空间中的垂直关系
7.5 空间中的垂直关系
![7.5 空间中的垂直关系](https://img.taocdn.com/s3/m/87b0da423b3567ec112d8a1d.png)
一、直线与平面垂直 1.直线与平面垂直的定义 如果直线l与平面α内的任意一条直线都垂直,我们 l⊥α .直线l叫做 就说直线l与平面α互相垂直,记作 平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时, 它们唯一的公共点P叫做垂足.
根据定义,过一点 有且只有一条 直线与已知平面垂 直;过一点 有且只有一个平面 与已知直线垂直.
【评析】线线垂直可由线面垂直的性质推得,直线
和平面垂直,这条直线就垂直于平面内所有直线,是寻
找线线垂直的重要依据.
*对应演练*
如图,已知矩形ABCD,过A作SA⊥平面AC,再过A作 AE⊥SB交SB于E,过E作EF⊥SC交SC于F. (1)求证:AF⊥SC; (2)若平面AEF交 SD于G,求证:AG⊥SD.
2.判定定理和性质定理 (1)判定定理: 一条直线与一个平面内的两条相交直线都垂直,则 该直线与此平面垂直. 垂直于同一个平面的两条直线平行 . (2)性质定理:
判定 图 形
a ⊥ b, b ⊂α
性质
(b为a内的 a ⊥ m , a ⊥ n, 条 a // b, a ⊥ α a // b, a ⊂α a ⊥ b, a ⊥ α 任一条直 m n = O 件 线) m ⊂α , n ⊂α 结 论
(1)平面BDM⊥平面ACE; (2)平面DEA⊥平面ECA.
a ⊥a
a ⊥a
b⊥a
a ⊥b
a // b
3.直线和平面所成的角 一条直线PA和一个平面α相 交, 但不和这个平面垂直 ,这条直线叫做这个平面的斜 线,斜线和平面的交点A叫做斜足.过斜线上斜足以外的 一点向平面引垂线PO,过垂足O和斜足A的直线AO叫做 斜线在这个平面上的射影.平面的一条斜线和它在平面上 的 射影所成的锐角 ,叫做这条直线和这个平面所成的 角. 一条直线垂直于平面,我们说它们所成的角 是 直角 ;一条直线和平面平行,或在平面内,我们 0° 的角. 说它们所成的角是 二、平面与平面垂直
空间几何中的垂直关系
![空间几何中的垂直关系](https://img.taocdn.com/s3/m/4b1bec5ba200a6c30c22590102020740be1ecdea.png)
空间几何中的垂直关系空间几何是数学中的一个重要分支,研究了在三维空间中的图形、形态和位置关系。
其中垂直关系是几何中的基本概念之一,它在建筑、工程、设计等领域都有广泛的应用。
本文将介绍空间几何中的垂直关系及其相关概念和性质。
1. 垂直关系的定义在空间几何中,两条直线、两个平面或者两个曲面相互垂直,意味着它们的方向互相垂直,不在同一平面上,并且它们的夹角是90度。
具体来说,垂直关系可以分为以下几种情况:1.1 直线的垂直关系空间中的两条直线相互垂直的判定条件有多种,最常用的方法是利用两条直线的方向向量之间的垂直性。
设直线L1的方向向量为a,直线L2的方向向量为b,若a·b=0,则直线L1与直线L2垂直。
1.2 平面的垂直关系两个平面相互垂直的判定方法一般都涉及到它们的法向量。
设平面P1的法向量为n1,平面P2的法向量为n2,若n1·n2=0,则平面P1与平面P2垂直。
1.3 直线与平面的垂直关系直线与平面相互垂直的条件也涉及到它们的方向向量和法向量。
设直线L的方向向量为a,平面P的法向量为n,若a·n=0,则直线L与平面P垂直。
2. 垂直关系的性质垂直关系有一些重要的性质,下面将介绍几个常见的性质。
2.1 垂直平面的夹角如果两个平面相互垂直,则它们的夹角是90度。
这一性质在空间几何中非常重要,可以用来判断两个平面是否相互垂直。
2.2 垂直直线与平面的关系如果一条直线垂直于一个平面,那么它一定位于该平面上的某条直径上。
这一性质可以应用到建筑设计、物理力学等领域。
2.3 垂直向量与平面的关系设一个向量与平面上的任意一条向量都垂直,那么这个向量一定垂直于该平面。
这一性质常用于计算向量与平面的垂直关系。
3. 应用实例垂直关系在实际应用中有很多场景,下面举几个例子进行说明。
3.1 平面墙与地板的垂直关系在建筑设计中,我们常常需要确保墙面与地板垂直,以保证建筑的稳定性和美观性。
3.2 直线与曲面的垂直关系在机械制造中,我们需要确保某些直线与曲面垂直,来实现零件的配合与连接。
人教版高数必修二第6讲:空间中的垂直关系(教师版)
![人教版高数必修二第6讲:空间中的垂直关系(教师版)](https://img.taocdn.com/s3/m/10f7539f52d380eb63946d2f.png)
空间中的垂直关系____________________________________________________________________________________________________________________________________________________________________理解空间中三种垂直关系的定义;掌握空间中三种垂直关系判定及性质;用空间中三种垂直关系的定义、判定及性质解决垂直问题.一、直线与平面垂直1.如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互垂直.2.如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直,记作AB⊥α,直线叫做平面的垂线,平面叫做直线的垂面,交点叫做垂足.垂线上任一点到垂足间的线段,叫做这点到这个平面的垂线段.垂线段的长度叫做这点到平面的距离3.直线和平面垂直的判定4.(1)判定定理:如果一条直线和一个平面内的任何两条相交直线都垂直,那么这条直线垂直于这个平面.符号语言:l⊥a,l⊥b,a∩b=A,a⊂α,b⊂α⇒l⊥α,如图:(2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.符号语言:a∥b,a⊥α⇒b⊥α,如图:5.直线与平面垂直的性质(1)性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.符号语言:a⊥α,b⊥α⇒a∥b,如图:(2)一条直线垂直于一个平面,它就和平面内的任意一条直线垂直.符号语言:a⊥α,b⊂α⇒a⊥b,如图:6.设P是三角形ABC所在平面α外一点,O是P在α内的射影(1)若PA=PB=PC,则O为△ABC的外心.特别地当∠C=90°时,O为斜边AB中点.(2)若PA、PB、PC两两垂直,则O为△ABC的垂心.(3)若P到△ABC三边距离相等,则O为△ABC的内心.7.(1)过一点有且只有一条直线与已知平面垂直.(2)过一点有且只有一个平面与已知直线垂直.二、直线和平面平行1.平面与平面垂直的定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α、β互相垂直,记作α⊥β.2.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.符号表示:a⊥α,a⊂β⇒α⊥β,如图:3.两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线,垂直于另一个平面.符号表示:α⊥β,α∩β=CD,BA⊂α,BA⊥CD,B为垂足⇒BA⊥β,如图:推论:如果两个平面垂直,那么过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.类型一线面垂直例1:如图,直角△ABC所在平面外一点S,且SA=SB=SC,点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.解析:由于D是AC中点,SA=SC,∴SD是△SAC的高,连接BD,可证△SDB≌△SDA.由AB=BC,则Rt△ABC是等腰直角三角形,则BD⊥AC,利用线面垂直的判定定理即可得证.答案:(1)∵SA=SC,D为AC的中点,∴SD⊥AC.在Rt△ABC中,连接BD,则AD=DC=BD,又∵SB=SA,SD=SD,∴△ADS≌△BDS.∴SD⊥BD.又AC∩BD=D,∴SD⊥面ABC.(2)∵BA=BC,D为AC中点,∴BD⊥AC.又由(1)知SD⊥面ABC,∴SD⊥BD.于是BD垂直于平面SAC内的两条相交直线,∴BD⊥平面SAC.练习1:((2014·河南南阳一中高一月考)如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱P A⊥平面ABCD,E、F分别是AB、PC的中点,P A=AD.求证:EF⊥平面PCD.答案:如图,取PD的中点H,连接AH、HF.∴FH 12 CD,∴FH AE,∴四边形AEFH是平行四边形,∴AH∥EF. ∵底面ABCD是矩形,∴CD⊥AD.又∵PA⊥底面ABCD,∴PA ⊥CD ,PA ∩AD =A , ∴CD ⊥平面PAD .又∵AH ⊂平面PAD ,∴CD ⊥AH .又∵PA =AD ,∴AH ⊥PD ,PD ∩CD =D , ∴AH ⊥平面PCD ,又∵AH ∥EF ,∴EF ⊥平面PCD .练习2:如右图,在正方体1111ABCD A B C D -中,P 为1DD 的中点,O 为ABCD 的中心, 求证:1B O ⊥平面PAC 答案:连结111,,PO PB B D ,由正方体的性质可知,1,AC BD AC BB ⊥⊥,且1BD BB B =I ∴AC ⊥面11BDD B 又∵BO ⊂面11BDD B ∴1B O AC ⊥ 设AB a =,则11121,2,2OB OD a B D a PD PD a ===== ∵2222222222221113113,22424OB OB BB a a a OP PD DO a a a =+=+==+=+= 222222111119244PB B D PD a a a =+=+=∴2221OB PO PB += ∴1B O PO ⊥ ∵PO AC O =I∴1B O ⊥平面PAC练习3:在如右图,在空间四边形ABCD 中,,AB AD BC CD ==, 求证:AC BD ⊥答案:设E 为BD 的中点,连结,AE EC∵AB AD = ∴BD AE ⊥ 同理可证:BD EC ⊥又∵AE EC E =I ∴BD ⊥面AEC∵AE ⊂面AEC ∴BD AC ⊥例2:如图在△ABC 中,∠B =90°,SA ⊥平面ABC , 点A 在SB 和SC 上的射影分别是N 、M ,求证:MN ⊥SC .解析:根据直线平面垂直的性质,找到所求垂直的线段中的 一条与另一条所在的平面垂直,即可证明这两条线段互相垂直. 答案:证明:∵SA ⊥平面ABC , ∴SA ⊥BC ,又∠ABC =90°, ∴BC ⊥AB ,∴BC ⊥平面SAB , ∴AN ⊥BC ,又AN ⊥SB ,∴AN ⊥平面SBC ,E ABCDOP D 1C 1B 1A 1DCBA∴AN ⊥SC ,又AM ⊥SC , ∴SC ⊥平面AMN , ∴MN ⊥SC .练习1:如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为A 1D 、AC 上的点,且EF ⊥A 1D ,EF ⊥AC .求证:EF ∥BD 1. 答案:如图所示,连接A 1C 1、C 1D 、BD 、B 1D 1. 由于AC ∥A 1C 1,EF ⊥AC ,∴EF ⊥A 1C 1. 又EF ⊥A 1D ,A 1D ∩A 1C 1=A 1, ∴EF ⊥平面A 1C 1D . ∵BB 1⊥平面A 1B 1C 1D 1,A 1C 1⊂平面A 1B 1C 1D 1, ∴BB 1⊥A 1C 1.又∵四边形A 1B 1C 1D 1为正方形,∴A 1C 1⊥B 1D 1. ∵BB 1∩B 1D 1=B 1,∴A 1C 1⊥平面BB 1D 1D . 而BD 1⊂平面BB 1D 1D ,∴BD 1⊥A 1C 1. 同理,DC 1⊥BD 1,DC 1∩A 1C 1=C 1, ∴BD 1⊥平面A 1C 1D . 由①②可知EF ∥BD 1.练习2:在空间中,下列命题:①平行于同一条直线的两条直线平行;②垂直与同一直线的两条直线平行;③平行与同一平面的两条直线平行;④垂直于同一平面的两条直线平行.其中正确的由___. 答案:①④练习3:已知,,a b c 及平面β,则下列命题正确的是( )A 、////a a b b ββ⎫⇒⎬⊂⎭B 、a a b b ββ⊥⎫⇒⊥⎬⊥⎭C 、//a c a b b c ⊥⎫⇒⎬⊥⎭D 、//a a b b ββ⊂⎫⇒⎬⊂⎭ 答案:B例3:如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC , ∠ABC =90°,PA ⊥平面ABCD ,PA =3,AD =2,AB =23,BC =6.求证:BD ⊥平面PAC .解析:通过计算得到直角,进而得到垂直. 答案:∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥PA .∵∠BAD 和∠ABC 都是直角,∴tan ∠ABD =AD AB =33,tan ∠BAC =BCAB=3, ∴∠ABD =30°,∠BAC =60°.∴∠AEB =90°,即BD ⊥AC , 又PA ∩AC =A ,∴BD ⊥平面PAC .练习1:在正方体中ABCD -A 1B 1C 1D 1中,P 为DD 1的中点, O 为底面ABCD 的中心.求证:B 1O ⊥平面PAC . 答案:如图所示,连接AB 1、CB 1、B 1D 1、PB 1、PO .设AB =a ,则AB 1=CB 1=B 1D 1=2a ,AO =OC =22a , ∴B 1O ⊥AC .∵B 1O 2=OB 2+BB 21=⎝⎛⎭⎪⎫22a 2+a 2=32a 2,PB 21=PD 21+B 1D 21=⎝ ⎛⎭⎪⎫12a 2+(2a )2=94a 2,OP 2=PD 2+DO 2=⎝ ⎛⎭⎪⎫12a +⎝⎛⎭⎪⎫22a 2=34a 2,∴B 1O 2+OP 2=PB 21,∴B 1O ⊥OP . 又PO ∩AC =O ,∴B 1O ⊥平面PAC . 练习2:如图,若测得旗杆PO =4,P A =PB =5,OA =OB =3,则旗杆PO 和地面α的关系是________.答案:∵PO =4,OA =OB =3,P A =PB =5,∴PO 2+AO 2=P A 2,PO 2+OB 2=PB 2, ∴PO ⊥OA ,PO ⊥OB .又OA ∩OB =O ,∴PO ⊥平面AOB ,∴PO ⊥地面α.类型二平面与平面垂直例4:(2014·山东临沂高一期末测试)如图,在底面为正三角形的直三棱柱ABC -A 1B 1C 1中,点D 是BC 的中点,求证:平面AC 1D ⊥平面BCC 1B 1.解析:运用平面垂直的判定.答案:∵△ABC 为正三角形,D 为BC 的中点,∴AD ⊥BC .又∵CC 1⊥底面ABC ,AD ⊂平面ABC , ∴CC 1⊥AD .又BC ∩CC 1=C , ∴AD ⊥平面BCC 1B 1. 又AD ⊂平面AC 1D ,∴平面AC 1D ⊥平面BCC 1B 1.练习1:三棱锥S -ABC 中,∠BSC =90°,∠ASB =60°,∠ASC =60°,SA =SB =SC . 求证:平面ABC ⊥平面SBC .答案:解法一:取BC 的中点D ,连接AD 、SD .由题意知△ASB 与△ASC 是等边三角形,则AB =AC . ∴AD ⊥BC ,SD ⊥BC .令SA =a ,在△SBC 中,SD =22a , 又∵AD =AC 2-CD 2=22a ,∴AD 2+SD 2=SA 2. 即AD ⊥SD .又∵AD ⊥BC ,∴AD ⊥平面SBC . ∵AD ⊂平面ABC ,∴平面ABC ⊥平面SBC .解法二:∵SA =SB =SC =a , 又∵∠ASB =∠ASC =60°,∴△ASB 、△ASC 都是等边三角形. ∴AB =AC =a .作AD ⊥平面SBC 于点D ,∵AB =AC =AS ,∴D 为△SBC 的外心. 又∵△BSC 是以BC 为斜边的直角三角形, ∴D 为BC 的中点,故AD ⊂平面ABC . ∴平面ABC ⊥平面SBC .练习2:如右图,在四面体ABCD 中,2,BD a AB AD CB CD a =====.求证:平面ABD ⊥平面BCD . 答案:取BD 的中点E ,连结,AE EC∵AB AD = ∴AE BD ⊥同理CE BD ⊥ 在△ABD 中,12,2AB a BE BD a === ∴2222AE AB BE a =-=同理22CE a = 在△AEC 中,2,2AE CE a AC a ===∴222AC AE CE =+ ∴AE CE ⊥ ∵BD CE E =I ∴AE ⊥平面BCD ∵AE ⊂平面ABD ∴平面ABD ⊥平面BCD 练习3:空间四边形ABCD 中,若,AD BC BD AD ⊥⊥,那么有( ) A 、平面ABC ⊥平面ADC B 、平面ABC ⊥平面ADBC 、平面ABC ⊥平面DBCD 、平面ADC ⊥平面DBC 答案:D例5:已知P 是△ABC 所在平面外的一点,且P A ⊥平面ABC ,平面P AC ⊥平面PBC ,求证:BC ⊥AC .解析:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条放入一平面中,使另一条直线与该平面垂直,即由线面垂直得到线线垂直.在空间图形中,高一级的垂直关系蕴含着低一级的垂直关系,通过本题可以看到:面面垂直⇒线面垂直⇒线线垂直. 答案:如图,在平面P AC 内作AD ⊥PC 于点D ,∵平面P AC ⊥平面PBC ,AD ⊂平面P AC ,且AD ⊥PC , ∴AD ⊥平面PBC ,又BC ⊂平面PBC ,∴AD ⊥BC .∵P A ⊥平面ABC ,BC ⊂平面ABC , ∴P A ⊥BC ,∵AD ∩P A =A ,∴BC ⊥平面P AC , 又AC ⊂平面P AC ,∴BC ⊥AC .练习1:已知三棱锥P -ABC 中,侧面PAC 与底面ABC 垂直,PA =PB =PC . (1)求证:AB ⊥BC ;(2)若AB =BC ,过点A 作AF ⊥PB 于点F ,连接CF ,求证:平面PBD ⊥平面AFC .ABCDE答案:如图所示:(1)取AC的中点D,连接PD、BD,∵PA=PC,∴PD⊥AC,又平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,∴PD⊥平面ABC,D为垂足.∵PA=PB=PC,∴DA=DB=DC,∴AC为△ABC的外接圆的直径,故AB⊥BC.(2)∵PA=PC,AB=BC,PB=PB,∴△ABP≌△CBP.∵AF⊥PB,∴CF⊥PB,又AF∩CF=F,∴PB⊥平面AFC,又PB⊂平面PBD,∴平面PBD⊥平面AFC.练习2:已知平面P AB⊥平面ABC,平面P AC⊥平面ABC,如图所示.求证:P A⊥平面ABC.答案:如图所示,在平面ABC内任取一点D,作DF⊥AC于点F,作DG⊥AB于点G,∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,∴DF⊥平面PAC,又∵PA⊂平面PAC,∴PA⊥DF,同理可证:DG⊥PA,∵DF∩DG=D,且DF⊂平面ABC,DG⊂平面ABC,∴PA⊥平面ABC.1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是() A.平行B.垂直C.相交不垂直D.不确定答案:B2.若一条直线l上有两个点到平面α的距离相等,则l与α的关系是()A.平行B.相交C.垂直D.不确定答案:D3.已知直线l⊥平面α,直线m⊂平面β,给出下列四个命题:①α∥β,l⊄β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥β其中正确的两个命题是()A.①②B.③④C.②④D.①③答案:D4.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC 答案:D5.若有直线m 、n 和平面α、β,下列四个命题中,正确的是()A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α 答案:D6.Rt △ABC 所在平面α外一点P 到直角顶点的距离为24,到两直角边的距离都是610,那么点P到平面α的距离等于__________.答案:12_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.已知一平面平行于两条异面直线,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是()A .平行B .垂直C .斜交D .不能确定 答案:B2.直线a ⊥直线b ,a ⊥平面β,则b 与β的位置关系是()A .b ⊥βB .b ∥βC .b ⊂βD .b ⊂β或b ∥β 答案:D 3.下列命题①⎭⎪⎬⎪⎫a ⊥αb ⊂α⇒a ⊥b ; ②⎭⎪⎬⎪⎫a ⊥αa ∥b ⇒b ⊥α; ③⎭⎪⎬⎪⎫a ⊥αb ∥α⇒a ⊥b; ④⎭⎪⎬⎪⎫a ⊥ba ⊥b b ⊂αc ⊂α⇒a ⊥α; ⑤⎭⎪⎬⎪⎫a ∥αa ⊥b ⇒b ⊥α; ⑥⎭⎪⎬⎪⎫a ⊥αb ⊥a ⇒b ∥α. 其中正确命题的个数是( ) A .3 B .4 C .5 D .6答案:A4..若平面α∥平面β,直线a⊂α,直线b⊂β,那么a、b的位置关系是()A.无公共点B.平行C.既不平行也不相交D.相交答案:A5.直线a与平面α内的两条直线都垂直,则a与α的位置关系是()A.垂直B.平行C.a在平面α内D.不确定答案:D6.若平面α⊥平面β,且平面α内的一条直线a垂直于平面β内的一条直线b,则() A.直线a必垂直于平面βB.直线b必垂直于平面αC.直线a不一定垂直于平面βD.过a的平面与过b的平面垂直答案:C7.长方体ABCD-A1B1C1D1中,MN在平面BCC1B1内,MN⊥BC于M,则MN与AB的位置关系为____________________.答案:MN⊥AB8.如图所示,已知正三棱柱ABC-A1B1C1的面对角线A1B⊥B1C,求证B1C⊥C1A.答案:如图所示,连接A1C,交AC1于点D,则点D是A1C的中点.取BC的中点N,连接AN、DN,则DN∥A1B.又A1B⊥B1C,∴B1C⊥DN.又△ABC是正三角形,∴AN⊥BC.又平面ABC⊥平面BB1C1C,平面ABCD∩平面BB1C1C=BC,AN⊂平面ABC,∴AN⊥平面BB1C1C.又B1C⊂平面BB1C1C,∴B1C⊥AN.又AN⊂平面AND,DN⊂平面AND,AN∩DN=N,∴B1C⊥平面AND.又C1A⊂平面AND,∴B1C⊥AC1.能力提升9.若两直线a与b异面,则过a且与b垂直的平面()A.有且只有一个B.至多有一个C.有无数多个D.一定不存在答案:B10.已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=2r,则球的体积与三棱锥体积之比是()A.πB.2πC.3πD.4π答案:D11.(2014·浙江文,6)设m,n是两条不同的直线,α、β是两个不同的平面()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案:C12.已知平面ABC外一点P,且PH⊥平面ABC于H.给出下列4个命题:①若P A⊥BC,PB⊥AC,则H是△ABC的垂心;②若P A、PB、PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则P A=PB=PC;④若P A=PB=PC,则H是△ABC的外心.其中正确命题的个数为()A.1 B.2C.3 D.4答案:D13.平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于点C,则动点C的轨迹为________.(填直线、圆、其它曲线)答案:直线14.如图所示,已知矩形ABCD中,AB=1,BC=a,P A⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________.答案:215.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD.底面各边都相等,M是PC上的一动点,当点M满足________________时,平面MBD⊥平面PCD.(注:只要填写一个你认为正确的即可)答案:BM⊥PC(其它合理答案亦可)16.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE,且CE=AC=2BD,M是AE的中点.(1)求证:DE=DA;(2)求证:平面BDM⊥平面ECA;(3)求证:平面DEA⊥平面ECA.答案:(1)取EC的中点F,连接DF.∵CE⊥平面ABC,∴CE⊥BC.易知DF∥BC,∴CE⊥DF.∵BD ∥CE ,∴BD ⊥平面ABC .在Rt △EFD 和Rt △DBA 中,EF =12CE =DB ,DF =BC =AB , ∴Rt △EFD ≌Rt △DBA .故DE =DA .(2)取AC 的中点N ,连接MN 、BN ,则MN CF . ∵BD CF ,∴MN BD ,∴N ∈平面BDM . ∵EC ⊥平面ABC ,∴EC ⊥BN .又∵AC ⊥BN ,EC ∩AC =C ,∴BN ⊥平面ECA . 又∵BN ⊂平面BDM ,∴平面BDM ⊥平面ECA .(3)∵DM ∥BN ,BN ⊥平面ECA ,∴DM ⊥平面ECA .又∵DM ⊂平面DEA ,∴平面DEA ⊥平面ECA .。
线线垂直、线面垂直、面面垂直的判定和性质
![线线垂直、线面垂直、面面垂直的判定和性质](https://img.taocdn.com/s3/m/07a56f546bd97f192279e9f9.png)
空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。
几何中垂直的关系
![几何中垂直的关系](https://img.taocdn.com/s3/m/7c6aed0e7cd184254b353578.png)
(一)空间中的垂直关系1. 两条直线互相垂直线线垂直分为共面与不共面。
不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。
2. 直线与平面垂直(1)定义:直线与平面垂直是指直线和平面相交且和这个平面过交点的任何直线都垂直。
这里的“任何直线”能代表平面内的所有直线.需要注意的是:无数条直线不能代表所有直线,即一条直线垂直于一个平面内的无数条直线,直线不一定与平面垂直,因为这无数条直线可以是互相平行的。
(2)直线与平面垂直的判定方法①定义:②判定定理:③推论:(3)直线与平面垂直的性质①定理:如果两条直线都垂直于同一个平面,那么这两条直线平行,即:②定义:若线面垂直,则这条直线垂直于这个平面内的任一条直线,即:③垂直于同一条直线的两个平面平行。
④过一点和已知平面垂直的直线只有一条。
⑤过一点和已知直线垂直的平面只有一个。
⑥若于A,,则。
(4)学习中应注意的问题直线与平面垂直的一般定义是根据线段的所有垂直平分线构成的集合来给出的。
需要注意,如果一条直线垂直于一个平面,那么它就和平面内任意一条直线垂直。
用直线和平面垂直的判定定理来证明时,需特别注意平面内的两条相交直线,否则会产生错误。
3. 平面与平面互相垂直(1)定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直。
平面α、β互相垂直,记作α⊥β。
画两个互相垂直的平面,把直立平面的竖边画成和水平面的横边垂直,如图1,2所示。
(2)两个平面垂直的判定定理:若一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
实质:线面垂直,则面面垂直。
表示式为:。
(3)两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
符号表示:说明:要特别注意定理中这一条件,这一条件易被我们忽略,而少了这一条件,定理的结论是不成立的。
(4)证明面面垂直的常用思路:①利用两平面垂直的定义。
空间中的垂直关系
![空间中的垂直关系](https://img.taocdn.com/s3/m/cce5487c8e9951e79b8927a5.png)
§7.5 空间中的垂直关系教案一.教学目标1.知识技能目标理解空间中直线与平面垂直、平面与平面垂直的概念,掌握证明线线垂直、线面垂直以及面面垂直的判定与性质,会利用有关的判定定理和性质定理进行空间中的垂直关系的证明。
2.过程方法目标学生通过积极主动地参与课堂活动,体会空间中的垂直关系,建构垂直关系相互转化的思维形式,培养空间想象能力。
3.情感态度,价值观目标学生通过主动探究、合作学习、相互交流,培养不怕困难、勇于探索的优良作风,增强了数学应用意识;通过体会成功,形成学习数学知识、了解数学文化的积极态度.二、教学重点、难点重点:利用有关垂直关系的相互转化进行推理与证明。
难点:合理准确地选用性质定理和判定定理。
三、教学方法启发发现法、课堂讨论法。
四、教学过程(一)定理回顾线面垂直定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直。
判定定理:一条直线与一个平面内的___________________垂直,则该直线与此平面垂直。
性质定理:垂直于同一个平面的两条直线_____。
面面垂直定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
判定定理:一个平面过另一个平面的______,则这两个平面垂直.性质定理:两个平面垂直,则一个平面内______________的直线与另一个平面垂直. (二)基础自测例1: (1)下列命题中不正确的是 ( )A. 如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.B. 垂直于三角形两边的直线必垂直于第三边.C. 过点A垂直于直线a的所有直线都在过点A且垂直于a的平面内.D. 如果三条共点直线两两垂直,那么其中一条直线垂直于另外两条所在的平面.(2) m、n是空间两条不同直线,α、β是两个不同平面,下面有四个命题:① m⊥α,n∥β,α∥β⇒m⊥n;② m⊥n,α∥β,m⊥α⇒n⊥β;③ m⊥n,α∥β,m∥α⇒n⊥β;④ m⊥α,m∥n,α∥β⇒n⊥β. 其中真命题的编号是( )A.①②B.②③C.①④D.③④PA B CD (三)典例研析例2:如图,斜三棱柱ABC —A 1B 1C 1的底面是直角三角形,∠ACB=90°,点B 1在底面ABC 内的射影恰好是BC 的中点,且BC=CA=AA 1.求证: (1) 平面ACC 1A 1⊥平面B 1C 1CB; (2) BC 1⊥AB 1.练习: 如图,四棱锥P-ABCD 的底面是矩形,AB=2,BC ,侧面PAB 是等边三角形,且侧面PAB ⊥底面ABCD.(1)证明:侧面PAB ⊥侧面PBC ; (2)求侧棱PC 与底面ABCD 所成的角.例3: 如图,在四棱锥P-ABCD 中,PA ⊥底面ABCD,AB ⊥AD,AC ⊥CD,∠ABC=60°,PA=AB=BC, E 是PC 的中点. 求证: (1) CD ⊥AE; (2) PD ⊥平面ABE.课外: 如图,在直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AA 1=BC=2AC=2,D 为AA 1中点.(1)求证:CD ⊥B 1C 1;(2)求证:平面B 1CD ⊥平面B 1C 1D;(3)求三棱锥C 1—B 1CD 的体积.(四)课堂总结。
空间内两直线垂直公式
![空间内两直线垂直公式](https://img.taocdn.com/s3/m/c9188b8b9fc3d5bbfd0a79563c1ec5da50e2d63b.png)
空间内两直线垂直公式在三维几何中,垂直是两个直线或曲线所形成的角度为90度的关系。
而在二维几何中,垂直是两条直线所形成的角度为90度的关系。
在本文中,我们将讨论在空间内两直线垂直的条件和如何判断两直线是否垂直。
两直线垂直的条件:1.方向垂直:两条直线的方向向量的点积为0。
设直线L1的方向向量为a1,直线L2的方向向量为a2,则方向垂直的条件为a1·a2=0。
点积为0意味着两个向量之间的夹角为90度,即两条直线的方向垂直。
2.两个平面垂直:两条直线分别位于两个平面上,且两个平面垂直。
设平面P1的法线向量为n1,平面P2的法线向量为n2,则两个平面垂直的条件为n1·n2=0。
如果两个平面垂直,那么位于它们上面的直线也垂直。
3.直线与平面垂直:直线L位于平面P上,且直线L与平面P垂直。
设平面P的法线向量为n,直线L的方向向量为a,则直线与平面垂直的条件为n·a=0。
直线与平面垂直的意义是直线在平面上的投影为零。
判断两直线是否垂直的方法:1.方向向量法:判断两条直线的方向向量是否垂直。
如果两条直线的方向向量垂直,那么它们是垂直的。
2.位置向量法:判断一条直线上的一个点到另一条直线的距离是否为零。
设一条直线为L1,另一条直线为L2,直线L2上的一点为P2,直线L1上的一个点为P1、如果P1到P2的距离为零,那么两条直线是垂直的。
3.平面交点法:判断两个平面的交线与一条直线是否垂直。
如果两个平面的交线与一条直线垂直,那么这条直线位于两个平面上。
示例:1.判断直线L1:{(x,y,z),x-2=0,y+z=0}和直线L2:{(x,y,z),2x-y+z=1,3x-y-2z=0}是否垂直。
直线L1的方向向量为a1=(1,0,0),直线L2的方向向量为a2=(2,-1,-2)。
计算a1·a2=1*2+0*(-1)+0*(-2)=2,由于a1·a2不等于零,所以直线L1和直线L2不垂直。
空间中的垂直关系
![空间中的垂直关系](https://img.taocdn.com/s3/m/f534957d6137ee06eff918f3.png)
8. 5 空间中的垂直关系1.线线垂直如果两条直线所成的角是______ ( 无论它们是相交还是异面),那么这两条直线互相垂直.2.直线与平面垂直(1)定义:如果直线I与平面a内的任意一条直线都垂直,我们就说__________________________ ,记作_______ .直线I叫做______________ ,平面a叫做_______________ .直线与平面垂直时,它们惟一的公共点P叫做________ .垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的______________ .(2)判定定理:一条直线与一个平面内的________________ 都垂直,则该直线与此平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示: a // b,(3)__________________________________________ 性质定理:垂直于同一个平面的两条直线 .3.直线和平面所成的角平面的一条斜线和它在平面上的射影所成的 ___________ ,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°勺角.任一直线与平面所成角B的范围是 ____________ .4.二面角的有关概念(1)二面角:从一条直线出发的________________________ 叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作 ______________ 的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是 _______________ .5.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是_________________ ,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的__________ ,则这两个平面垂直.(3)性质定理:两个平面垂直,则一个平面内垂直于_____ 的直线与另一个平面垂直.自查自纠1.直角2.(1)直线I与平面a互相垂直I丄a平面a的垂线直线I 的垂面垂足距离(2)两条相交直线(3)平行3.锐角[0;90°4.(1)两个半平面所组成的图形(2)垂直于棱[0 ° 180°]5.(1)直二面角(2)垂线(3)交线0 (2017江西宜春四校联考)下列命题中错误的是( )A •如果平面a 丄平面3那么平面 a 内一定存在直线平行于平面 3B.如果平面 a 不垂直于平面 3,那么平面a 内一定不存在直线垂直于平面3C. 如果平面 a 丄平面 Y 平面3丄平面 Y a Q 3 =丨,那么I 丄平面 丫 D .如果平面a 丄平面3那么平面a 内所有直线都垂直于平面 3解:对于选项A ,可在a 内作直线平行于交线即可, A 正确;对于选项B ,假设在a 内存在直线垂直于平面 3则a 丄3这与已知矛盾,所以原命题成立,B 正确;对于选项C ,因为平面a 丄平面Y 所以在平面 丫内存在一条直线m 丄a 所以m i l.同理可知在平面 丫内存在直线n 丄3 n 丄I.若直线m , n 重合,则面a 与3重合或平 行,这与已知矛盾,所以直线 m , n 相交,又I 丄m , I 丄n ,所以I 丄面Y C 正确;对于选项 D ,易知a 与3的 交线I 并不垂直于面 3, D 错误.故选D.° (2017甘肃马营中学月考)若m 、n 是两条不同的直线,a 、3 丫是三个不同的平面,则下列命题中的真命题是( )A .若 m? 3 ,a 丄 3 ,贝U m 丄aB .若 aCl Y= m , 3C Y = n , m / n ,贝U a/ 3 C .若 m ± 3, m //a则a 丄3D .若 a 丄Y a 丄 3则 3-L Y解:若m? 3 , a 丄3 ,贝y m 与a 的关系可能平行也可能相交或 m? a ,贝y A 为假命题;选项 B 中,a 与3选C.而不充分条件.故填必要不充分.❺(2017重庆八中适应性考试)在正四面体P-ABC 中,D , E , F 分别是AB , BC , CA 的中点,下面四个结论 中正确的是 _________________ . ① BC //平面PDF ; ② DF 丄平面FAE ;③ 平面PDF 丄平面 ABC ; ④平面PAE 丄平面 ABC.解:由DF // BC 可得BC //平面PDF ,故①正确;若PO 丄平面ABC ,垂足为O ,贝U O 在AE 上,贝U DF 丄PO , 又DF 丄AE ,故DF 丄平面FAE ,故②正确;由PO 丄平面ABC , PO?平面PAE ,可得平面 FAE 丄平面 ABC , 故④正确,平面PDF 不过PO ,故③不正确.故填①②④.A . A 1E 丄 DC 1B . A 1E 丄 BDC . A 1E 丄 BC 1D . A 1E 丄AC解:由正方体的性质,得 A 1B 1 丄 BC 1 , BQ 丄 BC 1 ,所以 BG 丄平面 A 1B 1CD ,又 A 1E?平面 A 1B 1CD ,所以 A 1E 丄BC 1 ,故选C.(2017全国卷川)在正方体 ABCD-A i B i C i D i 中, E 为棱CD 的中点,贝U()❹ 若I , m 是两条不同的直线, m 垂直于平面a ,则"I 丄m ”是"I // a”的 _____________ 条件.解:若I 丄m , m 丄平面a,贝y I //a 或I? a ;若I //a, m 丄平面a,贝U I 丄m ,所以"I 丄m ”是"I // a”的必要 可能平行也可能相交,则B 为假命题;选项 D 中3与丫也可能平行或相交(不一定垂直),则D 为假命题.»为类解析触类旁邂类型一线线垂直问题EB 如图,在四棱台ABCD-A I B I C I D I中,D i D丄平面ABCD,底面ABCD是平行四边形,AB= 2AD, AD =A1B1,Z BAD = 60°(1)证明:AA i 丄BD ;⑵证明:CC i//平面A I BD.证明:(1)因为D I D丄面ABCD,且BD?面ABCD,所以D i D丄BD.又因为AB = 2AD,/ BAD = 60°在厶ABD 中,由余弦定理得BD2= AD2+ AB2—2AD ABcos60°= 3AD2,所以AD2+ BD2= AB2所以AD丄BD.又因为AD n D I D = D,所以BD丄面ADD i A i.又AA I?面ADD I A I,所以AA I±BD.(2)连接AC, A i C i,设AC n BD = E,连接A I E.i因为四边形ABCD为平行四边形,所以EC = ^AC.由棱台定义及AB = 2AD = 2A i B i知A i C i // EC且A i C i = EC,所以四边形A I ECC I为平行四边形.所以CC i// A I E.又因为A I E?面A I BD, CC i?面ABD,所以CC I // 面A I BD.【点拨】本题主要考查线线、线面位置关系•第(i)问证明线线垂直,其实质是通过证明线面垂直,再化归为线线垂直;第(2)问证明线面平行,需转化为证明线线平行,由于面A I BD中没有与CC I平行的直线,故需作辅助线.(20i7武汉市武钢第三子弟中学月考)如图,三棱柱ABC-A i B i C i 中,CA= CB , AB = AA i , / BAA i= 60°.f(i)证明:AB 丄A I C ;⑵若AB= CB = 2, A I C = .6,求三棱柱ABC-A i B i C i的体积. 解:⑴证明:取AB的中点O,连接OC, OA i, A I B.因为CA = CB,所以0C丄AB.由于AB = AA i,/ BAA i= 60° °故厶AA i B为等边三角形,所以OA i丄AB.因为OC A OA i= 0,所以AB丄平面OA i C.又A i C?平面OA i C,故AB丄A i C.⑵由题设知△ ABC与厶AA i B都是边长为2的等边三角形,所以OC = OA i = .3. 又A i C = ■.6,贝U A i C2= OC2+ OA i,故OA i丄OC.因为OC A AB= O,所以OA i丄平面ABC, OA i为三棱柱ABC-A i B i C i的高.乂△ ABC 的面积S SBC= , 3,故三棱柱ABC-A i B i C i 的体积为V = S^ABC X OA i = 3.类型二线面垂直问题GE 如图,四棱锥P-ABCD中,PA丄底面ABCD , AB丄AD,点E在线段AD上,且CE // AB.(i)求证:CE丄平面PAD ;⑵若PA= AB= i , AD = 3, CD =运,/ CDA = 45° 求四棱锥P-ABCD 的体积. 解:(1)证明:因为PA丄底面ABCD , CE?平面ABCD,所以PA丄CE.因为AB丄AD, CE / AB,所以CE丄AD.又PA A AD = A,所以CE丄平面PAD.(2)由(1)可知CE丄AD.在Rt △ ECD 中,CE = CD sin45 = 1, DE = CD c os45°= 1, 又因为AB = 1,贝U AB = CE.又CE // AB, AB丄AD,所以四边形ABCE为矩形,四边形ABCD为梯形.因为AD = 3,所以BC = AE= AD —DE = 2,1 1 5S ABCD = 2(BC + AD) AB =彳(2 + 3)X 1 = §,1 1 5 5VP-ABCD=3SABCD'PA=3x只1=6.于是四棱锥P-ABCD的体积为|.【点拨】证明线面垂直的基本思路是证明该直线和平面内的两条相交直线垂直,亦可利用面面垂直的性质定理来证明;第(2)问的难点在于求底面四边形ABCD的面积,注意充分利用题设条件,先证明底面ABCD是直角梯形,从而求出底面面积,最后求体积.(2017锦州市第二高级中学月考)如图,在正方体ABCD-A i B i C i D i中,E, F , P, Q, M, N分别是棱AB, AD , DD i, BB i, “B i, AQ i 的中点•求证:⑴直线BC i〃平面EFPQ ;⑵直线AC」平面PQMN.证明:(1)如图,连接AD i,由ABCD-A i B i C i D i是正方体,知AD i II BC i, 因为F , P分别是AD, DD i的中点,所以FP II AD i,从而BC i I FP.而FP?平面EFPQ,且BC i?平面EFPQ , 故直线BC i I平面EFPQ.⑵如图,连接AC, BD,贝U AC丄BD.由CC i丄平面ABCD , BD?平面ABCD,可得CC i丄BD .又AC A CC i = C,所以BD丄平面ACC i A i.而AC i?平面ACC i A i,所以BD丄AC i.因为M, N分别是A i B i, A i D i的中点,所以MN I BD,从而MN丄AC i. 同理可证PN丄AC i.又PN A MN = N,所以直线AC i±平面PQMN.类型三面面垂直问题GO)如图所示,在长方体ABCD-A i B i C i D i中,AB = AD = i, AA i= 2, M是棱CC i的中点.B C又A1B1Q B I M = B i,由①②得BM丄平面A I B I M.而BM?平面ABM,所以平面ABM丄平面A i B i M.【点拨】求异面直线所成的角,一般方法是通过平移直线,把异面问题转化为共面问题,通过解三角形求出所构造的角;证明面面垂直,可转化为证明线面垂直,而线面垂直又可以转化为证明线线垂直,在证明过程中,需充分利用规则几何体本身所具有的几何特征简化问题,有时还需应用勾股定理的逆定理,通过计算来证明垂直关系,这在高考题中是常用方法之一.变式.(2017武汉市第四十三中学月考)如图,在五棱锥P-ABCDE 中,PA丄平面ABCDE , AB// CD,/ ABC=45° AB= 2 2, BC = 2AE = 4,三角形PAB是等腰三角形.求证:平面PCD丄平面PAC.证明:因为/ABC = 45° AB= 2 2, BC = 4,所以在△ ABC 中,由余弦定理得,AC2= (2 _ 2)2+ 42-2 X 2_2X 4COS45 = 8,解得AC= 2 ,2,所以AB2+ AC2= 8 + 8 = 16= BC2,即卩AB丄AC,又PA丄平面ABCDE,所以PA丄AB.又FA n AC = A,所以AB丄平面PAC,又AB // CD,所以CD丄平面FAC. 又因为CD?平面PCD,所以平面PCD丄平面PAC.类型四垂直综合问题EE (2017大连经济技术开发区一中月考)如图1,在等腰直角三角形ABC中,/ A = 90° BC= 6, D, E分别是AC ,AB上的点,CD = BE= 2,O为BC的中点.将厶ADE沿DE折起,得到如图2所示的四棱锥A'B-DE ,其中AO = 3.(1)证明:A'O丄平面BCDE ;⑵求二面角A'C--B的平面角的余弦值.解:(1)证明:在图1中,易得OC = 3, AC = 3,2, AD = 2 2.如图示,连接OD , OE,在△ OCD中,由余弦定理可得OD = OC2+ CD2- 2OC CDcos45°= , 5•由翻折不变性可知AD = 2 _2,易得AO2+ OD2= AD2,所以A ‘0丄OD•同理可证A O丄OE.又因为OD n OE = O,所以A O丄平面⑵过O作OH丄CD交CD的延长线于H,连接A H,因为A ‘O丄平面BCDE,易知A H丄CD,所以/ A HO为二面角A‘ C--B的平面角.结合图1可知,H为AC中点,又O为BC中点,故OH = ^AB= 节,从而A H = OH2+ OA 2=亠3°, 所以cos/ A ‘ HO=-°^ =丘A ‘ H 5 '所以二面角A'CD-B 的平面角的余弦值为亠5【点拨】本题主要考查线面垂直及二面角的计算等.(2016全国卷I )如图,在以A , B , C , D , E , F 为顶点的五面体中,(1)证明:平面 ABEF 丄平面EFDC ;⑵求二面角E-BC-A 的余弦值.解:(1)证明:由已知可得 AF 丄DF , AF 丄FE ,又DF n FE = F ,所以AF 丄平面EFDC . 又AF?平面ABEF ,故平面ABEF 丄平面EFDC.⑵过D 作DG 丄EF ,垂足为 G ,由(1)知DG 丄平面ABEF.以G 为坐标原点, G F 的方向为x 轴正方向,|GF|为单位长,建立如图所示的空间直角坐标系 G -xyz.由(1)知/DFE 为二面角 D-AF-E 的平面角,故 / DFE = 60° 贝U DF = 2, DG可得 A(1 , 4, 0), B(-3,4, 0), E( — 3, 0, 0), D(0, 0, .3).由已知得,AB // EF ,所以 AB //平面 EFDC.又平面 ABCD n 平面 EFDC = CD ,故 AB / CD , CD // EF.由BE // AF ,可得BE 丄平面EFDC ,所以/CEF 为二面角C-BE-F 的平面角,故/CEF = 60°从而可得C(— 2,0, 3),连接 AC ,则 (1 , 0, . 3), EB = (0, 4, 0), AC = (— 3,— 4,3), AB = (— 4, 0, 0).设n = (x , y , z)是平面BCE 的法向量,贝Un EC =0,'x + T 3z = 0,厂即'所以可取n = (3, 0,—*3).InEB = 0,仆 0,m AC = 0,设m 是平面ABCD 的法向量,则m AB = 0,同理可取 m = (0, 3, 4),1. 判断(证明)线线垂直的方法 (1) 根据定义;(2) 如果直线a // b , a 丄c ,贝U b 丄c ;⑶如果直线 a 丄面a, c? a ,贝U a 丄c ;折叠要注意不变量;作二面角,往往要通过作垂线来实现.面ABEF 为正方形,AF = 2FD ,贝U cos 〈n , m >n m|n ||2「19 19 结合图形,得二面角 E-BC-A 的余弦值为一2 .'19/ AFD = 90° 且二面角揭示规漳⑷向量法:两条直线的方向向量的数量积为零.2.证明直线和平面垂直的常用方法(1)利用判定定理:两相交直线a, b? a , a丄c, b± c? c丄a;(2)a // b, a丄 a ? b± a ;⑶利用面面平行的性质:a// 3, a丄a ? a± 3 ;⑷利用面面垂直的性质:a丄3, a A 3 =m, a? a , a丄m? a丄3 ;a丄丫,3丄Y, a A 3 =m? m X 丫.3.证明面面垂直的主要方法(1)利用判定定理:a丄3, a? a ? a丄3 ;(2)用定义证明.只需判定两平面所成二面角为直二面角;(3)如果一个平面垂直于两个平行平面中的一个,则它也垂直于另一个平面:a// 3, a丄丫? 3丄丫.4.平面与平面垂直的性质的应用当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线, 把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.5.注意线线垂直、线面垂直、面面垂直间的相互转化判定定理判定定理线线垂直J *线面垂直・〜面面垂直性质定理性蜃定理6.线面角、二面角求法求这两种空间角的步骤:根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找)?证?求(算)三步曲.也可用射影法:设斜线段AB在平面a内的射影为A B AB与a所成角为0,贝U COS B 厂B厂I|AB|设厶ABC在平面a内的射影三角形为△ A B C 平面ABC与a所成角为0则COS 0 = S: B CS A ABC@|底翻科劃b查漏补缺折展延伸1.(2016浙江)已知互相垂直的平面 a , 3交于直线I •若直线m, n满足m// a, n丄3 ,则()A . m / lB . m / n C. n丄I D. m± n解:由题意知aA A l,所以l? 3 •因为n丄3所以n丄I•故选C.2.已知a, 3为两个不同的平面,I为直线,若a丄3, a A 3 = I,则()A .垂直于平面3的平面一定平行于平面aB.垂直于直线I的直线一定垂直于平面aC.垂直于平面3的平面一定平行于直线ID .垂直于直线I的平面一定与平面a, 3都垂直解:由面面垂直的判定定理可知,垂直于直线I的平面一定与平面a, 3都垂直.故选D.3.设m, n是两条不同的直线, a , 3是两个不同的平面.下列命题中正确的是()A .若a丄 3 m? a , n? 3 ,贝U m± nB.若a// 3 m? a , n? 3 ,则m// nC.若m l n , m? a , n? 3 ,贝U a丄3D .若m±a,m / n ,n / 3 ,贝U a丄3解:若a丄B, m? a , n?卩,贝U m与n可能平行、相交或异面,故A错;若a//®, m? a , n?卩,则m与n可能平行,也可能异面,故B错;若m丄n, m? a , n? B ,贝U a与®可能相交,也可能平行,故C错;对于D项,由m丄a, m / n,得n丄a,又知n // B,故a丄B,所以D项正确.故选D.4.(2017沈阳市第一中学月考)设平面a与平面B相交于直线m,直线a在平面a 内,直线b在平面B内,且b丄m,则"a丄B'是"a丄b”的( )A .充分不必要条件B.必要不充分条件C.充要条件D .既不充分也不必要条件解:当a丄B时,由面面垂直的性质定理知b丄a,则b丄a.所以“a丄B”是“a丄b”的充分条件.而当a? a ,且a // m时,因为b丄m,所以b丄a,而此时平面a与平面B不一定垂直.所以“a丄B”不是“ a丄b ”的必要条件.故选A.5.(2015福建质量检查)如图,AB是圆O的直径,VA垂直圆O所在的平面,C是圆周上不同于A, B的任意一点,M , N分别为VA, VC的中点,则下列结论正确的是( )CA . MN // ABB.MN与BC所成的角为45°C.OC X平面VACD .平面VAC丄平面VBC解:依题意,MN // AC,又直线AC与AB相交,因此MN与AB不平行,A错误;注意到AC丄BC,因此MN 与BC所成的角是90°, B错误;注意到直线OC与AC不垂直,因此OC与平面VAC不垂直,C错误;由于BC丄AC, BC丄VA,因此BC丄平面VAC.又BC?平面VBC,所以平面VBC丄平面VAC, D正确.故选D.6. (2017瓦房店市高级中学月考)如图,在正方形SGG2G3中,E, F分别是G1G2, G2G3的中点,D是EF的中点,现沿SE, SF及EF把这个正方形折成一个几何体,使G1, G2, G3三点重合于点G,这样,下列五个结论:(1)SG丄平面EFG ;(2)SD丄平面EFG ;(3)GF丄平面SEF;(4)EF丄平面GSD;(5)GD丄平面SEF.正确的是( )A. (1)和⑶B. ⑵和⑸C. (1)和⑷D. ⑵和⑷解因为正方形中折叠前后都有SG丄GE, SG丄GF,所以SG丄平面EFG.(1)正确,(2)错误:因为SG丄GF, SG丄GD,所以GF并不垂直于SF, GD并不垂直于SD,即卩⑶(5)错误.因为EF丄GD , EF丄SG, GD n SG= G ,所以EF丄面GSD.(4)正确.故选C.7.在正方体ABCD-A 'B 'C 'D中,过对角线BD '的一个平面交AA于E,交CC于F,贝U①四边形BFDE 一定是平行四边形;②四边形BFD E有可能是正方形;③四边形BFD E在底面ABCD内的投影一定是正方形;④平面BFD E有可能垂直于平面BB D.以上结论正确的为____________ .(写出所有正确结论的编号)解:根据两平面平行的性质定理可得BFD E为平行四边形,①正确;若四边形BFD E是正方形,则BE丄ED ', 又A ' D '丄EB, A ' D ' n ED ' = D ',所以BE丄面ADD A ',与已知矛盾,②错;易知四边形BFD E在底面ABCD内的投影是正方形ABCD,③正确;当E, F分别为棱AA ', CC '的中点时,EF // AC,又AC丄平面BB D, 所以EF丄面BB D,④正确.故填①③④.8.(2017沈阳市回民中学月考)ABCD是正方形,P为平面ABCD外一点,且PA丄平面ABCD,则平面PAB,平面PBC,平面PCD,平面PAD,平面ABCD这五个平面中,互相垂直的平面有 _________________ 对.解:因为PA丄平面ABCD,所以平面PAD丄平面ABCD,平面PAB丄平面ABCD.又因为AD丄平面FAB,所以平面FAD丄平面PAB,同理可得平面PBC丄平面PAB,平面PAD丄平面PCD,故互相垂直的平面有5对.故填5.9.(2017钟祥市实验中学月考)如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD = a, PA = PC =■, 2a.求证:(1)PD 丄平面ABCD ;⑵平面PAC丄平面PBD.证明:⑴因为PD = a, DC = a, PC= 2a,所以PC2= PD2+ DC2,所以PD 丄DC.同理可证PD丄AD,又AD n DC = D ,所以PD丄平面ABCD.⑵由⑴知PD丄平面ABCD ,所以PD丄AC,而四边形ABCD是正方形,所以AC丄BD,又BD n PD = D,所以AC丄平面PDB.同时AC?平面PAC ,所以平面PAC丄平面PBD.10. (2017谷城县第一中学月考)如图所示,在四棱锥P-ABCD中,PA丄底面ABCD , AB丄AD , AC丄CD,/ABC = 60° PA = AB = BC, E 是PC 的中点.证明:⑴CD丄AE;(2)PD丄平面ABE.证明:⑴ 因为PA丄底面ABCD , CD?平面ABCD,所以PA丄CD.因为AC丄CD , FA Q AC = A,所以CD丄平面FAC.而AE?平面PAC,所以CD丄AE.(2)由FA= AB= BC ,Z ABC= 60 °可得AC = PA•因为E是PC的中点,所以AE丄PC.由⑴知AE丄CD,且PC Q CD = C,所以AE丄平面PCD.而PD?平面PCD,所以AE丄PD.因为PA丄底面ABCD,所以PA丄AB.又因为AB丄AD且PA Q AD = A,所以AB丄平面PAD,而PD?平面PAD,所以AB丄PD.又因为AB Q AE= A,所以PD丄平面ABE.11. (2017 天津)如图,在四棱锥P- ABCD 中,AD 丄平面PDC , AD // BC, PD 丄PB, AD = 1 , BC = 3, CD = 4, PD = 2.AP 5因为PD丄平面PBC,故PF为DF在平面PBC上的射影,所以/ DFP为直线DF和平面PBC所成的角.由于AD // BC, DF // AB,故BF = AD = 1 ,由已知,得CF = BC- BF = 2.又AD 丄DC ,故BC 丄DC ,在Rt△ DCF 中,DF2= DC2+ CF2= 42+ 22= 20, DF = 2 5,所以在Rt△ DPF 中可得sin/ DFP = DD二亠5所以,直线AB与平面PBC所成角的正弦值为—.5(1)求三棱锥P-ABC的体积;(2)证明:在线段PC上存在点M,使得AC丄BM,并求MC的值.解:⑴由题设AB= 1, AC = 2,/ BAC = 60°, 可得S A ABC=I' AB - AC • sin60 °= ^3.由PA丄平面ABC,可知PA是三棱锥P-ABC的高,又PA = 1,所以三棱锥P-ABC的体积⑵证明:在平面ABC内,过点B 作BN丄AC,垂足为N.在平面FAC内,过点N作MN // PA,交PC于点M ,连接BM •由FA丄平面ABC知FA丄AC,又MN // PA,所以MN丄AC•又BN丄AC, BN P MN = N, BN?平面MBN ,MN?平面MBN,所以AC丄平面MBN.又BM?平面MBN,所以AC丄BM.I 3 PM AN 1在Rt△BAN中,AN=ABcos/BAC=2 从而NC=AC-AN乜由MN〃PA,得MM=AN二./ BAC= 60 °V=3 ABC,PA=卡. (2015安徽)如图,三棱锥AB= 1 , AC= 2,(1) 求异面直线A i M和C i D i所成的角的正切值;⑵证明:平面ABM丄平面A i B i M.解:⑴因为C i D i I B i A i,所以/ MA i B i为异面直线A i M和C i D i所成的角,因为A i B i丄平面BCC i B i,所以/ A i B i M =90°而A i B i= i , B i M = . B i C?+ MC i= 2,故tan/ MA i B i = = .2.A iB i(2) 证明:由A i B i丄平面BCC i B i, BM?平面BCC i B i,得"B i丄BM •①由(i)知,B i M = 2,又BM = BC1 2+ CM2= .2, B i B= 2,B i M2+ BM2= B i B2,从而BM 丄B i M.②(1) 求异面直线AP与BC所成角的余弦值;(2) 求证:PD丄平面PBC;⑶求直线AB与平面PBC所成角的正弦值.解:(1)如图,由已知AD // BC,故/DAP或其补角即为异面直线AP与BC所成的角.因为AD丄平面PDC,所以AD丄PD.在Rt△ PDA 中,由已知,得AP = AD1 2+ PD2= 5.故cos/ DAP = AD =血.所以,异面直线AP与BC所成角的余弦值为-?.5⑵证明:因为AD丄平面PDC,直线PD?平面PDC,所以AD丄PD.又因为BC // AD,所以PD丄BC.又PD丄PB,所以PD丄平面PBC.⑶过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.。
空间中的垂直关系
![空间中的垂直关系](https://img.taocdn.com/s3/m/63bc077b0722192e4436f60d.png)
空间中的三种垂直关系:
线线垂直: 所成角为直角 线面垂直: 线和面内所有直线都垂直
面面垂直: 所成的二面角为直二面角
问题: 如图,在四棱锥P ABCD中,PD 面ABCD, (1)请你添加一个条件,使PB AC成立;
问题: 如图,在四棱锥P ABCD中,PD 面ABCD, (1)请你添加CD中,PD 面ABCD, (6)若BC CD,PD CD, E是PC中点, 则在PB上是否存在点 F,使得PC 面DEF ?
在PB上是否存在点F,使得PB 面DEF ?
(7)若ABCD为正方形,PD CD, E、F是PC、PB的中点, 求二面角P DF E的正弦值;
(2)若PB AC, 求证:面 PAC 面PBD
(3)若PAD 面PBD, 求证:AD PB;
归纳:空间中垂直关系图
线线垂直
判
定
定
义
线面垂直
判
性
定
质
面面垂直
指出:转化思想是证明空间位置关系中最重要的思想
问题: 如图,在四棱锥 P ABCD中,PD 面ABCD, (4)若ABCD为矩形, AD 1,AB 2, E为AB中点,求证: PE CE; (5)若ABCD为矩形,AB kAD, 且在线段AB上存在一点E, 使得PE CE,求k的取值范围;
垂直关系
![垂直关系](https://img.taocdn.com/s3/m/38597ad876a20029bd642de7.png)
空间中的垂直关系●知识梳理线面垂直1.如果一条直线与平面相交并且与平面内的所有直线都垂直,那么就说这条直线与这个平面垂直.2.直线与平面垂直的判定:如果一条直线与平面内的两条相交直线都垂直,那么这条直线与这个平面垂直.3.直线与平面垂直的性质:如果两条直线都与同一个平面垂直,那么这两条直线平行.面面垂直1.两个平面垂直的定义:如果两个平面所成的二面角是直二面角,那么这两个平面互相垂直.2.两个平面垂直的判定定理:如果一个平面经过另一个平面的垂线,那么这两个平面垂直.3.两个平面垂直的性质定理:如果两个平面垂直,那么过其中一个平面内的一点作它的交线的垂线与另一个平面垂直.【基础练习】1.m、n表示直线,α、β、γ表示平面,给出下列四个命题,其中正确命题为①α∩β=m,n α,n⊥m,则α⊥β②α⊥β,α∩γ=m,β∩γ=n,则m⊥n③α⊥β,α⊥γ,β∩γ=m,则m⊥α④m⊥α,n⊥β,m⊥n,则α⊥βA.①②B.②③C.③④D.②④答案:C2.“直线l 垂直于平面α内的无数条直线”是“l α⊥”的 必要 条件。
3.如果两个平面同时垂直于第三个平面,则这两个平面的位置关系是 平行或相交 。
4.在正方体中,与正方体的一条对角线垂直的面对角线的条数是 6 。
5.两个平面互相垂直,一条直线和其中一个平面平行,则这条直线和另一个平面的位置关系是平行、相交或在另一个平面内 。
6.在正方体1111ABCD A BC D -中,写出过顶点A 的一个平面__AB 1D 1_____,使该平面与正方体的12条棱所在的直线所成的角均相等(注:填上你认为正确的一个平面即可,不必考虑所有可能的情况)。
7.设正方体ABCD —A 1B 1C 1D 1的棱长为1,则(1)A 点到CD 1的距离为________; (2)A 点到BD 1的距离为________;(3)A 点到面BDD 1B 1的距离为_____________; (4)A 点到面A 1BD 的距离为_____________; (5)AA 1与面BB 1D 1D 的距离为__________.答案:(1)26(2)36(3)22(4)33(5)22【范例导析】例1.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .(1)证明PA //平面EDB ; (2)证明PB ⊥平面EFD . 解析:本小题考查直线与平面平行,直线与平面垂直基础知识,考查空间想象能力和推理论证能力.证明:(1)连结AC ,AC 交BD 于O ,连结EO .∵底面ABCD 是正方形,∴点O 是AC 的中点 在PAC ∆中,EO 是中位线,∴PA // EO 而⊂EO 平面EDB 且⊄PA 平面EDB , 所以,PA // 平面EDB(2)∵PD ⊥底面ABCD 且⊂DC 底面ABCD ,∴DC PD ⊥∵PD =DC ,可知PDC ∆是等腰直角三角形,而DE 是斜边PC 的中线, ∴PC DE ⊥. ①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD 是正方形,有DC ⊥BC ,∴BC ⊥平面PDC . 而⊂DE 平面PDC ,∴DE BC ⊥. ②由①和②推得⊥DE 平面PBC . 而⊂PB 平面PBC ,∴PB DE ⊥ 又PB EF ⊥且E EF DE = ,所以PB ⊥平面EFD .例2.如图,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,CE =A CCA=2 BD,M是EA的中点,求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA。
空间中的垂直关系
![空间中的垂直关系](https://img.taocdn.com/s3/m/7664753f376baf1ffc4fadb5.png)
(2)如图,假设存在点F使平面 AFD⊥平面BFC, ∵AD∥BC,∴AD∥平面BFC, ∴AD平行于平面AFD与平面 BFC的交线l. 8分 ∵EP⊥平面ABCD, ∴EF⊥AD,而AD⊥AB, ∴AD⊥平面EAB, ∴l⊥平面EAB,
∴∠AFB是平面AFD与平面BFC 所成二面角的平面角, 10分 ∵P是AB中点,且FP⊥AB, ∴当∠AFB=90°时,FP=AP, FP ∴当 FP=AP,即 =1 时,平面 AP AFD⊥平面 BFC.… 12 分
规律方法总结
1.空间的垂直关系有直线与直线 垂直、直线与平面垂直、平面与平面垂 直.它们之间存在相互转化关系:
2.当有面面垂直时,一般是在 一个面内找(作)交线的垂线,则直线 垂直于面;在证面面垂直时,一般可 先从现有的直线寻找平面的垂线;在 证面面垂直时,一般可先从现有的直 线寻找平面的垂线,若没有,可作辅 助线解决.
(1)求证:DP⊥面EPC; (2)问在EP上是否存在点F使平面
FP AFD⊥平面 BFC?若存在,求出 的值. AP
解:(1)证明:∵EP⊥面 ABCD, ∴EP⊥DP, 又ABCD为矩形, AB=2BC, P、Q分别为AB、CD的中 点, 1 ∴PQ⊥DC且PQ= 2 DC, ∴DP⊥PC, 4分 又∵EP∩PC=P,∴DP⊥ 面EPC. 6分
2.直线a与b垂直,b⊥平面α,则a与α的 位置关系是( ) A.a⊥α B.a∥α C.a⊂α D.a⊂α或a∥α 答案:D
3.如图,如果MC⊥菱形ABCD所在 平面,那么MA与BD的位置关系是( ) A.平行 B.垂直但不相交 C.异面 D.相交但不垂直 答案:B
三基能力强化
4.(教材习题改编) △ABC中,∠ABC=90°, PA⊥平面ABC,则图中直角三 角形的个数是 . 答案:4
空间中的垂直关系
![空间中的垂直关系](https://img.taocdn.com/s3/m/81c6cdbdf121dd36a32d82e1.png)
空间中的垂直关系1.线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。
三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直 推理模式: ,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭。
注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理⑵要考虑a 的位置,并注意两定理交替使用。
2.线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。
直线l 与平面α垂直记作:l ⊥α。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
3.面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面。
题型1:线线垂直问题例1.如图1所示,已知正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 、L 、M 、N 分别为A 1D 1,A 1B 1,BC ,CD ,DA ,DE ,CL 的中点,求证:EF ⊥GF 。
例2.如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC ,D 、E 分别为BB 1、AC 1的中点,证明:ED 为异面直线BB 1与AC 1的公垂线。
空间中的垂直关系
![空间中的垂直关系](https://img.taocdn.com/s3/m/e9bd0546f7ec4afe04a1df81.png)
③最小角定理:平面的斜线和它在平面内的射影所成的角, 是这条斜线和这个平面内任一条直线所成角中最小的角. cos =cos1cos2 (2)直线和平面所成的角: ①定义:平面的一条斜线和它在平面内的射影所成的锐 角,叫这条斜线和这个平面所成的角。 规定: 如果直线与平面垂直,那么这条直线和这平面所成的角 为90º ;如果直线与平面平行或直线在平面内,那么直线与平面 所成的角为0º . [0 ②范围: , 90 ] ③求法: 定义法:作出直线在平面上的射影. 向量法: 设n是平面的法向量,AB是平面的一条斜线,其中A∈,则 AB与平面所成的角为: | AB n | arcsin AB n
两个结论 1.如果一个角所在平面外一点到角的两边的距离相等,那么这 点在平面内的射影在这个角的平分线上. 2.过一个角的顶点引这个角所在平面的斜射线,设它与已知角 两边的夹角为锐角且相等,则这条射线在平面内的射影是这 个角的平分线.
唯一性命题
1.过直线外一点有且只有一条直线与已知直线平行. 2.过平面外一点有且只有一个平面与已知平面平行. 3.过一点有且只有一条直线与已知平面垂直. 4.过一点有且只有一个平面与已知直线垂直.
判定 性质 判定 性质
线面平行
线面垂直 线面垂直
判定 性质 判定 性质
面面平行
面面垂直 面面垂直
判定
性质
判定
性质
四.棱锥的顶点在底面上的射影与底面多边形的“心”的关 系 1.若棱锥的各侧棱长相等或棱锥的各侧棱与底面所成的角 相等,则顶点在底面上的射影是底面多边形的外心.
2.若棱锥的各侧面上的斜高相等或棱锥的各侧面与底面所成 的二面角的大小相等,则顶点在底面上的射影是底面多边形 的内心. 3.若三棱锥的各侧棱两两垂直或三棱锥的两相对棱互相垂直, 则顶点在底面上的射影是底面三角形的垂心.
空间中的垂直关系
![空间中的垂直关系](https://img.taocdn.com/s3/m/97973053ad02de80d4d840e4.png)
直线在平面内
知识清单 垂直关系的相互转化 线线垂直 线面垂直 面面垂直
1.注意概念与定理的辨析 2.要证明想判定定理,由已知想性质定理 要证明想判定定理,由已知想性质定理 判定定理 性质
习题回顾 一.判断题: 判断题: 1.如果一条直线垂直于平面内的无数条直 那么这条直线和这个平面垂直.( 线,那么这条直线和这个平面垂直.( ) 2.过一点有且只有一条直线与已知直线 垂直. 垂直. 3.若l∥α,l⊥β ⊥ 则α ⊥β ( ( ) )
Gห้องสมุดไป่ตู้
条件的整合 隐含条件的挖掘
E C
D A
B
典型例题
2.直三棱柱ABC2.直三棱柱ABC-A1B1C中,A1A=AC=√2AB,AB=BC=a, 直三棱柱ABC D为BB1的中点(1)证明:平面ADC1⊥平面AA1C1C 的中点(1)证明:平面ADC 平面AA (1)证明 (2)求点B到平面ADC (2)求点B到平面ADC1的距离 求点
习题回顾 4.已知两个平面垂直,过一个平面内 已知两个平面垂直, 任意一点作交线的垂线,则垂线必垂直 任意一点作交线的垂线, 一点作交线的垂线 于另一个平面. 于另一个平面. ( ) 空间四点A,B,C.D.已知AB A,B,C.D.已知 5.空间四点A,B,C.D.已知AB ⊥ CD, AC ⊥ BD,AD ⊥ BC.则这四点可共面也 BC.则这四点可共面也 可不共面. 可不共面. ( ) 6.两个不重合平面α 6.两个不重合平面α,β.α内有不共 两个不重合平面 线的三点与 距离相等,那么α∥ ( 三点与β距离相等 线的三点与 距离相等,那么 ∥β( )
空间中的垂直关系
本溪市高级中学 姜志勇
知识清单
一.垂直关系的定义: 垂直关系的定义: 1.两条直线垂直-- 相交垂直与异面垂直 两条直线垂直-- 直线垂直于平面内的 任意一条直线 任意一条直线 3.平面与平面垂直-- 三条交线互相垂直 平面与平面垂直--
垂直关系知识点总结
![垂直关系知识点总结](https://img.taocdn.com/s3/m/b44952fc64ce0508763231126edb6f1aff00712a.png)
垂直关系知识点总结在数学中,垂直关系是指两条直线或向量相交且相交点的角度为90度。
垂直关系是几何中非常重要的概念,它在计算几何、向量、三角函数等领域都有着广泛的应用。
本文将对垂直关系的基本概念、性质、相关定理及其应用进行总结。
一、垂直关系的基本概念1.垂直线段:在平面几何中,如果两条线段的端点可以连成垂直直角,那么这两条线段就是垂直的。
两条垂直线段的特点是它们的端点组成的角是90度。
2.垂直平面:在空间几何中,如果一个平面与另一个平面相交,且它们相交的直线为垂直线,则这两个平面为垂直平面。
3.垂直向量:在向量的概念中,如果两个向量的点积为0,则这两个向量是垂直的。
4.垂直角:在直角坐标系中,如果两条线的斜率乘积为-1,则这两条线是垂直的,它们的夹角为90度。
二、垂直关系的性质1.垂直线段的性质:两条垂直线段的长度乘积等于它们的端点之间的距离的平方。
2.垂直平面的性质:两个垂直平面的法线向量互相垂直。
3.垂直角的性质:垂直角的度数为90度。
4.垂直向量的性质:如果两个向量垂直,则它们的点积为0。
5.坐标系中的垂直关系:在直角坐标系中,两条相交直线的斜率乘积为-1,即两条直线的斜率互为倒数。
三、垂直关系的相关定理1.垂直平分线定理:如果一条直线垂直于两条平行线,则它们的交点到两条平行线的距离相等。
2.垂直平分角定理:如果一条直线垂直于两条相交直线,并且把这两条相交直线的交点分成相等的两部分,则这条直线是这两条相交直线的平分线。
3.垂直高线定理:在直角三角形中,垂直于斜边的高线等于三角形两直角边之一的乘积除以斜边的长度。
4.垂直平方定理:在直角三角形中,斜边上任意一点到斜边的垂直高线和三角形两直角边的平方之和等于斜边的平方。
5.垂直向量的判定定理:两个非零向量垂直的充分必要条件是它们的点积为0。
四、垂直关系的应用1.建筑领域:在建筑设计中,经常需要考虑建筑物的垂直关系,如墙壁、柱子、楼梯等的垂直度对建筑物的稳定性、美观性等有重要影响。
空间中的垂直关系
![空间中的垂直关系](https://img.taocdn.com/s3/m/3a1ba31ccc7931b765ce156a.png)
空间中的垂直关系1.两条直线互相垂直定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.2.直线与平面垂直(1)直线与平面垂直的定义:如果一条直线和一个平面相交于点O,并且和这个平面内过交点(O)的任何直线都垂直,就说这条直线和这个平面互相垂直.(2)直线与平面垂直的判定定理及其推论:文字语言图形语言符号语言判定定理如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直⎭⎪⎬⎪⎫a⊂αb⊂αa∩b=Ol⊥al⊥b⇒l⊥α推论1如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面⎭⎪⎬⎪⎫a∥ba⊥α⇒b⊥α推论2如果两条直线垂直于同一个平面,那么这两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b3. 平面与平面垂直(1)平面与平面垂直的定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得两条交线互相垂直,就称这两个平面互相垂直.(2)平面与平面垂直的判定定理:文字语言图形语言符号语言判定定理如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒α⊥β(3)平面与平面垂直的性质定理:文字语言图形语言符号语言性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=al ⊥a⇒l ⊥α1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( ) (2)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直. ( ) (3)直线a ⊥α,b ⊥α,则a ∥b . ( ) (4)若α⊥β,a ⊥β⇒a ∥α. ( ) (5)a ⊥α,a ⊂β⇒α⊥β.( )2. (2013·广东)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .若α⊥β,m ⊂α,n ⊂β,则m ⊥nB .若α∥β,m ⊂α,n ⊂β,,则m ∥nC .若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD .若m ⊥α,m ∥n ,n ∥β,则α⊥β3. 设a ,b ,c 是三条不同的直线,α,β是两个不同的平面,则a ⊥b 的一个充分条件是( )A .a ⊥c ,b ⊥cB .α⊥β,a ⊂α,b ⊂β C .a ⊥α,b ∥αD .a ⊥α,b ⊥α4. 将图1中的等腰直角三角形ABC 沿斜边BC 的中线折起得到空间四面体ABCD (如图2),则在空间四面体ABCD 中,AD 与BC 的位置关系是( )A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直5. α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同的直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α,以其中三个论断作为条件,剩余的一个论断作为结论,写出你认为正确的一个命题:____________________________.A 组 专项基础训练(时间:40分钟)一、选择题1.已知m是平面α的一条斜线,点A∉α,l为过点A的一条动直线,那么下列情形可能出现的是() A.l∥m,l⊥αB.l⊥m,l⊥αC.l⊥m,l∥αD.l∥m,l∥α2. 如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么()A.P A=PB>PCB.P A=PB<PCC.P A=PB=PCD.P A≠PB≠PC3.在空间内,设l,m,n是三条不同的直线,α,β,γ是三个不同的平面,则下列命题中为假命题的是()A.α⊥γ,β⊥γ,α∩β=l,则l⊥γB.l∥α,l∥β,α∩β=m,则l∥mC.α∩β=l,β∩γ=m,γ∩α=n,若l∥m,则l∥nD.α⊥γ,β⊥γ,则α⊥β或α∥β4.正方体ABCD—A′B′C′D′中,E为A′C′的中点,则直线CE垂直于()A.A′C′B.BDC.A′D′D.AA′又∵BD∥B′D′,∴BD⊥CE.5. 如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长,其中正确的是()A.①②B.①②③C.①D.②③二、填空题6.已知P为△ABC所在平面外一点,且P A、PB、PC两两垂直,则下列命题:①P A⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的个数是________.7.在正三棱锥P-ABC中,D,E分别是AB,BC的中点,有下列三个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE.其中正确论断的序号为________.8.已知平面α,β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α∥β.当满足条件________时,有m⊥β.(填所选条件的序号)三、解答题9.在如图所示的几何体中,四边形ABCD是直角梯形,AD∥BC,AB⊥BC,AD=2,AB=3,BC=BE=7,△DCE是边长为6的正三角形.(1)求证:平面DEC⊥平面BDE;(2)求点A到平面BDE的距离.B组专项能力提升1.已知平面α与平面β相交,直线m⊥α,则() A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,但必存在直线与m垂直D.β内必存在直线与m平行,不一定存在直线与m垂直2.(2012·江苏)如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为________ cm3.3.如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).。
空间几何中的垂直关系
![空间几何中的垂直关系](https://img.taocdn.com/s3/m/1c8ccb20dcccda38376baf1ffc4ffe473368fda1.png)
空间几何中的垂直关系垂直关系是空间几何中的重要概念之一,它与直线和平面的相互关系密切相关。
本文将就空间几何中的垂直关系进行详细探讨。
一、垂直关系的定义和性质在空间几何中,我们称两条直线或一个直线和一个平面相互垂直,当且仅当它们的夹角为90度(或称直角)。
垂直关系具有以下性质:1. 垂直关系是相对的:两条直线或一个直线和一个平面相互垂直,可以理解为它们相互垂直的方向互为补角,即互为垂线。
2. 垂直关系具有传递性:如果直线AB垂直于直线BC,那么直线AB也将垂直于直线AC。
这个性质可以通过夹角定义和垂线的性质进行推导。
3. 平面与直线的垂直关系:当一条直线与一个平面垂直时,它与该平面的任意直线均垂直。
这一性质为建立空间几何中的垂直关系提供了便利。
4. 垂直关系与平行关系之间的关系:如果两个平面相互垂直,那么它们的任意一条公共直线与这两个平面都垂直;反之,如果两个平面的任意一条公共直线与这两个平面都垂直,那么这两个平面互相垂直。
二、垂直关系的应用垂直关系在几何学和实际生活中都有广泛的应用。
以下列举了几个常见的应用场景:1. 建筑学中的垂直关系:在建筑设计与施工中,垂直关系是十分重要的,用来确保建筑结构的稳定和整体美观。
例如,墙面的垂直性要求、柱子与楼梯之间的垂直关系等都是基于几何理论的。
2. 地质学中的垂直关系:地层与地层之间的垂直关系是地质学家研究地壳演化和地层分析的基础。
通过研究地质层的垂直关系,可以推断出地层的变动和地质历史的变迁。
3. 数学建模中的垂直关系:在数学建模中,垂直关系被广泛应用于平面几何、三维几何以及向量分析等学科中。
它在描述和解决实际问题时,起到了重要的作用。
4. 导航和测量中的垂直关系:在导航和测量领域,垂直关系被用于确定方向、角度和高度。
例如,地球上的经线与纬线垂直相交,使得我们可以准确测量位置和方向。
三、总结空间几何中的垂直关系是一种重要的几何概念,它与直线和平面之间的关系密不可分。
空间中的垂直关系
![空间中的垂直关系](https://img.taocdn.com/s3/m/e615977cc950ad02de80d4d8d15abe23482f03ba.png)
空间中的垂直关系
在三维空间中,直线和平面之间的垂直关系可以通过以下方式定义:
1. 直线和平面相交,且交线的夹角为 90 度,则直线和平面垂直。
2. 直线和平面相交,且交线是斜线,则直线和平面不垂直。
3. 直线和平面相交,且交线是一条直线,则直线和平面垂直。
对于平面和平面之间的垂直关系,可以使用以下方式定义:
1. 如果两个平面互相垂直,则它们的交线是直线,且这两条直线互相垂直。
2. 如果两个平面互相垂直,则其中一个平面的垂线穿过另一个平面,且这两条垂线互相垂直。
在三维空间中,直线和直线之间的垂直关系可以通过以下方式定义:
1. 如果两条直线互相垂直,则它们的交角为 90 度。
2. 如果两条直线互相平行,则它们不一定垂直,但如果它们在某一点相交,则它们的交线是直线,且这两条直线互相垂直。
垂直关系在三维空间中非常重要,因为它们可以用来定义物体之间的相对位置和方向。
在建筑设计、机械设计、航空航天等领域,垂直关系经常被应用到。
空间中的垂直关系
![空间中的垂直关系](https://img.taocdn.com/s3/m/9261e762561252d380eb6e95.png)
例2.已知:直线l⊥平面α,垂足为A,直 线AP⊥l. 求证:AP在α内。
证明:设AP与l 确定的平面为β,假设AP 不在α内, 则设α与β相交于直线AM。 因为l⊥α,AM 所以l⊥AM,
α,
又已知AP⊥l,于是在平面β内,过点A有两条直线垂直于l,
这是不可能的, 所以AP一定在α内。
直线与平面垂直的判定方法 1.定义:如果一条直线垂于一个平面内的 任何一条直线,则此直线垂直于这个平面. 2.判定定理:如果一条直线垂直于一个平面 内的两条相交直线,那么此直线垂直于这 个平面。 3.如果两条平行直线中的一条垂直于一个 平面,那么另一条也垂直于同一个平面。 4.如果直线和平面所成的角等于90°,则这 条直线和平面垂直
例1.过一点和已知平面垂直的直线只有 一条。 已知:平面α和一点P. 求证:过点P与α垂直的直线只有一条。
证明:不论P点在α外或内,设PA⊥α,垂 足为A(或P), 如果过P点,除直线PA⊥α外,还有一条直 线PB⊥α,设PA,PB确定的平面为β, 且α∩β=a, 于是在平面β内过点P有两条直线PA, PB垂直于交线a, 这是不可能的。所以过点P与α垂直的直 线只有一条。
∵ SC⊥平面ABCD,
∴ EF⊥平面ABCD,
又EF
平面BDE,
∴ 平面BDE⊥平面ABCD.
4. 在长方体ABCD-A1B1C1D1中, AB=BC=3,B1B=4,连接B1C,过B作 BE⊥B1C,交B1C于F,交CC1于E, 求证: 平面BDE⊥平面A1BCD1。 证明:连接AC, ∵ABCD-A1B1C1D1是长 方体, ∴ AA1⊥面ABCD, 又∵ ABCD是正方形, ∴ AC⊥BD,
空间中的垂直关系(1-2)
一. 直线与平面垂直的定义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间中的垂直关系一. 教学内容:空间中的垂直关系二、学习目标1、掌握直线与平面垂直的定义、判定定理和性质定理,并能运用它们进行论证和解决有关的问题;2、掌握平面与平面垂直的概念和判定定理、性质定理,并能运用它们进行推理论证和解决有关问题;3、在研究垂直问题时,要善于应用“转化”和“降维”的思想,通过线线、线面、面面平行与垂直关系的转化,从而使问题获得解决。
三、知识要点1、直线与平面垂直的定义:如果一条直线和一个平面内的任何一条直线都垂直,那么就称这条直线和这个平面垂直。
2、直线与平面垂直的判定:常用方法有:①判定定理:教学资源集散地。
">.② b⊥α, a∥b a⊥α;(线面垂直性质定理)③α∥β,a⊥βa⊥α(面面平行性质定理)④α⊥β,α∩β=l,a⊥l,aβa⊥α(面面垂直性质定理)3、直线与平面垂直的性质定理:①如果两条直线同垂直于一个平面,那么这两条直线平行。
(a⊥α,b⊥α⇒a∥b)②直线和平面垂直时,那么该直线就垂直于这个平面内的任何直线()4、点到平面的距离的定义:从平面外一点引这个平面的垂线,这个点和垂足间的线段的长度叫做这个点到平面的距离。
特别注意:点到面的距离可直接向面作垂线,但要考虑垂足的位置,如果垂足的位置不能确定,往往采取由点向面上某一条线作垂线,再证明此垂足即为面的垂足。
5、平面与平面垂直的定义及判定定理:(1)定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就说这两个平面互相垂直。
记作:平面α⊥平面β(2)判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
(简称:线面垂直,面面垂直)6、两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
(简称:面面垂直,线面垂直。
)思维方式:判定两相交平面垂直的常用方法是:线面垂直,面面垂直;有时用定义也是一种办法。
【典型例题】例1、(1)对于直线m、n和平面α、β,α⊥β的一个充分条件是()A、m⊥n,m∥α,n∥βB、m⊥n,α∩β=m,nαC、m∥n,n⊥β,mαD、m∥n,n⊥β,m⊥α(2)设a、b是异面直线,给出下列命题:①经过直线a有且仅有一个平面平行于直线b;②经过直线a有且仅有一个平面垂直于直线b;③存在分别经过直线a和b的两个平行平面;④存在分别经过直线a和b的两个平面互相垂直。
其中错误的命题为()A、①与②B、②与③C、③与④D、仅②(3)已知平面α⊥平面β,m是α内一条直线,n是β内一条直线,且m⊥n,那么,甲:m⊥β;乙:n⊥α丙:m⊥β或n⊥α;丁:m⊥β且n⊥α。
这四个结论中,不正确的三个是()解:(1)对于A,平面α与β可以平行,也可以相交,但不垂直。
对B,平面α内直线n垂直于两个平面的交线m,直线n与平面β不一定垂直,平面α、β也不一定垂直。
对D,m⊥α,m∥n则n⊥α,又n⊥β,所以α∥β。
只有C正确,m∥n,n⊥β则m⊥β又mα,由平面与平面垂直的判定定理得α⊥β。
故选C。
(2)①正确,过a上任一点作b的平行线b′,则ab′确定唯一平面。
②错误,假设成立则b⊥该平面,而a该平面,∴a⊥b,但a、b异面却不一定垂直。
③正确,分别过a、b上的任一点作b、a的平行线,由各自相交直线所确定的平面即为所求。
④正确,换角度思考两个垂直的平面内各取一直线会出现各种异面形式,综上所述:仅②错误选D(3)丙正确。
举反例:在任一平面中作平行于交线的直线m(或n),在另一平面作交线的垂线n(或m)即可推翻甲、乙、丁三项。
思维点拨:解决这类问题关键是注意这是在空间而非平面内。
例2、如图,ABCD 为直角梯形,∠DAB=∠ABC=90°,AB=BC=a,AD=2a,PA⊥平面ABCD。
PA=a。
(1)求证:PC⊥CD。
(2)求点B到直线PC的距离。
(1)证明:取AD的中点E,连AC、CE,则ABCE为正方形,ΔCED为等腰直角三角形,∴AC⊥ CD,∵PA⊥平面ABCD,∴AC为PC在平面ABCD上的射影,∴PC⊥CD(2)解:连BE,交AC于O,则BE⊥AC,又BE⊥PA,AC∩PA= A,∴ BE⊥平面PAC过O作OH⊥PC于H,则BH⊥PC,∵PA=a,AC=a,PC=a,∴ OH=,∵BO=a,∴BH=即为所求。
例3、在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC(1)若D是BC的中点,求证AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证截面MBC1⊥侧面BB1C1C;(3)AM=MA1是截面MBC1⊥平面BB1C1C的充要条件吗?请你叙述判断理由。
命题意图:本题主要考查线面垂直、面面垂直的判定与性质。
知识依托:线面垂直、面面垂直的判定与性质。
错解分析:(3)的结论在证必要性时,辅助线要重新作出。
技巧与方法:本题属于知识组合题类,关键在于对题目中条件的思考与分析,掌握做此类题目的一般技巧与方法,以及如何巧妙地作辅助线。
(1)证明:∵AB=AC,D是BC的中点,∴AD⊥BC∵底面ABC⊥侧面BB1C1C,∴AD⊥侧面BB1C1C∴AD⊥CC1(2)证明:延长B1A1与BM交于N,连结C1N∵AM=MA1,∴NA1=A1B1∵A1B1=A1C1,∴A1C1=A1N=A1B1∴C1N⊥C1B1∵底面NB1C1⊥侧面BB1C1C,∴C1N⊥侧面BB1C1C∴截面C1NB⊥侧面BB1C1C∴截面MBC1⊥侧面BB1C1C(3)解:结论是肯定的,充分性已由(2)证明,下面证必要性。
过M作ME⊥BC1于E,∵截面MBC1⊥侧面BB1C1C∴ME⊥侧面BB1C1C,又∵AD⊥侧面BB1C1C∴ME∥AD,∴M、E、D、A共面∵AM∥侧面BB1C1C,∴AM∥DE∵CC1⊥AD,∴DE∥CC1∵D是BC的中点,∴E是BC1的中点∴AM=DE= AA1,∴AM=MA1即是截面的充要条件例4、如图,在正三棱锥A—BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH 分别交AB、BD、DC、CA于点E、F、G、H(1)判定四边形EFGH的形状,并说明理由(2)设P是棱AD上的点,当AP为何值时,平面PBC⊥平面EFGH,请给出证明(1)证明:∵AD//面EFGH,面ACD∩面EFGH=HG,AD 面ACD∴ AD//HG.同理EF∥HG,∴EFGH是平行四边形∵A—BCD是正三棱锥,∴A在底面上的射影O是△BCD的中心,∴DO⊥BC,∴AD⊥BC,∴HG⊥EH,四边形EFGH是矩形(2)作CP⊥AD于P点,连结BP,∵AD⊥BC,∴AD⊥面BCP∵HG∥AD,∴HG⊥面BCP,HG 面EFGH 面BCP⊥面EFGH,在Rt△APC中,∠CAP=30°,AC=AB=a,∴AP= a例5、如图,在直三棱柱ABC-A1B1C1中,底面ΔABC是直角三角形,∠ABC=90°,2AB=BC=BB1=a,且A1C∩AC1=D,BC1∩B1C=E,截面ABC1与截面A1B1C交于DE。
求证:(1)A1B1⊥平面BB1C1C;(2)A1C⊥BC1;(3)DE⊥平面BB1C1C。
证明:(1)∵三棱柱ABC-A1B1C1是直三棱柱,∴侧面与底面垂直,即平面A1B1C1⊥平面BB1C1C,又∵AB⊥BC,∴A1B1⊥B1C1从而A1B1⊥平面BB1C1C。
(2)由题设可知四边形BB1C1C为正方形,∴BC1⊥B1C,而A1B1⊥平面BB1C1C,∴ A1C在平面BB1C1C上的射影是B1C,由三垂线定理得A1C⊥BC1(3)∵直三棱柱的侧面均为矩形,而D、E分别为所在侧面对角线的交点,∴D为A1C的中点,E为B1C的中点,∴DE∥A1B1,而由(1)知A1B1⊥平面BB1C1C,∴DE⊥平面BB1C1C。
思维点拨:选择恰当的方法证明线面垂直。
本讲涉及的主要数学思想方法1、直线与平面垂直是直线与平面相交的一种特殊情况,应熟练掌握直线与平面垂直的定义、判定定理、性质定理,并能依据条件灵活运用。
2、注意线面垂直与线线垂直的关系和转化。
3、距离离不开垂直,因此求距离问题的过程实质上是论证线面关系(平行与垂直)与解三角形的过程,值得注意的是“作、证、算、答”是立体几何计算题不可缺少的步骤。
4、在证明两平面垂直时,一般方法是先从现有的直线中寻找平面的垂线;若没有这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论根据并要有利于证明,不能随意添加。
在有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直。
解决这类问题的关键是熟练掌握“线线垂直”“线面垂直”,“面面垂直”间的转化条件和转化应用空间中的垂直关系一. 教学内容:空间中的垂直关系二、学习目标1、掌握直线与平面垂直的定义、判定定理和性质定理,并能运用它们进行论证和解决有关的问题;2、掌握平面与平面垂直的概念和判定定理、性质定理,并能运用它们进行推理论证和解决有关问题;3、在研究垂直问题时,要善于应用“转化”和“降维”的思想,通过线线、线面、面面平行与垂直关系的转化,从而使问题获得解决。
三、知识要点1、直线与平面垂直的定义:如果一条直线和一个平面内的任何一条直线都垂直,那么就称这条直线和这个平面垂直。
2、直线与平面垂直的判定:常用方法有:①判定定理:教学资源集散地。
">.② b⊥α, a∥b a⊥α;(线面垂直性质定理)③α∥β,a⊥βa⊥α(面面平行性质定理)④α⊥β,α∩β=l,a⊥l,aβa⊥α(面面垂直性质定理)3、直线与平面垂直的性质定理:①如果两条直线同垂直于一个平面,那么这两条直线平行。
(a⊥α,b⊥α⇒a∥b)②直线和平面垂直时,那么该直线就垂直于这个平面内的任何直线()4、点到平面的距离的定义:从平面外一点引这个平面的垂线,这个点和垂足间的线段的长度叫做这个点到平面的距离。
特别注意:点到面的距离可直接向面作垂线,但要考虑垂足的位置,如果垂足的位置不能确定,往往采取由点向面上某一条线作垂线,再证明此垂足即为面的垂足。
5、平面与平面垂直的定义及判定定理:(1)定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就说这两个平面互相垂直。
记作:平面α⊥平面β(2)判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
(简称:线面垂直,面面垂直)6、两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
(简称:面面垂直,线面垂直。