初中数学 三角形难题 专项测试 范永凯精品习题
八年级上册《数学》三角形专项练习题(含答案)
八年级上册《数学》三角形专项练习题11.1.1三角形的边一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有对.6.若等腰三角形的腰长为6,则它的底边长a的取值范围是.7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长.9.已知等腰三角形的周长是16cm.(1)若其中一边的长为4cm,求另外两边的长;(2)若其中一边的长为6cm,求另外两边的长.10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|.11.已知等腰三角形的周长为20cm,设腰长为xcm.(1)用含x的式子表示底边长.(2)腰长x能否为5cm,为什么?(3)求x的取值范围.二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示.小棒数目3 5 6 ……示意图……形状等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图.答案一、能力提升1.B2.B;由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x 可以是12,13,14.故选B.3.D;由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9.4.C由题意知三角形的三条边长分别为2,4,5或3,4,4,所以最长边可能取值的最大值为5.5.3;△BDC与△BEC,△BDC与△BAC,△BEC与△BAC,共3对.6.0<a<12.7.2.8.解:若腰长为3cm,则三边长分别为3cm,3cm,7cm,而3+3<7,此时不能构成三角形;若腰长为7cm,则三边长分别为3cm,7cm,7cm.此时能构成三角形,其周长为3+7+7=17(cm).故这个三角形的周长为17cm. 9.解:(1)若腰长为4cm,则底边长为16-4-4=8(cm).三边长分别为4cm,4cm,8cm,不符合三角形的三边关系,所以应该是底边长为4cm.所以腰长为(16-4)÷2=6(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长都为6cm.(2)若腰长为6cm,则底边长为16-6-6=4(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长分别为6cm 和4cm.若底边长为6cm,则腰长为(16-6)÷2=5(cm).三边长分别为6cm,5cm,5cm,符合三角形的三边关系.所以另外两边的长都为5cm.10.解:因为a,b,c是△ABC的三边长,所以a<b+c,b<c+a,c<a+b,即a-b-c<0,b-c-a<0,c-a-b<0.所以|a-b-c|+|b-c-a|+|c-a-b|=-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.11.解:(1)底边长为(20-2x)cm.(2)不能.理由如下:若腰长为5cm,则底边长为20-2×5=10(cm).因为5+5=10,不满足三角形的三边关系.所以腰长不能为5cm.(3)根据题意,得解得0<x<10.由三角形的三边关系,得x+x>20-2x,解得x>5.综上所述,x的取值范围是5<x<10.二、创新应用12.解:(1)4根小棒不能搭成三角形.(2)8根小棒能搭成一种三角形,示意图如图甲;12根小棒能搭成三种不同形状的三角形,示意图如图乙.11.1.2三角形的高、中线与角平分线一、能力提升1.若一个三角形中仅有一条高在三角形的内部,则该三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.直角三角形或钝角三角形2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.在△ABC中,边AC上的高是线段()A.AEB.CDC.BFD.AF3.如图,线段AE是△ABC的中线,已知EC=6,DE=2,则线段BD的长为()A.2B.3C.4D.64.如图,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.线段BC是△ABE的高B.线段BE是△ABD的中线C.线段BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC5.如图,在△ABC中,E,F分别是AB,AC的中点,△CEF的面积为2.5,则△ABC的面积为()A.6B.7C.8D.106.如图,BD和CE是△ABC的两条角平分线,且∠DBC=∠ECB=31°,则∠ABC=度,∠ACB=度.7.如图,线段AD,CE分别是△ABC中边BC,AB上的高.若AD=10,CE=9,AB=12,则BC的长是.8.如图,在△ABC中,AB=AC,线段AD是△ABC的中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.9.已知在等腰三角形ABC中,AB=AC,若腰AC上的中线BD将等腰三角形ABC的周长分成15和6两部分,求三角形ABC的腰长及底边长.10.如图,AD是△CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.二、创新应用11.有一块三角形优良品种试验基地,如图,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(画图即可)答案一、能力提升1.D;直角三角形和钝角三角形都只有一条高在三角形的内部.2.C3.C4.D5.D;∵F为AC的中点,∴线段EF为△AEC的中线,∴S△AEC=2S△CEF=5.∵E为AB的中点,∴线段CE为△ABC的中线,∴S△ABC=2S△AEC=10.6.62;62.7.10.8;S△ABC=BC·AD=AB·CE,则BC===10.8.8.解:∵线段AD是△ABC的中线,∴BC=2BD.∵AB=AC,△ABC的周长为34cm,∴2AB+2BD=34cm,即AB+BD=17cm.又△ABD的周长为30cm,即AB+BD+AD=30cm,∴AD=13cm.9.解:设AB=AC=2x,则AD=CD=x.当AB+AD=15,BC+CD=6时,有2x+x=15,所以x=5,AB=AC=2x=10,BC=6-5=1.当BC+CD=15,AB+AD=6时,有2x+x=6,所以x=2,AB=AC=2x=4,BC=13.因为4+4<13,所以不能组成三角形.故三角形ABC的腰长为10,底边长为1.10.解:DO是△EDF的角平分线.证明如下:∵AD是△CAB的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA,即DO是△EDF的角平分线.二、创新应用11.解:如图(答案不唯一).11.1.3三角形的稳定性一、能力提升1.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮2.下列不是利用三角形稳定性的是()A.伸缩晾衣架B.三角形房架C.自行车的三角形车架D.矩形门框的斜拉条3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.王师傅用四根木条钉成一个四边形木架.如图,要使这个木架不变形,他至少还要再钉上()根木条.A.0B.1C.2D.35.如图,要使四边形木条框架ABCD变“活”(具有不稳定性),应将木条拆除.6.伸缩铁门能自由伸缩,主要是应用了四边形的.7.我们所用的课桌和所坐的凳子,时间长了总是摇摇晃晃的,这是什么原因?要使自己用的桌凳不晃动应该怎么办?如图,如果有六边形木框,要使它不变形,应该怎么办?二、创新应用8.如图,我们知道要使四边形木架不变形,至少要钉一根木条.那么要使五边形木架不变形,至少要钉几根木条?要使七边形木架不变形,至少要钉几根木条?要使n边形木架不变形,又至少要钉多少根木条呢?答案一、能力提升1.C.2.A.3.A;打开的那一扇窗户下边的一部分OB、窗户框下边的一部分OA 及AB组成一个三角形,根据三角形的稳定性,知可用AB固定窗户.4.B.5.AC.6.不稳定性.7.解:这是因为课桌和凳子的四个侧面都是四边形木架,当交接处松动后就具有不稳定性.解决这类问题的方法是在每个侧面加上一根木条(或木板),使之成为三角形.要使六边形木框不变形,至少应加3根木条使其划分为三角形.二、创新应用8.解:要使五边形木架不变形,至少要钉2根木条;要使七边形木架不变形,至少要钉4根木条;要使n边形木架不变形,至少要钉(n-3)根木条.11.2.1三角形的内角一、能力提升1.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为()A.50°B.75°C.100°D.125°2.如图,CD∥AB,∠1=120°,∠2=80°,则∠E等于()A.40°B.60°C.80°D.120°3.(2020·辽宁锦州中考)如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°4.在△ABC中,若∠A=∠B+∠C,则∠A的度数是.5.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°.如果∠ECD=36°,那么∠A的度数是.6.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2的度数是.7.在△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又比另一个角大20°,则△ABC的三个角的度数分别是多少?8.如图,E是△ABC中边AC上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么?9.如图,在△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于点E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.二、创新应用10.如图,在△ABC中,∠ABC,∠ACB的平分线相交于点D.(1)若∠ABC+∠ACB=110°,则∠BDC=;(2)若∠A=100°,则∠BDC=;(3)若∠A=n°,求∠BDC的度数.答案一、能力提升1.B;设∠C的度数为x°,则∠B的度数为x°+25°,则55°+x°+x°+25°=180°,解得x=50,则∠B=75°.2.A;∵CD∥AB,∠1=120°,∴∠CDB=∠1=120°,∴∠EDC=60°.∵∠2=80°,∴∠E=180°-80°-60°=40°.3.C∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=100°.又CD平分∠ACB,∴∠ACD=∠ACB=50°.∴∠ADC=180°-∠A-∠ACD=100°.4.90°.5.54°.6.270°.由三角形三内角之间的关系,得∠3+∠4=90°,所以∠1+∠2=(180°-∠3)+(180°-∠4)=2×180°-(∠3+∠4)=360°-90°=270°.7.解:设∠C=x°,则∠A=2x°,∠B=2x°-20°,根据三角形的内角和定理,有2x+(2x-20)+x=180,解得x=40,即∠C=40°.所以2x=80,∠A=80°,2x-20=60,∠B=60°.故△ABC的三个角的度数分别为∠A=80°,∠B=60°,∠C=40°.8.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴∠1+∠A=90°.又∠1=∠2,∴∠2+∠A=90°.∴△ABC是直角三角形.9.解:在△EDC中,∠EDC=180°-(∠C+∠DEC)=180°-(59°+47°)=74°.∴∠FDB=180°-∠EDC=180°-74°=106°.在△BDF中,∠F=180°-(∠B+∠FDB)=180°-(42°+106°)=32°.二、创新应用10.解:(1)125°.(2)140°.(3)∵∠A=n°,∴∠ABC+∠ACB=180°-n°.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×(180°-n°)=90°-.∴∠BDC=180°-(∠DBC+∠DCB)=180°-=90°+.11.2.2三角形的外角一、能力提升1.一副三角尺有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.如图,在△ABC中,AD为边BC上的中线,在△ABD中,AE为边BD上的中线,在△ACD中,AF为边DC上的中线,则下列结论错误的是()A.∠1>∠2>∠3>∠CB.BE=ED=DF=FCC.∠1>∠4>∠5>∠CD.∠1=∠3+∠4+∠53.如图,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°4.(2020·湖北中考)将一副三角尺按如图摆放,点E在AC上,点D在BC 的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.如图,∠ABC的平分线与∠ACD的平分线相交于点P.若∠A=60°,则∠P等于()A.30°B.40°C.50°D.60°6.(2020·湖北黄冈中考)如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=.7.如图,已知在△ABC中,D是AB上一点,E是AC上一点,BE与CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,则∠BDC=,∠BFC=.8.如图,D,E,F分别是△ABC三边延长线上的点,求∠D+∠E+∠F+∠1+∠2+∠3的度数.9.如图,在△ABC中,E是AC延长线上的一点,D是BC上的一点.求证:(1)∠BDE=∠E+∠A+∠B.(2)∠BDE>∠A.10.如图,在△ABC中,D是边BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.二、创新应用11.如图①,有一个五角形图案ABCDE,你能说明∠A+∠DBE+∠C+∠D+∠E=180°吗?如果点B向下移动到AC上(如图②)或AC的另一侧(如图③),上述结论是否依然成立?请说明理由.答案一、能力提升1.A如图,∵∠2=90°-45°=45°,∴∠1=∠2-30°=15°.∴∠α=180°-∠1=165°.2.C由三角形的一个外角大于与它不相邻的内角,知∠1>∠2>∠3>∠C,故选项A正确;根据三角形中线的定义,知BE=ED=DF=FC,故选项B正确;∠4与∠5的大小不能判定,故选项C错误;根据三角形的一个外角等于与它不相邻两个内角的和,知∠1=∠2+∠4,∠2=∠3+∠5,所以∠1=∠3+∠4+∠5,故选项D正确.3.B4.A5.A利用三角形的外角性质,得∠P=∠PCD-∠PBD=(∠ACD-∠ABC)=∠A=30°.6.30°.7.97°;117°.8.解:∵∠D+∠3=∠CAB,∠E+∠1=∠ABC,∠F+∠2=∠ACB,∴∠D+∠E+∠F+∠1+∠2+∠3=∠CAB+∠ABC+∠ACB=180°.9.证明:(1)∵∠BDE,∠DCE分别是△CDE,△ABC的一个外角,∴∠BDE=∠E+∠DCE,∠DCE=∠A+∠B,∴∠BDE=∠E+∠A+∠B.(2)由(1)得∠BDE=∠E+∠A+∠B,∴∠BDE>∠A.10.解:∵∠3是△ABD的外角,∴∠3=∠1+∠2.∵∠1=∠2,∠3=∠4,∴∠4=2∠2.在△ABC中,∵∠2+∠4=180°-∠BAC=180°-63°=117°,∴∠1=∠2=117°÷(1+2)=39°.∴∠DAC=∠BAC-∠1=63°-39°=24°.二、创新应用11.解:在题图①中,∠A+∠C=∠DNM, ①∠DBE+∠E=∠DMN, ②①+②,得∠A+∠DBE+∠C+∠E=∠DNM+∠DMN.∵∠D+∠DNM+∠DMN=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°.在题图②、题图③中,上述结论仍然成立,理由与题图①完全相同.11.3.1多边形一、能力提升1.在下列关于正多边形的特征说法中,错误的是()A.每一条边都相等B.每一个内角都相等C.每一个外角都相等D.所有对角线都相等2.过多边形的一个顶点可以引2017条对角线,则这个多边形的边数是()A.2017B.2018C.2019D.20203.如果过多边形的一个顶点的对角线把多边形分成8个三角形,那么这个多边形的边数为()A.8B.9C.10D.114.将一个四边形截去一个角后,它不可能是()A.三角形B.四边形C.五边形D.六边形5.在n边形的一边上任取一点(不包含顶点)与各顶点相连,可得三角形的个数是()A.nB.n-2C.n-1D.n+16.过m边形的一个顶点有7条对角线,n边形没有对角线,则m n=.7.已知一个多边形的边数恰好是从这个多边形的一个顶点出发所作的对角线的条数的2倍,求此多边形的边数.二、创新应用8.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整.边数 3 4 5 6 7 …n对角线条0 2 5 …数答案一、能力提升1.D2.D3.C4.D一个多边形截去一个角后,可能出现三种情况:少一个角、角的个数不变或多一个角.5.C6.1000;从m边形的一个顶点出发有(m-3)条对角线,由m-3=7,得m=10. n边形没有对角线,所以n=3.所以m n=103=1000.7.解:设这个多边形的边数为n,则从多边形的一个顶点出发所作的对角线的条数为n-3.依题意,得n=2(n-3),解得n=6.二、创新应用8.解:(1)(2)边数 3 4 5 6 7 …n对角线条数0 2 5 9 14 …n(n-3)11.3.2多边形的内角和一、能力提升1.如果一个正多边形的每一个外角都是锐角,那么这个正多边形的边数一定不小于()A.3B.4C.5D.62.(2020·山东济宁中考)一个多边形的内角和是1080°,则这个多边形的边数是()A.9B.8C.7D.63.若一个多边形的边数由5增加到11,则内角和增加的度数是()A.1080°B.720°C.540°D.360°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°5.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.7.如图,在四边形ABCD中,∠A+∠B=210°,且∠ADC的平分线与∠DCB的平分线相交于点O,则∠COD的度数是.8.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.9.如图,求∠A+∠B+∠OCD+∠ODC+∠E+∠F的度数.二、创新应用10.在一个多边形中,一个内角相邻的外角与其他各内角的和为600°.(1)如果这个多边形是五边形,请求出这个外角的度数;(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.答案一、能力提升1.C每个外角都是锐角,即小于90°,设边数为n,则这些锐角的和一定小于n×90°.而外角和为360°,所以360°<n×90°,n>4,即n不小于5.2.B设这个多边形的边数是n,则(n-2)×180°=1080°,解得n=8.3.A因为每增加一条边,内角和增加180°,所以增加6条边,内角和增加180°×6=1080°.4.D由题意知∠AED的补角为80°,则∠AED=100°.5.D多边形的外角和是360°,内角和等于外角和的一半,则内角和是180°,可知此多边形为三角形.6.6因为凸n边形的内角和为1260°,所以(n-2)×180°=1260°,得n=9.故从一个顶点出发引的对角线的条数为9-3=6.7.105°∵四边形的内角和为360°,∠A+∠B=210°,∴∠ADC+∠BCD=360°-210°=150°.∵DO,CO分别为∠ADC与∠BCD的平分线,∴∠ODC=∠ADC,∠OCD=∠BCD.∴∠ODC+∠OCD=(∠ADC+∠BCD)=×150°=75°.∴∠COD=180°-75°=105°.8.解:由题意知这个多边形的内角和为3×360°-180°=900°.设这个多边形的边数为n,根据题意,得(n-2)×180°=900°,解得n=7.故这个多边形的边数为7.9.解:如图,连接BE,则在△COD与△BOE中,∠ODC+∠OCD+∠COD=180°,∠OBE+∠OEB+∠BOE=180°.∵∠COD与∠BOE是对顶角,∴∠COD=∠BOE.∵∠ODC+∠OCD=180°-∠COD,∠OBE+∠OEB=180°-∠BOE,∴∠ODC+∠OCD=∠OBE+∠OEB.∴题图中的∠A+∠B+∠OCD+∠ODC+∠E+∠F等于上图中的∠A+∠F+∠ABC+∠DEF+∠OBE+∠OEB=∠A+∠F+∠ABE+∠BEF=360°,即所求六个角的和为360°.二、创新应用10.解:(1)设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.(2)存在.设边数为n,这个外角的度数是x°,则(n-2)×180-(180-x)+x=600,整理得x=570-90n.因为0<x<180,即0<570-90n<180,并且n为正整数,所以n=5或n=6.故这个多边形的边数是6,这个外角的度数为30°.。
八年级 三角形测试卷【含答案】
八年级三角形测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 在三角形ABC中,若∠A=90°,则三角形ABC是()A. 钝角三角形B. 直角三角形C. 锐角三角形D. 无法确定2. 已知三角形的两边分别为8cm和15cm,第三边的长度可能是()A. 7cmB. 17cmC. 23cmD. 24cm3. 在三角形中,若两边之和等于第三边,则这个三角形是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形4. 若一个三角形的三个内角分别为45°、45°和90°,则这个三角形是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等边三角形5. 若一个三角形的两个内角分别为60°和70°,则第三个内角的度数是()A. 50°B. 40°C. 30°D. 20°二、判断题(每题1分,共5分)1. 任意三角形的内角和都是180°。
()2. 在直角三角形中,斜边最长。
()3. 一个三角形最多只有一个直角。
()4. 任意三角形的两边之和一定大于第三边。
()5. 等腰三角形的两个底角相等。
()三、填空题(每题1分,共5分)1. 在三角形ABC中,若∠A=40°,∠B=70°,则∠C的度数是______°。
2. 若一个三角形的周长为24cm,其中两边的长度分别为8cm和10cm,则第三边的长度是______cm。
3. 在直角三角形中,若一个锐角的度数为30°,则另一个锐角的度数是______°。
4. 若一个三角形的两个内角分别为45°和45°,则这个三角形是______三角形。
5. 在等腰三角形中,若底角的度数为60°,则顶角的度数是______°。
四、简答题(每题2分,共10分)1. 简述三角形的内角和定理。
初中数学三角形专题训练50题含答案
初中数学三角形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知AO=OB ,OC=OD ,AD 和BC 相交于点E ,则图中全等三角形有( )对.A .1对B .2对C .3对D .4对 2.两个同心圆的半径分别是 5 和 4,则长为 6 的大圆的弦一定和小圆( ) A .相交 B .相切 C .相离 D .无法确定 3.在△ABC 中,AB =8,BC =15,AC =17,则下列结论正确的是( ) A .△ABC 是直角三角形,且△A =900B .△ABC 是直角三角形,且△B =900 C .△ABC 是直角三角形,且△C =900D .△ABC 不是直角三角形 4.若菱形ABCD 的对角线8AC =,60ABC ∠=,则菱形ABCD 的面积为( ) A .16 B .C .D .5.用10根等长的火柴棒拼成一个三角形(火柴棒不允许剩余,重叠和折断),这个三角形一定是( )A .等边三角形B .等腰三角形C .直角三角形D .不等边三角形 6.下列命题:△任何实数的0次幂都等于1;△有两个角相等的等腰三角形是等边三角形;△三角形三条边垂直平分线的交点到三角形三条边的距离相等;△若三角形一个外角的平分线平行于三角形的一边,则这个三角形是等腰三角形.正确的个数有( )A .0个B .1个C .2个D .3个 7.菱形的两条对角线分别是12和16,则该菱形的边长是( )A .10B .8C .6D .5 8.如图,下列条件中,不能证明△ABC △△DCB 的是( )A .AB =DC ,AC =DBB .AB =DC ,△ABC =△DCB C .△ACB =△DBC ,△A =△D D .AB =DC ,△DBC =△ACB 9.如图,把ABC 纸片沿EG 折叠,当点A 落在ABC 外部的点F 处,此时测得2104∠=︒,30A ∠=︒,则1∠的度数为( )A .40︒B .44︒C .46︒D .48︒ 10.如图,在边长为4的正方形ABCD 中,点E 、F 分别是BC 、CD 的中点,DE 、AF 交于点G ,AF 的中点为H ,连接BG 、DH .给出下列结论:△AF DE ⊥;△85DG =;△HD BG ∥;△ABG 与DFH 相似.其中正确的结论有( )个.A .1B .2C .3D .411.下列条件中,能判定△ABC△△DEF 的是( )A .AB=DE ,BC=EF ,△A=△EB .△A=△E ,AB=EF ,△B=△DC .△A=△D ,△B=△E ,△C=△F D .△A=△D ,△B=△E ,AC=DF 12.在Rt ABC △中,90A ∠=︒,6AB =,8AC =,点P 是ABC 所在平面内一点,则222PA PB PC ++取得最小值时,下列结论正确的是( )A .点P 是ABC 三边垂直平分线的交点B .点P 是ABC 三条内角平分线的交点 C .点P 是ABC 三条高的交点D .点P 是ABC 三条中线的交点13.下列命题中,真命题是( ) A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等14.已知直角三角形两边的长分别为6和8,则此三角形的周长为( )A .24B .14C .14+24D .14+15.如图,点A 的坐标为(﹣3,2),△A 的半径为1,P 为坐标轴上一动点,PQ 切△A 于点Q ,在所有P 点中,使得PQ 长最小时,点P 的坐标为( )A .(0,2)B .(0,3)C .(﹣2,0)D .(﹣3,0) 16.如图1,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图2,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依次规律,第n 个图形中有全等三角形的对数是( ).A .nB .21n -C .(1)2n n +D .3(1)n + 17.如图,若 AC 、BD 、EF 两两互相平分于点O ,那么图中的全等三角形共有( )A .3对B .4对C .5对D .6对 18.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为( )A .27cmB .228cmC .242cmD .249 cm 19.如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE △AB ,垂足E 在线段AB上,连接EF 、CF ,则下列结论中:△△DCF =12△BCD ;△EF =CF ;△S △BEC <2S △CEF ;△△DFE =4△AEF .一定成立的有( )个.A .1B .2C .3D .420.如图,等边ABC 内部有一点D ,3DB =,4DC =,150BDC =∠︒,在AB 、AC 上分别有一动点E 、F ,且AE AF =,则DE DF +的最小值是( )A .5B .C .D .7二、填空题21.等腰三角形的两边长为2和3,则等腰三角形的周长为________.22.若3,m ,5=______. 23.如图,点P 是正方形ABCD 对角线BD 上的一点,且BP =BC ,则△DPC =______°.24.如图,在ABC 中,90C ∠=︒,70B ∠=︒,D ,E 分别是边AB 、AC 上的点,将A ∠沿DE 折叠,使点F 落在AB 的下方,当FDE 的边EF 与BC 平行时,ADE ∠的度数是_________.25.《九章算术)是我国古代数学名著,书中有下列问题:“今有户高多于广六尺,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺,门对角线距离恰好为1丈,问门高、宽各是多少?(1丈=10尺)如图,设门高AB 为x 尺,根据题意,可列方程为___________(将方程化简并写成一般形式).26.如图,ABC ∆和ABE 关于直线AB 对称,ABC ∆和ADC ∆关于直线AC 对称,CD 与AE 交于点F ,若32ABC ∠=︒,18ACB ∠=︒,则CFE ∠的度数为______.27.如图,有6个条形方格图,在由实线围成的图形中,全等图形有:(1)与__;(2)与__.28.如图,在△ABC 中,AB =AC ,△A =40°,CD ∥AB ,则△BCD 的度数是______.29.如图△ABC 中,△A =96°,延长BC 到D ,△ABC 的平分线与△ACD 的平分线交于点A 1,△A 1BC 的平分线与△A 1CD 的平分线交于点A 2,以此类推,△A 4BC 的平分线与△A 4CD 的平分线交于点A 5,则△A 5的大小是___30.ABC 中,AB 15=,BC 12=,AC 9=,圆O 是ABC 的内切圆,则图中阴影部分的面积为________.(结果不取近似值)31.如图所示,一水库迎水坡AB 的坡度1:2i =,则求坡角α的正弦值sin α______.32.一根旗杆在离地面4.5 m 的地方折断,旗杆顶端落在离旗杆底部6 m 外,则旗杆折断前的高度是________.33.如图,O 的弦AB 长为2,CD 是O 的直径,30,15ADB ADC ∠=︒∠=︒.△O 的半径长为_________.△P 是CD 上的动点,则PA PB +的最小值是_________.34.直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为___________.35.如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是____.36.在等边ABC 中,点D 在BC 边上,若4AB =,AD =BD 的长为______.37.如图,已知△MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 1=2,则△A 5B 5A 6的边长为________.38.已知点G是面积为227cm的ABC的重心,那么AGC的面积等于____39.图示是一种“羊头”形图案,其作法是,从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,和2′,…,依次类推,若正方形7的边长为1cm,则正方形1的边长为__________cm.40.如图,平行四边形ABCD中,点P为边AD上一个动点,连接BP,将线段PB绕点B逆时针旋转60°得到BQ,连接AQ,若△ABC=60°,AB=2,BC=6,则线段AQ 的取值范围是______.三、解答题41.如图,已知ACB DBC AC BD,,求证:A D∠=∠=∠=∠.∠交AC于点D,E为AB中点,过点A作42.已知:如图ABC中,BD平分ABCAF BD,交DE延长线于点F.∥(1)求证:AF BD=(2)当ABC满足什么条件时,四边形AFBD是矩形?请证明你的结论.43.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,△B=90°,连接AC.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?44.尺规作图=.(保留作图痕迹,不如图,ABC中,2B C∠=∠,在AC边上找一点P,使PB PC写作法)45.如图,在直角△ABC中,△ACB=90°,CD是高,△1=35°,求△2、△B与△A的度数.46.如图,在平行四边形ABCD中,E、F分别是AB、CD的中点.(1)求证:△AED△△CFB;(2)试判断四边形EBFD 的形状,并说明理由.47.如图,在△ABC 中,△ABC =△ACB ,E 为BC 边上一点,以E 为顶点作△AEF ,△AEF 的一边交AC 于点F ,使△AEF =△B .(1)如果△ABC =40°,则△BAC = ;(2)判断△BAE 与△CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求△AEF 与△BAE 的数量关系.48.如图,在平面直角坐标系内有一正方形OABC ,点C 坐标为(0,4),点D 为AB 的中点,直线142y x =-+经过点C ,D 并交x 轴于点E ,BCD △沿着CD 折叠,顶点B 恰好落在OA 边上方F 处,连接BE ,点P 为直线CD 上的一动点,点Q 是线段BE 的中点.连接BP ,PQ .(1)求点F 的坐标;(2)求出点P 运动过程中,PO PA +的最小值;(3)是否存在点P ,使其在运动过程中满足EQP EBC △∽△,若存在,求出点P 坐标;若不存在,请说明理由.49.在Rt ACB △中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连结CD ,将CD 绕C 点逆时针旋转90°至CE ,连结DE ,过C 作CF DE ⊥交AB 于F ,连结BE .(1)求证:AD BE=.(2)试探索线段AD,BF,DF之间满足的等量关系,并证明你的结论.(3)若15CD=,求BF.ACD=︒∠,1(注:在直角三角形中,30°所对的直角边等于斜边的一半)50.如图1,在ABC中,△A=90°,AB=AC+1,点D,E分别在边AB,AC 上,且AD=AE=1,连接DE.现将ADE绕点A顺时针方向旋转,旋转角为α(0°<α<180°),如图2,连接CE,BD,CD.(1)当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求BCD的面积的最大值,并写出此时旋转角α的度数.参考答案:1.D【分析】由条件可证△AOD △△BOC ,可得△A =△B ,则可证明△ACE △△BDE ,可得AE =BE ,则可证明△AOE △△BOE ,可得△COE =△DOE ,可证△COE △△DOE ,可求得答案.【详解】解:在△AOD 和△BOC 中OA OBAOD BOC OD OC=⎧⎪∠=∠⎨⎪=⎩ △△AOD △△BOC (SAS ),△△A =△B ,△OC =OD ,OA =OB ,△AC =BD ,在△ACE 和△BDE 中A BAEC BEDAC BD∠=∠⎧⎪∠=∠⎨⎪=⎩△△ACE △△BDE (AAS ),△AE =BE ,在△AOE 和△BOE 中OA OBA BAE BE=⎧⎪∠=∠⎨⎪=⎩△△AOE △△BOE (SAS ),△△COE =△DOE ,在△COE 和△DOE 中OE OECOE DOEOD OC=⎧⎪∠=∠⎨⎪=⎩△△COE △△DOE (SAS ),故全等的三角形有4对,故选:D .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.2.B【分析】连接OB,作OC AB⊥,根据垂径定理求出132BC AB==,根据勾股定理求出OC,即可得到判断.【详解】解:连接OB,作OC AB⊥,△6AB=,△132BC AB==,在Rt OBC中,4OC=,△点C在小圆上,△OC AB⊥,△长为6的大圆的弦和小圆相切,故选:B.【点睛】此题考查了垂径定理,勾股定理,直线与圆的位置关系,正确理解垂径定理是解题的关键.3.B【详解】22281517+=, △△ABC是直角三角形,△AC是斜边,△△B=900,故B正确;故选B.4.C【分析】过A作AE△BC于E,由菱形性质和△ABC=60°,可得△ABC是等边三角形,解Rt△ABE求得AE即可解答;【详解】解:由题意作图如下,过A作AE△BC于E,由菱形的性质可得:AB=BC,△△ABC=60°,△△ABC是等边三角形,△AB=BC=AC=8,Rt△ABE中,AE=AB sin△B=△菱形ABCD面积=BC•AE=故选:C.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,三角函数等知识;掌握菱形的性质是解题关键.5.B【分析】根据题意可知三角形的周长为10,再根据三角形的三边关系找到符合条件的三边,看符合哪类三角形即可.【详解】根据题意可知三角形的周长为10,又因为三角形任意两边之和大于第三边,△最大边要小于5,△三角形的三边可以为4,2,4或4,3,3.△这个三角形一定是等腰三角形.故选B.【点睛】此题考查了三角形的三边关系及等腰三角形的判定.三角形的三边关系:三角形任意两边之和大于第三边;任意两边之差小于第三边.6.B【分析】根据0指数幂的定义,等腰三角形三线合一,等边三角形的判定,线段垂直平分线性质逐个进行判断即可.【详解】解:△0的0次幂不存在,△△错误;△有一个角等于60°的等腰三角形是等边三角形,故△错误;△三角形三条边垂直平分线的交点到三角形三个顶点的距离相等,故△错误;△若三角形一个外角的平分线平行于三角形的一边,则这个三角形是等腰三角形,故△正确△正确的个数为:1个.故选:B .【点睛】本题考查了线段垂直平分线性质,0指数幂的定义,等腰三角形性质,等边三角形的判定的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等,任何不等于0的0次幂等于1,能理解性质和法则是解此题的关键.7.A【分析】首先根据题意画出图形,然后由菱形的两条对角线的长分别为12和16,求得OA 与OB ,再由勾股定理即可求得菱形的边长.【详解】如图,△菱形ABCD 中,A C=12,BD =16,△OA =12AC =6,OB =12BD =8,AC △BD ,△AB .即菱形的边长是10.故选:A.【点睛】此题考查了菱形的性质以及勾股定理.掌握菱形的对角线互相平分且垂直是解题的关键.8.D【详解】解:根据题意知,BC =BC .A 、由“SSS”可以判定△ABC △△DCB ,故本选项不符合题意;B 、由“SAS”可以判定△ABC △△DCB ,故本选项不符合题意;C 、由“AAS”可以判定△ABC △△DCB ,故本选项不符合题意;D 、由“SSA”不能判定△ABC △△DCB ,故本选项符合题意.故选:D .9.B【分析】设EF 与AB 交于D ,由折叠可得30F A ∠=∠=︒,根据三角形的外角性质得到21043074ADE A ∠=∠-∠=︒-︒=︒,1ADE F ∠=∠-∠,则由1ADE F ∠=∠-∠,即可求解.【详解】解:设EF 与AB 交于D ,如图,△21043074ADE A ∠=∠-∠=︒-︒=︒,又1ADE F ∠=∠-∠,1743044ADE F ∠=∠-∠=︒-︒=︒∴,故选:B .【点睛】本题考查三角形外角的性质,折叠的性质,熟练掌握三角形外角的性质与折叠的性质是解题的关键.10.B【分析】利用正方形的性质和线段中点性质,证明()SAS ADF DCE ≌,得到DAF CDE ∠=∠,即可判断△;利用勾股定理求AF =DG 的长,即可判断△;利用直角三角形的斜边中线等于斜边一半,得到DH HF =,进而得到HDF HFD ∠=∠,然后根据平行线的性质,得到HDF HFD BAG ==∠∠∠,由勾股定理求出AG =△;根据ABG DFH ∽,得到ABG DHF =∠∠,又因为AB AG ≠,得到ABG AGB ∠≠∠,进而得到AGB DHF ≠∠∠,即可判断△. 【详解】解:四边形ABCD 为正方形,90ADC BCD ,AD CD BC ==, E 、F 分别是BC 、CD 的中点,11222DF CD BC EC ∴====, 在ADF △和DCE 中,AD CD ADC BCD DF EC =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF DCE ∴≌,DAF CDE ∴∠=∠,90ADG CDE ADC ∠+∠=∠=︒,90ADG DAF ∴∠+∠=︒,90AGD ∴∠=︒,AF DE ∴⊥,△结论正确;4AD =,122DF CD ==,AF ∴=,1122ADF S AD DF AG DG =⋅=⋅,AD DF DG AF ⋅∴==△结论错误; H 为AF 的中点,90ADC ∠=︒,12DH HF AF ∴=== HDF HFD ∴∠=∠,AB CD ∥,HFD BAG ∠=∠∴,HDF HFD BAG ∠=∠=∠∴,AG AD ==4AB =,52AG DF ∴==AB AB DH HF ==, AB AG DH DF∴=, ABG DFH ∴∽,△结论正确;ABG DHF ∴∠=∠,4AB =,AG = AB AG ∴≠,ABG AGB ∠≠∠∴,AGB DHF ∴∠≠∠,HD ∴与BG 不平行,△结论错误,综上可知,正确的结论为:△△,故选B .【点睛】本题考查了三角形全等的证明与判定,相似三角形的性质与判定,勾股定理,直角三角形的斜边中线等知识,熟练掌握全等三角形的判定和性质,相似三角形的判定和性质是解题关键.11.D【详解】解:A .AB=DE ,BC=EF ,△A=△E ,SSA 不能确定全等;B .△A=△E ,AB=EF ,△B=△D ,AB 和EF 不是对应边,不能确定全等;C .△A=△D ,△B=△E ,△C=△F ,AAA 不能确定全等;D .△A=△D ,△B=△E ,AC=DF ,根据AAS ,能判断△ABC△△DEF .故选D .12.D【分析】以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,则222PA PB PC ++=()22820032333x y ⎛⎫-+-+ ⎪⎝⎭,可得P (2,83)时,222PA PB PC ++最小,进而即可得到答案.【详解】以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,如图,则A (0,0),B (6,0),C (0,8),设P (x ,y ),则222PA PB PC ++=()()22222268x y x y x y ++-+++-=22331216100x y x y +--+=()22820032333x y ⎛⎫-+-+ ⎪⎝⎭, △当x =2,y =83时,即:P (2,83)时,222PA PB PC ++最小, △由待定系数法可知:AB 边上中线所在直线表达式为:883y x =-+, AC 边上中线所在直线表达式为:243y x =-+, 又△P (2,83)满足AB 边上中线所在直线表达式和AC 边上中线所在直线表达式,△点P是ABC三条中线的交点,故选D.【点睛】本题主要考查三角形中线的交点,两点间的距离公式,建立合适的坐标系,把几何问题化为代数问题,是解题的关键.13.D【分析】根据三角形全等的判定方法对A、D进行判断;利用三角形高的位置不同可对B、C进行判断.【详解】A、有两边和它们的夹角对应相等的两个三角形全等,所以A选项错误;B、有两边和第三边上的高对应相等的两个锐角三角形全等,所以B选项错误;C、有两边和其中一边上的高对应相等的两个锐角三角形全等,所以C选错误;D、有两边和第三边上的中线对应相等的两个三角形全等,所以D选项正确;故选:D.【点睛】本题考查了判断命题真假,以及全等三角形的判定,熟练掌握全等三角形的判定,仔细分类讨论是解题关键.14.C【分析】先设Rt△ABC的第三边长为x,由于8是直角边还是斜边不能确定,故应分8是斜边或x为斜边两种情况讨论.【详解】解:设Rt△ABC的第三边长为x,△当8为直角三角形的直角边时,x为斜边,由勾股定理得,10x=,此时这个三角形的周长=6+8+10=24;△当8为直角三角形的斜边时,x为直角边,由勾股定理得,22x8627,此时这个三角形的周长=△此三角形的周长为:24.故选:C.【点睛】本题考查的是勾股定理,二次根式的化简,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.D【分析】连接AQ、P A,如图,利用切线的性质得到△AQP=90°,再根据勾股定理得到PQ=AP△x轴时,AP的长度最小,利用垂线段最短可确定P点坐标.【详解】解:连接AQ、P A,如图,△PQ切△A于点Q,△AQ△PQ,△△AQP=90°,△PQ当AP的长度最小时,PQ的长度最小,△AP△x轴时,AP的长度最小,△AP△x轴时,PQ的长度最小,△A(﹣3,2),△此时P点坐标为(﹣3,0).故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理,垂线段最短.16.C【分析】根据条件可得图1中△ABD△△ACD有1对三角形全等;图2中可证出△ABD△△ACD,△BDE△△CDE,△ABE△△ACE有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第n个图形中全等三角形的对数.【详解】解:△AD是△BAC的平分线,△△BAD=△CAD.在△ABD与△ACD中,AB=AC,△BAD=△CAD,AD=AD,△△ABD△△ACD.△图1中有1对三角形全等;同理图2中,△ABE△△ACE,△BE=EC,△△ABD△△ACD.△BD=CD,又DE=DE,△△BDE△△CDE,△图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是()12n n+.故选:C.【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.17.D【分析】根据AC、BD、EF两两互相平分于点O,则有OE=OF,OA=OC,OB=OD;图中的对顶角有△AOB与△DOC,△AOE与△COF,△BOF与△DOE,△AOD与△BOC;根据两边和它们的夹角对应相等的两三角形全等(SAS)可得△AOB△△DOC;△AOE△△COF;再利用前面所证全等三角形,易证四边形ABCD是平行四边形,故△BOF△△DOE;△AOD△△BOC.【详解】解:△AC、BD、EF两两互相平分于点O△OE=OF,OA=OC,OB=OD;△△AOB=△DOC,△AOE=△COF,△BOF=△DOE,△AOD=△BOC;△△AOB△△DOC(SAS)△AOE△△COF(SAS)△OA=OC,OB=OD;△四边形ABCD是平行四边形,△ AD△BC,AD=BC△△EDO=△FBO,△AOD△△BOC△△BOF△△DOE故图中所有的全等三角形有6对,分别是△AOB△△DOC;△AOE△△COF;△BOF△△DOE;△AOD△△BOC;△ABD△△CDB;△ABC△△CDA.故选:D【点睛】本题考查了全等三角形的判定;找寻全等三角形时要从最明显的开始,由易到难,不重不漏.18.D【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积,从而可解决问题.【详解】解:△所有的三角形都是直角三角形,所有的四边形都是正方形,△正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又△a2+b2=x2,c2+d2=y2,△正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49(cm2).故选:D.【点睛】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方.19.C【分析】△先证出AF =FD =CD ,得到△DFC =△DCF ,再根据平行线性质得到△DFC =△FCB ,即可得到△DCF =△BCF ,可得△DCF =12 △BCD ,故△正确;△做辅助线延长EF ,交CD 延长线于M ,先证△AEF △△DMF (ASA ),得到FE =MF 即12FE EM =,再通过在Rt ECM 中斜边上的中线等于斜边的一半得到12FC EM =,即可得到CF =EF ,故△正确;△根据EF =FM ,可得EFC CFM S S =,那么2ECM CFE S S =△△,再通过MC >BE ,得到BEC ECM S S △△<,即2BEC CEF S S △△<,故△的正确;△先证FC =FE ,设△FCE =x ,那么90DCF x ∠=︒-,再通过证△DCF =△DFC ,那么90DCF DFC x ∠=∠=︒-,则1802EFC x ∠=︒-,进一步证得9018022703EFD x x x ∠=︒-+︒-=︒-,即可证得3DFE AEF ∠=∠,故△错误.【详解】解:△△F 是AD 的中点,△AF =FD ,△在ABCD 中,AD =2AB ,△AF =FD =CD ,△△DFC =△DCF ,△//AD BC ,△△DFC =△FCB ,△△DCF =△BCF ,△△DCF =12△BCD ,故△正确;△延长EF ,交CD 延长线于M ,△四边形ABCD 是平行四边形,△//AB CD ,△△A =△MDF ,△F 为AD 中点,△AF =FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠∠⎧⎪⎨⎪∠∠⎩=== , △△AEF △△DMF (ASA ),△FE =MF ,即12FE EM =,△AEF =△M , △CE △AB ,△△AEC=90°,△△AEC =△ECD =90°, △12FC EM =△12FE EM =, △CF =EF ,故△正确;△△EF =FM ,△EFC CFM S S =,△2ECM CFE S S =△△,△MC >BE ,△BEC ECM S S △△<△2BEC CEF S S △△<故△正确;△设△FEC =x ,△CE △AB ,//AB CD ,△90ECD BEC ∠=∠=︒,△F 是EM 的中点,△FC =FE ,△△FCE =x ,△90DCF x ∠=︒-,△//AD BC△△FCB =△DFC△△DCF =△FCB ;△△DCF =△DFC△90DCF DFC x ∠=∠=︒-△1802EFC x ∠=︒-,△9018022703EFD x x x ∠=︒-+︒-=︒-,△90AEF x ∠=︒-,△△DFE =3△AEF ,故△错误.综上所述正确的是:△△△.故选:C .【点睛】此题主要考查了平行四边形的性质、全等三角形的判定与性质、直角三角形性质等知识,能准确找到边与边之间、角与角之间的关系是解答此题的关键.20.A【分析】过C 作HC CD ⊥于C ,使CH BD =,连接DH ,FH ,根据SAS 证明BED CFH ≅△△,得出FH DE =,则DE DF FH DF +=+,当FH DF +的最小时,DE DF +最小,当D 、F 、H 在同一条直线时,FH DF +最小,根据勾股定理算出结果即可.【详解】解:如图,过C 作HC CD ⊥于C ,使CH BD =,连接DH ,FH ,90HCA ACD ∴∠+∠=︒,150BDC ∠=︒,18015030DBC DCB ∴∠+∠=︒-︒=︒,()ABD ACD ABC ACB DBC DCB ∴∠+∠=∠+∠-∠+∠,△ABC 为等边三角形,60ABC ACB ∴∠=∠=︒,AB AC =,1203090ABD ACD ∴∠+∠=︒-︒=︒,HCA ABD ∴∠=∠, =AE AF ,BE CF ∴=,△在BED 和FCH 中BE CF HCA ABD CH BD =⎧⎪∠=∠⎨⎪=⎩,()SAS BED CFH ∴≅△△,FH DE ∴=,DE DF FH DF ∴+=+,∴当FH DF +的最小时,DE DF +最小,∴当D 、F 、H 在同一条直线时,FH DF +最小,在Rt DCH △中,3CH =,4DC =,5DH ∴,△DE DF +的最小值是5,故A 正确.故选:A .【点睛】本题主要考查了等边三角形的性质,全等三角形的判定和性质,勾股定理,余角的性质,解题的关键是作出辅助线,证明BED CFH ≅△△.21.7或8【分析】根据等腰三角形的性质,分两种情况:△当腰长为2时,△当腰长为3时,解答出即可.【详解】解:根据题意,△当腰长为2时,周长=2+2+3=7;△当腰长为3时,周长=3+3+2=8,故答案为:7或8.【点睛】本题主要考查了等腰三角形的性质,注意本题要分两种情况解答.22.3m ﹣18.【分析】先根据三角形三边关系确定m 的取值范围,然后利用二次根式的性质化简即可.【详解】△三角形的三边长分别为3、m 、5,△2<m <8,=|2﹣m |﹣2|m ﹣8|=m ﹣2﹣2(8﹣m )=3m ﹣18.故答案为:3m ﹣18.【点睛】本题主要考查三角形三边关系和二次根式的性质,掌握三角形三边关系和二次根式的性质是解题的关键.23.112.5【分析】根据正方形的性质,可以得到△PBC 的度数,再根据等腰三角形的性质和三角形内角和,求得△BPC 的度数,即可求得△DPC 的度数.【详解】解:△点P 是正方形ABCD 的对角线BD 上一点,△△PBC =45°,△BP =BC ,△△BPC =△BCP =180452︒-︒=67.5°, △△DPC =180°-△BPC =112.5°,故答案为:112.5.【点睛】本题考查正方形的性质、等腰三角形的性质,利用数形结合的思想解答是解答本题的关键.24.25︒或25度【分析】根据三角形内角和,得A ∠的角度,根据折叠得,A F ∠=∠,ADE EDF ∠=∠;又根据EF BC ∥,得90FEC C ∠=∠=︒,再根据三角形内角和,求出EGF ∠,最后根据三角形的外角和,即可求出ADE ∠.【详解】△ABC 中,90C ∠=︒,70B ∠=︒△18020A C B ∠=︒-∠-∠=︒△DEF 是DEA △折叠得到的△20A F ∠=∠=︒,ADE EDF ∠=∠△EF BC ∥△90FEC C ∠=∠=︒△18070EGF FEC F ∠=︒-∠-∠=︒△70EGF DGC ∠=∠=︒△70A ADG ∠+∠=︒△270A ADE ∠+∠=︒△25ADE ∠=︒.故答案为:25︒或25度.【点睛】本题考查三角形的知识,解题的关键是掌握三角形内角和、外角和定理. 25.26320x x --=【分析】先表示出BC 的长,再利用勾股定理建立方程即可.【详解】解:由题可知 1丈=10尺,门的对角线距离恰好为1丈,∴门的对角线距离恰好为10尺,△高比宽多6尺,设门高 AB 为x 尺,△()6BC x =-尺,△可列方程为:()222610x x +-=,整理得:26320x x --=故答案为:26320x x --=.【点睛】本题属于数学文化题,考查了勾股定理及其应用,解决本题的关键是读懂题意,能将文字语言转化为几何语言,能用含同一个未知数的式子表示出直角三角形的两条直角边,再利用勾股定理建立方程即可.26.118【分析】根据轴对称的性质得出角的度数,进而利用三角形外角的性质解答即可.【详解】解:∵△ABC和△ABE关于直线AB对称,△ABC和△ADC关于直线AC对称,∴∠DCA=∠ACB=18°,∠BAC=∠BAE,∵∠ABC=32°,∴∠BAC=180°-18°-32°=130°=∠BAE,∴∠EAC=360°﹣∠BAC﹣∠BAE=360°﹣130°﹣130°=100°,∴∠CFE=∠ACD+∠EAC=18°+100°=118°,故答案为:118°.【点睛】此题考查轴对称的性质,关键是根据轴对称的性质求出相关角的度数.27.(6)(3)(5)【分析】利用全等图形的概念可得答案.【详解】解:(1)与(6)是全等图形,(2)与(3)(5)是全等图形,故答案为:(6),(3)(5).【点睛】本题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.28.110°##110度【分析】根据等腰三角形性质,可得△B=△ACB=70°,再根据平行线的性质,即可求出△BCD的度数.【详解】解:△AB=AC,△A=40°,△△B=△ACB=12(180°-40°)=70°,△CD AB∥,△△B+△BCD=180°,△△BCD=110°.故答案为:110°【点睛】此题主要考查了等腰三角形的性质和平行线的性质,解题关键是熟练运用已知条件,进行正确的推理计算.29.3°##3度【分析】先利用外角等于不相邻的两个内角之和,以及角平分线的性质求△A1=12△A,再依此类推得,△A 2=212△A ;…△A 5=512 △A ;找出规律,从而求△A 5的值. 【详解】△BA 1C +△A 1BC =△A 1CD ,2△A 1CD =△ACD =△BAC +△ABC ,△2(△BA 1C +△A 1BC )=△BAC +△ABC ,2△BA 1C +2△A 1BC =△BAC +△ABC ,而2△A 1BC =△ABC ,△2△BA 1C =△BAC ,同理,可得2△BA 2C =△BA 1C ,2△BA 3C =△BA 2C ,2△BA 4C =△BA 3C ,2△BA 5C =△BA 4 C ,△△BA 5C =12 △BA 4C =14△BA 3C =18 △BA 2C =116 △BA 1C =132 △BAC =96°÷32=3°, 故△A 5=3°.故答案为:3°.【点睛】此题考查三角形的外角性质,解题关键在于找到规律30.549π-【分析】由15AB =,12BC =,9AC =,得到222AB BC AC =+,根据勾股定理的逆定理得到ABC 为直角三角形,于是得到ABC 的内切圆半径1291532+-==,图中阴影部分的面积等于直角三角形的面积减去圆的面积,分别利用它们的计算公式即可得到图中阴影部分的面积【详解】△ 15AB =,12BC =,9AC =,△ 222AB BC AC =+,△ ABC 为直角三角形,△ ABC 的内切圆半径1291532+-==, △ 图中阴影部分的面积2112935492ππ=⨯⨯-⋅=-. 故答案为549π-【点睛】本题考查了三角形的内切圆与内心、勾股定理的逆定理,对于不规则图形的面积要灵活转化为规则图形的求法是解题的关键31 【分析】过点A 作AC BC ⊥于C ,根据坡度与坡角的概念得1tan 2AC BC α==,设AC x =,2BC x =,根据勾股定理求出AB 的长,再根据锐角三角函数的概念即可求出答案.【详解】过点A 作AC BC ⊥于C ,△AB 的坡度1:2i =, △1tan 2AC BC α==, 设AC x =,2BC x =,△AC BC ⊥,△AB ,△sinAC AB α==【点睛】本题考查了坡度坡角的知识与解直角三角形的知识,熟练掌握坡度坡角的概念与勾股定理的应用是解本题的关键.32.12米【详解】解:如图所示,AC=6米,BC=4.5米,由勾股定理得,AB= =7.5(米). 故旗杆折断前高为:4.5+7.5=12(米).故答案为:12米.33. 2 【分析】△连接,OA OB ,易证AOB 是等边三角形,弦AB 长为2,2OA OB ==,即可得到答案;△先证90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,再用勾股定理求出AE 即可.【详解】解:△连接,OA OB ,△30,ADB ∠=︒△60AOB ∠=︒,△OA OB =,△AOB 是等边三角形,△弦AB 长为2,△2OA OB ==,即O 的半径长为2,故答案为:2△△15ADC ∠=︒,△230AOC ADC ︒∠=∠=,△90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,△60BAO ∠=︒,△2OA OE ==,△30OAE AEB ︒∠=∠=,△90BAE BAO OAE ∠=∠+∠=︒,△AE ==即PA PB+的最小值是故答案为:【点睛】此题考查了圆周角定理、勾股定理、等边三角形的判定和性质、轴对称最短路径等知识,熟练掌握相关定理并灵活应用是解题的关键.34.6【分析】利用勾股定理求解出另一条直角边,即可求解.【详解】解:△直角三角形斜边长是5,一直角边的长是3,△.×3×4=6.该直角三角形的面积S=12故答案为6.【点睛】本题考查了了勾股定理,解题的关键是掌握利用勾股定理求直角边.35.36°【分析】如图所示,△ABF中,根据内角和外角的关系,△2=△A+△B;△EDG中,△1=△D+△E;根据三角形内角和等于180°,得到△1+△2+△C=180度.于是△A+△B+△C+△D+△E=180°,由于五个角的度数是相同,即可求得每一个角的度数.【详解】△△2=△A+△B;△1=△D+△E,△1+△2+△C=180°,△△A+△B+△C+△D+△E=180°,△五个角的度数是相同,则每一个角的度数都是180°÷5=36°,故答案为36°【点睛】本题考查三角形的外角性质及三角形内角和定理,结合三角形内角和外角的关系,将所有角转化到一个三角形内,体现了数形结合思想和转化思想在解决数学问题时的魅力.36.1或3。
三角形全等几何模型(一线三等角)(精选精练)(专项练习)(教师版) 24-2025学年八年级数学上册
专题12.12三角形全等几何模型(一线三等角)(精选精练)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.(22-23七年级下·辽宁朝阳·期末)王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合.则两堵木墙之间的距离DE 是()A .10cmB .15cmC .20cmD .25cm2.如图所示,,,B C E 三点在同一条直线上,AC CD =,90B E ∠=∠=︒,AC CD ⊥,则下列结论错误的是()A .A ∠与D ∠互余B .2A ∠=∠C .ABC CED △≌△D .12∠=∠3.如下图所示,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D .DE=6cm ,AD=9cm ,则BE 的长是()A .6cmB .1.5cmC .3cmD .4.5cm4.(23-24八年级上·重庆开州·阶段练习)如图,在平面直角坐标系中,ABC 为等腰直角三角形,90,ACB AC BC ∠=︒=.点()0,1B -,点()1,1C .则点A 坐标为()A .()1,3-B .()3,1-C .()2,1-D .()1,2-5.(22-23七年级下·广东深圳·期末)小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m 和1.8m ,90BOC ∠=︒.爸爸在C 处接住小丽时,小丽距离地面的高度是()A .1mB .1.6mC .1.8mD .1.4m6.(22-23八年级上·山东青岛·单元测试)2002年8月在北京召开的第24届国际数学家大会,会标中的图案如图,其中的四边形ABCD 和EFGH 都是正方形,则ABF DAE ≌的理由是().A .SSSB .AASC .SASD .HL7.(23-24八年级上·河北唐山·期中)如图,在ABC 和CDE 中,点B ,C ,E 在同一条直线上,B E ACD ∠∠∠==,AC CD =,若2AB =,6BE =,则DE 的长为()A .8B .6C .4D .28.(2024·山西吕梁·一模)如图,在平面直角坐标系中,点()0,2A 处有一激光发射器,激光照射到点()1,0B 处倾斜的平面镜上发生反射,使得反射光线照射到点C 处的接收器上,若入射角45α=︒,AB BC =,则点C 处的接收器到y 轴的距离为()A .1B .2C .3D .49.(17-18八年级上·河南郑州·期中)如图中,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,若点E 、B 、D 到直线AC 的距离分别为6、3、2,则图中实线所围成的阴影部分面积S 是()A .50B .44C .38D .3210.(22-23八年级下·新疆乌鲁木齐·期末)如图,AB CD ⊥,且AB CD =,E ,F 是AD 上两点,CE AD ⊥,BF AD ⊥.若4CE =,3BF =,2EF =,则AD 的长为()A .3B .5C .6D .7二、填空题(本大题共8小题,每小题4分,共32分)11.(21-22八年级上·山西吕梁·期中)如图,一个等腰直角三角形ABC 物件斜靠在墙角处(∠O =90°),若OA =50cm ,OB =28cm ,则点C 离地面的距离是cm .12.(20-21八年级上·黑龙江·期中)如图,在平面直角坐标系内,OA ⊥OC ,OA=OC ,若点A 的坐标为(4,1),则点C 的坐标为13.(2022·四川成都·二模)如图所示,ABC 中,,90AB AC BAC =∠=︒.直线l 经过点A ,过点B 作BE l ⊥于点E ,过点C 作CF l ⊥于点F .若2,5==BE CF ,则EF =.14.(19-20八年级上·江苏苏州·期中)如图,△ABC 中,∠C =90°,点D 为AC 上一点,∠ABD =2∠BAC =45°,若AD =12,则△ABD 的面积为.15.(23-24八年级上·江苏无锡·期中)如图,两根旗杆间相距12米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90︒,且CM DM =.已知旗杆BD 的高为9米,该人的运动速度为1米/秒,则这个人运动到点M 所用时间是秒.16.(23-24八年级上·辽宁大连·期末)如图,在ABC 中,90ACB ∠= ,CD 为AB 边上的高,3BC =,6AC =,点E 从点B 出发,在直线BC 上以每秒2cm 的速度移动,过点E 作BC 的垂线交直线CD 于点F ,当点E 运动s 时,AB CF =.17.(19-20八年级上·江苏连云港·阶段练习)如图,线段AB =8cm ,射线AN ⊥AB ,垂足为点A ,点C 是射线上一动点,分别以AC ,BC 为直角边作等腰直角三角形,得△ACD 与△BCE ,连接DE 交射线AN 于点M ,则CM 的长为.18.(22-23七年级下·四川成都·期末)在ABC 中,AB AC =,90BAC ∠<︒,点D 在边BC 上,2CD BD =,点E ,F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC 的面积为9,则ABE CDF S S += .三、解答题(本大题共6小题,共58分)19.(8分)如图,在ABC 中,90ACB ∠=︒,AC BC =,BE CE ⊥,于点E AD CE ⊥,于点D .BEC 与CDA 全等吗?请说明理由.20.(8分)如图,90ABC ∠=︒,FA AB ⊥于点A ,D 是线段AB 上的点,AD BC =,AF BD =.(1)判断DF 与DC 的数量关系为,位置关系为.(2)如图2,若点D 在线段AB 的延长线上,点F 在点A 的左侧,其他条件不变,试说明(1)中结论是否成立,并说明理由.21.(10分)如图,在ABC 中,AB BC =.(1)如图1,直线NM 过点B ,AM MN ⊥于点M ,⊥CN MN 于点N ,且90ABC ∠=︒,求证:MN AM CN =+.(2)如图2,直线NM 过点B ,AM 交NM 于点M ,CN 交NM 于点N ,且AMB ABC BNC ∠=∠=∠,则MN AM CN =+是否成立?请说明理由!22.(10分)如图,在ABC 中,2AB AC ==,40B C ∠=∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于E .(1)当115BDA ∠=︒时,EDC ∠=°,DEC ∠=°;点D 从B 向C 运动时,BDA ∠逐渐变(填“大”或“小”);(2)当DC 等于多少时,ABD DCE △△≌,请说明理由;(3)在点D 的运动过程中,ADE V 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数.若不可以,请说明理由.23.(10分)(23-24八年级上·重庆江津·期末)通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图,90ACE ∠=︒,AC CE =,过点A 作AB BC ⊥于点B ,过点E 作ED BC ⊥交BC 的延长线于点D .由90ACB DCE DCE E ∠+∠=∠+∠=︒,得CAB E ∠=∠.又90ABC CDE ∠=∠=︒,AC CE =,可以推理得到ABC CDE △△≌,进而得到AB =______,BC =______.(请完成填空)我们把这个数学模型称为“K 字”模型或“一线三等角”模型.【模型应用】(2)①如图,90ACE BCD ∠=∠=︒,AC CE =,BC CD =,连接AB 、DE ,且DE CG ⊥于点G ,AB 与直线CG 交于点F ,求证:点F 是AB 的中点;②如图,若点M 为x 轴上一动点,点N 为y 轴上一动点,点P 的坐标为()51,,是否存在以M 、N 、P 为顶点且以PM 为斜边的三角形为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.24.(12分)(22-23八年级上·江苏南京·阶段练习)已知,在ABC 中,AB AC =,D A E ,,三点都在直线m 上,且9DE cm BDA AEC BAC =∠=∠=∠,.(1)如图①,若AB AC ⊥,则BD 与AE 的数量关系为___________,CE 与AD 的数量关系为___________;(2)如图②,判断并说明线段BD ,CE 与DE 的数量关系;(3)如图③,若只保持7BDA AEC BD EF cm ∠=∠==,,点A 在线段DE 上以2cm/s 的速度由点D 向点E 运动,同时,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,它们运动的时间为s t ().是否存在x ,使得ABD △与EAC 全等?若存在,求出相应的t 的值;若不存在,请说明理由.参考答案:1.C【分析】由题意易得90ADC CEB ∠=∠=︒,则有BCE DAC ∠=∠,进而可证ADC CEB ∆∆≌,然后根据全等三角形的性质求解即可.【详解】解:∵AC BC =,90ACB ∠=︒,AD DE ⊥,BE DE ⊥,∴90ADC CEB ∠=∠=︒,∴90ACD BCE ∠+∠=︒,90ACD DAC ∠+∠=︒,∴BCE DAC ∠=∠,∵在ADC ∆和CEB ∆中,ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADC CEB ∆∆≌;∴6cm EC AD ==,14cm DC BE ==,∴20(cm)DE DC CE =+=,故选C .【点拨】本题主要考查全等三角形的性质与判定,熟练掌握三角形全等的判定条件是解题的关键.2.D【分析】利用同角的余角相等求出2A ∠=∠,再利用“角角边”证明ABC 和CED 全等,根据全等三角形对应边相等,对应角相等,即可解答.【详解】∵90B E ∠=∠=︒,∴190A ∠+∠=︒,290D ∠+∠=︒,∵AC CD ⊥,∴1290∠+∠=︒,故D 错误;∴2A ∠=∠,故B 正确;∴90A D ∠+∠=︒,故A 正确;在ABC 和CED 中,2A B E AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABC CED ≅ ,故C 正确;故选: D .【点拨】本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法并确定出全等的条件2A ∠=∠是解题的关键.3.C【分析】本题可通过全等三角形来求BE 的长.△BEC 和△CDA 中,已知了一组直角,∠CBE 和∠ACD 同为∠BCE 的余角,AC=BC ,可据此判定两三角形全等;那么可得出的条件为CE=AD ,BE=CD ,因此只需求出CD 的长即可.而CD 的长可根据CE 即AD 的长和DE 的长得出,由此可得解.【详解】解:∵∠ACB=90°,BE ⊥CE ,∴∠BCE+∠ACD=90°,∠BCE+∠CBE=90°;∴∠ACD=∠CBE ,又AC=BC ,∴△ACD ≌△CBE ;∴EC=AD ,BE=DC ;∵DE=6cm ,AD=9cm ,则BE 的长是3cm .故选C .【点拨】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.4.D【分析】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.过C 作直线l y ∥轴,过B 作BE l ⊥于E ,过A 作AD l ⊥于D ,于是得到90ADC ACB BEC ∠=∠=∠=︒,得到CAD BCE ∠=∠,根据全等三角形的性质得到,AD CE CD BE ==,根据点()0,1B -,点()1,1C ,得到1,112BE CD AD CE ====+=,于是得到结论.【详解】解:过C 作直线l y ∥轴,过B 作BE l ⊥于E ,过A 作AD l ⊥于D ,∴90ADC ACB BEC ∠=∠=∠=︒,∴90DAC ACD ACD BCE ∠+∠=∠+∠=︒,∴CAD BCE ∠=∠,在ACD 与CBE △中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ACD CBE ≌,∴,AD CE CD BE ==,∵点()0,1B -,点()1,1C ,∴1,112BE CD AD CE ====+=,∴()1,2A -.故选:D .5.D【分析】利用全等三角形判定()AAS ,证得OBD 与COE 全等,根据全等三角形性质可求出OE 和OD 的值,进而求出OA 的值,最后根据OA OE AE -=,即可求出问题答案.【详解】解:90BOC ∠=︒ ,90BOD COE ∴∠+∠=︒,90BDO ∠=︒ ,90CEO ∠=︒,90BOD OBD ∴∠+∠=︒,90COE OCE ∠+∠=︒,COE OBD ∴∠=∠,BOD OCE ∠=∠,又OB CO = ,()OBD COE AAS ∴≅ ,1.4m OE BD ∴==, 1.8m OD CE ==,1.8m 1m 1.4m 1.4m AE OA OE OD DA OE ∴=-=+-=+-=.故选:D .【点拨】本题考查了利用三角形全等测距离的问题,理解题意及熟知三角形的性质与判定是解题关键.6.B【分析】由正方形的性质知,AB DA =,由同角的余角相等知,BAF ADE ∠=∠,又有90AFB DEA ∠=∠=︒,故根据AAS 证得ABF DAE ≌.【详解】证明:∵四边形ABCD是正方形,∴90AB DA BAF DAE =∠+∠=︒,,∵90ADE DAE ∠+∠=︒,∵BAF ADE ∠=∠,在ABF △与DAE 中,BAF ADE AFB AED AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABF DAE ≌△△.故选:B .【点拨】本题利用了正方形的性质,同角的余角相等,全等三角形的判定,学生要以常用的几种判定方法掌握并灵活运用.7.C【分析】本题考查了三角形全等的判定与性质,根据三角形内角和定理,证明()AAS ABC CED ≌ ,由DE BC BE AB ==-即可求出结果.【详解】解:180B ACB BAC ∠+∠+∠=︒ ,B E ACD ∠∠∠==,180ACD ACB BAC ∴∠+∠+∠=︒,180ACD ACB DCE ∠+∠+∠=︒,BAC DCE ∴∠=∠,在ABC 和CED △中,BAC DCE B E AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABC CED ≌ ,,BC DE AB CE ∴==,2AB =,6BE =,∴624DE BC BE CE BE AB ==-=-=-=,故选:C .8.C【分析】本题主要考查坐标与图形,全等三角形的判定与性质,过点C 作CM x ⊥轴于点M ,证明ABO BCM ≌V V 得出2BM OA ==,进一步得出3OM =即可【详解】解:过点C 作CM x ⊥轴于点M ,如图,则90,CBM BCM ∠+∠=︒根据题意得90,ABC ∠=︒∴90,ABO CBM ∠+∠=︒∴,ABO BCM ∠=∠又,90,AB BC AOB BMC =∠=∠=︒∴,AOB BMC ≌V V ∴2,BVM AB ==∴123,OM OB BM =+=+=即点C 处的接收器到y 轴的距离为3,故选:C9.D【分析】由已知和图形根据“K ”字形全等,用AAS 可证△FEA ≌△MAB ,△DHC ≌△CMB ,推出AM =EF =6,AF =BM =3,CM =DH =2,BM =CH =3,从而得出FH =14,根据阴影部分的面积=S 梯形EFHD -S △EF A -S △ABC -S △DHC 和面积公式代入求出即可.【详解】∵AE ⊥AB ,EF ⊥AF ,BM ⊥AM,∴∠F =∠AMB =∠EAB =90°,∴∠FEA +∠EAF =90°,∠EAF +∠BAM =90°,∴∠FEA =∠BAM ,在△FEA 和△MAB 中F BMA FEA BAM AE AB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△FEA ≌△MAB (AAS ),∴AM =EF =6,AF =BM =3,同理CM =DH =2,BM =CH =3,∴FH =3+6+2+3=14,∴梯形EFHD 的面积=12EF DH FH + ()=126241⨯+⨯()=56,∴阴影部分的面积=S 梯形EFHD -S △EF A -S △ABC -S △DHC =11566322183322-⨯⨯-⨯⨯-⨯⨯=32.故选D .【点拨】本题考查了三角形的面积,梯形的面积,全等三角形的性质和判定等知识点,关键是把不规则图形的面积转化成规则图形的面积.10.B【分析】本题考查全等三角形的判定和性质.正确掌握相关性质内容是解题的关键.由AB CD ⊥可得90A D ∠+∠=︒,由CE AD ⊥,BF AD ⊥可得90CED AFB ∠=∠=︒,A B ∠∠=︒+90,从而B D ∠=∠,进而证得()AAS ABF CDE ≌,可得4AF CE ==,3BF DE ==,推出()AD AF DF AF DE EF =+=+-,代入数据即可解答.【详解】∵AB CD ⊥,∴90A D ∠+∠=︒,∵CE AD ⊥,BF AD ⊥,∴90CED AFB ∠=∠=︒,∴1801809090A B AFB ∠+∠=︒-∠=︒-︒=︒,∴B D ∠=∠,∵AB CD =,∴()AAS ABF CDE ≌,∴4AF CE ==,3BF DE ==,∴()()4325AD AF DF AF DE EF =+=+-=+-=.故选:B11.28【分析】作CD ⊥OB 于点D ,依据AAS 证明D AOB B C ∆≅∆,GMF ,再根据全等三角形的性质即可得到结论.【详解】解:过点C 作CD ⊥OB 于点D,如图,∴90CDB AOB ∠=∠=︒∵ABC ∆是等腰直角三角形∴AB =CB ,90ABC ∠=︒∴90ABO CBD ∠+∠=︒又90CBD BCD ∠+∠=︒∴ABO BCD∠=∠在ABO ∆和BCD ∆中,AOB BDC ABO BCD AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ABO BCD AAS ∆≅∆∴28cmCD BO ==故答案为:28.【点拨】本题主要考查了等腰直角三角形的性质、三角形全等的判定与性质,正确作出辅助线构造全等三角形是解答本题的关键.12.(-1,4)【分析】过点A 和点C 作x 轴的垂线,垂足为D ,E ,证明△COE ≌△OAD ,得到OE=AD ,CE=OD ,再根据点A 的坐标可得结果.【详解】解:过点A 和点C 作x 轴的垂线,垂足为D ,E ,∵∠AOC=90°,∴∠COE+∠AOD=90°,又∠CEO=90°,则∠COE+∠OCE=90°,∴∠OCE=∠AOD ,在△COE 与△OAD 中,OCE AOD CEO ODA OC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COE ≌△OAD (AAS ),∴OE=AD ,CE=OD ,∵点A 的坐标为(4,1),∴OD=4,AD=1,∴CE=OD=4,OE=AD=1,∴点C 的坐标为(-1,4),故答案为:(-1,4).【点拨】本题考查了全等三角形的判定和性质,坐标与图形,解题的关键是利用已知条件,作出辅助线,证明全等.13.7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【详解】解:∵BE ⊥l ,CF ⊥l ,∴∠AEB =∠CFA =90°.∴∠EAB +∠EBA =90°.又∵∠BAC =90°,∴∠EAB +∠CAF =90°.∴∠EBA =∠CAF .在△AEB 和△CFA 中∵∠AEB =∠CFA ,∠EBA =∠CAF ,AB =AC ,∴△AEB ≌△CFA .∴AE =CF ,BE =AF .∴AE +AF =BE +CF .∴EF =BE +CF .∵2,5==BE CF ,∴257EF =+=;故答案为:7.【点拨】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的证明三角形全等.14.36.【分析】作DE ⊥DB 交AB 于E ,EF 垂直AC 于F ,则∠DEB =90°-∠ABD =45°,证出AE =DE =DB ,通过证明△AEF ≌△BCD ,得出BC ==AF=12AD=6,由三角形面积公式即可得出答案.【详解】作DE ⊥DB 交AB 于E ,EF 垂直AC 于F ,如图所示:则∠DEB =90°-∠ABD =45°,∴△BDE 是等腰直角三角形,∴DB =DE ,∵∠ABD =2∠BAC =45°,∴∠BAC =22.5°,∴∠ADE =∠DEB -∠BAC =22.5°=∠BAC ,∴AE =DE =DB ,∵∠AFE=90°,∴F 是AD 中点,AF=FD ,又∵∠C=90°,∴∠CBD=90°-45°-22.5°=22.5°,在Rt △AEF 和Rt △BCD 中A CBD AFE BCD AE BD =⎧⎪=⎨⎪=⎩∠∠∠∠∴Rt △AEF ≌Rt △BCD (AAS ),∴AF=BC=12AD=6,∴△ABD 的面积S=12AD ×BC =12×12×6=36;故答案为:36.【点拨】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,三角形面积公式的的计算,熟记特殊三角形的判定和性质定理是解题关键.15.3【分析】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得ACM BMD ≌.【详解】解:∵90CMD ∠=︒,∴90CMA DMB +=︒∠∠,又∵90CAM ∠=︒,∴90CMA C ︒∠+∠=,∴C DMB ∠=∠,在ACM 和BMD 中,A B C DMB CM MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ACM BMD ≌,∴9BD AM ==米,1293BM =-=(米),∵该人的运动速度1米/秒,他到达点M 时,运动时间为313÷=(秒).故答案为:3.16.1.5或4.5【分析】本题考查了全等三角形的判定和性质,直角三角形的性质,分①当点E 在射线BC 上移动时,639BE CE BC ''=+=+=,②当点E 在射线CB 上移动时,()633cm BE AC BC =-=-=,熟练正确全等三角形的判定和性质是解题的关键.【详解】解:∵EF BC ⊥,∴90CEF ACB ∠=︒=∠,在CEF △和ACB △中,ECF A CEF ACB CF AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS CEF ACB ≌,∴6CE AC ==,如图,①当点E 在射线BC 上移动时,639BE CE BC ''=+=+=,∵点E 从点B 出发,在直线BC 上以2cm 的速度移动,∴E 移动了:()92 4.5s ÷=;②当点E 在射线CB 上移动时,()633cm BE AC BC =-=-=,∵点E 从点B 出发,在直线BC 上以2cm 的速度移动,∴E 移动了:()32 1.5s ÷=;综上所述,当点E 在射线CB 上移动4.5s 或1.5s 时,CF AB =,故答案为:1.5或4.5.17.4cm.【分析】过点E 作EF ⊥AN 于F ,先利用AAS 证出△ABC ≌△FCE ,从而得出AB=FC=8cm ,AC=FE ,然后利用AAS 证出△DCM ≌△EFM,从而求出CM 的长.【详解】解:过点E 作EF ⊥AN 于F ,如图所示∵AN ⊥AB ,△BCE 和△ACD 为等腰直角三角形,∴∠BAC=∠BCE=∠ACD=∠CFE =90°,BC=CE ,AC=CD∴∠ABC+∠ACB=90°,∠FCE+∠ACB =90°,∴∠ABC =∠FCE ,在△ABC 和△FCE 中BAC CFE ABC FCE BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△FCE∴AB=FC=8cm ,AC=FE∴CD=FE在△DCM 和△EFM 中90DMC EMF DCM EFM CD FE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△DCM ≌△EFM∴CM=FM=12FC=4cm.故答案为:4cm.【点拨】此题考查的是全等三角形的判定及性质,掌握用AAS 证两个三角形全等是解决此题的关键.18.6【分析】本题属于全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法.证明ABE ≌CAF V ,推出ABE 与CAF V 面积相等,可得结论.【详解】解:在等腰三角形ABC 中,AB AC =,2CD BD =,ABD ∴ 与ADC △等高,底边比值为1:2,ABD ∴ 与ADC △的面积比为1:2.ABC 的面积为9,ABD ∴ 与ADC △的面积分别为3和6,BED CFD ∠=∠ ,AEB AFC ∴∠=∠.BED ABE BAE ∠=∠+∠ ,BAE CAF BAC ∠+∠=∠,BED BAC ∠=∠,BAC ABE BAE ∴∠=∠+∠,CAF ABE ∴∠=∠.在ABE 和CAF V 中,AEB AFC ABE CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABE CAF ∴ ≌,ABE ∴ 与CAF V 面积相等,ABE ∴ 与CDF 的面积之和为ADC △的面积,ABE ∴ 与CDF 的面积之和为6.故答案为:6.19.全等,理由见解析【分析】首先证明CAD BCE ∠=∠,即可证明CDA BEC ≌V V ,即可解题.【详解】全等,理由如下:BE CE ⊥,E AD CE ⊥,,90ACB ∠=︒∴90BCE DCA ∠+∠=︒,90DAC DCA ∠+∠=︒.∴CAD BCE ∠=∠;在BEC 和DAC △中,90BCE DAC BEC CDA BC AC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AAS BEC DAC ≌V V .【点拨】此题是三角形综合题,主要考查了全等三角形的判定,掌握证明全等三角形的方法是解题的关键.20.(1)CD DF =,CD DF⊥(2)成立,见解析【分析】(1)根据题意可直接证明AFD BDC ≌ ,即可得出结论;(2)仿照(1)的证明过程推出ADF BCD ≌ ,即可得出结论.【详解】(1)解:由题意,90A B ∠=∠=︒,在AFD △与BDC 中,AF BD A B AD BC =⎧⎪∠=∠⎨⎪=⎩∴()SAS AFD BDC ≌ ,∴DF DC =,ADF BCD ∠=∠,在Rt BDC 中,90BDC BCD ∠+∠=︒,∴90BDC ADF ∠+∠=︒,∴90FDC ∠=︒,∴CD DF ⊥,综上可知CD DF =,CD DF ⊥;(2)解:成立,理由如下:AF AB ⊥,∴90DAF ∠=︒,在ADF △和BCD △中,AF DB DAF CBD AD BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADF BCD ≌ ,∴DF DC =,ADF BCD ∠=∠,90BCD CDB ∠+∠=︒,∴90ADF CDB ∠+∠=︒,即90CDF ∠=︒,∴CD DF ⊥;∴(1)中结论仍然成立.【点拨】本题考查全等三角形的判定与性质,以及直角三角形两锐角互余等,熟练掌握全等三角形的判定定理是解题关键.21.(1)见解析(2)成立,理由见解析【分析】(1)本题主要考查全等三角形的判定和性质综合,利用题目中的已知条件导角,可推导CBN BAM ∠=∠,最后证明(AAS)≌AMB BNC ,直接可证.(2)利用AMB ABC ∠=∠及ABN ∠是ABM 的外角,可以推出MAB CBN ∠=∠,再利用AAS 可以判定(AAS)≌AMB BNC ,再利用全等的性质导边即可证明.【详解】(1)证明:∵AM MN ⊥于点M ,⊥CN MN 于点N ;∴90AMB BNC ∠=∠=︒;∴90MAB ABM ∠+∠=︒;∵90ABC ∠=︒,∴90ABM NBC ∠+∠=︒;∴MAB NBC ∠=∠;在ABM 和BCN △中,AMB BNC MAB NBC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ABM BCN ≌;∴AM BN =,BM CN =;∴MN BN BM AM CN =+=+.(2)MN AM CN =+成立.理由如下:设AMB ABC BNC α∠=∠=∠=;∴180ABM BAM ABM CBN α∠+∠=∠+∠=︒-;∴BAM CBN ∠=∠;在ABM 和BCN △中;BAM CBN AMB BNC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ABM BCN ≌;∴AM BN =,BM CN =;∴MN BN BM AM CN =+=+;故MN AM CN =+成立.22.(1)25;115;小(2)当2DC =时,ABD DCE≌△△(3)可以;BDA ∠的度数为110︒或80︒【分析】(1)由已知平角的性质可得180EDC ADB ADE ∠=︒-∠-∠,再利用三角形内角和定理进而求得DEC ∠,即可判断点D 从B 向C 运动过程中,BDA ∠逐渐变小;(2)当2DC =时,由已知和三角形内角和定理可得140DEC EDC ∠+∠=︒,140ADB EDC ∠+∠=︒,等量代换得ADB DEC ∠=∠,又由2AB AC ==,可得()AAS ABD DCE ≌△△;(3)根据等腰三角形的判定定理,利用三角形内角和定理求解即可.【详解】(1)解:1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒,1801802540115DEC EDC C ∠=︒-∠-∠=︒-︒-︒=︒,点D 从B 向C 运动时,BDA ∠逐渐变小,故答案为:25;115;小.(2)解:当2DC =时,ABD DCE ≌△△,理由:40C ∠=︒ ,140DEC EDC ∴∠+∠=︒,又40ADE ∠=︒ ,∴140ADB EDC ∠+∠=︒,ADB DEC ∴∠=∠,又 B C ∠=∠,2AB DC ==,∴()AAS ABD DCE ≌△△;(3)解:当BDA ∠的度数为110︒或80︒时,ADE V 的形状是等腰三角形;理由:110BDA ∠=︒ 时,70704030ADC EDC ∴∠=︒∠=︒-︒=︒,,40C ∠=︒ ,70DAC ∴∠=︒,304070AED C EDC ∠=∠+∠=︒+︒=︒,DAC AED ∴∠=∠,∴ADE V 是等腰三角形;80BDA ∠=︒ 时,100ADC ∴∠=︒,40C ∠=︒ ,40DAC ∴∠=︒,DAC ADE ∴∠=∠,∴ADE V 的形状是等腰三角形.【点拨】本题考查了等腰三角形的判定和性质,全等三角形的判定,熟练掌握知识点是解题的关键.23.(1)CD ,DE ;(2)见解析;(3)存在,()4,0-或()6,0-【分析】本题是三角形综合题目,考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、坐标与图形性质、直角三角形的性质等知识;(1)由全等三角形的性质可得出答案;(2)过点A 作AM FG ⊥交FG 于点M ,过点B 作BN FG ⊥交FG 于点N ,证明(AAS)ACM CEG ≌,得出AM CG =;同理可得:BCN CDG ≌.得出BN CG =,证明(AAS)AMF BNF ≌,由全等三角形的性质可得出AF BF =;(3)分两种情况,由全等三角形的性质可得出答案.【详解】(1)解:由题意可知ABC CDE △≌△,AB CD ∴=,BC DE =,故答案为:CD ,DE ;(2)证明:如图1,过点A 作AM FG ⊥交FG 于点M ,过点B 作BN FG ⊥交FG 于点N,ED CG ⊥ ,90ACE ∠=︒,90ACF ECG ECG E ∴∠+∠=∠+∠=︒,ACF E ∴∠=∠,在ACM △和CEG 中,ACM E AMC CGE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ACM CEG ∴ ≌,AM CG ∴=;同理可得:BCN CDG ≌.BN CG ∴=,AM BN ∴=,在AMF 和BNF 中,AFM BFN AMF BNF AM BN ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)AMF BNF ∴ ≌,AF BF ∴=,∴点F 是AB 的中点.(3)解:如图,当点N 在x 轴正半轴上时,由【模型呈现】可知MEN NDP ≌,5EM DN ∴==,DP EN =,514DP ∴=-=,4EN ∴=,(4,0)M ∴-;当点N 在x 轴负半轴上时,同理可得(6,0)M -.综上所述,点M 的坐标为(4,0)-或(6,0)-.24.(1)BD AE CE AD==,(2)DE BD CE=+(3)12t x ==,或928,49t x ==【分析】(1)利用平角的定义和三角形内角和定理得CAE ABD ∠=∠,再利用AAS 证明ABD CAE ≌, 得BD AE CE AD =,=;(2)由(1)同理可得ABD CAE △△≌,得BD AE CE AD ==,,可得答案;(3)分DAB ECA ≌ 或DAB EAC ≌△△两种情形,分别根据全等三角形的性质可解决问题.【详解】(1)解:∵BDA AEC BAC ∠=∠=∠,∴BAD CAE BAD ABD ∠+∠=∠+∠,∴CAE ABD ∠=∠,∵BDA AEC BA CA ∠=∠=,,∴ABD CAE AAS ≌() ,∴BD AE CE AD ==,,故答案为:BD AE CE AD ==,;(2)DE BD CE =+,由(1)同理可得ABD CAE AAS ≌() ,∴BD AE CE AD ==,,∴DE BD CE =+;(3)存在,当DAB ECA ≌ 时,∴2,7AD CE cm BD AE cm ====,∴1t =,此时2x =;当DAB EAC ≌△△时,∴ 4.5,7,AD AE cm DB EC cm ====∴924AD t ==,928749x =÷=,综上:12t x ==,或928,49t x ==.【点拨】本题是三角形综合题,主要考查了全等三角形的判定与性质,熟练掌握一线三等角基本模型是解题的关键,同时渗透了分类讨论的数学思想.。
【精选】八年级上册三角形解答题单元测试卷 (word版,含解析)
【精选】八年级上册三角形解答题单元测试卷(word版,含解析)一、八年级数学三角形解答题压轴题(难)1.小明在学习三角形的知识时, 发现如下三个有趣的结论:(1)如图①, ∠A=∠C=90°, ∠ABC的平分线与∠ADC的平分线交于点E, 则BE、DE的位置关系是;(2)如图②, ∠A=∠C=90°, BE平分∠ABC, DF平分∠ADC的外角, 则BE与DF的位置关系是;(3)如图③, ∠A=∠C=90°, ∠ABC的外角平分线与∠ADC的外角平分线交于点E, 则BE、DE 的位置关系是 . 请你完成命题 (3)证明.【答案】(1)BE⊥DE;(2)BE//DF;(3)BE⊥DE.证明见解析.【解析】【分析】(1)由∠A=∠C=90°可以得到∠HDC=∠AB H,设∠HDC=∠AB H=x,可得∠HDG=∠CDG=∠FB H=∠AB F=12x,则有∠CDG+∠CGD=90°,由∠CGD=∠BGE,可得∠BGE+∠FBE=90°,即BE⊥DE;(2) 由∠A=∠C=90°可以得到∠HDC=∠AB H,设∠HDC=∠AB H=x,可得∠EB H=∠AB E=1 2 x,则∠DGE=90°+12x,∠CDM=180°-x,由DF平分∠CDM,则∠CDF=12(180°-x),所以∠CDF+∠HDC=12(180°-x),然后运用同位角相等,即可证明;(3)设∠BFA=∠CFD=x,由∠A=∠C=90°可以得到∠EBC=∠FDN=90°+x,由根据题意可得:∠EDF=∠EBF=12(90°+x);且∠BFD=180°+x,最后用四边形内角和,求出∠BED=90°,完成证明.【详解】解:(1)BE⊥DE,理由如下:∵∠A=∠C=90°,∠DHC=∠BHA∴∠HDC=∠AB H设∠HDC=∠AB H=x∵∠ABC的平分线与∠ADC的平分线交于点E∴∠HDG=∠CDG=∠FB H=∠AB F=1 2 x又∵∠CDG+∠CGD=90°,∠CGD=∠BGE ∴∠BGE+∠FBE=90°,即BE⊥DE;(2)DF∥AB,理由如下:∵∠A=∠C=90°,∠DHC=∠BHA∴∠HDC=∠AB H∵∠A=∠C=90°,∠DHC=∠BHA∴∠HDC=∠AB H∵BE平分∠ABH,∴∠EB H=∠AB E=1 2 x∴∠DGE=90°+1 2 x∵∠CDM=180°-x,DF平分∠CDM∴∠CDF=12(180°-x)=90°-12x∴∠HDF=∠CDF+∠CDH=90°-12x+x=90°+12x∴∠DGE=∠HDF∴DF∥AB(3)BE⊥DE,证明如下:设∠BFA=∠CFD=x,∵∠A=∠C=90°∴∠EBC=∠FDN=90°+x,∵∠ABC的外角平分线与∠ADC的外角平分线交于点E∴∠EDF=∠EBF=12(90°+x)又∵∠BFD=180°-∠AFB=180°-x∴∠BFD=360°-12(90°+x)-12(90°+x)-(180°-x)=90°即BE⊥DE【点睛】本题主要考查了直角三角形和多边形内角和的知识,考查知识点简单,但过程复杂,难度较大,运用方程思想是一个不错的方法.2.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图,若α=β,判断BE、DF的位置关系,并说明理由.【答案】(1)120°;(2)β﹣α=60° 理由见解析;(3)平行,理由见解析.【解析】【分析】(1)利用四边形的内角和求出∠ABC与∠ADC的和,利用角平分线的定义以及α+β=120°推导即可;(2)由(1)得,∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBG+∠CDG=12(α+β),在△BCD中利用三角形的内角和定理得∠BDC+∠CDB =180°﹣β,在△BDG中利用三角形的内角和定理得出关于α、β的等式整理即可得出结论;(3)延长BC交DF于H,由(1)得∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBE+∠CDH=12(α+β),利用三角形的外角的性质得∠CDH=β﹣∠DHB,然后代入∠CBE+∠CDH=12(α+β)计算即可得出一组内错角相等.【详解】(1)解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°-(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,∵α+β=120°,∴∠MBC+∠NDC=120°;(2)β﹣α=60°理由:如图1,连接BD,由(1)得,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=12∠MBC,∠CDG=12∠NDC,∴∠CBG+∠CDG=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴12(α+β)+180°﹣β+30°=180°,∴β﹣α=60°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=12∠MBC,∠CDH=12∠NDC,∴∠CBE+∠CDH=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=12(α+β),∵α=β,∴∠CBE+β﹣∠DHB=12(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.【点睛】此题是三角形综合题,主要考查了平角的意义,四边形的内角和,三角形内角和,三角形的外角的性质,角平分线的意义,用整体代换的思想是解本题的关键,整体思想是初中阶段的一种重要思想,要多加强训练.3.如图四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.【答案】(1)证明见解析;(2)①20°;②160°;(3)13或73【解析】【分析】(1)根据AD//BC可知∠GAD=∠BGA,由AG平分∠BAD可知∠BAG=∠GAD,即可得答案.(2)①根据CF平分∠BCD,∠BCD=90°,可求出∠GCF的度数,由AD//BC可求出∠AEF 和∠DAB的度数,根据三角形外角的性质求出∠AFC的度数即可;②根据三角形外角性质求出即可;(3)根据M点在BP的上面和下面两种情况讨论,分别求出∠PBM和∠ABM 的值即可.【详解】(1)∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD,∴∠BAG=∠BGA;(2)①∵CF平分∠BCD,∠BCD=90°,∴∠GCF=45°,∵AD∥BC,∠ABC=50°,∴∠AEF=∠GCF=45°;∠DAB=180°﹣50°=130°,∵AG平分∠BAD,∴∠BAG=∠GAD=65°,∴∠AFC=65°﹣45°=20°;②如图:∵∠AGB=65°,∠BCF=45°,∴∠AFC=∠CGF+∠BCF=115°+45°=160°;(3)有两种情况:①当M在BC的下方时,如图:∵∠ABC=50°,∠ABP=2∠PBG,∴∠ABP=(1003)°,∠PBG=(503)°,∵AG∥CH,∴∠BCH=∠AGB=65°,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣65°=25°,∴∠ABM=∠ABP+∠PBM=(1003+25)°=(1753)°,∴∠ABM:∠PBM=(1753)°:25°=73;②当M在BC的上方时,如图:同理得:∠ABM=∠ABP﹣∠PBM=(1003﹣25)°=(253)°,∴∠ABM:∠PBM=(253)°:25°=13;综上,∠ABM:∠PBM的值是13或73.【点睛】本题考查平行线的性质和三角形外角性质,熟练掌握平行线性质是解题关键.4.(1)如图1,有一块直角三角板XYZ(其中∠X=90°)放置在△ABC上,恰好三角板XYZ 的两条直角边XY,XZ分别经过B,C两点,且直角顶点X在△ABC内部.①若∠A=40°,∠ABC+∠ACB= °;∠XBC+∠XCB= °;②试判断∠A与∠XBA+∠XCA之间存在怎样数量关系?并写出证明过程.(2)如图2,如果直角顶点X在△ABC外部,试判断∠A、∠XBA、∠XCA之间又存在怎样的数量关系?(只写出答案,无需证明).【答案】(1)①140,90;②∠A+∠XBA+∠XCA=90°,证明见解析;(2)∠A+(∠XBA-∠XCA)=90°【解析】试题分析:(1)①根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=140°,∠XBC+∠XCB=180°﹣∠XBC=90°,进而可求出∠ABX+∠ACX 的度数;②根据三角形内角和定义有90°+(∠ABX+∠ACX)+∠A=180°,则可得出结论.(2)由②的解题思路可得:∠A+(∠XBA-∠XCA)=90°.(1)①若∠A=40°,∠ABC+∠ACB= 140 °;∠XBC+∠XCB= 90 °;②∠A+∠XBA+∠XCA=90°(或等式的变形也可以)证明:∵∠X=90°∴∠XBC+∠XCB=180°-∠X=90°∵∠A+∠ABC+∠ACB=180°,∴∠A+(∠XBA+∠XCA)+(∠XBC+∠XCB)=180°,∴∠A+(∠XBA+∠XCA)=180°-90°=90°,∴∠A=90°-(∠XBA+∠XCA)(2)∠A+(∠XBA-∠XCA) =90°.点睛:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是熟练掌握三角形的内角和为180°以及沟通外角和内角的关系.5.如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,在(2)中,若射线OP、CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠OPC的大小,并证明你的结论(用含n的式子表示).【答案】(1)证明见解析(2)15°(3)45 n【解析】试题分析:(1)根据AB坐标可以求得∠OAB大小,根据角平分线性质可求得∠OAC大小,即可解题;(2)根据题干中给出的∠POC=13∠AOC、∠PCE=13∠ACE可以求得∠PCE和∠POC的大小,再根据三角形外角等于不相邻两内角和即可解题;(3)解法和(2)相同,根据题干中给出的∠POC=1n∠AOC、∠PCE=1n∠ACE可以求得∠PCE和∠POC的大小,再根据三角形外角等于不相邻两内角和即可解题.试题解析:(1)证明:∵A(0,1),B(4,1),∴AB∥CO,∴∠OAB=180°-∠AOC=90°.∵AC平分∠OAB,∴∠OAC=45°,∴∠OCA=90°-45°=45°,∴∠OAC=∠OCA.(2)解:∵∠POC=∠AOC,∴∠POC=×90°=30°.∵∠PCE=∠ACE,∴∠PCE=(180°-45°)=45°.∵∠P+∠POC=∠PCE,∴∠P=∠PCE-∠POC=15°.(3)解:∠OPC=.证明如下:∵∠POC=∠AOC,∴∠POC=×90°=.∵∠PCE=∠ACE,∴∠PCE=(180°-45°)=.∵∠OPC+∠POC=∠PCE,∴∠OPC=∠PCE-∠POC=.点睛:本题考查了三角形内角和为180°的性质,考查了角平分线平分角的性质,考查了三角形外角等于不相邻两内角和的性质,本题中求∠PCE和∠POC的大小是解题的关键.6.根据题意解答:(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D.(2)阅读下面的内容,并解决后面的问题:如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.解:∵AP、CP分别平分∠BAD、∠BCD∴∠1=∠2,∠3=∠4由(1)的结论得:∠P+∠3=∠1+∠B①,∠P+∠2=∠4+∠D②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D∴∠P= 12(∠B+∠D)=26°.①如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.②在图4中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.③在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.【答案】(1)证明见解析;(2)①∠P=26゜;②∠P=180°﹣12(∠B+∠D);③∠P=90°+ 12(∠B+∠D).【解析】试题分析:(1)根据三角形的内角和等于180°列式整理即可得证;(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;①表示出∠PAD和∠PCD,再根据(1)的结论列出等式并整理即可得解;②根据四边形的内角和等于360°,可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解;③根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.试题解析:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180゜,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)①∠P=26゜.∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4.由(1)的结论得:∠PAD+∠P=∠PCD+∠D①,∠PAB+∠P=∠PCB+∠B②,∵∠PAB=∠1,∠1=∠2,∴∠PAB=∠2,∴∠2+∠P=∠3+∠B③,①+③得∠2+∠P+∠PAD+∠P=∠3+∠B+∠PCD+∠D,即2∠P+180°=∠B+∠D+180°,∴∠P=12(∠B+∠D)=26°.②如图4,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴(180°﹣2∠1)+∠B=(180°﹣2∠4)+∠D,在四边形APCB中,(180°﹣∠1)+∠P+∠4+∠B=360°,在四边形APCD中,∠2+∠P+(180°﹣∠3)+∠D=360°,∴2∠P+∠B+∠D=360°,∴∠P=180°﹣12(∠B+∠D);③如图5,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+ 12(∠B+∠D).点睛:本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8字形”的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.7.已知△ABC,(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.【答案】(1)证明见解析;(2)∠D+∠A+∠ABD+∠ACD=360°;(3)∠D+∠ACD=∠A+∠ABD,证明见解析.【解析】试题分析:(1)由∠BDC=∠2+∠CED,∠CED=∠A+∠1,可以得出∠D=∠A+∠ABD+∠ACD.(2)由∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+DCB=180°,可以得出∠D+∠A+∠ABD+∠ACD=360°.(3)根据三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和,可知∠AED=∠1+∠A,∠AED=∠D+∠2,所以可知∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.试题解析:(1)证明:延长BD交AC于点E.∵∠BDC是△CDE的外角,∴∠BDC=∠2+∠CED,∵∠CED是△ABE的外角,∴∠CED=∠A+∠1.∴∠BDC=∠A+∠1+∠2.即∠D=∠A+∠ABD+∠ACD.(2)∵∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+∠DCB=180°,∴∠D+∠A+∠ABD+∠ACD=360°.(3)证明:令BD、AC交于点E,∵∠AED是△ABE的外角,∴∠AED=∠1+∠A,∵∠AED是△CDE的外角,∴∠AED=∠D+∠2.∴∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.点睛:本题主要考查三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和.8.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:_____________________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数(写出解答过程);(3)如果图2中,∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系(直接写出结论即可).【答案】(1)∠A+∠D=∠B+∠C;(2)35°;(3)2∠P=∠B+∠D【解析】【分析】(1)根据三角形的内角和等于180°,易得∠A+∠D=∠B+∠C;(2)仔细观察图2,得到两个关系式∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,再由角平分线的性质得∠1=∠2,∠3=∠4,两式相减,即可得结论.(3)参照(2)的解题思路.【详解】解:(1)∠A+∠D=∠B+∠C;(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,又∵AP、CP分别平分∠DAB和∠BCD,∴∠1=∠2,∠3=∠4,∴∠P-∠D=∠B-∠P,即2∠P=∠B+∠D,∴∠P=(40°+30°)÷2=35°.(3)由(2)的解题步骤可知,∠P与∠D、∠B之间的数量关系为:2∠P=∠B+∠D.【点睛】考查三角形内角和定理, 角平分线的定义,掌握三角形的内角和定理是解题的关键.9.图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)图2中,当∠D=50度,∠B=40度时,求∠P的度数.(3)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.【答案】(1)∠A+∠D=∠C+∠B;(2)∠P=45°;(3)2∠P=∠D+∠B.【解析】【分析】(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;(2)由(1)得,∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义可得∠DAP=∠PAB,∠DCP=∠PCB,将①+②整理可得2∠P=∠D+∠B,进而求得∠P的度数;(3)同(2)根据“8字形”中的角的规律和角平分线的定义,即可得出2∠P=∠D+∠B.【详解】解(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠D=∠C+∠B;(2)由(1)得,∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B=50°+40°,∴∠P=45°;(3)关系:2∠P=∠D+∠B;证明过程同(2).10.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;(简单应用)(2)如图2,AP、CP分别平分∠BAD.∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数;(问题探究)(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.(拓展延伸)(4)在图4中,若设∠C=α,∠B=β,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间的数量关系为: ______ (用α、β表示∠P,不必证明)【答案】(1)证明见解析;(2)26°;(3)26°;(4)∠P=23α+13β.【解析】【分析】(1)根据三角形内角和定理即可证明.(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;(3)表示出∠PAD和∠PCD,再根据(1)的结论列出等式并整理即可得解;(4)列出方程组即可解决问题.【详解】(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2) 如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,∵∠2+∠B=∠3+∠P,∠1+∠P=∠4+∠D,∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°;(3)如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°;(4)∠P=23α+13β.。
中考数学真题《三角形及全等三角形》专项测试卷(附答案)
中考数学真题《三角形及全等三角形》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(30题)一 、单选题1.(2023·吉林长春·统考中考真题)如图,工人师傅设计了一种测零件内径AB 的卡钳 卡钳交叉点O 为AA ' BB '的中点 只要量出A B ''的长度 就可以道该零件内径AB 的长度.依据的数学基本事实是( )A .两边及其夹角分别相等的两个三角形全等B .两角及其夹边分别相等的两个三角形全等C .两余直线被一组平行线所截 所的对应线段成比例D .两点之间线段最短2.(2023·四川宜宾·统考中考真题)如图, AB CD ∥ 且40A ∠=︒ 24D ∠=︒则,E ∠等于( )A .40︒B .32︒C .24︒D .16︒3.(2023·云南·统考中考真题)如图,AB 、两点被池塘隔开 、、A BC 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米则,AB =( )A .4米B .6米C .8米D .10米4.(2023·四川眉山·统考中考真题)如图,ABC 中 ,40=∠=︒AB AC A 则,ACD ∠的度数为( )A .70︒B .100︒C .110︒D .140︒5.(2023·湖南·统考中考真题)下列长度的各组线段能组成一个三角形的是( )A .1cm,2cm,3cmB .3cm,8cm,5cmC .4cm,5cm,10cmD .4cm,5cm,6cm6.(2023·山西·统考中考真题)如图,一束平行于主光轴的光线经凸透镜折射后 其折射光线与一束经过光心O 的光线相交于点P 点F 为焦点.若1155,230∠=︒∠=︒则,3∠的度数为( )A .45︒B .50︒C .55︒D .60︒7.(2023·福建·统考中考真题)阅读以下作图步骤:①在OA 和OB 上分别截取,OC OD 使OC OD =①分别以,C D 为圆心 以大于12CD 的长为半径作弧 两弧在AOB ∠内交于点M①作射线OM 连接,CM DM 如图所示.根据以上作图 一定可以推得的结论是( )A .12∠=∠且CM DM =B .13∠=∠且CM DM =C .12∠=∠且OD DM = D .23∠∠=且OD DM =8.(2023·浙江台州·统考中考真题)如图,锐角三角形ABC 中 AB AC = 点DE 分别在边AB AC 上连接BE CD .下列命题中 假命题...是( ).A .若CD BE =则,DCB EBC ∠=∠B .若DCB EBC ∠=∠则,CD BE = C .若BD CE =则,DCB EBC ∠=∠ D .若DCB EBC ∠=∠则,BD CE =9.(2023·河北·统考中考真题)在ABC 和A B C '''中 3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒则,C '∠=( )A .30︒B .n ︒C .n ︒或180n ︒-︒D .30︒或150︒二 填空题 10.(2023·江苏连云港·统考中考真题)一个三角形的两边长分别是3和5则,第三边长可以是__________.(只填一个即可)11.(2023·浙江金华·统考中考真题)如图,把两根钢条OA OB ,的一个端点连在一起 点C D ,分别是OA OB ,的中点.若4cm CD =则,该工件内槽宽AB 的长为__________cm .12.(2023·新疆·统考中考真题)如图,在ABC 中 若AB AC = AD BD = 24CAD ∠=︒则,C ∠=______︒.13.(2023·安徽·统考中考真题)清初数学家梅文鼎在著作《平三角举要》中 对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明 证明过程中创造性地设计直角三角形 得出了一个结论:如图,AD 是锐角ABC 的高则,2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭.当7,6AB BC == 5AC =时 CD =____.14.(2023·浙江·统考中考真题)如图,在ABC 中 AC 的垂直平分线交BC 于点D 交AC 于点E B ADB ∠=∠.若4AB =则,DC 的长是__________.15.(2023·湖北随州·统考中考真题)如图,在Rt ABC △中 9086C AC BC ∠=︒==,, D 为AC 上一点 若BD 是ABC ∠的角平分线则,AD =___________.16.(2023·湖北十堰·统考中考真题)一副三角板按如图所示放置 点A 在DE 上 点F 在BC 上 若35EAB ∠=︒则,DFC ∠=___________________︒.17.(2023·浙江杭州·统考中考真题)如图,点,D E 分别在ABC 的边,AB AC 上 且DE BC ∥ 点F 在线段BC 的延长线上.若28ADE ∠=︒ 118ACF ︒∠=则,A ∠=_________.18.(2023·湖北荆州·统考中考真题)如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =则,DE =___________.19.(2023·湖南·统考中考真题)如图,在Rt ABC △中 90C ∠=︒ 按以下步骤作图:①以点A 为圆心 以小于AC 长为半径作弧 分别交,AC AB 于点M N ①分别以M N 为圆心 以大于12MN 的长为半径作弧 在BAC ∠内两弧交于点O ①作射线AO 交BC 于点D .若点D 到AB 的距离为1则,CD 的长为__________.20.(2023·广东深圳·统考中考真题)如图,在ABC 中 AB AC = 3tan 4B = 点D 为BC 上一动点 连接AD 将ABD △沿AD 翻折得到ADE DE 交AC 于点G GE DG < 且:3:1AG CG =则,AGEADG S S =三角形三角形______.三 解答题21.(2023·江苏苏州·统考中考真题)如图,在ABC 中 ,AB AC AD =为ABC 的角平分线.以点A 圆心 AD 长为半径画弧 与,AB AC 分别交于点,E F 连接,DE DF .(1)求证:ADE ADF ≌(2)若80BAC ∠=︒ 求BDE ∠的度数.22.(2023·江西·统考中考真题)(1038tan 453︒-(2)如图,AB AD = AC 平分BAD ∠.求证:ABC ADC △△≌.23.(2023·云南·统考中考真题)如图,C 是BD 的中点 ,AB ED AC EC ==.求证:ABC EDC △≌△.24.(2023·四川宜宾·统考中考真题)已知:如图,AB DE ∥ AB DE = AF DC =.求证:B E ∠=∠.25.(2023·福建·统考中考真题)如图,,,OA OC OB OD AOD COB ==∠=∠.求证:AB CD =.26.(2023·全国·统考中考真题)如图,点C 在线段BD 上 在ABC 和DEC 中A D AB DE B E ∠=∠=∠=∠,,.求证:AC DC =.27.(2023·四川乐山·统考中考真题)如图,AB CD 相交于点O AO=BO AC①DB .求证:AC=BD .28.(2023·山东临沂·统考中考真题)如图,90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系(2)延长BC 到E 使CE BC = 延长DC 到F 使CF DC = 连接EF .求证:EF AB ⊥.(3)在(2)的条件下 作ACE ∠的平分线 交AF 于点H 求证:AH FH =.29.(2023·山东聊城·统考中考真题)如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.30.(2023·甘肃兰州·统考中考真题)综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线 如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D 使得OC OD = 连接CD 以CD 为边作等边三角形CDE 则,OE 就是AOB ∠的平分线.请写出OE 平分AOB ∠的依据:____________类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形 只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3 在AOB ∠的边OA OB 上分别取OM ON = 移动角尺 使角尺两边相同刻度分别与点M N 重合则,过角尺顶点C 的射线OC 是AOB ∠的平分线 请说明此做法的理由拓展实践:(3)小明将研究应用于实践.如图4 校园的两条小路AB 和AC 汇聚形成了一个岔路口A 现在学校要在两条小路之间安装一盏路灯E 使得路灯照亮两条小路(两条小路一样亮) 并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规..........在对应的示意图5中作出路灯E 的位置.(保留作图痕迹 不写作法)参考答案一 单选题1.(2023·吉林长春·统考中考真题)如图,工人师傅设计了一种测零件内径AB 的卡钳 卡钳交叉点O 为AA ' BB '的中点 只要量出A B ''的长度 就可以道该零件内径AB 的长度.依据的数学基本事实是( )A .两边及其夹角分别相等的两个三角形全等B .两角及其夹边分别相等的两个三角形全等C .两余直线被一组平行线所截 所的对应线段成比例D .两点之间线段最短【答案】A【分析】根据题意易证()SAS AOB A OB ''≌ 根据证明方法即可求解.【详解】解:O 为AA ' BB '的中点OA OA ∴'= OB OB '=AOB A OB ''∠=∠(对顶角相等)∴在AOB 与A OB ''△中OA OA AOB A OB OB OB=⎧⎪∠=∠⎨⎪=''⎩'()SAS AOB A OB ''∴△≌△AB A B ''∴=故选:A .【点睛】本题考查了全等三角形的证明 正确使用全等三角形的证明方法是解题的关键. 2.(2023·四川宜宾·统考中考真题)如图, AB CD ∥ 且40A ∠=︒ 24D ∠=︒则,E ∠等于()A .40︒B .32︒C .24︒D .16︒【答案】D【分析】可求40ACD ∠=︒ 再由ACD D E ∠=∠+∠ 即可求解.【详解】解:AB CD ∥40ACD A ∴∠=∠=︒ACD D E ∠=∠+∠2440E ∴︒+∠=︒16E ∴∠=︒.故选:D .【点睛】本题考查了平行线的性质 三角形外角性质 掌握三角形外角的性质是解题的关键.3.(2023·云南·统考中考真题)如图,AB 、两点被池塘隔开 、、A BC 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米则,AB =( )A .4米B .6米C .8米D .10米【答案】B 【分析】根据三角形中位线定理计算即可.【详解】解①①AC BC 、的中点分别为M N 、①MN 是ABC 的中位线①26(AB MN ==米)故选:B .【点睛】本题考查的是三角形中位线定理 掌握三角形的中位线平行于第三边 且等于第三边的一半是解题的关键.4.(2023·四川眉山·统考中考真题)如图,ABC 中 ,40=∠=︒AB AC A 则,ACD ∠的度数为( )A .70︒B .100︒C .110︒D .140︒【答案】C 【分析】根据等腰三角形的等边对等角和三角形的内角和定理 即可解答.【详解】解:,40AB AC A =∠=︒180702A B ACD ︒-∠∴∠=∠==︒ 110ACD A B ∴∠=∠+∠=︒故选:C .【点睛】本题考查了等腰三角形的等边对等角性质 三角形内角和定理 熟知上述概念是解题的关键. 5.(2023·湖南·统考中考真题)下列长度的各组线段能组成一个三角形的是( )A .1cm,2cm,3cmB .3cm,8cm,5cmC .4cm,5cm,10cmD .4cm,5cm,6cm【答案】D【分析】根据两边之和大于第三边 两边之差小于第三边判断即可.【详解】A.1cm+2cm=3cm 不符合题意B.3cm+5cm=8cm 不符合题意C.4cm+5cm=9cm 10cm < 不符合题意D.4cm+5cm=9cm 6cm > 符合题意故选:D .【点睛】本题考查了是否构成三角形 熟练掌握三角形两边之和大于第三边是解题的关键.6.(2023·山西·统考中考真题)如图,一束平行于主光轴的光线经凸透镜折射后 其折射光线与一束经过光心O 的光线相交于点P 点F 为焦点.若1155,230∠=︒∠=︒则,3∠的度数为( )A .45︒B .50︒C .55︒D .60︒【答案】C 【分析】利用平行线的性质及三角形外角的性质即可求解.【详解】解:①AB OF ∥①1180BFO ∠+∠=︒①18015525BFO ∠=︒-︒=︒①230POF ∠=∠=︒①3302555POF BFO ∠=∠+∠=︒+︒=︒故选:C .【点睛】本题考查了平行线的性质 三角形外角的性质等知识 掌握这两个知识点是关键.7.(2023·福建·统考中考真题)阅读以下作图步骤:①在OA 和OB 上分别截取,OC OD 使OC OD =①分别以,C D 为圆心 以大于12CD 的长为半径作弧 两弧在AOB ∠内交于点M①作射线OM 连接,CM DM 如图所示.根据以上作图 一定可以推得的结论是( )A .12∠=∠且CM DM =B .13∠=∠且CM DM =C .12∠=∠且OD DM = D .23∠∠=且OD DM =【答案】A【分析】由作图过程可得:,OD OC CM DM == 再结合DM DM =可得()SSS COM DOM ≌ 由全等三角形的性质可得12∠=∠即可解答.【详解】解:由作图过程可得:,OD OC CM DM ==①DM DM =①()SSS COM DOM ≌.①12∠=∠.①A 选项符合题意不能确定OC CM =,则13∠=∠不一定成立 故B 选项不符合题意不能确定OD DM =,故C 选项不符合题意OD CM ∥不一定成立则,23∠∠=不一定成立 故D 选项不符合题意.故选A .【点睛】本题主要考查了角平分线的尺规作图 全等三角形的判定与性质等知识点 理解尺规作图过程是解答本题的关键.8.(2023·浙江台州·统考中考真题)如图,锐角三角形ABC 中 AB AC = 点D E 分别在边AB AC 上 连接BE CD .下列命题中 假命题...是( ).A .若CD BE =则,DCB EBC ∠=∠B .若DCB EBC ∠=∠则,CD BE = C .若BD CE =则,DCB EBC ∠=∠D .若DCB EBC ∠=∠则,BD CE =【答案】A 【分析】由AB AC = 可得A ABC CB =∠∠ 再由CD BE BC CB ==, 由SSA 无法证明BCD 与CBE 全等 从而无法得到DCB EBC ∠=∠ 证明ABE ACD 可得CD BE = 证明ABE ACD 可得ACD ABE ∠=∠ 即可证明 证明()DBC ECB ASA ≅ 即可得出结论.【详解】解:①AB AC =①A ABC CB =∠∠①若CD BE =又BC CB =①BCD 与CBE 满足“SSA ”的关系 无法证明全等因此无法得出DCB EBC ∠=∠ 故A 是假命题①若DCB EBC ∠=∠①ACD ABE ∠=∠在ABE 和ACD 中ACD ABE AB ACA A ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ABE ACD ASA ≅①CD BE = 故B 是真命题若BD CE =则,AD AE =在ABE 和ACD 中AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩①()ABE ACD SAS ≅①ACD ABE ∠=∠①A ABC CB =∠∠①DCB EBC ∠=∠ 故C 是真命题若DCB EBC ∠=∠则,在DBC △和ECB 中ABC ACB BC BCDCB EBC ∠=∠⎧⎪=⎨⎪∠=∠⎩①()DBC ECB ASA ≅①BD CE = 故D 是真命题故选:A .【点睛】本题考查等腰三角形的判定和性质 全等三角形的判定和性质 命题的真假判断 正确的命题叫真命题 错误的命题叫假命题 判断命题的真假关键是掌握相关性质定理.9.(2023·河北·统考中考真题)在ABC 和A B C '''中 3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒则,C '∠=( )A .30︒B .n ︒C .n ︒或180n ︒-︒D .30︒或150︒【答案】C 【分析】过A 作AD BC ⊥于点D 过A '作A D B C ''''⊥于点D 求得3AD A D ''== 分两种情况讨论 利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D 过A '作A D B C ''''⊥于点D①306B B AB A B '''∠=∠=︒==,①3AD A D ''==当B C 、在点D 的两侧 B C ''、在点D 的两侧时 如图,①3AD A D ''== 4AC A C ''==①()Rt Rt HL ACD A C D '''≌△△①C C n '∠=∠=︒当B C 、在点D 的两侧 B C ''、在点D 的同侧时 如图,①3AD A D ''== 4AC A C ''==①()Rt Rt HL ACD A C D '''≌△△①'''A C D C n ∠=∠=︒ 即'''180'''180A C B A C D n ∠=︒-∠=︒-︒综上 C '∠的值为n ︒或180n ︒-︒.故选:C .【点睛】本题考查了含30度角的直角三角形的性质 全等三角形的判定和性质 分类讨论是解题的关键.二 填空题10.(2023·江苏连云港·统考中考真题)一个三角形的两边长分别是3和5则,第三边长可以是__________.(只填一个即可)【答案】4(答案不唯一 大于2且小于8之间的数均可)【分析】根据三角形的三边关系定理:三角形两边之和大于第三边 三角形的两边差小于第三边可得5353x -<<+ 再解即可.【详解】解:设第三边长为x 由题意得:5353x -<<+则28x <<故答案可为:4(答案不唯一 大于2且小于8之间的数均可).【点睛】此题主要考查了三角形的三边关系:第三边的范围是:大于已知的两边的差 而小于两边的和. 11.(2023·浙江金华·统考中考真题)如图,把两根钢条OA OB ,的一个端点连在一起 点C D ,分别是OA OB ,的中点.若4cm CD =则,该工件内槽宽AB 的长为__________cm .【答案】8【分析】利用三角形中位线定理即可求解.【详解】解:①点C D ,分别是OA OB ,的中点 ①12CD AB = ①()28cm AB CD ==故答案为:8.【点睛】本题考查了三角形中位线定理的应用 掌握“三角形的中位线是第三边的一半”是解题的关键.12.(2023·新疆·统考中考真题)如图,在ABC 中 若AB AC = AD BD = 24CAD ∠=︒则,C ∠=______︒.【答案】52【分析】根据等边对等角得出,B C B BAD ∠∠∠∠== 再有三角形内角和定理及等量代换求解即可.【详解】解:①AB AC = AD BD =①,B C B BAD ∠∠∠∠==①B C BAD ∠∠∠==①180B C BAC ∠∠∠++=︒①180B C BAD CAD ∠∠∠∠+++=︒ 即324180C ∠+︒=︒解得:52C ∠=︒故答案为:52.【点睛】题目主要考查等边对等角及三角形内角和定理 结合图形 找出各角之间的关系是解题关键. 13.(2023·安徽·统考中考真题)清初数学家梅文鼎在著作《平三角举要》中 对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明 证明过程中创造性地设计直角三角形 得出了一个结论:如图,AD 是锐角ABC 的高则,2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭.当7,6AB BC == 5AC =时 CD =____.【答案】1【分析】根据公式求得BD 根据CD BC BD =- 即可求解.【详解】解:①7,6AB BC == 5AC = ①2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭149256526-⎛⎫=+= ⎪⎝⎭①651CD BC BD =-=-=,故答案为:1.【点睛】本题考查了三角形的高的定义 正确的使用公式是解题的关键.14.(2023·浙江·统考中考真题)如图,在ABC 中 AC 的垂直平分线交BC 于点D 交AC 于点E B ADB ∠=∠.若4AB =则,DC 的长是__________.【答案】4【分析】由B ADB ∠=∠可得4AD AB == 由DE 是AC 的垂直平分线可得AD DC = 从而可得4DC AB ==.【详解】解:①B ADB ∠=∠①4AD AB ==①DE 是AC 的垂直平分线①AD DC =①4DC AB ==.故答案为:4.【点睛】本题主要考查了线段垂直平分线的性质以及等角对等边等知识 熟练掌握相关知识是解答本题的关键.15.(2023·湖北随州·统考中考真题)如图,在Rt ABC △中 9086C AC BC ∠=︒==,, D 为AC 上一点 若BD 是ABC ∠的角平分线则,AD =___________.【答案】3【分析】首先证明CD DP = 6BC BP == 设CD PD x == 在Rt ADP 中 利用勾股定理构建方程即可解决问题.【详解】解:如图,过点D 作AB 的垂线 垂足为P在Rt ABC △中 ①86AC BC ==, ①22228610AB AC BC ++①BD 是ABC ∠的角平分线①CBD PBD ∠=∠①90C BPD BD BD ∠=∠=︒=,①()AAS BDC BDP ≌①6BC BP == CD PD =设CD PD x ==在Rt ADP 中 ①4PA AB BP =-= 8AD x =-①2224(8)x x +=-①3x =①3AD =.故答案为:3.【点睛】本题考查了角平分线的性质 全等三角形的判定和性质 勾股定理等知识 解题的关键是熟练掌握基本知识 属于中考常考题型.16.(2023·湖北十堰·统考中考真题)一副三角板按如图所示放置 点A 在DE 上 点F 在BC 上 若35EAB ∠=︒则,DFC ∠=___________________︒.【答案】100︒【分析】根据直角三角板的性质 得到45DFE ∠=︒ 90E B ∠=∠=︒ 结合12∠=∠得到35EAB BFE ∠=∠=︒利用平角的定义计算即可.【详解】解:如图,根据直角三角板的性质 得到45DFE ∠=︒ 90E B ∠=∠=︒①12∠=∠①35EAB BFE ∠=∠=︒1803545100DFC ∠=︒-︒-︒=︒.故答案为:100︒.【点睛】本题考查了三角板的性质 直角三角形的性质 平角的定义 熟练掌握三角板的性质 直角三角形的性质是解题的关键.17.(2023·浙江杭州·统考中考真题)如图,点,D E 分别在ABC 的边,AB AC 上 且DE BC ∥ 点F 在线段BC 的延长线上.若28ADE ∠=︒ 118ACF ︒∠=则,A ∠=_________.【答案】90︒【分析】首先根据平行线的性质得到28B ADE ∠=∠=︒ 然后根据三角形外角的性质求解即可.【详解】①DE BC ∥ 28ADE ∠=︒①28B ADE ∠=∠=︒①118ACF ︒∠=①1182890A ACF B ∠=∠-∠=︒-︒=︒.故答案为:90︒.【点睛】此题考查了平行线的性质和三角形外角的性质 解题的关键是熟练掌握以上知识点.18.(2023·湖北荆州·统考中考真题)如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =则,DE =___________.【答案】3【分析】首先根据直角三角形斜边中线的性质得出AB 然后利用勾股定理即可得出BC 最后利用三角形中位线定理即可求解.【详解】解:①在Rt ABC △中 CD 为Rt ABC △斜边AB 上的中线 5CD =①210AB CD == ①22221086BC AB AC --①E 为AC 的中点 ①132DE BC == 故答案为:3.【点睛】本题主要考查直角三角形的性质 三角形中位线定理 掌握直角三角形中斜边上的中线等于斜边的一半是解题的关键.19.(2023·湖南·统考中考真题)如图,在Rt ABC △中 90C ∠=︒ 按以下步骤作图:①以点A 为圆心 以小于AC 长为半径作弧 分别交,AC AB 于点M N ①分别以M N 为圆心 以大于12MN 的长为半径作弧 在BAC ∠内两弧交于点O ①作射线AO 交BC 于点D .若点D 到AB 的距离为1则,CD 的长为__________.【答案】1【分析】根据作图可得AD 为CAB ∠的角平分线 根据角平分线的性质即可求解.【详解】解:如图所示 过点D 作DE AB ⊥于点E 依题意1DE =根据作图可知AD 为CAB ∠的角平分线①,DC AC DE AB ⊥⊥①1CD DE ==故答案为:1.【点睛】本题考查了作角平分线 角平分线的性质 熟练掌握基本作图以及角平分线的性质是解题的关键.20.(2023·广东深圳·统考中考真题)如图,在ABC 中 AB AC = 3tan 4B = 点D 为BC 上一动点 连接AD 将ABD △沿AD 翻折得到ADE DE 交AC 于点G GE DG < 且:3:1AG CG =则,AGEADG S S =三角形三角形______.【答案】4975【分析】AM BD ⊥于点M AN DE ⊥于点N 则,AM AN = 过点G 作GP BC ⊥于点P 设12AM a = 根据3tan 4AM B BM ==得出16BM a = 继而求得2220AB AM BM a =+ 5CG a = 15AG a = 再利用3tan tan 4GP C B CP === 求得3,4GP a CP a == 利用勾股定理求得229GN AG AN a =-= 2216EN AE AN a =-= 故7EG EN GN a =-=【详解】由折叠的性质可知 DA 是BDE ∠的角平分线 AB AE = 用HL 证明ADM ADN △≌△ 从而得到DM DN = 设DM DN x ==则,9DG x a =+ 12DP a x =- 利用勾股定理得到222DP GP DG +=即()()()2221239a x a x a -+=+ 化简得127x a = 从而得出757DG a =利用三角形的面积公式得到:174921757527AGEADG EG AN EG a DG DG AN S a S ⋅====⋅三角形三角形. 作AM BD ⊥于点M AN DE ⊥于点N 则,AM AN =过点G 作GP BC ⊥于点P①AM BD ⊥于点M ①3tan 4AM B BM == 设12AM a =则,16BM a = 2220AB AM BM a =+又①AB AC = AM BD ⊥①12CM AM a == 20AB AC a == B C ∠=∠①:3:1AG CG = 即14CG AC =①5CG a = 15AG a =在Rt PCG △中 5CG a = 3tan tan 4GP C B CP === 设3GP m =则,224,5CP m CG GP CP m =+=①m a =①3,4GP a CP a ==①15AG a = 12AM AN a == AN DE ⊥ ①229GN AG AN a =-=①20AB AE a == 12AN a = AN DE ⊥ ①2216EN AE AN a -=①7EG EN GN a =-=①AD AD = AM AN = AM BD ⊥ AN DE ⊥①()HL ADM ADN △≌△①DM DN =设DM DN x ==则,9DG DN GN x a =+=+ 16412DP CM CP DM a a x a x =--=--=-在Rt PDG △中 222DP GP DG += 即()()()2221239a x a x a -+=+ 化简得:127x a = ①7597DG x a a =+=①174921757527AGEADG EG AN EG a DG DG AN S a S ⋅====⋅三角形三角形 故答案是:4975. 【点睛】本题考查解直角三角形 折叠的性质 全等三角形的判定与性质 角平分线的性质 勾股定理等知识 正确作出辅助线并利用勾股定理列出方程是解题的关键.三 解答题21.(2023·江苏苏州·统考中考真题)如图,在ABC 中 ,AB AC AD =为ABC 的角平分线.以点A 圆心 AD 长为半径画弧 与,AB AC 分别交于点,E F 连接,DE DF .(1)求证:ADE ADF ≌(2)若80BAC ∠=︒ 求BDE ∠的度数.【答案】(1)见解析(2)20BDE ∠=︒【分析】(1)根据角平分线的定义得出BAD CAD ∠=∠ 由作图可得AE AF = 即可证明ADE ADF ≌ (2)根据角平分线的定义得出40EAD ∠=︒ 由作图得出AE AD =则,根据三角形内角和定理以及等腰三角形的性质得出70ADE ∠=︒ AD BC ⊥ 进而即可求解.【详解】(1)证明:①AD 为ABC 的角平分线①BAD CAD ∠=∠由作图可得AE AF =在ADE 和ADF △中AE AFBAD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩ ①ADE ADF ≌()SAS(2)①80BAC ∠=︒ AD 为ABC 的角平分线①40EAD ∠=︒由作图可得AE AD =①70ADE ∠=︒①AB AC = AD 为ABC 的角平分线①AD BC ⊥①20BDE ∠=︒【点睛】本题考查了全等三角形的性质与判定 等腰三角形的性质与判定 角平分线的定义熟练掌握等腰三角形的性质与判定是解题的关键.22.(2023·江西·统考中考真题)(1038tan 453︒-(2)如图,AB AD = AC 平分BAD ∠.求证:ABC ADC △△≌.【答案】(1)2(2)见解析【分析】(1)先计算立方根 特殊角三角函数值和零指数幂 再计算加减法即可(2)先由角平分线的定义得到BAC DAC ∠=∠ 再利用SAS 证明ABC ADC △△≌即可.【详解】解:(1)原式211=+-2=(2)①AC 平分BAD ∠①BAC DAC ∠=∠在ABC 和ADC △中AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩①()SAS ABC ADC △△≌.【点睛】本题主要考查了实数的运算 零指数幂 特殊角三角函数值 全等三角形的判定 角平分线的定义等等 灵活运用所学知识是解题的关键.23.(2023·云南·统考中考真题)如图,C 是BD 的中点 ,AB ED AC EC ==.求证:ABC EDC △≌△.【答案】见解析【分析】根据C 是BD 的中点 得到BC CD = 再利用SSS 证明两个三角形全等. 【详解】证明:C 是BD 的中点BC CD ∴=在ABC 和EDC △中BC CD AB ED AC EC =⎧⎪=⎨⎪=⎩()ABC EDC SSS ∴≌【点睛】本题考查了线段中点 三角形全等的判定 其中对三角形判定条件的确定是解决本题的关键. 24.(2023·四川宜宾·统考中考真题)已知:如图,AB DE ∥ AB DE = AF DC =.求证:B E ∠=∠.【答案】见解析【分析】根据平行线的性质得出A D ∠=∠ 然后证明AC DF = 证明()SAS ABC DEF ≌△△ 根据全等三角形的性质即可得证.【详解】证明:①AB DE ∥①A D ∠=∠①AF DC =①AF CF DC CF +=+即AC DF =在ABC 与DEF 中AC DF A D AB DE =⎧⎪∠=∠⎨⎪=⎩①()SAS ABC DEF ≌△△ ①B E ∠=∠.【点睛】本题考查了全等三角形的性质与判定 熟练掌握全等三角形的性质与判定是解题的关键. 25.(2023·福建·统考中考真题)如图,,,OA OC OB OD AOD COB ==∠=∠.求证:AB CD =.【答案】见解析【分析】根据已知条件得出AOB COD ∠=∠ 进而证明△≌△AOB COD 根据全等三角形的性质即可得证.【详解】证明:AOD COB ∠=∠,AOD BOD COB BOD ∴∠-∠=∠-∠即AOB COD ∠=∠.在AOB 和COD △中,,,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩AOB COD ∴≌AB CD ∴=.【点睛】本小题考查等式的基本性质 全等三角形的判定与性质等基础知识 考查几何直观 推理能力等 掌握全等三角形的性质与判定是解题的关键.26.(2023·全国·统考中考真题)如图,点C 在线段BD 上 在ABC 和DEC 中A D AB DE B E ∠=∠=∠=∠,,.求证:AC DC =.【答案】证明见解析【分析】直接利用ASA 证明ABC DEC ≌△△ 再根据全等三角形的性质即可证明.【详解】解:在ABC 和DEC 中A D AB DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ASA ABC DEC ≌①AC DC =.【点睛】本题考查了全等三角形的判定与性质 熟练掌握全等三角形的判定方法是解题的关键. 27.(2023·四川乐山·统考中考真题)如图,AB CD 相交于点O AO=BO AC①DB .求证:AC=BD .【答案】见解析【分析】要证明AC=BD 只要证明①AOC①①BOD 根据AC//DB 可得①A=①B ①C=①D 又知AO=BO 则,可得到①AOC①①BOD 从而求得结论.【详解】(方法一)①AC//DB①①A=①B ①C=①D .在①AOC 与①BOD 中①①A=①B ①C=①D AO=BO①①AOC①①BOD .①AC=BD .(方法二)①AC//DB①①A=①B .在①AOC 与①BOD 中①A BAO BO AOC BOD∠=∠⎧⎪=⎨⎪∠=∠⎩ ①①AOC①①BOD .①AC=BD .28.(2023·山东临沂·统考中考真题)如图,90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系(2)延长BC 到E 使CE BC = 延长DC 到F 使CF DC = 连接EF .求证:EF AB ⊥.(3)在(2)的条件下 作ACE ∠的平分线 交AF 于点H 求证:AH FH =.【答案】(1))21AB BD =(2)见解析(3)见解析【分析】(1)勾股定理求得2BC AB 结合已知条件即可求解(2)根据题意画出图形 证明CBD CEF ≌ 得出=45E DBC ∠=∠︒则,EF BD ∥ 即可得证 (3)延长,BA EF 交于点M 延长CH 交ME 于点G 根据角平分线以及平行线的性质证明EG EC = 进而证明()AAS AHC FHG ≌ 即可得证.【详解】(1)解:①90,A AB AC ∠=︒= ①2BC AB①BC ABBD =+2AB AB BD =+ 即)21AB BD = (2)证明:如图所示①90,A AB AC ∠=︒=①=45ABC ∠︒①BD AB ⊥①45DBC ∠=︒①CE BC = 12∠=∠,CF DC =①CBD CEF ≌①=45E DBC ∠=∠︒①EF BD ∥①AB EF ⊥(3)证明:如图所示 延长,BA EF 交于点M 延长CH 交ME 于点G①EF AB ⊥ AC AB ⊥①ME AC ∥①CGE ACG ∠=∠①CH 是ACE ∠的角平分线①ACG ECG ∠=∠①CGE ECG ∠=∠①EG EC =①CBD CEF ≌①EF BD = CE CB =①EG CB =又①BC AB BD =+①EG AB BD AC EF =+=+即FG EF AC EF +=+①AC EG =又AC FG ∥则,HAG HFG ∠=∠在,AHC FHG 中HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS AHC FHG ≌①AH HF =【点睛】本题考查了全等三角形的与判定 等腰三角形的性质与判定 勾股定理 平行线的性质与判定 熟练掌握全等三角形的性质与判定是解题的关键.29.(2023·山东聊城·统考中考真题)如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.【答案】(1)见解析 (2)3【分析】(1)由B AED ∠=∠求出BAE CED ∠=∠ 然后利用AAS 证明BAE CED ≅ 可得EA ED = 再由等边对等角得出结论(2)过点E 作EF AD ⊥于F 根据等腰三角形的性质和含30︒直角三角形的性质求出DF 和AD 然后利用勾股定理求出EF 再根据三角形面积公式计算即可.【详解】(1)证明:①B AED ∠=∠①180180B AED ︒-∠=︒-∠ 即BEA BAE BEA CED ∠+∠=∠+∠①BAE CED ∠=∠在BAE 和CED △中 B C BAE CED BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS BAE CED ≅①EA ED =①EAD EDA ∠=∠(2)解:过点E 作EF AD ⊥于F由(1)知EA ED =①60C AED ︒∠=∠=①30AEF DEF ∠=∠=︒①4DE = ①122DF DE == ①24AD DF == 22224223EF DE DF =--①114234322AED S AD EF =⋅=⨯⨯=【点睛】本题考查了三角形内角和定理 全等三角形的判定和性质 等腰三角形的性质 含30︒直角三角形的性质以及勾股定理等知识 正确寻找证明三角形全等的条件是解题的关键.30.(2023·甘肃兰州·统考中考真题)综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线 如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D 使得OC OD = 连接CD 以CD 为边作等边三角形CDE 则,OE 就是AOB ∠的平分线.请写出OE 平分AOB ∠的依据:____________类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形 只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3 在AOB ∠的边OA OB 上分别取OM ON = 移动角尺 使角尺两边相同刻度分别与点M N 重合则,过角尺顶点C 的射线OC 是AOB ∠的平分线 请说明此做法的理由拓展实践:(3)小明将研究应用于实践.如图4 校园的两条小路AB 和AC 汇聚形成了一个岔路口A 现在学校要在两条小路之间安装一盏路灯E 使得路灯照亮两条小路(两条小路一样亮) 并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规..........在对应的示意图5中作出路灯E 的位置.(保留作图痕迹 不写作法)【答案】(1)SSS (2)证明见解析 (3)作图见解析【分析】(1)先证明()SSS OCE ODE ≌ 可得AOE BOE ∠=∠ 从而可得答案(2)先证明()SSS OCM OCN ≌ 可得AOC BOC ∠=∠ 可得OC 是AOB ∠的角平分线(3)先作BAC ∠的角平分线 再在角平分线上截取AE AD =即可.【详解】解:(1)①OC OD = CE DE = DE DE =①()SSS OCE ODE ≌①AOE BOE ∠=∠①OE 是AOB ∠的角平分线故答案为:SSS(2)①OM ON = CM CN = OC OC =①()SSS OCM OCN ≌①AOC BOC ∠=∠①OC 是AOB ∠的角平分线(3)如图,点E 即为所求作的点.【点睛】本题考查的是全等三角形的判定与性质 角平分线的定义与角平分线的性质 作已知角的角平分线 理解题意 熟练的作角的平分线是解本题的关键.。
(专题精选)初中数学三角形难题汇编含答案
(专题精选)初中数学三角形难题汇编含答案一、选择题1.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()A.28°B.22°C.32°D.38°【答案】B【解析】【分析】延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【详解】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC-∠1=22°,∵GH∥EF,∴∠2=∠AEC=22°,故选B.【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A .8cmB .10cmC .12cmD .14cm【答案】B【解析】【分析】 根据“AAS”证明 ΔABD ≌ΔEBD .得到AD =DE ,AB =BE ,根据等腰直角三角形的边的关系,求其周长.【详解】∵ BD 是∠ABC 的平分线,∴ ∠ABD =∠EBD .又∵ ∠A =∠DEB =90°,BD 是公共边,∴ △ABD ≌△EBD (AAS),∴ AD =ED ,AB =BE ,∴ △DEC 的周长是DE +EC +DC=AD +DC +EC=AC +EC =AB +EC=BE +EC =BC=10 cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.3.如图,ABCD 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,AD =∴2AB AD ==∴6BD ==∵四边形ABCD 是平行四边形 ∴132OB OD BD ===,12OA OC AC ==∴在Rt AOD △中,AD =3OD =∴OA =∴OC OA ==故选:C【点睛】本题考查了含30角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.4.下列长度的三条线段能组成三角形的是( )A .2, 2,5B .C .3,4,8D .4,5,6【答案】D【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】根据三角形三边关系可知,三角形两边之和大于第三边.A 、2+2=4<5,此选项错误;B 、<3,此选项错误;C 、3+4<8,此选项错误;D 、4+5=9>6,能组成三角形,此选项正确.故选:D .【点睛】此题考查三角形三边关系,解题关键在于掌握三角形两边之和大于第三边.即:两条较短的边的和小于最长的边,只要满足这一条就是满足三边关系.5.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .6.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF ,CDG ,DAH 全等,AEH △,BEF ,CFG △,DGH 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D 2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG ,∴CDG 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ,EM GN ,∵正方形ABCD 的边长为4,即4AB CDAD BC , ∴4MN =, 设EM GN x ,则42EG FH x , ∵正方形EFGH 的面积与ABE △面积相等, 即2114(42)22x x ,解得:121,4x x ==,∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=ABE S , ∵ABE △,BCF ,CDG ,DAH 全等, ∴2====ABE BCF CDG DAHS S S S , ∵正方形ABCD 的面积4416=⨯=,AEH △,BEF ,CFG △,DGH 也全等, ∴1(4=AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.7.图中的三角形被木板遮住了一部分,这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能【答案】D【解析】 从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D .8.如图,直线a b ∥,点A 、B 分别在直线a 、b 上,145∠︒=,若点C 在直线b 上,105BAC ∠︒=,且直线a 和b 的距离为3,则线段AC 的长度为( )A .32B .33C .3D .6【答案】D【解析】【分析】 过C 作CD ⊥直线a ,根据30°角所对直角边等于斜边的一半即可得到结论.【详解】过C 作CD ⊥直线a ,∴∠ADC =90°.∵∠1=45°,∠BAC =105°,∴∠DAC =30°.∵CD =3,∴AC =2CD =6.故选D .【点睛】本题考查了平行线间的距离,含30°角的直角三角形的性质,正确的理解题意是解题的关键.9.如图,在菱形ABCD 中,对角线AC =8,BD =6,点E ,F 分别是边AB ,BC 的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF 的最小值,再根据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6,BD=8,∴22,34作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.10.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.11.如图,△ABC ≌△A E D ,∠C =40°,∠E AC =30°,∠B =30°,则∠E AD =( );A .30°B .70°C .40°D .110°【答案】D【解析】【分析】【详解】∵△ABC ≌△AED , ∴∠D=∠C=40°,∠C=∠B=30°,∴∠E AD=180°-∠D -∠E =110°,故选D.12.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在平面直角坐标系中,已知点A (﹣2,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的正半轴于点C ,则点C 的横坐标介于( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间【答案】B【解析】【分析】 先根据点A ,B 的坐标求出OA ,OB 的长度,再根据勾股定理求出AB 的长,即可得出OC 的长,再比较无理数的大小确定点C 的横坐标介于哪个区间.【详解】∵点A ,B 的坐标分别为(﹣2,0),(0,3),∴OA =2,OB =3,在Rt △AOB 中,由勾股定理得:AB 222+313=∴AC =AB 13,∴OC 132,∴点C 132,0), ∵3134<< , ∴11322<< ,即点C 的横坐标介于1和2之间,故选:B .【点睛】本题考查了弧与x 轴的交点问题,掌握勾股定理、无理数大小比较的方法是解题的关键.14.满足下列条件的是直角三角形的是( )A .4BC =,5AC =,6AB =B .13BC =,14AC =,15AB = C .::3:4:5BC AC AB =D .::3:4:5A B C ∠∠∠= 【答案】C【解析】【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】A.若BC=4,AC=5,AB=6,则BC2+AC2≠AB2,故△ABC不是直角三角形;B.若13BC=,14AC=,15AB=,则AC2+AB2≠CB2,故△ABC不是直角三角形;C.若BC:AC:AB=3:4:5,则BC2+AC2=AB2,故△ABC是直角三角形;D.若∠A:∠B:∠C=3:4:5,则∠C<90°,故△ABC不是直角三角形;故答案为:C.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.15.等腰三角形的一个角比另一个角的2倍少20度,则等腰三角形顶角的度数是()A.140B.20或80C.44或80D.140或44或80【答案】D【解析】【分析】设另一个角是x,表示出一个角是2x-20°,然后分①x是顶角,2x-20°是底角,②x是底角,2x-20°是顶角,③x与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【详解】设另一个角是x,表示出一个角是2x-20°,①x是顶角,2x-20°是底角时,x+2(2x-20°)=180°,解得x=44°,∴顶角是44°;②x是底角,2x-20°是顶角时,2x+(2x-20°)=180°,解得x=50°,∴顶角是2×50°-20°=80°;③x与2x-20°都是底角时,x=2x-20°,解得x=20°,∴顶角是180°-20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故答案为:D.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.16.如图,90ACB ∠=︒,AC CD =,过D 作AB 的垂线,交AB 的延长线于E ,若2AB DE =,则BAC ∠的度数为( )A .45°B .30°C .22.5°D .15°【答案】C【解析】【分析】 连接AD ,延长AC 、DE 交于M ,求出∠CAB=∠CDM ,根据全等三角形的判定得出△ACB ≌△DCM ,求出AB=DM ,求出AD=AM ,根据等腰三角形的性质得出即可.【详解】解:连接AD ,延长AC 、DE 交于M ,∵∠ACB=90°,AC=CD ,∴∠DAC=∠ADC=45°,∵∠ACB=90°,DE ⊥AB ,∴∠DEB=90°=∠ACB=∠DCM ,∵∠ABC=∠DBE ,∴∠CAB=∠CDM ,在△ACB 和△DCM 中CAB CDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△DCM (ASA ),∴AB=DM ,∵AB=2DE ,∴DM=2DE ,∴DE=EM ,∵DE ⊥AB ,∴AD=AM ,114522.522BAC DAE DAC ︒︒∴∠=∠=∠=⨯= 故选:C .【点睛】 本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键.17.如图为一个66⨯的网格,在ABC ∆,A B C '''∆和A B C ''''''∆中,直角三角形有( )个A .0B .1C .2D .3【答案】C【解析】【分析】 根据题中的网格,先运用勾股定理计算出各个三角形的边长,再根据勾股定理的逆定理判断是否为直角三角形即可.【详解】设网格的小正方形的边长是1,由勾股定理(两直角边的平方等于斜边的平方)可知,ABC ∆的三边分别是:10,5,5; 由于2225510+=, 根据勾股定理的逆定理得:ABC ∆是直角三角形; '''A B C ∆的三边分别是:''A B 10, ''B C 5 ,''AC 13 由于22210513,根据勾股定理的逆定理得:'''A B C ∆不是直角三角形;A B C ''''''∆的三边分别是:A B ''''18B C ''''8 ,A C ''''26;由于22218826, 根据勾股定理的逆定理得:A B C ''''''∆是直角三角形;因此有两个直角等三角形;故选C .【点睛】本题主要考查了勾股定理和勾股定理的逆定理,能灵活运用所学知识是解题的关键.18.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( )A.132B.312C.3+192D.2 7【答案】B【解析】如图,作点A关于OB的对称点点D,连接CD交OB于点P,此时PA+PC最小,作DN⊥x 轴交于点N,∵B(33OA=3,AB3OB3BOA=30°,∵在Rt△AMO中,∠MOA=30°,AO=3,∴AM=1.5,∠OAM=60°,∴∠ADN=30°,∵在Rt△AND中,∠ADN=30°,AD=2AM=3,∴AN=1.5,DN 33 2∴CN=3-12-1.5=1,∴CD2=CN2+DN2=12+3322=314,∴CD=312.故选B.点睛:本题关键在于先借助轴对称的性质确定出P点的位置,然后结合特殊角30°以及勾股定理计算.19.如图,Rt△ABC中,∠C =90°,∠ABC的平分线BD交AC于D,若AD =5cm,CD=3cm,则点D到AB的距离DE是()A .5cmB .4cmC .3cmD .2cm【答案】C【解析】 ∵点D 到AB 的距离是DE ,∴DE ⊥AB ,∵BD 平分∠ABC ,∠C =90°,∴把Rt △BDC 沿BD 翻折后,点C 在线段AB 上的点E 处,∴DE=CD ,∵CD =3cm ,∴DE=3cm.故选:C.20.如图,在ABC 中,90C ∠=︒,60CAB ∠=︒,按以下步骤作图:①分别以A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若4CE =,则AE 的值为( ) A .6B .2C .43D .8 【答案】D【解析】【分析】根据垂直平分线的作法得出PQ 是AB 的垂直平分线,进而得出∠EAB =∠CAE =30°,即可得出AE 的长.【详解】由题意可得出:PQ 是AB 的垂直平分线,∴AE =BE ,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=12AE=4,∴AE=8.故选D.【点睛】此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.。
初中数学三角形专题训练50题(含答案)
初中数学三角形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知⊙O的半径为R,C、D是直径AB的同侧圆周上的两点,AC的度数为100°,BC=2BD,动点P在线段AB上,则PC+PD的最小值为()C D RA.R B2.如图,在⊙ABCD中,连接AC,⊙ABC=⊙CAD=45°,AB=2,则BC的长是()AB.2C.D.43.如图点P是⊙BAC内一点,PE⊙AB于点E,PF⊙AC于点F,PE=PF,则直接得到⊙PEA⊙⊙PFA的理由是()A.HL B.ASA C.AAS D.SAS【答案】A【详解】解:⊙PE⊙AB于点E,PF⊙AC于点F,⊙⊙PEA=⊙PFA=90°,⊙PE=PF,AP=AP,⊙⊙PEA⊙⊙PFA(HL);4.如图,在平面直角坐标系中,菱形ABCD 的顶点A 在y 轴上,已知B(﹣3,0)、C(2,0),则点D 的坐标为( )A .(4,5)B .(5,4)C .(5,3)D .(4,3)5.适合下列条件的ABC ∆中,是直角三角形的共有( )⊙6a =,45A ∠=︒;⊙32A ∠=,58B ∠=︒;⊙2a =,2b =,4c =;⊙7a =,24b =,25c =.A .1个B .2个C .3个D .4个【答案】B 【分析】根据构成直角三角形三边关系的条件:三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角,判定即可.【详解】⊙6a =,45A ∠=︒,不能判定ABC ∆中是直角三角形;⊙3258A B ︒︒==∠,∠,A B ∠∠=︒+90,是直角三角形;⊙2222222a b c +=+≠,不能判定ABC ∆中是直角三角形;⊙()()22222272425a b c +=+==,是直角三角形;【点睛】此题主要考查构成直角三角形条件的判定,熟练掌握,即可解题.=,点N在CD上,且6.如图,已知四边形ABCD是矩形,点M在BC上,BM CD=与BN交于点P,则:DN CM DM,DM BN=()A2B.C D.27.如图,已知正方形的面积为25,且AB比AC大1,BC的长为()A.3B.4C.5D.6【答案】A8.如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,若ABC A B C ''△≌△,且点A '恰好落在AB 上,则ACA ∠'的度数为( )A .30°B .45°C .50°D .60° 【答案】D 【分析】根据全等三角形的性质可得A C AC '=,从而得到60AA CA ,即可求解.【详解】解:⊙90ACB ∠=︒,30ABC ∠=︒,⊙⊙A =60°,⊙ABC A B C ''△≌△,⊙A C AC '=,⊙60AA C A ,⊙60ACA '∠=︒.故选:D【点睛】本题主要考查了全等三角形的性质,等腰三角形的性质,熟练掌握全等三角形的性质,等腰三角形的性质是解题的关键.9.如图,将三角板的直角顶点放在直尺的一边上,1=30∠︒,2=50∠︒,3=∠( )度A .10B .20C .30D .50 【答案】B 【分析】根据两直线平行,同位角相等求出⊙2的同位角,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.【详解】解:如图:⊙⊙2=50°,直尺的两边互相平行,⊙⊙4=⊙2=50°,⊙⊙1=30°,⊙⊙3=⊙4-⊙1=50°-30°=20°.故选:B .【点睛】本题考查了两直线平行,同位角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10.在ABC 中,若90A C ∠+∠=︒,则( ).A .BC AB AC =+B .222AC AB BC =+ C .222AB AC BC =+D .222BC AB AC =+【答案】B【分析】由⊙A +⊙C =90°可得⊙B =90°,于是可确定AC 是Rt⊙ABC 的斜边,再根据勾股定理即得答案.【详解】解:⊙⊙A +⊙C =90°,⊙⊙B =90°,⊙AC 是Rt⊙ABC 的斜边,222【点睛】本题考查了勾股定理和三角形的内角和定理,由题意确定AC 是Rt ⊙ABC 的斜边是解题的关键.11.如图,直线AB CD ∥,AE CE ⊥于点E ,若140EAB ∠=︒,则ECD ∠的度数是( )A .120°B .130°C .150°D .160° 【答案】B 【分析】延长AE ,与DC 的延长线交于点F ,根据平行线的性质,求出⊙AFC 的度数,再利用外角的性质求出⊙ECF ,从而求出⊙EC D .【详解】解:延长AE ,与DC 的延长线交于点F ,⊙AB ⊙CD ,⊙⊙A +⊙AFC =180°,⊙⊙EAB =140°,⊙⊙AFC =40°,⊙AE ⊙CE ,⊙⊙AEC =90°,而⊙AEC =⊙AFC +⊙ECF ,⊙⊙ECF =⊙AEC -⊙F =50°,⊙⊙ECD =180°-50°=130°,故选:B .【点睛】本题考查平行线的性质和外角的性质,正确作出辅助线和正确利用平行线的性质是解题的关键.12.如图,在ABC 中,AB AC =,AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,垂足分别是E 、F ,下面给出的四个结论,其中正确的有( ).距离相等的点到DE 、DF 的距离也相等.A .1个B .2个C .3个D .4个 【答案】D 【分析】由等腰三角形“三线合一”可知AD⊙BC ,BD=DC ,得到AD 上的点到B 、C 两点的距离相等,根据角平分线性质定理可知DE=DF ,根据HL 证直角三角形全等,得到AE=AF ,从而得到AD 平分EDF ∠,即可得出答案.【详解】解:⊙AB AC =,AD 是BAC ∠的平分线,⊙AD⊙BC ,BD=DC ,⊙AD 上的点到B 、C 两点的距离相等,⊙⊙正确;⊙AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,⊙DE=DF ,⊙EDA=⊙FDA ,⊙AD 平分⊙EDF ,⊙⊙正确;在直角△AED 和直角△AFD 中,AD AD DE DF=⎧⎨=⎩ ⊙⊙AED⊙⊙AFD ,⊙AE=AF ,⊙AD 平分⊙BAC ,又⊙AD 是BAC ∠的平分线,⊙到AE 、AF 距离相等的点到DE 、DF 的距离也相等,⊙⊙、⊙正确,故选D .【点睛】本题考查了全等三角形的证明和性质,角平分线性质,等腰三角形的性质的应用,对条件的合理利用是解题的关键.13.如图,BO 、CO 分别平分⊙ABC 、⊙ACB ,OD ⊙BC 于点D ,OD =2,⊙ABC 的周长为28,则⊙ABC 的面积为( )A .28B .14C .21D .7在BOD 和△OEB OBE BO ∠=∠∠==BOD △≌△OE =OD =21122AB OE BC OD AC OF ++ )AB BC AC OD ++ 282⨯故选:A.【点睛】本题考查了角平分线的性质定理,求三角形的面积等知识,关键是根据条件构造适合角平分线性质定理条件的辅助线.14.如图,菱形ABCD的对角线AC与BD相交于点O,AE垂直平分CD,垂足为点E,则BAD∠=()A.100°B.120°C.135°D.150°【答案】B【分析】直接利用线段垂直平分线的性质得出AC=AD,再利用菱形的性质以及等边三角形的判定与性质得出答案.【详解】解:⊙AE垂直且平分边CD,⊙AC=AD,⊙四边形ABCD是菱形,⊙AD=DC,⊙ACB=⊙ACD,⊙⊙ACD是等边三角形,⊙⊙ACD=60︒,⊙⊙BCD=120︒.⊙⊙BAD=⊙BCD=120︒,故选:B.【点睛】此题主要考查了菱形的性质以及等边三角形的判定与性质,得出⊙ACD是等边三角形是解题关键.15.如图中字母A所代表的正方形的面积为()【详解】试题分析:根据勾股定理的几何意义解答.解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=64.故选D.16.三角形的三边长为a,b,c,且满足22-=-,则这个三角形是()()2a b c abA.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【答案】C【分析】先利用完全平方公式化简已知等式,再根据勾股定理的逆定理即可得.【详解】由22a b c ab-=-得:222()2-+=-,a ab bc ab22即222a b c,+=,,a b c为三角形的三边长,∴这个三角形是直角三角形,故选:C.【点睛】本题考查了完全平方公式、勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题关键.17.如图,⊙ABC的两边AB和AC的垂直平分线分别交BC于D,E,若⊙BAC+⊙DAE=150°,则⊙BAC的度数是()A.105B.110C.115D.120【答案】B【分析】根据垂直平分线性质,⊙B=⊙DAB,⊙C=⊙EAC.则有⊙B+⊙C+2⊙DAE=150°,即180°-⊙BAC+2⊙DAE=150°,再与⊙BAC+⊙DAE=150°联立解方程组即可.【详解】⊙⊙ABC的两边AB,AC的垂直平分线分别交BC于D,E,⊙DA=DB,EA=EC,⊙⊙B=⊙DAB,⊙C=⊙EAC.⊙⊙BAC+⊙DAE=150°,⊙⊙⊙B+⊙C+2⊙DAE=150°.⊙⊙B+⊙C+⊙BAC=180°,⊙180°-⊙BAC+2⊙DAE=150°,即⊙BAC-2⊙DAE=30°.⊙由⊙⊙组成的方程组150230BAC DAEBAC DAE∠+∠=︒⎧⎨∠-∠=︒⎩,解得⊙BAC=110°.故选B.【点睛】此题考查了线段的垂直平分线、等腰三角形的性质、三角形内角和定理等知识点,解题的关键是得到⊙BAC和⊙DAE的数量关系.18.如图,在平面直角坐标系中,已知A(﹣2,4)、P(﹣1,0),B为y轴上的动点,以AB为边构造⊙ABC,使点C在x轴上,⊙BAC=90°,M为BC的中点,则PM 的最小值为()A B C D【答案】C【分析】作AH⊙y轴,CE⊙AH,证明⊙AHB⊙⊙CEA,根据相似三角形的性质得到AE =2BH,求出点M的坐标,根据两点间的距离公式用x表示出PM,根据二次函数的性质解答即可.【详解】解:如图,过点A作AH⊙y轴于H,过点C作CE⊙AH于E,则四边形CEHO是矩形,⊙OH=CE=4,⊙⊙BAC=⊙AHB=⊙AEC=90°,19.如图,在ABC 和ADE 中,36CAB DAE ∠=∠=︒,AB AC =,AD AE =.连接CD ,连接BE 并延长交AC ,AD 于点F ,G .若BE 恰好平分ABC ∠,则下列结论错误的是( )A .ADC AEB ∠=∠B .//CD ABC .DE GE=D .2BF CF AC =⋅ 【答案】C 【分析】根据SAS 即可证明DAC EAB △≌△,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断【详解】,,36AB AC AD AE CAB DAE ==∠=∠=︒DAC EAB ∴∠=∠AB AC=∴∠=ABCBE平分∴∠=ABEDAC△≌△∴∠ACD∴∠=ACDAD AE=∴∠=ADE∠=DGE∠即ADE∴≠DE GE∠=ABCCFB∴∠=∴=BC BF∴△∽△ABCBF CF∴=AB BC=AB ACBF CF∴=AC BF2=BF CF故答案选:【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角20.如图,在Rt△ABC中,⊙ACB=90°,点D是AB边的中点,过D作DE⊙BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ 与PQ之间的数量关系是()A.AQ=52PQ B.AQ=3PQ C.AQ=83PQ D.AQ=4PQ⊙MN =PE ,ND =PC ,在△DNQ 和△CPQ 中,NDQ QCP NQD PQC DN PC ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊙⊙DNQ ⊙⊙CPQ ,⊙NQ =PQ ,⊙AN =NP ,⊙AQ =3PQ故选:B .【点睛】本题考查轴对称最短问题、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是利用对称找到点P 位置,熟练掌握平行线的性质,属于中考常考题型.解两条线段之和最小(短)类问题,一般是运用轴对称变换将处于直线同侧的点转化为直线异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短来确定方案,使两条线段之和转化为一条线段.二、填空题21.在Rt⊙ABC 中,⊙C =90°,若a =6,b =8,则c =________.【答案】10【详解】根据勾股定理2223664100c a b =+=+=c 为三角形边长,故c=10.22.在半径为5的圆中,弧所对的圆心角为90°,则弧所对的弦长是________.【点睛】本题考查利用半径和圆心角求弦长,难度不大,掌握勾股定理是解题的关键.23.在ABC 中,AB AC =,CD 是AB 边上的高,40ACD ∠=︒,则B ∠的度数为______.【答案】65︒或25︒【分析】分两种情况:当D 在线段AB 上时,根据题意,得出90ADC ∠=︒,再根据三角形的内角和定理,得出50A ∠=︒,再根据等边对等角,得出B ACB ∠=∠,再根据三角形的内角和定理,计算即可得出B ∠的度数;当D 在线段AB 的延长线上时,根据题意,得出90ADC ∠=︒,再根据三角形的内角和定理,得出50A ∠=︒,再根据等边对等角,得出B ACB ∠=∠,再根据三角形的外角的性质,计算即可得出B ∠的度数,综合即可得出答案.【详解】解:如图,当D 在线段AB 上时,⊙CD 是AB 边上的高,⊙90ADC ∠=︒,又⊙40ACD ∠=︒,⊙180904050A ∠=︒-︒-︒=︒,⊙AB AC =,⊙B ACB ∠=∠,⊙218018050130B A ∠=︒-∠=︒-︒=︒,⊙65B ∠=︒;如图,当D 在线段BA 的延长线上时,⊙CD 是AB 边上的高,⊙90ADC ∠=︒,又⊙40ACD ∠=︒,⊙180904050DAC ∠=︒-︒-︒=︒,⊙AB AC =,⊙B ACB ∠=∠,又⊙2DAC B ACB B ∠=∠+∠=∠,⊙250B ∠=︒,⊙25B ∠=︒,综上所述,B ∠的度数为65︒或25︒.故答案为:65︒或25︒.【点睛】本题考查了三角形的内角和定理、等边对等角、三角形的外角的性质,解本题的关键在熟练掌握相关的性质定理,分类讨论.24.如图,分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为4,则勒洛三角形的周长为:_________.25.边长为2的等边三角形的高与它的边长的比值为___________.【详解】解:等边三角形的边长是26.在Rt⊙ABC中,⊙C=90°,⊙A=30°,BC=2,则AC=_______ .27.如图,在四边形ABCD中,90∠=︒,2A==,BC=CD=AD AB∠的度数为________.ABC28.如图,在O 中,弦2BC =,点A 是圆上一点,且30BAC ∠=︒,则O 的半径是________.【答案】2【分析】连接OB ,OC ,先由圆周角定理求出BOC ∠的度数,再由OB OC =判断出BOC 是等边三角形,故可得出结论.【详解】解:连接OB ,OC ,⊙30BAC ∠=︒,⊙260BOC BAC ∠=∠=︒,⊙OB OC =,⊙BOC 是等边三角形,⊙2OB BC ==.故答案为:2【点睛】本题考查了圆周角定理,根据题意作出辅助线,构造出圆心角是解答此题的关键.29.如果等腰三角形的两边长分别为5cm 和10cm ,那么它的周长等于___________cm .【答案】25【分析】分5cm为腰和10cm为腰,两种情况求解.【详解】解:因为等腰三角形的两边长分别为5cm和10cm,当腰长为5cm时,三边长分别为5cm,5cm,10cm,+,因为55=10所以三角形不存在;当腰长为10cm时,三边长分别为5cm,10cm,10cm,+>,因为51010所以三角形存在;++=,所以三角形的周长为5101025(cm)故答案为:25.【点睛】本题考查了等腰三角形周长的分类计算,正确进行分类和判定三角形的存在性是解题的关键.30.等腰三角形的一边长为3,周长为15,则该三角形的腰长是______.31.如图,⊙O的半径为5cm,△ABC内接于⊙O,BC=5cm,则⊙A的度数为_____°.【答案】3032.如图,AD 、AE 分别是⊙ABC 的角平分线和高,⊙B =60°,⊙C =70°,则⊙EAD =______.【答案】5︒【分析】根据角平分线的性质及三角形内角和定理进行求解.【详解】解:由题意可知,⊙B =60°,⊙C =70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以⊙EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识,解题的关键是进行变换求解.33.如图,正方形ABCD的对角线AC、BD相交于点O,点E、F分别在边AB、BC 上,且⊙EOF=90°,则S四边形OEBF⊙S正方形ABCD=___.34.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD (点A与点B重合),点O是夹子转轴位置,O E⊙AC于点E,OF⊙BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大值时,以点A,B,C,D为顶点的四边形的周长是_____cm.(2)当夹子的开口最大(点C与点D重合)时,A,B两点的距离为_____cm.35.如图,直线L 1、L 2、L 3分别过正方形ABCD 的三个顶点A 、D 、C ,且相互平行,若L 1、L 2的距离为1,L 2、L 3的距离为2,则正方形的边长为__________.AED DFC ≌,从而可得度.【详解】如图,过D ⊙123////L L L⊙13,EF L EF L ⊥⊥⊙AED DFC ≌1,DE CF AE DF ===22AD AE ED =+=故答案为:5.【点睛】本题考查了正方形与平行线的问题,掌握平行线的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.36.正方形ABCD 中.E 是AD 边中点.连接CE .作⊙BCE 的平分线交AB 于点F .则以下结论:⊙⊙ECD =30°.⊙⊙BCF 的外接圆经过点E ;⊙四边形AFCD 的面积是⊙BCF⊙BF AB =.其中正确的结论有 _____.(请填写所有正确结论的序号),易证BCF GCF ≅37.菱形ABCD中,AD=4,⊙DAB=60°,E、F、G、H分别是AD、AB、BC、CD上的点,且DH=FB,DE=BG,当四边形EFGH为正方形时,DH=____.38.已知菱形ABCD中,AC=6cm,BD=4cm.若以BD为边作正方形BDEF,则AF=__cm.⊙如图1,正方形BDEF在点A一侧时,延长CA交EF于点M.39.如图,正方形ABCD中,2AB=,AC,BD交于点O.若E,F分别是边AB,BC上的动点,且OE OF∆周长的最小值是__________.⊥,则OEF40.如图,在平行四边形ABCD 中,AC =3cm ,BD ,AC ⊙CD ,⊙O 是△ABD 的外接圆,则AB 的弦心距等于_____cm .【答案】116##516【分析】设AC、BD的交点为G,作圆的直径AN,连接BN,过点O作OF⊙AB于点三、解答题41.如图,AD⊙BC,⊙BAC=70°,DE⊙AC于点E,⊙D=20°.(1)求⊙B的度数,并判断⊙ABC的形状;(2)若延长线段DE恰好过点B,试说明DB是⊙ABC的平分线.【答案】(1)⊙ABC是等腰三角形,⊙B=40°;(2)见解析.【详解】分析:(1)、根据Rt⊙ADE的内角和得出⊙DAC=70°,根据平行线的性质得出⊙C=70°,从而根据有两个角相等的三角形是等腰三角形得出答案;(2)、根据等腰三角形底边上的三线合一定理得出DB为顶角的角平分线.详解:解:(1)⊙DE⊙AC于点E,⊙D=20°,⊙⊙CAD=70°,⊙AD⊙BC,⊙⊙C=⊙CAD=70°,又⊙⊙BAC=70°,⊙⊙BAC=⊙C,⊙AB=BC,⊙⊙ABC是等腰三角形,⊙⊙B=180°-⊙BAC-⊙C=180°-70°-70°=40°.(2)⊙延长线段DE恰好过点B,DE⊙AC,⊙BD⊙AC,⊙⊙ABC是等腰三角形,⊙DB是⊙ABC的平分线.点睛:本题主要考查的是等腰三角形的判定及性质,属于基础题型.明确等腰三角形底边上的三线合一定理是解决这个问题的关键.42.如图,小雪坐着轮船由点A出发沿正东方向AN航行,在点A处望湖中小岛M,测得小岛M在点A的北偏东60°,航行100米到达点B时,此时测得小岛M在点B的北偏东30°,求小岛M到航线AN的距离.Rt BDM 中,12BD MB ==2MD MB =答:小岛M 到航线【点睛】本题考查了方向角问题,勾股定理,等腰三角形的判定,含43.如图,BD 是⊙ABC 的高,AE 是⊙ABC 的角平分线,BD 交AE 于F ,若⊙BAC =44°,⊙C =80°,求⊙BEF 和⊙AFD 的度数.【答案】⊙BEF=102°;⊙AFD=68°【分析】根据BD是⊙ABC的高,AE是⊙ABC的角平分线,求得⊙ADB=90°,⊙BAE=⊙EAD=22°,根据三角形内角和定理即可求得⊙BEF和⊙AFD的度数.【详解】解:⊙BD是⊙ABC的高,AE是⊙ABC的角平分线,⊙BAC=44°,⊙C=80°,⊙⊙ADB=90°,⊙BAE=⊙EAD=22°,⊙⊙CBA=180°﹣44°﹣80°=56°,⊙⊙BEF=180°﹣22°﹣56°=102°,⊙AFD=180°﹣90°﹣22°=68°.【点睛】本题考查了三角形的高,角平分线,三角形内角和定理的应用,掌握三角形的高,角平分线的意义是解题的关键.44.(1)如图,90∠=∠=︒,O是AC的中点,求证:OB ODABC ADC=.(2)解方程:2430-+=.x x⊙()()130x x --=,即10,30x x -=-=,解得:121,3x x ==.【点睛】本题主要考查了直角三角形的性质,解一元二次方程,熟练掌握直角三角形斜边中线等于斜边的一半,一元二次方程的解法是解题的关键.45.如图,点E 在边长为10的正方形ABCD 内,6AE =,8BE =,请求出阴影部分的面积,AEB S =四边形ABCD =10ABCD ⨯AEB S =【点睛】本题主要考查了勾股定理的逆定理,熟知勾股定理的逆定理是解题的关键.46.图(a )、图(b )是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a )、图(b )中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为4,面积为8的等腰三角形;(2)画一个面积为16的等腰直角三角形.47.如图,点A,B,C,D在同一条直线上,AB=DC,在四个论断“EA=ED,EF⊙AD,AB=DC,FB=FC”中选择二个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知、如图,点A,B,C,D在同一条直线上,.求证、.证明、.【答案】见解析【分析】已知:EA=ED ,EF⊙AD ,AB=DC ,求证FB=FC .想办法证明EF 是线段BC 的垂直平分线即可.(答案不唯一)【详解】已知:如图,EA=ED ,EF⊙AD ,AB=DC ,求证FB=FC .理由:延长EF 交BC 于H .⊙EA=ED ,EF⊙AD ,⊙AH=HD ,⊙AB=DC ,⊙BH=CH ,⊙FH⊙BC ,⊙FB=FC .故答案为EA=ED ,EF⊙AD ,AB=DC ;FB=FC ;延长EF 交BC 于H .⊙EA=ED ,EF⊙AD ,⊙AH=HD ,⊙AB=DC ,⊙BH=CH ,⊙FH⊙BC ,⊙FB=FC .【点睛】此题考查等腰三角形的判定和性质,线段的垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于开放性题目.48.如图,已知60AOB ∠︒=,OC 平分AOB ∠,CD ⊥OA 于点D .(1)实践与操作:作OC的垂直平分线分别交OA于点E;(要求:尺规作图,保留作图痕迹,不写作法)(2)连接CE,若DE的长为1,求OC的长.(1)解:如图所示,49.正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,A(-2,3),B(-3,1),C(-1,2),现将△ABC平移先向右平移3个单位长度,再向下平移2单位长度.(1)请画出平移后的A B C '''(点B C ''、分别是B 、C 的对应点);(2)写出点A B C '''、、三点的坐标;(3)求A B C '''的面积. 【答案】(1)画图见解析 (2)A '(1,1),B '(0,-1),C '(2,0)(3)1.5【分析】(1)根据所给的平移方式作图即可;(2)根据平移方式即可求出A 、B 、C 对应点A B C '''、、三点的坐标;(3)用A B C '''所在的正方形面积减去周围三个小三角形面积即可得到答案. (1)解:如图所示,A B C '''即为所求;(2)解:⊙A B C '''是△ABC 向右平移3个单位长度,向下平移2个单位长度得到的,A (-2,3),B (-3,1),C (-1,2),⊙A '(1,1),B '(0,-1),C '(2,0);(3)50.如图1,Rt⊙ABC中,⊙ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC于点D,与AC的另一个交点为E(点E在点P右侧),连结DE、BE,已知AB=3,BC=6.(1)求线段BE的长;(2)如图2,若BP平分⊙ABC,求⊙BDE的正切值;(3)是否存在点P,使得⊙BDE是等腰三角形,若存在,求出所有符合条件的CP的长;若不存在,请说明理由.。
部编数学八年级上册专题01三角形六大重难题型(期末真题精选)(解析版)含答案
专题01 三角形六大重难题型一.中线分周长(分类讨论)1.如图,已知BD 是△ABC 的中线,AB =5,BC =3,且△ABD 的周长为12,则△BCD 的周长是 10 .试题分析:先根据三角形的中线、线段中点的定义可得AD =CD ,再根据三角形的周长公式即可求出结果.答案详解:解:∵BD 是△ABC 的中线,即点D 是线段AC 的中点,∴AD =CD.实战训练∵AB=5,△ABD的周长为12,∴AB+BD+AD=12,即5+BD+AD=12.解得BD+AD=7.∴BD+CD=7.则△BCD的周长是BC+BD+CD=3+7=10.所以答案是:10.2.已知AD是△ABC的中线,若△ABD与△ACD的周长分别是17和15,△ABC的周长是22,则AD的长为 5 .试题分析:根据三角形的周长公式列式计算即可得解.答案详解:解:∵△ABD与△ACD的周长分别是17和15,∴AB+BC+AC+2AD=17+15=32,∵△ABC的周长是22,∴AB+BC+AC=22,∴2AD=32﹣22=10,∴AD=5.所以答案是:5.3.如图所示,AD是△ABC的中线.若AB=7cm,AC=5cm,则△ABD和△ADC的周长的差为 2 cm.试题分析:根据三角形中线的定义得到BD=CD,求得△ABD和△ACD的周长差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,于是得到结论.答案详解:解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD的周长差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵AB=7cm,AC=5cm,∴△ABD和△ACD的周长差=7﹣5=2cm.所以答案是:2.二.中线之等分面积4.如图,已知△ABC 中,点D 、E 分别是边BC 、AB 的中点.若△ABC 的面积等于8,则△BDE 的面积等于( )A .2B .3C .4D .5试题分析:根据三角形的面积公式即可得到结论.答案详解:解:∵点D 是边BC 的中点,△ABC 的面积等于8,∴S △ABD =12S △ABC =4,∵E 是AB 的中点,∴S △BDE =12S △ABD =12×4=2,所以选:A .5.已知:如图所示,在△ABC 中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且S △ABC =4cm 2,则阴影部分的面积为 1 cm 2.试题分析:易得△ABD ,△ACD 为△ABC 面积的一半,同理可得△BEC 的面积等于△ABC 面积的一半,那么阴影部分的面积等于△BEC 的面积的一半.答案详解:解:∵D 为BC 中点,根据同底等高的三角形面积相等,∴S △ABD =S △ACD =12S △ABC =12×4=2(cm 2),同理S △BDE =S △CDE =12S △BCE =12×2=1(cm 2),∴S △BCE =2(cm 2),∵F 为EC 中点,∴S △BEF =12S △BCE =12×2=1(cm 2).所以答案是1.三.三角形的高的辨别6.如图,△ABC中,AD⊥BC于D,点E在CD上,则图中以AD为高的三角形有 6 个.试题分析:由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.答案详解:解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.所以答案是:6.7.如图,△ABC中,BC边所在直线上的高是线段 AD .试题分析:根据三角形的高的概念解答即可.答案详解:解:△ABC中,BC边所在直线上的高是线段AD,所以答案是:AD四.多边形的内角和与外角和8.若一个多边形的内角和是540°,则这个多边形是 五 边形.试题分析:根据多边形的内角和公式求出边数即可.答案详解:解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,所以答案是:五.9.如图,∠A+∠B+∠C+∠D+∠E+∠F的值是( )A.240°B.360°C.540°D.720°试题分析:根据四边形的内角和及三角形的外角定理即可求解.答案详解:解:如图,AC、DF与BE分别相交于点M、N,在四边形NMCD中,∠MND+∠CMN+∠C+∠D=360°,∵∠CMN=∠A+∠E,∠MND=∠B+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,所以选:B.10.一个多边形的内角和等于1260°,从它的一个顶点出发,可以作对角线的条数是( )A.4B.6C.7D.9试题分析:设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=1260°,然后解方程即可.答案详解:解:设这个多边形的边数为n,∴(n﹣2)×180°=1260°,解得n=9,∴这个多边形为九边形;从这个多边形的一个顶点出发共有:9﹣3=6(条).所以选:B.五.三角形的内角和11.如图,在△ABC中,D是AC上一点,E是AB上一点,BD,CE相交于点F,∠A=60°,∠ABD=20°,∠ACE=35°,则∠EFD的度数是( )A.115°B.120°C.135°D.105°试题分析:由△ABD的内角和为180°,可以求∠ADB,由△AEC内角和为180°,可以求∠AEC,再根据四边形AEFD内角和为360°,可求∠EFD.答案详解:解:在△AEC中,∠A+∠ACE+∠AEC=180°,∴∠AEC=180°﹣∠A﹣∠ACE=180°﹣60°﹣35°=85°,在△ABD中,∠A+∠ABD+∠ADB=180°,∴∠ADB=180°﹣∠A﹣∠ABD=180°﹣60°﹣20°=100°,在四边形AEFD中,∠A+∠AEC+∠ADB+2∠EFD=360°,∴∠EFD=360°﹣∠A﹣∠AEC﹣∠ADB=360°﹣60°﹣85°﹣100°=115°,所以选:A.12.如图,△ABC中,∠BAC>∠B,∠C=70°,将△ABC折叠,使得点B与点A重合,折痕PD 分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为( )A.35°或20°B.20°或27.5°C.35°或25°或32.5°D.35°或20°或27.5°试题分析:分三种情况,利用三角形的内角和定理、等腰三角形的性质先求出∠APC的度数,再利用折叠的性质和三角形的内角和定理求出∠B.答案详解:解:由折叠的性质知:∠BPD=∠APD=12∠BPA,∠BDP=∠ADP=90°.当AP=AC时,∠APC=∠C=70°,∵∠BPD=12(180°﹣∠APC)=55°,∴∠B=90°﹣55°=35°;当AP=PC时,∠PAC=∠C=70°,则∠APC=40°.∵∠BPD=12(180°﹣∠APC)=70°,∴∠B=90°﹣70°=20°;当PC=AC时,∠APC=∠PAC,则∠APC=55°.∵∠BPD=12(180°﹣∠APC)=62.5°,∴∠B=90°﹣62.5°=27.5°.所以选:D.13.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=48°,∠D=10°,则∠P的度数为( )A.19°B.20°C.22°D.25°试题分析:延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=12(∠A﹣∠D),然后代入数据计算即可得解.答案详解:解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=12(∠A﹣∠D),∵∠A=48°,∠D=10°,∴∠P=12(48°﹣10°)=19°.所以选:A.14.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是( )A.42°B.46°C.52°D.56°试题分析:根据折叠得出∠D=∠B=28°,根据三角形的外角性质得出∠1=∠B+∠BEF,∠BEF =∠2+∠D,求出∠1=∠B+∠2+∠D即可.答案详解:解:∵∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1﹣∠2=∠B+∠D=28°+28°=56°,所以选:D.15.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为( )A.49°B.50°C.51°D.52°试题分析:先根据折叠性质得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,根据三角形内角和为180°和周角360°求出结论.答案详解:解:由折叠得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,∵∠A+∠B+∠C=180°,∴∠HOG+∠DOE+∠EOF=180°,∵∠1+∠2+∠HOG+∠DOE+∠EOF=360°,∴∠1+∠2=180°,∵∠1=131°,∴∠2=180°﹣131°=49°,所以选:A.16.如图,在△ABC中,∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC交AD于E,求∠4的度数.试题分析:首先根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD,再根据角平分线的定义求得∠ABE,最后根据三角形的外角的性质求得∠4.答案详解:解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,∴∠3=20°,∵∠2=12∠3,∴∠2=10°,∴∠ABC=180°﹣100°﹣10°=70°,∵BE平分∠ABC,∴∠ABE=35°,∵∠4=∠2+∠ABE,∴∠4=45°.17.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于 22.5 度.试题分析:在直角三角形中,设最小的锐角的度数为x,则另一个锐角的度数则为3x.由“直角三角形的两个锐角互余”的性质知,x+3x=90°.通过解方程即可求得x的值.答案详解:解:在直角三角形中,设最小的锐角的度数为x,则另一个锐角的度数则为3x.则x+3x=90°,即4x=90°,解得,x=22.5°,即这个直角三角形中最小的一个角等于22.5°.所以答案是:22.5.六.新定义类18.新定义:在△ABC中,若存在最大内角是最小内角度数的n倍(n为大于1的正整数),则称△ABC为“n倍角三角形”.例如,在△ABC中,若∠A=90°,∠B=60°,则∠C=30°,因为∠A最大,∠C最小,且∠A=3∠C,所以△ABC为“3倍角三角形”.(1)在△DEF中,若∠E=40°,∠F=60°,则△DEF为“ 2 倍角三角形”.(2)如图,在△ABC中,∠C=36°,∠BAC、∠ABC的角平分线相交于点D,若△ABD为“6倍角三角形”,请求出∠ABD的度数.试题分析:(1)根据三角形内角和定理求出∠D,根据n倍角三角形的定义判断;(2)根据角平分线的定义、三角形内角和定理求出∠ADB,n倍角三角形的定义分情况讨论计算,得到答案.答案详解:解:(1)在△DEF中,∠E=40°,∠F=60°,则∠D=180°﹣∠E﹣∠F=80°,∴∠D=2∠E,∴△DEF为“2倍角三角形”,所以答案是:2;(2)∵∠C=36°,∴∠BAC+∠ABC=180°﹣36°=144°,∵∠BAC、∠ABC的角平分线相交于点D,∴∠DAB=12∠BAC,∠DBA=12∠ABC,∴∠DAB+∠DBA=12×144°=72°,∴∠ADB=180°﹣72°=108°,∵△ABD为“6倍角三角形”,∴∠ADB=6∠ABD或∠ADB=6∠BAD,当∠ADB=6∠ABD时,∠ABD=18°,当∠ADB=6∠BAD时,∠BAD=18°,则∠ABD=180°﹣108°﹣18°=54°,综上所述,∠ABD的度数为18°或54°.19.在△ABC中,若存在一个内角角度是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=80°,∠B=60°,则△ABC为 2 倍角三角形;(2)若锐角三角形MNP是3倍角三角形,且最小内角为α,请直接写出α的取值范围为 22.5°<α<30° .(3)如图,直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,若△AEF为4倍角三角形,求∠ABO 的度数.试题分析:(1)由∠A=80°,∠B=60°,可求∠C的度数,发现内角之间的倍数关系,得出答案,(2)△DEF是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答,(3)首先证明∠EAF=90°,分两种情形分别求出即可.答案详解:解:(1)∵∠A=80°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=40°,∴∠A=2∠C,∴△ABC为2倍角三角形,所以答案是:2;(2)∵最小内角为α,∴3倍角为3α,由题意可得:3α<90°,且180°﹣4α<90°,∴最小内角的取值范围是22.5°<α<30°.所以答案是22.5°<α<30°.(3)∵AE平分∠BAO,AF平分∠AOG,∴∠EAB=∠EAO,∠OAF=∠FAG,∴∠EAF=∠EAO+∠OAF=12(∠BAO+∠OAG)=90°,∵△EAF是4倍角三角形,∠F显然大于∠E,∴∠E=14×90°或15×90°,∵AE平分∠BAO,OE平分∠BOQ,∴∠E=12∠ABO,∴∠ABO=2∠E,∴∠ABO=45°或36°.20.在△ABC中,若存在一个内角角度,是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=55°,∠B=25°,则△ABC为 4 倍角三角形;(2)若△DEF是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求△DEF的最小内角;(3)若△MNP是2倍角三角形,且∠M<∠N<∠P<90°,请直接写出△MNP的最小内角的取值范围.试题分析:(1)由∠A=55°,∠B=25°,可求∠C的度数,发现内角之间的倍数关系,得出答案,(2)△DEF是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答,(3)可设未知数表示2倍角三角形的各个内角,然后列不等式组确定最小内角的取值范围.答案详解:解:(1)∵∠A=55°,∠B=25°,∴∠C=180°﹣∠A﹣∠B=100°,∴∠C=4∠B,所以答案是:4(2)设最小的内角为x°,则3倍角为3x°①当最小的内角的度数是3倍内角的余角的度数的13时,即:x=13(90°﹣3x),解得:x=15°②3倍内角的度数是最小内角的余角的度数的13时,即:3x=13(90°﹣x),解得:x=9°,因此,△DEF的最小内角是9°或15°.(3)设∠M的度数为x,则其它的两个角分别为2x,(180°﹣3x),由∠M<∠N<∠P<90°可得:2x<90°且180°﹣3x<90°且2x≠180°﹣3x∴30°<x<45°且x≠36°.答:△MNP的最小内角的取值范围是30°<x<45°且x≠36°.21.若△ABC中刚好有∠B=2∠C,则称此三角形为“可爱三角形”,并且∠A称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是( )A.45°或36°B.72°或36°C.45°或72°D.45°或36°或72°试题分析:分设三角形底角为α,顶角为2α或设三角形的底角为2α,顶角为α,根据三角形的内角和为180°,得出答案.答案详解:解:①设三角形底角为α,顶角为2α,则α+α+2α=180°,解得:α=45°,②设三角形的底角为2α,顶角为α,则2α+2α+α=180°,解得:α=36°,∴2α=72°,∴三角形的“可爱角”应该是45°或72°,所以选:C.22.若三角形满足一个角α是另一个角β的3倍,则称这个三角形为“智慧三角形”,其中α称为“智慧角”.在有一个角为60°的“智慧三角形”中,“智慧角”是 60或90 度.试题分析:根据“智慧三角形”及“智慧角”的意义,列方程求解即可.答案详解:解:在有一个角为60°的三角形中,①当另两个角分别是100°、20°时,“智慧角”是60°;②α+β=120°且α=3β,∴α=90°.,即“智慧角”是90°.所以答案是:60或90.。
初中数学三角形专题训练50题含参考答案
初中数学三角形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知△ABC的六个元素,则图中甲、乙、丙三个三角形中和△ABC全等的图形个数是A.1B.2C.3D.02.如图,以点P为圆心,以x轴交于A,B两点,点A的坐标为(2,0),点B的坐标为(6,0),则圆心P的坐标为()A.B.(4,2)C.(4,4)D.(2,3.如图,等腰△ABC,BA=BC,点P是腰AB上一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有()A.1个B.2个C .3个D .4个4.在学习“三角形的内角和外角”时,老师在学案上设计了以下内容:下列选项正确的是( )A .①处填ECD ∠B .①处填ECD ∠C .①处填A ∠D .①处填B ∠ 5.如图,在一块长方形草地上修速两条互相垂直且宽度相同的平行四边形通道,其中60KHB ∠=︒,已知20AB =米,30BC =米,四块草地总图积为2503m ,设GH 为x 米,则可列方程为( )A .2030503⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭B .(20)(30)503x x --=C .2203097x x x +-=D .232030974x x x +-= 6.下列四个命题中,是假命题的是( )A .过直线外一点,有且只有一条直线与已知直线平行B .两条直线被第三条直线所截,同位角相等C .三角形任意两边之和大于第三边D .如果a b =,a c =,那么b c =7.如图,BD 是①O 的直径,点A 、C 在圆上,且CD =OB ,则①BAC =( )A.120°B.90°C.60°D.30°8.已知:在平行四边形ABCD中,点M是BC的中点,MAD MDA∠=∠,则B∠=()A.60°B.90°C.100°D.120°9.两个直角三角形中:①有两条边相等;①一锐角和斜边对应相等;①斜边和一直角边对应相等;①两个锐角对应相等.能使这两个直角三角形全等的是()A.①①①B.①①C.①①D.①①①①10.如图,已知点O是正六边形ABCDEF的中心,扇形AOE的面积是12π,则正六边形的边长为()A.6B.C.D.1211.如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为()A.3B.C.D12.如图,在△ABC中,①ACB=90°,①B=40°,分别以点A和点B为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,则①CDE 等于( )A .8°B .10°C .15°D .20° 13.已知菱形ABCD ,E 、F 是动点,边长为5,BE AF =,120BAD ∠=︒,则下列命题中正确的是( )①BEC AFC ≌;①ECF △为等边三角形;①ECF △的边长最小值为①若2AF =,则23FGC EGC S S =△△.A .①①B .①①C .①①①D .①①① 14.如图,在直角①O 的内部有一滑动杆AB ,当端点A 沿直线AO 向下滑动时,端点B 会随之自动地沿直线OB 向左滑动,如果滑动杆从图中AB 处滑动到A ′B ′处,那么滑动杆的中点C 所经过的路径是( )A .直线的一部分B .圆的一部分C .双曲线的一部分D .抛物线的一部分15.如图,平面内三点A 、B 、C ,AB =,AC =BC 为对角线作正方形BDCE ,连接AD ,则AD 的最大值是()A.5B.C.7D.16.在ABCD中,O是对角线AC,BD的交点.若AOB的面积是8,则ABCD□的面积是()A.16B.24C.32D.4017.如图,已知半圆O的直径8AB=,C是半圆上一点,沿AC折叠半圆得到弧ADC,交直径AB于点D,若DA、DB的长均不小于2,则AC的长可能是()A.7B.6C.5D.418.梯形的对角线互相垂直,其中一条对角线长为5,梯形的高为4,则梯形的面积为()A.5B.10C.503D.25319.如图,抛物线y=x2+bx+c与x轴的交点为A(x1,0)和B(x2,0),与y轴负半轴交点为C,点D为线段OC上一点.且满足c=x1+b,①ACO=①DBO,则下列说法:①b-c=1;①①AOC①①DOB;①若①DBC=30°,则抛物线的对称轴为直线x①当点B绕点D顺时针旋转90°后得到的点B'也在抛物线上,则抛物线的解析式为y=x2-2x-3.正确的是()A .①①①B .①①①C .①①①D .①①①①二、填空题20.如图,P 是MON ∠的平分线上一点,PA ON ⊥于点A ,Q 是射线OM 上一个动点,若8PA =,则PQ 的最小值为______.21.△ABC 中,①A=40o ,①B=60o ,则与①C 相邻外角的度数是______.22.在ABC 中,15,13AB AC ==,高12AD =,则ABC 的周长是 _____. 23.如图,已知ABC BAD ≌,A 和B ,C 和D 分别是对应顶点,且60C ∠=︒,35ABD ∠=︒,则BAD ∠ 的度数是_______24.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB ∠的两边OA 、OB 上分别在取OC OD =,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是AOB ∠的平分线.利用所学知识可知他构造全等三角形的依据是________.25.等腰三角形的周长18cm ,其中一边长为8cm ,则底边长为 ___________cm . 26.如图,在①ABC 中,AD 、AE 分别是BC 边上的中线和高,AE =6,S △ABD =15,则CD =_____.27.如图,为了防止门板变形,小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由是利用了三角形的________.28.如图,在Rt △ABC 中,AB =BC ,①B =90°,AC =BDEF 是△ABC 的内接正方形(点D ,E ,F 在三角形的边上),则此正方形的面积是_______.29.如图, 正方形ABCD 和等边AEF △都内接于O EF ⊙,与BC CD ,分别相交于点G , H . 若6AE =, 则EG 的长为________.30.如图,在等边①ABC 中,BC =9,点O 是AC 上的一点,点D 是BC 上的一点,若①APO ①①COD ,AO =2.7,则BP =__________.31.平行四边形ABCD 中,E 为BA 延长线上的一点,CE 交AD 于F 点,若:1:3AE AB =,则:CDF ABCF S S =四边形________.32.如图,在Rt ①ABC 中,①ACB =90°,点D 是边AB 的中点,连接CD ,将①BCD 沿直线CD 翻折得到①ECD ,连接AE .若AC =6,BC =8,则①ADE 的面积为____.33.已知:如图,以Rt ABC 的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为__.34.如图,在菱形ABCD 中,点E 是BC 上的点,AE ①BC ,若sin B =35,EC =3,P 是AB 边上的一个动点,则线段PE 最小时,BP 长为_____.35.如图,AB 为①O 的直径,弦CD①AB 于E ,已知CD =12,BE =2,则①O 半径为________.36.如图,在Rt①ABC 中,①ACB =90°,①B =35°,CD 是斜边AB 上的中线,如果将①BCD 沿CD 所在直线翻折,点B 落在点E 处,联结AE ,那么①CAE 的度数是_____度.37.如图,在菱形ABCD 中,=60B ∠︒,E 在CD 上,将ADE ∆沿AE 翻折至AD E '∆,且AD '刚好过BC 的中点P ,则D EC '∠=_________.38.如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,,则点2020B 的坐标______.三、解答题39.如图,在ABC 中,44ABC ∠=︒,BD 平分ABC ∠,60C ∠=︒,22BDE ∠=︒.(1)求证:DE//AB;∠的度数.(2)求ADB40.如图,菱形ABCD对角线AC,BD相交于点O,点E是AD的中点,过点A作对角线AC的垂线,与OE的延长线交于点F,连接FD.(1)求证:四边形AODF是矩形;(2)若AD=10,①ABC=60°,求OF和OA的长.=,D是BC边上的中点,连结AD,BE平分①ABC交41.如图,在①ABC中,AB ACAC于点E,过点E作EF//BC交AB于点F.(1)若36∠=︒,求①BAD的度数;C(2)求证:点F在BE的垂直平分线上.42.如图,已知EF①BC,AD①BC,①1=①2,①判断DM与AB的位置关系,并说明理由;①若①BAC=70°,DM平分①ADC,求①ACB的度数.43.如图1,线段AD,BC相交于点O,32B︒∠=,38∠=.D︒(1)若60A ︒∠=,求AOB ∠和C ∠的度数;(2)在(1)的条件下,如图2,若BAO ∠、DCO ∠的平分线AM ,CM 相交于点M ,求M ∠度数;(3)若改变条件,设B α∠=,D β∠=,试用含αβ,的代数式表示M ∠的大小. 44.已知抛物线y =x 2+(12m ﹣2)x ﹣3,抛物线与坐标轴交于点A (3,0)、B 两点.(1)求抛物线解析式;(2)当点P (2,a )在抛物线上时.①如图1,过点P 不与坐标轴平行的直线l 1与抛物线有且只有一个交点,求直线l 1的方程;①如图2,若直线l 2:y =2x +b 交抛物线于M ,点M 在点P 的右侧,过点P (2,a )作PQ ①y 轴交直线l 2于点Q ,延长MQ 到点N 使得MQ =NQ ,试判断点N 是否在抛物线上?请说明理由.45.已知:如图,已知点B 、E 、F 、C 在同一直线上,AB =CD ,AE ⊥BC ,DF ⊥BC ,E ,F 是垂足,CE =BF ,求证:AB //CD .46.已知:如图所示,在Rt ABC ∆中,90ACB ∠=︒,AC BC =,点D 是BC 的中点,CE AD⊥,垂足为点E,BF AC交CE的延长线于点F,求证:AB垂直平分DF.47.求证:顶角是锐角的等腰三角形腰上的高与底边夹角等于其顶角的一半.(1)根据题意补全下图,并根据题设和结论,结合图形,用符号语言补充写出“已知”和“求证”.=,______;已知:在锐角ABC中,AB AC求证:______.(2)证明:48.如图,已知①ABC中,AB=AC,①A=108°,BD平分①ABC.求证:BC=AB+CD.参考答案:1.B【分析】根据全等三角形判定方法进行判断即可【详解】解:由已知,甲全等条件不具备,乙和△ABC满足两角夹边,故全等,丙和△ABC满足两角和其中一角的对边,故全等,因此,有两个三角形可以判定三角形全等. 2.C【分析】作PC①AB于C,如图,由点A和点B坐标得到AB=4,再根据垂径定理得到AC=BC=2,然后根据勾股定理计算出PC=4,于是可确定P点坐标.【详解】解:作PC①AB于C,如图,①点A的坐标为(2,0),点B的坐标为(6,0),①OA=2,OB=6,①AB=OB-OA=4,①PC①AB,①AC=BC=2,在Rt△P AC中,①P A AC=2,①PC,①OC=OA+AC=4,①P点坐标为(4,4).故选:C.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、坐标与图形性质.3.C【分析】根据相似三角形的判定,过点P分别BC,AC的平行线即可得到与原三角形相似的三角形,过点P作以点P为顶点的角与①A相等的角也可以得到原三角形相似的三角形.【详解】解:①BA=BC,①①A=①C,①作PE①BC,可得①APE①①ABC.①作PF①AC,可得①BPF①①BAC.①作①APG=①A,可得①AGP①①ABC,故选:C.【点睛】本题考查相似三角形的判定质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题.4.B【分析】延长BC到点D,过点C作CE①AB.依据平行线的性质以及平角的定义,即可得到①A+①B+①ACB=180°.【详解】延长BC到点D,过点C作CE①AB,①CE①AB.①①A=①ACE(两直线平行,内错角相等).①B=①ECD(两直线平行,同位角相等).①①ACB+①ACE+①ECD=180°(平角定义).①①A+①B+①ACB=180°(等量代换).故选:B.【点睛】本题主要考查了平行线的性质以及三角形内角和定理,解题时注意:两直线平行,内错角相等;两直线平行,同位角相等.5.D【分析】设GH为x米,根据矩形和平行四边形的面积公式,即可得出关于x的一元二次方程,此题得解.【详解】解:过H 作HM ①LG 于M ,①①KHB =60°,//LG KH ,①①HGM =①KHB =60°,①①HMG =90°,①HM , ①长方形的面积=20×30=600(cm )2,①四块草地总面积为503m 2,①通道的面积为:20x +30x -34x 2=97, 故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.B【分析】根据平行公理,平行线的性质及三角形三边关系等逐项判断.【详解】A.过直线外一点,有且只有一条直线与已知直线平行,故A 不符合题意;B.两条平行线被第三条直线所截,同位角相等,故B 符合题意;C.三角形任意两边之和大于第三边,故C 不符合题意;D.如果a =b ,a =c ,那么b =c ,故D 不符合题意.故选:B .【点睛】本题考查命题与定理,解题的关键是掌握平行公理,平行线的性质及三角形三边关系等教材上的相关结论.7.C【分析】根据题意得OCD ∆为等边三角形,则60COD ∠=︒,根据圆周角定理得出BAC ∠的度数.【详解】解:连接OC ,CD OB =,OCD ∴∆为等边三角形,60COD ∴∠=︒,180120BOC COD ∴∠=︒-∠=︒,111206022BAC BOC ∴∠=∠=⨯︒=︒, 故选:C .【点睛】本题考查了圆周角定理、等边三角形的判定,解题的关键是掌握圆周角定理的内容.8.B【分析】由MAD MDA ∠=∠,得AM =DM ,再由平行四边形的性质得AB =CD ,AB ∥CD ,则①B +①C =180°,然后证△ABM ①△DCM (SSS ),得①B =①C ,即可求得①B 度数.【详解】解:如图,过点M 作MN ①AD 于N ,①MAD MDA ∠=∠,①AM =DM ,①平行四边形ABCD ,①AB =CD ,AB ∥CD ,①①B +①C =180°,①点M 是BC 的中点,在△ABM 与△DCM 中,AB DC BM CM AM DM =⎧⎪=⎨⎪=⎩,①△ABM ①△DCM (SSS ),①①B =①C ,①2①B =180°,①①B =90°,故选:B .【点睛】本题考查平行四边形的性质,等腰三角形的判定,全等三角形的判定与性质,熟练掌握相关性质与判定是解题的关键.9.B【分析】根据直角三角形全等的判定条件逐一分析即可得到答案.【详解】解:①两个直角三角形中有两条边相等,不能证明两个直角三角形全等,如一条直角边相等,另一个直角边与斜边相等;①两个直角三角形中一锐角和斜边对应相等,可用AAS 证明两个直角三角形全等; ①两个直角三角形中斜边和一直角边对应相等,可用HL 证明两个直角三角形全等; ①两个直角三角形中两个锐角对应相等,不能证明两个直角三角形全等;故选B .【点睛】本题主要考查了直角三角形全等的判定定理,熟知直角三角形的判定定理有AAS SAS ASA SSS HL ,,,,是解题的关键.10.A【分析】先求出中心角120AOE ∠︒=,证得OAF △是等边三角形,得到AF R =,根据扇形的面积求出圆的半径,即可得到正六边形的边长.【详解】解:连接OF ,设①O 的半径为R ,①O 是正六边形ABCDEF 的中心, ①360606AOF EOF ︒∠=∠==︒, ①120AOE ∠︒=,①OAF △是等边三角形,①AF OA R ==,①扇形AOE 的面积是12π, ①212012360R ππ=, ①236R = ,①6AF R ==,①正六边形的边长是6,故选:A .【点睛】本题考查了正多边形与圆,扇形的面积计算,解题的关键是求出正多边形的边长等于圆的半径.11.D【分析】作DF①CE 于F ,构建两个直角三角形,运用勾股定理逐一解答即可.【详解】过D 作DF①CE 于F ,根据等腰三角形的三线合一,得:CF=1,在直角三角形CDF 中,根据勾股定理,得:DF 2=CD 2-CF 2=22-12=3,在直角三角形BDF 中,BF=BC+CF=1+1=2,根据勾股定理得:故选D.【点睛】本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.12.B【分析】由题意得MN 垂直平分AB ,得到AD =BD ,①ADE =90°,证得CD =AD =BD ,求出①ADC =2①B =80°,即可得到①CDE 的度数.【详解】解:由题意得MN 垂直平分AB ,①AD =BD ,①ADE =90°,①①ACB =90°,①CD =AD =BD ,①①BCD =①B =40°,①①ADC =2①B =80°,①①CDE =①ADE -①ADC =10°,故选:B .【点睛】此题考查了线段垂直平分线的作图方法,直角三角形斜边中线等于斜边一半的性质、等腰三角形的性质、三角形的外角性质,正确理解线段垂直平分线的作图是解题的关键.13.C【分析】根据菱形的性质可得AB =BC ,AD ①BC ,①BAC =①DAC =12①BAD =60°,从而可得①B =60°,进而证明△ABC 是等边三角形,然后得出BC =AC ,即可判断①;利用①的结论可得CE =CF ,①BCE =①ACF ,从而可得①BCA =①ECF =60°,即可判断①;当CE ①AB 时,ECF △的边长取最小值,根据含30度角的直角三角形的性质求出BE ,再利用勾股定理求出CE 即可判断①;过点E 作EM ①BC ,交AC 于点M ,求出EM =3,然后利用平行线分线段成比例求出23FG AF EG EM ==即可判断①. 【详解】解:①四边形ABCD 是菱形,120BAD ∠=︒,①AB =BC ,AD ①BC ,①BAC =①DAC =12①BAD =60°,①①B =180°−①BAD =60°,①①ABC 是等边三角形,①BC =AC ,①ACB =60°,在△BEC 和△AFC 中,BE AF B FAC BC AC =⎧⎪∠=∠⎨⎪=⎩,①①BEC ①①AFC (SAS ),①正确; ①CE =CF ,①BCE =①ACF ,①①BCE +①ACE =①ACF +①ACE , ①①BCA =①ECF =60°,①①ECF 是等边三角形,①正确; ①△ABC 是等边三角形,AB =BC =5, ①当CE ①AB 时,ECF △的边长取最小值, ①①B =60°,①此时①BCE =30°,①BE =1522BC =, ①CE①ECF △,①错误; 过点E 作EM ①BC ,交AC 于点M ,①①BEC ①①AFC ,①AF =BE =2,①AB =5,①AE =AB −BE =5−2=3,①EM ①BC ,①①AEM =①B =60°,①AME =①ACB =60°, ①①AEM 是等边三角形,①AE =EM =3,①AD①BC,①AF①EM①23 FG AFEG EM==,①23FGC EGCS S=△△,①正确;故选:C.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定与性质,含30度角的直角三角形的性质,勾股定理以及平行线分线段成比例,灵活运用各性质进行推理是解题的关键.14.B【详解】连接OC、OC′,如图,①①AOB=90°,C为AB中点,①OC=12AB=12A′B′=OC′,①当端点A沿直线AO向下滑动时,AB的中点C到O的距离始终为定长,①滑动杆的中点C所经过的路径是一段圆弧.故选B.【点睛】考点:①圆的定义与性质;①直角三角形的性质.15.C【分析】如图,将①BDA绕点D顺时针旋转90°得到①CDM,由旋转的性质可得①ADM是等腰直角三角形,根据勾股定理推出AD,可知当AM的值最大时,AD的值最大,利用三角形的三边关系求出AM的最大值,即可解决问题.【详解】解:如图,将BDA△绕点D顺时针旋转90°得到CDM由旋转的性质可知:4AB CM ==,DA DM =,90ADM ∠=︒①ADM △是等腰直角三角形,①根据勾股定理222AD MD AM +=,①AD AM =, ①当AM 的值最大时,AD 的值最大,①AM AC CM ≤+,AC CM AB ===①AM ≤①AM 的最大值为①AD 的最大值为7,故选C .【点睛】本题考查了正方形的性质,旋转的性质,等腰直角三角形的判定和性质,勾股定理以及两点之间线段最短.解题的关键在于根据旋转的性质构造等腰直角三角形. 16.C【分析】根据平行四边形的性质可得BO =DO ,AO =CO ,由此可得8AOB AOD BOC COD S S S S ∆∆∆∆====,从而可得结论.【详解】解:①四边形ABCD 是平行四边形,①BO =DO ,AO =CO ,①8AOB AOD BOC COD S S S S ∆∆∆∆====,①平行四边形ABCD 的面积=4×8=32,故选:C【点睛】本题考查了平行四边形的性质和三角形中线的性质,解决本题的关键是理解平行四边形的对角线互相平分.17.A【分析】分如解图①,当点D 在圆心O 的左侧且2AD =时,如解图①,当点D 在圆心O 的右侧且2BD =时,两种情况求出AC 的长,从而确定AC 的取值范围即可得到答案.【详解】如解图①,当点D 在圆心O 的左侧且2AD =时,过C 作CE AB ⊥,垂足为E ,连接CD 、CO 、CB ,①AC ADC =,①CDB CBD ∠=∠,①CD CB =,①3DE BE ==,①2DO =,①1OE =,①5AE =,22215CE CO OE =-=,①AC =如解图①,当点D 在圆心O 的右侧且2BD =时,过C 作CE AB ⊥,垂足为E ,连接CD 、CO 、CB ,①AC ADC =,①CDB CBD ∠=∠,①CD CB =,①1DE BE ==,①3OE =,①7AE =,2227CE CO OE =-=,①AC =①若DA 、DB 的长均不小于2AC ≤①AC 的长可能是7,故选A .【点睛】本题主要考查了圆周角定理,等腰三角形的性质与判定,勾股定理,无理数的估算等等,利用分类讨论的思想求解是解题的关键.18.C【分析】过B 作BE AC ∥交DC 延长线于E ,过B 作BF DC ⊥于F ,如图所示,根据题意,分两种情况讨论:①当5BD =时;①当5AC =时,根据双垂直模型得到BDF EBF ∽△△,利用相似比得到未知线段,然后根据BDE ABCD S S =△梯形代值求解即可得到答案.【详解】解:过B 作BE AC ∥交DC 延长线于E ,过B 作BF DC ⊥于F ,如图所示:4BF ∴=,①当5BD =时,对角线相互垂直,即AC BD ⊥,BE BD ∴⊥,90DBF EBF ∴∠+∠=︒,BF DC ⊥,在Rt BDF △中,90,5,4DFB BD BF ∠=︒==,则3DF =, 90DBF BDF ∴∠+∠=︒,BDF EBF ∴∠=∠,90BFD BFE ∠=∠=︒,∴BDF EBF ∽△△,BD DF BE BF ∴=,即534BE =,203BE ∴=, ,AB CE AC BE ∥∥,∴四边形ABEF 是平行四边形,AB CE ∴=, ∴()()11111205052222233BDE ABCD S AB DC BF CE DC BF DE BF S BD BE =+⋅=+⋅=⋅==⋅=⨯⨯=△梯形;①当5AC =时,对角线相互垂直,即AC BD ⊥,BE BD ∴⊥,90DBF EBF ∴∠+∠=︒,BF DC ⊥,在Rt BEF △中,90,5,4EFB BE BF ∠=︒==,则3EF =, 90DBF BDF ∴∠+∠=︒,BDF EBF ∴∠=∠,90BFD BFE ∠=∠=︒,∴BDF EBF ∽△△,BD BF BE EF∴=,即453BD =, 203BD ∴=, ,AB CE AC BE ∥∥,∴四边形ABEF 是平行四边形,AB CE ∴=, ∴()()11111205052222233BDE ABCD S AB DC BF CE DC BF DE BF S BD BE =+⋅=+⋅=⋅==⋅=⨯⨯=△梯形;综上所述,梯形的对角线互相垂直,其中一条对角线长为5,梯形的高为4,则梯形的面积为503,【点睛】本题属于几何综合问题,考查梯形性质、梯形面积公式、勾股定理、两个三角形相似的判定与性质、平行四边形的判定与性质、三角形面积及双垂直模型等知识,熟练掌握相关几何图形的性质是解决问题的关键.19.B【分析】利用已知条件分别求得点A,B,C的坐标,表示出线段OA,OB,OC的长度,利用二次函数的性质,待定系数法与全等三角形的判定定理对每个结论进行逐一判断即可得出结论.【详解】解:将A(x1,0)代入物线y=x2+bx+c得:x12+bx1+c=0.①c=x1+b,①x12+bx1+x1+b=0,①x1(x1+1)+b(x1+1)=0,①(x1+b)(x1+1)=0,①c=x1+b≠0,①x1+1=0,①x1=-1,①A(-1,0),①OA=1,①c=-1+b,①b-c=1.①①的结论正确;①c=-1+b,①y=x2+bx+b-1,令y=0,则x2+bx+b-1=0,解得:x=-1或x=1-b,①B(1-b,0),①抛物线的对称轴在y轴的右侧,①b<0,①OB=1-b,①C(0,b-1),①OB =OC ,在△AOC 和△DOB 中,90ACO DBO OC OB AOC DOB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ①①AOC ①①DOB (ASA ).①①的结论正确;若①DBC =30°,过点D 作DH ①BC 于点H ,如图,①①AOC ①①DOB ,①OA =OD =1,AC =BD ,①CD =OC -OD =-b ,①OB =OC ,①①OCB =①OBC =45°,①DH ①BC ,①DH, ①DH ①BC ,①DBC =30°,①BD =2DH,①ACb ,①OA 2+OC 2=AC 2,①12+(1−b ) 2=b ) 2.解得:b①b①抛物线的对称轴为直线x== ①①的结论不正确;当点B 绕点D 顺时针旋转90°后得到的点B '也在抛物线上时,过点B ′作B ′M ①y 轴于点M ,如图,由题意:DB =DB ′,①BDB ′=90°,①①MDB ′+①ODB =90°,①①ODB +①OBD =90°,①①MDB ′=①OBD ,在△MDB ′和△OBD 中,90DMB BOD MDB OBD DB BD ''∠=∠=︒⎧⎪∠=∠⎨⎪=⎩',①①MDB ′①①OBD (AAS ),①MD =OB =1-b ,MB ′=OD =1,①OM =OD +DM =2-b ,①B ′(1,b -2),①1+b +b -1=b -2,解得:b =-2,①c =b -1=-3,①此时抛物线的解析式为y=x2-2x-3,①①的结论正确;综上,正确的结论是:①①①.故选:B.【点睛】本题主要考查了待定系数法,数形结合法,二次函数的性质,抛物线与x轴的交点,抛物线上点的坐标的特征,图形的旋转的性质,全等三角形的判定与性质,勾股定理,含30°角的直角三角形的性质,熟练掌握二次函数的性质是解题的关键.20.8【分析】根据角平分线的性质定理解答.【详解】解:当PQ①OM时,PQ最小,①P是①MON角平分线上的一点,PA①ON,PQ①OM,①PQ=PA=8,故答案为:8.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.21.100°##100度【分析】先根据三角形的内角和求出①C的度数,即可求出与①C相邻外角的度数【详解】①C=180°-①A-①B=80°,①①C相邻外角的度数为180°-80°=100°.故答案为:100°【点睛】此题主要考查邻补角的求解,解题的关键是熟知三角形的内角和为180°. 22.42或32##32或42【分析】分两种情况讨论:当高AD在ABC的内部时,当高AD在ABC的外部时,结合勾股定理,即可求解.【详解】解:当高AD在ABC的内部时,如图,在Rt ABD中,9BD,在Rt ACD中,5CD==,①14BC BD CD =+=,此时ABC 的周长是15141342AB BC AC ++=++=;当高AD 在ABC 的外部时,如图,在Rt ABD中,9BD ,在Rt ACD中,5CD ==,①4BC BD CD =-=,此时ABC 的周长是1541332AB BC AC ++=++=;综上所述,ABC 的周长是42或32.故答案为:42或32【点睛】此题考查了勾股定理的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.23.85︒【分析】根据全等三角形的性质和三角形内角和定理计算即可;【详解】①ABC BAD ≌,60C ∠=︒,35ABD ∠=︒,①60C D ∠=∠=︒,35DBA CAB ∠=∠=︒,①180180603585DAB D DBA ∠=︒-∠-∠=︒-︒-︒=︒.故答案是:85︒.【点睛】本题主要考查了全等三角形的性质和三角形内角和定理,准确分析计算是解题的关键.24.SSS【分析】根据全等三角形的判定定理SSS 推出①COM ①①DOM ,根据全等三角形的性质得出①COM =①DOM ,根据角平分线的定义得出答案即可.【详解】解:在①COM 和①DOM 中,,OC OD OM OM MC MD =⎧⎪=⎨⎪=⎩. ①①COM ①①DOM (SSS ),①①COM=①DOM,即OM是①AOB的平分线,故答案为:SSS.【点睛】本题考查了全等三角形的判定定理和性质定理,能熟记全等三角形的判定定理是解此题的关键.25.2或8.【详解】试题分析:由题意知,应分两种情况:当腰长为8cm时,则另一腰也为8cm,底边为18-2×8=2cm,①0<2<8+8,①边长分别为8cm,8cm,2cm,能构成三角形;当底边长为8cm时,腰的长=(18-8)÷2=5cm,①0<8<5+5=13,①边长为5cm,5cm,8cm,能构成三角形.故答案为2或8.考点:等腰三角形的性质.26.5【分析】由利用三角形的面积公式可求得BD的长,再由中线的定义可得CD=BD,从而得解.【详解】解:①S△ABD=15,AE是BC边上的高,BD•AE=15,①12×6BD=15,则12解得:BD=5,①AD是BC边上的中线,①CD=BD=5.故答案为:5.【点睛】本题主要考查三角形的中线,三角形的高,解答的关键是由三角形的面积公式求得BD的长.27.稳定性【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性.【详解】解:这样做的原因是:利用三角形的稳定性使门板不变形.故答案为:三角形具有稳定性.【点睛】本题主要考查三角形的稳定性在实际生活中的应用.28.36【分析】由△ABC 是等腰直角三角形,可得①A =①C =45°,从而证明△AEF 也是等腰直角三角形,设AF =x ,则BF =12﹣x ,列出方程并求出x 的值,再根据正方形的面积公式即可求得.【详解】解:①①ABC 是等腰直角三角形,①①A =①C =45°,①四边形BDEF 是△ABC 的内接正方形,①EF ①BC ,①①AEF =①C =45°,①①AEF 也是等腰直角三角形,①AF =EF ,设AF =x ,则BF =12﹣x ,①12﹣x =x ,①x =6,①此正方形的面积为6×6=36.故答案为:36.【点睛】本题考查了正方形的性质、等腰三角形的性质及判定.解题的关键是熟练掌握正方形的性质.29.3【分析】连接AC ,CE ,CF ,正方形ABCD 和等边AEF △都内接于O ,得证AC 是O 的直径,45ACG ∠=,60AEF AFE ∠=∠=,AE AF =,从而得证90AEC AFC ∠=∠=,30CEF CFE ∠=∠=,得到CE CF =,直线AC 是线段EF 的垂直平分线,从而得到90GMC ∠=,45CGM ∠=,得证CM GM =,30EAM ∠=,从而得证132EM AE ==,AM =2AC EC =,结合222AC EC AE =+,确定AC =CM GM AC AM ==-==,根据EG EM GM =-计算即可.【详解】如图,连接AC ,CE ,CF ,因为正方形ABCD 和等边AEF △都内接于O , 所以AC 是O 的直径,45ACG ∠=,60AEF AFE ∠=∠=,AE AF =,所以90AEC AFC ∠=∠=,30CEF CFE ∠=∠=,所以CE CF =,所以直线AC 是线段EF 的垂直平分线,所以90GMC ∠=,45CGM ∠=,所以CM GM =,30EAM ∠=,所以132EM AE ==,AM ==2AC EC =, 因为222AC EC AE =+, 所以2221()62AC AC =+,解得AC =所以CM GM AC AM ==-=所以EG EM GM =-=3故答案为:3【点睛】本题考查了正方形的性质,等边三角形的性质,线段垂直平分线的判定和性质,圆的基本性质,直角三角形的性质,勾股定理,等腰直角三角形的判定和性质,熟练掌握正方形的性质,圆的性质,等边三角形的性质,勾股定理是解题的关键.30.2.7【分析】根据全等可得OC =AP ,再根据等边三角形的性质可得AC =AB ,从而可得AO =BP ,即可得出结论【详解】解:①①ABC 为等边三角形,①AC =AB =BC =9,①①APO ①①COD ,AO =2.7,①AP =OC ,①BP =AO =2.7.故答案为:2.7.【点睛】本题考查全等三角形的性质,等边三角形的性质.正确理解性质得出线段之间的关系是解题关键.31.5:3.【分析】过C 做CG ①AD 交AD 延长线于G ,根据四边形ABCD 为平行四边形,可得CD∥AB 且CD =AB ,AD =BC ,利用平行线性质可得①CDF =①EAF ,①DCF =①E ,可证△DCF ①①AEF ,根据相似三角形性质可得31DF DC AF AE ==,设AF =m ,DF =3m ,则BC =AD = 4m ,求三角形与四边形面积S △CDF =1322DF CG mCG ⋅=,S 四边形ABCF =()()1154222AF BC CG m m CG mCG +⋅=+⋅=,再求两面积比即可. 【详解】解:过C 做CG ①AD 交AD 延长线于G ,①四边形ABCD 为平行四边形,①CD∥AB 且CD =AB ,AD =BC ,①①CDF =①EAF ,①DCF =①E ,①△DCF ①①AEF , ①31DF DC AF AE ==, 设AF =m ,DF =3m ,则BC =AD =AF +DF =4m ,①S △CDF =1322DF CG mCG ⋅=, S 四边形ABCF =()()1154222AF BC CG m m CG mCG +⋅=+⋅=, ①53::5:322CDF ABCF S S mCG mCG ==四边形. 故答案为5:3.【点睛】本题考查平行四边形的性质,三角形相似判定与性质,三角形面积与四边形面积,掌握平行四边形的性质,三角形相似判定与性质,三角形面积与四边形面积是解题关键.32.6.72【分析】连接BE,延长CD交BE与点H,作CF①AB,垂足为F.首先证明DC垂直平分线段BE,△ABE是直角三角形,利用三角形的面积求出EH,得到BE的长,在Rt△ABE 中,利用勾股定理即可解决问题.【详解】解:如图,连接BE,延长CD交BE与点H,作CF①AB,垂足为F.①①ACB=90°,AC=6,BC=8.①AB,①D是AB的中点,①AD=BD=CD=5,①S△ABC=12AC•BC=12AB•CF,①12×6×8=12×10×CF,解得CF=4.8.①将△BCD沿直线CD翻折得到△ECD,①BC=CE,BD=DE,①CH①BE,BH=HE.①AD=DB=DE,①①ABE为直角三角形,①AEB=90°,①S△ECD=S△ACD,①12DC•HE=12AD•CF,①DC=AD,①HE=CF=4.8.①BE=2EH=9.6.①①AEB=90°,①AE.①S△ADE=12EH•AE=12×2.8×4.8=6.72.故答案为:6.72.【点睛】本题考查了翻折变换(折叠问题),直角三角形斜边上的中线的性质,勾股定理,三角形的面积等知识,解题的关键是学会利用面积法求高,属于中考常考题型.33.【详解】试题分析:根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.解:在Rt①ABC中,AB2=AC2+BC2,AB=5,S阴影=S△AHC+S△BFC+S△AEB=×+×+×,=(AC2+BC2+AB2),=AB2,=×52=.故答案为.点评:本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.34.48 5【分析】根据垂线段最短可知当EP①AB时,线段EP最短.根据12•AB•PE=12×BE×AE,只要求出AB、AE、BE、PE,即可解决问题.【详解】解:根据垂线段最短可知当PE①AB时,线段PE最短.①AE①BC于E,sinB=35=AEAB,设AE=3k,AB=BC=5k,则BE=4k,EC=k,①EC=3,①k=3,①BE=12,AB=15,AE=9,当PE①AB时,12•AB•PE=12×BE×AE,①PE=AE BEAB⨯=365,①线段PE的最小值为365,①BP 485.故答案为:485.【点睛】本题考查菱形的性质、解直角三角形、垂线段最短、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.35.10.【分析】连结OC,设①O半径为r,则OC=r,OE=r-2,根据垂径定理得到CE=DE=1 2CD=6,在Rt△OCE中,利用勾股定理列出关于r的等式,然后解方程求出r即可.【详解】解:连结OC,设①O半径为r,则OC=r,OE=r-BE=r-2,①CD①AB,CD=12①CE=DE=12CD=6,。
中考数学总复习《特殊三角形问题(二次函数综合)》专项检测卷(带答案)
中考数学总复习《特殊三角形问题(二次函数综合)》专项检测卷(带答案)学校:___________姓名:___________班级:___________考号:___________1.如图,一次函数122y x =--与x 轴、y 轴分别交于A 、 C 两点,二次函数2y ax bx c=++的图象经过A 、C 两点,与x 轴交于另一点B ,其对称轴为直线32x =-(1)求该二次函数表达式;(2)在y 轴的负半轴上是否存在一点M ,使以点M 、O 、B 为顶点的三角形与AOC 相似,若存在,求出点M 的坐标;若不存在,请说明理由;(3)在对称轴上是否存在点P ,使PAC 为等腰三角形,若存在,求出点P 的坐标;若不存在,请说明理由.2.如图,抛物线2y ax bx c =++与x 轴交于()4,0A -,()2,0B 两点,与y 轴交于点C .直线l 与抛物线交于A ,D 两点,与y 轴交于点E ,点D 的坐标为()1,5.(1)求抛物线的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接PA 、PD ,求当PAD 面积最大时点P 的坐标及该面积的最大值;(3)在y 轴上是否存在点Q ,使CDQ 是以CD 为腰的等腰三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由.3.如图,抛物线2122y x =-+与x 轴交于A ,B 两点,其中点A 在x 轴的正半轴上,点B 在x 轴的负半轴上.(1)试写出该抛物线的对称轴和顶点C 的坐标;(2)在抛物线上是否存在一点M ,使MAC OAC ≌?若存在,求出点M 的坐标;若不存在,请说明理由.4.如图,抛物线2y x bx c =-++交x 轴于()4,0A -,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.5.如图,已知二次函数2y x bx c =++经过A ,B 两点,BC x ⊥轴于点C ,且点()10A -,,()40C ,和AC BC =.(1)求抛物线的解析式;(2)点E 是线段AB 上一动点(不与A ,B 重合),过点E 作x 轴的垂线,交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标及ABF S △;(3)点P 是抛物线对称轴上的一个动点,是否存在这样的P 点,使ABP 成为直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.6.如图,已知抛物线()20y ax bx c a =++≠的对称轴为=1x -,且抛物线经过()()1,0,0,3A C 两点,与x 轴交于点B .(1)求抛物线的解析式;(2)在第二象限抛物线上找一点M ,BCM 的面积最大,求出此点M 的坐标;(3)设点P 为抛物线的对称轴=1x -上的一个动点,求使BPC △为直角三角形的点P 的坐标. 7.在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于点()1,0A -和点()3,0B ,与y 轴交于点C .(1)求抛物线的解析式及顶点坐标;(2)若点P 为第四象限内抛物线上一点,当PBC 面积最大时,求点P 的坐标;(3)若点P 为抛物线上一点,点Q 是线段BC 上一点(点Q 不与两端点重合),是否存在以P 、Q 、O 为顶点的三角形是等腰直角三角形,若存在,请直接写出满足条件的点P 的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,抛物线2y x bx c =-++经过()1,0A -,()0,3C 两点,并与x 轴交于另一点B .(1)求该抛物线所对应的函数关系式; (2)求点B 坐标;(3)设(),P x y 是抛物线上的一个动点,过点P 作直线l x ⊥轴于点M .交直线BC 于点N . ①若点P 在第一象限内,试问:线段PN 的长度是否存在最大值?若存在,求出它的最大值及此时x 的值;若不存在,请说明理由;①当点P 运动到某一位置时,能构成以BC 为底边的等腰三角形,求此时点P 的坐标及等腰BPC △的面积.9.如图,平面直角坐标系中,抛物线234(0)y ax ax a a =-->与x 轴交于A 、B 两点(A 在B 的左侧) 与y 轴交于点C 连接AC 、BC 抛物线的顶点为D .(1)用a 的代数式表示C 、D 的坐标;(2)当四边形ABDC 的面积21时 求该函数解析式;(3)当BCD △为直角三角形时 求a 的值.10.如图 顶点坐标为()1,4的抛物线2y ax bx c =++与x 轴交于A B ,两点(点A 在点B 的左边) 与y 轴交于点()03C D ,,是直线BC 上方抛物线上的一个动点 连接AD 交拋物线的对称轴于点E .(1)求抛物线的解析式;(2)连接AC 当ACE △的周长最小时 求点D 的坐标;(3)过点D 作DH x ⊥轴于点H 交直线BC 于点F 连接AF .在点D 运动过程中 是否存在使ACF △为等腰三角形?若存在 求点F 的坐标;若不存在 请说明理由.11.如图1 抛物线与x 轴交于A B 两点 点A B 分别位于原点的左、右两侧 与y 轴相交于C 已知抛物线对称轴为直线32x =直线334y x =-经过B 、C 两点.(1)求抛物线的解析式;(2)在抛物线上找一个点D (不与点C 重合) 使得ABD ABC ∠=∠ 请求出点D 的坐标; (3)如图2 点E 是直线BC 上一动点 过E 作x 轴的垂线交抛物线于F 点 连接CF 将CEF △沿CF 折叠 如果点E 对应的点M 恰好落在y 轴上 求此时点E 的坐标.12.如图 在平面直角坐标系中 抛物线214y x bx c =-++(b 、c 是常数)经过点()2,0A 点()0,3B .点P 在抛物线上 其横坐标为m .(1)求此抛物线解析式;(2)当点P 在x 轴上方时 结合图象 直接写出x 的取值范围;(3)若此抛物线在点P 右侧部分(包括点)P 的最高点的纵坐标为2m --. ①求m 的值①以PA 为边作等腰直角三角形PAQ 当点Q 在此抛物线的对称轴上时 直接写出点Q 的坐标.13.已知抛物线2y x bx c =-++与x 轴交于()1,0A -和()3,0B 两点.(1)求抛物线的解析式;(2)如图 过点()0,1D 的直线与y 轴右侧的抛物线交于F 与y 轴左侧的抛物线交于E 若2DF DE = 求直线的解析式;(3)设点P 是抛物线上任一点 点Q 在x 正半轴上 PCQ △能否构成以CPQ ∠为直角的等腰直角三角形?若能 请直接写出符合条件的点P 的坐标;若不能 请说明理由.14.如图 抛物线234y x bx c =-++交x 轴于(1,0)A - (4,0)B 两点 交y 轴于点C 点D 是抛物线上位于直线BC 上方的一个动点.(1)求抛物线的解析式;(2)连接AC BD 若ABD ACB ∠=∠ 求点D 的坐标;(3)在(2)的条件下 将抛物线沿着射线AD 平移m 个单位 平移后A 、D 的对应点分别为M 、N 在x 轴上是否存在点P 使得PMN ∆是等腰直角三角形?若存在 请求出m 的值;若不存在 请说明理由.15.如图 抛物线2y x bx c =++(b 、c 是常数)的顶点为C 与x 轴交于A 、B 两点 其中()10A , ()3,0B - 点P 从A 点出发 在线段AB 上以1单位长度/秒的速度向B 点运动 运动时间为t 秒04t << 过P 作PQ BC ∥交AC 于点Q .(1)求该抛物线的解析式;(2)当t 为何值时 CPQ 的面积最大?并求出CPQ 面积的最大值;(3)点P 出发的同一时刻 点M 从B 点出发 在线段BC 5单位长度/秒的速度向C 点运动 其中一个点到达终点时 另一个点也停止运动 在运动过程中 是否存在某一时刻t 使BMP 为等腰三角形 若存在 直接写出P 点坐标;若不存在 请说明理由.参考答案:1.(1)对于122y x =-- 当0x =时 =2y - 即点(0,2)C -令1202y x =--= 则4x =- 即点(4,0)A -.∵抛物线的对称轴为直线32x =- 则点(1,0)B∴抛物线与x 轴的另一个交点为()4,0-设二次函数表达式为:2(1)(4)(34)y a x x a x x =-+=+- ∵抛物线过点(0,2)C - 则42a -=-解得:12a =故抛物线的表达式为:213222y x x =+-; (2)存在 理由:在Rt AOC 中 4AO = =2CO 则1tan 2CO CAO AO ∠== ∵以点M 、O 、B 为顶点的三角形与AOC 相似 ==90AOC MOB ∠∠︒ ∴=MBO CAO ∠∠或=MBO ACO ∠∠ ∴1tan tan =2MBO CAO ∠=∠或tan tan =2MBO ACO ∠=∠ 即==21OM OM BO 或12解得:1=2OM 或2∵点M 在y 轴的负半轴上 即点()0,2M -或1(0,)2-;(3)存在 理由: 根据题意对称轴322b x a =-=- 设点3()2P t -, 由点A 、C 、P 的坐标得:2223+42PA t ⎛⎫=-+ ⎪⎝⎭ 2=20AC ()229=+24PC t +当PA AC =时 则223(4)202t -++=解得:t =±即点P 的坐标为:3()22-或3(,)22--; 当PA PC =时 则-++=++22239(4)(2)24t t 解得:0=t 即点3(,0)2P -; 当AC PC =时 则()292024t =++解得:=-±2t即点P 的坐标为:⎛--+ ⎝⎭3,22或⎛---⎝⎭3,22.综上 点P 的坐标为:355(22-或355(,22--或3(,0)2-或⎛--+ ⎝⎭371,22或⎛--- ⎪⎝⎭371,222. 2.(1)解:抛物线2y ax bx c =++经过点()4,0A - ()2,0B ()1,5D∴16404205a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩解得128a b c =-⎧⎪=-⎨⎪=⎩∴物线的解析式为228y x x =--+;(2)解:如图1 过点P 作PH AB ⊥于H 交直线l 于F 直线过点D 作DG AB ⊥于G设直线l 的解析式为y kx b =+ 直线l 经过()4,0A - ()1,5D∴405k b k b -+=⎧⎨+=⎩ 解得14k b =⎧⎨=⎩∴直线l 的解析式为4y x =+点P 是抛物线上的点且在直线l 上方 ∴设()2,28P t t t --+ 则(),4F t t +∴()2228434PF t t t t t =--+-+=--+设PAD 面积为S ∴111222S PF AH PF GH PF AG =⋅+⋅=⋅ ()()222151553125341410222228t t t t t ⎛⎫=--++=--+=-++⎪⎝⎭ 52-< ∴当S 最大值为1258时 32t =- 此时235284t t --+=∴当PAD 面积最大时点P 的坐标为335,24⎛⎫- ⎪⎝⎭及该面积的最大值为1258;(3)解:当0x =时 2288y x x =-+= ∴()0,8C∴CD ==①当1CD CQ == 1Q 在点C 的上方时∴118QO CO CQ =+=∴点1Q 的坐标为(0,8+;①当2CD CQ = 2Q 在点C 的下方时∴228OQ OB BQ =-=∴点2Q 的坐标为()0,810-;①当3CD DQ =时 设()30,Q n 则852n+=∴2n =点3Q 的坐标为()0,2;综上所述 存在点Q 使CDQ 是以CD 为腰的等腰三角形 点Q 的坐标为(0,810+或(0,810或()0,2. 3.(1)解:该抛物线的对称轴是y 轴 顶点C 的坐标为()0,2.(2)解:不存在.理由如下: 对于2122y x =-+ 令0y = 则21202x -+=解得12x = 22x =-∴点A 的坐标为()2,0 点B 的坐标为()2,0-.则2OA OB OC ===∴ OAC 是等腰直角三角形.假设存在一点M 使MAC OAC ≌AC 为公共边 OA OC =∴点M 和O 关于直线AC 对称∴四边形OAMC 是正方形∴点M 的坐标为()2,2.当2x =时 22112220222y x =-+=-⨯+=≠即点M 不在抛物线2122y x =-+上∴在抛物线上不存在一点M 使MAC OAC ≌.4.(1)解:把()4,0A - ()0,4C 代入2y x bx c =-++得①01644b cc =--+⎧⎨=⎩解得:34b c =-⎧⎨=⎩①该二次函数的解析式234y x x =--+;(2)解:①()4,0A - ()0,4C①4,4OA OC == ①1144822AOC S OA OC =⋅=⨯⨯=△ 设直线AC 的解析式为4y kx =+代入()4,0A -得 044k =-+解得1k =①直线AC 的解析式为4y x =+设()2,34P t t t --+ 则(),4Q t t +①()223444PQ t t t t t =--+-+=-- ①()()()22114422822ACP C A S PQ x x t t t =⋅-=--⨯=-++ ①四边形AOCP 的面积()22216ACP AOC SS t =+=-++ ①20-< ①当2t =-时 四边形AOCP 的面积最大为16;(3)解:设3,2M m ⎛⎫- ⎪⎝⎭①()4,0A - ()0,4C①2224432AC =+= 2222325424AM m m ⎛⎫=-++=+ ⎪⎝⎭ ()()2222394424CM m m ⎛⎫=-+-=+- ⎪⎝⎭当斜边为AC 时 AM CM AC 222+= 即()2225943244m m +++-= 整理得:24150m m ++= 无解;当斜边为AM 时 222AC CM AM += 即2292532(4)44m m ++-=+ 解得:112m =;①311,22M ⎛⎫- ⎪⎝⎭当斜边为CM 时 222AC AM CM += 即2225932(4)44m m ++=+- 解得:52m =-; ①35,22M ⎛⎫-- ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫-- ⎪⎝⎭或311,22⎛⎫- ⎪⎝⎭. 5.(1)解:①点()10A -, ()40C , ①5AC = 4OC =①5AC BC ==①()45B ,把()10A -,和()45B ,代入二次函数2y x bx c =++中得: 101645b c b c -+=⎧⎨++=⎩ 解得:23b c =-⎧⎨=-⎩①二次函数的解析式为:223y x x =--;(2)解:如图1 ①直线AB 经过点()10A -,和()45B , 设直线AB 的解析式为y kx b =+①045k b k b -+=⎧⎨+=⎩解得:11k b =⎧⎨=⎩①直线AB 的解析式为:1y x =+①二次函数2=23y x x --①设点(),1E t t + 则()2,23F t t t --①()()2232512324EF t t t t ⎛⎫=+---=--+ ⎪⎝⎭ ①当32t =时 EF 的最大值为254①点E 的坐标为35,22⎛⎫ ⎪⎝⎭; ()()1125125412248ABF B A S EF x x ∴=⋅-=⨯⨯+=; (3)解:存在①()222314y x x x =--=--①对称轴为直线1x =设()1,P m 分三种情况:①点B 为直角顶点时 由勾股定理得:222PB AB PA +=①()()()()22222241541511m m -+-+++=++解得:8m = ①()18P ,;①点A 为直角顶点时 由勾股定理得:222PA AB PB +=①()()()()22222211415415m m +++++=-+-解得:2m =- ①()12P -,; ①点P 为直角顶点时 由勾股定理得:222PB PA AB +=①()()()()22222211415415m m +++-+-=++解得:6m =或1m =-①()16P ,或()1,1P -; 综上 点P 的坐标为()18,或()12-,或()16,或()1,1-. 6.(1)由题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩解得:123a b c =-⎧⎪=-⎨⎪=⎩ ∴抛物线的解析为:223y x x =--+;(2)设点M 的坐标为()2,23m m m --+ 连接OM因为对称轴为1x =- ()1,0A所以()3,0B - 故3OB =因为()0,3C 故3OC =BCM BOM COM BOC S S S S ∴=+-△△△△()()2111323333222m m m =⨯⨯--++⨯⨯--⨯⨯ 23327228m ⎛⎫=-++ ⎪⎝⎭ ①当32m =-时 BCM 的面积最大 此时点M 的坐标为315,24⎛⎫- ⎪⎝⎭; (3)设点P 的坐标为()1,t -()()()1,,3,0,0,3P t B C --218CB ∴= ()2222134PB t t =-++=+ ()()222213610PC t t t =-+-=-+ ①当点B 为直角顶点时 222BC PB PC +=22184610t t t ∴++=-+ 解得:2t =-()1,2P ∴--①当点C 为直角顶点时 222BC PC PB +=22186104t t t ∴+-+=+ 解得:4t =()1,4P ∴-①当点P 为直角顶点时 222PC PB BC +=22461018t t t ∴++-+=解得:t t =P ⎛∴- ⎝⎭或⎛- ⎝⎭综上所述 点P 的坐标为()1,2--或()1,4-或⎛- ⎝⎭或⎛- ⎝⎭. 7.(1)解:将()1,0A -、()3,0B 代入23y ax bx =+-得309330a b a b --=⎧⎨+-=⎩ 解得:12a b =⎧⎨=-⎩①抛物线的解析式为:()222314y x x x =--=--;顶点坐标为()1,4-;(2)解:作PR y ∥交BC 于点R令0x = 则=3y -①(0,3)C -①()3,0B设直线BC 的解析式为3y kx =-①033k =-解得1k =①直线BC 的解析式为3y x =-设点P 的坐标为()2,23x x x -- 则点R 的坐标为(),3x x - ①()211323322PBC B S PR x x x x =⋅=--++⨯ ()223332732228x x x ⎛⎫=--=--+ ⎪⎝⎭ ①302-< ①32x =时 PBC S 有最大值 此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭; (3)解:①点Q 是线段BC 上一点①设点Q 的坐标为(),3m m -①()3,0B (0,3)C -①3OB OC ==①当点P 与点B 重合 点Q 与点C 重合时 PQO 是等腰直角三角形 此时点P 的坐标为()3,0;同理当点P 与点C 重合 点Q 与点B 重合时 PQO 是等腰直角三角形 此时点P 的坐标为(0,3)-;如图 当点P 在第四象限时 过点Q 作DE x ⊥轴于点D 作PE DE ⊥交DE 于点E①OQ PQ = 90OQP ∠=︒①90QOD OQD PQE ∠=︒-∠=∠①QOD PQE ≌△△①QE OD m == 33QD PE m m ==-=-①33ED QD QE m m =+=+-= 即点P 的纵坐标为3- ①2233x x --=-解得0x =或2x =①点P 的坐标为()2,3-;如图 当点P 在第三象限时 过点P 作DE x ⊥轴于点D 作QE DE ⊥交DE 于点E 设OD d =同理POD QPE ≌△△①PE OD EF d === QF m = QE PD = 33OF DE m m ==-=- ①3PD DE PE m d =-=-- QE QF EF m d =+=+ ①3m d m d --=+ 解得32d m =- ①点P 的纵坐标为()333322m d m m ⎛⎫---=---+=- ⎪⎝⎭①23232x x --=-解得x =x =①点P 的坐标为32⎫-⎪⎪⎝⎭;综上 点P 的坐标为()3,0或()0,3-或()2,3-或32⎫-⎪⎪⎝⎭.8.(1)()1,0A - ()0,3C 且点A 、C 在抛物线2y x bx c =-++上 ①103b c c --+=⎧⎨=⎩解得23b c =⎧⎨=⎩∴该抛物线所对应的函数关系式为223y x x =-++; (2)令0y = 得2230x x -++=解得:121,3x x =-=()3,0B ∴;(3)①如图2中已知()3,0B ()0,3C①设直线BC 所在直线的解析式为()0y kx b k =+≠ ①303k b b +=⎧⎨=⎩解得 13k b =-⎧⎨=⎩①直线BC 的解析式为:3y x =-+点P 在抛物线223y x x =-++上 且PN x ⊥轴 点N 在直线BC 的图象上 ∴设点P 的坐标为223)(,x x x -++ 则点N 的坐标为(,3)x x -+ 又点P 在第一象限①()()2233PN x x x =-++--+23x x =-+239()24x =--+ ∴当32x =时 线段PN 的长度的最大值为94.①解:如图3中由题意知 点P 在线段BC 的垂直平分线上 又由①知 OB OC =BC ∴的中垂线同时也是BOC ∠的平分线 ∴设点P 的坐标为(,)a a又点P 在抛物线223y x x =-++上 于是有223a a a =-++ 230a a ∴--=解得1a = 2a =∴点P 的坐标为:( 或(若点P 的坐标为( 此时点P 在第一象限在Rt OMP 和Rt BOC 中 MP OM ==3OB OC ==112222BPC BOC BOP BOC BOCP S S S S S BO PM BO CO ∆=-=-=⨯⋅⋅-⋅四边形192322=⨯⨯=若点P 的坐标为( 此时点P 在第三象限则11323322BPC BOP COP BOC S S S S =++=⨯⨯⨯+⨯⨯综上所述BPC △ 9.(1)解:令0x = 则4y a =-()0,4C a ∴-;令0y = 则2340ax ax a --=解得:11x =- 24x =.(1,0)A ∴- (4,0)B .∴抛物线的对称轴为:直线32x = 将32x =代入解析式得:254y a =-.32524D a ⎛⎫∴- ⎪⎝⎭,;(2)解:连接OD则2523212AOC COD BOD ABDC S S S S a a a ∆∆∆=++=++=四边形 解得:65a = ∴261824555y x x =--;(3)解:①当90CDB ∠=︒时 过D 作DE x ∥轴 交y 轴于点E 过B 作BF DE ⊥垂足为F .90EDC FDB ∠+∠=︒ =90FDB DBF ∠+∠︒EDC DBF ∴∠=∠90CED DFB ∠=∠=︒CDE DBF ∴∽△△ ∴CE DE DF BF = 即934252524a a =解得:a =; ①当90DCB ∠=︒时 如下图同理可得:BOC CED ∽ ∴OB OC CE DE = 即449342a a =解得:a =. 综上a =. 10.((1)解:根据题意设抛物线的解析式为()214y a x =-+把()03C ,代入得()23014a =-+ 解得1a =-①抛物线的解析式为()214y x =--+即223y x x =-++;(2)解:抛物线的顶点坐标为()1,4①抛物线的对称轴为直线1x =当点D 与点C 关于直线1x =对称时 ACE △的周长AC AE CE AC AE ED AC AD ++=++=+取得最小值①()03C ,①()23D ,; (3)解:令0y = 则()2140x --+=解得=1x -或3x = ①()10A -, ()30B , 设直线BC 的解析式为3y mx =+把()30B ,代入得033m =+ 解得1m =-①直线BC 的解析式为3y x =-+ 221310AC +=设点()3F n n -,当10CF AC == 即210CF =①()223310n n +-+= 解得5n =±①点D 的坐标为()5252,; 当10AF AC == 即210AF = ①()()221310n n ++-=解得0n =(舍去) 或2n = ①点D 的坐标为()23,; 当AF FC =时 即22AF FC =①()()()22221333n n n n ++-=+-+解得52n = ①点D 的坐标为5724⎛⎫ ⎪⎝⎭,; 综上 点D的坐标为)2或()23,或5724⎛⎫⎪⎝⎭,.11.(1)解:当0y =时 3x 304-=解得:4x =当0x =时 =3y -()4,0B ∴ ()0,3C -;设抛物线的解析式为2y ax bx c =++ 则有32216403b a a bc c ⎧-=⎪⎪++=⎨⎪=-⎪⎩解得:34943a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩∴抛物线的解析式为239344y x x =--;(2)解:如图 作直线BC 关于x 轴对称直线BD 交y 轴于G交抛物线于D()0,3G ∴ ABD ABC ∠=∠设直线BD 的解析式为y kx b =+ 则有403k b b +=⎧⎨=⎩解得:343k b ⎧=-⎪⎨⎪=⎩ ∴直线BD 的解析式为334y x =-+ 联立直线BD 和抛物线的解析式得:233439344y x y x x ⎧=-+⎪⎪⎨⎪=--⎪⎩解得:40x y ⎧⎨==⎩或292x y =-⎧⎪⎨=⎪⎩ 92,2D ⎛⎫∴- ⎪⎝⎭. (3)解:①如图 当E 在x 轴下方时EF y ∥轴FCH CFE ∴∠=∠由折叠得:ECF FCH ∠=∠ECF CFE ∴∠=∠CE EF ∴= 设3,34E m m ⎛⎫- ⎪⎝⎭则239,344F m m m ⎛⎫-- ⎪⎝⎭ 233933444EF m m m ⎛⎫∴=---- ⎪⎝⎭2334m m =-+ 223334CE m m ⎛⎫=+-+ ⎪⎝⎭54m = 235344m m m ∴-+=解得: 173m = 20m =(舍去) 37343y ∴=⨯-54=-; 75,34E ⎛⎫∴- ⎪⎝⎭; ①如图 当E 在x 轴上方时同理可证:CE EF = 设3,34E m m ⎛⎫- ⎪⎝⎭则239,344F m m m ⎛⎫-- ⎪⎝⎭239333444EF m m m ⎛⎫∴=---- ⎪⎝⎭2334m m =- CE =54m = 235344m m m ∴-= 解得: 1173m = 20m =(舍去) 317343y ∴=⨯- 54=; 175,34E ⎛⎫∴ ⎪⎝⎭; 综上所述:E 的坐标为75,34⎛⎫- ⎪⎝⎭或175,34⎛⎫ ⎪⎝⎭. 12.(1)解:根据题意得: 1203b c c -++=⎧⎨=⎩解得:13b c =-⎧⎨=⎩ ①此抛物线的解析式为:2134y x x =--+; (2)令0y = 则21304x x --+= 解得:1262x x =-=,根据图象可知 P 在x 轴上方时 x 的取值范围是62x -<<;(3)①()221132444y x x x =--+=-++ ①抛物线的顶点坐标是()2,4-①当2m ≤-时 点P 在对称轴上或对称轴左侧 最高点坐标为()2,4-①24m --= 解得6m =-当m 2>时 点P 在对称轴右侧 最高点纵坐标为21(2)44m -++ ①-21(2)424m m -++=-- 解得:)122525m m ==-,舍去 ①m 的值为6-或5①当6m =-时 如图① 以P 或A 为直角顶点作等腰直角三角形 点Q 不能落在对称轴上 因为直角边PQ 或AQ 和对称轴平行;以点Q 为直角顶点作等腰直角三角形 点Q 恰好落在抛物线的顶点上 根据对称性可知 1(2,4)Q - 显然 1Q 关于x 轴对称点2Q 也满足条件 ()224Q --,;当 5m = 如图① 通过绘图可知 由点A 或点Q 为直角顶点均不存在满足条件的等腰直角三角形 以P 为直角顶点可以作出满足条件的等腰直角三角形.过点P 分别作x 轴和对称轴的垂线 垂足分别为M 、N对称轴与x 轴的交点为G .则252MG =+当x = ()212424y =-+=--①2P --①2PM =+①PM MG =①GM PN =①PM PN =又①3AP PQ =①3PMA PNQ ≌①3AM Q N =①32Q N =-①2AM =①322GQ =++-=①3(2,Q --综上所述 点Q 的坐标为()2,4-或()2,4--或(2--, 13.1)解:抛物线2y x bx c =-++与x 轴交于()1,0A -和()3,0B 两点 10930b c b c --+=⎧∴⎨-++=⎩ 解得:23b c =⎧⎨=⎩∴抛物线的解析式为223y x x =-++; (2)解:设直线EF 的解析式为y kx m =+将点()0,1D 代入直线解析式 得:1m = ∴直线EF 的解析式为1y kx =+ ∴设(),1E E E x kx + (),1F F F x kx + 如图 过点E 作EG y ⊥轴与点G 过点F 作FH Y ⊥轴于点HE E EG x x ∴==-F FH x =90EHD EGD ∠=∠=︒ FDG EDG ∠=∠ FHD EGD ∴∠∽FH DF EG DE∴= 2DF DE =22F E x DE x DE∴==- 2F E x x ∴=-将(),1E E E x kx +、(),1F F F x kx +代入抛物线 得: 22123123E E E FF F kx x x kx x x ⎧+=-++⎨+=-++⎩①② 将2F E x x =-代入① 得:221443E E E kx x x -+=--+③ 2⨯+③① 得:21E x =点E 在抛物线左侧1E x ∴=-将1E x =-代入① 得:1123k -+=--+ 解得:1k =∴直线EF 的解析式为1y x =+ (3)解:能抛物线223y x x =-++令0x = 则3y =()0,3C ∴点P 是抛物线上任一点∴设()2,23P p p p -++ 如图 过点P 作直线l y ∥轴 与x 轴交于点N 过点C 作CM l ⊥于点M PCQ △是以点CPQ ∠为直角的等腰直角三角形 PQ PC ∴= 90CPQ ∠=︒90CMP PNQ ∴∠=∠=︒ (),0N p (),3M p 90QPN PQN ∴∠+∠=︒90QPN CPM ∠+∠=︒PQN CPM ∴∠=∠在CMP 和PNQ 中CMP PNQ CPM PQN PC PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS CMP PNQ ∴≌CM PN ∴=223p p p ∴=-++若223p p p =-++解得:p 若()223p p p =--++解得:p当p = ()222231414p p p ⎫-++=--+=--+⎪⎪⎝⎭当p ()222231414p p p ⎫-++=--+=-+=⎪⎪⎝⎭当p ()222231414p p p ⎫-++=--+=-+⎪⎪⎝⎭当p 时 ()222231414p p p ⎫-++=--+=-+=⎪⎪⎝⎭;点Q 在x 正半轴上当点P 为113113--⎝⎭时 点Q 在x 负半轴上 不符合题意 舍去 ∴PCQ △能构成以点CPQ ∠为直角的等腰直角三角形 符合条件的点P 的坐标为113113++⎝⎭或321213+--⎝⎭或321213--⎝⎭.14.(1)解:①抛物线234y x bx c =-++交x 轴于(1,0)A - (4,0)B 两点 ①抛物线的解析式为:()()2339143444y x x x x =-+-=-++; (2)解:①ABD ACB ∠=∠①tan tan 3ABD CAB ∠=∠=设点D 的坐标为239,344x x x ⎛⎫-++ ⎪⎝⎭过点D 作DE x ⊥轴于点E 如图所示则4BE x =- 239344DE x x =-++ ①239344tan 34x x ABD x-++∠==- 解得3x =①()3,3D ;(3)解:设直线AD 的解析式为:y kx n =+把点A 、D 的坐标代入得03k n k n n -+=⎧⎨+=⎩ 解得3434k n ⎧=⎪⎪⎨⎪=⎪⎩①直线AD 的解析式为:3344y x =+①5MN AD == ①4t n 3a MAP ∠=①如图 若5MN MP == 则90PMN ∠=︒此时3tan 4MPMAP AM ∠== ①203AM = 即1203m =;①如图 若5NM NP == 则90MNP ∠=︒此时3tan 4NP MAP AN ∠== ①203AN = ①53AM AN MN =-= 即253m =;①如图 若PM NP = 则90NPM ∠=︒ 过点P 作PQ AN ⊥于点Q 则1522PQ MN ==此时3tan 4PQ MAP AQ ∠== ①103AQ = ①56AM AQ MQ =-=即356m = 综上所述 203m =或53或56时 PMN ∆是等腰直角三角形. 15.(1)解:将()10A , ()3,0B - 代入2y x bx c =++ ①10930b c b c ++=⎧⎨-+=⎩解得:23b c =⎧⎨=-⎩①抛物线的解析式为223y x x =+-; (2)解:如图:①()222314y x x x =+-=+-①()1,4C --设直线BC 的解析式为y kx m =+ ①304k m k m -+=⎧⎨-+=-⎩解得:26k b =-⎧⎨=-⎩ ①直线BC 的解析式为26y x =--①()1,0P t - PQ BC ∥①直线PQ 的解析式为222y x t =--+ 同理可得直线AC 的解析式为22y x =-当22222x t x --+=-时 112x t =- ①11,2Q t t ⎛⎫-- ⎪⎝⎭①PQ BC ∥ ①()()211S S 42222CPQ BPQ t t t ==⨯⨯-=--+ ①当2t =时 CPQ 面积的最大值为2; (3)解:存在t 使BMP 为等腰三角形 理由如下: 如图由(2)可知 ()1,0P t -过M 点作MG x ⊥轴交于G 点 过C 点作CH x ⊥轴交于H 点 ①()1,4C --①4CH = 1OH =①()3,0B -①3OB =①2BH =①224225BC +=①sin CH GM ABC BC BM ∠== tan 2CH GM ABC BH BG ∠=== 255t =①GM t = ①12GB t = ①132OG OB BG t =-=- ①13,2M t t ⎛⎫-+- ⎪⎝⎭当点P 在点G 右侧时 ()()222134BP t t =-+=- 222211313121624MP t t t t t ⎛⎫=-+-+=-+ ⎪⎝⎭ 2222221524BM BG MG t t t ⎛⎫=+=+= ⎪⎝⎭ 由题意可得:①当MP BP = 则()2264131214t t t =+-- 解得169t =或0=t (不符合题意 舍去) 此时169t = ①当BP BM =时 则()22454t t -= 解得)852t =或)852t =-(不符合题意 舍去) 此时)852t = ①当MP BM =时 则22135121644t t t -+= 解得2t =或4t =(不合题意 舍去). 当点P 在点G 左侧时 222215312424MP t t t t t ⎛⎫=--++=++ ⎪⎝⎭ ①当MP BP = 则()2254424t t t =+-+,解得2087t =-+2087t =-- 不符合题意 舍去;①当BP BM =时,则()22454t t -=,解得)852t =或()852t =-,不符合题意,舍去;①当MP BM =时,则22552444t t t ++=, 解得2t =-,不符合题意,舍去.综上所述当169t =或)82t =或2t =时,BMP 为等腰三角形.①点P 坐标为:7,09⎛⎫- ⎪⎝⎭或()17-或()1,0-.。
高中数学必修五 第一章 解三角形 范永凯精品习题
高中数学必修五 第一章 解三角形学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)1.在ABC ∆中,若A 的值为( ) A【答案】A故选A. 2.ABC ∆中,4b =, 那么满足条件的ABC ∆ ( )A .有一个解 B.有两个解 C.无解 D.不能确定【答案】C【解析】本题考查正弦定理及三角形解的判定. 在ABC ∆中,根据正弦定理得:,sin sin a b A B =4b =,所以4sinsin 1bsinA B a π===>,但是恒有sin 1,A ≤所以满足条件的ABC ∆不存在.故选C3.在△ABC 中,abB =45°,则A 等于( )A .30°B .60°C .60°或120°D . 30°或150【答案】C 【解析】试题分析:根据题意,由于在△ABC 中,abB =45°,那么由正弦因此可知角A 的取值为60°或120°,故选C.考点:正弦定理 点评:解决该试题的关键是根据已知中的两边和一边的对角可知采用正弦定理来求解三角形,属于基础题。
4.在△ABC 中,A =60°,a =3,b =2,则A .B =45°或135° B .B =135°C .B =45°D .以上答案都不对 【答案】C 【解析】试题分析:根据题意,由于△ABC 中,A =60°,a =3,b =2,结合正弦定理可知由于a>b,A>B ,故可知角B 为45°,选C.考点:解三角形点评:主要是考查了解三角形的运用,属于基础题。
5.已知ABC ∆的三个内角,,A B C 的对边分别是,,a b c ,且222a c b a b -+=,则角C 等于 A【答案】A【解析】试题分析:因为222a cb ab -+=,故角CA. 考点:本题主要考查余弦定理的应用。
三角形重难点题型汇编(七大题型)(原卷版)—2024-2025学年八年级数学上册(浙教版)
三角形重难点题型汇编(七大题型)【题型01:三角形的三边关系】【题型02:三角形中线与面积问题】【题型03:三角形中线与周长问题】【题型04:根据三角形的三边关系化简】【题型05:三角形内角和定理与角平分线、高的综合运算】【题型06:三角形内角和定理与折叠问题综合】【题型07:三角形内角和定理与新定义问题综合】【题型01:三角形的三边关系】1.下列长度的三条线段,能组成三角形的是()A.8cm,8cm,16cm B.5cm,5cm,5cmC.5cm,5cm,11cm D.6cm,7cm,14cm2.一个三角形的两边长分别为3cm和7cm,则此三角形周长可能是( )A.13cm B.14cm C.15cm D.20cm3.如图,为了估计一池塘岸边两点A,B之间的距离,小丽同学在池塘一侧选取了一点P,测得PA=6m,PB=4m,那么点A与点B之间的距离不可能是( )A.6m B.7.5m C.8.5m D.10.5m4.如果三角形的两边长分别是2cm和6cm,第三边长是偶数,那么这个三角形的第三边长为cm.5.一个三角形的两边长分别是2和5,且其周长是偶数,那么第三边的长是.6.已知a、b、c分别是△ABC的三边的长,化简|a―b+c|―|a―c―b|的结果为.【题型02:三角形中线与面积问题】7.如图,已知AD 是△ABC 的边BC 上的中线,CE 是△ADC 的边AD 上的中线,若△ABD 的面积为16cm 2,则△CDE 的面积为( )A . 32cm 2B . 16cm 2C . 8cm 2D . 4cm 28.如图,在△ABC 中,点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC =8cm 2,则S 阴影=( )A .4cm 2B .3cm 2C .2cm 2D .1cm 29.如图,在△ABC 中,AD 是BC 边上的中线,DE 是AC 边上的中线,若△ADE 面积等于4,则△ABC 的面积是( )A .4B .8C .12D .1610.如图,△ABC 的面积是1,AD 是△ABC 的中线,AF =12FD ,CE =12EF ,则△DEF 的面积为 .11.如图,把面积为a 的正三角形ABC 的各边依次循环延长一倍,顺次连接这三条线段的外端点,这样操作后,可以得到一个新的正三角形DEF;对新三角形重复上述过程,经过2016次操作后,所得正三角形的面积是.【题型03:三角形中线与周长问题】12.如图,在△ABC中,点D是BC边上的中点,若△ABD和△ACD的周长分别为16和11,则AB―AC的值为()A.5B.11C.16D.2713.如图,CM是△ABC的中线,BC=8cm,若△BCM的周长比△ACM的周长大2cm,则AC的长为cm.14.如图,在△ABC中,点E是BC的中点,AB=7,AC=10,△ACE的周长是25,则△ABE 的周长是.15.如图,E是边BC的中点,若AB=4,△ACE的周长比△AEB的周长多1,则AC=.16.如图,在△ABC中,AB=9,AC=7,AD是中线.若△ABD的周长为19,则△ACD 的周长为.【题型04:根据三角形的三边关系化简】17.已知△ABC三边分别是a、b、c,化简|a+b―c|―|c―a+b|+|b―a―c|= 18.已知a、b、c是三角形的三边长,化简:|a―b―c|―|b―a―c|=.19.已知a、b、c是一个三角形的三边长.(1)若a=3,b=5,则c的取值范围是_______.(2)试化简:|b+c―a|+|b―c―a|+|c―a―b|.20.已知△ABC的三边长是a,b,c.(1)若a=6,b=8,且三角形的周长是小于22的偶数,求c的值;(2)化简|a+b―c|+|c―a―b|.21.已知a,b,c是△ABC三边的长.(1)若a,b,c满足|a―b|+|b―c|=0,试判断△ABC的形状;(2)化简|a+b―c|+|a―b―c|+|c―a―b|+|b―a―c|.【题型05:三角形内角和定理与角平分线、高的综合运算】22.如图,在△ABC中,∠B=46°,∠C=80°,AD⊥BC于点D,AE平分∠BAC交BC于点E,DF⊥AE于点F.(1)求∠BAE的度数;(2)求∠ADF的度数.23.如图,△ABC中,∠B<∠C,AD⊥BC于D,AE平分∠BAC交BC于E,(1)当∠B=30°,∠C=50°时,求∠DAE的度数;(2)猜想:∠DAE与∠B、∠C有什么关系,并说明理由.24.△ABC中,∠C>∠B,AD是高,AE是三角形的角平分线.(1)当∠B=24°,∠C=68°时,求∠DAE的度数;(2)根据第(1)问得到的启示,∠C―∠B与∠DAE之间有怎样的等量关系,并说明理由.25.如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC= 60°,∠C=70°.(1)求∠EAD的度数;(2)求∠BOA的度数【题型06:三角形内角和定理与折叠问题综合】26.如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为点E,BE交AD于点O.若∠CBD=31°,则∠BOD的度数为()A.118°B.111°C.101°D.62°27.如图,把三角形纸片ABC折叠,使得点B,点C都与点A重合,折痕分别为DE,MN,若∠BAC=110°,则∠DAM的度数为()A.40°B.60°C.70°D.80°28.如图,△ABC是一张纸片,把∠C沿DE折叠,点C落在点C′的位置,若∠C=30°,则α+β的度数是()A.30°B.40°C.50°D.60°29.如图,将△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠F=度.30.如图,在Rt△ABC中,∠ACB=90°,点D在B边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=22°,则∠CDE度数为.31.如图甲所示三角形纸片ABC中,∠B=∠C,将纸片沿过点B的直线折叠,使点C落到AB 边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙),则∠ABC的大小为°.32.如图,把长方形纸片ABCD沿折痕EF折叠,使点B与点D重合,点A落在点G处,∠DFG=70°,则∠BEF的度数为.33.如图,△ABC中,∠ACB=90°,点D在AB上,连接CD,将△BDC沿CD对折得到△EDC,点E恰好在AC上,若∠ADE=20°,则∠B=.【题型07:三角形内角和定理与新定义问题综合】34.新定义:在△ABC中,若存在最大内角是最小内角度数的n倍(n为大于1的正整数),则称△ABC为“n倍角三角形”. 例如,在△ABC中,若∠A=90°,∠B=60°,则∠C=30°,因为∠A最大,∠C最小,且∠A=3∠C,所以△ABC为“3倍角三角形”.(1)在△DEF中,若∠E=40°,∠F=60°,则△DEF为“_______倍角三角形”.(2)如图,在△ABC中,∠C=36°,∠BAC、∠ABC的角平分线相交于点D,若△ABD为“6倍角三角形”,请求出∠ABD的度数.35.定义:在一个三角形中,如果有一个角是另一个角的1,我们称这两个角互为“友爱角”,2这个三角形叫作“友爱三角形”.例如:在△ABC中,如果∠A=80°,∠B=40°,那么∠A与∠B互为“友爱角”,△ABC为“友爱三角形”(1)如图1,△ABC是“友爱三角形”,且∠A与∠B互为“友爱角”(∠A>∠B),∠ACB=90°.①求∠A、∠B的度数.②若CD是△ABC中AB边上的高,则△ACD、△BCD都是“友爱三角形”吗?为什么?(2)如图2,在△ABC中,∠ACB=70°,∠A=66°,D是边AB上一点(不与点A,B重合),连接CD,若△ACD是“友爱三角形”,直接写出∠ACD的度数.36.【定义】如果两个角的差为30°,就称这两个角互为“伙伴角”,其中一个角叫做另一个角的“伙伴角”.例如:α=50°,β=20°,α―β=30°,即α是β的“伙伴角”,β也是α的“伙伴角”.(1)已知∠1和∠2互为“伙伴角”,且∠1+∠2=90°,则∠1=.(2)如图1所示,在△ABC中,∠ACB=90°,过点C作AB的平行线CM,∠ABC的平分线BD 分别交AC,CM于D、E两点①若∠A>∠BEC,且∠A和∠BEC互为“伙伴角”,求∠A的度数;②如图2所示,∠ACM的平分线CF交BE于点F,当∠A和∠BFC互为“伙伴角”时,∠A的度数为多少11。
高中数学 必修5 第1章 解三角形 范永凯精品习题
高中数学 必修5 第1章 解三角形学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释) 1.在△ABC则B 等于( )A. 30°B. 60°C. 30°或150°D. 60°或120° 【答案】A【解析】利用正弦定理可得2.在ABC ∆中,,则B 等于( ) A.︒45或︒135 B. ︒135 C.︒45 D.以上答案都不对 【答案】C 【解析】3.在△ABC 中,角A,B,C 所对的边长分别为a,b,c,若C=120°,c=a,则( )(A)a>b (B)a<b (C)a=b(D)a 与b 的大小关系不能确定 【答案】A【解析】∵C=120°,c=a,∴2a 2=a 2+b 2-2abcos120°, ∴a 2=b 2+ab,∴()2+-1=0, ∴=<1,∴a>b.4.在ABC ∆中,====A B b a 则,6,1,3π( )(A )3π(B )6π或65π (C ) 32π (D )3π或32π 【答案】D【解析】因为由正弦定理可知,a sin B ab 1,B ,A 6ba b A Bπ======>∴> 则sin 故A 有两个解,选D5.在ABC ∆中,内角A,B,C 所对的边分别是,,,c b a ,若ABC ∆的面积是【答案】C【解析】()22c a b b =-+Q2222a b c ab b ∴+-=- 2222cos a b c ab C ab +-==Q2ab b ab ∴-= 6ab ∴=6.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A 、B 两点的距离为 ( )A .mB .mC .mD m 【答案】A 【解析】试题分析:=考点:本题考查了解三角形的实际应用.考查了学生对基础知识的综合应用 点评:有关斜三角形的实际问题,其解题的一般步骤是:(1)准确理解题意,分清已知与所求,尤其要理解应用题中的有关名词和术语;(2)画出示意图,并将已知条件在图形中标出;(3)分析与所研究问题有关的一个或几个三角形,通过合理运用正弦定理和余弦定理求解7.在ABC ∆中,若A 的值为( )A 【答案】A故选A. 8.ABC ∆的内角,,A B C 所对的边分别为,,a b c ,80a =,100b =,30A =︒,则此三角形( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是钝角三角形,也可能是锐角三角形 【答案】C 【解析】120B > ,当60B < 时有90C > ,所以三角形是钝角三角形考点:解三角形点评:判定三角形形状一般求出三内角或三边长,通过角的大小或边长关系确定,本题中还可由余弦定理求得c 边的长度,,由三边判定其形状9.在ABC ∆中,,则ABC ∆的面积为( ).A 【答案】C 【解析】试题分析:因为C 为三角形的内角,所以C. 考点:三角形面积公式.10.ABC ∆中,2,3,60,b c A ===︒则a =A .3 【答案】B【解析】B 考点:余弦定理11.在△ABC 中,222a b c bc =++ ,则A 等于 ( ) A .60° B .45° C .120° D .30° 【答案】C 【解析】22c12.△ABC 的三个内角A ,B ,C 的对边分别a ,b ,c ,且a cos C ,b cos B ,c cos A 成等差数列,则角B 等于( )A .30°B .60°C .90°D .120° 【答案】B【解析】由题意,得2b cos B =a cos C +c cos A ,根据正弦定理可得2sin B cos B =sinA cos C +cos A sin C ,即2sinB cos B =sin(A +C )=sin B ,解得cos B B =60°13.在ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若075=∠A 、060=∠B 、10=c ,则=bA 【答案】B 【解析】试题分析:由075=∠A 、006045B C ∠=⇒∠=,由正弦定理可得考点:正弦定理14.在△ABC 中,b 2+c 2-a 2=-bc ,则A 等于 ( )A .60°B .135°C .120°D .90° 【答案】C【解析】cos A =b 2+c 2-a 22bc =-12,∴A =120°15.在△ABC 中,已知bc c b a ++=222,则角A 为( )【答案】C【解析】试题分析:由bc c b a ++=222,考点:余弦定理.16.在ABC ∆中,o60A =,a =b =B 等于( ) A .o45 B .o135 C .o45或o135 D .以上答案都不对 【答案】A【解析】试题分析:由正弦定理sin sin a b A B =sin 45sin 2B B B =∴==考点:正弦定理17.已知锐角ABC ∆的面积为,4,3BC CA ==,则角C 的大小为 A. 75° B. 60° C. 45° D.30° 【答案】B【解析】试题分析:解 代入4,3BC CA ==,60C ∴=考点: 点评: 根据已知条件选择合适的公式18.在200m 高的山顶上,测得山下一塔的塔顶和塔底的俯角分别为30o 和60o,则塔高为 ( )【答案】A 【解析】解:如图所示:设山高为AB ,塔高为CD 为 x ,且ABEC 为矩形,由题意得tan30°200-x ).tan60°∴200-x ),x=400 /3(米), 故选A .19.在△ABC 中,内角A,B,C 的对边分别为a,b,c.若且a>b,则∠B 等于( )【答案】A【解析】由得因为sinB ≠0,所以即又a>b,则∠故选A.20.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )AB【答案】B 【解析】B 。
难关必刷01三角形综合(4种解题模型专练)(原卷版)-2024-2025学年八年级数学上学期期中考点
难关必刷01三角形综合(4种解题模型专练)【模型梳理】一、“8”字模型三角形三个内角的和等于180°;对顶角相等二、“A”字模型三角形三个内角的和等于180°;三角形的外角等于与它不相邻的两本内角的和.三、“老鹰捉小鸡”(风筝)模型三角形三个内角的和等于180°;三角形的外角等于与它不相邻的两本内角的和.四、(双)角平分线模型1.双内角平分线2.双外角平分线3.内角平分线+外角平分线三角形三个内角的和等于180°;三角形的外角等于与它不相邻的两本内角的和.【题型专练】一、“8”字模型一.填空题(共6小题)1.(2023春•蓬莱区期中)如图,∠A+∠B+∠C+∠D+∠E的度数是.2.(2022春•北林区校级期中)如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为3.(2022春•彭山区校级期中)如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.4.(2022秋•黄石期中)如图,则∠A+∠B+∠C+∠D+∠E的度数是.5.(2022秋•滨海新区校级期中)如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.6.(2022秋•庆阳期中)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=°.二.解答题(共1小题)7.(2022秋•天门期中)如图,已知∠A=50°,∠D=40°(1)求∠1度数;(2)求∠A+∠B+∠C+∠D+∠E的度数.二、“A”字模型一.选择题(共4小题)1.(2022秋•东莞市校级期中)如图所示,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于点P,若∠A=60°,则∠BPC等于()A.90°B.120°C.150°D.160°2.(2022秋•萨尔图区校级期中)如图,△ABC中∠A=115°,若图中沿虚线剪去∠A,则∠1+∠2等于()A.180°B.230°C.290°D.295°3.(2022秋•官渡区校级期中)如图,在△ABC中,∠C=70°,沿图中虚线截去∠C,则∠1+∠2=()A.140°B.180°C.250°D.360°4.(2022秋•宁河区校级期中)如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°二.填空题(共3小题)5.(2022秋•富阳区期中)如图,作CE⊥AF于点E,CE与BF相交于点D,若∠F=45°,∠C=30°,则∠A=°,∠DBC=°.6.(2022秋•南康区期中)如图,△ABC中,∠B=80°,∠C=70°,将△ABC沿EF折叠,A点落在形内的A′,则∠1+∠2的度数为.7.(2022秋•梁平区期中)在直角△ABC中,∠C=90°,沿图中虚线剪去∠C,则∠1+∠2=.三.解答题(共2小题)8.(2022秋•余干县期中)一个三角形纸片ABC沿DE折叠,使点A落在点A′处.(点A′在△ABC的内部)(1)如图1,若∠A=45°,则∠1+∠2=°.(2)利用图1,探索∠1,∠2与∠A之间的数量关系,并说明理由.(3)如图2,把△ABC折叠后,BA′平分∠ABC,CA′平分∠ACB,若∠1+∠2=108°,利用(2)中得出的结论求∠BA′C的度数.9.(2022秋•赣州期中)如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.三、“老鹰捉小鸡”(风筝)模型一.选择题(共4小题)1.(2022春•威海期中)如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.40°B.80°C.90°D.140°2.(2022秋•巴南区校级期中)如图,在△ABC中,将△ABC沿直线m翻折,点B落在点D的位置,若∠B=30°,∠2=25°,则∠1的度数是()A.55°B.65°C.75°D.85°3.(2022春•无锡期中)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2D.∠A=∠1﹣∠24.(2022秋•洛龙区期中)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β二.填空题(共1小题)5.(2022秋•静安区校级期中)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A、∠1、∠2之间的数量关系是.三.解答题(共2小题)6.(2022秋•青云谱区校级期中)放风筝是中国民间的传统游戏之一,风筝又称风琴,纸鹞,鹞子,纸鸢.如图1,小华制作了一个风筝,示意图如图2所示,AB=AC,DB=DC,他发现AD不仅平分∠BAC,且平分∠BDC,你觉得他的发现正确吗?请说明理由.7.(2022秋•开州区期中)问题1如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是研究(2):如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是研究(3):如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.猜想:理由问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是.四、(双)角平分线模型一.选择题(共3小题)1.(2022秋•黄冈期中)如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC 等于()A.110°B.115°C.120°D.130°2.(2022秋•西陵区校级期中)如图,△ABC的三边AB、BC、AC的长分别是9、12、15.其三条角平分线交于点O,将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.3:4:5D.2:3:43.(2022秋•金乡县期中)如图,△ABC中,AB=6,AC=8,∠ABC、∠ACB的平分线BD、CD交于点D.过点D作EF∥BC,分别交AB、AC于点E、F,则△AEF的周长为()A.12B.13C.14D.15二.填空题(共1小题)4.(2022秋•金州区期中)如图,△ABC的角平分线BD,CE交于点O,∠A=60°,则∠BOC=°.三.解答题(共2小题)5.(2022秋•瑶海区期中)如图,在△ABC中,∠ABC与∠ACB的平分线交于点P,根据下列条件,求∠BPC的度数.(1)若∠A=68°,则∠BPC=°;(2)从上述计算中,我们能发现:∠BPC=(用含∠A的式子表示),并说明理由.6.(2022秋•滨海新区期中)(1)如图1,在△ABC中,BP平分∠ABC,CP平分∠ACB,求证:∠P=90°+∠A;(2)如图2,在△ABC中,BP平分∠ABC,CP平分外角∠ACE,猜想∠P和∠A有何数量关系,并证明你的结论.。
【精选】八年级三角形解答题检测题(Word版 含答案)
【精选】八年级三角形解答题检测题(Word 版 含答案)一、八年级数学三角形解答题压轴题(难)1.(1)如图1.在△ABC 中,∠B =60°,∠DAC 和∠ACE 的角平分线交于点O ,则∠O = °,(2)如图2,若∠B =α,其他条件与(1)相同,请用含α的代数式表示∠O 的大小; (3)如图3,若∠B =α,11,PAC DAC PCA E n nAC ∠=∠∠=∠,则∠P = (用含α的代数式表示).【答案】(1)∠O =60°;(2)90°-12α;(3)11(1)180P n nα∠=-⨯- 【解析】 【分析】(1)由题意利用角平分线的性质和三角形内角和为180°进行分析求解;(2)根据题意设∠BAC=β,∠ACB=γ,则α+β+γ=180°,利用角平分线性质和外角定义找等量关系,用含α的代数式表示∠O 的大小;(3)利用(2)的条件可知n=2时,∠P=111-18022α︒⨯-(),再将2替换成n 即可分析求解. 【详解】解:(1)因为∠DAC 和∠ACE 的角平分线交于点O ,且∠B=60°, 所以18060120OAC OCA οοο∠+∠=-=, 有∠O=180120οο-=60°.(2)设∠BAC=β,∠ACB=γ,则α+β+γ=180° ∵∠ACE 是△ABC 的外角, ∴∠ACE=∠B+∠BAC=α+β ∵CO 平分∠ACE11()22ACO ACE αβ∴∠=∠=+ 同理可得:1()2CAO αγ∠=+ ∵∠O+∠ACO+∠CAO=180°,∴11180180()()22O ACO CAO αβαγ︒︒∠=-∠-∠=-+-+1180()2αβαγ︒=-+++111180()1809090222αβααα︒︒︒︒=-++=--=-;(3)∵∠B=α,11,PAC DAC PCA E n nAC ∠=∠∠=∠, 由(2)可知n=2时,有∠P=1180902α︒︒--=111-18022α︒⨯-(),将2替换成n 即可, ∴11(1)180P n nα∠=-⨯-. 【点睛】本题考查用代数式表示角,熟练掌握并综合利用角平分线定义和三角形内角和为180°以及等量替换技巧与数形结合思维分析是解题的关键.2.(1)如图1,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时, ①写出图中一对全等的三角形,并写出它们的所有对应角;②设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)③∠A 与∠1、∠2之间有一种数量关系始终保持不变,请找出这个规律.(2)如图2,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 外部时,∠A 与∠1、∠2的数量关系是否发生变化?如果发生变化,求出∠A 与∠1、∠2的数量关系;如果不发生变化,请说明理由.【答案】(1)①△EAD ≌△EA ′D ,其中∠EAD =∠EA ′D ,∠AED =∠A ′ED ,∠ADE =∠A ′DE ;②∠1=180°−2x ,∠2=180°−2y ; ③∠A=12(∠1+∠2);(2)变化,∠A=12(∠2-∠1),见详解 【解析】 【分析】(1)①根据翻折方法可得△ADE ≌△A ′DE ;②根据翻折方法可得∠AEA ′=2x ,∠ADA ′=2y ,再根据平角定义可得∠1=180°-2x ,∠2=180°-2y ;③首先由∠1=180°-2x ,2=180°-2y ,可得x=90-12∠1,y=90-12∠2,再根据三角形内角和定理可得∠A=180°-x-y ,再利用等量代换可得∠A=12(∠1+∠2);(2)根据折叠的性质和三角形内角和定理解答即可. 【详解】(1)①根据翻折的性质知△EAD ≌△EA ′D ,其中∠EAD =∠EA ′D ,∠AED =∠A ′ED ,∠ADE =∠A ′DE ; ②)∵∠AED=x,∠ADE=y, ∴∠AEA′=2x,∠ADA′=2y, ∴∠1=180°-2x ,∠2=180°-2y ; ③∠A=12(∠1+∠2); ∵∠1=180°-2x ,∠2=180°-2y , ∴x=90-12∠1,y=90-12∠2, ∴∠A=180°-x-y=190-(90-12∠1)-(90-12∠2)=12(∠1+∠2). (2))∵△A′DE 是△ADE 沿DE 折叠得到, ∴∠A′=∠A,又∵∠AEA′=180°-∠2,∠3=∠A′+∠1, ∴∠A+∠AEA′+∠3=180°,即∠A+180°-∠2+∠A′+∠1=180°, 整理得,2∠A=∠2-∠1.∴∠A=12(∠2-∠1). 【点睛】此题主要考查了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.如图,在△ABC 中,已知AD BC ⊥于点D ,AE 平分()BAC C B ∠∠>∠ (1)试探究EAD ∠与C B ∠∠、的关系;(2)若F 是AE 上一动点,当F 移动到AE 之间的位置时,FD BD ⊥,如图2所示,此时EFD C B ∠∠∠与、的关系如何?(3)若F 是AE 上一动点,当F 继续移动到AE 的延长线上时,如图3,FD BC ⊥,①中的结论是否还成立?如果成立请说明理由,如果不成立,写出新的结论.【答案】(1)∠EAD=12(∠C-∠B),理由见解析;(2)∠EFD=12(∠C-∠B),理由见解析;(3)∠AFD=12(∠C-∠B)成立,理由见解析.【解析】【分析】(1)由图不难发现∠EAD=∠EAC-∠DAC,再根据三角形的内角和定理结合角平分线的定义分别用结论中出现的角替换∠EAC和∠DAC;(2)作AG BC⊥于G转化为(1)中的情况,利用(1)的结论即可解决;(3)作AH BC于H转化为(1)中的情况,利用(1)的结论即可解决.【详解】解:(1)∠EAD=12(∠C-∠B).理由如下:∵AE平分∠BAC,∴∠BAE=∠CAE=12∠BAC∵∠BAC=180°-(∠B+∠C)∴∠EAC=12[180°-(∠B+∠C)]∵AD⊥BC,∴∠ADC=90°,∴∠DAC=180°-∠ADC-∠C=90°-∠C,∵∠EAD=∠EAC-∠DAC∴∠EAD=12[180°-(∠B+∠C)]-(90°-∠C)=12(∠C-∠B).(2)∠EFD=12(∠C-∠B).理由如下:作AG BC ⊥于G由(1)可知∠EAG=12(∠C-∠B ) ∵FD BD ⊥,AG BC ⊥ ∴FD ∥AG∴∠EAG=∠EFD∴∠EFD=12(∠C-∠B )(3)∠AFD=12(∠C-∠B ).理由如下:作AH BC ⊥于H由(1)可知∠EAH=12(∠C-∠B ) ∵FD BD ⊥,AH BC ⊥ ∴FD ∥AH∴∠EAH=∠AFD∴∠AFD=12(∠C-∠B ) 【点睛】本题主要考查了三角形的内角和定理,综合利用角平分线的定义和三角形内角和定理是解答此题的关键.4.如图1,线段AB 、CD 相交于点O ,连结AD 、CB ,我们把这个图形称为“8字型”根据三角形内角和容易得到:∠A +∠D =∠C +∠B .(1)用“8字型”如图2,∠A+∠B+∠C+∠D+∠E+∠F=___________;(2)造“8字型”如图3,∠A+∠B+∠C+∠D+∠E+∠F+∠G=_____________;(3)发现“8字型”如图4,BE、CD相交于点A,CF为∠BCD的平分线,EF为∠BED的平分线.①图中共有________个“8字型”;②若∠B:∠D:∠F=4:6:x,求x的值.【答案】(1)360°;(2)540;(3)①6;②x=5.【解析】分析:(1)根据题意即可得到结论;(3)①由图形即可得到结论;②根据三角形内角和为180°的性质即可证得关系为∠D+∠B=2∠F,再根据∠B、∠D、∠F的比值,即可求得x的值;详解:(1)∵∠A+∠B=∠GKH+∠GHK,∠C+∠D=∠GHK+∠HGK,∠E+∠F=∠HGK+∠GKH,∠A+∠B+∠C+∠D+∠E+∠F=2(∠GKH+∠GHK+∠HGK)=2×180°=360°,故答案为:360°;(2)如图,连结BC,∵∠E+∠G=∠GCB+∠EBC ,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=五边形FABCD 的内角和, 即∠A+∠B+∠C+∠D+∠E+∠F+∠G=(5-2)•180°=540°, 故答案为:540°;(3)①图中共有6个“8字型”; 故答案为:6.②:∵CF 平分∠BCD ,EF 平分∠BED ∴∠DEG=∠AEG ,∠ACH=∠BCH , ∵在△DGE 和△FGC 中,∠DGE=∠FGC ∴∠D+∠DEG=∠F+∠ACH∵在△BHC 和△FHE 中,∠BHC=∠FHE∴∠B+∠BCH=∠F+∠AEG∴∠D+∠DEG+∠B+∠BCH=∠F+∠ACH+∠F+∠AEG ∴∠D+∠B=2∠F ;∵∠B :∠D :∠F=4:6:x ,∠D+∠B=2∠F , ∴x=5.点睛:考查了多边形的内角与外角,三角形的内角和,三角形的外角的性质,正确的识别图形是解题的关键.5.(1)在ABC ∆中,AD BC ⊥,BE AC ⊥,CF AB ⊥,16BC =,3AD =,4BE =,6CF =,则ABC ∆的周长为______.(2)如图①,在ABC ∆中,已知点D ,E ,F 分别为边BC ,BD ,CD 的中点,且4ABC S ∆=2cm ,则AEF S ∆等于______2cm .① ②(3)如②图,三角形ABC 的面积为1,点E 是AC 的中点,点O 是BE 的中点,连接AO 并延长交BC 于点D ,连接CO 并延长交AB 于点F ,则四边形BDOF 的面积为______.【答案】(1)36(2)2(3)16【解析】 【分析】(1)利用三角形面积公式,求出AB 、AC 的长,再计算三角形的周长即可; (2)设ABC ∆在BC 边上的高为h ,则12ABC S BC h ∆=⋅,根据线段中点的定义以及线段的和差得出12EF BC =,继而再根据三角形面积公式进行求解即可; (3)设BOF S x ∆=,BOD S y ∆=,根据三角形中线将三角形分成两个面积相等的三角形可得14AOE COE AOB COB S S S S ∆∆∆∆====,从而得14AOF S x ∆=-,34ACF S x ∆=-,14BCF S x ∆=+,14COD S y ∆=-,34ACD S y ∆=-,14ABD S y ∆=+,利用等高的两三角形面积之比等于底边之比分别列出关于x 、y 的方程,求出x 、y 的值即可求得答案. 【详解】(1)111222ABC S BC AD AC BE AB CF ∆=⋅=⋅=⋅, ∴BC AD AC BE AB CF ⋅=⋅=⋅, 即16346AC AB ⨯=⋅=⋅, ∴12AC =,8AB =, ∴△ABC 的周长=AB+BC+AC=36; (2)设ABC ∆在BC 边上的高为h , 则12ABC S BC h ∆=⋅, ∵E 为BD 中点,∴12ED BD =, ∵F 为DC 中点,∴12DF DC =, ∴111222EF BD DC BC =+=, ∴211112cm 2222AEF ABC S EF h BC h S ∆∆=⋅=⋅⋅==; (3)设BOF S x ∆=,BOD S y ∆=,∵点E ,O 分别是AC ,BE 的中点,1ABC S ∆=, ∴14AOE COE AOB COB S S S S ∆∆∆∆====,∴14AOF S x ∆=-,34ACF S x ∆=-,14BCF S x ∆=+, ∴134414x xx x --=+,即2213164x x x -=-, 解得112x =,又14COD S y ∆=-,34ACD S y ∆=-,14ABD S y ∆=+,∴141344yy y y +=--,得112y =, 故11112126BDOF S x y =+=+=四边形. 【点睛】本题考查了三角形面积的应用,三角形的周长,解题关键在于找出等高的两三角形面积与底边的对应关系.6.如图四边形ABCD 中,AD ∥BC ,∠BCD=90°,∠BAD 的平分线AG 交BC 于点G .(1)求证:∠BAG=∠BGA ;(2)如图2,∠BCD 的平分线CE 交AD 于点E ,与射线GA 相交于点F ,∠B=50°. ①若点E 在线段AD 上,求∠AFC 的度数;②若点E 在DA 的延长线上,直接写出∠AFC 的度数;(3)如图3,点P 在线段AG 上,∠ABP=2∠PBG ,CH ∥AG ,在直线AG 上取一点M ,使∠PBM=∠DCH ,请直接写出∠ABM :∠PBM 的值. 【答案】(1)证明见解析;(2)①20°;②160°;(3)13或73【解析】 【分析】(1)根据AD//BC可知∠GAD=∠BGA,由AG平分∠BAD可知∠BAG=∠GAD,即可得答案.(2)①根据CF平分∠BCD,∠BCD=90°,可求出∠GCF的度数,由AD//BC可求出∠AEF 和∠DAB的度数,根据三角形外角的性质求出∠AFC的度数即可;②根据三角形外角性质求出即可;(3)根据M点在BP的上面和下面两种情况讨论,分别求出∠PBM和∠ABM 的值即可.【详解】(1)∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD,∴∠BAG=∠BGA;(2)①∵CF平分∠BCD,∠BCD=90°,∴∠GCF=45°,∵AD∥BC,∠ABC=50°,∴∠AEF=∠GCF=45°;∠DAB=180°﹣50°=130°,∵AG平分∠BAD,∴∠BAG=∠GAD=65°,∴∠AFC=65°﹣45°=20°;②如图:∵∠AGB=65°,∠BCF=45°,∴∠AFC=∠CGF+∠BCF=115°+45°=160°;(3)有两种情况:①当M在BC的下方时,如图:∵∠ABC=50°,∠ABP=2∠PBG,∴∠ABP=(1003)°,∠PBG=(503)°,∵AG∥CH,∴∠BCH=∠AGB=65°,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣65°=25°,∴∠ABM=∠ABP+∠PBM=(1003+25)°=(1753)°,∴∠ABM:∠PBM=(1753)°:25°=73;②当M在BC的上方时,如图:同理得:∠ABM=∠ABP﹣∠PBM=(1003﹣25)°=(253)°,∴∠ABM:∠PBM=(253)°:25°=13;综上,∠ABM:∠PBM的值是13或73.【点睛】本题考查平行线的性质和三角形外角性质,熟练掌握平行线性质是解题关键.7.已知:点D是△ABC所在平面内一点,连接AD、CD.(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明;(3)如图3,在(2)的条件下,将点D移至∠ABC的外部,其它条件不变,探究∠A,∠P,∠C的关系并证明.【答案】(1) 111º ;(2) ∠A-∠C=2∠P,理由见解析;(3) ∠A+∠C=2∠P,理由见解析.【解析】【分析】(1)延长AD交BC于E,利用三角形外角的性质即可求解;(2)∠A-∠C=2∠P,由三角形外角等于不相邻的两个内角的和以及(1)结论即可求解;(3)∠A+∠C=2∠P,由(2)结论以及角平分线的性质即可得到.【详解】(1)如图1,延长AD交BC于E,在△ABE中,∠AEC=∠A+∠B=28º+72º=100º,在△DEC中,∠ADC=∠AEC+∠C=100º+11º=111º ;(2)∠A-∠C=2∠P,理由如下:如图2,∠5=∠A+∠1,∠5=∠P+∠3∴∠A+∠1=∠P+∠3∵PB平分∠ABC,PD平分∠ADC∴∠1=∠2,∠3=∠4∴∠A+∠2=∠P+∠4由(1)知∠4=∠2+∠P+∠C∴∠A+∠2=∠P+∠2+∠P+∠C∴∠A-∠C=2∠P(3)∠A+∠C=2∠P,理由如下:如图3,同(2)理知∠A+∠1=∠P+∠3,∠C+∠4=∠P+∠2∴∠A+∠C+∠1+∠4=2∠P+∠2+∠3∵PB平分∠ABC,PD平分∠ADC∴∠1=∠2,∠3=∠4∴∠1+∠4=∠2+∠3∴∠A+∠C=2∠P【点睛】本题考查了三角形外角的性质,角平分线的定义,整体思想的利用是解题的关键.8.如图①,在△ABC中,AE平分∠BAC,∠C>∠B,F是AE上一点,且FD⊥BC于D点.(1)试猜想∠EFD,∠B,∠C的关系,并说明理由;(2)如图②,当点F在AE的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.①②【答案】(1)∠EFD=12∠C-12∠B.()成立,理由见解析.【解析】【分析】先根据AE平分∠BAC推出∠BAE=12∠BAC=12[180°-(∠B+∠C)],再根据外角的定义求出∠FED=∠B+∠BAE,然后利用直角三角形的性质求出∠EFD=90°-∠FED.【详解】解:(1)∠EFD=12∠C-12∠B.理由如下:由AE是∠BAC的平分线知∠BAE=12∠BAC.由三角形外角的性质知∠FED=∠B+12∠BAC,故∠B+12∠BAC+∠EFD=90°①.在△ABC中,由三角形内角和定理得∠B+∠BAC+∠C=180°,即12∠C+12∠B+12∠BAC=90°②.②-①,得∠EFD=12∠C-12∠B.(2)成立.理由如下:由对顶角相等和三角形的外角性质知:∠FED=∠AEC=∠B+12∠BAC,故∠B+12∠BAC+∠EFD=90°①.在△ABC中,由三角形内角和定理得:∠B+∠BAC+∠C=180°,即12∠B+12∠BAC+12∠C=90°②.②-①,得∠EFD=12∠C-12∠B.【点睛】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.9.在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点P在线段AB上运动,且n=90°时①若PD∥BC,PE∥AC,则m=_____;②若m=50°,求x+y的值.(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.【答案】(1)①90°,②140°;(2)详见解析.【解析】分析:(1)①证明四边形DPEC为平行四边形可得结论;②根据四边形内角和为360°,列等式求出x+y的值;(2)根据P、D、E位置的不同,分五种情况:①y-x=m+n,如图2,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;②x-y=m-n,如图3,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;③x+y=m+n,如图4,点P在线段BA上时,根据四边形的内角和为360°列等式,化简后得出结论;④x-y=m+n,如图5,同理得出结论;⑤y-x=m-n,如图6,同理得出结论.详解:(1)①如图1,∵PD∥BC,PE∥AC,∴四边形DPEC为平行四边形,∴∠DPE=∠C,∵∠DPE=m,∠C=n=90°,∴m=90°;②∵∠ADP=x,∠PEB=y,∴∠CDP=180°-x,∠CEP=180°-y,∵∠C+∠CDP+∠DPE+∠CEP=360°,∠C=90°,∠DPE=50°,∴90°+180°-x+50°+180°-y=360°,∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,理由是:同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y,∴y﹣x=m﹣n.点睛:本题考查了三角形综合、平行四边形的判定.10.动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系.已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.并说明理由.探究二:若将△ADC改为任意四边形ABCD呢?已知:如图(2),在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,请你利用上述结论探究∠P与∠A+∠B的数量关系,并说明理由.探究三:若将上题中的四边形ABCD改为六边形ABCDEF如图(3)所示,请你直接写出∠P 与∠A+∠B+∠E+∠F的数量关系.【答案】探究一: 90°+12∠A;探究二:12(∠A+∠B);探究三:∠P=12(∠A+∠B+∠E+∠F)﹣180°.【解析】试题分析:探究一:根据角平分线的定义可得∠PDC=12∠ADC,∠PCD=12∠ACD,然后根据三角形内角和定理列式整理即可得解.探究二:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究一解答即可.探究三:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究一解答即可.试题解析:探究一:∵DP、CP分别平分∠AD C和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°-12∠ADC-12∠ACD,= 180°-12(∠ADC+∠ACD),=180°-12(180°-∠A),=90°+12∠A;探究二:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°-12∠ADC-12∠BCD,=180°-12(∠ADC+∠BCD),=180°-12(360°-∠A-∠B),=12(∠A+∠B);探究三:六边形ABCDEF的内角和为:(6-2)×180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC=12∠EDC,∠PCD=12∠BCD,∴∠P=180°-∠PDC-∠PCD,=180°-12∠EDC-12∠BCD,=180°-12(∠EDC+∠BCD),=180°-12(720°-∠A-∠B-∠E-∠F),=12(∠A+∠B+∠E+∠F)-180°,即∠P=12(∠A+∠B+∠E+∠F)-180°.点睛:本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,在此类题目中根据同一个解答思路求解是解题的关键.。
八年级三角形解答题单元测试卷 (word版,含解析)
八年级三角形解答题单元测试卷 (word 版,含解析)一、八年级数学三角形解答题压轴题(难)1.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【答案】(1)50°;(2)①见解析;②见解析;(3)360°.【解析】【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.2.已知:点D 是△ABC 所在平面内一点,连接AD 、CD .(1)如图1,若∠A =28°,∠B =72°,∠C =11°,求∠ADC ;(2)如图2,若存在一点P ,使得PB 平分∠ABC ,同时PD 平分∠ADC ,探究∠A ,∠P ,∠C 的关系并证明;(3)如图3,在 (2)的条件下,将点D 移至∠ABC 的外部,其它条件不变,探究∠A ,∠P ,∠C 的关系并证明.【答案】(1) 111º ;(2) ∠A-∠C=2∠P,理由见解析;(3) ∠A+∠C=2∠P,理由见解析.【解析】【分析】(1)延长AD交BC于E,利用三角形外角的性质即可求解;(2)∠A-∠C=2∠P,由三角形外角等于不相邻的两个内角的和以及(1)结论即可求解;(3)∠A+∠C=2∠P,由(2)结论以及角平分线的性质即可得到.【详解】(1)如图1,延长AD交BC于E,在△ABE中,∠AEC=∠A+∠B=28º+72º=100º,在△DEC中,∠ADC=∠AEC+∠C=100º+11º=111º ;(2)∠A-∠C=2∠P,理由如下:如图2,∠5=∠A+∠1,∠5=∠P+∠3∴∠A+∠1=∠P+∠3∵PB平分∠ABC,PD平分∠ADC∴ ∠1=∠2,∠3=∠4∴∠A+∠2=∠P+∠4由(1)知∠4=∠2+∠P+∠C∴∠A+∠2=∠P+∠2+∠P+∠C∴∠A -∠C=2∠P(3)∠A+∠C=2∠P ,理由如下:如图3,同(2)理知∠A+∠1=∠P+∠3,∠C+∠4=∠P+∠2∴∠A+∠C+∠1+∠4=2∠P+∠2+∠3∵PB 平分∠ABC,PD 平分∠ADC∴ ∠1=∠2,∠3=∠4∴∠1+∠4=∠2+∠3∴∠A+∠C=2∠P【点睛】本题考查了三角形外角的性质,角平分线的定义,整体思想的利用是解题的关键.3.如图1:ABC 中,AD 是高,AE 是BAC ∠的平分线,=40=70ABC ACB ,∠︒∠︒.(1)求EAD ∠的度数(2)当==ABC ACB αβ∠∠,,请用αβ,表示EAD ∠,并写出推导过程(3)当AE 是BAC ∠的外角FAC ∠的平分线,如图2则此时EAD ∠的度数是多少,用,αβ表示,直接写出结果.【答案】(1)15o ;(2) -2EAD βα∠=;(3) 902EAD αβ-∠=︒+【解析】【分析】(1)先根据三角形的内角和定理求得∠BAC=180°-∠B-∠C=70°,利用角平分线的定义得∠EAC=12∠BAC=35°,而∠DAC=90°-∠C=20°,通过∠EAD=∠EAC-∠DAC 即可得到结果. (2)猜想∠DAE=12(β-α),重复(1)的过程找出∠BAD 和∠BAE 的度数,二者做差即可得出结论;(3)作∠BAC 的内角平分线AE ′,根据角平分线的性质求出∠EAE′=∠CAE+∠CAE′=12∠CAB+12∠CAF=90°,进而求出∠DAE 的度数. 【详解】解:(1)40,70,ABC ACB ∠=︒∠=︒180704070BAC ∴∠=︒-︒-︒=︒,AE 是BAC ∠的平分线,1=352BAE CAE BAC ∴∠=∠=∠︒, 在ACD Rt 中,9020CAD C ∠=︒-∠=︒,15EAD EAC CAD ∴∠=∠-∠=︒.(2),,ABC ACB αβ∠=∠=180BAC αβ∴∠=︒--,AE 是BAC ∠的平分线,1111=180--=90--2222BAE CAE BAC αβαβ∴∠=∠=∠︒︒(), 在Rt △ACD 中,90CAD β∠=︒-,-=2EAD CAE CAD βα∴∠=∠-∠. (3)902EAD αβ-∠=︒+.如图,作∠CAB 的内角平分线AE′,则∠DAE′=-2βα.因为AE 是∠ACB 的外角平分线,所以∠EAE′=∠CAE+∠CAE′=12∠CAB+12∠CAF=12(∠CAB+∠CAF )=90°,所以∠DAE=90°-∠DAE′=90°--2βα=902αβ-︒+. 即∠DAE 的度数为902αβ-︒+. 【点睛】 本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.解决(3)作辅助线是关键.4.如图①,在△ABC 中,AE 平分∠BAC ,∠C >∠B ,F 是AE 上一点,且FD ⊥BC 于D 点.(1)试猜想∠EFD ,∠B ,∠C 的关系,并说明理由;(2)如图②,当点F 在AE 的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.① ②【答案】(1)∠EFD =12∠C -12∠B .()成立,理由见解析. 【解析】【分析】 先根据AE 平分∠BAC 推出∠BAE=12∠BAC=12[180°-(∠B+∠C )],再根据外角的定义求出∠FED=∠B+∠BAE ,然后利用直角三角形的性质求出∠EFD=90°-∠FED . 【详解】解:(1)∠EFD =12∠C -12∠B . 理由如下:由AE 是∠BAC 的平分线知∠BAE =12∠BAC . 由三角形外角的性质知∠FED =∠B +12∠BAC , 故∠B +12∠BAC +∠EFD =90°①. 在△ABC 中,由三角形内角和定理得∠B +∠BAC +∠C =180°,即12∠C +12∠B +12∠BAC =90°②. ②-①,得∠EFD =12∠C -12∠B .(2)成立. 理由如下:由对顶角相等和三角形的外角性质知:∠FED =∠AEC =∠B +12∠BAC , 故∠B +12∠BAC +∠EFD =90°①. 在△ABC 中,由三角形内角和定理得: ∠B +∠BAC +∠C =180°,即12∠B +12∠BAC +12∠C =90°②.②-①,得∠EFD =12∠C -12∠B . 【点睛】 此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.5.ABC 中,AD 是BAC ∠的平分线,AE BC ⊥,垂足为E ,作CF//AD ,交直线AE 于点F.设B α∠=,ACB β∠=.()1若B 30∠=,ACB 70∠=,依题意补全图1,并直接写出AFC ∠的度数; ()2如图2,若ACB ∠是钝角,求AFC ∠的度数(用含α,β的式子表示);()3如图3,若B ACB ∠∠>,直接写出AFC ∠的度数(用含α,β的式子表示).【答案】(1)补图见解析,AFC 20∠=;(2) ()1AFC 180βα2∠=--;(3) ()1AFC αβ2∠=-. 【解析】【分析】 (1)先根据三角形内角和定理求出∠BAC 和∠CAE ,根据角平分线定义求出∠CAD ,即可求出答案;(2)先根据三角形内角和定理求出∠BAC ,根据角平分线定义求出∠BAD ,根据三角形外角性质求出∠ADC ,根据三角形内角和定理求出∠DAE ,根据平行线的性质求出即可;(3)求出∠DAE 度数,根据平行线的性质求出即可.【详解】解:()1如图1,B 30∠=,ACB 70∠=,BAC 180B ACB 80∠∠∠∴=--=,AD 是BAC ∠的平分线,1CAD CAB 402∠∠∴==, AE BC ⊥,AEC 90∠∴=,ACB 70∠=,EAC 180907020∠∴=--=,DAE CAD CAE 402020∠∠∠∴=-=-=,CF//AD ,AFC DAE 20∠∠∴==;()2如图2,ABC 中,BAC B ACB 180∠∠∠++=,()BAC 180B ACB ∠∠∠∴=-+.()180αβ=-+,AD 是BAC ∠的平分线,()11BAD BAC 90αβ22∠∠∴==-+,()()11ADE B BAD α90αβ90βα22∠∠∠∴=+=+-+=--, AE BC ⊥,DAE ADE 90∠∠∴+=, ()1DAE 90ADE βα2∠∠∴=-=-, CF//AD ,DAE AFC 180∠∠∴+=,()1AFC 180βα2∠∴=--; ()3如图3,ABC 中,BAC B ACB 180∠∠∠++=, ()BAC 180B ACB ∠∠∠∴=-+,()180αβ=-+,AD 是BAC ∠的平分线,()11CAD BAC 90αβ22∠∠∴==-+, AE BC ⊥,AEC 90∠∴=,ACB β∠=,EAC 18090β90β∠∴=--=-,()()()11DAE CAE CAD 90β90αβαβ22∠∠∠⎡⎤∴=-=----=-⎢⎥⎣⎦. 【点睛】本题考查了三角形内角和定理、三角形角平分线定义、三角形的高、平行线的性质等,熟练掌握相关的性质与定理是解题的关键.6.如图,将一块三角板ABC 的直角顶点C 放在直尺的一边PQ 上,直尺的另一边MN 与三角板的两边AC 、BC 分别交于两点E、D,且AD 为∠BAC 的平分线,∠B=300,∠ADE=150.(1)求∠BDN的度数;(2)求证:CD=CE.【答案】(1)∠BDN=∠CDE=450(2)CD=CE【解析】试题分析:(1)根据直角三角形的性质,求出∠BAC=60°,然后根据角平分线的性质求出∠CAD=30°,进而根据三角形的内角和求出∠CDA=60°,最后根据角的和差求解即可;(2)结合(1)的关系,由“等角对等边”得出结论.试题解析:(1)在直角三角形ABC中,∠ACB=900,∠B=300,∴∠BAC=600,又AD平分∠BAC,∴∠CAD=300,又∠ACD=900,∴∠CDA=600又∠ADE=150,∴∠CDE=∠CDA-∠ADE=600-150=450∴∠BDN=∠CDE=450(2)在△CED中,∠ECD=900,∠CDE=450∴∠CED=450∴ CD=CE点睛:此题主要考查了直角三角形、角平分线的性质,三角形的内角和定理,解题关键是利用三角形的外角和内角求解角之间的和差关系即可.7.如图,已知,在△ABC中,∠B<∠C,AD平分∠BAC,E的线段AD(除去端点A、D)上一动点,EF⊥BC于点F.(1)若∠B=40°,∠DEF=10°,求∠C的度数.(2)当E在AD上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系,并说明理由.【答案】(1)∠C=60°.(2)∠C-∠B=2∠DEF.理由见解析【解析】试题分析:(1)已知:EF⊥BC,∠DEF=10°可以求得∠EDF 的度数,∠EDF 又是∆ABD 的外角,已知∠B 的度数,可求得∠BAD 的值,AD 平分∠BAC,所以∠BAC 的值也可求出,从而求出∠C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学 三角形难题 专项测试学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)二、填空题(题型注释)三、计算题(题型注释)1.如图,A 、B 、C 在同一直线上,且△ABD ,△BCE 都是等边三角形,AE 交BD 于点M ,CD 交BE 于点N ,求证:(1)∠BDN=∠BAM ;(2)△BMN 是等边三角形.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由△ABD 与△BCE 都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS 即可得到△ABE 与△DBC 全等,进而得到∠BDN=∠BEM ;(2)由第一问△ABE 与△DBC 全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB ,利用ASA 可得出△EMB 与△CNB 全等,利用全等三角形的对应边相等得到MB=NB ,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出△BMN 为等边三角形. 试题解析:证明:(1)∵等边△ABD 和等边△BCE ,∴AB=DB ,BE=BC ,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE 和△DBC 中,AB DB ABE DBC BE BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DBC (SAS )∴∠BDN=∠BAM ;(2)∵△ABE ≌△DBC ,∴∠AEB=∠DCB ,又∵∠ABD=∠EBC=60°,∴∠MBE=180°﹣60°﹣60°=60°,即∠MBE=∠NBC=60°,在△MBE 和△NBC 中,AEB DCB EB CBMBE NBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△MBE ≌△NBC (ASA ),∴BM=BN ,∠MBE=60°,∴△BMN 为等边三角形.考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质.2.已知等腰三角形的底角是顶角的2倍,求这个三角形各个内角的度数.【答案】45°,45°,90°.【解析】试题分析:本题可通过设适当的参数,根据已知条件及等腰三角形的性质与三角形内角和定理建立方程求解.试题解析:由题意,设底角为x °;根据三角形内角和定理知,x+x+2x=180,解得x=45,因此这个等腰三角形的各个内角的度数是45°,45°,90°.考点:1.等腰三角形的性质;2.三角形内角和定理.3.已知等腰三角形的一边长等于4cm ,一边长等于9cm ,求它的周长.(7分)【答案】22cm .【解析】试题分析:分情况讨论即可;试题解析:分两种情况:若腰长为4,4+4<9,不能构成三角形;若腰长为9,9-9<4,能构成三角形,9+9+4=22,答:周长是22cm .考点:1.等腰三角形的性质;2.三角形三关系.4.(8分)如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:△ABE ≌△ACD .【答案】见解析【解析】试题分析:由AB=AC 可得∠B=∠C ,然后根据BD=CE 可证BE=CD ,根据SAS 即可判定三角形的全等.试题解析:证明∵AB=AC ,∴∠B=∠C , ∵BD=EC , ∴BE=CD ,在△ABE 与△ACD 中, , ∴△ABE ≌△ACD (SAS ).考点:全等三角形的判定.5.(本题5分)已知:如图所示,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A +∠1=74º, 求:∠D 的度数.【答案】53°【解析】试题分析:∵AB ∥CD,∴∠A=∠1, 1分∵∠A+∠1=74°,∴∠A=∠1=37°, 2分∵∠1=∠2,∴∠1=∠2=37°, 3分∵DE ⊥AE,∴∠D+∠2=90°, 4分∴∠D=90°—37°,=53° 5分考点:平行线的性质6.如图,在△ABD 和△FEC 中,点B ,C ,D ,E 在同一直线上,且AB=FE ,BC=DE ,∠B=∠E 。
求证:∠ADB=∠FCE .【答案】证明见解析.【解析】试题分析:要证明∠ADB=∠FCE ,只需证它们所在的三角形全等即可.试题解析:∵BC=DE ,∴BC+CD=DE+CD ,即DB+CE .又∵AB=FE ,∠B=∠E ,∴△ABD ≌△FEC .∴∠ADB=∠FCE .考点:全等三角形的证明.7.(本题满分11分)如图所示,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE=CB .EAB DC 1(1)求证:BC 为⊙O 的切线;(2)若AB=4,AD=1,求线段CE 的长.【答案】(1)证明见试题解析;(2)4.【解析】试题分析:(1)证明△OBC ≌△OEC ,得出∠OBC=∠OEC=90°,证出BC 为⊙O 的切线;(2)过点D 作DF ⊥BC 于F ,求出DF=AB=4,BF=AD=1,设CE=x ,Rt △CDF 中,根据勾股定理得出x 的值即可.试题解析:(1)连接OE ,OC ;如图所示:∵DE 与⊙O 相切于点E ,∴∠OEC=90°,在△OBC 和△OEC 中,∵OB=OE ,CB=CE ,OC=OC ,∴△OBC ≌△OEC (SSS ),∴∠OBC=∠OEC=90°,∴BC 为⊙O 的切线;(2)过点D 作DF ⊥BC 于F ;如图所示:设CE=x ,∵CE ,CB 为⊙O 切线,∴CB=CE=x ,∵DE ,DA 为⊙O 切线,∴DE=DA=1,∴DC=x+1,∵∠DAB=∠ABC=∠DFB=90°,∴四边形ADFB 为矩形,∴DF=AB=4 BF=AD=1,∴FC=x ﹣1,Rt △CDF 中,根据勾股定理得:22(1)(1)16x x +--=,解得:x=4,∴CE=4.考点:切线的判定与性质.8.(9分)如图,在ABC ∆中,AC AB =,α=∠A .(1)直接写出ABC ∠的大小(用含α的式子表示);(2)以点B 为圆心、BC 长为半径画弧,分别交AC 、AB 于D 、E 两点,并连接BD 、DE .若α=30°,求BDE ∠的度数.【答案】(1(2)67.5°【解析】试题分析:利用等腰三角形的性质:等边对等角和三角形的内角和公式来解答本题.试题解析:(1(2)∵AC AB =由题意得:BE BD BC ==由BD BC =得︒=∠=∠75C BDC ∴︒=︒-︒-︒=∠307575180CBD∴︒=︒-︒=∠-∠=∠453075CBD ABC ABD由BE BD =得考点:等腰三角形;三角形的内角和9.(8分)已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF .求证:△ABC ≌△DEF【答案】见解析【解析】试题分析:欲证两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC ∥DF 可以得出∠ACB=∠F ,条件找到,全等可证.试题解析:证明:(1)∵AC ∥DF∴∠ACB =∠F在△ABC 与△DEF 中ACB F AD AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF考点:全等三角形的判定10.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.【答案】36.【解析】试题分析:利用勾股定理列式求出AC ,再利用勾股定理逆定理判断出△ACD 是直角三角形,然后根据S 四边形ABCD =S △ABC +S △ACD 列式计算即可得解.试题解析:∵∠B=90°,∴由勾股定理得,, ∵AC 2+AD 2=25+144=169=CD 2,∴△ACD 是直角三角形,∴S四边形ABCD=S△ABC+S△ACD,3×5×12,=6+30,=36.考点:1.勾股定理;2.勾股定理的逆定理.11.已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.【答案】证明见解析.【解析】试题分析:根据OA=OB,得∠A=∠B=60°;根据AB∥DC,得出对应角相等,从而求得∠C=∠D=60°,根据等边三角形的判定就可证得结论.试题解析:证明:∵OA=OB,∴∠A=∠B=60°,又∵AB∥DC,∴∠A=∠C=60°,∠B=∠D=60°,∴△OCD是等边三角形.考点:等边三角形的判定.12.(本题满分8分)如图,在Rt△ABC中,∠C=90º,BD是Rt△ABC的一条角一平分线,点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形,(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长【答案】见解析;2.【解析】试题分析:(1)考察角平分线定理的性质,及直角三角形全等的判断方法,“HL”(2)利用全等得到线段AM=BE,AM=AF,利用正方形OECF,得到四边都相等,从而利用OE 与BE、AF及AB的关系求出OE的长试题解析:(1)过点O作ON⊥AB于点M ∵正方形OECF∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E ∴OM=OE=OF∵OM⊥AB于M, OE⊥BC于E ∴∠AMO=90°,∠AFO=90°∵OM OF AO AO=⎧⎨=⎩ ∴Rt △AMO ≌Rt △AFO ∴∠MA0=∠FAO ∴点O 在∠BAC 的平分线上(2)、∵Rt △ABC 中,∠C =90°,AC =5,BC =12 ∴AB =13 易证:BE =BM ,AM =AF又BE =BC -CE ,AF =:AC -CF ,而CE =CF =OE 故:BE =12-OE ,AF =5-OE 显然:BM +AM =AB 即:BE +AF =13 12-OE +5-OE =13 解得OE =2 考点:全等三角形的应用13.(本题满分8分)如图,在△ABC 中,∠B=54°,AD 平分∠CAB ,交BC 于D ,E 为AC 边上一点,连结DE ,∠EAD=∠EDA ,EF ⊥BC 于点F .求∠FED 的度数.【答案】∠FED=36°;【解析】试题分析:由∠BAD=∠DAC ,∠ EAD=∠EDA ,可得∠BAD=∠EDA ,从而可得DE//AB ,继而得∠EDF=∠B=54°,由直角三角形两锐角互余,从而可得∠FED =90°-∠EDF=36°; 试题解析:∵∠BAD=∠DAC ,∠ EAD=∠EDA ,∴∠BAD=∠EDA ,∴DE//AB ,∴∠EDF=∠B=54°,∵∠EFD=90°,∴∠FED =90°-∠EDF=36°;考点:1.平行线的判定与性质;2.直角三角形的性质.14.(本题满分12分)如图,已知直线1l :33+-=x y 与直线2l :y = mx -4m 的图像的交点C 在第四象限,且点C 到y 轴的距离为2.x yDO l 2l 1AC(1)求直线2l 的解析式;(2)求△ADC 的面积;(3)在第一象限的角平分线上是否存在点P ,使得△ADP 的面积是△ADC 的面积的2倍?如果存在,求出点P 的坐标,如果不存在,请说明理由.【答案】(1)2l 的解析式为(2)△ADC(3)存在,点P 的坐标为(6,6).【解析】试题分析:(1)先求出C 点的坐标,然后代入直线中,即可得出解析式;求出点D 的坐标,即可得出△ADC 的面积;存在,然后根据△ADP的面积是△ADC的面积的2倍等于9,即可得出P点的横坐标,所以求出P点坐标.试题解析:(1) ∵点C到y轴距离为2,点C在直线l上,1∴点C(2,-3),∵点C在直线l上,把C的坐标代入y=mx-4m,得m2∴l的解析式为2易求点D为(1,0),点A为(4,0),∴△ADC4-1)×3∵点P在第一象限的角平分线上,∴设点P为(x,x),∵△ADP的面积是△ADC的面积的2倍等于9,3 x=9,x=6,∴点P的坐标为(6,6).考点:一次函数的综合应用.15.(本题6分)如图,△ABC中,AB=AC,D是BC的中点,试说明AD⊥BC.【答案】详见解析.【解析】试题分析:利用SSS判定△ADB≌△ADC,根据全等三角形的性质可得∠ADB=∠ADC,又因∠ADB+∠ADC=1800,可得∠ADB=∠ADC=900,即可得AD⊥BC.试题解析:∵D是BC的中点∴BD=CD在△ABD和△ACD中,BD=CD,AB=AC,AC=AC∴△ADB≌△ADC∴∠ADB=∠ADC,∵∠ADB+∠ADC=1800,∴∠ADB=∠ADC=900,∴AD⊥BC.考点:全等三角形的判定及性质.16.(7分)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.【答案】见解析.【解析】试题分析:根据等边三角形的性质得出∠DBE=30°,根据CD=CE以及外角的性质得出∠DEC=30°,从而得出△BDE为等腰三角形,即BD=DE.试题解析:∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.考点:等边三角形的性质;三角形内角和定理;等腰三角形的判定与性质.四、解答题(题型注释)17.求证:等腰三角形底边上的中点到两腰上的距离相等.(要求画图,写已知,求证和证明)【答案】证明见解析.【解析】试题分析:根据题意画出图形,写出已知与求证,然后证明:连接AD,由AB=AC,D为BC中点,利用等腰三角形的“三线合一”性质得到AD为顶角的平分线,由DE与AB垂直,DF与AC垂直,根据角平分线上的点到角两边的距离相等即可得到DE=DF,得证.如图,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.证明:连接AD,∵AB=AC,D是BC中点,∴AD为∠BAC的平分线(三线合一的性质),又∵DE⊥AB,DF⊥AC,∴DE=DF(角平分线上的点到角的两边相等).考点:等腰三角形的性质.18.如图,已知AB∥CD,若∠A=20°,∠E=35°,求∠C.【答案】55°.【解析】试题分析:根据三角形的外角等于和它不相邻的两个内角的和以及平行线的性质进行求解.试题解析:∵∠A=20°,∠E=35°,∴∠EFB=∠A+∠E=55°,∵AB ∥CD ,∴∠C=∠EFB=55°.考点:1.三角形的外角性质;2.平行线的性质.19.如图,在△ABC 和△DBC 中,∠ACB =∠DBC = 90º,E 是BC 的中点,EF ⊥AB 于F ,且AB =DE .(1)求证:BC =DB ;(2)若DB =8cm ,求AC 的长.【答案】(1)证明见解析;(2)4cm.【解析】试题分析:(1)根据三角形的内角和定理求出∠1=∠3,根据AAS 推出△ACB ≌△EBD ,推出BC=BD 即可;(2)根据全等得出AC=BE ,求出BE 的长即可;试题解析:(1)证明:∵DE ⊥AB ,∴∠4=90°=∠ACB=∠EBD ,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ACB 和△EBD 中,∵13ACB EBD AB DE ∠=∠∠=∠=⎧⎪⎨⎪⎩,∴△ACB ≌△EBD (AAS),∴BC=BD ,∵∠EBD=90°,∴△CBD 是等腰直角三角形;(2)解:∵BC=BD=8cm ,△ACB ≌△EBD,∴AC=BE ,∵E 为BC 中点,∴,∴AC=BE=4cm考点:1.全等三角形的判定与性质;2.勾股定理;3.等腰直角三角形.20.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(10分)(1)请在图中画出平移后的△A′B′C′。