sin x cos x +3cos2x =2sin(2x +3π) ∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π(k ∈Z )时,f (x )获得最小值-2. (3)令2sin(2x +3π)=1,又x ∈[27,2ππ], ∴2x +3π∈[3π,23π],∴2x +3π=65π,那么 x =4π,故f --1(1)=4π. ●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的根本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或者值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,纯熟准确地应用公式.2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用.3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的打破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决.●歼灭难点训练一、选择题1.(★★★★★)方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈ (-2,2ππ),那么tan 2βα+的值是() A.21 B.-2 C.34 D.21或者-2 二、填空题2.(★★★★)sin α=53,α∈(2π,π),tan(π-β)=21,那么tan(α-2β)=_________. 3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,那么sin(α+β)=_________.三、解答题4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值. 6.(★★★★★)α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin 2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.8.(★★★★★)cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求获得最小值时x 的值.参考答案难点磁场解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π,∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)解法二:∵sin(α-β)=135,cos(α+β)=-54, ∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572 sin2α-sin2β=2cos(α+β)sin(α-β)=-6540 ∴sin2α=6556)65406572(21-=-- 歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0.tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),那么2βα+∈(-2π,0),又tan(α+β)=342tan 12tan 2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2. 答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54 那么tan α=-43,又tan(π-β)=21可得tan β=-21, 答案:247 3.解析:α∈(43,4ππ),α-4π∈(0,2π),又cos(α-4π)=53. 答案:6556 三、4.答案:2π≠αk 〔k ∈Z 〕,322322π-π≠π-α∴k 〔k ∈Z 〕 ∴当,22322π-π=π-αk 即34π+π=αk 〔k ∈Z 〕时,)322sin(π-α的最小值为-1.7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),那么 |PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)=33sin(2θ+6π)-63. ∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1. ∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.那么u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t .。

人教版高考数学(理)二轮复习微专题:微专题16 解析几何中的“隐形圆”问题

人教版高考数学(理)二轮复习微专题:微专题16 解析几何中的“隐形圆”问题

微专题16 解析几何中的“隐形圆”问题真 题 感 悟(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A(2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B,C 两点,且BC =OA,求直线l 的方程; (3)设点T(t,0)满足:存在圆M 上的两点P 和Q,使得TA →+TP →=TQ →,求实数t 的取值范围. 解 圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M(6,7),半径为5. (1)由圆心N 在直线x =6上,可设N(6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7, 于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1. 因此,圆N 的标准方程为(x -6)2+(y -1)2=1. (2)因为直线l∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m,即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m|5=|m +5|5.因为BC =OA =22+42=25,而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22,所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)法一 TA →+TP →=TQ →,即TA →=TQ →-TP →=PQ →, 故|TA →|=|PQ →|,因为|TA →|=(t -2)2+42,又0<|PQ →|≤10, 所以0<(t -2)2+42≤10, 解得t∈[2-221,2+221],对于任意t∈[2-221,2+221],欲使TA →=PQ →,此时0<|TA →|≤10,只需要作直线TA 的平行线,使圆心到直线的距离为25-|TA →|24,必然与圆交于P,Q 两点,此时|TA →|=|PQ →|,即TA →=PQ →,因此对于任意t∈[2-221,2+221],均满足题意, 综上,t∈[2-221,2+221]. 法二 设P(x 1,y 1),Q(x 2,y 2). 因为A(2,4),T(t,0),TA →+TP →=TQ →,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.①因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.② 将①代入②,得(x 1-t -4)2+(y 1-3)2=25.于是点P(x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上, 从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点, 所以5-5≤[(t +4)-6]2+(3-7)2≤5+5,解得2-221≤t≤2+221. 因此,实数t 的取值范围是[2-221,2+221].考 点 整 合高考中圆的方程是C 级考点,其重要性不言而喻.但在一些题目中,条件没有直接给出圆方面的信息,而是隐藏在题目中,要通过分析和转化,发现圆(或圆的方程),从而最终可以利用圆的知识求解,我们称此类问题为“隐形圆”问题,课本习题给出的“阿波罗尼斯圆”是“隐形圆”典型的例子. 1.问题背景苏教版《数学必修2》P112第12题:已知点M(x,y)与两个定点O(0,0),A(3,0)的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线. 2.阿波罗尼斯圆公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:到两定点距离之比等于已知数的动点轨迹为直线或圆. 如图,点A,B 为两定点,动点P 满足PA =λPB.则λ=1时,动点P 的轨迹为直线;当λ≠1时,动点P 的轨迹为圆,后世称之为阿波罗尼斯圆.证 设AB =2m(m >0),PA =λPB ,以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则A(-m,0),B(m,0).又设P(x,y),则由PA =λPB 得(x +m )2+y 2= λ(x -m )2+y 2,两边平方并化简整理得(λ2-1)x 2-2m(λ2+1)x +(λ2-1)y 2=m 2(1-λ2). 当λ=1时,x =0,轨迹为线段AB 的垂直平分线;当λ>1时,⎝ ⎛⎭⎪⎫x -λ2+1λ2-1m 2+y 2=4λ2m 2(λ2-1)2,轨迹为以点⎝ ⎛⎭⎪⎫λ2+1λ2-1m ,0为圆心,⎪⎪⎪⎪⎪⎪2λm λ2-1为半径的圆. 上述课本习题的一般化情形就是阿波罗尼斯定理.热点一 轨迹问题【例1】 如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM,PN(M,N 分别为切点),使得PM =2PN,试建立适当的坐标系,并求动点P 的轨迹方程.解 以O 1O 2的中点O 为原点,O 1O 2所在的直线为x 轴,建立平面直角坐标系,则O 1(-2,0),O 2(2,0),由已知PM =2PN,得PM 2=2PN 2. 因为两圆的半径均为1, 所以PO 21-1=2(PO 22-1).设P(x,y),则(x +2)2+y 2-1=2[(x -2)2+y 2-1]. 即(x -6)2+y 2=33,所以所求轨迹方程为(x -6)2+y 2=33.探究提高 动点的轨迹问题是高考的热点之一,解决轨迹问题的关键是通过建立直角坐标系,寻找动点满足的条件,列式化简得所求轨迹方程.【训练1】 设A(-c,0),B(c,0)(c >0)为两定点,动点P 到A 点的距离与到B 点的距离的比为定值a(a >0),求P 点的轨迹.解 设动点P 的坐标为(x,y), 由PA PB =a(a >0),得(x +c )2+y 2(x -c )2+y2=a.化简得(1-a 2)x 2+2c(1+a 2)x +c 2(1-a 2) +(1-a 2)y 2=0.当a≠1时,得x 2+2c (1+a 2)1-a2x +c 2+y 2=0, 整理得⎝ ⎛⎭⎪⎫x -1+a 2a 2-1c 2+y 2=⎝ ⎛⎭⎪⎫2ac a 2-12.当a =1时,化简得x =0.所以当a≠1时,P 点的轨迹是以⎝ ⎛⎭⎪⎫a 2+1a 2-1c ,0为圆心,⎪⎪⎪⎪⎪⎪2ac a 2-1为半径的圆; 当a =1时,P 点的轨迹为y 轴.热点二 含“隐形圆”的范围与最值问题【例2】 (2013·江苏卷)如图所示,在平面直角坐标系xOy 中,点A(0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M,使MA =2MO,求圆心C 的横坐标a 的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =x -1,y =2x -4,得圆心为C(3,2).切线的斜率存在,设切线方程为y =kx +3. 则d =|3k +3-2|1+k 2=r =1, 得k =0或k =-34.故所求切线方程为y =3或3x +4y -12=0.(2)设点M(x,y),由MA =2MO,知x 2+(y -3)2=2x 2+y 2, 化简得x 2+(y +1)2=4.即点M 的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D. 又因为点M 在圆C 上,故圆C 与圆D 的关系为相交或相切. 故1≤CD≤3,又C(a,2a -4),D(0,-1), 故1≤a 2+(2a -3)2≤3. 解得0≤a≤125.所以圆心C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.探究提高 (1)如何发现隐形圆(或圆的方程)是关键,常见的有以下五个策略:策略一:利用圆的定义(到定点的距离等于定长的点的轨迹)确定隐形圆;策略二:动点P 对两定点A,B 的张角是90°(k PA ·k PB =-1或PA →·PB →=0)确定隐形圆; 策略三:两定点A,B,动点P 满足PA →·PB →=λ确定隐形圆; 策略四:两定点A,B,动点P 满足PA 2+PB 2是定值确定隐形圆;策略五:两定点A,B,动点P 满足AP =λBP(λ>0,λ≠1)确定隐形圆(阿波罗尼斯圆).(2)“隐形圆”发掘出来以后常考查点和圆、直线和圆、圆和圆的位置关系等相关知识点,一般解决思路可从“代数角度”或“几何角度”入手.【训练2】 在△ABC 中,边BC 的中点为D,若AB =2,BC =2AD,则△ABC 的面积的最大值是________. 解析 以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系.则A(-1,0),B(1,0),由BD =CD,BC =2AD 知,AD =2BD,D 的轨迹为阿波罗尼斯圆,方程为(x -3)2+y 2=8.设C(x,y),得D ⎝⎛⎭⎪⎫x +12,y 2,所以点C 的轨迹方程为⎝ ⎛⎭⎪⎫x +12-32+⎝ ⎛⎭⎪⎫y 22=8,即(x -5)2+y 2=32.所以S △ABC =12×2|y|=|y|≤32=42,故S △ABC的最大值是4 2. 答案 4 2热点三 含“隐形圆”的定点与定值问题【例3】 已知圆C :x 2+y 2=9,点A(-5,0),在直线OA 上(O 为坐标原点)存在定点B(不同于点A)满足:对圆C 上任一点P,都有PBPA 为一常数,试求所有满足条件的点B的坐标.解 法一 假设存在满足条件的点B(t,0),当P 为圆C 与x 轴的左交点(-3,0)时,PB PA =|t +3|2;当P 为圆C 与x 轴的右交点(3,0)时,PB PA =|t -3|8,依题意|t +3|2=|t -3|8,解得t =-5(舍去)或t =-95.下面证明点B ⎝ ⎛⎭⎪⎫-95,0对于圆C 上任一点P,都有PB PA 为常数.设P(x,y),则y 2=9-x 2,所以PB 2PA 2=⎝ ⎛⎭⎪⎫x +952+y 2(x +5)2+y 2=x 2+185x +8125+9-x 2x 2+10x +25+9-x 2=1825(5x +17)2(5x +17)=925,从而PB PA =35为常数. 故满足条件的点B 的坐标为⎝ ⎛⎭⎪⎫-95,0.法二 假设存在满足条件的点B(t,0), 使得PB PA为常数λ(λ>0),则PB 2=λ2PA 2,所以(x -t)2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入得, x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2), 即2(5λ2+t)x +34λ2-t 2-9=0对x∈[-3,3]恒成立, 所以⎩⎪⎨⎪⎧5λ2+t =0,34λ2-t 2-9=0,解得⎩⎪⎨⎪⎧λ=35,t =-95或⎩⎪⎨⎪⎧λ=1,t =-5(舍去),故满足条件的点B 的坐标为⎝ ⎛⎭⎪⎫-95,0. 探究提高 本题以阿波罗尼斯圆为背景构建定点问题,体现了阿波罗尼斯圆在解析几何中的经典地位. 【训练3】 已知⊙O:x 2+y 2=1和点M(4,2). (1)过点M 向⊙O 引切线l,求直线l 的方程;(2)求以点M 为圆心,且被直线y =2x -1截得的弦长为4的⊙M 的方程;(3)设P 为(2)中⊙M 上任一点,过点P 向⊙O 引切线,切点为Q,试探究:平面内是否存在一定点R,使得PQPR 为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由. 解 (1)直线l 的斜率存在,设切线l 的方程为y -2=k(x -4), 易得|4k -2|k 2+1=1,解得k =8±1915. ∴切线l 的方程为y -2=8±1915(x -4).(2)圆心到直线y =2x -1的距离为5,设圆的半径为r, 则r 2=22+(5)2=9,∴⊙M 的方程为(x -4)2+(y -2)2=9.(3)假设存在满足条件的点R(a,b),设点P 的坐标为(x,y),相应的定值为λ(λ>0). 根据题意可得PQ =x 2+y 2-1,∴x 2+y 2-1(x -a )2+(y -b )2=λ,即x 2+y 2-1=λ2(x 2+y 2-2ax -2by +a 2+b 2).(*) 又点P 在圆M 上,∴(x-4)2+(y -2)2=9, 即x 2+y 2=8x +4y -11,代入(*)式得8x +4y -12=λ2[(8-2a)x +(4-2b)y +(a 2+b 2-11)]. 若系数对应相等,则等式恒成立,∴⎩⎪⎨⎪⎧λ2(8-2a )=8,λ2(4-2b )=4,λ2(a 2+b 2-11)=-12,解得a =2,b =1,λ=2或a =25,b =15,λ=103,∴存在定点R,使得PQ PR 为定值,点R 的坐标为(2,1)时,定值为2;点R 的坐标为⎝ ⎛⎭⎪⎫25,15时,定值为103.【新题感悟】 (2019·南京、盐城高三二模)在平面直角坐标系xOy 中,已知点A(-1,0),B(5,0).若圆M :(x -4)2+(y -m)2=4上存在唯一点P,使得直线PA,PB 在y 轴上的截距之积为5,则实数m 的值为________.解析 根据题意,设P 的坐标为(a,b),则直线PA 的方程为y =b a +1(x +1),其在y 轴上的截距为ba +1,直线PB 的方程为y =b a -5(x -5),其在y 轴上的截距为-5ba -5.若点P 满足使得直线PA,PB 在y 轴上的截距之积为5,则有b a +1×⎝ ⎛⎭⎪⎫-5b a -5=5,变形可得b 2+(a -2)2=9,则点P 在圆(x -2)2+y 2=9上.若圆M :(x -4)2+(y -m)2=4上存在唯一点P,则圆M 与(x -2)2+y 2=9有且只有一个公共点,即两圆内切或外切,又由圆心距为(4-2)2+m 2≥2,则两圆只能外切,则有4+m 2=25,解可得:m =±21. 答案 ±21一、填空题1.在平面直角坐标系xOy 中,已知B,C 为圆x 2+y 2=4上两点,点A(1,1),且AB⊥AC ,则线段BC 的长的取值范围为________.解析 如图,设BC 的中点为M(x,y). 连接OB,OM,AM,则BC =2BM =2AM, 所以OB 2=OM 2+BM 2=OM 2+AM 2, 即4=x 2+y 2+(x -1)2+(y -1)2,化简得⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=32,所以点M 的轨迹是以⎝ ⎛⎭⎪⎫12,12为圆心,62为半径的圆, 所以AM 的取值范围是⎣⎢⎡⎦⎥⎤6-22,6+22,所以BC 的取值范围是[6-2,6+2]. 答案 [6-2,6+2]2.在平面直角坐标系xOy 中,已知圆C :(x -a)2+(y -a +2)2=1,点A(0,2),若圆C 上存在点M,满足MA 2+MO 2=10,则实数a 的取值范围是________. 解析 设点M(x,y),由MA 2+MO 2=10,即x 2+(y -2)2+x 2+y 2=10,整理得x 2+(y -1)2=4, 即点M 在圆E :x 2+(y -1)2=4上.圆C 上存在点M 满足MA 2+MO 2=10等价于圆E 与圆C 有公共点, 所以|2-1|≤CE≤2+1,即1≤a 2+(a -3)2≤3,整理得1≤2a 2-6a +9≤9, 解得0≤a≤3,即实数a 的取值范围是[0,3]. 答案 [0,3]3.已知圆O :x 2+y 2=1,圆M :(x -a)2+(y -a +4)2=1.若圆M 上存在点P,过点P 作圆O 的两条切线,切点为A,B,使得∠APB=60°,则实数a 的取值范围为________.解析 由题意得圆心M(a,a -4)在直线x -y -4=0上运动,所以动圆M 是圆心在直线x -y -4=0上,半径为1的圆.又因为圆M 上存在点P,使经过点P 作圆O 的两条切线,切点为A,B,使∠APB=60°,所以OP =2,即点P 也在x 2+y 2=4上,于是2-1≤a 2+(a -4)2≤2+1,即1≤a 2+(a -4)2≤3,解得实数a 的取值范围是⎣⎢⎡⎦⎥⎤2-22,2+22. 答案 ⎣⎢⎡⎦⎥⎤2-22,2+22 4.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0.若直线y =k(x +1)上存在一点P,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围是________.解析 由题意知原命题等价于直线上存在点P 使得PC =22,从而(PC)min ≤22,即圆心C(2,0)到直线y =k(x +1)的距离d =|3k|1+k2≤22,解得-22≤k≤2 2.答案 [-22,22]5.在平面直角坐标系xOy 中,设点A(1,0),B(3,0),C(0,a),D(0,a +2),若存在点P,使得PA =2PB,PC =PD,则实数a 的取值范围是________.解析 设P(x,y),则(x -1)2+y 2=2·(x -3)2+y 2,整理得(x -5)2+y 2=8,即动点P 在以(5,0)为圆心,22为半径的圆上运动.另一方面,由PC =PD 知动点P 在线段CD 的垂直平分线y =a +1上运动,因而问题就转化为直线y =a +1与圆(x -5)2+y 2=8有交点.所以|a +1|≤22,故实数a 的取值范围是[-22-1,22-1].答案 [-22-1,22-1]6.如图,在等腰△ABC 中,已知AB =AC,B(-1,0),AC 边的中点为D(2,0),则点C 的轨迹所包围的图形的面积等于________.解析 因为AB =2AD,所以点A 的轨迹是阿波罗尼斯圆,易知其方程为(x -3)2+y 2=4(y≠0).设C(x,y),由AC 边的中点为D(2,0),知A(4-x,-y),所以C 的轨迹方程为(4-x -3)2+(-y)2=4,即(x -1)2+y 2=4(y≠0),所求的面积为4π. 答案 4π7.(2019·宿迁模拟)已知A,B 是圆C 1:x 2+y 2=1上的动点,AB =3,P 是圆C 2:(x -3)2+(y -4)2=1上的动点,则|PA →+PB →|的取值范围为________.解析 设AB 的中点为C,由垂径定理可得CC 1⊥AB ,则CC 1=1-⎝ ⎛⎭⎪⎫322=12,即点C 的轨迹方程是x 2+y 2=14,C 1C 2=32+42=5,则PC max =5+1+12=132,PC min =5-1-12=72,所以|PA →+PB →|=|2PC →|∈[7,13]. 答案 [7,13]8.(2019·苏、锡、常、镇调研)在平面直角坐标系xOy 中,已知圆C :(x +1)2+y 2=2,点A(2,0),若圆C 上存在点M,满足MA 2+MO 2≤10,则点M 的纵坐标的取值范围是________.解析 设M(x,y),因为MA 2+MO 2≤10,所以(x -2)2+y 2+x 2+y 2≤10,化简得x 2+y 2-2x -3≤0,则圆C :x 2+y 2+2x -1=0与圆C′:x 2+y 2-2x -3=0有公共点,将两圆方程相减可得两圆公共弦所在直线的方程为x =-12,代入x 2+y 2-2x -3≤0可得-72≤y≤72,所以点M 的纵坐标的取值范围是⎣⎢⎡⎦⎥⎤-72,72.答案 ⎣⎢⎡⎦⎥⎤-72,72 二、解答题9.在x 轴正半轴上是否存在两个定点A,B,使得圆x 2+y 2=4上任意一点P 到A,B 两点的距离之比为常数12?如果存在,求出点A,B 坐标;如果不存在,请说明理由.解 假设在x 轴正半轴上存在两个定点A,B,使得圆x 2+y 2=4上任意一点P 到A,B 两点的距离之比为常数12.设P(x,y),A(x 1,0),B(x 2,0),其中x 2>x 1>0, 则(x -x 1)2+y2(x -x 2)2+y 2=12对满足x 2+y 2=4的任何实数对(x,y)恒成立, 整理得,2x(4x 1-x 2)+x 22-4x 21=3(x 2+y 2),将x 2+y 2=4代入得, 2x(4x 1-x 2)+x 22-4x 21=12,这个式子对任意x∈[-2,2]恒成立,所以一定有⎩⎪⎨⎪⎧4x 1-x 2=0,x 22-4x 21=12,因为x 2>x 1>0, 所以解得x 1=1,x 2=4.所以在x 轴正半轴上存在两个定点A(1,0),B(4,0),使得圆x 2+y 2=4上任意一点P 到A,B 两点的距离之比为常数12.10.如图,已知平面α⊥平面β,A,B 是平面α与平面β的交线上的两个定点,DA ⊂β,CB ⊂β,且DA⊥α,CB⊥α,AD =4,BC =8,AB =6,在平面α上有一个动点P,使得∠APD=∠BPC ,求△PAB 的面积的最大值.解 由题意知DA⊥α,又PA ⊂α,∴DA ⊥PA, ∴在Rt△PAD 中,tan∠APD=AD AP =4AP ,同理tan∠BPC=BC BP =8BP .∵∠APD=∠BPC ,∴BP=2AP.在平面α上以线段AB 的中点为原点,AB 所在的直线为x 轴,建立平面直角坐标系,则A(-3,0),B(3,0), 设P(x,y),则有(x -3)2+y 2=2(x +3)2+y 2(y≠0). 化简得(x +5)2+y 2=16,∴y 2=16-(x +5)2≤16.∴|y|≤4.∴△PAB 的面积为S △PAB =12|y|·AB=3|y|≤12,当且仅当x =-5,y =±4时取得等号,故△PAB 的面积的最大值是12.11.已知点A(-3,0),B(3,0),动点P 满足PA =2PB. (1)若点P 的轨迹为曲线C,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M,求QM 的最小值,并求此时直线l 2的方程.解 (1)设点P 的坐标为(x,y), 则(x +3)2+y 2=2(x -3)2+y 2,化简可得(x -5)2+y 2=16即为所求.(2)由(1)知曲线C 是以点(5,0)为圆心、4为半径的圆,如图,则直线l 2是此圆的切线,连接CQ,CM,则QM =CQ 2-CM 2=CQ 2-16,当CQ⊥l 1时,CQ 取最小值,CQ min =|5+3|2=42, 此时QM 的最小值为32-16=4,这样的直线l 2有两条,设满足条件的两个公共点为M 1,M 2, 易证四边形M 1CM 2Q 是正方形,所以l 2的方程是x =1或y =-4.。

数学高考16题

数学高考16题

数学高考16题
数学高考16题
1. 2019年全国高考数学试题
2019年全国高考数学试题中,在选择题部分,一道有关于函数的麻烦
题成为了让考生们头疼的一道难题,但是经过分析,这道题也并不是
很难。

2. 题目分析
这道题需要求解函数f(x)=log2(cosx+sinx)的值,可以采用换元的方法,也就是将cosx+sinx的值用一个单一的三角函数来代替,然后再代
入原函数中去求解。

解析过程比较复杂,但是只要掌握了换元的技巧,就可以轻松解决这道难题。

3. 数学知识点复习
在解决此题前,需要掌握一些基本的数学知识点,比如三角函数的运
算法则、对数函数的性质、复合函数的求导法则等等。

4. 做题技巧和方法
在做这道题时,我们需要采用一些技巧和方法,比如:用三角函数代
替cosx+sinx,化简后再代入原函数;在对数函数的计算中,要注意对数底数与幂次数的运算;在函数导数的计算中,要掌握复合函数求导的法则等等。

5. 高考数学备考建议
在备考高考数学时,更重要的是要掌握好基础知识,学习数学的方法和技巧,做好试卷分析和复习总结工作,才能在考试中取得好成绩。

同时,需要多做一些模拟试题、历年真题、知识点例题,不断提高自己的应变能力和解题能力。

6. 总结
数学是一门需要长期积累和反复练习的学科,而高考数学的难度也不是一般的高,对于考生来说,需要在备考中不断提高自己的数学运算能力和解题能力,才能够在考试中发挥出自己的最佳水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学新课程高考基础达标训练 (16)
时量:60分钟 满分:80分 班级: 姓名: 计分: 1. 设全集U R =,集合{10}A x x =->,则U C A 是( ).
A.
{1}x x <
B. {1}x x ≤
C. {1}x x >
D. {1}x x ≥
2. 设0x 是方程ln 4x x +=的解,则0x 属于区间( ).
A. (0,1)
B. (1,2)
C. (2,3)
D.(3,4) 3. 若,a b R ∈,则31a 3
1b >成立的一个充分不必要的条件是( ).
A.
0a b <<
B. b a >
C. 0ab >
D. ()0a b a b -<
4. 已知向量m =(,a b ),向量n ⊥m ,且|n |=|m |,则n 的坐标可以为( ).
A. (,a b -)
B. (,a b -)
C. (,b a -)
D.(,b a --) 5. 在等差数列{}n a 中,已知458a a +=,则8S =( ). A. 8 B. 16 C. 24
D. 32
6. 如右图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为( ).
(不考虑接触点) A.
π

π D. 32+π
7. 4张软盘与5张光盘的价格之和不小于20元,而6张软盘与3张光盘的价格之和不大于24元,则买3张软盘与9张光盘至少需要( ).
A. 15元
B. 22元
C. 36元
D. 72元 8.
已知0a b >>,则椭圆22221x y a b +=与双曲线22
221x y a b
-=的关系是(
).
A.它们有相同的焦点
B.它们有相同的离心率
C.它们的离心率互为倒数
D.它们有且只有两个交点
9.(文)过原点与曲线(1)(2)y x x x =--相切的直线方程是( ). A.20x y -= B. 40x y +=
C.
20x y -=或40x y +=
D. 20x y -=或40x y -=
(理)函数
2,01
()2,12
x x f x x x ⎧≤<⎪=⎨
-≤≤⎪⎩的图象与x 轴所围成的封闭图形的面积
等于( ). A.56
B.
5
4
C.
53
D.52
10. 某公司招聘员工,经过笔试确定面试对象人数,面试对象人数按
拟录用人数分段计算,计算公式为:4110
210
101001.5100
x
x y x x x x ≤≤⎧⎪=+<≤⎨⎪>⎩
,其中,x 代表拟录用人数,y 代表面试对象人数. 若应聘的面试对象人数为60人,则该公司拟录用人数为( ).
A. 15
B. 40
C. 25
D.130 11. 若()3f z i z i +=-,则(2)f i = ,|(2)1|f i += . 12.(文)右图的矩形,长为5,宽为2. 在矩形内随机地撒300
颗黄豆,数得落在阴影部分的黄豆数为138颗. 则我们可以估计出阴影部分的面积约为 .
(理)若0ab >,且(,0)A a 、(0,)B b 、(2,2)C --三点共线,则ab 的最小值为 .
13. 已知圆C 的参数方程为12cos 2sin x y θ
θ=+⎧⎨
=⎩
(θ

参数),P 是圆C 与y 轴的交点,若以圆心C
为极点,x 轴的正半轴为极轴建立极坐标系,则过点P 的圆切线的极坐标方程是 . 14. 一个算法的程序框图如右图所示,若该程序输出的结果为45
,则判断框中应填入的条
件是 . 15. 已知函数|cos sin |y x x =+.
(1)画出函数在7[,4
4
x ππ∈-的简图;
(2
)写出函数的最小正周期和单调递增区
间;试问:当x 为何值时,函数有最大值?最大值是多少? (3)若x 是△ABC 的一个内角,且21y =,试判断△ABC 的形状.
达标训练(16)参考答案 1~5 BCACD 6~10 CBDC(A)C 11. 2i -
12.
23
5
(16) 13. 2cos()23
πρθ-= 或 2cos()23
πρθ+=
14.
5?i <(或4?sum <)
15. 解:(1)∵|cos sin |y x x =
+)|4
x π
=+
当7[,]4
4
x ππ∈-时,其图象如右图所示.
(2)函数的最小正周期是π,其单调递增
区间是[,]4
4
k k ππππ-+;由图象可以看
出,当4
x k ππ=+
(3)若x 是△ABC 的一个内角,则有0x π<<,∴022x π<<
由21y =,得2|cos sin |11sin 21x x x +=⇒+=
∴sin 20x = ∴2x π= ,2
x π=,故△ABC 为直角三角形.。

相关文档
最新文档