2013年高考数学试题分类汇编——复数

合集下载

2013年高考数学总复习 11-2 复数的概念与运算课件 新人教B版

2013年高考数学总复习 11-2 复数的概念与运算课件 新人教B版

|- |=2+i,则 z 等于( z 3 A.- +i 4 3 C. +i 4
解析: z=2-|-|+i 知 z 的虚部为 1, z=a+i(a 由 z 设 3 ∈R),则由条件知 a=2- a +1,∴a= ,故选 C. 4
2
答案:C
若复数 z 在复平面内的对应点在第二象限,|z|=5, -对应点在直线 y=4x 上,则 z=________. z 3
解析:由(a+i)i=b+i,得 ai-1=b+i, 所以 a=1,b=-1.
答案:C
(理)(2011· 安徽宣城调研)已知 i 是虚数单位,复数 z i 满足 =2-i,则 z=( z+i 1 3 A.- - i 5 5 1 3 C. - i 5 5 ) 1 3 B.- + i 5 5 1 3 D. + i 5 5
a+3i (文)(2010· 广东佛山)若复数 (a∈R, 为虚数单 i 1+2i 位)是纯虚数,则实数 a 的值为( A.-2 C.-6 B.4 D.6 )
a+3i a+3i1-2i a+6+3-2ai 解析:∵ = = 为纯 5 1+2i 1+2i1-2i
a+6=0 虚数,∴ 3-2a≠0
B.第二象限 D.第四象限
2-i 2-i2 4-4i-1 3 4 解析:∵z= = = = - i. 5 5 5 5 2+i 3 4 ∴z 在复平面内对应的点为 ( ,- ),故选 D. 5 5
答案:D
复数的模
[例 6] (2010· 山东临沂质检)设复数 z 满足关系式 z+ ) 3 B. -i 4 3 D.- -i 4
A.x=-1,y=1 C.x=1,y=1
分析:按复数的乘法运算展开后,由复数相等的条件 列方程组求解.
解析:由(x+i)(1-i)=y 得(x+1)-(x-1)i=y

复数(2012-2021)高考数学真题

复数(2012-2021)高考数学真题

复数【2021年】1.(2021年全国高考乙卷数学(文)试题)设i 43i z =+,则z =( ) A .–34i -B .34i -+C .34i -D .34i +2.(2021年全国高考乙卷数学(理)试题)设()()2346z z z z i ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -3.(2021年全国高考甲卷数学(理)试题)已知2(1)32i z i -=+,则z =( ) A .312i --B .312i -+C .32i -+D .32i --4.(2021年全国新高考Ⅰ卷数学试题)已知2i z =-,则()i z z +=( ) A .62i - B .42i - C .62i + D .42i +【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))若312i i z =++,则||=z ( ) A .0 B .1 CD .22.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))若z=1+i ,则|z 2–2z |=( ) A .0B .1CD .23.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))(1–i )4=( ) A .–4 B .4 C .–4iD .4i .4.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))若()11+=-z i i ,则z =( ) A .1–iB .1+iC .–iD .i5.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))复数113i -的虚部是( ) A .310-B .110-C .110D .3106.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设3i12iz -=+,则z =A .2BC D .17.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=8.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))设z =i(2+i),则z = A .1+2i B .–1+2i C .1–2iD .–1–2i9.(2019年全国统一高考数学试卷(理科)(新课标Ⅱ))设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限10.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i11.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))设1i2i 1iz -=++,则||z = A .B .12C .1 D12.(2018年全国普通高等学校招生统一考试文数(全国卷II ))()i 23i +=A .32i -B .32i +C .32i --D .32i -+13.(2018年全国普通高等学校招生统一考试理数(全国卷II ))12i12i +=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+14.(2018年全国卷Ⅲ文数高考试题)(1)(2)i i +-= A .3i --B .3i -+C .3i -D .3i +15.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))下列各式的运算结果为纯虚数的是 A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i)16.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))设有下面四个命题1p :若复数z 满足1R z∈,则z R ∈;2p :若复数z 满足2z ∈R ,则z R ∈; 3p :若复数12,z z 满足12z z R ∈,则12z z =; 4p :若复数z R ∈,则z R ∈.其中的真命题为 A .13,p p B .14,p p C .23,p pD .24,p p17.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))(1i)(2i)++= A .1i - B .13i + C .3i +D .33i +18.(2017年全国普通高等学校招生统一考试理科数学)31ii++=( )A .1+2iB .1-2iC .2+iD .2-i19.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))复平面内表示复数z=i(–2+i)的点位于 A .第一象限B .第二象限C .第三象限D .第四象限20.(2017年全国普通高等学校招生统一考试理科数学(新课标3卷))设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B CD .221.(2016年全国普通高等学校招生统一考试文科数学(新课标1卷))设()()12i a i ++的实部与虚部相等,其中a 为实数,则a =A .−3B .−2C .2D .322.(2016年全国普通高等学校招生统一考试理科数学(新课标1卷))设,其中x ,y 是实数,则i =x y +A .1BC D .223.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))设复数z 满足3z i i +=-,则z = A .12i -+B .12i -C .32i +D .32i -24.(2016年全国普通高等学校招生统一考试理科数学(新课标2卷))已知(3)(1)z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是 A .(31)-, B .(13)-, C .(1,)+∞ D .(3)-∞-,25.(2016年全国普通高等学校招生统一考试理科数学)若43z i =+,则z z =A .1B .1-C .4355i +D .4355i -26.(2016年全国普通高等学校招生统一考试理科数学(全国3卷))若12z i =+,则41izz =- A .1 B .-1 C .i D .-i27.(2015年全国普通高等学校招生统一考试理科数学)已知复数z 满足(1)1z i i -=+,则z =A .2i --B .2i -+C .2i -D .2i +28.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))设复数z 满足1+z1z-=i ,则|z|=A .1BCD .229.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ))若a 为实数,且2i3i 1ia +=++,则a = A .4- B .3- C .3 D .430.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ))若a 为实数且(2)(2)4ai a i i +-=-,则a = A .1-B .0C .1D .231.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))设,则A .B .C .D .2.32.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))A .B .C .D .33.(2014年全国普通高等学校招生统一考试理科数学)计算131ii+=- A .12i +B .12i -+C .12i -D .12i --34.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷))设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =A .- 5B .5C .- 4+ iD .- 4 - i35.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))212(1)i i +=- A .112i -- B .112i -+ C .112i + D .112i - 36.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷)已知复数z 满足(3443i z i -=+),则z 的虚部为 A .-4 B .45- C .4D .4537.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷))21i +=A .B .2CD .138.(2013年全国普通高等学校招生统一考试理科数学(新课标2卷))设复数z 满足()12i z i -=,则z= ( ) A .-1+iB .-1-iC .1+iD .1-i39.(2012年全国普通高等学校招生统一考试文科数学(课标卷))复数32iz i-+=+的共轭复数是 A .2i +B .2i -C .1i -+D .1i --40.(2012年全国普通高等学校招生统一考试理科数学(课标卷))下面是关于复数21z i=-+的四个命题:其中的真命题为1:2p z =22:2p z i =3:p z 的共轭复数为1i +4:p z 的虚部为1-A .23,p pB .12,p pC .24,p pD .34,p p。

2011-2013年全国各地高考(复数)

2011-2013年全国各地高考(复数)

2013年高考题:复数一、选择题 1 .复数的11Z i =-模为 ()A .12BCD .22 . 2||1i =+ ( )A.B .2CD .13 .复数)()2(2为虚数单位i i i z -=,则=||z ( )A .25B .41C .5D .54.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( ) A .2B .3C .4D .55 .试题,复数的11Z i =-模为 ( )A .12 B.CD .26 .若复数z 满足(34)|43|i z i -=+,则z 的虚部为 ( )A .4-B .45-C .4D .457.复数i z 21--=(i 为虚数单位)在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8 .复数z=i·(1+i)(i 为虚数单位)在复平面上对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限9 . 在复平面内,复数(2)i i -对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10 复数z=i(-2-i)(i 为虚数单位)在复平面内所对应的点在 ( )A .第一象限B .第二象限C .第三象限D .第四象限11在复平面内,复数21iz i =+(i 为虚数单位)的共轭复数对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 12.在复平面内,复数(2-i)2对应的点位于 ( ) A .第一象限B .第二象限C .第三象限D .第四象限13 .如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是 ( )A .AB .BC .CD .D14 . 212(1)ii +=- ( )A .112i-- B .112i-+ C .112i + D .112i - 15 .已知i 是虚数单位,则(2+i)(3+i)= ( )A .5-5iB .7-5iC .5+5iD .7+5i16设i 是虚数单位,若复数10()3a a R i -∈-是纯虚数,则a 的值为 ( )A .-3B .-1C .1D .317 设复数z 满足(1)2i z i -=,则=z ( ) A .i +-1B .i --1C .i +1D .i -118 若复数z 满足(3)(2)5z i --=(i 为虚数单位),则z 的共轭复数z 为 ( ) A .2i +B .2i -C .5i +D .5i -19 若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是 ( ) A .(2,4)B .(2,4)-C .(4,2)-D .(4,2)20.()3=( )A .8-B .8C .8i -D .8i21. 已知i 是虚数单位,则=-+-)2)(1(i i ( ) A .i +-3B .i 31+-C .i 33+-D .i +-122.已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于 ( ) A .第一象限B .第二象限C .第三象限D .第四象限23.设i 是虚数单位,_z 是复数z 的共轭复数,若+2=2z z zi ,则z = ( ) A .1+i B .1i - C .1+i -D .1-i -24.复数z 满足i i i z +=-2)(,则 z = ( ) (A ) i --1 (B ) i -1(C ) i 31+- (D )i 21-25.复数z =-3+i2+i 的共轭复数是 ( )(A )2+i (B )2-i (C )-1+i (D )-1-i26.若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 ( ) (A)3+5i (B)3-5i (C)-3+5i (D)-3-5i27.已知i 是虚数单位,则31ii+-= ( ) A 1-2i B 2-i C 2+i D 1+2i28.若1i 是关于x 的实系数方程20x bx c ++=的一个复数根,则 ( )A 、2,3b c ==B 、2,1b c ==-C 、2,1b c =-=-D 、2,3b c =-= 29.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的 ( ) A.充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 30.复数11i =+ ( ) (A) 1122i - (B)1122i + (C) 1i - (D) 1i +31.若复数i z +=1 (i 为虚数单位) z -是z 的共轭复数 , 则2z +z -²的虚部为 ( ) A 0 B -1 C 1 D -232.复数z=i (i+1)(i 为虚数单位)的共轭复数是 ( ) A.-1-i B.-1+i C.1-i D.1+i 33.设i 为虚数单位,则复数34ii+= ( ) A. 43i -- B. 43i -+ C. 43i + D. 43i -34.复数(2+i )2等于 ( ) A.3+4i B.5+4i C.3+2i D.5+2i 35.在复平面内,复数103ii+对应的点的坐标为 ( ) A . (1 ,3) B .(3,1) C .(-1,3) D .(3 ,-1) 36. i 是虚数单位,复数534i i+-= ( )(A )1-i (B )-1+I (C )1+I (D )-1-i 二、填空题37.设m ∈R ,()2221i m m m +-+-是纯虚数,其中i 是虚数单位,则m =________.38.已知复数12z i =+(i 是虚数单位),则z =____________.39.复数23i +(i 是虚数单位)的模是_______________40已知复数512iz i =+(i 是虚数单位),则_________z =41.已知a, b ∈R, i 是虚数单位. 若()(1)a i i bi ++=, 则_______a bi +=. 42. 设2)2(i z -=(i 为虚数单位),则复数z 的模为____________.43 i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z =__________. 44.若=a+bi (a ,b 为实数,i 为虚数单位),则a+b=____________.45设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 _________ . 46. i 是虚数单位. 复数(3 + i)(1-2i) = ____________. 47.计算:31ii-=+ ____ (i 为虚数单位) 48.复数2341i i i i ++=-________________________.49.i 是虚数单位,复数131ii --=________________50.复数1i i -+=_______________________ 51复数z=22ii -+(i 为虚数单位)在复平面内对应的点所在象限为_________________52.复数212ii +=-_____________________________________53.复数1z i =+,z 为z 的共轭复数,则1zz z --=____________________54.a 为正实数,i 为虚数单位,2=+i ia ,则=a _______________________。

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。

北京市2013高考数学 二模试题解析分类汇编系列六 13 复数 文

北京市2013高考数学 二模试题解析分类汇编系列六 13 复数 文

【解析分类汇编系列六:北京2013(二模)数学文】13:复数一、选择题1 .(2013北京昌平二模数学文科试题及答案)i 是虚数单位,则复数21=i z i-在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限A2211=222i iz i i i i-=-=-=+,所以对应的点的坐标为(2,1),在第一象限,选A.2 .(2013北京丰台二模数学文科试题及答案)复数(34)i i +的虚部为( )A .3B .3iC .4D .4iA2(34)3443i i i i i +=+=-+,所以虚部为3,选A.3 .(2013北京顺义二模数学文科试题及答案)复数321ii -=+ ( )A .1522i + B .1522i - C .1522i -+D .1522i -- B32(32)(1)15151(1)(1)222i i i i i i i i ----===-++-,选B. 4 .(2013北京西城高三二模数学文科)复数 i (1i)⋅-=( )A .1i +B .1i -+C .1i -D .1i --A2i (1i)1i i i ⋅-=-=+,选A.二、填空题5.(2013北京朝阳二模数学文科试题)i 为虚数单位,计算3i1i+=+___________. 2i -3(3)(1)4221(1)(1)2i i i ii i i i ++--===-++-。

6.(2013北京房山二模数学文科试题及答案)在复平面内,复数(2)i i -对应的点的坐标为____.(1,2)2(2)212i i i i i -=-=+,对应的点的坐标为(1,2).7.(2013北京海淀二模数学文科试题及答案)复数i i-12=______ 1i -+ 22(1)2(1)11(1)(1)2i i i i i i i i i ++===-+--+.。

无锡新领航教育特供:【2013备考】高考数学各地名校试题解析分类汇编(一)11 复数与框图 理

无锡新领航教育特供:【2013备考】高考数学各地名校试题解析分类汇编(一)11 复数与框图 理

小升初 中高考 高二会考 艺考生文化课 一对一辅导 /wxxlhjy QQ:157171090
- 1 - 无锡新领航教育特供:
各地解析分类汇编:复数与框图
1【云南省玉溪一中2013届高三第四次月考理】若复数2)1(ai +(i 为虚数单位)是纯虚数,则实数=a ( )
A.1±
B.1-
C.0
D.1
【答案】A
【解析】2222
(1)1212ai ai a i a ai +=++=-+,要使复数是纯虚数,则有210a -=且20a ≠,解得1a =±,选A.
2.【云南省玉溪一中2013届高三上学期期中考试理】复数z 1=3+i,z 2=1-i,则复数
2
1z z 的虚部为 ( )
A.2
B.-2i
C.-2
D.2i
【答案】A 【解析】123(3)(1)24=121(1)(1)2z i i i i i z i i i ++++===+--+,所以虚部为2,选A.
A .第四象限
B .第三象限
C .第二象限
D .第一象限 【答案】A
【解析】1i 22z =-对应的点是112
2⎛⎫- ⎪⎝⎭,,故选A. 4.【云南省玉溪一中2013届高三第三次月考 理】复数
12i i + (i 是虚数单位)的虚部是( ) A .15 B .25 C .5i D .5
i - 【答案】A
【解析】(12)22112(12)(12)555
i i i i i i i i -+===+++-,所以虚部是15,选A.。

2013高考数学复数习题及答案

2013高考数学复数习题及答案

解析:z = tan45 —is in 60 = 1 —当,z 3 = ;—,故选 B.8. (2013黄冈中学一模)过原点和.3— i 在复平面内对应的直线的倾斜角为 nA.-6要求的。

、选择题(每小题只有一个选项是正确的,每小题 5分,共100分,在每小题给出的四个选项中,只有 ) 项是符合题目3 一 i (2013山东復数口等于 A . 1 + 2i B . 1 — 2i C . 2 + i D . 2— i答案:C解析:3— i (3 一 i)(1 + i) = 4;2i = 2 + i.故选 C .1— i (1 — i)(1 + i) 2…3 + 2i 3— 2i2. (2013宁夏、海南 )复数2 — 3i 2; 3i =A . 0B . 2C .— 2iD . 2i答案: D解析: 3+ 2i3— 2i (3 + 2i)(2 + 3i) (3 — 2i)(2 — 3i) 13i —13i2— 2; 3i (2 — 3i)(2 + 3i) (2 — 3i)(2 + 3i) 13 131.i + i = 2i.z + 23. (2013陕西)已知z 是纯虚数,-是实数,那么z 等于1 — i A . 2i 答案:D解析:由题意得z = ai.(a € R 且0). .z + 2(2 + ai)(1 + i) 2 — a + (a + 2)iC . — iD . - 2i 1 — i (1 — i )(1 + i ) 2则 a + 2 = 0, ••• a = — 2.有 z = — 2i ,故选 D.4. (2013武汉市高三年级 2月调研考试)若f (x )=A . 2i 答案:BC .- 2i X 3 * — x 2 + x — 1,则 f(i)=D . — 2 解析:依题意,f (i ) = i 3— i 2+ i —1 = — i + 1 + i — 1 = 0,选择 B. 2— i4月)复数z = (i 是虚数单位)在复平面内对应的点位于B .第二象限D .第四象限5. (2013北京朝阳A .第一象限C .第三象限答案:D2 — i 1 解析:z = 2—1 = 1 1 + i 2 3^i ,它对应的点在第四象限,故选D. 2 + i 6. (2013北京东城3月)若将复数—「表示为a + bi (a , b € R , i 是虚数单位 )的形式,则即值为C . 2A . — 2答案:A2+ i解析: 亍 =1— 2i ,把它表示为a + bi(a , b € R , 7. (2013北京西城4月)设i 是虚数单位,复数 z =tan45 — i s in60 ;则A? 3i B.4 — .3i C.4+ 3i D.4 + ,3i答案:Bi 是虚数单位)的形式,©的值为一2,故选A. a z 2等于(n B. — 6D.5 n 6解析:a、b、c、d C R,若咒为实数,则9 •设A . bc + ad z 0 C . bc — ad = 0 答案:CB. bc — ad z 0D . bc + ad = 0a + bi (a + bi)( c — di) ac + bd , bc — ad bc — ad解析:因为c +i = c 2+ d 2 = c +2 +百孑i ,所以由题意有 尹孑=0? c 2+ d 2=c 2+ d110.已知复数 z = 1— 2i ,那么 ==z c 2+ d 2 bc — ad = 0.A 至+迺 A. 5 5 i 1 2 C.1+2i答案:D B”-罕i5 5 1 2D 一 — - i 5 5解析:由 z = 1-2i 知 z = 1 + 2i,于是 1 + 2i111+= 5 — |i.故选 D.1+ 4 5 5 11.已知复数z 1=3-bi, z 2=1-2i,若z 是实数,则实数b 的值为C . 0A红口 =(3- bi)(1 + 2i) = (3 + 2b)严-b)i是实数,则实数b 的值为6, z 21 — 2i (1 — 2i)(1 + 2i) 512. (2013广东)设z 是复数,a z)表示满足z ° = 1的最小正整数n ,则对虚数单位 答案: 解析:故选A.i, an =A . 2 答案:B解析:a i)表示i n = 1的最小正整数i yj 313 .若 z = 2+ _23i ,且(x — z)4= a o x 4n ,因i 4k = 1(k € N ),显然n = 4,即即曲)=4•故选B. + a i x 3+ a 2x 2 + a 3x + a 4,贝V a 2等于( )—2i2 2 iC . 6+ 3.3i 答案:B解析:•/T r +1 = C 4x 4—r (— z)r , 由 4— r = 2 得 r = 2,a 2= C 4(— z)2= 6x (—1 一 -^i)2=—3+ 3 .3i.故选 B.14 .若△ ABC 是锐角三角形,则复数 A •第一象限B .C •第三象限D . 答案:Bz = (cosB — si nA) + i(s inB — cosA)对应的点位于()第二象限第四象限解析:•••△ ABC 为锐角三角形, .A + B > 90° B >90° — A ,.cosB v sinA , sinB > cosA ,.cosB — sinA v 0, sinB — cosA > 0, .z 对应的点在第二象限.2 — bi15.如果复数 彷(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于 ( )A. .22 B.2C .答案: 解析:C2— bi 1 + 2i 5 (2 — bi)(1 —2i) (2— 2b) (— 4— b).+ i16•设函数 f(x)=— x 5 + 5X 4— 10x 3+ 10x 2— 5x + 1,贝V f(1 +_23i)的值为 A . — ?+* B."^ — 2i C 】+鸣 D —並+占2 2 . 2 2 答案:C解析:■/f(x)=— (x — 1)5 •-f g + 23i)=— g+ 23i — 1)5 =—W 5(其中 3= — 1^23i) _ ( 1 迟、1+過 =—3 = —(— 2 — 2 i)= 2 十 2 I.17. 若i 是虚数单位,则满足(p 十qi)2= q + pi 的实数p , q 一共有 A . 1 答案:p =-宁, 因此满足条件的实数 p , q 一共有4对. 总结评述:本题主要考查复数的基本运算,解答复数问题的基本策略是将复数问题转化为实数问题来解决,解答中要特1别注意不要出现漏解现象,如由 2pq = p 应得到p = 0或q =2 x 2018. 已知(影—矿的展开式中,不含 x 的项是27,那么正数p 的值是 ( )A . 1B . 2C . 3D . 4答案:C解析:由题意得:C 4 • 22= 20,求得p = 3.故选C.p 4 27总结评述:本题考查二项式定理的展开式,注意搭配展开式中不含 x 的项,即找常数项.19.复数z =— lg(x 2+ 2) — (2x 十2—x — 1)i(x € R)在复平面内对应的点位于( )A .第一象限B .第二象限 C. 第三象限 D .第四象限 答案:C解析:本题考查复数与复平面上的点之间的关系,复数与复平面上的点是 --- 对应的关系,即 z = a 十bi ,与复平面上的点 Z(a , b)对应,由 z =— lg(x 2 + 2) — (2x + 2—x — 1)i(x € R)知:a =— lg(x 2+ 2) v 0,又 2x 十 2—x — 1 > 2 2x 2 —x — 1= 1 > 0;• — (2x + 2—x — 1) v 0, 即卩b v 0.「.(a , b)应为第三象限的点,故选C.20.设复数z + i(z € C)在映射f 下的象为复数z 的共轭复数与i 的积,若复数 3在映射f 下的象为一1十2i ,则相应的3 为()A . 2B . 2 — 2iC .— 2十 iD . 2+ i答案:A解析:令 3= a 十 bi , a , b € R ,贝卩 3= [a + (b — 1)i]十 i , •映射 f 下 3 的象为[a — (b — 1)i] i- = (b — 1)十ai = — 1十 2i.第H 卷(非选择题共50分)二、填空题(本大题共5小题,每小题4分,共20分,请将答案填在题中的横线上。

2012-2021年高考全国卷●数学真题分类汇编(二十)《复数》试题(解析版)

2012-2021年高考全国卷●数学真题分类汇编(二十)《复数》试题(解析版)
【点评】本题考查复数的共轭复数和复数在复平面内的对应点位置,渗透了直观想象和数学运算素养.采取定义法,利用数形结合思想解题.本题考点为共轭复数,为基础题目,难度偏易.忽视共轭复数的定义致错,复数与共轭复数间的关系为实部同而虚部异,它的实部和虚部分别对应复平面上点的横纵坐标.
7.(2019年高考数学课标全国Ⅰ卷理科)设复数 满足 , 在复平面内对应的点为 ,则( )
A.
B.
C.
D.
【答案】C
解析:设 ,则 .
8.(2018年高考数学课标Ⅲ卷(理)) ( )
A. B. C. D.
【答案】D
解析: ,故选D.
9.(2018年高考数学课标Ⅱ卷(理)) ( )
A. B. C. D.
【答案】D
解析: ,故选D.
10.(2018年高考数学课标卷Ⅰ(理))设 ,则 ( )
A. B. C. D.
A. B. C. D.
【答案】A
解析:由已知得
考点:(1)11.2.2复数的代数运算
难度:A
备注:高频考点
22.(2013高考数学新课标1理科)若复数z满足 ,则z的虚部为( )
A.-4B.- C.4D.
【答案】D
解析:由题知 = = = ,故z的虚部为 ,故选D.
考点: (1)11.2.1复数的概念;(2)11.2.2复数的代数运算.
【答案】A
解析:由题意知: ,所以 -5,故选A。
考点:(1)复数的乘法;(2)复数的几何意义.
难度:B
备注:常考题
20.(2014高考数学课标1理科) =( )
A. B. C. D.
【答案】D
解析:∵ = ,选D.
考点:(1)复数的代数运算 (2)转化思想

2013年湖南高考理科数学试卷(带详解)

2013年湖南高考理科数学试卷(带详解)

2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()i 1i z =+(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【测量目标】复数乘法的运算法则,复数集与复平面上的点对应关系. 【考查方式】利用复数乘法的运算法则及复数的几何意义求解. 【难易程度】容易 【参考答案】B 【试题解析】i (1i)1i z =+=-+∴复数z 对应复平面上的点是(1,1),-该点位于第二象限.2.某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 【测量目标】分层抽样.【考查方式】给出实际案例,判断其解决问题的方法属于四种抽样方法的哪一种. 【难易程度】容易 【参考答案】D【试题解析】由于是调查男、女学生在学习兴趣与业余爱好方面是否存在差异,因此用分层抽样方法. 3.在锐角中ABC △,角,A B 所对的边长分别为,a b .若2sin 3,a B b =则角A 等于( )A .π12 B .π6 C .π4 D .π3【测量目标】正弦定理.【考查方式】给出三角形中的边角关系,运用正弦定理求解未知角. 【难易程度】容易 【参考答案】D【试题解析】在ABC △中,2sin ,2sin a R A b R B ==(R 为ABC △的外接圆半径).(步骤1)2sin 3,2sin sin 3.a B b A B B =∴=3sin A ∴=(步骤2)又ABC △为锐角三角形,π3A ∴=.(步骤3)4.若变量,x y 满足约束条件211y xx y y ⎧⎪+⎨⎪-⎩,则2x y +的最大值是( )A .52-B .0C .53D .52【测量目标】二元线性规划求目标函数的最值.【考查方式】利用线性规划知识求目标函数的最值问题. 【难易程度】容易 【参考答案】C【试题解析】根据不等式组作出其平面区域,令2,z x y =+结合2z x y =+的特征求解.不等式组表示的平面区域为图中阴影部分,(步骤1)平行移动11,22y x z =-+可知该直线经过2y x =与1x y +=的交点12(,)33A 时,z 有最大值为145=333+.(步骤2)第4题图5.函数()2ln f x x =的图象与函数()245g x x x =-+的图象的交点个数为( )A .3B .2C .1D .0 【测量目标】函数图象的应用.【考查方式】先作出常见函数图象再确定其图象交点个数. 【难易程度】中等 【参考答案】B 【试题解析】22()45(2)1,g x x x x =-+=-+又当2x =时,()2ln 2ln 41,f x ==>(步骤1)在同一直角坐标系内画出函数()2ln f x x =与2()45g x x x =-+的图象,如图所示,可知()f x 与()g x 有2个不同的交点.(步骤2)第5题图6. 已知,a b 是单位向量,0=a b .若向量c 满足1,--=c a b 则c 的取值范围是( )A .22+1⎡⎤⎣⎦B .22+2⎡⎤⎣⎦C .2+1⎡⎤⎣⎦D .2+2⎡⎤⎣⎦【测量目标】向量数量积的运算及定义、向量加法的几何意义.【考查方式】将所给向量式两边平方后利用向量数量积的运算律以及向量数量积定义的求解. 【难易程度】较难 【参考答案】A3 / 13【试题解析】由题意,不妨令(0,1),(1,0),(,)x y ===a b c ,由1--=c a b 得22(1)(1)1x y -+-=,(步骤1)22x y =+c 可看做(,)x y 到原点的距离,而点(,)x y 在以(1,1)为圆心,以1为半径的圆上.(步骤2)如图所示,当点(,)x y 在位置P 时到原点的距离最近,在位置P '时最远,而21PO =-,21P O '=+,故选A .(步骤3)第6题图 7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于( ) A .1 B .2 C .212- D .2+12【测量目标】空间几何体三视图.【考查方式】根据正方体的正视图的形状来求解其面积值. 【难易程度】中等 【参考答案】C【试题解析】根据三视图中正视图与俯视图等长,故正视图中的长为2cos θ,如图所示.故正视图的面积为π2cos (0)4S θθ=,∴12S ,而21<12-,故面积不可能等于212-.第7题图8.在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到点P (如图).若光线QR 经过ABC △的重心,则AP 等于( )第8题图A .2B .1C .83D .43【测量目标】直线的斜率,直线的方程.【考查方式】已知一个三角形的边长关系,建立平面直角坐标系求解未知边的值. 【难易程度】中等 【参考答案】D 【试题解析】以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示.则A (0,0),B (4,0),C (0,4).(步骤1)设△ABC 的重心为D ,则D 点坐标为44,33⎛⎫⎪⎝⎭.设P 点坐标为(m,0),则P 点关于y 轴的对称点P 1为(-m,0),(步骤2)因为直线BC 方程为x +y -4=0,所以P 点关于BC 的对称点P 2为(4,4-m ),根据光线反射原理,P 1,P 2均在QR 所在直线上,∴12P D P D k k =,即4443344433mm -+=+-,(步骤3)解得,m =43或m =0.当m =0时,P 点与A 点重合,故舍去.∴43m =.(步骤4)第8题图二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分)9.在平面直角坐标系xOy 中,若:x t l y t a =⎧⎨=-⎩(t 为参数),过椭圆C 3cos :2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)的右顶点,则常数a 的值为 .【测量目标】参数方程的转化,椭圆的简单几何性质.【考查方式】先将参数方程化为普通方程后求解,再运用椭圆的简单几何性质求出未知参数. 【难易程度】容易 【参考答案】3【试题解析】由题意知在直角坐标系下,直线l 的方程为y =x -a ,椭圆的方程为22194x y +=,(步骤1)所以其右顶点为(3,0).由题意知0=3-a ,解得a =3. (步骤2) 10.已知,,,236,a b c a b c ∈++=R 则22249a b c ++的最小值为 . 【测量目标】柯西不等式,最值问题.【考查方式】使用柯西不等式化简式子求其最值. 【难易程度】中等 【参考答案】12【试题解析】由柯西不等式得2222222(111)(49)(23)a b c a b c ++++++,即22241912a b c++,(步骤1)当232a b c ===时等号成立,所以222419a b c ++的最小值为12. (步骤2) 11.7的O 中,弦,AB CD 相交于点,2P PA PB ==,1PD =,则圆心O 到弦CD 的距离为 .5 /13第11题图【测量目标】圆的相交弦定理及圆的弦的性质,解三角形.【考查方式】由相交弦定理求出圆内线段的长再根据弦的性质求解三角形中未知数. 【难易程度】中等【参考答案】32【试题解析】如图所示,取CD 中点E ,连结OE ,OC .由圆内相交弦定理知PD PC PA PB =,(步骤1)所以PC =4,CD =5,则CE =52,OC =7.(步骤2)所以O 到CD 距离为2253722OE ⎛⎫=()-= ⎪⎝⎭.(步骤3)第11题图必做题(12-16题)12.若20d 9,Tx x =⎰则常数T 的值为 .【测量目标】微积分基本定理.【考查方式】利用微积分基本定理建立方程求解. 【难易程度】中等 【参考答案】3 【试题解析】∵321=3x 'x ⎛⎫⎪⎝⎭,∴2330011d 0933T T x x x T ==-=⎰,∴3T =. 13.执行如图所示的程序框图,如果输入1,2,a b a ==则输出的的值为 .第13题图【测量目标】循环结构的程序框图.【考查方式】阅读程序框图,运行程序得出结果. 【难易程度】中等 【参考答案】9【试题解析】输入1,2,a b ==不满足8,a >故a =3;a =3不满足a >8,故a =5;a =5不满足a >8,故a =7;a =7不满足a >8,故a =9,满足a >8,终止循环.输出a =9.14.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点,P 是C 上一点,若126,PF PF a +=且12PF F △的最小内角为30,则C 的离心率为___.【测量目标】双曲线的定义,余弦定理.【考查方式】根据双曲线的定义及已知条件,利用余弦定理建立关于,a c 的方程求解. 【难易程度】较难 【参考答案】3【试题解析】不妨设|PF 1|>|PF 2|,由1212||||6,||||2PF PF a PF PF a +=⎧⎨-=⎩可得12||4,||2.PF a PF a =⎧⎨=⎩(步骤1)∵2a <2c ,∴∠PF 1F 2=30°,∴222242cos30224c a a c a︒()+()-()=⨯⨯,(步骤2)整理得,223230c a ac +-=,即22330,3e e e -+=∴=.(步骤3)15.设n S 为数列{}n a 的前n 项和,1(1),,2n n n n S a n *=--∈N 则(1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【测量目标】已知递推关系求通项,数列的前n 项和. 【考查方式】根据1(2)n n n a S S n -=-建立关于n a 的关系式,根据n a 的关系式归纳寻找其规律后求解.【难易程度】中等 【参考答案】116- 10011(1)32- 【试题解析】111111(1)(1),22n n n n n n n n n a S S a a ----=-=----+111(1)(1)2n n n n n na a a --∴=---+(步骤1)当n 为偶数时,11,2n n a -=-当n 为奇数时,1122n n n a a -+=,(步骤2)∴当4n =时3411216a =-=-.(步骤3)根据以上{}n a 的关系式及递推式可求:135724681111,,,,2222a a a a =-=-=-=-246824681111,,,.2222a a a a ====(步骤4)21436535111,,,,222a a a a a a ∴-=-=-= (12100214310099231001111)()()()()2222S S S a a a a a a ∴+++=-+-++--++++ (399210010011111111)()()(1)22222232=+++-+++=-……(步骤6) 16.设函数(),0,0.xxxf x a b c c a c b =+->>>>其中(1)记集合M ={(,,),,a b c a b c 不能构成一个三角形的三条边长,且a b =},则(,,)a b c M ∈所对应7 / 13的()f x 的零点的取值集合为____.(2)若,,a b c 是ABC △的三条边长,则下列结论正确的是 .(写出所有正确结论的序号)①()(),1,0;x f x ∀∈-∞>②,x ∃∈R 使,,xxxa b c 不能构成一个三角形的三条边长; ③若ABC △为钝角三角形,则()1,2,x ∃∈,使()0.f x =【测量目标】对数的运算,对数、指数函数的性质,余弦定理,函数零点存在性定理.【考查方式】由三角形的构成条件与函数的零点存在性求解未知参数的范围,以及举反例验证. 【难易程度】较难 【参考答案】{}01x x < ①②③【试题解析】(1)0,0,c a c b a b >>>>=且,,a b c 不能构成三角形三边,02, 2.c ac a∴<∴(步骤1)令()0f x =得2xxa c =,即2xc a ⎛⎫= ⎪⎝⎭.(步骤2)21log 2log 1c ac x x a ∴=∴=01x∴<(步骤3)(2)①,,a b c 是三角形的三条边长,0,0,01,01a ba b c c a c b c c∴+>>>>>∴<<<<∴当(,1)x ∈-∞时, ()()()1(1)0x x x x x x x xa b a b a b c f x a b c c c c c c c c c +-⎡⎤=+-=+->+-=>⎢⎥⎣⎦(步骤4)(,1),()0x f x ∴∀∈-∞>故①正确(步骤5);②令2,3,4,a b c ===,则,,a b c 可以构成三角形.但2224,9,16a b c ===却不能构成三角形,故②正确;(步骤6)③,c a c b >>且ABC △为钝角三角形,2220a b c ∴+-<又222(1)0,(2)0f a b c f a b c =+->=+-<∴(步骤7)函数()f x 在()1,2上存在零点,故③正确. (步骤8)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数2ππ()sin()cos(),()2sin632x f x x x g x =-+-=. (I )若α是第一象限角,且33()f α=.求()g α的值; (II )求使()()f x g x 成立的x 的取值集合.【测量目标】两角和与差的正、余弦公式,二倍角的余弦公式以及三角函数不等式的解法. 【考查方式】运用三角恒等变换公式化简函数求解. 【难易程度】容易 【试题解析】(I )533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f .(步骤1)23π41sin ,(0,)cos ,()2sin 1cos 52525g αααααα⇒=∈⇒===-=且(步骤2) (II )31π1()()3sin 1cos sin cos sin()2262f xg x x x x x x ⇒-⇒+=+(步骤3) ππ5π2π[2π,2π][2π,2π],6663x k k x k k k ⇒+∈++⇒∈+∈Z (步骤4)18.(本小题满分12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4 Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I )从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率; (II )从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.第18题图【测量目标】古典概型,分布列数学期望.【考查方式】利用古典概型求概率,根据所求概率列出分布列,结合期望公式求解. 【难易程度】中等【试题解析】(Ⅰ) 由图知,三角形边界共有12个格点,内部共有3个格点.从三角形上顶点按逆时针方向开始,分别有(0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(1,2),8对格点恰好“相近”.所以,从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率821239P ==⨯.(步骤1) (Ⅱ)三角形共有15个格点.与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4).所以2(51)15P Y ==(步骤2),与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1).所以4(48)15P Y ==(步骤3),与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1) ,(0,2),(0,3).所以6(45)15P Y ==(步骤4)与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1).所以3(42)15P Y ==(步骤5)如下表所示:X 1 2 3 4 Y 51 48 45 42 频数 2463概率P152 154 156 1539 / 132463102192270126690()5148454246151515151515E Y +++=⨯+⨯+⨯+⨯===46)(=∴Y E . (步骤6)19.(本小题满分12分)如图,在直棱柱1111//ABCD A B C D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=,13AD AA ==.(I )证明:1AC B D ⊥; (II )求直线11B C 与平面1ACD 所成角的正弦值.第19题图【测量目标】线面垂直的判定与性质,线面角.【考查方式】利用空间线面垂直的性质证明线线垂直,建立空间直角坐标系用向量法证明,再求直线与平面所成角的正弦值 【难易程度】中等 【试题解析】(Ⅰ)1111ABCD A B C D -是直棱柱1AC ∴⊥面ABCD ,且面BD ⊂面1ABCD BB AC⇒⊥(步骤1)又AC BD ⊥,且1BDBB B =,AC ∴⊥面1BDB ,1B D ⊂面1BDB ,1AC B D ∴⊥.(步骤2) (Ⅱ)11////,B C BC AD ∴直线11B C 与平面1ACD 的夹角即直线AD 与平面1ACD 的夹角θ.(步骤3)建立直角坐标系,用向量解题.设原点在A 点,AB 为y 轴正半轴,AD 为x 轴正半轴,1AA 为z 的正半轴. 设()10,00,(3,0,0),(3,0,3),(0,,0),(1,,0)A D D B y C y ,,11(0,,3),(1,,3)B y C y 则(1,,0),(3,,0),AC y BD y AC BD ==-⊥210300,0 3.(1,3,0),(3,0,3).AC BD y y y AC AD =⇒-+=>⇒=∴==(步骤4)设平面1ACD 的法向量为(,,)x y z n ,则10AC AD ⎧=⎪⇒⎨=⎪⎩n n 平面1ACD 的一个法向量11313,100BC ==(-,,)(,,)n (步骤5) 所以平面1ACD 的一个法向量1111321313,100sin |cos ,|77B C B C θ==⇒=<>==(-,,)(,,)n n所以11B C 与平面1ACD 夹角的正弦值为217.(步骤6)第19题(Ⅱ)图20.(本小题满分13分)在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径成为M 到N 的一条“L 路径”.如图所示的路径123MM M M N 与路径1MN N 都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点(3,20),(10,0),(14,0)A B C -处.现计划在x 轴上方区域(包含x 轴)内的某一点P 处修建一个文化中心.(I )写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明);(II )若以原点O 为圆心,半径为1的圆的内部是保护区,“L 路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L 路径”长度之和最小.第20题图【测量目标】绝对值函数最值.【考查方式】将实际案例中的关系先列出式子再将其转化为含绝对值的和的形式,进行分类讨论求解. 【难易程度】较难【试题解析】(I )设点(,)P x y ,且0.y点P 到点A (3,20)的“L 路径”的最短距离d 等于水平距离加上垂直距离,即320d x y =-+-,其中0,.yx ∈R (步骤1)(Ⅱ)点P 到A,B,C 三点的“L 路径”长度之和的最小值d = 水平距离之和的最小值h + 垂直距离之和的最小值v (且h 和v 互不影响).显然当y =1时,v = 20+1=21;显然当[10,14]x ∈-时,水平距离之和(10)14324h x x x =--+-+-,且当x =3时,h =24.因此,当P (3,1)时,d =21+24=45. (步骤2)所以,当点(,)P x y 满足P (3,1)时,点P 到A,B,C 三点的“L 路径”长度之和d 的最小值为45. (步骤3) 21.(本小题满分13分)过抛物线2:2(0)E x py p =>的焦点F 作斜率分别为12,k k 的两条不同的直线12,l l ,且122k k +=,1l E 与相交于点A ,B ,2l 与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在的直线记为l .11 / 13(I )若120,0k k >>,证明;22FM FN p <;(II )若点M 到直线l的距离的最小值为,求抛物线E 的方程. 【测量目标】抛物线的定义,向量数量积的定义,圆的方程,直线与抛物线的位置关系.【考查方式】先将直线方程带入抛物线的方程,利用向量数量积的坐标运算求解,再求出圆的相交弦方程利用点到直线的距离公式及函数思想求解. 【难易程度】较难【试题解析】(Ⅰ)已知抛物线的焦点为(0,).2p F 设112233(,),(,),(,),A x y B x y C x y 4412123434(,),(,),(,)D x y M x y N x y ,(步骤1)直线1l 方程:1,2p y k x =+与抛物线E 方程联立,化简整理得22120x pk x p -++=:(步骤2) 2221212112121121112,,(,)22x x px x k p x x p x k p y k p FM k p k p +⇒+==-⇒===+⇒=(步骤3)同理221234234222,(,)22x x px k p y k p FN k p k p +⇒===+⇒=.(步骤4)2222212121212(1)FM FN k k p k k p p k k k k ⇒=+=+(步骤5)222121212*********,0,,221,(1)1(11)2k k k k k k k k k k FM FN p k k k k p p >>≠=+>⇒<∴=+<⨯⨯+=所以,22FM FN p <成立. (步骤6) (Ⅱ)设圆M N 、的半径分别为22121121111,[()()][2()],22222p p pr r r y y p k p k p p ⇒=+++=++=+ 211,r k p p ⇒=+(步骤7)同理2222,r k p p =+则M N 、的方程分别为22212121()()x x y y r -+-=, 22234342()()x x y y r -+-=,(步骤7)直线l 的方程为:2222223412341212341234122()2()0x x x y y y x x y y r r -+-+-+--+=.222121123412341234123421212()2()()()()()()()0p k k x p k k y x x x x y y y y r r r r ⇒-+-++-++-+-+= 222222222222222212112121221122()2()()()()()(2)0p k k x p k k y p k k p k k k k p k k k k ⇒-+-+-+-++-++=0202)(1)(222212221=+⇒=+++++--+⇒yx k k p k k p p y x (步骤8)点1212(,)M x y 到直线l 的距离为:2211112()()144||||55d p p -+-+====8p ⇒=⇒抛物线的方程为216x y =(步骤9)22.(本小题满分13分)已知0a >,函数()2x af x x a-=+.(I )记()f x 在区间[]0,4上的最大值为g a (),求g a ()的表达式;(II )是否存在a ,使函数()y f x =在区间()0,4内的图象上存在两点,在该两点处的切线相互垂直?若存在,求a 的取值范围;若不存在,请说明理由.【测量目标】利用导数求分段函数的最值,导数的几何意义.【考查方式】根据已知条件转化函数为分段函数再求导,判断极值点所在区间进行分类讨论,依题意将问题转化为函数单调性不一致区间上的两个点处的导数之积等于1-建立方程求解. 【难易程度】较难【试题解析】(Ⅰ)当0,a >○13()1,22x a af x x a x a-==-++ 当2x a <-或x a 时,是单调递增的;(步骤1)○23()122x a af x x a x a-+==-+++,当2a x a -<<时,是单调递减的.由上知,(步骤2)当4a >时()f x 在[0,4]x ∈上单调递减,其最大值为31(0)122a f a =-+=,(步骤3)当4a 时,()f x 在[0,]a 上单调递减,在[,4]a 上单调递增. (步骤4)令31(4)1(0)422a f f a =-<=+,解得:(1,4]a ∈,即当(1,4]a ∈时,()g a 的最大值为(0)f ,(步骤5)当(0,1]a ∈时,()g a 的最大值为(4)f ,综上,(]()31,0,142()=1,1,2a a ag a a ⎧-∈⎪⎪+⎨⎪∈+∞⎪⎩.(步骤6)(II )由前知,()y f x =的图象是由两段反比例函数的图象组成的.因此,若在图象上存在两点),(),,(2211y x Q y x P 满足题目要求,则P ,Q 分别在两个图象上,且12()()1f x f x ''=-.(步骤7)223,2,(2)()3,2;(2)ax a x ax a f x a a x a x a ⎧<-⎪+⎪'=⎨-⎪-<<⎪+⎩或(04a <<)(步骤8)不妨设12122212331,(0,),(,4]3(2)(2)(2)(2)a ax a x a a x a x a x a x a -=-∈∈⇒=++++2222212121222324032402()43224a ax a a a ax a x x a x x a a x x a x a a x ⎧--<<--⎪⇒=+++-⇒=⇒+⎨+⎪<<⎩22222203242342434111224223404(0,)222484228x a x a a ax a a x a a a a a a a x a x <--<--<-⎧⎧⎧⎪⎪⎪⇒<+⇒-<⇒<-⇒<<<⇒∈⎨⎨⎨⎪⎪⎪-<<<<<⎩⎩⎩,且(步骤9)13 / 13所以,当)21,0(∈a 时,函数()y f x =在区间()0,4内的图象上存在两点,在该两点处的切线相互垂直. (步骤10)。

2013年全国高考题目分类解析——复数部分

2013年全国高考题目分类解析——复数部分

1.(安徽文科、理科第1题) 设 i 是虚数单位,复数ai i1+2-为纯虚数,则实数a 为 (A )2 (B) -2 (C) 1-2 (D) 12 答案:A 解:5)12()2(5)2)(1(21i a a i ai i ai ++-=++=-+为纯虚数,则2=a 。

2.(北京理科第2题) 复数212i i-=+ (A )i (B )-i (C )4355i -- (D )4355i -+ 解:i i i i i i ==-+-=+-555)21)(2(212,选A 3.(北京文科第2题)复数212i i-=+ (A)i (B )i - (C)4355i -- (D)4355i -+ 答案:A4.(福建理科第1题)i 是虚数单位,若集合S={}1,0,1-,则A.i S ∈B.2i S ∈C. 3i S ∈D.2S i ∈ 答案:B5.(福建文科2) i 是虚数单位1+i 3等于A.iB.-iC.1+iD.1-i答案:D6.(广东理科1)设复数z 满足(1)2i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i -(B ).22(1)11(1)(1)i z i i i i -===-++- 7.(广东文科1)设复数z 满足iz=1,其中i 为虚数单位,则A.i -B.iC.1-D.1解:A8.(湖北理科1)i 为虚数单位,则=⎪⎭⎫ ⎝⎛-+201111i iA.i -B.1-C.iD.1【答案】A解析:因为()i i i i i =-+=-+221111,所以i i i i i i -====⎪⎭⎫ ⎝⎛-++⨯3350242011201111,故选A .9.(湖南理科1、文科2)若,a b R ∈,i 为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b =-=-D .1,1a b ==- 答案:D解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。

2013年高考数学最后回归基础知识:四、复数

2013年高考数学最后回归基础知识:四、复数

四、复 数一:基本概念1.复数的概念:(1)虚数单位i ;(2)复数的代数形式z=a+bi ,(a, b ∈R);(3)复数的实部、虚部、虚数与纯虚数。

2.复数集b a+bi(a,b R)a 0)a 0)⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪∈⎨⎩⎪=⎧⎪≠⎨⎪≠⎩⎩整数有理数实数 (=0)分数复数无理数(无限不循环小数)纯虚数(虚数 (b 0)非纯虚数(复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b≠0时,a+bi 是虚数,其中a=0且b≠0时称为纯虚数。

应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。

3.复数的四则运算若两个复数z1=a1+b1i ,z2=a2+b2i ,a) 复数的加法、减法、乘法运算与实数的运算基本上没有区别,最主要的是在运算中将i^2=-1结合到实际运算过程中去。

(1)加法:z1+z2=(a1+a2)+(b1+b2)i ;(2)减法:z1-z2=(a1-a2)+(b1-b2)i ;(3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ;b)复数的除法:复数的除法是复数乘法的逆运算,由于两个共轭复数的积是实数,因此复数的除法可以通过将分母实化得到,即.2211(11)*(22)1*21*2(1*21*2)22(22)*(22)22a b i a b i a b i a a b b a b i b a i a b i a b i a b i a b ++-++-+==++-+(4)四则运算的交换率、结合率;分配率都适合于复数的情况。

(5)特殊复数的运算:① n i (n 为整数)的周期性运算; ② (1±i)^2=±2i ;③ 若ω=-21+23i ,则ω^3=1,1+ω+ω^2=0.4. 复数z=a+bi 的模,|a|=且2||z z z ⋅==a^2+b^2.5. 共轭复数定义:对于复数z=a+bi ,称复数z =a-bi 为z 的共轭复数。

2013年山东高考数学试题及答案

2013年山东高考数学试题及答案
为定值,并求出这个定值.
选择题:
1--5: D C A B B 6--10:C BDAB 11-12:DB 填空题: (13)3 (14) (15) (16)①③④ 三、解答题: (17)解答:(1)由cosB= 与余弦定理得,,又a+c=6,解得 (2)又a=3,b=2,与正弦定理可得,,, 所以sin(A-B)=sinAcosB-cosAsinB= (18)解答:(1)因为C、D为中点,所以CD//AB 同理:EF//AB,所以EF//CD,EF平面EFQ, 所以CD//平面EFQ,又CD平面PCD,所以 CD//GH,又AB//CD,所以AB//GH. (2)由AQ=2BD,D为AQ的中点可得,△ABQ为直角三角形,以B为坐标原 点,以BA、BC、BP为x、y、z轴建立空间直角坐标系,设AB=BP=BQ=2, 可得平面GCD的一个法向量为,平面EFG的一个法向量为,可得,所以二 面角D-GH-E的余弦值为 (19)解答:(1),,
(21)解答:(1),令得,,
当 所以当时,函数取得最的最大值
(2)由(1)知,f(x)先增后减,即从负无穷增大到,然后递减到c,而 函数|lnx|是(0,1)时由正无穷递减到0,然后又逐渐增大。
故令f(1)=0得,, 所以当时,方程有两个根; 当时,方程有一两个根; 当时,方程有无两个根. (22)解答:(1)由已知得,,,解得 所以椭圆方程为: (2)由题意可知:=,=,设其中,将向量坐标代入并化简得:m(,因 为, 所以,而,所以 (3)由题意可知,l为椭圆的在p点处的切线,由导数法可求得,切线 方程为: ,所以,而,代入中得: 为定值.
(A)(B)(Fra bibliotek)(D)
(5)将函数y=sin(2x +

2013年高考数学试题(15)复数

2013年高考数学试题(15)复数

1.(安徽文科、理科第1题) 设 i 是虚数单位,复数ai i1+2-为纯虚数,则实数a 为 (A )2 (B) -2 (C) 1-2 (D) 12 答案:A 解:5)12()2(5)2)(1(21i a a i ai i ai ++-=++=-+为纯虚数,则2=a 。

2.(北京理科第2题)复数212i i-=+ (A )i (B )-i (C )4355i -- (D )4355i -+ 解:i i i i i i ==-+-=+-555)21)(2(212,选A 3.(北京文科第2题)复数212i i-=+ (A)i (B )i - (C)4355i -- (D)4355i -+ 答案:A4.(福建理科第1题)i 是虚数单位,若集合S={}1,0,1-,则A.i S ∈B.2i S ∈C. 3i S ∈D.2S i∈ 答案:B5.(福建文科2) i 是虚数单位1+i 3等于A.iB.-iC.1+iD.1-i答案:D6.(广东理科1)设复数z 满足(1)2i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i -(B ).22(1)11(1)(1)i z i i i i -===-++- 7.(广东文科1)设复数z 满足iz=1,其中i 为虚数单位,则A.i -B.iC.1-D.1解:A8.(湖北理科1)i 为虚数单位,则=⎪⎭⎫ ⎝⎛-+201111i iA.i -B.1-C.iD.1【答案】A解析:因为()i i i i i =-+=-+221111,所以i i i i i i -====⎪⎭⎫ ⎝⎛-++⨯3350242011201111,故选A .9.(湖南理科1、文科2)若,a b R ∈,i 为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b =-=-D .1,1a b ==- 答案:D解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。

2013年山东省高考理科数学试卷解析版

2013年山东省高考理科数学试卷解析版

2013年山东省高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)(2013•山东)复数z满足(z﹣3)(2﹣i)=5(i为虚数单位),则z的共轭复数为()A.2+i B.2﹣i C.5+i D.5﹣i考点:复数的基本概念.专题:计算题.分析:利用复数的运算法则求得z,即可求得z的共轭复数.解答:解:∵(z﹣3)(2﹣i)=5,∴z﹣3==2+i∴z=5+i,∴=5﹣i.故选D.点评:本题考查复数的基本概念与基本运算,求得复数z是关键,属于基础题.2.(5分)(2013•山东)已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9考点:集合中元素个数的最值.专题:计算题.分析:依题意,可求得集合B={﹣2,﹣1,0,1,2},从而可得答案.解答:解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选C.点评:本题考查集合中元素个数的最值,理解题意是关键,考查分析运算能力,属于中档题.3.(5分)(2013•山东)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0C.1D.2考点: 函数的值.专题:计算题;函数的性质及应用.分析:利用奇函数的性质,f(﹣1)=﹣f(1),即可求得答案.解答:解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选A.点评:本题考查奇函数的性质,考查函数的求值,属于基础题.4.(5分)(2013•山东)已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()A.B.C.D.考点: 直线与平面所成的角.专题:空间角.分析:利用三棱柱ABC﹣A1B1C1的侧棱与底面垂直和线面角的定义可知,∠APA1为PA与平面A1B1C1所成角,即为∠APA1为PA与平面ABC所成角.利用三棱锥的体积计算公式可得AA1,再利用正三角形的性质可得A1P,在Rt△AA1P中,利用tan∠APA1=即可得出.解答:解:如图所示,∵AA1⊥底面A1B1C1,∴∠APA1为PA与平面A1B1C1所成角,∵平面ABC∥平面A1B1C1,∴∠APA1为PA与平面ABC所成角.∵==.∴V 三棱柱ABC﹣A1B1C1==,解得.又P为底面正三角形A1B1C1的中心,∴==1,在Rt△AA1P中,,∴.故选B.点评:熟练掌握三棱柱的性质、体积计算公式、正三角形的性质、线面角的定义是解题的关键.5.(5分)(2013•山东)函数y=sin(2x+φ)的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能的值为()A.B.C.0D.考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;三角函数的图像与性质.分析:利用函数y=Asin(ωx+φ)的图象变换可得函数y=sin(2x+φ)的图象沿x轴向左平移个单位后的解析式,利用其为偶函数即可求得答案.解答:解:令y=f(x)=sin(2x+φ),则f(x+)=sin[2(x+)+φ]=sin(2x++φ),∵f(x+)为偶函数,∴+φ=kπ+,∴φ=kπ+,k∈Z,∴当k=0时,φ=.故φ的一个可能的值为.故选B.点评:本题考查函数y=Asin(ωx+φ)的图象变换,考查三角函数的奇偶性,属于中档题.6.(5分)(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为()A.2B.1C.D.考点: 简单线性规划.专题:不等式的解法及应用.分析:本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(0,0)构成的直线的斜率的最小值即可.解答:解:不等式组表示的区域如图,当M取得点A(3,﹣1)时,z直线OM斜率取得最小,最小值为k==﹣.故选C.点评:本题利用直线斜率的几何意义,求可行域中的点与原点的斜率.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.7.(5分)(2013•山东)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点: 必要条件、充分条件与充要条件的判断.专题:规律型.分析:根据互为逆否命题真假性相同,可将已知转化为q是¬p的充分不必要条件,进而根据逆否命题及充要条件的定义得到答案.解答:解:∵¬p是q的必要而不充分条件,∴q是¬p的充分不必要条件,即q⇒¬p,但¬p不能⇒q,其逆否命题为p⇒¬q,但¬q不能⇒p,则p是¬q的充分不必要条件.故选A.点评:本题考查的知识点是充要条件的判断,其中将已知利用互为逆否命题真假性相同,转化为q是¬p的充分不必要条件,是解答的关键.8.(5分)(2013•山东)函数y=xcosx+sinx的图象大致为()A.B.C.D.考点:函数的图象.专题: 函数的性质及应用.分析:给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.解答:解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选D.点评:本题考查了函数的图象,考查了函数的性质,考查了函数的值,是基础题.9.(5分)(2013•山东)过点(3,1)作圆(x﹣1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()A.2x+y﹣3=0 B.2x﹣y﹣3=0 C.4x﹣y﹣3=0 D.4x+y﹣3=0考点:圆的切线方程;直线的一般式方程.专题:计算题;直线与圆.分析:由题意判断出切点(1,1)代入选项排除B、D,推出令一个切点判断切线斜率,得到选项即可.解答:解:因为过点(3,1)作圆(x﹣1)2+y2=1的两条切线,切点分别为A,B,所以圆的一条切线方程为y=1,切点之一为(1,1),显然B、D选项不过(1,1),B、D不满足题意;另一个切点的坐标在(1,﹣1)的右侧,所以切线的斜率为负,选项C不满足,A满足.故选A.点评:本题考查直线与圆的位置关系,圆的切线方程求法,可以直接解答,本题的解答是间接法,值得同学学习.10.(5分)(2013•山东)用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.279考点:排列、组合及简单计数问题.专题:计算题.分析:求出所有三位数的个数,减去没有重复数字的三位数个数即可.解答:解:用0,1,2,…,9十个数字,所有三位数个数为:900,其中没有重复数字的三位数百位数从非0的9个数字中选取一位,十位数从余下的9个数字中选一个,个位数再从余下的8个中选一个,所以共有:9×9×8=648,所以可以组成有重复数字的三位数的个数为:900﹣648=252.故选B.点评:本题考查排列组合以及简单计数原理的应用,利用间接法求解是解题的关键,考查计算能力.11.(5分)(2013•山东)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A.B.C.D.考点:利用导数研究曲线上某点切线方程;双曲线的简单性质.专题:压轴题;圆锥曲线的定义、性质与方程.分析:由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.解答:解:由,得x2=2py(p>0),所以抛物线的焦点坐标为F().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M(),则C1在点M处的切线的斜率为.由题意可知,得,代入M点得M()把M点代入①得:.解得p=.故选D.点评:本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.12.(5分)(2013•山东)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当取得最大值时,的最大值为()A.0B.1C.D.3考点:基本不等式.专题:计算题;压轴题;不等式的解法及应用.分析:依题意,当取得最大值时x=2y,代入所求关系式f(y)=+﹣,利用配方法即可求得其最大值.解答:解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z均为正实数,∴==≤=1(当且仅当x=2y时取“="),∴=1,此时,x=2y.∴z=x2﹣3xy+4y2=(2y)2﹣3×2y×y+4y2=2y2,∴+﹣=+﹣=﹣+1≤1.∴的最大值为1.故选B.点评:本题考查基本不等式,由取得最大值时得到x=2y是关键,考查配方法求最值,属于中档题.二、填空题13.(4分)(2013•山东)执行右面的程序框图,若输入的ɛ值为0。

2013年高考数学总复习 11-2 复数的概念与运算测试 新人教B版

2013年高考数学总复习 11-2 复数的概念与运算测试 新人教B版

2013年高考数学总复习 11-2 复数的概念与运算但因为测试 新人教B 版1.(2011²福建理,1)i 是虚数单位,若集合S ={-1,0,1},则( ) A .i ∈S B .i 2∈S C .i 3∈S D.2i∈S [答案] B[解析] i 2=-1∈S ,故选B.2.(文)(2011²天津文,1)i 是虚数单位,复数1-3i1-i =( )A .2-iB .2+iC .-1-2iD .-1+2i[答案] A [解析]1-3i1-i=-+-+=4-2i 2=2-i.(理)(2011²安徽皖南八校联考)复数z 满足z =2-i 1-i ,则z -等于( )A .1+3iB .3-i C.32-12i D.12+32i [答案] C[解析] ∵z =2-i1-i =-+2=3+i2, ∴z -=32-12i ,故选C.3.(2011²揭阳一中月考)设a ,b 为实数,若复数1+2ia +b i =1+i ,则( )A .a =32,b =12B .a =3,b =1C .a =12,b =32D .a =1,b =3[答案] A[解析] 1+2i =(a +b i)(1+i)=a -b +(a +b )i ,∴⎩⎪⎨⎪⎧a -b =1a +b =2,∴⎩⎪⎨⎪⎧a =32b =12,故选A.4.(文)(2011²山东济南一模)设a 是实数,且a 1+i +1-i2是实数,则a 等于( )A.12 B .-1 C .1 D .2[答案] B [解析] ∵a1+i +1-i 2=a -i 2+1-i2=1+a 2-1+a2i 是实数, 又∵a ∈R ,∴1+a 2=0,∴a =-1.(理)(2011²山东潍坊一模)复数z =2+m i1+i (m ∈R)是纯虚数,则m =( )A .-2B .-1C .1D .2[答案] A [解析] 因为z =+m-2=2+m 2+m -22i 是纯虚数,所以⎩⎪⎨⎪⎧2+m =0,m -2≠0.得m =-2.5.(2010²广东江门调研)已知复数z =a +i(其中a ∈R ,i 为虚数单位)的模为|z |=2,则a 等于( )A .1B .±1 C. 3 D .± 3[答案] D[解析] ∵|z |=2,∴a 2+1=4,∴a =± 3.6.(文)(2011²安徽文,1)设i 是虚数单位,复数1+a i2-i 为纯虚数,则实数a 为( )A .2B .-2C .- 12D.12[答案] A[解析]1+a i2-i =+a +-+=-a +a +5=2-a 5+2a +15i 为纯虚数,∴⎩⎪⎨⎪⎧2-a5=02a +15≠0,∴a =2.(理)(2011²温州八校期末)若i 为虚数单位,已知a +b i =2+i 1-i(a ,b ∈R),则点(a ,b )与圆x 2+y 2=2的关系为( )A .在圆外B .在圆上C .在圆内D .不能确定[答案] A[解析] ∵a +b i =2+i1-i =++2=12+32i(a ,b ∈R), ∴⎩⎪⎨⎪⎧a =12b =32,∵⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=52>2, ∴点P ⎝ ⎛⎭⎪⎫12,32在圆x 2+y 2=2外,故选A.7.规定运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若⎪⎪⎪⎪⎪⎪zi -i2=1-2i ,设i 为虚数单位,则复数z =________.[答案] 1-i[解析] 由已知可得⎪⎪⎪⎪⎪⎪zi -i2=2z +i 2=2z -1=1-2i ,∴z =1-i . 8.(2011²无为中学月考)已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-2i ,它们所对应的点分别为A 、B 、C .若OC →=xOA →+yOB →,则x +y 的值是________.[答案] 5[解析] ∵OC →=xOA →+yOB →,∴(3-2i )=x (-1+2i )+y (1-i ),∴⎩⎪⎨⎪⎧-x +y =32x -y =-2,解得⎩⎪⎨⎪⎧x =1y =4,故x +y =5.9.(2010²上海大同中学模考)设i 为虚数单位,复数z =(12+5i)(cos θ+isin θ),若z ∈R ,则tan θ的值为________.[答案] -512[解析] z =(12cos θ-5sin θ)+(12sin θ+5cos θ)i ∈R , ∴12sin θ+5cos θ=0,∴tan θ=-512.10.(2010²江苏通州市调研)已知复数z =a 2-7a +6a +1+(a 2-5a -6)i (a ∈R).试求实数a 分别为什么值时,z 分别为:(1)实数; (2)虚数; (3)纯虚数.[解析] (1)当z 为实数时,⎩⎪⎨⎪⎧a 2-5a -6=0a +1≠0,∴a =6,∴当a =6时,z 为实数.(2)当z 为虚数时,⎩⎪⎨⎪⎧a 2-5a -6≠0a +1≠0,∴a ≠-1且a ≠6,故当a ∈R ,a ≠-1且a ≠6时,z 为虚数.(3)当z 为纯虚数时,⎩⎪⎨⎪⎧a 2-5a -6≠0a 2-7a +6=0a +1≠0∴a =1,故a =1时,z 为纯虚数.11.(文)(2011²东北四市统考)已知复数z 1=cos23°+isin23°和复数z 2=cos37°+is in37°,则z 1²z 2为( )A.12+32i B.32+12i C.12-32i D.32-12i [答案] A[解析] z 1²z 2=cos23°cos37°-sin23°sin37°+(sin37°cos23°+cos37°sin23°)i=cos60°+i²sin60°=12+32i ,故选A.(理)若z =cos θ+i sin θ(i 为虚数单位),则使z 2=-1的θ值可能是( ) A.π6 B.π4 C.π3D.π2[答案] D[解析] ∵z 2=cos2θ+i sin2θ=-1,∴⎩⎪⎨⎪⎧cos2θ=-1sin2θ=0.∴2θ=2k π+π (k ∈Z), ∴θ=k π+π2.令k =0知,D 正确.12.如果复数(m 2+i )(1+mi )是实数,则实数m 等于( ) A .1 B .-1 C. 2 D .- 2[答案] B[解析] ∵(m 2+i )(1+mi )=(m 2-m )+(m 3+1)i 是实数,m ∈R , ∴由a +bi (a 、b ∈R)是实数的充要条件是b =0, 得m 3+1=0,即m =-1.13.(2011²南通调研)若复数z 满足z +i =3+ii ,则|z |=________.[答案]17[解析] ∵z =3+ii -i =-3i +1-i =1-4i ,∴|z |=17.14.在复平面内,z =cos10+isin10的对应点在第________象限. [答案] 三[解析] ∵3π<10<7π2,∴cos10<0,sin10<0,∴z 的对应点在第三象限.15.(文)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当实数m 取何值时. (1)z 是纯虚数. (2)z 是实数.(3)z 对应的点位于复平面的第二象限.[解析] (1)由题意知⎩⎪⎨⎪⎧m 2-2m -=0,m 2+3m +2≠0.解得m =3.所以当m =3时,z 是纯虚数.(2)由m 2+3m +2=0,得m =-1或m =-2, 又m =-1或m =-2时,m 2-2m -2>0, 所以当m =-1或m =-2时,z 是实数.(3)由⎩⎪⎨⎪⎧m 2-2m -,m 2+3m +2>0.解得:-1<m <1-3或1+3<m <3.(理)设z 是虚数,ω=z +1z是实数,且-1<ω<2.(1)求z 的实部的取值范围;(2)设u =1-z1+z ,那么u 是不是纯虚数?并说明理由.[解析] (1)设z =a +bi (a 、b ∈R ,b ≠0), ω=a +bi +1a +bi =⎝ ⎛⎭⎪⎫a +a a 2+b 2+⎝ ⎛⎭⎪⎫b -b a 2+b 2i ,∵ω是实数,∴b -ba 2+b 2=0.又b ≠0,∴a 2+b 2=1,ω=2a . ∵-1<ω<2,∴-12<a <1,即z 的实部的取值范围是⎝ ⎛⎭⎪⎫-12,1. (2)u =1-z 1+z =1-a -bi 1+a +bi =1-a 2-b 2-2bi +a 2+b 2=-b a +1i , ∵-12<a <1,b ≠0,∴u 是纯虚数.16.将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a ,第二次出现的点数为b .(1)设复数z =a +bi (i 为虚数单位),求事件“z -3i 为实数”的概率;(2)求点P (a ,b )落在不等式组⎩⎪⎨⎪⎧a -b +2≥00≤a ≤4b ≥0表示的平面区域内(含边界)的概率.[解析] (1)z =a +bi (i 为虚数单位),z -3i 为实数,则a +bi -3i =a +(b -3)i 为实数,则b =3.依题意得b 的可能取值为1,2,3,4,5,6,故b =3的概率为16.即事件“z -3i 为实数”的概率为16.(2)连续抛掷两次骰子所得结果如下表:(6,5)不等式组所表示的平面区域如图中阴影部分所示(含边界).由图知,点P (a ,b )落在四边形ABCD 内的结果有:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6),共18种.所以点P (a ,b )落在四边形ABCD 内(含边界)的概率为P =1836=12.1.(2011²罗源一中月考)已知复数z 1=cos α+i s in α,z 2=sin β+i cos β,(α,β∈R),复数z =z 1²z -2的对应点在第二象限,则角α+β所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] C[解析] ∵z =(cos α+i sin α)²(sin β-i cos β)=sin(α+β)-i cos(α+β)的对应点在第二象限,∴⎩⎪⎨⎪⎧α+β-α+β>0,∴角α+β的终边在第三象限.2.(2010²安徽合肥市质检)已知复数a =3+2i ,b =4+xi (其中i 为虚数单位,x ∈R),若复数a b∈R ,则实数x 的值为( )A .-6B .6 C.83 D .-83[答案] C [解析] a b =3+2i4+xi=+2i -xi 16+x 2=12+2x 16+x 2+⎝ ⎛⎭⎪⎫8-3x 16+x 2²i ∈R ,∴8-3x16+x2=0,∴x =83.3.(2010²泰安市质检)若复数2+ai1-i (a ∈R)是纯虚数(i 是虚数单位),则a 的值为( )A .-2B .-1C .1D .2[答案] D [解析]2+ai1-i =+ai +i -i +i=a +i +-a2为纯虚数,∴⎩⎪⎨⎪⎧2-a =0a +2≠0,∴a =2.4.若i 是虚数单位,则满足(p +q i)2=q +p i 的实数p 、q 一共有( ) A .1对 B .2对 C .3对 D .4对[答案] D[解析] 由(p +q i)2=q +p i 得(p 2-q 2)+2pq i =q +p i ,所以⎩⎪⎨⎪⎧p 2-q 2=q ,2pq =p .解得⎩⎪⎨⎪⎧p =0q =0,或⎩⎪⎨⎪⎧p =0q =-1,或⎩⎪⎨⎪⎧ p =32q =12,或⎩⎪⎨⎪⎧p =-32q =12,因此满足条件的实数p 、q 一共有4对.5.设A 、B 为锐角三角形的两个内角,则复数z =(cot B -tan A )+i (tan B -cot A )对应点位于复平面的第________象限.[答案] 二[解析] 由于0<A <π2,0<B <π2且A +B >π2∴π2>A >π2-B >0 ∴tan A >cot B ,cot A <tan B 故复数z 对应点在第二象限.6.关于x 的不等式mx 2-nx +p >0(m ,n ,p ∈R)的解集为区间(-53,2),则复数m +ni所对应的点位于复平面内的第________象限.[答案] 三[解析] ∵mx 2-nx +p >0(m 、n 、p ∈R)的解集为(-53,2),∴⎩⎪⎨⎪⎧m <0-53+2=n m>0-53=p m<0,∵m <0,∴p >0,n <0.故复数m +ni 所对应的点位于复平面内的第三象限.7.(2011²上海文,19)已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z 1²z 2是实数,求z 2.[解析] 设z 1=(a +2)+b i ,a ,b ∈R ,∵(z 1-2)(1+i )=1-i ,∴a -b +(b +a )i =1-i.∴⎩⎪⎨⎪⎧a -b =1a +b =-1∴⎩⎪⎨⎪⎧a =0b =-1,∴z 1=2-i.又设z 2=c +2i ,c ∈R ,则z 1z 2=(2-i)(c +2i)=(2c +2)+(4-c )i ∵z 1z 2∈R ,∴4-c =0,c =4,∴z 2=4+2i.。

三年高考2013_2015高考数学试题分项版专题15复数理(含

三年高考2013_2015高考数学试题分项版专题15复数理(含

第十五章 复数一、选择题1. 【2014,安徽理1】设i 是虚数单位,z 表示复数z 的共轭复数. 若,1i z +=则zi z i+⋅= ( )A .2-B . i 2-C . 2D . i 2 【答案】C .2. 【2013,安徽理1】设i 是虚数单位,_z 是复数z 的共轭复数,若|()>0I x f x =+2=2z zi ,则z =( )A .1+iB .1i -C .1+i -D .1-i - 【答案】A .【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,表示一个复数的共轭复数,只需将此复数整理成标准代数形式,然后其实部不变,虚部变为相反数即可.另外,2||z z z ⋅=是实数,则易知复数z 的实部肯定为1.3.【2015高考安徽,理1】设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】B 【解析】由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .4. 【2014高考广东卷.理.2】已知复数z 满足()3425i z +=,则z =( )A .34i -B .34i +C .34i --D .34i -+【答案】A【名师点晴】本题主要考查的是复数的除法运算,属于容易题.解题时一定注意分子和分母同时乘以34i +的共轭复数,否则很容易出现错误.解本题需要掌握的知识点是复数的除法运算,即2222a bi ac bd bc ad i c di c d c d++-=++++,21i =-. 5. 【2013高考广东卷.理.3】若复数z 满足iz =2+4i ,则在复平面内,z 对应的点的坐标是( ).A .(2,4)B .(2,-4)C .(4,-2)D .(4,2)【答案】C【解析】由iz =2+4i ,得z =24i (24i)(i)i i (i)++⋅-=⋅-=4-2i , 故z 对应点的坐标为(4,-2). 故选C .【考点定位】本题考查复数,属于基础题【名师点晴】本题主要考查的是复数的除法运算和复平面,属于容易题.解题时一定注意分子和分母同时乘以i 的共轭复数,否则很容易出现错误.解本题需要掌握的知识点是复数的除法运算和复平面,即2222a bi ac bd bc ad i c di c d c d++-=++++,21i =-,z a bi =+(a ,R b ∈)在复平面内所对应的点(),a b Z .6. 【2015高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i - B .32i + C .23i + D .23i - 【答案】D .7. 【 2014湖南1】满足i ziz =+(i 是虚数单位)的复数=z ( ) A.i 2121+ B. i 2121- C. i 2121+- D. i 2121-- 【答案】B8. 【 2013湖南1】复数()()1z i i i =+为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】 B【解析】 z = i ·(1+i) = i – 1,所以对应点(-1,1).选B【名师点睛】本题考查复数的代数表示法及其几何意义,解决问题的关键是理解复数与复平面上对应的点之间的对应关系,即实部、虚部对应平面上象限的位置情况,属于基础题目. 9.【2013山东,理1】复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( ).A .2+iB .2-IC .5+iD .5-i 【答案】:D 【解析】:由题意得z -3=52i-=2+i ,所以z =5+i.故z =5-i ,应选D. 【名师点睛】本题考查复数的概念和运算,其解答利用方程思想,采用分母实数化求解. 本题属于基础题,注意运算的准确性. 10.【2015高考山东,理2】若复数z 满足1zi i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+ 【答案】A 【解析】因为1zi i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.11. 【2014山东.理1】 已知R b a ∈,,i 是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a ( )A.i 45-B. i 45+C. i 43-D. i 43+ 【答案】D12. 【2013高考陕西版理第6题】设z 1,z 2是复数,则下列命题中的假.命题是( ).A .若|z 1-z 2|=0,则12z z =B .若12z z =,则12z z =C .若|z 1|=|z 2|,则1122z z z z ⋅=⋅D .若|z 1|=|z 2|,则z 12=z 22【答案】D【名师点晴】本题主要考查的是复数的模,复数相等以及共轭复数等知识,属于容易题;在解答时对于正确选项要说明理由,对于错误选项则只要举出反例即可,在本题在对于选项D ,可令z 1=i +1,z 2=1-i 则结论不成立14. 【2013课标全国Ⅱ,理2】设复数z 满足(1-i)z =2i ,则z =( ). A .-1+i B .-1-I C .1+i D .1-i 【答案】:A15. 【2015高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .2 【答案】B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .【考点定位】复数的运算.【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.16. 【2014新课标,理2】设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A. - 5B. 5C. - 4+ iD. - 4 - i 【答案】A【解析】由题意知:22z i =-+,所以12z z =-5,故选A 。

广东省各地市2013年高考数学最新联考试题分类汇编(14)复数与推理证明.pdf

广东省各地市2013年高考数学最新联考试题分类汇编(14)复数与推理证明.pdf

一、选择题:
1.(广东省惠州市2013届高三第三次调研文1)是虚数单位,若,则等于( ) A.1 B. C. D.
1.(广东省惠州市2013届高三第三次调研理1)复数 的共轭复数是( )
A.B.C. D.
1.【解析】.故选D.
1.(广东省广州市2013年1月高三年级调研文)复数i(i为虚数单位)的模等于 A. B. C. D.
【答案】A
1.i对应的点位于
A.第一象限B. 第二象限C.第三象限 D.第四象限1. A
,其对应的点为,位于第一象限
2. (广东省茂名市2013年高三第一次高考模拟理)计算:( )
A. B.- C.2 D. -2
【答案】D
为虚数单位,则复数等于
A. B. C. D.
【答案】A
⒉(广东省江门市2013年1月高三调研文)若是实数(是虚数单位,是实数),则 A. B. C. D.
【答案】D
二、填空题:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年高考数学试题分类汇编——复数
一、选择题
1、(2010湖南文数)1. 复数
2
1i
-等于 A. 1+I B. 1-i C. -1+i D. -1-i
2、(2010浙江理数)(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是
(A )2z z y -= (B )2
2
2
z x y =+ (C )2z z x -≥ (D )z x y ≤+
解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 22
2
2
+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。

本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题
3、(2010全国卷2理数)(1)复数2
31i i -⎛⎫= ⎪+⎝⎭
(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A
【命题意图】本试题主要考查复数的运算.
【解析】231i i -⎛⎫= ⎪+⎝⎭2
2
(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦
.
4、(2010陕西文数)2.复数z =1i
i
+在复平面上对应的点位于
[A]
(A)第一象限
(B )第二象限
(C )第三象限
(D )第四象限
解析:本题考查复数的运算及几何意义
1i i +i i i 2
1212)1(+=-=,所以点()21,21位于第一象限
5、(2010辽宁理数)(2)设a,b 为实数,若复数
11+2i
i a bi
=++,则 (A )31
,22a b =
= (B) 3,1a b == (C) 13
,22
a b == (D) 1,3a b ==
【答案】A
【命题立意】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力。

【解析】由121i
i a bi +=++可得12()()i a b a b i
+=-++,所以12a b a b -=⎧⎨+=⎩
,解得32a =
,1
2
b =,故选A 。

6、(2010江西理数)1.已知(x+i )(1-i )=y ,则实数x ,y 分别为( )
A.x=-1,y=1
B. x=-1,y=2
C. x=1,y=1
D. x=1,y=2 【答案】 D
【解析】考查复数的乘法运算。

可采用展开计算的方法,得2
()(1)x i x i y -+-=,没有虚部,x=1,y=2.
7、(2010安徽文数)(2)已知21i =-,则i(1-)=
i i (C)i (D)i 2.B
【解析】(1)i i =+,选B.
【方法总结】直接乘开,用2
1i =-代换即可.
8、(2010浙江文数)3.设i 为虚数单位,则51i
i
-=+ (A)-2-3i
(B)-2+3i
(C)2-3i (D)2+3i
解析:选C ,本题主要考察了复数代数形式的四则运算,属容易题
9、(2010山东文数)(2)已知
()2,a i
b i a b R i
+=+∈,其中i 为虚数单位,则a b += A. 1- B. 1 C. 2 D. 3 答案:B
10、(2010北京文数)⑵在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是
(A )4+8i (B)8+2i (C )2+4i (D)4+i 答案:C
11、(2010四川理数)(1)i 是虚数单位,计算i +i 2
+i 3
= (A )-1 (B )1 (C )i - (D )i 解析:由复数性质知:i 2
=-1 故i +i 2
+i 3
=i +(-1)+(-i )=-1 答案:A
12、(2010天津文数)(1)i 是虚数单位,复数
31i
i
+-= (A)1+2i (B)2+4i (C)-1-2i (D)2-i 【答案】A
【解析】本题主要考查复数代数形式的基本运算,属于容易题。

进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2
改为-1.
331+24121-(1-)(1+)2
i i i i
i i i i +++===+()() 【温馨提示】近几年天津卷每年都有一道关于复数基本运算的小题,运算时要细心,不要失分哦。

13、(2010天津理数)(1)i 是虚数单位,复数
1312i
i
-+=+
(A)1+i (B)5+5i (C)-5-5i (D)-1-i 【答案】A
【解析】本题主要考查复数代数形式的基本运算,属于容易题。

进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2
改为-1.
1312i i
-+=
+-+551(12)(12)5i
i i i +==++-(13i )(1-2i) 【温馨提示】近几年天津卷每年都有一道关于复数基本运算的小题,运算时要细心,不要失分哦。

14、(2010广东理数)2.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )
A .4+2 i B. 2+ i C. 2+2 i D.3 2. A .12(1)(3)1311(31)42z z i i i i ⋅=+⋅-=⨯+⨯+-=+ 15、(2010福建文数)4.i 是虚数单位,4
1i ()1-i
+等于 ( ) A .i
B .-i
C .1
D .-1
【答案】C
【解析】41i ()1-i
+=244
(1i)[]=i =12+,故选C . 【命题意图】本题考查复数的基本运算,考查同学们的计算能力.
16、(2010全国卷1理数)(1)复数
3223i
i
+=- (A)i (B)i - (C)12-13i (D) 12+13i
17、(2010山东理数)(2) 已知2(,)a i b i a b i +=+2a i
b i i
+=+(a,b ∈R )
,其中i 为虚数单位,则a+b=
(A)-1 (B)1 (C)2 (D)3
【答案】B 【解析】由a+2i
=b+i i
得a+2i=bi-1,所以由复数相等的意义知a=-1,b=2,所以a+b=1,故选B.
【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。

18、(2010安徽理数)1、i
=
A 、1412
i - B 、
1412+ C 、
126
+ D 、
126
- 1.B
1
4===,选B.
,然后利用复数的代数运算,结合21i =-得结论. 19、(2010福建理数)
20、(2010湖北理数)1.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z
i
+的点是
A .E B.F C.G D.H
1.【答案】D
【解析】观察图形可知3z i =+,则3211z i
i i i
+==-++,即对应点H (2,-1)
,故D 正确. 二、填空题
21、(2010上海文数)4.若复数12z i =-(i 为虚数单位),则z z z ⋅+ i 26- 。

解析:考查复数基本运算z z z ⋅+=i i i i 2621)21)(21(-=-++-
22、(2010重庆理数)(11)已知复数z=1+I ,则2
z z
-=____________. 解析:i i i i i
211112
-=---=--+
23、(2010北京理数)(9)在复平面内,复数21i
i
-对应的点的坐标为 。

答案:(-1,1)
24、(2010江苏卷)2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为___________.
[解析] 考查复数运算、模的性质。

z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。

25、(2010湖北理数)1.若i 为虚数单位,图中复平面内点Z 表
示复数Z ,则表示复数
1z
i
+的点是 A .E B.F C.G D.H 1.【答案】D
【解析】观察图形可知3z i =+,则3211z i
i i i
+==-++,
即对应点H (2,-1),故D 正确.。

相关文档
最新文档